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Preface

This book is about the growing intersection of data-driven methods, applied optimization,
and the classical fields of engineering mathematics and mathematical physics. We have
been developing this material over a number of years, primarily to educate our advanced
undergrad and beginning graduate students from engineering and physical science depart-
ments. Typically, such students have backgrounds in linear algebra, differential equations,
and scientific computing, with engineers often having some exposure to control theory
and/or partial differential equations. However, most undergraduate curricula in engineering
and science fields have little or no exposure to data methods and/or optimization. Likewise,
computer scientists and statisticians have little exposure to dynamical systems and control.
Our goal is to provide a broad entry point to applied data science for both of these groups
of students. We have chosen the methods discussed in this book for their (1) relevance,
(2) simplicity, and (3) generality, and we have attempted to present a range of topics, from
basic introductory material up to research-level techniques.

Data-driven discovery is currently revolutionizing how we model, predict, and control
complex systems. The most pressing scientific and engineering problems of the mod-
ern era are not amenable to empirical models or derivations based on first-principles.
Increasingly, researchers are turning to data-driven approaches for a diverse range of com-
plex systems, such as turbulence, the brain, climate, epidemiology, finance, robotics, and
autonomy. These systems are typically nonlinear, dynamic, multi-scale in space and time,
high-dimensional, with dominant underlying patterns that should be characterized and
modeled for the eventual goal of sensing, prediction, estimation, and control. With modern
mathematical methods, enabled by unprecedented availability of data and computational
resources, we are now able to tackle previously unattainable challenge problems. A small
handful of these new techniques include robust image reconstruction from sparse and noisy
random pixel measurements, turbulence control with machine learning, optimal sensor and
actuator placement, discovering interpretable nonlinear dynamical systems purely from
data, and reduced order models to accelerate the study and optimization of systems with
complex multi-scale physics.

Driving modern data science is the availability of vast and increasing quantities of data,
enabled by remarkable innovations in low-cost sensors, orders-of-magnitudes increases in
computational power, and virtually unlimited data storage and transfer capabilities. Such
vast quantities of data are affording engineers and scientists across all disciplines new
opportunities for data-driven discovery, which has been referred to as the fourth paradigm
of scientific discovery [245]. This fourth paradigm is the natural culmination of the first
three paradigms: empirical experimentation, analytical derivation, and computational
investigation. The integration of these techniques provides a transformative framework for
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data-driven discovery efforts. This process of scientific discovery is not new, and indeed
mimics the efforts of leading figures of the scientific revolution: Johannes Kepler (1571–
1630) and Sir Isaac Newton (1642–1727). Each played a critical role in developing the
theoretical underpinnings of celestial mechanics, based on a combination of empirical
data-driven and analytical approaches. Data science is not replacing mathematical physics
and engineering, but is instead augmenting it for the twenty-first century, resulting in more
of a renaissance than a revolution.

Data science itself is not new, having been proposed more than 50 years ago by John
Tukey who envisioned the existence of a scientific effort focused on learning from data,
or data analysis [152]. Since that time, data science has been largely dominated by two
distinct cultural outlooks on data [78]. The machine learning community, which is pre-
dominantly comprised of computer scientists, is typically centered on prediction quality
and scalable, fast algorithms. Although not necessarily in contrast, the statistical learning
community, often centered in statistics departments, focuses on the inference of inter-
pretable models. Both methodologies have achieved significant success and have provided
the mathematical and computational foundations for data-science methods. For engineers
and scientists, the goal is to leverage these broad techniques to infer and compute models
(typically nonlinear) from observations that correctly identify the underlying dynamics
and generalize qualitatively and quantitatively to unmeasured parts of phase, parameter,
or application space. Our goal in this book is to leverage the power of both statistical and
machine learning to solve engineering problems.

Themes of This Book
There are a number of key themes that have emerged throughout this book. First, many
complex systems exhibit dominant low-dimensional patterns in the data, despite the rapidly
increasing resolution of measurements and computations. This underlying structure enables
efficient sensing, and compact representations for modeling and control. Pattern extraction
is related to the second theme of finding coordinate transforms that simplify the system.
Indeed, the rich history of mathematical physics is centered around coordinate transfor-
mations (e.g., spectral decompositions, the Fourier transform, generalized functions, etc.),
although these techniques have largely been limited to simple idealized geometries and
linear dynamics. The ability to derive data-driven transformations opens up opportunities
to generalize these techniques to new research problems with more complex geometries
and boundary conditions. We also take the perspective of dynamical systems and control
throughout the book, applying data-driven techniques to model and control systems that
evolve in time. Perhaps the most pervasive theme is that of data-driven applied optimiza-
tion, as nearly every topic discussed is related to optimization (e.g., finding optimal low-
dimensional patterns, optimal sensor placement, machine learning optimization, optimal
control, etc.). Even more fundamentally, most data is organized into arrays for analysis,
where the extensive development of numerical linear algebra tools from the early 1960s
onward provides many of the foundational mathematical underpinnings for matrix decom-
positions and solution strategies used throughout this text.

Acknowledgments
We are indebted to many wonderful students, collaborators, and colleagues for valuable
feedback, suggestions, and support. We are especially grateful to Joshua Proctor, who was
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instrumental in the origination of this book and who helped guide much of the framing and
organization. We have also benefited from extensive interactions and conversations with
Bing Brunton, Igor Mezić, Bernd Noack, and Sam Taira. This work would also not be
possible without our many great colleagues and collaborators, with whom we have worked
and whose research is featured throughout this book.

Throughout the writing of this book and teaching of related courses, we have received
great feedback and comments from our excellent students and postdocs: Travis Askham,
Michael Au-Yeung, Zhe Bai, Ido Bright, Kathleen Champion, Emily Clark, Charles
Delahunt, Daniel Dylewski, Ben Erichson, Charlie Fiesler, Xing Fu, Chen Gong, Taren
Gorman, Jacob Grosek, Seth Hirsh, Mikala Johnson, Eurika Kaiser, Mason Kamb, James
Kunert, Bethany Lusch, Pedro Maia, Krithika Manohar, Niall Mangan, Ariana Mendible,
Thomas Mohren, Megan Morrison, Markus Quade, Sam Rudy, Susanna Sargsyan, Isabel
Scherl, Eli Shlizerman, George Stepaniants, Ben Strom, Chang Sun, Roy Taylor, Meghana
Velagar, Jake Weholt, and Matt Williams. Our students are our inspiration for this book,
and they make it fun and exciting to come to work every day.

We would also like to thank our publisher Lauren Cowles at Cambridge University Press
for being a reliable supporter throughout this process.

Online Material
We have designed this book to make extensive use of online supplementary material,
including codes, data, videos, homeworks, and suggested course syllabi. All of this material
can be found at the following website:

databookuw.com

In addition to course resources, all of the code and data used in the book are available.
The codes online are more extensive than those presented in the book, including code
used to generate publication quality figures. Data visualization was ranked as the top used
data-science method in the Kaggle 2017 The State of Data Science and Machine Learning
study, and so we highly encourage readers to download the online codes and make full use
of these plotting commands.

We have also recorded and posted video lectures on YouTube for most of the topics in
this book. We include supplementary videos for students to fill in gaps in their background
on scientific computing and foundational applied mathematics. We have designed this text
both to be a reference as well as the material for several courses at various levels of student
preparation. Most chapters are also modular, and may be converted into stand-alone boot
camps, containing roughly 10 hours of materials each.

How to Use This Book
Our intended audience includes beginning graduate students, or advanced undergraduates,
in engineering and science. As such, the machine learning methods are introduced at a
beginning level, whereas we assume students know how to model physical systems with
differential equations and simulate them with solvers such as ode45. The diversity of topics
covered thus range from introductory to state-of-the-art research methods. Our aim is
to provide an integrated viewpoint and mathematical toolset for solving engineering and
science problems. Alternatively, the book can also be useful for computer science and
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statistics students who often have limited knowledge of dynamical systems and control.
Various courses can be designed from this material, and several example syllabi may be
found on the book website; this includes homework, data sets, and code.

First and foremost, we want this book to be fun, inspiring, eye-opening, and empowering
for young scientists and engineers. We have attempted to make everything as simple as
possible, while still providing the depth and breadth required to be useful in research. Many
of the chapter topics in this text could be entire books in their own right, and many of them
are. However, we also wanted to be as comprehensive as may be reasonably expected for
a field that is so big and moving so fast. We hope that you enjoy this book, master these
methods, and change the world with applied data science!



Common Optimization Techniques, Equations,
Symbols, and Acronyms

Most Common Optimization Strategies
Least-Squares (discussed in Chapters 1 and 4) minimizes the sum of the squares of the
residuals between a given fitting model and data. Linear least-squares, where the residuals
are linear in the unknowns, has a closed form solution which can be computed by taking
the derivative of the residual with respect to each unknown and setting it to zero. It is
commonly used in the engineering and applied sciences for fitting polynomial functions.
Nonlinear least-squares typically requires iterative refinement based upon approximating
the nonlinear least-squares with a linear least-squares at each iteration.

Gradient Descent (discussed in Chapters 4 and 6) is the industry leading, convex opti-
mization method for high-dimensional systems. It minimizes residuals by computing the
gradient of a given fitting function. The iterative procedure updates the solution by moving
downhill in the residual space. The Newton–Raphson method is a one-dimensional version
of gradient descent. Since it is often applied in high-dimensional settings, it is prone to find
only local minima. Critical innovations for big data applications include stochastic gradient
descent and the backpropagation algorithm which makes the optimization amenable to
computing the gradient itself.

Alternating Descent Method (ADM) (discussed in Chapter 4) avoids computations of the
gradient by optimizing in one unknown at a time. Thus all unknowns are held constant
while a line search (non-convex optimization) can be performed in a single variable. This
variable is then updated and held constant while another of the unknowns is updated. The
iterative procedure continues through all unknowns and the iteration procedure is repeated
until a desired level of accuracy is achieved.

Augmented Lagrange Method (ALM) (discussed in Chapters 3 and 8) is a class of
algorithms for solving constrained optimization problems. They are similar to penalty
methods in that they replace a constrained optimization problem by a series of uncon-
strained problems and add a penalty term to the objective which helps enforce the desired
constraint. ALM adds another term designed to mimic a Lagrange multiplier. The aug-
mented Lagrangian is not the same as the method of Lagrange multipliers.

Linear Program and Simplex Method are the workhorse algorithms for convex opti-
mization. A linear program has an objective function which is linear in the unknown
and the constraints consist of linear inequalities and equalities. By computing its feasible
region, which is a convex polytope, the linear programming algorithm finds a point in the
polyhedron where this function has the smallest (or largest) value if such a point exists.
The simplex method is a specific iterative technique for linear programs which aims to take
a given basic feasible solution to another basic feasible solution for which the objective
function is smaller, thus producing an iterative procedure for optimizing.

xiii
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Most Common Equations and Symbols
Linear Algebra
Linear System of Equations

Ax = b. (0.1)

The matrix A ∈ Rp×n and vector b ∈ Rp are generally known, and the vector x ∈ Rn is
unknown.

Eigenvalue Equation

AT = T�. (0.2)

The columns ξ k of the matrix T are the eigenvectors of A ∈ Cn×n corresponding to
the eigenvalue λk: Aξ k = λkξ k . The matrix � is a diagonal matrix containing these
eigenvalues, in the simple case with n distinct eigenvalues.

Change of Coordinates

x = �a. (0.3)

The vector x ∈ Rn may be written as a ∈ Rn in the coordinate system given by the columns
of � ∈ Rn×n.

Measurement Equation

y = Cx. (0.4)

The vector y ∈ Rp is a measurement of the state x ∈ Rn by the measurement matrix
C ∈ Rp×n.

Singular Value Decomposition

X = U�V∗ ≈ Ũ�̃Ṽ
∗
. (0.5)

The matrix X ∈ Cn×m may be decomposed into the product of three matrices U ∈ Cn×n,
� ∈ Cn×m, and V ∈ Cm×m. The matrices U and V are unitary, so that UU∗ = U∗U = In×n

and VV∗ = V∗V = Im×m, where ∗ denotes complex conjugate transpose. The columns of
U (resp. V) are orthogonal, called left (resp. right) singular vectors. The matrix � contains
decreasing, nonnegative diagonal entries called singular values.

Often, X is approximated with a low-rank matrix X̃ = Ũ�̃Ṽ
∗
, where Ũ and Ṽ contain

the first r � n columns of U and V, respectively, and �̃ contains the first r × r block of
�. The matrix Ũ is often denoted � in the context of spatial modes, reduced order models,
and sensor placement.
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Regression and Optimization
Overdetermined and Underdetermined Optimization for Linear Systems

argmin
x

(‖Ax − b‖2 + λg(x)) or (0.6a)

argmin
x

g(x) subject to ‖Ax − b‖2 ≤ ε , (0.6b)

Here g(x) is a regression penalty (with penalty parameter λ for overdetermined systems).
For over- and underdetermined linear systems of equations, which result in either no solu-
tions or an infinite number of solutions of Ax = b, a choice of constraint or penalty, which
is also known as regularization, must be made in order to produce a solution.

Overdetermined and Underdetermined Optimization for Nonlinear Systems

argmin
x

(f (A, x, b) + λg(x)) or (0.7a)

argmin
x

g(x) subject to f (A, x, b) ≤ ε (0.7b)

This generalizes the linear system to a nonlinear system f (·) with regularization g(·). These
over- and underdetermined systems are often solved using gradient descent algorithms.

Compositional Optimization for Neural Networks

argmin
Aj

(
fM(AM, · · · f2(A2, (f1(A1, x)) · · · ) + λg(Aj )

)
(0.8)

Each Ak denotes the weights connecting the neural network from the kth to (k + 1)th
layer. It is typically a massively underdetermined system which is regularized by g(Aj ).
Composition and regularization are critical for generating expressive representations of the
data as well as preventing overfitting.

Dynamical Systems and Reduced Order Models
Nonlinear Ordinary Differential Equation (Dynamical System)

d

dt
x(t) = f(x(t), t;β). (0.9)

The vector x(t) ∈ Rn is the state of the system evolving in time t , β are parameters, and f is
the vector field. Generally, f is Lipschitz continuous to guarantee existence and uniqueness
of solutions.

Linear Input–Output System

d

dt
x = Ax + Bu (0.10a)

y = Cx + Du. (0.10b)

The state of the system is x ∈ Rn, the inputs (actuators) are u ∈ Rq , and the outputs
(sensors) are y ∈ Rp. The matrices A, B, C, D define the dynamics, the effect of actuation,
the sensing strategy, and the effect of actuation feed-through, respectively.
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Nonlinear Map (Discrete-Time Dynamical System)

xk+1 = F(xk). (0.11)

The state of the system at the kth iteration is xk ∈ Rn, and F is a possibly nonlinear
mapping. Often, this map defines an iteration forward in time, so that xk = x(k�t); in this
case the flow map is denoted F�t .

Koopman Operator Equation (Discrete-Time)

Kt g = g ◦ Ft 	⇒ Kt ϕ = λϕ. (0.12)

The linear Koopman operator Kt advances measurement functions of the state g(x) with
the flow Ft . Eigenvalues and eigenvectors of Kt are λ and ϕ(x), respectively. The operator
Kt operates on a Hilbert space of measurements.

Nonlinear Partial Differential Equation

ut = N(u, ux, uxx, · · · , x, t;β). (0.13)

The state of the PDE is u, the nonlinear evolution operator is N, subscripts denote
partial differentiation, and x and t are the spatial and temporal variables, respectively.
The PDE is parameterized by values in β. The state u of the PDE may be a con-
tinuous function u(x, t), or it may be discretized at several spatial locations, u(t) =[
u(x1, t) u(x2, t) · · · u(xn, t)

]T ∈ Rn.

Galerkin Expansion
The continuous Galerkin expansion is:

u(x, t) ≈
r∑

k=1

ak(t)ψk(x). (0.14)

The functions ak(t) are temporal coefficients that capture the time dynamics, and ψk(x) are
spatial modes. For a high-dimensional discretized state, the Galerkin expansion becomes:
u(t) ≈∑r

k=1 ak(t)ψk. The spatial modes ψk ∈ Rn may be the columns of � = Ũ.
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Complete Symbols
Dimensions
K Number of nonzero entries in a K-sparse vector s
m Number of data snapshots (i.e., columns of X)
n Dimension of the state, x ∈ Rn

p Dimension of the measurement or output variable, y ∈ Rp

q Dimension of the input variable, u ∈ Rq

r Rank of truncated SVD, or other low-rank approximation

Scalars
s Frequency in Laplace domain
t Time
δ learning rate in gradient descent

�t Time step
x Spatial variable

�x Spatial step
σ Singular value
λ Eigenvalue
λ Sparsity parameter for sparse optimization (Section 7.3)
λ Lagrange multiplier (Sections. 3.7, 8.4, and 11.4)
τ Threshold

Vectors
a Vector of mode amplitudes of x in basis �, a ∈ Rr

b Vector of measurements in linear system Ax = b
b Vector of DMD mode amplitudes (Section 7.2)
Q Vector containing potential function for PDE-FIND
r Residual error vector
s Sparse vector, s ∈ Rn

u Control variable (Chapters 8, 9, and 10)
u PDE state vector (Chapters 11 and 12)
w Exogenous inputs

wd Disturbances to system
wn Measurement noise
wr Reference to track

x State of a system, x ∈ Rn

xk Snapshot of data at time tk

xj Data sample j ∈ Z := {1, 2, · · · ,m} (Chapters 5 and 6)
x̃ Reduced state, x̃ ∈ Rr , so that x ≈ Ũx̃
x̂ Estimated state of a system
y Vector of measurements, y ∈ Rp

yj Data label j ∈ Z := {1, 2, · · · ,m} (Chapters 5 and 6)
ŷ Estimated output measurement
z Transformed state, x = Tz (Chapters 8 and 9)
ε Error vector
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Vectors, continued
β Bifurcation parameters
ξ Eigenvector of Koopman operator (Sections 7.4 and 7.5)
ξ Sparse vector of coefficients (Section 7.3)
φ DMD mode
ψ POD mode
ϒ Vector of PDE measurements for PDE-FIND

Matrices
A Matrix for system of equations or dynamics
Ã Reduced dynamics on r-dimensional POD subspace

AX Matrix representation of linear dynamics on the state x
AY Matrix representation of linear dynamics on the observables y

(A, B, C, B) Matrices for continuous-time state-space system
(Ad , Bd , Cd , Bd) Matrices for discrete-time state-space system

(Â, B̂, Ĉ, B̂) Matrices for state-space system in new coordinates z = T−1x
(Ã, B̃, C̃, B̃) Matrices for reduced state-space system with rank r

B Actuation input matrix
C Linear measurement matrix from state to measurements
C Controllability matrix
F Discrete Fourier transform
G Matrix representation of linear dynamics on the states and inputs

[xT uT ]T

H Hankel matrix
H′ Time-shifted Hankel matrix

I Identity matrix
K Matrix form of Koopman operator (Chapter 7)
K Closed-loop control gain (Chapter 8)

Kf Kalman filter estimator gain
Kr LQR control gain

L Low-rank portion of matrix X (Chapter 3)
O Observability matrix
P Unitary matrix that acts on columns of X
Q Weight matrix for state penalty in LQR (Sec. 8.4)
Q Orthogonal matrix from QR factorization
R Weight matrix for actuation penalty in LQR (Sec. 8.4)
R Upper triangular matrix from QR factorization
S Sparse portion of matrix X (Chapter 3)
T Matrix of eigenvectors (Chapter 8)
T Change of coordinates (Chapters 8 and 9)
U Left singular vectors of X, U ∈ Rn×n

Û Left singular vectors of economy SVD of X, U ∈ Rn×m

Ũ Left singular vectors (POD modes) of truncated SVD of X, U ∈ Rn×r

V Right singular vectors of X, V ∈ Rm×m

Ṽ Right singular vectors of truncated SVD of X, V ∈ Rm×r
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Matrices, continued
� Matrix of singular values of X, � ∈ Rn×m

�̂ Matrix of singular values of economy SVD of X, � ∈ Rm×m

�̃ Matrix of singular values of truncated SVD of X, � ∈ Rr×r

W Eigenvectors of Ã
Wc Controllability Gramian
Wo Observability Gramian

X Data matrix, X ∈ Rn×m

X′ Time-shifted data matrix, X′ ∈ Rn×m

Y Projection of X matrix onto orthogonal basis in randomized SVD (Sec. 1.8)
Y Data matrix of observables, Y = g(X), Y ∈ Rp×m (Chapter 7)

Y′ Shifted data matrix of observables, Y′ = g(X′), Y′ ∈ Rp×m (Chapter 7)
Z Sketch matrix for randomized SVD, Z ∈ Rn×r (Sec. 1.8)
� Measurement matrix times sparsifying basis, � = C� (Chapter 3)
� Matrix of candidate functions for SINDy (Sec. 7.3)
� Matrix of derivatives of candidate functions for SINDy (Sec. 7.3)
 Matrix of coefficients of candidate functions for SINDy (Sec. 7.3)
 Matrix of nonlinear snapshots for DEIM (Sec. 12.5)
� Diagonal matrix of eigenvalues
ϒ Input snapshot matrix, ϒ ∈ Rq×m

� Matrix of DMD modes, � � X′V�−1W
� Orthonormal basis (e.g., Fourier or POD modes)

Tensors
(A,B,M) N -way array tensors of size I1 × I2 × · · · × IN

Norms
‖ · ‖0 
0 pseudo-norm of a vector x the number of nonzero elements in x
‖ · ‖1 
1 norm of a vector x given by ‖x‖1 =∑n

i=1 |xi |
‖ · ‖2 
2 norm of a vector x given by ‖x‖2 =

√∑n
i=1(x

2
i )

‖ · ‖2 2-norm of a matrix X given by ‖X‖2 = maxx
‖Xx‖2
‖x‖2

‖ · ‖F Frobenius norm of a matrix X given by ‖X‖F =
√∑n

i=1
∑m

j=1 |Xij|2
‖ · ‖∗ Nuclear norm of a matrix X given by ‖X‖∗ = trace

(√
X∗X

)
=∑m

i=1 σi

(for m ≤ n)
〈·, ·〉 Inner product. For functions, 〈f (x), g(x)〉 = ∫∞

−∞ f (x)g∗(x)dx.
〈·, ·〉 Inner product. For vectors, 〈u, v〉 = u∗v.

Operators, Functions, and Maps
F Fourier transform
F Discrete-time dynamical system map

Ft Discrete-time flow map of dynamical system through time t

f Continuous-time dynamical system
G Gabor transform
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Operators, Functions, and Maps, continued
G Transfer function from inputs to outputs (Chapter 8)
g Scalar measurement function on x
g Vector-valued measurement functions on x
J Cost function for control

 Loss function for support vector machines (Chapter 5)
K Koopman operator (continuous time)
Kt Koopman operator associated with time t flow map
L Laplace transform
L Loop transfer function (Chapter 8)
L Linear partial differential equation (Chapters 11 and 12)
N Nonlinear partial differential equation
O Order of magnitude
S Sensitivity function (Chapter 8)
T Complementary sensitivity function (Chapter 8)

W Wavelet transform
μ Incoherence between measurement matrix C and basis �

κ Condition number
ϕ Koopman eigenfunction
∇ Gradient operator
∗ Convolution operator



Common Optimization Techniques, Equations, Symbols, and Acronyms xxi

Most Common Acronyms
CNN Convolutional neural network

DL Deep learning
DMD Dynamic mode decomposition

FFT Fast Fourier transform
ODE Ordinary differential equation
PCA Principal components analysis
PDE Partial differential equation
POD Proper orthogonal decomposition
ROM Reduced order model
SVD Singular value decomposition

Other Acronyms
ADM Alternating directions method

AIC Akaike information criterion
ALM Augmented Lagrange multiplier
ANN Artificial neural network

ARMA Autoregressive moving average
ARMAX Autoregressive moving average with exogenous input

BIC Bayesian information criterion
BPOD Balanced proper orthogonal decomposition
DMDc Dynamic mode decomposition with control

CCA Canonical correlation analysis
CFD Computational fluid dynamics

CoSaMP Compressive sampling matching pursuit
CWT Continuous wavelet transform

DEIM Discrete empirical interpolation method
DCT Discrete cosine transform
DFT Discrete Fourier transform

DMDc Dynamic mode decomposition with control
DNS Direct numerical simulation
DWT Discrete wavelet transform

ECOG Electrocorticography
eDMD Extended DMD

EIM Empirical interpolation method
EM Expectation maximization

EOF Empirical orthogonal functions
ERA Eigensystem realization algorithm
ESC Extremum-seeking control

GMM Gaussian mixture model
HAVOK Hankel alternative view of Koopman

JL Johnson–Lindenstrauss
KL Kullback–Leibler

ICA Independent component analysis
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Other Acronyms, continued
KLT Karhunen–Loève transform
LAD Least absolute deviations

LASSO Least absolute shrinkage and selection operator
LDA Linear discriminant analysis
LQE Linear quadratic estimator
LQG Linear quadratic Gaussian controller
LQR Linear quadratic regulator

LTI Linear time invariant system
MIMO Multiple input, multiple output

MLC Machine learning control
MPE Missing point estimation

mrDMD Multi-resolution dynamic mode decomposition
NARMAX Nonlinear autoregressive model with exogenous inputs

NLS Nonlinear Schrödinger equation
OKID Observer Kalman filter identification

PBH Popov–Belevitch–Hautus test
PCP Principal component pursuit

PDE-FIND Partial differential equation functional identification
of nonlinear dynamics

PDF Probability distribution function
PID Proportional-integral-derivative control
PIV Particle image velocimetry
RIP Restricted isometry property

rSVD Randomized SVD
RKHS Reproducing kernel Hilbert space

RNN Recurrent neural network
RPCA Robust principal components analysis

SGD Stochastic gradient descent
SINDy Sparse identification of nonlinear dynamics

SISO Single input, single output
SRC Sparse representation for classification
SSA Singular spectrum analysis

STFT Short time Fourier transform
STLS Sequential thresholded least-squares
SVM Support vector machine
TICA Time-lagged independent component analysis
VAC Variational approach of conformation dynamics



Part I

Dimensionality Reduction and
Transforms





1 Singular Value Decomposition (SVD)

The singular value decomposition (SVD) is among the most important matrix factorizations
of the computational era, providing a foundation for nearly all of the data methods in this
book. The SVD provides a numerically stable matrix decomposition that can be used for
a variety of purposes and is guaranteed to exist. We will use the SVD to obtain low-rank
approximations to matrices and to perform pseudo-inverses of non-square matrices to find
the solution of a system of equations Ax = b. Another important use of the SVD is as the
underlying algorithm of principal component analysis (PCA), where high-dimensional data
is decomposed into its most statistically descriptive factors. SVD/PCA has been applied to
a wide variety of problems in science and engineering.

In a sense, the SVD generalizes the concept of the fast Fourier transform (FFT), which
will be the subject of the next chapter. Many engineering texts begin with the FFT, as it
is the basis of many classical analytical and numerical results. However, the FFT works in
idealized settings, and the SVD is a more generic data-driven technique. Because this book
is focused on data, we begin with the SVD, which may be thought of as providing a basis
that is tailored to the specific data, as opposed to the FFT, which provides a generic basis.

In many domains, complex systems will generate data that is naturally arranged in
large matrices, or more generally in arrays. For example, a time-series of data from an
experiment or a simulation may be arranged in a matrix with each column containing all of
the measurements at a given time. If the data at each instant in time is multi-dimensional, as
in a high-resolution simulation of the weather in three spatial dimensions, it is possible to
reshape or flatten this data into a high-dimensional column vector, forming the columns of
a large matrix. Similarly, the pixel values in a grayscale image may be stored in a matrix,
or these images may be reshaped into large column vectors in a matrix to represent the
frames of a movie. Remarkably, the data generated by these systems are typically low rank,
meaning that there are a few dominant patterns that explain the high-dimensional data. The
SVD is a numerically robust and efficient method of extracting these patterns from data.

1.1 Overview
Here we introduce the SVD and develop an intuition for how to apply the SVD by demon-
strating its use on a number of motivating examples. The SVD will provide a foundation for
many other techniques developed in this book, including classification methods in Chap-
ter 5, the dynamic mode decomposition (DMD) in Chapter 7, and the proper orthogonal
decomposition (POD) in Chapter 11. Detailed mathematical properties are discussed in the
following sections.

3
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High dimensionality is a common challenge in processing data from complex systems.
These systems may involve large measured data sets including audio, image, or video
data. The data may also be generated from a physical system, such as neural recordings
from a brain, or fluid velocity measurements from a simulation or experiment. In many
naturally occurring systems, it is observed that data exhibit dominant patterns, which may
be characterized by a low-dimensional attractor or manifold [252, 251].

As an example, consider images, which typically contain a large number of measure-
ments (pixels), and are therefore elements of a high-dimensional vector space. However,
most images are highly compressible, meaning that the relevant information may be rep-
resented in a much lower-dimensional subspace. The compressibility of images will be
discussed in depth throughout this book. Complex fluid systems, such as the Earth’s atmo-
sphere or the turbulent wake behind a vehicle also provide compelling examples of the low-
dimensional structure underlying a high-dimensional state-space. Although high-fidelity
fluid simulations typically require at least millions or billions of degrees of freedom, there
are often dominant coherent structures in the flow, such as periodic vortex shedding behind
vehicles or hurricanes in the weather.

The SVD provides a systematic way to determine a low-dimensional approximation
to high-dimensional data in terms of dominant patterns. This technique is data-driven in
that patterns are discovered purely from data, without the addition of expert knowledge or
intuition. The SVD is numerically stable and provides a hierarchical representation of the
data in terms of a new coordinate system defined by dominant correlations within the data.
Moreover, the SVD is guaranteed to exist for any matrix, unlike the eigendecomposition.

The SVD has many powerful applications beyond dimensionality reduction of high-
dimensional data. It is used to compute the pseudo-inverse of non-square matrices, provid-
ing solutions to underdetermined or overdetermined matrix equations, Ax = b. We will
also use the SVD to de-noise data sets. The SVD is likewise important to characterize the
input and output geometry of a linear map between vector spaces. These applications will
all be explored in this chapter, providing an intuition for matrices and high-dimensional
data.

Definition of the SVD
Generally, we are interested in analyzing a large data set X ∈ Cn×m:

X =
⎡
⎣x1 x2 · · · xm

⎤
⎦ . (1.1)

The columns xk ∈ Cn may be measurements from simulations or experiments. For exam-
ple, columns may represent images that have been reshaped into column vectors with as
many elements as pixels in the image. The column vectors may also represent the state of
a physical system that is evolving in time, such as the fluid velocity at a set of discrete
points, a set of neural measurements, or the state of a weather simulation with one square
kilometer resolution.

The index k is a label indicating the kth distinct set of measurements. For many of the
examples in this book, X will consist of a time-series of data, and xk = x(k�t). Often the
state-dimension n is very large, on the order of millions or billions of degrees of freedom.
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The columns are often called snapshots, and m is the number of snapshots in X. For many
systems n � m, resulting in a tall-skinny matrix, as opposed to a short-fat matrix when
n � m.

The SVD is a unique matrix decomposition that exists for every complex-valued matrix
X ∈ Cn×m:

X = U�V∗ (1.2)

where U ∈ Cn×n and V ∈ Cm×m are unitary matrices1 with orthonormal columns, and
� ∈ Rn×m is a matrix with real, nonnegative entries on the diagonal and zeros off the
diagonal. Here ∗ denotes the complex conjugate transpose2. As we will discover throughout
this chapter, the condition that U and V are unitary is used extensively.

When n ≥ m, the matrix � has at most m nonzero elements on the diagonal, and may

be written as � =
[
�̂

0

]
. Therefore, it is possible to exactly represent X using the economy

SVD:

X = U�V∗ =
[
Û Û

⊥] [�̂
0

]
V∗ = Û�̂V∗. (1.3)

The full SVD and economy SVD are shown in Fig. 1.1. The columns of Û⊥ span a vector
space that is complementary and orthogonal to that spanned by Û. The columns of U are
called left singular vectors of X and the columns of V are right singular vectors. The
diagonal elements of �̂ ∈ Cm×m are called singular values and they are ordered from
largest to smallest. The rank of X is equal to the number of nonzero singular values.

Computing the SVD
The SVD is a cornerstone of computational science and engineering, and the numerical
implementation of the SVD is both important and mathematically enlightening. That said,
most standard numerical implementations are mature and a simple interface exists in many
modern computer languages, allowing us to abstract away the details underlying the SVD
computation. For most purposes, we simply use the SVD as a part of a larger effort, and we
take for granted the existence of efficient and stable numerical algorithms. In the sections
that follow we demonstrate how to use the SVD in various computational languages, and
we also discuss the most common computational strategies and limitations. There are
numerous important results on the computation of the SVD [212, 106, 211, 292, 238].
A more thorough discussion of computational issues can be found in [214]. Randomized
numerical algorithms are increasingly used to compute the SVD of very large matrices as
discussed in Section 1.8.

Matlab. In Matlab, computing the SVD is straightforward:

>>X = randn(5,3); % Create a 5x3 random data matrix
>>[U,S,V] = svd(X); % Singular Value Decomposition

1 A square matrix U is unitary if UU∗ = U∗U = I.
2 For real-valued matrices, this is the same as the regular transpose X∗ = XT .
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=X Û Û
⊥

U

Σ̂

0

Σ

V∗

= Û

Σ̂ V∗

Figure 1.1 Schematic of matrices in the full and economy SVD.

For non-square matrices X, the economy SVD is more efficient:

>>[Uhat,Shat,V] = svd(X,’econ’); % economy sized SVD

Python

>>> import numpy as np
>>> X = np.random.rand(5, 3) % create random data matrix
>>> U, S, V = np.linalg.svd(X,full_matrices=True) % full SVD
>>> Uhat, Shat, Vhat = np.linalg.svd(X, full_matrices=False)

% economy SVD

R

> X <- replicate(3, rnorm(5))
> s <- svd(X)
> U <- s$u
> S <- diag(s$d)
> V <- s$v

Mathematica

In:= X=RandomReal[{0,1},{5,3}]
In:= {U,S,V} = SingularValueDecomposition[X]

Other Languages
The SVD is also available in other languages, such as Fortran and C++. In fact, most SVD
implementations are based on the LAPACK (Linear Algebra Package) [13] in Fortran. The
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SVD routine is designated DGESVD in LAPACK, and this is wrapped in the C++ libraries
Armadillo and Eigen.

Historical Perspective
The SVD has a long and rich history, ranging from early work developing the theoretical
foundations to modern work on computational stability and efficiency. There is an excellent
historical review by Stewart [502], which provides context and many important details.
The review focuses on the early theoretical work of Beltrami and Jordan (1873), Sylvester
(1889), Schmidt (1907), and Weyl (1912). It also discusses more recent work, including
the seminal computational work of Golub and collaborators [212, 211]. In addition, there
are many excellent chapters on the SVD in modern texts [524, 17, 316].

Uses in This Book and Assumptions of the Reader
The SVD is the basis for many related techniques in dimensionality reduction. These
methods include principal component analysis (PCA) in statistics [418, 256, 257], the
Karhunen–Loève transform (KLT) [280, 340], empirical orthogonal functions (EOFs) in
climate [344], the proper orthogonal decomposition (POD) in fluid dynamics [251], and
canonical correlation analysis (CCA) [131]. Although developed independently in a range
of diverse fields, many of these methods only differ in how the data is collected and pre-
processed. There is an excellent discussion about the relationship between the SVD, the
KLT and PCA by Gerbrands [204].

The SVD is also widely used in system identification and control theory to obtain
reduced order models that are balanced in the sense that states are hierarchically ordered
in terms of their ability to be observed by measurements and controlled by actuation [388].

For this chapter, we assume that the reader is familiar with linear algebra with some
experience in computation and numerics. For review, there are a number of excellent books
on numerical linear algebra, with discussions on the SVD [524, 17, 316].

1.2 Matrix Approximation
Perhaps the most useful and defining property of the SVD is that it provides an optimal
low-rank approximation to a matrix X. In fact, the SVD provides a hierarchy of low-rank
approximations, since a rank-r approximation is obtained by keeping the leading r singular
values and vectors, and discarding the rest.

Schmidt (of Gram-Schmidt) generalized the SVD to function spaces and developed an
approximation theorem, establishing truncated SVD as the optimal low-rank approxima-
tion of the underlying matrix X [476]. Schmidt’s approximation theorem was rediscovered
by Eckart and Young [170], and is sometimes referred to as the Eckart-Young theorem.

Theorem 1 (Eckart-Young [170]) The optimal rank-r approximation to X, in a least-
squares sense, is given by the rank-r SVD truncation X̃:

argmin
X̃, s.t. rank(X̃)=r

‖X − X̃‖F = Ũ�̃Ṽ∗. (1.4)
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Here, Ũ and Ṽ denote the first r leading columns of U and V, and �̃ contains the leading
r × r sub-block of �. ‖ · ‖F is the Frobenius norm.

Here, we establish the notation that a truncated SVD basis (and the resulting approxi-
mated matrix X̃) will be denoted by X̃ = Ũ�̃Ṽ∗. Because � is diagonal, the rank-r SVD
approximation is given by the sum of r distinct rank-1 matrices:

X̃ =
r∑

k=1

σkukv∗
k = σ1u1v∗

1 + σ2u2v∗
2 + · · · + σrurv∗

r . (1.5)

This is the so-called dyadic summation. For a given rank r , there is no better approximation
for X, in the 
2 sense, than the truncated SVD approximation X̃. Thus, high-dimensional
data may be well described by a few dominant patterns given by the columns of Ũ and Ṽ.

This is an important property of the SVD, and we will return to it many times. There
are numerous examples of data sets that contain high-dimensional measurements, resulting
in a large data matrix X. However, there are often dominant low-dimensional patterns in
the data, and the truncated SVD basis Ũ provides a coordinate transformation from the
high-dimensional measurement space into a low-dimensional pattern space. This has the
benefit of reducing the size and dimension of large data sets, yielding a tractable basis for
visualization and analysis. Finally, many systems considered in this text are dynamic (see
Chapter 7), and the SVD basis provides a hierarchy of modes that characterize the observed
attractor, on which we may project a low-dimensional dynamical system to obtain reduced
order models (see Chapter 12).

Truncation
The truncated SVD is illustrated in Fig. 1.2, with Ũ, �̃ and Ṽ denoting the truncated
matrices. If X does not have full rank, then some of the singular values in �̂ may be zero,
and the truncated SVD may still be exact. However, for truncation values r that are smaller
than the number of nonzero singular values (i.e., the rank of X), the truncated SVD only
approximates X:

X ≈ Ũ�̃Ṽ∗. (1.6)

There are numerous choices for the truncation rank r , and they are discussed in Sec. 1.7.
If we choose the truncation value to keep all non-zero singular values, then X = Ũ�̃Ṽ

∗
is

exact.

Example: Image Compression
We demonstrate the idea of matrix approximation with a simple example: image compres-
sion. A recurring theme throughout this book is that large data sets often contain underlying
patterns that facilitate low-rank representations. Natural images present a simple and intu-
itive example of this inherent compressibility. A grayscale image may be thought of as a
real-valued matrix X ∈ Rn×m, where n and m are the number of pixels in the vertical and
horizontal directions, respectively3. Depending on the basis of representation (pixel-space,
Fourier frequency domain, SVD transform coordinates), images may have very compact
approximations.

3 It is not uncommon for image size to be specified as horizontal by vertical, i.e. XT ∈ Rm×n, although we stick
with vertical by horizontal to be consistent with generic matrix notation.
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Figure 1.2 Schematic of truncated SVD. The subscript ‘rem’ denotes the remainder of Û, �̂ or V
after truncation.

Consider the image of Mordecai the snow dog in Fig. 1.3. This image has 2000 × 1500
pixels. It is possible to take the SVD of this image and plot the diagonal singular values,
as in Fig. 1.4. Figure 1.3 shows the approximate matrix X̃ for various truncation values
r . By r = 100, the reconstructed image is quite accurate, and the singular values account
for almost 80% of the image variance. The SVD truncation results in a compression of
the original image, since only the first 100 columns of U and V, along with the first 100
diagonal elements of �, must be stored in Ũ, �̃ and Ṽ.

First, we load the image:

A=imread(’../DATA/dog.jpg’);
X=double(rgb2gray(A)); % Convert RBG->gray, 256 bit->double.
nx = size(X,1); ny = size(X,2);
imagesc(X), axis off, colormap gray

and take the SVD:

[U,S,V] = svd(X);

Next, we compute the approximate matrix using the truncated SVD for various ranks
(r = 5, 20, and 100):

for r=[5 20 100]; % Truncation value
Xapprox = U(:,1:r)*S(1:r,1:r)*V(:,1:r)’; % Approx. image
figure, imagesc(Xapprox), axis off
title([’r=’,num2str(r,’%d’),’]);

end
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Figure 1.3 Image compression of Mordecai the snow dog, truncating the SVD at various ranks r .
Original image resolution is 2000 × 1500.

Finally, we plot the singular values and cumulative energy in Fig. 1.4:

subplot(1,2,1), semilogy(diag(S),’k’)
subplot(1,2,2), plot(cumsum(diag(S))/sum(diag(S)),’k’)

1.3 Mathematical Properties and Manipulations
Here we describe important mathematical properties of the SVD including geometric inter-
pretations of the unitary matrices U and V as well as a discussion of the SVD in terms of
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Figure 1.4 (a) Singular values σk . (b) Cumulative energy in the first k modes.

X XX∗ X∗X

Figure 1.5 Correlation matrices XX∗ and X∗X for a matrix X obtained from an image of a dog. Note
that both correlation matrices are symmetric.

dominant correlations in the data X. The relationship between the SVD and correlations in
the data will be explored more in Section 1.5 on principal components analysis.

Interpretation as Dominant Correlations
The SVD is closely related to an eigenvalue problem involving the correlation matrices
XX∗ and X∗X, shown in Fig. 1.5 for a specific image, and in Figs. 1.6 and 1.7 for generic
matrices. If we plug (1.3) into the row-wise correlation matrix XX∗ and the column-wise
correlation matrix X∗X, we find:

XX∗ = U
[
�̂

0

]
V∗V

[
�̂ 0

]
U∗ = U

[
�̂2 0
0 0

]
U∗ (1.7a)

X∗X = V
[
�̂ 0

]
U∗U

[
�̂

0

]
V∗ = V�̂2V∗. (1.7b)
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Figure 1.6 Correlation matrix XX∗ is formed by taking the inner product of rows of X.
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Figure 1.7 Correlation matrix X∗X is formed by taking the inner product of columns of X.

Recalling that U and V are unitary, U,�, and V are solutions to the following eigenvalue
problems:

XX∗U = U
[
�̂2 0
0 0

]
, (1.8a)

X∗XV = V�̂2. (1.8b)

In other words, each nonzero singular value of X is a positive square root of an eigenvalue
of X∗X and of XX∗, which have the same nonzero eigenvalues. It follows that if X is self-
adjoint (i.e. X = X∗), then the singular values of X are equal to the absolute value of the
eigenvalues of X.

This provides an intuitive interpretation of the SVD, where the columns of U are eigen-
vectors of the correlation matrix XX∗ and columns of V are eigenvectors of X∗X. We
choose to arrange the singular values in descending order by magnitude, and thus the
columns of U are hierarchically ordered by how much correlation they capture in the
columns of X; V similarly captures correlation in the rows of X.

Method of Snapshots
It is often impractical to construct the matrix XX∗ because of the large size of the state-
dimension n, let alone solve the eigenvalue problem; if x has a million elements, then XX∗
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Figure 1.8 Geometric illustration of the SVD as a mapping from a sphere in Rn to an ellipsoid in Rm.

has a trillion elements. In 1987, Sirovich observed that it is possible to bypass this large
matrix and compute the first m columns of U using what is now known as the method of
snapshots [490].

Instead of computing the eigen-decomposition of XX∗ to obtain the left singular vectors
U, we only compute the eigen-decomposition of X∗X, which is much smaller and more
manageable. From (1.8b), we then obtain V and �̂. If there are zero singular values in
�̂, then we only keep the r non-zero part, �̃, and the corresponding columns Ṽ of V.
From these matrices, it is then possible to approximate Ũ, the first r columns of U, as
follows:

Ũ = XṼ�̃
−1

. (1.9)

Geometric Interpretation
The columns of the matrix U provide an orthonormal basis for the column space of X.
Similarly, the columns of V provide an orthonormal basis for the row space of X. If the
columns of X are spatial measurements in time, then U encode spatial patterns, and V
encode temporal patterns.

One property that makes the SVD particularly useful is the fact that both U and V are
unitary matrices, so that UU∗ = U∗U = In×n and VV∗ = V∗V = Im×m. This means
that solving a system of equations involving U or V is as simple as multiplication by
the transpose, which scales as O(n2), as opposed to traditional methods for the generic
inverse, which scale as O(n3). As noted in the previous section and in [57], the SVD is
intimately connected to the spectral properties of the compact self-adjoint operators XX∗

and X∗X.
The SVD of X may be interpreted geometrically based on how a hypersphere, given by

Sn−1 � {x | ‖x‖2 = 1} ⊂ Rn maps into an ellipsoid, {y | y = Xx for x ∈ Sn−1} ⊂ Rm,
through X. This is shown graphically in Fig. 1.8 for a sphere in R3 and a mapping X
with three non-zero singular values. Because the mapping through X (i.e., matrix multi-
plication) is linear, knowing how it maps the unit sphere determines how all other vectors
will map.
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For the specific case shown in Fig. 1.8, we construct the matrix X out of three rotation
matrices, Rx, Ry , and Rz, and a fourth matrix to stretch out and scale the principal axes:

X =
⎡
⎣cos(θ3) − sin(θ3) 0

sin(θ3) cos(θ3) 0
0 0 1

⎤
⎦

︸ ︷︷ ︸
Rz

⎡
⎣ cos(θ2) 0 sin(θ2)

0 1 0
− sin(θ2) 0 cos(θ2)

⎤
⎦

︸ ︷︷ ︸
Ry

×
⎡
⎣1 0 0

0 cos(θ1) − sin(θ1)

0 sin(θ1) cos(θ1)

⎤
⎦

︸ ︷︷ ︸
Rx

⎡
⎣σ1 0 0

0 σ2 0
0 0 σ3

⎤
⎦ .

In this case, θ1 = π/15, θ2 = −π/9, and θ3 = −π/20, and σ1 = 3, σ2 = 1, and σ3 = 0.5.
These rotation matrices do not commute, and so the order of rotation matters. If one of
the singular values is zero, then a dimension is removed and the ellipsoid collapses onto a
lower-dimensional subspace. The product RxRyRz is the unitary matrix U in the SVD of
X. The matrix V is the identity.

Code 1.1 Construct rotation matrices.

theta = [pi/15; -pi/9; -pi/20];
Sigma = diag([3; 1; 0.5]); % scale x, y, and z

Rx = [1 0 0; % rotate about x-axis
0 cos(theta(1)) -sin(theta(1));
0 sin(theta(1)) cos(theta(1))];

Ry = [cos(theta(2)) 0 sin(theta(2)); % rotate about y-axis
0 1 0;
-sin(theta(2)) 0 cos(theta(2))];

Rz = [cos(theta(3)) -sin(theta(3)) 0; % rotate about z-axis
sin(theta(3)) cos(theta(3)) 0;
0 0 1];

X = Rz*Ry*Rx*Sigma; % rotate and scale

Code 1.2 Plot sphere.

[x,y,z] = sphere(25);
h1=surf(x,y,z);

Code 1.3 Map sphere through X and plot resulting ellipsoid.

xR = 0*x; yR = 0*y; zR = 0*z;
for i=1:size(x,1)

for j=1:size(x,2)
vecR = X*[x(i,j); y(i,j); z(i,j)];
xR(i,j) = vecR(1);
yR(i,j) = vecR(2);
zR(i,j) = vecR(3);

end
end
h2=surf(xR,yR,zR,z); % using sphere z-coord for color
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Invariance of the SVD to Unitary Transformations
A useful property of the SVD is that if we left or right-multiply our data matrix X by a
unitary transformation, it preserves the terms in the SVD, except for the corresponding
left or right unitary matrix U or V, respectively. This has important implications, since the
discrete Fourier transform (DFT; see Chapter 2) F is a unitary transform, meaning that the
SVD of data X̂ = FX will be exactly the same as the SVD of X, except that the modes
Û will be be the DFT of modes U: Û = FU. In addition, the invariance of the SVD to
unitary transformations enable the use of compressed measurements to reconstruct SVD
modes that are sparse in some transform basis (see Chapter 3).

The invariance of SVD to unitary transformations is geometrically intuitive, as unitary
transformations rotate vectors in space, but do not change their inner products or correlation
structures. We denote a left unitary transformation by C, so that Y = CX, and a right
unitary transformation by P∗, so that Y = XP∗. The SVD of X will be denoted UX�XV∗

X
and the SVD of Y will be UY�YV∗

Y.

Left Unitary Transformations
First, consider a left unitary transformation of X: Y = CX. Computing the correlation
matrix Y∗Y, we find

Y∗Y = X∗C∗CX = X∗X. (1.10)

The projected data has the same eigendecomposition, resulting in the same VX and �X.
Using the method of snapshots to reconstruct UY, we find

UY = YVX�−1
X = CXVX�−1

X = CUX. (1.11)

Thus, UY = CUX, �Y = �X, and VY = VX. The SVD of Y is then:

Y = CX = CUX�XV∗
X. (1.12)

Right Unitary Transformations
For a right unitary transformation Y = XP∗, the correlation matrix Y∗Y is:

Y∗Y = PX∗XP∗ = PVX�2
XV∗

XP∗, (1.13)

with the following eigendecomposition

Y∗YPVX = PVX�2
X. (1.14)

Thus, VY = PVX and �Y = �X. We may use the method of snapshots to reconstruct UY:

UY = YPVX�−1
X = XVX�−1

X = UX. (1.15)

Thus, UY = UX, and we may write the SVD of Y as:

Y = XP∗ = UX�XV∗
XP∗. (1.16)

1.4 Pseudo-Inverse, Least-Squares, and Regression
Many physical systems may be represented as a linear system of equations:

Ax = b, (1.17)
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where the constraint matrix A and vector b are known, and the vector x is unknown. If A
is a square, invertible matrix (i.e., A has nonzero determinant), then there exists a unique
solution x for every b. However, when A is either singular or rectangular, there may be
one, none, or infinitely many solutions, depending on the specific b and the column and
row spaces of A.

First, consider the underdetermined system, where A ∈ Cn×m and n � m (i.e., A is a
short-fat matrix), so that there are fewer equations than unknowns. This type of system is
likely to have full column rank, since it has many more columns than are required for a
linearly independent basis4. Generically, if a short-fat A has full column rank, then there
are infinitely many solutions x for every b. The system is called underdetermined because
there are not enough values in b to uniquely determine the higher-dimensional x.

Similarly, consider the overdetermined system, where n � m (i.e., a tall-skinny matrix),
so that there are more equations than unknowns. This matrix cannot have a full column
rank, and so it is guaranteed that there are vectors b that have no solution x. In fact, there
will only be a solution x if b is in the column space of A, i.e. b ∈ col(A).

Technically, there may be some choices of b that admit infinitely many solutions x for
a tall-skinny matrix A and other choices of b that admit zero solutions even for a short-fat
matrix. The solution space to the system in (1.17) is determined by the four fundamental
subspaces of A = Ũ�̃Ṽ

∗
, where the rank r is chosen to include all nonzero singular values:

• The column space, col(A), is the span of the columns of A, also known as the range.
The column space of A is the same as the column space of Ũ;

• The orthogonal complement to col(A) is ker(A∗), given by the column space of Û⊥

from Fig. 1.1;

• The row space, row(A), is the span of the rows of A, which is spanned by the
columns of Ṽ. The row space of A is equal to row(A) = col(A∗);

• The kernel space, ker(A), is the orthogonal complement to row(A), and is also
known as the null space. The null space is the subspace of vectors that map through
A to zero, i.e., Ax = 0, given by col(V̂⊥).

More precisely, if b ∈ col(A) and if dim (ker(A)) �= 0, then there are infinitely many
solutions x. Note that the condition dim (ker(A)) �= 0 is guaranteed for a short-fat matrix.
Similarly, if b /∈ col(A), then there are no solutions, and the system of equations in (1.17)
are called inconsistent.

The fundamental subspaces above satisfy the following properties:

col(A) ⊕ ker(A∗) = Rn (1.18a)

col(A∗) ⊕ ker(A) = Rn. (1.18b)

Remark 1 There is an extensive literature on random matrix theory, where the above
stereotypes are almost certainly true, meaning that they are true with high probability.
For example, a system Ax = b is extremely unlikely to have a solution for a random matrix
A ∈ Rn×m and random vector b ∈ Rn with n � m, since there is little chance that b is in

4 It is easy to construct degenerate examples where a short-fat matrix does not have full column rank, such as

A =
[

1 1 1 1
1 1 1 1

]
.
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the column space of A. These properties of random matrices will play a prominent role in
compressed sensing (see Chapter 3).

In the overdetermined case when no solution exists, we would often like to find the
solution x that minimizes the sum-squared error ‖Ax − b‖2

2, the so-called least-squares
solution. Note that the least-squares solution also minimizes ‖Ax − b‖2. In the underde-
termined case when infinitely many solutions exist, we may like to find the solution x with
minimum norm ‖x‖2 so that Ax = b, the so-called minimum-norm solution.

The SVD is the technique of choice for these important optimization problems. First, if
we substitute an exact truncated SVD A = Ũ�̃Ṽ

∗
in for A, we can “invert” each of the

matrices Ũ, �̃, and Ṽ
∗

in turn, resulting in the Moore-Penrose left pseudo-inverse [425,
426, 453, 572] A† of A:

A† � Ṽ�̃
−1

Ũ
∗ 	⇒ A†A = Im×m. (1.19)

This may be used to find both the minimum norm and least-squares solutions to (1.17):

A†Ax̃ = A†b 	⇒ x̃ = Ṽ�̃
−1

Ũ
∗
b. (1.20)

Plugging the solution x̃ back in to (1.17) results in:

Ax̃ = Ũ�̃Ṽ
∗
Ṽ�̃

−1
Ũ

∗
b (1.21a)

= ŨŨ
∗
b. (1.21b)

Note that ŨŨ
∗

is not necessarily the identity matrix, but is rather a projection onto the
column space of Ũ. Therefore, x̃ will only be an exact solution to (1.17) when b is in the
column space of Ũ, and therefore in the column space of A.

Computing the pseudo-inverse A† is computationally efficient, after the expensive
upfront cost of computing the SVD. Inverting the unitary matrices Ũ and Ṽ involves
matrix multiplication by the transpose matrices, which are O(n2) operations. Inverting �̃

is even more efficient since it is a diagonal matrix, requiring O(n) operations. In contrast,
inverting a dense square matrix would require an O(n3) operation.

One-Dimensional Linear Regression
Regression is an important statistical tool to relate variables to one another based on
data [360]. Consider the collection of data in Fig. 1.9. The red ×’s are obtained by adding
Gaussian white noise to the black line, as shown in Code 1.4. We assume that the data
is linearly related, as in (1.17), and we use the pseudo-inverse to find the least-squares
solution for the slope x below (blue dashed line), shown in Code 1.5:⎡

⎣b

⎤
⎦ =

⎡
⎣a

⎤
⎦ x = Ũ�̃Ṽ

∗
x. (1.22a)

	⇒ x = Ṽ�̃
−1

Ũ
∗
b. (1.22b)

In (1.22b), �̃ = ‖a‖2, Ṽ = 1, and Ũ = a/‖a‖2. Taking the left pseudo-inverse:

x = a∗b

‖a‖2
2

. (1.23)
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Figure 1.9 Illustration of linear regression using noisy data.

This makes physical sense, if we think of x as the value that best maps our vector a to the
vector b. Then, the best single value x is obtained by taking the dot product of b with the
normalized a direction. We then add a second normalization factor ‖a‖2 because the a in
(1.22a) is not normalized.

Note that strange things happen if you use row vectors instead of column vectors in
(1.22). Also, if the noise magnitude becomes large relative to the slope x, the pseudo-
inverse will undergo a phase-change in accuracy, related to the hard-thresholding results in
subsequent sections.

Code 1.4 Generate noisy data for Fig. 1.9.

x = 3; % True slope
a = [-2:.25:2]’;
b = a*x + 1*randn(size(a)); % Add noise
plot(a,x*a,’k’) % True relationship
hold on, plot(a,b,’rx’) % Noisy measurements

Code 1.5 Compute least-squares approximation for Fig. 1.9.

[U,S,V] = svd(a,’econ’);
xtilde = V*inv(S)*U’*b; % Least-square fit
plot(a,xtilde*a,’b--’) % Plot fit

The procedure above is called linear regression in statistics. There is a regress command
in Matlab, as well as a pinv command that may also be used.

Code 1.6 Alternative formulations of least-squares in Matlab.

xtilde1 = V*inv(S)*U’*b
xtilde2 = pinv(a)*b
xtilde3 = regress(b,a)
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Figure 1.10 Heat data for cement mixtures containing four basic ingredients.

Multilinear regression
Example 1: Cement heat generation data
First, we begin with a simple built-in Matlab dataset that describes the heat generation
for various cement mixtures comprised of four basic ingredients. In this problem, we are
solving (1.17) where A ∈ R13×4, since there are four ingredients and heat measurements
for 13 unique mixtures. The goal is to determine the weighting x that relates the proportions
of the four ingredients to the heat generation. It is possible to find the minimum error
solution using the SVD, as shown in Code 1.7. Alternatives, using regress and pinv, are
also explored.

Code 1.7 Multilinear regression for cement heat data.

load hald; % Load Portlant Cement dataset
A = ingredients;
b = heat;

[U,S,V] = svd(A,’econ’);
x = V*inv(S)*U’*b; % Solve Ax=b using the SVD

plot(b,’k’); hold on % Plot data
plot(A*x,’r-o’,); % Plot fit

x = regress(b,A); % Alternative 1 (regress)
x = pinv(A)*b; % Alternative 2 (pinv)

Example 2: Boston Housing Data
In this example, we explore a larger data set to determine which factors best predict prices
in the Boston housing market [234]. This data is available from the UCI Machine Learning
Repository [24].

There are 13 attributes that are correlated with house price, such as per capita crime rate
and property-tax rate. These features are regressed onto the price data, and the best fit price
prediction is plotted against the true house value in Fig. 1.11, and the regression coefficients
are shown in Fig. 1.12. Although the house value is not perfectly predicted, the trend agrees
quite well. It is often the case that the highest value outliers are not well-captured by simple
linear fits, as in this example.

This data contains prices and attributes for 506 homes, so the attribute matrix is of size
506 × 13. It is important to pad this matrix with an additional column of ones, to take
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Figure 1.11 Multilinear regression of home prices using various factors. (a) Unsorted data, and (b)
Data sorted by home value.

Figure 1.12 Significance of various attributes in the regression.

into account the possibility of a nonzero constant offset in the regression formula. This
corresponds to the “y-intercept” in a simple one-dimensional linear regression.

Code 1.8 Multilinear regression for Boston housing data.

load housing.data

b = housing(:,14); % housing values in $1000s
A = housing(:,1:13); % other factors,
A = [A ones(size(A,1),1)]; % Pad with ones y-intercept

x = regress(b,A);
plot(b,’k-o’);
hold on, plot(A*x,’r-o’);

[b sortind] = sort(housing(:,14)); % sorted values
plot(b,’k-o’)
hold on, plot(A(sortind,:)*x,’r-o’)
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Caution
In general, the matrix U, whose columns are left-singular vectors of X, is a unitary square
matrix. Therefore, U∗U = UU∗ = In×n. However, to compute the pseudo-inverse of X, we

must compute X† = Ṽ�̃
−1

Ũ
∗

since only �̃ is invertible (if all singular values are nonzero),
although � is not invertible in general (in fact, it is generally not even square).

Until now, we have assumed that X = Ũ�̃Ṽ
∗

is an exact SVD, so that the rank r includes
all nonzero singular values. This guarantees that the matrix �̃ is invertible.

A complication arises when working with a truncated basis of left singular vectors Ũ. It
is still true that Ũ

∗
Ũ = Ir×r , where r is the rank of X. However, ŨŨ

∗ �= In×n, which is
easy to verify numerically on a simple example. Assuming that ŨŨ

∗
is equal to the identity

is one of the most common accidental misuses of the SVD5.

>> tol = 1.e-16;
>> [U,S,V] = svd(X,’econ’)
>> r = max(find(diag(S)>max(S(:))*tol));
>> invX = V(:,1:r)*S(1:r,1:r)*U(:,1:r)’; % only approximate

1.5 Principal Component Analysis (PCA)
Principal components analysis (PCA) is one of the central uses of the SVD, providing a
data-driven, hierarchical coordinate system to represent high-dimensional correlated data.
This coordinate system involves the correlation matrices described in Sec. 1.3. Importantly,
PCA pre-processes the data by mean subtraction and setting the variance to unity before
performing the SVD. The geometry of the resulting coordinate system is determined by
principal components (PCs) that are uncorrelated (orthogonal) to each other, but have
maximal correlation with the measurements. This theory was developed in 1901 by Pear-
son [418], and independently by Hotelling in the 1930s [256, 257]. Jolliffe [268] provides
a good reference text.

Typically, a number of measurements are collected in a single experiment, and these
measurements are arranged into a row vector. The measurements may be features of an
observable, such as demographic features of a specific human individual. A number of
experiments are conducted, and each measurement vector is arranged as a row in a large
matrix X. In the example of demography, the collection of experiments may be gathered via
polling. Note that this convention for X, consisting of rows of features, is different than the
convention throughout the remainder of this chapter, where individual feature “snapshots”
are arranged as columns. However, we choose to be consistent with PCA literature in this
section. The matrix will still be size n × m, although it may have more rows than columns,
or vice versa.

Computation
We now compute the row-wise mean x̄ (i.e., the mean of all rows), and subtract it from X.
The mean x̄ is given by

x̄j = 1

n

n∑
i=1

Xij, (1.24)

5 The authors are not immune to this, having mistakenly used this fictional identity in an early version of [96].
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and the mean matrix is

X̄ =

⎡
⎢⎣

1
...

1

⎤
⎥⎦ x̄. (1.25)

Subtracting X̄ from X results in the mean-subtracted data B:

B = X − B̄. (1.26)

The covariance matrix of the rows of B is given by

C = 1

n − 1
B∗B. (1.27)

The first principal component u1 is given as

u1 = argmax
‖u1‖=1

u∗
1B∗Bu1, (1.28)

which is the eigenvector of B∗B corresponding to the largest eigenvalue. Now it is clear
that u1 is the left singular vector of B corresponding to the largest singular value.

It is possible to obtain the principal components by computing the eigen-decomposition
of C:

CV = VD, (1.29)

which is guaranteed to exist, since C is Hermitian.

pca Command
In Matlab, there the additional commands pca and princomp (based on pca) for the
principal components analysis:

>> [V,score,s2] = pca(X);

The matrix V is equivalent to the V matrix from the SVD of X, up to sign changes of
the columns. The vector s2 contains eigenvalues of the covariance of X, also known as
principal component variances; these values are the squares of the singular values. The
variable score simply contains the coordinates of each row of B (the mean-subtracted data)
in the principal component directions. In general, we often prefer to use the svd command
with the various pre-processing steps described earlier in the section.

Example: Noisy Gaussian Data
Consider the noisy cloud of data in Fig. 1.13 (a), generated using Code 1.9. The data is
generated by selecting 10, 000 vectors from a two-dimensional normal distribution with
zero mean and unit variance. These vectors are then scaled in the x and y directions by the
values in Table 1.1 and rotated by π/3. Finally, the entire cloud of data is translated so that

it has a nonzero center xC = [2 1
]T

.
Using Code 1.10, the PCA is performed and used to plot confidence intervals using mul-

tiple standard deviations, shown in Fig. 1.13 (b). The singular values, shown in Table 1.1,
match the data scaling. The matrix U from the SVD also closely matches the rotation
matrix, up to a sign on the columns:
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Table 1.1 Standard deviation of data and normalized singular values.

σ1 σ2

Data 2 0.5
SVD 1.974 0.503
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Figure 1.13 Principal components capture the variance of mean-subtracted Gaussian data (a). The
first three standard deviation ellipsoids (red), and the two left singular vectors, scaled by singular
values (σ1u1 + xC and σ2u2 + xC , cyan), are shown in (b).

Rπ/3 =
[

0.5 −0.8660
0.8660 0.5

]
, U =

[−0.4998 −0.8662
−0.8662 0.4998

]
.

Code 1.9 Generation of noisy cloud of data to illustrate PCA.

xC = [2; 1;]; % Center of data (mean)
sig = [2; .5;]; % Principal axes

theta = pi/3; % Rotate cloud by pi/3
R = [cos(theta) -sin(theta); % Rotation matrix

sin(theta) cos(theta)];

nPoints = 10000; % Create 10,000 points
X = R*diag(sig)*randn(2,nPoints) + diag(xC)*ones(2,nPoints);
scatter(X(1,:),X(2,:),’k.’,’LineWidth’,2)

Code 1.10 Compute PCA and plot confidence intervals.

Xavg = mean(X,2); % Compute mean
B = X - Xavg*ones(1,nPoints); % Mean-subtracted Data
[U,S,V] = svd(B/sqrt(nPoints),’econ’); % PCA via SVD
scatter(X(1,:),X(2,:),’k.’,’LineWidth’,2) % Plot data

theta = (0:.01:1)*2*pi;
Xstd = U*S*[cos(theta); sin(theta)]; % 1-std conf. interval
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Figure 1.14 Singular values for the Ovarian cancer data.

plot(Xavg(1)+Xstd(1,:),Xavg(2) + Xstd(2,:),’r-’)
plot(Xavg(1)+2*Xstd(1,:),Xavg(2) + 2*Xstd(2,:),’r-’)
plot(Xavg(1)+3*Xstd(1,:),Xavg(2) + 3*Xstd(2,:),’r-’)

Finally, it is also possible to compute using the pca command:

>> [V,score,s2] = pca(X);
>> norm(V*score’ - B)

ans =
2.2878e-13

Example: Ovarian Cancer Data
The ovarian cancer data set, which is built into Matlab, provides a more realistic example
to illustrate the benefits of PCA. This example consists of gene data for 216 patients, 121
of whom have ovarian cancer, and 95 of whom do not. For each patient, there is a vector of
data containing the expression of 4000 genes. There are multiple challenges with this type
of data, namely the high dimension of the data features. However, we see from Fig. 1.14
that there is significant variance captured in the first few PCA modes. Said another way,
the gene data is highly correlated, so that many patients have significant overlap in their
gene expression. The ability to visualize patterns and correlations in high-dimensional data
is an important reason to use PCA, and PCA has been widely used to find patterns in high-
dimensional biological and genetic data [448].

More importantly, patients with ovarian cancer appear to cluster separately from patients
without cancer when plotted in the space spanned by the first three PCA modes. This is
shown in Fig. 1.15, which is generated by Code 1.11. This inherent clustering in PCA space
of data by category is a foundational element of machine learning and pattern recognition.
For example, we will see in Sec. 1.6 that images of different human faces will form
clusters in PCA space. The use of these clusters will be explored in greater detail in
Chapter 5.
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Figure 1.15 Clustering of samples that are normal and those that have cancer in the first three
principal component coordinates.

Code 1.11 Compute PCA for ovarian cancer data.

load ovariancancer; % Load ovarian cancer data
[U,S,V] = svd(obs,’econ’);
for i=1:size(obs,1)

x = V(:,1)’*obs(i,:)’;
y = V(:,2)’*obs(i,:)’;
z = V(:,3)’*obs(i,:)’;
if(grp{i}==’Cancer’)

plot3(x,y,z,’rx’,’LineWidth’,2);
else

plot3(x,y,z,’bo’,’LineWidth’,2);
end

end

1.6 Eigenfaces Example
One of the most striking demonstrations of SVD/PCA is the so-called eigenfaces example.
In this problem, PCA (i.e. SVD on mean-subtracted data) is applied to a large library of
facial images to extract the most dominant correlations between images. The result of this
decomposition is a set of eigenfaces that define a new coordinate system. Images may
be represented in these coordinates by taking the dot product with each of the principal
components. It will be shown in Chapter 5 that images of the same person tend to cluster
in the eigenface space, making this a useful transformation for facial recognition and
classification [510, 48]. The eigenface problem was first studied by Sirovich and Kirby
in 1987 [491] and expanded on in [291]. Its application to automated facial recognition
was presented by Turk and Pentland in 1991 [537].

Here, we demonstrate this algorithm using the Extended Yale Face Database B [203],
consisting of cropped and aligned images [327] of 38 individuals (28 from the extended
database, and 10 from the original database) under 9 poses and 64 lighting conditions6.

6 The database can be downloaded at http://vision.ucsd.edu/~iskwak/ExtYaleDatabase/ExtYaleB.html.
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Figure 1.16 (left) A single image for each person in the Yale database, and (right) all images for a
specific person. Left panel generated by Code (1.12).

Each image is 192 pixels tall and 168 pixels wide. Unlike the previous image example in
Section 1.2, each of the facial images in our library have been reshaped into a large column
vector with 192 × 168 = 32, 256 elements. We use the first 36 people in the database (left
panel of Fig. 1.16) as our training data for the eigenfaces example, and we hold back two
people as a test set. An example of all 64 images of one specific person are shown in the
right panel. These images are loaded and plotted using Code 1.12.

Code 1.12 Plot an image for each person in the Yale database (Fig. 1.16 (a))

load ../DATA/allFaces.mat

allPersons = zeros(n*6,m*6); % Make an array to fit all
faces

count = 1;
for i=1:6 % 6 x 6 grid of faces

for j=1:6
allPersons(1+(i-1)*n:i*n,1+(j-1)*m:j*m) ...

=reshape(faces(:,1+sum(nfaces(1:count-1))),n,m);
count = count + 1;

end
end
imagesc(allPersons), colormap gray

As mentioned before, each image is reshaped into a large column vector, and the average
face is computed and subtracted from each column vector. The mean-subtracted image
vectors are then stacked horizontally as columns in the data matrix X, as shown in Fig. 1.17.
Thus, taking the SVD of the mean-subtracted matrix X results in the PCA. The columns
of U are the eigenfaces, and they may be reshaped back into 192 × 168 images. This is
illustrated in Code 1.13.
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Figure 1.17 Schematic procedure to obtain eigenfaces from library of faces.

Code 1.13 Compute eigenfaces on mean-subtracted data.

% We use the first 36 people for training data
trainingFaces = faces(:,1:sum(nfaces(1:36)));
avgFace = mean(trainingFaces,2); % size n*m by 1;

% Compute eigenfaces on mean-subtracted training data
X = trainingFaces-avgFace*ones(1,size(trainingFaces,2));
[U,S,V] = svd(X,’econ’);

imagesc(reshape(avgFace,n,m)) % Plot avg face
imagesc(reshape(U(:,1),n,m)) % Plot first eigenface

Using the eigenface library, Ũ, obtained by this code, we now attempt to approximately
represent an image that was not in the training data. At the beginning, we held back two
individuals (the 37th and 38th people), and we now use one of their images as a test image,
xtest. We will see how well a rank-r SVD basis will approximate this image using the
following projection:

x̃test = ŨŨ∗xtest.
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r = 25 r = 50 r = 100

r = 200 r = 400 r = 800 r = 1600

Figure 1.18 Approximate representation of test image using eigenfaces basis of various order r . Test
image is not in training set.

The eigenface approximation for various values of r is shown in Fig. 1.18, as computed
using Code 1.14. The approximation is relatively poor for r ≤ 200, although for r > 400
it converges to a passable representation of the test image.

It is interesting to note that the eigenface space is not only useful for representing
human faces, but may also be used to approximate a dog (Fig. 1.19) or a cappuccino
(Fig. 1.20). This is possible because the 1600 eigenfaces span a large subspace of the 32256
dimensional image space corresponding to broad, smooth, nonlocalized spatial features,
such as cheeks, forehead, mouths, etc.

Code 1.14 Approximate test-image that was omitted from training data.

testFaceMS = testFace - avgFace;
for r=[25 50 100 200 400 800 1600]

reconFace = avgFace + (U(:,1:r)*(U(:,1:r)’*testFaceMS));
imagesc(reshape(reconFace,n,m))

end

We further investigate the use of the eigenfaces as a coordinate system, defining an
eigenface space. By projecting an image x onto the first r PCA modes, we obtain a set
of coordinates in this space: x̃ = Ũ

∗
x. Some principal components may capture the most

common features shared among all human faces, while other principal components will be
more useful for distinguishing between individuals. Additional principal components may
capture differences in lighting angles. Figure 1.21 shows the coordinates of all 64 images
of two individuals projected onto the 5th and 6th principal components, generated by
Code 1.15. Images of the two individuals appear to be well-separated in these coordinates.
This is the basis for image recognition and classification in Chapter 5.
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r = 25 r = 50 r = 100

r = 200 r = 400 r = 800 r = 1600

Figure 1.19 Approximate representation of an image of a dog using eigenfaces.

r = 25 r = 50 r = 100

r = 200 r = 400 r = 800 r = 1600

Figure 1.20 Approximate representation of a cappuccino using eigenfaces.
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Figure 1.21 Projection of all images from two individuals onto the 5th and 6th PCA modes. Projected
images of the first individual are indicated with black diamonds, and projected images of the second
individual are indicated with red triangles. Three examples from each individual are circled in blue,
and the corresponding image is shown.

Code 1.15 Project images for two specific people onto the 5th and 6th eigenfaces to illustrate the
potential for automated classification.

P1num = 2; % Person number 2
P2num = 7; % Person number 7

P1 = faces(:,1+sum(nfaces(1:P1num-1)):sum(nfaces(1:P1num)));
P2 = faces(:,1+sum(nfaces(1:P2num-1)):sum(nfaces(1:P2num)));

P1 = P1 - avgFace*ones(1,size(P1,2));
P2 = P2 - avgFace*ones(1,size(P2,2));

PCAmodes = [5 6]; % Project onto PCA modes 5 and 6
PCACoordsP1 = U(:,PCAmodes)’*P1;
PCACoordsP2 = U(:,PCAmodes)’*P2;

plot(PCACoordsP1(1,:),PCACoordsP1(2,:),’kd’)
plot(PCACoordsP2(1,:),PCACoordsP2(2,:),’r^’)

1.7 Truncation and Alignment
Deciding how many singular values to keep, i.e. where to truncate, is one of the most
important and contentious decisions when using the SVD. There are many factors, includ-
ing specifications on the desired rank of the system, the magnitude of noise, and the
distribution of the singular values. Often, one truncates the SVD at a rank r that captures a
pre-determined amount of the variance or energy in the original data, such as 90% or 99%
truncation. Although crude, this technique is commonly used. Other techniques involve
identifying “elbows” or “knees” in the singular value distribution, which may denote the
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transition from singular values that represent important patterns from those that represent
noise. Truncation may be viewed as a hard threshold on singular values, where values
larger than a threshold τ are kept, while remaining singular values are truncated. Recent
work by Gavish and Donoho [200] provides an optimal truncation value, or hard threshold,
under certain conditions, providing a principled approach to obtaining low-rank matrix
approximations using the SVD.

In addition, the alignment of data significantly impacts the rank of the SVD approxima-
tion. The SVD essentially relies on a separation of variables between the columns and rows
of a data matrix. In many situations, such as when analyzing traveling waves or misaligned
data, this assumption breaks down, resulting in an artificial rank inflation.

Optimal Hard Threshold
A recent theoretical breakthrough determines the optimal hard threshold τ for singular
value truncation under the assumption that a matrix has a low-rank structure contaminated
with Gaussian white noise [200]. This work builds on a significant literature surrounding
various techniques for hard and soft thresholding of singular values. In this section, we
summarize the main results and demonstrate the thresholding on various examples. For
more details, see [200].

First, we assume that the data matrix X is the sum of an underlying low-rank, or approx-
imately low-rank, matrix Xtrue and a noise matrix Xnoise:

X = Xtrue + γ Xnoise. (1.30)

The entries of Xnoise are assumed to be independent, identically distributed (i.i.d.) Gaus-
sian random variables with zero mean and unit variance. The magnitude of the noise is
characterized by γ , which deviates from the notation in [200]7.

When the noise magnitude γ is known, there are closed-form solutions for the optimal
hard threshold τ :

1. If X ∈ Rn×n is square, then

τ = (4/
√

3)
√

nγ. (1.31)

2. If X ∈ Rn×m is rectangular and m � n, then the constant 4/
√

3 is replaced by a
function of the aspect ratio β = m/n:

τ = λ(β)
√

nγ, (1.32)

λ(β) =
(

2(β + 1) + 8β

(β + 1) + (β2 + 14β + 1
)1/2

)1/2

. (1.33)

Note that this expression reduces to (1.31) when β = 1. If n � m, then β = n/m.

When the noise magnitude γ is unknown, which is more typical in real-world appli-
cations, then it is possible to estimate the noise magnitude and scale the distribution of
singular values by using σmed, the median singular value. In this case, there is no closed-
form solution for τ , and it must be approximated numerically.

7 In [200], σ is used to denote standard deviation and yk denotes the kth singular value.
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3. For unknown noise γ , and a rectangular matrix X ∈ Rn×m, the optimal hard thresh-
old is given by

τ = ω(β)σmed. (1.34)

Here, ω(β) = λ(β)/μβ , where μβ is the solution to the following problem:∫ μβ

(1−β)2

[(
(1 + √

β)2 − t
) (

t − (1 − √
β)2
)]1/2

2πt
dt = 1

2
.

Solutions to the expression above must be approximated numerically. Fortunately
[200] has a Matlab code supplement8 [151] to approximate μβ .

The new method of optimal hard thresholding works remarkably well, as demonstrated
on the examples below.

Example 1: Toy Problem
In the first example, shown in Fig. 1.22, we artificially construct a rank-2 matrix (Code 1.16)
and we contaminate the signal with Gaussian white noise (Code 1.17). A de-noised and
dimensionally reduced matrix is then obtained using the threshold from (1.31) (Code 1.18),
as well as using a 90% energy truncation (Code 1.19). It is clear that the hard threshold
is able to filter the noise more effectively. Plotting the singular values (Code 1.20) in
Fig. 1.23, it is clear that there are two values that are above threshold.

Code 1.16 Compute the underlying low-rank signal. (Fig. 1.22 (a))

clear all, close all, clc

t = (-3:.01:3)’;

Utrue = [cos(17*t).*exp(-t.^2) sin(11*t)];
Strue = [2 0; 0 .5];
Vtrue = [sin(5*t).*exp(-t.^2) cos(13*t)];

X = Utrue*Strue*Vtrue’;
figure, imshow(X);

Code 1.17 Contaminate the signal with noise. (Fig. 1.22 (b))

sigma = 1;
Xnoisy = X+sigma*randn(size(X));
figure, imshow(Xnoisy);

Code 1.18 Truncate using optimal hard threshold. (Fig. 1.22 (c))

[U,S,V] = svd(Xnoisy);

N = size(Xnoisy,1);
cutoff = (4/sqrt(3))*sqrt(N)*sigma; % Hard threshold
r = max(find(diag(S)>cutoff)); % Keep modes w/ sig > cutoff
Xclean = U(:,1:r)*S(1:r,1:r)*V(:,1:r)’;
figure, imshow(Xclean)

8 http://purl.stanford.edu/vg705qn9070
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Figure 1.22 Underlying rank 2 matrix (a), matrix with noise (b), clean matrix after optimal hard
threshold (4/

√
3)

√
nσ (c), and truncation based on 90% energy (d).

Code 1.19 Truncate using 90% energy criterion. (Fig. 1.22 (d))

cdS = cumsum(diag(S))./sum(diag(S)); % Cumulative energy
r90 = min(find(cdS>0.90)); % Find r to capture 90% energy

X90 = U(:,1:r90)*S(1:r90,1:r90)*V(:,1:r90)’;
figure, imshow(X90)

Code 1.20 Plot singular values for hard threshold example. (Fig. 1.23)

semilogy(diag(S),’-ok’,’LineWidth’,1.5), hold on, grid on
semilogy(diag(S(1:r,1:r)),’or’,’LineWidth’,1.5)

Example 2: Eigenfaces
In the second example, we revisit the eigenfaces problem from Section 1.6. This provides
a more typical example, since the data matrix X is rectangular, with aspect ratio β = 3/4,
and the noise magnitude is unknown. It is also not clear that the data is contaminated with
white noise. Nonetheless, the method determines a threshold τ , above which columns of
U appear to have strong facial features, and below which columns of U consist mostly of
noise, shown in Fig. 1.24.
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Figure 1.23 Singular values σr (a) and cumulative energy in first r modes (b). The optimal hard
threshold τ = (4/

√
3)

√
nσ is shown as a red dashed line (- -), and the 90% cutoff is shown as a blue

dashed line (- -). For this case, n = 600 and σ = 1 so that the optimal cutoff is approximately
τ = 56.6.

Figure 1.24 Hard thresholding for eigenfaces example.

Importance of Data Alignment
Here, we discuss common pitfalls of the SVD associated with misaligned data. The fol-
lowing example is designed to illustrate one of the central weaknesses of the SVD for
dimensionality reduction and coherent feature extraction in data. Consider a matrix of zeros
with a rectangular sub-block consisting of ones. As an image, this would look like a white
rectangle placed on a black background (see Fig. 1.25 (a)). If the rectangle is perfectly
aligned with the x- and y- axes of the figure, then the SVD is simple, having only one
nonzero singular value σ1 (see Fig. 1.25 (c)) and corresponding singular vectors u1 and v1

that define the width and height of the white rectangle.
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Figure 1.25 A data matrix consisting of ones with a square sub-block of zeros (a), and its SVD
spectrum (c). If we rotate the image by 10◦, as in (b), the SVD spectrum becomes significantly more
complex (d).

When we begin to rotate the inner rectangle so that it is no longer aligned with the image
axes, additional non-zero singular values begin to appear in the spectrum (see Figs. 1.25
(b,d) and 1.26).

Code 1.21 Compute the SVD for a well-aligned and rotated square (Fig. 1.25).

n = 1000; % 1000 x 1000 square
X = zeros(n,n);
X(n/4:3*n/4,n/4:3:n/4) = 1;
imshow(X);

Y = imrotate(X,10,’bicubic’); % rotate 10 degrees
Y = Y - Y(1,1);
nY = size(Y,1);
startind = floor((nY-n)/2);
Xrot = Y(startind:startind+n-1, startind:startind+n-1);
imshow(Xrot);
[U,S,V] = svd(X); % SVD well-aligned square
[U,S,V] = svd(Xrot); % SVD rotated square
semilogy(diag(S),’-ko’)
semilogy(diag(S),’-ko’)
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Figure 1.26 A data matrix consisting of zeros with a square sub-block of ones at various rotations (a),
and the corresponding SVD spectrum, diag(S), (b).

The reason that this example breaks down is that the SVD is fundamentally geometric,
meaning that it depends on the coordinate system in which the data is represented. As
we have seen earlier, the SVD is only generically invariant to unitary transformations,
meaning that the transformation preserves the inner product. This fact may be viewed as
both a strength and a weakness of the method. First, the dependence of SVD on the inner
product is essential for the various useful geometric interpretations. Moreover, the SVD has
meaningful units and dimensions. However, this makes the SVD sensitive to the alignment
of the data. In fact, the SVD rank explodes when objects in the columns translate, rotate,
or scale, which severely limits its use for data that has not been heavily pre-processed.

For instance, the eigenfaces example was built on a library of images that had been
meticulously cropped, centered, and aligned according to a stencil. Without taking these
important pre-processing steps, the features and clustering performance would be under-
whelming.

The inability of the SVD to capture translations and rotations of the data is a major lim-
itation. For example, the SVD is still the method of choice for the low-rank decomposition
of data from partial differential equations (PDEs), as will be explored in Chapters 11 and
12. However, the SVD is fundamentally a data-driven separation of variables, which we
know will not work for many types of PDE, for example those that exhibit traveling waves.
Generalized decompositions that retain the favorable properties and are applicable to data
with symmetries is a significant open challenge in the field.

Code 1.22 SVD for a square rotated through various angles (Fig. 1.26).

nAngles = 12; % sweep through 12 angles, from 0:4:44
Xrot = X;
for j=2:nAngles

Y = imrotate(X,(j-1)*4,’bicubic’); % rotate (j-1)*4
startind = floor((size(Y,1)-n)/2);
Xrot1 = Y(startind:startind+n-1, startind:startind+n-1);
Xrot2 = Xrot1 - Xrot1(1,1);
Xrot2 = Xrot2/max(Xrot2(:));
Xrot(Xrot2>.5) = j;

[U,S,V] = svd(Xrot1);
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subplot(1,2,1), imagesc(Xrot), colormap([0 0 0; cm])
subplot(1,2,2), semilogy(diag(S),’-o’,’color’,cm(j,:))

end

1.8 Randomized Singular Value Decomposition
The accurate and efficient decomposition of large data matrices is one of the cornerstones
of modern computational mathematics and data science. In many cases, matrix decompo-
sitions are explicitly focused on extracting dominant low-rank structure in the matrix, as
illustrated throughout the examples in this chapter. Recently, it has been shown that if a
matrix X has low-rank structure, then there are extremely efficient matrix decomposition
algorithms based on the theory of random sampling; this is closely related to the idea of
sparsity and the high-dimensional geometry of sparse vectors, which will be explored in
Chapter 3. These so-called randomized numerical methods have the potential to transform
computational linear algebra, providing accurate matrix decompositions at a fraction of the
cost of deterministic methods. Moreover, with increasingly vast measurements (e.g., from
4K and 8K video, internet of things, etc.), it is often the case that the intrinsic rank of the
data does not increase appreciable, even though the dimension of the ambient measurement
space grows. Thus, the computational savings of randomized methods will only become
more important in the coming years and decades with the growing deluge of data.

Randomized Linear Algebra
Randomized linear algebra is a much more general concept than the treatment presented
here for the SVD. In addition to the randomized SVD [464, 371], randomized algorithms
have been developed for principal component analysis [454, 229], the pivoted LU decom-
position [485], the pivoted QR decomposition [162], and the dynamic mode decomposi-
tion [175]. Most randomized matrix decompositions can be broken into a few common
steps, as described here. There are also several excellent surveys on the topic [354, 228,
334, 177]. We assume that we are working with tall-skinny matrices, so that n > m,
although the theory readily generalizes to short-fat matrices.

Step 0: Identify a target rank, r < m.
Step 1: Using random projections P to sample the column space, find a matrix Q

whose columns approximate the column space of X, i.e., so that X ≈ QQ∗X.
Step 2: Project X onto the Q subspace, Y = Q∗X, and compute the matrix decompo-

sition on Y.
Step 3: Reconstruct high dimensional modes U = QUY using Q and the modes

computed from Y.

Randomized SVD Algorithm
Over the past two decades, there have been several randomized algorithms proposed
to compute a low-rank SVD, including the Monte Carlo SVD [190] and more robust
approaches based on random projections [464, 335, 371]. These methods were improved
by incorporating structured sampling matrices for faster matrix multiplications [559].
Here, we use the randomized SVD algorithm of Halko, Martinsson, and Tropp [228],
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which combined and expanded on these previous algorithms, providing favorable error
bounds. Additional analysis and numerical implementation details are found in Voronin
and Martinsson [544]. A schematic of the rSVD algorithm is shown in Fig. 1.27.

Step 1: We construct a random projection matrix P ∈ Rm×r to sample the column space
of X ∈ Rn×m:

Z = XP. (1.35)

The matrix Z may be much smaller than X, especially for low-rank matrices with r � m. It
is highly unlikely that a random projection matrix P will project out important components
of X, and so Z approximates the column space of X with high probability. Thus, it is
possible to compute the low-rank QR decomposition of Z to obtain an orthonormal basis
for X:

Z = QR. (1.36)

Figure 1.27 Schematic of randomized SVD algorithm. The high-dimensional data X is depicted in
red, intermediate steps in gray, and the outputs in blue. This algorithm requires two passes over X.
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Step 2: With the low-rank basis Q, we may project X into a smaller space:

Y = Q∗X. (1.37)

It also follows that X ≈ QY, with better agreement when the singular values σk decay
rapidly for k > r .

It is now possible to compute the singular value decomposition on Y:

Y = UY�V∗. (1.38)

Because Q is a orthonormal and approximates the column space of X, the matrices � and
V are the same for Y and X, as discussed in Section 1.3.

Step 3: Finally, it is possible to reconstruct the high-dimensional left singular vectors U
using UY and Q:

U = QUY. (1.39)

Oversampling
Most matrices X do not have an exact low-rank structure, given by r modes. Instead, there
are nonzero singular values σk for k > r , and the sketch Z will not exactly span the column
space of X. In general, increasing the number of columns in P from r to r +p, significantly
improves results, even with p adding around 5 or 10 columns [370]. This is known as
oversampling, and increasing p decreases the variance of the singular value spectrum of
the sketched matrix.

Power Iterations
A second challenge in using randomized algorithms is when the singular value spectrum
decays slowly, so that the remaining truncated singular values contain significant variance
in the data X. In this case, it is possible to preprocess X through q power iterations [454,
228, 224] to create a new matrix X(q) with a more rapid singular value decay:

X(q) = (XX∗)q X. (1.40)

Power iterations dramatically improve the quality of the randomized decomposition, as the
singular value spectrum of X(q) decays more rapidly:

X(q) = U�2q−1V∗. (1.41)

However, power iterations are expensive, requiring q additional passes through the data X.
In some extreme examples, the data in X may be stored in a distributed architecture, so that
every additional pass adds considerable expense.

Guaranteed Error Bounds
One of the most important properties of the randomized SVD is the existence of tunable
error bounds, that are explicit functions of the singular value spectrum, the desired rank r ,
the oversampling parameter p and the number of power iterations q. The best attainable
error bound for a deterministic algorithm is:

‖X − QY‖2 ≥ σr+1(X). (1.42)
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In other words, the approximation with the best possible rank-r subspace Q will have error
greater than or equal to the next truncated singular value of X. For randomized methods, it
is possible to bound the expectation of the error:

E (‖X − QY‖2) ≤
(

1 +
√

r

p − 1
+ e

√
r + p

p

√
m − r

) 1
2q+1

σk+1(X), (1.43)

where e is Euler’s number.

Choice of random matrix P
There are several suitable choices of the random matrix P. Gaussian random projections
(e.g., the elements of P are i.i.d. Gaussian random variables) are frequently used because of
favorable mathematical properties and the richness of information extracted in the sketch Z.
In particular, it is very unlikely that a Gaussian random matrix P will be chosen badly so as
to project out important information in X. However, Gaussian projections are expensive to
generate, store, and compute. Uniform random matrices are also frequently used, and have
similar limitations. There are several alternatives, such as Rademacher matrices, where the
entries can be +1 or −1 with equal probability [532]. Structured random projection matri-
ces may provide efficient sketches, reducing computational costs to O(nm log(r)) [559].
Yet another choice is a sparse projection matrix P, which improves storage and computa-
tion, but at the cost of including less information in the sketch. In the extreme case, when
even a single pass over the matrix X is prohibitively expensive, the matrix P may be chosen
as random columns of the m × m identity matrix, so that it randomly selects columns of X
for the sketch Z. This is the fastest option, but should be used with caution, as information
may be lost if the structure of X is highly localized in a subset of columns, which may be
lost by column sampling.

Example of Randomized SVD
To demonstrate the randomized SVD algorithm, we will decompose a high-resolution
image. This particular implementation is only for illustrative purposes, as it has not been
optimized for speed, data transfer, or accuracy. In practical applications, care should be
taken [228, 177].

Code 1.23 computes the randomized SVD of a matrix X, and Code 1.24 uses this
function to obtain a rank-400 approximation to a high-resolution image, shown in Fig. 1.28.

Code 1.23 Randomized SVD algorithm.

function [U,S,V] = rsvd(X,r,q,p);

% Step 1: Sample column space of X with P matrix
ny = size(X,2);
P = randn(ny,r+p);
Z = X*P;
for k=1:q

Z = X*(X’*Z);
end
[Q,R] = qr(Z,0);

% Step 2: Compute SVD on projected Y=Q’*X;
Y = Q’*X;
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Figure 1.28 Original high-resolution (left) and rank-400 approximations from the SVD (middle) and
rSVD (right).

[UY,S,V] = svd(Y,’econ’);
U = Q*UY;

Code 1.24 Compute the randomized SVD of high-resolution image.

clear all, close all, clc
A=imread(’jupiter.jpg’);
X=double(rgb2gray(A));
[U,S,V] = svd(X,’econ’); % Deterministic SVD

r = 400; % Target rank
q = 1; % Power iterations
p = 5; % Oversampling parameter
[rU,rS,rV] = rsvd(X,r,q,p); % Randomized SVD

%% Reconstruction
XSVD = U(:,1:r)*S(1:r,1:r)*V(:,1:r)’; % SVD approx.
errSVD = norm(X-XSVD,2)/norm(X,2);
XrSVD = rU(:,1:r)*rS(1:r,1:r)*rV(:,1:r)’; % rSVD approx.
errrSVD = norm(X-XrSVD,2)/norm(X,2);

1.9 Tensor Decompositions and N-Way Data Arrays
Low-rank decompositions can be generalized beyond matrices. This is important as the
SVD requires that disparate types of data be flattened into a single vector in order to evalu-
ate correlated structures. For instance, different time snapshots (columns) of a matrix may
include measurements as diverse as temperature, pressure, concentration of a substance,
etc. Additionally, there may be categorical data. Vectorizing this data generally does not
make sense. Ultimately, what is desired is to preserve the various data structures and types
in their own, independent directions. Matrices can be generalized to N -way arrays, or
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Figure 1.29 Comparison of the SVD and Tensor decomposition frameworks. Both methods produce
an approximation to the original data matrix by sums of outer products. Specifically, the tensor
decomposition generalizes the concept of the SVD to N -way arrays of data without having to flatten
(vectorize) the data.

tensors, where the data is more appropriately arranged without forcing a data-flattening
process.

The construction of data tensors requires that we revisit the notation associated with
tensor addition, multiplication, and inner products [299]. We denote the rth column of a
matrix A by ar . Given matrices A ∈ RI×K and B ∈ RJ×K , their Khatri-Rao product
is denoted by A � B and is defined to be the IJ × K matrix of column-wise Kronecker
products, namely

A � B = (a1 ⊗ b1 · · · aK ⊗ bK

)
.

For an N -way tensor A of size I1 × I2 × · · · × IN , we denote its i = (i1, i2, . . . , iN ) entry
by ai.

The inner product between two N -way tensors A and B of compatible dimensions is
given by

〈A,B〉 =
∑

i

aibi.

The Frobenius norm of a tensor A, denoted by ‖A‖F, is the square root of the inner product
of A with itself, namely ‖A‖F = √〈A,A〉. Finally, the mode-n matricization or unfolding
of a tensor A is denoted by mA(n).

Let M represent an N -way data tensor of size I1 × I2 × · · · × IN . We are interested in
an R-component CANDECOMP/PARAFAC (CP) [124, 235, 299] factor model

M =
R∑

r=1

λr ma(1)
r ◦ · · · ◦ ma(N)

r , (1.44)
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Figure 1.30 Example N -way array data set created from the function (1.45). The data matrix is
A ∈ R121×101×315. A CP tensor decomposition can be used to extract the two underlying structures
that produced the data.

where ◦ represents outer product and ma(n)
r represents the rth column of the factor matrix

mA(n) of size In × R. The CP decomposition refers to CANDECOMP/PARAFAC which
stand for parallel factors analysis (PARAFAC) and canonical decomposition (CANDE-
COMP) respectively. We refer to each summand as a component. Assuming each factor
matrix has been column-normalized to have unit Euclidean length, we refer to the λr ’s as
weights. We will use the shorthand notation where λ = (λ1, . . . , λR)T [25]. A tensor that
has a CP decomposition is sometimes referred to as a Kruskal tensor.

For the rest of this chapter, we consider a 3-way CP tensor decomposition (See Fig. 1.29)
where two modes index state variation and the third mode indexes time variation:

M =
R∑

r=1

λr Ar ◦ Br ◦ Cr .

Let A ∈ RI1×R and B ∈ RI2×R denote the factor matrices corresponding to the two state
modes and C ∈ RI3×R denote the factor matrix corresponding to the time mode. This
3-way decomposition is compared to the SVD in Fig. 1.29.

To illustrate the tensor decomposition, we use the MATLAB N -way toolbox developed
by Rasmus Bro and coworkers [84, 15] which is available on the Mathworks file exchange.
This simple to use package provides a variety of tools to extract tensor decompositions and
evaluate the factor models generated. In the specific example considered here, we generate
data from a spatio-temporal function (See Fig. 1.30)

F(x, y, t) = exp(−x2 − 0.5y2) cos(2t) + sech(x) tanh(x) exp(−0.2y2) sin(t). (1.45)
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Figure 1.31 3-way tensor decomposition of the function (1.45) discretized so that the data matrix is
A ∈ R121×101×315. A CP tensor decomposition can be used to extract the two underlying structures
that produced the data. The first factor is in blue, the second factor is in red. The three distinct
directions of the data (parallel factors) are illustrated in (a) the y direction, (b) the x direction, and
(c) the time t .

This model has two spatial modes with two distinct temporal frequencies, thus a two
factor model should be sufficient to extract the underlying spatial and temporal modes.
To construct this function in MATLAB, the following code is used.

Code 1.25 Creating tensor data.

x=-5:0.1:5; y=-6:0.1:6; t=0:0.1:10*pi;
[X,Y,T]=meshgrid(x,y,t);
A=exp(-(X.^2+0.5*Y.^2)).*(cos(2*T))+ ...

(sech(X).*tanh(X).*exp(-0.2*Y.^2)).*sin(T);

Note that the meshgrid command is capable of generating N -way arrays. Indeed, MAT-
LAB has no difficulties specifying higher-dimensional arrays and tensors. Specifically,
one can easily generate N -way data matrices with arbitrary dimensions. The command
A = randn(10, 10, 10, 10, 10) generates a 5-way hypercube with random values in each
of the five directions of the array.

Figure 1.30 shows eight snapshots of the function (1.45) discretized with the code above.
The N -way array data generated from the MATLAB code produces A ∈ R121×101×315,
which is of total dimension 106. The CP tensor decomposition can be used to extract a two
factor model for this 3-way array, thus producing two vectors in each direction of space x,
space y, and time t .

The N -way toolbox provides a simple architecture for performing tensor decomposi-
tions. The PARAFAC command structure can easily take the input function (1.45) which is
discretized in the code above and provide a two-factor model. The following code produces
the output as model.
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Code 1.26 Two factor tensor model.

model=parafac(A,2);
[A1,A2,A3]=fac2let(model);
subplot(3,1,1), plot(y,A1,’Linewidth’,[2])
subplot(3,1,2), plot(x,A2,’Linewidth’,[2])
subplot(3,1,3), plot(t,A3,’Linewidth’,[2])

Note that in this code, the fac2let command turns the factors in the model into their
component matrices. Further note that the meshgrid arrangement of the data is different
from parafac since the x and y directions are switched.

Figure 1.31 shows the results of the N -way tensor decomposition for the prescribed two
factor model. Specifically, the two vectors along each of the three directions of the array
are illustrated. For this example, the exact answer is known since the data was constructed
from the rank-2 model (1.45). The first set of two modes (along the original y direction)
are Gaussian as prescribed. The second set of two modes (along the original x direction)
include a Gaussian for the first function, and the anti-symmetric sech(x) tanh(x) for the
second function. The third set of two modes correspond to the time dynamics of the two
functions: cos(2t) and sin(t), respectively. Thus, the two factor model produced by the
CP tensor decomposition returns the expected, low-rank functions that produced the high-
dimensional data matrix A.

Recent theoretical and computational advances in N -way decompositions are opening up
the potential for tensor decompositions in many fields. For N large, such decompositions
can be computationally intractable due to the size of the data. Indeed, even in the simple
example illustrated in Figs. 1.30 and 1.31, there are 106 data points. Ultimately, the CP
tensor decomposition does not scale well with additional data dimensions. However, ran-
domized techniques are helping yield tractable computations even for large data sets [158,
175]. As with the SVD, randomized methods exploit the underlying low-rank structure
of the data in order to produce an accurate approximation through the sum of rank-one
outer products. Additionally, tensor decompositions can be combined with constraints on
the form of the parallel factors in order to produce more easily interpretable results [348].
This gives a framework for producing interpretable and scalable computations of N -way
data arrays.

Suggested Reading
Texts
(1) Matrix computations, by G. H. Golub and C. F. Van Loan, 2012 [214].
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Sirovich and M. Kirby, Journal of the Optical Society of America A, 1987 [491].
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approximate matrix decompositions, by N. Halko, P.-G. Martinsson, and J. A.
Tropp, SIAM Review, 2011 [230].

(4) A randomized algorithm for the decomposition of matrices, by P.-G. Martins-
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2011 [371].

(5) The optimal hard threshold for singular values is 4/
√

3, by M. Gavish and D. L.
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2 Fourier and Wavelet Transforms

A central concern of mathematical physics and engineering mathematics involves the trans-
formation of equations into a coordinate system where expressions simplify, decouple, and
are amenable to computation and analysis. This is a common theme throughout this book,
in a wide variety of domains, including data analysis (e.g., the SVD), dynamical systems
(e.g., spectral decomposition into eigenvalues and eigenvectors), and control (e.g., defining
coordinate systems by controllability and observability). Perhaps the most foundational
and ubiquitous coordinate transformation was introduced by J.-B. Joseph Fourier in the
early 1800s to investigate the theory of heat [185]. Fourier introduced the concept that sine
and cosine functions of increasing frequency provide an orthogonal basis for the space of
solution functions. Indeed, the Fourier transform basis of sines and cosines serve as eigen-
functions of the heat equation, with the specific frequencies serving as the eigenvalues,
determined by the geometry, and amplitudes determined by the boundary conditions.

Fourier’s seminal work provided the mathematical foundation for Hilbert spaces, oper-
ator theory, approximation theory, and the subsequent revolution in analytical and compu-
tational mathematics. Fast forward two hundred years, and the fast Fourier transform has
become the cornerstone of computational mathematics, enabling real-time image and audio
compression, global communication networks, modern devices and hardware, numerical
physics and engineering at scale, and advanced data analysis. Simply put, the fast Fourier
transform has had a more significant and profound role in shaping the modern world than
any other algorithm to date.

With increasingly complex problems, data sets, and computational geometries, simple
Fourier sine and cosine bases have given way to tailored bases, such as the data-driven
SVD. In fact, the SVD basis can be used as a direct analogue of the Fourier basis for solving
PDEs with complex geometries, as will be discussed later. In addition, related functions,
called wavelets, have been developed for advanced signal processing and compression
efforts. In this chapter, we will demonstrate a few of the many uses of Fourier and wavelet
transforms.

2.1 Fourier Series and Fourier Transforms
Before describing the computational implementation of Fourier transforms on vectors of
data, here we introduce the analytic Fourier series and Fourier transform, defined for con-
tinuous functions. Naturally, the discrete and continuous formulations should match in the
limit of data with infinitely fine resolution. The Fourier series and transform are intimately
related to the geometry of infinite-dimensional function spaces, or Hilbert spaces, which
generalize the notion of vector spaces to include functions with infinitely many degrees of
freedom. Thus, we begin with an introduction to function spaces.

47
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Figure 2.1 Discretized functions used to illustrate the inner product.

Inner Products of Functions and Vectors
In this section, we will make use of inner products and norms of functions. In particular,
we will use the common Hermitian inner product for functions f (x) and g(x) defined for
x on a domain x ∈ [a, b]:

〈f (x), g(x)〉 =
∫ b

a

f (x)ḡ(x) dx (2.1)

where ḡ denotes the complex conjugate.
The inner product of functions may seem strange or unmotivated at first, but this defini-

tion becomes clear when we consider the inner product of vectors of data. In particular, if
we discretize the functions f (x) and g(x) into vectors of data, as in Fig. 2.1, we would like
the vector inner product to converge to the function inner product as the sampling resolution

is increased. The inner product of the data vectors f = [
f1 f2 · · · fn

]T
and g =[

g1 g2 · · · gn

]T
is defined by:

〈f, g〉 = g∗f =
n∑

k=1

fkḡk =
n∑

k=1

f (xk)ḡ(xk). (2.2)

The magnitude of this inner product will grow as more data points are added; i.e., as n

increases. Thus, we may normalize by �x = (b − a)/(n − 1):

b − a

n − 1
〈f, g〉 =

n∑
k=1

f (xk)ḡ(xk)�x, (2.3)

which is the Riemann approximation to the continuous function inner product. It is now
clear that as we take the limit of n → ∞ (i.e., infinite data resolution, with �x → 0), the
vector inner product converges to the inner product of functions in (2.1).
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This inner product also induces a norm on functions, given by

‖f ‖2 = (〈f, f 〉)1/2 =
√

〈f, f 〉 =
(∫ b

a

f (x)f̄ (x) dx

)1/2

. (2.4)

The set of all functions with bounded norm define the set of square integrable functions,
denoted by L2([a, b]); this is also known as the set of Lebesgue integrable functions.
The interval [a, b] may also be chosen to be infinite (e.g., (−∞,∞)), semi-infinite (e.g.,
[a,∞)), or periodic (e.g., [−π, π)). A fun example of a function in L2([1,∞)) is f (x) =
1/x. The square of f has finite integral from 1 to ∞, although the integral of the function
itself diverges. The shape obtained by rotating this function about the x-axis is known as
Gabriel’s horn, as the volume is finite (related to the integral of f 2), while the surface area
is infinite (related to the integral of f ).

As in finite-dimensional vector spaces, the inner product may be used to project a
function into an new coordinate system defined by a basis of orthogonal functions. A
Fourier series representation of a function f is precisely a projection of this function onto
the orthogonal set of sine and cosine functions with integer period on the domain [a, b].
This is the subject of the following sections.

Fourier Series
A fundamental result in Fourier analysis is that if f (x) is periodic and piecewise smooth,
then it can be written in terms of a Fourier series, which is an infinite sum of cosines and
sines of increasing frequency. In particular, if f (x) is 2π -periodic, it may be written as:

f (x) = a0

2
+

∞∑
k=1

(ak cos(kx) + bk sin(kx)) . (2.5)

The coefficients ak and bk are given by

ak = 1

π

∫ π

−π

f (x) cos(kx)dx (2.6a)

bk = 1

π

∫ π

−π

f (x) sin(kx)dx, (2.6b)

which may be viewed as the coordinates obtained by projecting the function onto the
orthogonal cosine and sine basis {cos(kx), sin(kx)}∞k=0. In other words, the integrals in (2.6)
may be re-written in terms of the inner product as:

ak = 1

‖ cos(kx)‖2
〈f (x), cos(kx)〉 (2.7a)

bk = 1

‖ sin(kx)‖2
〈f (x), sin(kx)〉, (2.7b)

where ‖ cos(kx)‖2 = ‖ sin(kx)‖2 = π . This factor of 1/π is easy to verify by numerically
integrating cos(x)2 and sin(x)2 from −π to π .

The Fourier series for an L-periodic function on [0, L) is similarly given by:

f (x) = a0

2
+

∞∑
k=1

(
ak cos

(
2πkx

L

)
+ bk sin

(
2πkx

L

))
, (2.8)
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with coefficients ak and bk given by

ak = 2

L

∫ L

0
f (x) cos

(
2πkx

L

)
dx (2.9a)

bk = 2

L

∫ L

0
f (x) sin

(
2πkx

L

)
dx. (2.9b)

Because we are expanding functions in terms of sine and cosine functions, it is also
natural to use Euler’s formula eikx = cos(kx)+i sin(kx) to write a Fourier series in complex
form with complex coefficients ck = αk + iβk:

f (x) =
∞∑

k=−∞
cke

ikx =
∞∑

k=−∞
(αk + iβk) (cos(kx) + i sin(kx))

= (α0 + iβ0) +
∞∑

k=1

[
(α−k + αk) cos(kx) + (β−k − βk) sin(kx)

]

+ i

∞∑
k=1

[
(β−k + βk) cos(kx) − (α−k − αk) sin(kx)

]
. (2.10)

If f (x) is real-valued, then α−k = αk and β−k = −βk , so that c−k = c̄k .
Thus, the functions ψk = eikx for k ∈ Z (i.e., for integer k) provide a basis for periodic,

complex-valued functions on an interval [0, 2π). It is simple to see that these functions are
orthogonal:

〈ψj ,ψk〉 =
∫ π

−π

eijxe−ikxdx =
∫ π

−π

ei(j−k)xdx =
[

ei(j−k)x

i(j − k)

]π

−π

=
{

0 if j �= k

2π if j = k.

So 〈ψj ,ψk〉 = 2πδjk, where δ is the Kronecker delta function. Similarly, the functions
ei2πkx/L provide a basis for L2 ([0, L)), the space of square integrable functions defined
on x ∈ [0, L).

In principle, a Fourier series is just a change of coordinates of a function f (x) into
an infinite-dimensional orthogonal function space spanned by sines and cosines (i.e.,
ψk = eikx = cos(kx) + i sin(kx)):

f (x) =
∞∑

k=−∞
ckψk(x) = 1

2π

∞∑
k=−∞

〈f (x), ψk(x)〉ψk(x). (2.11)

The coefficients are given by ck = 1
2π

〈f (x), ψk(x)〉. The factor of 1/2π normalizes the
projection by the square of the norm of ψk; i.e., ‖ψk‖2 = 2π . This is consistent with
our standard finite-dimensional notion of change of basis, as in Fig. 2.2. A vector

⇀

f may
be written in the (

⇀
x,

⇀
y) or (

⇀
u,

⇀
v) coordinate systems, via projection onto these orthogonal

bases:

⇀

f = 〈 ⇀

f ,
⇀
x 〉

⇀
x

‖⇀
x‖2

+ 〈 ⇀

f ,
⇀
y 〉

⇀
y

‖⇀
y‖2

(2.12a)

= 〈 ⇀

f ,
⇀
u 〉

⇀
u

‖⇀
u‖2

+ 〈 ⇀

f ,
⇀
v 〉

⇀
v

‖⇀
v‖2

. (2.12b)
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Figure 2.2 Change of coordinates of a vector in two dimensions.

Example: Fourier Series for a Continuous Hat Function
As a simple example, we demonstrate the use of Fourier series to approximate a continuous
hat function, defined from −π to π :

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

0 for x ∈ [−π, π/2)

1 + 2x/π for x ∈ [−π/2, 0)

1 − 2x/π for x ∈ [0, π/2)

0 for x ∈ [π/2, π).

(2.13)

Because this function is even, it may be approximated with cosines alone. The Fourier
series for f (x) is shown in Fig. 2.3 for an increasing number of cosines.

Figure 2.4 shows the coefficients ak of the even cosine functions, along with the approx-
imation error, for an increasing number of modes. The error decreases monotonically, as
expected. The coefficients bk corresponding to the odd sine functions are not shown, as
they are identically zero since the hat function is even.

Code 2.1 Fourier series approximation to a hat function.

% Define domain
dx = 0.001;
L = pi;
x = (-1+dx:dx:1)*L;
n = length(x); nquart = floor(n/4);

% Define hat function
f = 0*x;
f(nquart:2*nquart) = 4*(1:nquart+1)/n;
f(2*nquart+1:3*nquart) = 1-4*(0:nquart-1)/n;
plot(x,f,’-k’,’LineWidth’,1.5), hold on

% Compute Fourier series
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Figure 2.3 (top) Hat function and Fourier cosine series approximation for n = 7. (middle) Fourier
cosines used to approximate the hat function, and (bottom) zoom in of modes with small amplitude
and high frequency.

CC = jet(20);
A0 = sum(f.*ones(size(x)))*dx;
fFS = A0/2;
for k=1:20

A(k) = sum(f.*cos(pi*k*x/L))*dx; % Inner product
B(k) = sum(f.*sin(pi*k*x/L))*dx;
fFS = fFS + A(k)*cos(k*pi*x/L) + B(k)*sin(k*pi*x/L);
plot(x,fFS,’-’,’Color’,CC(k,:),’LineWidth’,1.2)

end

Example: Fourier Series for a Discontinuous Hat Function
We now consider the discontinuous square hat function, defined on [0, L), shown in
Fig. 2.5. The function is given by:

f (x) =
⎧⎨
⎩

0 for x ∈ [0, L/4)

1 for x ∈ [L/4, 3L/4)

0 for x ∈ [3L/4, L).

(2.14)

The truncated Fourier series is plagued by ringing oscillations, known as Gibbs phenomena,
around the sharp corners of the step function. This example highlights the challenge of
applying the Fourier series to discontinuous functions:
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Figure 2.4 Fourier coefficients (top) and relative error of Fourier cosine approximation with true
function (bottom) for hat function in Fig. 2.3. The n = 7 approximation is highlighted with a blue
circle.

Figure 2.5 Gibbs phenomena is characterized by high-frequency oscillations near discontinuities.
The black curve is discontinuous, and the red curve is the Fourier approximation.

dx = 0.01; L = 10;
x = 0:dx:L;
n = length(x); nquart = floor(n/4);

f = zeros(size(x));
f(nquart:3*nquart) = 1;

A0 = sum(f.*ones(size(x)))*dx*2/L;
fFS = A0/2;
for k=1:100

Ak = sum(f.*cos(2*pi*k*x/L))*dx*2/L;
Bk = sum(f.*sin(2*pi*k*x/L))*dx*2/L;
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fFS = fFS + Ak*cos(2*k*pi*x/L) + Bk*sin(2*k*pi*x/L);
end

plot(x,f,’k’,’LineWidth’,2), hold on
plot(x,fFS,’r-’,’LineWidth’,1.2)

Fourier Transform
The Fourier series is defined for periodic functions, so that outside the domain of definition,
the function repeats itself forever. The Fourier transform integral is essentially the limit of
a Fourier series as the length of the domain goes to infinity, which allows us to define a
function defined on (−∞,∞) without repeating, as shown in Fig. 2.6. We will consider
the Fourier series on a domain x ∈ [−L,L), and then let L → ∞. On this domain, the
Fourier series is:

f (x) = a0

2
+

∞∑
k=1

[
ak cos

(
kπx

L

)
+ bk sin

(
kπx

L

)]
=

∞∑
k=−∞

cke
ikπx/L (2.15)

with the coefficients given by:

ck = 1

2L
〈f (x), ψk〉 = 1

2L

∫ L

−L

f (x)e−ikπx/L dx. (2.16)

−

Figure 2.6 (top) Fourier series is only valid for a function that is periodic on the domain [−L, L).
(bottom) The Fourier transform is valid for generic nonperiodic functions.
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Restating the previous results, f (x) is now represented by a sum of sines and cosines with a
discrete set of frequencies given by ωk = kπ/L. Taking the limit as L → ∞, these discrete
frequencies become a continuous range of frequencies. Define ω = kπ/L, �ω = π/L, and
take the limit L → ∞, so that �ω → 0:

f (x) = lim
�ω→0

∞∑
k=−∞

�ω

2π

∫ π/�ω

−π/�ω

f (ξ)e−ik�ωξ dξ︸ ︷︷ ︸
〈f (x),ψk(x)〉

eik�ωx. (2.17)

When we take the limit, the expression 〈f (x), ψk(x)〉 will become the Fourier transform of
f (x), denoted by f̂ (ω) � F(f (x)). In addition, the summation with weight �ω becomes
a Riemann integral, resulting in the following:

f (x) = F−1
(
f̂ (ω)

)
= 1

2π

∫ ∞

−∞
f̂ (ω)eiωx dω (2.18a)

f̂ (ω) = F (f (x)) =
∫ ∞

−∞
f (x)e−iωx dx. (2.18b)

These two integrals are known as the Fourier transform pair. Both integrals converge as
long as

∫∞
−∞ |f (x)| dx < ∞ and

∫∞
−∞ |f̂ (ω)| dω < ∞; i.e., as long as both functions

belong to the space of Lebesgue integrable functions, f, f̂ ∈ L1(−∞,∞).
The Fourier transform is particularly useful because of a number of properties, including

linearity, and how derivatives of functions behave in the Fourier transform domain. These
properties have been used extensively for data analysis and scientific computing (e.g., to
solve PDEs accurately and efficiently), as will be explored throughout this chapter.

Derivatives of Functions The Fourier transform of the derivative of a function is
given by:

F
(

d

dx
f (x)

)
=
∫ ∞

−∞

dv︷ ︸︸ ︷
f ′(x)

u︷ ︸︸ ︷
e−iωx dx (2.19a)

=
[
f (x)e−iωx︸ ︷︷ ︸

uv

]∞
−∞

−
∫ ∞

−∞
f (x)︸︷︷︸

v

[
−iωe−iωx︸ ︷︷ ︸

du

]
dx (2.19b)

= iω

∫ ∞

−∞
f (x)e−iωx dx (2.19c)

= iωF(f (x)). (2.19d)

This is an extremely important property of the Fourier transform, as it will allow us to turn
PDEs into ODEs, closely related to the separation of variables:

utt = cuxx
F		⇒ ûtt = −cω2û. (2.20)

(PDE) (ODE)

Linearity of Fourier Transforms The Fourier transform is a linear operator, so that:

F(αf (x) + βg(x)) = αF(f ) + βF(g). (2.21)
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F−1(αf̂ (ω) + βĝ(ω)) = αF−1(f̂ ) + βF−1(ĝ). (2.22)

Parseval’s Theorem ∫ ∞

−∞
|f̂ (ω)|2 dω = 2π

∫ ∞

−∞
|f (x)|2 dx. (2.23)

In other words, the Fourier transform preserves the L2 norm, up to a constant. This is
closely related to unitarity, so that two functions will retain the same inner product before
and after the Fourier transform. This property is useful for approximation and truncation,
providing the ability to bound error at a given truncation.

Convolution The convolution of two functions is particularly well-behaved in the Fourier
domain, being the product of the two Fourier transformed functions. Define the convolution
of two functions f (x) and g(x) as f ∗ g:

(f ∗ g)(x) =
∫ ∞

−∞
f (x − ξ)g(ξ) dξ. (2.24)

If we let f̂ = F(f ) and ĝ = F(g), then:

F−1
(
f̂ ĝ
)

(x) = 1

2π

∫ ∞

−∞
f̂ (ω)ĝ(ω)eiωx dω (2.25a)

=
∫ ∞

−∞
f̂ (ω)eiωx

(
1

2π

∫ ∞

−∞
g(y)e−iωy dy

)
dω (2.25b)

= 1

2π

∫ ∞

−∞

∫ ∞

−∞
g(y)f̂ (ω)eiω(x−y) dω dy (2.25c)

=
∫ ∞

−∞
g(y)

( 1

2π

∫ ∞

−∞
f̂ (ω)eiω(x−y) dω︸ ︷︷ ︸
f (x−y)

)
dy (2.25d)

=
∫ ∞

−∞
g(y)f (x − y) dy = g ∗ f = f ∗ g. (2.25e)

Thus, multiplying functions in the frequency domain is the same as convolving functions
in the spatial domain. This will be particularly useful for control systems and transfer
functions with the related Laplace transform.

2.2 Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT)
Until now, we have considered the Fourier series and Fourier transform for continuous
functions f (x). However, when computing or working with real-data, it is necessary
to approximate the Fourier transform on discrete vectors of data. The resulting discrete
Fourier transform (DFT) is essentially a discretized version of the Fourier series for

vectors of data f = [
f1 f2 f3 · · · fn

]T
obtained by discretizing the function f (x)

at a regular spacing, �x, as shown in Fig. 2.7.
The DFT is tremendously useful for numerical approximation and computation, but it

does not scale well to very large n � 1, as the simple formulation involves multiplication
by a dense n × n matrix, requiring O(n2) operations. In 1965, James W. Cooley (IBM)
and John W. Tukey (Princeton) developed the revolutionary fast Fourier transform (FFT)
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Figure 2.7 Discrete data sampled for the discrete Fourier transform.

algorithm [137, 136] that scales as O(n log(n)). As n becomes very large, the log(n)

component grows slowly, and the algorithm approaches a linear scaling. Their algorithm
was based on a fractal symmetry in the Fourier transform that allows an n dimensional
DFT to be solved with a number of smaller dimensional DFT computations. Although the
different computational scaling between the DFT and FFT implementations may seem like
a small difference, the fast O(n log(n)) scaling is what enables the ubiquitous use of the
FFT in real-time communication, based on audio and image compression [539].

It is important to note that Cooley and Tukey did not invent the idea of the FFT, as
there were decades of prior work developing special cases, although they provided the
general formulation that is currently used. Amazingly, the FFT algorithm was formulated
by Gauss over 150 years earlier in 1805 to approximate the orbits of the asteroids Pallas and
Juno from measurement data, as he required a highly accurate interpolation scheme [239].
As the computations were performed by Gauss in his head and on paper, he required
a fast algorithm, and developed the FFT. However, Gauss did not view this as a major
breakthrough and his formulation only appeared later in 1866 in his compiled notes [198].
It is interesting to note that Gauss’s discovery even predates Fourier’s announcement of the
Fourier series expansion in 1807, which was later published in 1822 [186].

Discrete Fourier Transform
Although we will always use the FFT for computations, it is illustrative to begin with the
simplest formulation of the DFT. The discrete Fourier transform is given by:

f̂k =
n−1∑
j=0

fj e
−i2π jk/n, (2.26)

and the inverse discrete Fourier transform (iDFT) is given by:

fk = 1

n

n−1∑
j=0

f̂j e
i2π jk/n. (2.27)
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Figure 2.8 Real part of DFT matrix for n = 256.

Thus, the DFT is a linear operator (i.e., a matrix) that maps the data points in f to the
frequency domain f̂:

{f1, f2, · · · , fn} DFT			⇒ {f̂1, f̂2, · · · f̂n}. (2.28)

For a given number of points n, the DFT represents the data using sine and cosine
functions with integer multiples of a fundamental frequency, ωn = e−2πi/n. The DFT may
be computed by matrix multiplication:⎡

⎢⎢⎢⎢⎢⎢⎣

f̂1

f̂2

f̂3
...

f̂n

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1
1 ωn ω2

n · · · ωn−1
n

1 ω2
n ω4

n · · · ω
2(n−1)
n

...
...

...
. . .

...

1 ωn−1
n ω

2(n−1)
n · · · ω

(n−1)2

n

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

f1

f2

f3
...

fn

⎤
⎥⎥⎥⎥⎥⎦ . (2.29)

The output vector f̂ contains the Fourier coefficients for the input vector f, and the DFT
matrix F is a unitary Vandermonde matrix. The matrix F is complex-valued, so the output
f̂ has both a magnitude and a phase, which will both have useful physical interpretations.

The real part of the DFT matrix F is shown in Fig. 2.8 for n = 256. Code 2.2 gener-
ates and plots this matrix. It can be seen from this image that there is a hierarchical and
highly symmetric multiscale structure to F. Each row and column is a cosine function with
increasing frequency.
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Code 2.2 Generate discrete Fourier transform matrix.

clear all, close all, clc
n = 256;
w = exp(-i*2*pi/n);

% Slow
for i=1:n

for j=1:n
DFT(i,j) = w^((i-1)*(j-1));

end
end

% Fast
[I,J] = meshgrid(1:n,1:n);
DFT = w.^((I-1).*(J-1));
imagesc(real(DFT))

Fast Fourier Transform
As mentioned earlier, multiplying by the DFT matrix F involves O(n2) operations. The
fast Fourier transform scales as O(n log(n)), enabling a tremendous range of applications,
including audio and image compression in MP3 and JPG formats, streaming video, satellite
communications, and the cellular network, to name only a few of the myriad applications.
For example, audio is generally sampled at 44.1 kHz, or 44, 100 samples per second. For
10 seconds of audio, the vector f will have dimension n = 4.41×105. Computing the DFT
using matrix multiplication involves approximately 2×1011, or 200 billion, multiplications.
In contrast, the FFT requires approximately 6×106, which amounts to a speed-up factor of
over 30, 000. Thus, the FFT has become synonymous with the DFT, and FFT libraries are
built in to nearly every device and operating system that performs digital signal processing.

To see the tremendous benefit of the FFT, consider the transmission, storage, and decod-
ing of an audio signal. We will see later that many signals are highly compressible in the
Fourier transform domain, meaning that most of the coefficients of f̂ are small and can be
discarded. This enables much more efficient storage and transmission of the compressed
signal, as only the non-zero Fourier coefficients must be transmitted. However, it is then
necessary to rapidly encode and decode the compressed Fourier signal by computing the
FFT and inverse FFT (iFFT). This is accomplished with the one-line commands:

>>fhat = fft(f); % Fast Fourier transform
>>f = ifft(fhat); % Inverse fast Fourier transform

The basic idea behind the FFT is that the DFT may be implemented much more effi-
ciently if the number of data points n is a power of 2. For example, consider n = 1024 =
210. In this case, the DFT matrix F1024 may be written as:

f̂ = F1024f =
[

I512 −D512

I512 −D512

] [
F512 0

0 F512

] [
feven

fodd

]
, (2.30)
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where feven are the even index elements of f, fodd are the odd index elements of f, I512 is
the 512 × 512 identity matrix, and D512 is given by

D512 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
0 ω 0 · · · 0
0 0 ω2 · · · 0
...

...
...

. . .
...

0 0 0 · · · ω511

⎤
⎥⎥⎥⎥⎥⎦ . (2.31)

This expression can be derived from a careful accounting and reorganization of the terms
in (2.26) and (2.29). If n = 2p, this process can be repeated, and F512 can be represented
by F256, which can then be represented by F128 → F64 → F32 → · · · . If n �= 2p, the
vector can be padded with zeros until it is a power of 2. The FFT then involves an efficient
interleaving of even and odd indices of sub-vectors of f, and the computation of several
smaller 2 × 2 DFT computations.

FFT Example: Noise Filtering
To gain familiarity with how to use and interpret the FFT, we will begin with a simple
example that uses the FFT to denoise a signal. We will consider a function of time f (t):

f (t) = sin(2πf1t) + sin(2πf2t) (2.32)

with frequencies f1 = 50 and f2 = 120. We then add a large amount of Gaussian white
noise to this signal, as shown in the top panel of Fig. 2.9.

It is possible to compute the fast Fourier transform of this noisy signal using the fft
command. The power spectral density (PSD) is the normalized squared magnitude of f̂,
and indicates how much power the signal contains in each frequency. In Fig. 2.9 (middle),
it is clear that the noisy signal contains two large peaks at 50 Hz and 120 Hz. It is possible
to zero out components that have power below a threshold to remove noise from the signal.
After inverse transforming the filtered signal, we find the clean and filtered time-series
match quite well (Fig. 2.9, bottom). Code 2.3 performs each step and plots the results.

Code 2.3 Fast Fourier transform to denoise signal.

dt = .001;
t = 0:dt:1;
f = sin(2*pi*50*t) + sin(2*pi*120*t); % Sum of 2 frequencies
f = f + 2.5*randn(size(t)); % Add some noise

%% Compute the Fast Fourier Transform FFT
n = length(t);
fhat = fft(f,n); % Compute the fast Fourier transform
PSD = fhat.*conj(fhat)/n; % Power spectrum (power per freq)
freq = 1/(dt*n)*(0:n); % Create x-axis of frequencies in Hz
L = 1:floor(n/2); % Only plot the first half of freqs

%% Use the PSD to filter out noise
indices = PSD>100; % Find all freqs with large power
PSDclean = PSD.*indices; % Zero out all others
fhat = indices.*fhat; % Zero out small Fourier coeffs. in Y
ffilt = ifft(fhat); % Inverse FFT for filtered time signal
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Figure 2.9 De-noising with FFT. (top) Noise is added to a simple signal given by a sum of two sine
waves. (middle) In the Fourier domain, dominant peaks may be selected and the noise filtered.
(bottom) The de-noised signal is obtained by inverse Fourier transforming the two dominant peaks.

%% PLOTS
subplot(3,1,1)
plot(t,f,’r’,’LineWidth’,1.2), hold on
plot(t,f,’k’,’LineWidth’,1.5)
legend(’Noisy’,’Clean’)

subplot(3,1,2)
plot(t,f,’k’,’LineWidth’,1.5), hold on
plot(t,ffilt,’b’,’LineWidth’,1.2)
legend(’Clean’,’Filtered’)

subplot(3,1,3)
plot(freq(L),PSD(L),’r’,’LineWidth’,1.5), hold on
plot(freq(L),PSDclean(L),’-b’,’LineWidth’,1.2)
legend(’Noisy’,’Filtered’)

FFT Example: Spectral Derivatives
For the next example, we will demonstrate the use of the FFT for the fast and accurate
computation of derivatives. As we saw in (2.19), the continuous Fourier transform has
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Figure 2.10 Comparison of the spectral derivative, computed using the FFT, with the finite-difference
derivative.

the property that F(df /dx) = iωF(f ). Similarly, the numerical derivative of a vector of
discretized data can be well approximated by multiplying each component of the discrete
Fourier transform of the vector f̂ by iκ , where κ = 2πk/n is the discrete wavenumber
associated with that component. The accuracy and efficiency of the spectral derivative
makes it particularly useful for solving partial differential equations, as explored in the
next section.

To demonstrate this so-called spectral derivative, we will start with a function f (x)

where we can compute the analytic derivative for comparison:

f (x) = cos(x)e−x2/25 	⇒ df

dx
(x) = − sin(x)e−x2/25 − 2

25
xf (x). (2.33)

Fig. 2.10 compares the spectral derivative with the analytic derivative and the forward Euler
finite-difference derivative using n = 128 discretization points:

df

dx
(xk) ≈ f (xk+1) − f (xk)

�x
. (2.34)

The error of both differentiation schemes may be reduced by increasing n, which is the
same as decreasing �x. However, the error of the spectral derivative improves more rapidly
with increasing n than finite-difference schemes, as shown in Fig. 2.11. The forward Euler
differentiation is notoriously inaccurate, with error proportional to O(�x); however, even
increasing the order of a finite-difference scheme will not yield the same accuracy trend
as the spectral derivative, which is effectively using information on the whole domain.
Code 2.4 computes and compares the two differentiation schemes.

Code 2.4 Fast Fourier transform to compute derivatives.

n = 128;
L = 30;
dx = L/(n);
x = -L/2:dx:L/2-dx;
f = cos(x).*exp(-x.^2/25); % Function
df = -(sin(x).*exp(-x.^2/25) + (2/25)*x.*f); % Derivative

%% Approximate derivative using finite Difference...
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Figure 2.11 Benchmark of spectral derivative for varying data resolution.

for kappa=1:length(df)-1
dfFD(kappa) = (f(kappa+1)-f(kappa))/dx;

end
dfFD(end+1) = dfFD(end);

%% Derivative using FFT (spectral derivative)
fhat = fft(f);
kappa = (2*pi/L)*[-n/2:n/2-1];
kappa = fftshift(kappa); % Re-order fft frequencies
dfhat = i*kappa.*fhat;
dfFFT = real(ifft(dfhat));

%% Plotting commands
plot(x,df,’k’,’LineWidth’,1.5), hold on
plot(x,dfFD,’b--’,’LineWidth’,1.2)
plot(x,dfFFT,’r--’,’LineWidth’,1.2)
legend(’True Derivative’,’Finite Diff.’,’FFT Derivative’)

If the derivative of a function is discontinuous, then the spectral derivative will exhibit
Gibbs phenomena, as shown in Fig. 2.12.

2.3 Transforming Partial Differential Equations
The Fourier transform was originally formulated in the 1800s as a change of coordinates
for the heat equation into an eigenfunction coordinate system where the dynamics decou-
ple. More generally, the Fourier transform is useful for transforming partial differential
equations (PDEs) into ordinary differential equations (ODEs), as in (2.20). Here, we will
demonstrate the utility of the FFT to numerically solve a number of PDEs. For an excellent
treatment of spectral methods for PDEs, see Trefethen [523]; extensions also exist for stiff
PDEs [282].

Heat Equation
The Fourier transform basis is ideally suited to solve the heat equation. In one spatial
dimension, the heat equation is given by

ut = α2uxx (2.35)
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Figure 2.12 Gibbs phenomena for spectral derivative of function with discontinuous derivative.

where u(t, x) is the temperature distribution in time and space. If we Fourier transform in
space, then F(u(t, x)) = û(t, ω). The PDE in (2.35) becomes:

ût = −α2ω2û (2.36)

since the two spatial derivatives contribute (iω)2 = −ω2 in the Fourier transform domain.
Thus, by taking the Fourier transform, the PDE in (2.35) becomes an ODE for each fixed
frequency ω. The solution is given by:

û(t, ω) = e−α2ω2t û(0, ω). (2.37)

The function û(0, ω) is the Fourier transform of the initial temperature distribution u(0, x).
It is now clear that higher frequencies, corresponding to larger values of ω, decay more
rapidly as time evolves, so that sharp corners in the temperature distribution rapidly smooth
out. We may take the inverse Fourier transform using the convolution property in (2.24),
yielding:

u(t, x) = F−1(û(t, ω)) = F−1
(
e−α2ω2t

)
∗ u(0, x) = 1

2α
√

πt
e
− x2

4α2t ∗ u(0, x). (2.38)

To simulate this PDE numerically, it is simpler and more accurate to first transform to
the frequency domain using the FFT. In this case (2.36) becomes

ût = −α2κ2û (2.39)

where κ is the discretized frequency. It is important to use the fftshift command to re-order
the wavenumbers according to the Matlab convention.

Code 2.5 simulates the 1D heat equation using the FFT, as shown in Figs. 2.13 and 2.14.
In this example, because the PDE is linear, it is possible to advance the system using ode45
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Figure 2.13 Solution of the 1D heat equation in time for an initial condition given by a square hat
function. As time evolves, the sharp corners rapidly smooth and the solution approaches a Gaussian
function.
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Figure 2.14 Evolution of the 1D heat equation in time, illustrated by a waterfall plot (left) and an x-t
diagram (right).

directly in the frequency domain, using the vector field given in Code 2.6. Finally, the
plotting commands are given in Code 2.7.

Figs. 2.13 and 2.14 show several different views of the temperature distribution u(t, x) as
it evolves in time. Fig. 2.13 shows the distribution at several times overlayed, and this same
data is visualized in Fig. 2.14 in a waterfall plot (left) and in an x-t diagram (right). In all
of the figures, it becomes clear that the sharp corners diffuse rapidly, as these correspond to
the highest wavenumbers. Eventually, the lowest wavenumber variations will also decay,
until the temperature reaches a constant steady state distribution, which is a solution of
Laplace’s equation uxx = 0. When solving this PDE using the FFT, we are implicitly
assuming that the solution domain is periodic, so that the right and left boundaries are
identified and the domain forms a ring. However, if the domain is large enough, then the
effect of the boundaries is small.
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Code 2.5 Code to simulate the 1D heat equation using the Fourier transform.

a = 1; % Thermal diffusivity constant
L = 100; % Length of domain
N = 1000; % Number of discretization points
dx = L/N;
x = -L/2:dx:L/2-dx; % Define x domain

% Define discrete wavenumbers
kappa = (2*pi/L)*[-N/2:N/2-1];
kappa = fftshift(kappa); % Re-order fft wavenumbers

% Initial condition
u0 = 0*x;
u0((L/2 - L/10)/dx:(L/2 + L/10)/dx) = 1;

% Simulate in Fourier frequency domain
t = 0:0.1:10;
[t,uhat]=ode45(@(t,uhat)rhsHeat(t,uhat,kappa,a),t,fft(u0));

for k = 1:length(t) % iFFT to return to spatial domain
u(k,:) = ifft(uhat(k,:));

end

Code 2.6 Right-hand side for 1D heat equation in Fourier domain, dû/dt.

function duhatdt = rhsHeat(t,uhat,kappa,a)
duhatdt = -a^2*(kappa.^2)’.*uhat; % Linear and diagonal

Code 2.7 Code to plot the solution of the 1D heat equation.

figure, waterfall((u(1:10:end,:)));
figure, imagesc(flipud(u));

One-Way Wave Equation
As second example is the simple linear PDE for the one-way equation:

ut + cux = 0. (2.40)

Any initial condition u(0, x) will simply propagate to the right in time with speed c, as
u(t, x) = u(0, x − ct) is a solution. Code 2.8 simulates this PDE for an initial condition
given by a Gaussian pulse. It is possible to integrate this equation in the Fourier transform
domain, as before, using the vector field given by Code 2.9. However, it is also possible to
integrate this equation in the spatial domain, simply using the FFT to compute derivatives
and then transform back, as in Code 2.10. The solution u(t, x) is plotted in Figs. 2.15 and
2.16, as before.

Code 2.8 Code to simulate the 1D wave equation using the Fourier transform.

c = 2; % Wave speed
L = 20; % Length of domain
N = 1000; % Number of discretization points
dx = L/N;
x = -L/2:dx:L/2-dx; % Define x domain

% Define discrete wavenumbers
kappa = (2*pi/L)*[-N/2:N/2-1];
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Figure 2.15 Solution of the 1D wave equation in time. As time evolves, the Gaussian initial condition
moves from left to right at a constant wave speed.
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Figure 2.16 Evolution of the 1D wave equation in time, illustrated by a waterfall plot (left) and an x-t
diagram (right).

kappa = fftshift(kappa’); % Re-order fft wavenumbers

% Initial condition
u0 = sech(x);
uhat0 = fft(u0);

% Simulate in Fourier frequency domain
dt = 0.025;
t = 0:dt:100*dt;
[t,uhat] = ode45(@(t,uhat)rhsWave(t,uhat,kappa,c),t,uhat0);

% Alternatively, simulate in spatial domain
[t,u] = ode45(@(t,u)rhsWaveSpatial(t,u,kappa,c),t,u0);

Code 2.9 Right hand side for 1D wave equation in Fourier transform domain.

function duhatdt = rhsWave(t,uhat,kappa,c)
duhatdt = -c*i*kappa.*uhat;
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Figure 2.17 Solution of Burgers’ equation in time. As time evolves, the leading edge of the Gaussian
initial condition steepens, forming a shock front.

Code 2.10 Right hand side for 1D wave equation in spatial domain.

function dudt = rhsWaveSpatial(t,u,kappa,c)
uhat = fft(u);
duhat = i*kappa.*uhat;
du = ifft(duhat);
dudt = -c*du;

Burgers’ Equation
For the final example, we consider the nonlinear Burgers’ equation

ut + uux = νuxx (2.41)

which is a simple 1D example for the nonlinear convection and diffusion that gives rise
to shock waves in fluids [253]. The nonlinear convection uux essentially gives rise to the
behavior of wave steepening, where portions of u with larger amplitude will convect more
rapidly, causing a shock front to form.

Code 2.11 simulates the Burgers’ equation, giving rise to Figs. 2.17 and 2.18. Burgers’
equation is an interesting example to solve with the FFT, because the nonlinearity requires
us to map into and out of the Fourier domain at each time step, as shown in the vector field
in Code 2.12. In this example, we map into the Fourier transform domain to compute ux

and uxx, and then map back to the spatial domain to compute the product uux . Figs. 2.17
and 2.18 clearly show the wave steepening effect that gives rise to a shock. Without the
damping term uxx, this shock would become infinitely steep, but with damping, it maintains
a finite width.

Code 2.11 Code to simulate Burgers’ equation using the Fourier transform.

clear all, close all, clc
nu=0.001; % Diffusion constant

% Define spatial domain
L = 20; % Length of domain
N = 1000; % Number of discretization points
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Figure 2.18 Evolution of Burgers’ equation in time, illustrated by a waterfall plot (left) and an x-t
diagram (right).

dx = L/N;
x = -L/2:dx:L/2-dx; % Define x domain

% Define discrete wavenumbers
kappa = (2*pi/L)*[-N/2:N/2-1];
kappa = fftshift(kappa’); % Re-order fft wavenumbers

% Initial condition
u0 = sech(x);

% Simulate PDE in spatial domain
dt = 0.025;
t = 0:dt:100*dt;
[t,u] = ode45(@(t,u)rhsBurgers(t,u,kappa,nu),t,u0);

Code 2.12 Right hand side for Burgers’ equation in Fourier transform domain.

function dudt = rhsBurgers(t,u,kappa,nu)
uhat = fft(u);
duhat = i*kappa.*uhat;
dduhat = -(kappa.^2).*uhat;
du = ifft(duhat);
ddu = ifft(dduhat);
dudt = -u.*du + nu*ddu;

2.4 Gabor Transform and the Spectrogram
Although the Fourier transform provides detailed information about the frequency content
of a given signal, it does not give any information about when in time those frequencies
occur. The Fourier transform is only able to characterize truly periodic and stationary
signals, as time is stripped out via the integration in (2.18a). For a signal with nonsta-
tionary frequency content, such as a musical composition, it is important to simultaneously
characterize the frequency content and its evolution in time.

The Gabor transform, also known as the short-time Fourier transform (STFT), computes
a windowed FFT in a moving window [437, 262, 482], as shown in Fig. 2.19. This STFT
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Figure 2.19 Illustration of the Gabor transform with a translating Gaussian window for the short-time
Fourier transform.

enables the localization of frequency content in time, resulting in the spectrogram, which
is a plot of frequency versus time, as demonstrated in Figs. 2.21 and 2.22. The STFT is
given by:

G (f ) (t, ω) = f̂g(t, ω) =
∫ ∞

−∞
f (τ)e−iωτ ḡ(τ − t) dτ = 〈f, gt,ω〉 (2.42)

where gt,ω(τ ) is defined as

gt,ω(τ ) = eiωτ g(τ − t). (2.43)

The function g(t) is the kernel, and is often chosen to be a Gaussian:

g(t) = e−(t−τ)2/a2
. (2.44)

The parameter a determines the spread of the short-time window for the Fourier transform,
and τ determines the center of the moving window.

The inverse STFT is given by:

f (t) = G−1
(
f̂g(t, ω)

)
= 1

2π‖g‖2

∫ ∞

−∞

∫ ∞

−∞
f̂g(τ, ω)g(t − τ)eiωt dω dt. (2.45)

Discrete Gabor Transform
Generally, the Gabor transform will be performed on discrete signals, as with the FFT. In
this case, it is necessary to discretize both time and frequency:

ν = j�ω (2.46)

τ = k�t. (2.47)

The discretized kernel function becomes:

gj,k = ei2πj�ωtg(t − k�t) (2.48)
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Figure 2.20 Power spectral density of quadratic chirp signal.

and the discrete Gabor transform is:

f̂j,k = 〈f, gj,k〉 =
∫ ∞

−∞
f (τ)ḡj,k(τ ) dτ. (2.49)

This integral can then be approximated using a finite Riemman sum on discretized func-
tions f and ḡj,k .

Example: Quadratic Chirp
As a simple example, we construct an oscillating cosine function where the frequency of
oscillation increases as a quadratic function of time:

f (t) = cos(2πtω(t)) where ω(t) = ω0 + (ω1 − ω0)t
2/3t2

1 . (2.50)

The frequency shifts from ω0 at t = 0 to ω1 at t = t1.
Fig. 2.20 shows the power spectral density obtained from the FFT of the quadratic chirp

signal. Although there is a clear peak at 50 Hz, there is no information about the progression
of the frequency in time. The code to generate the spectrogram is given in Code 2.13, and
the resulting spectrogram is plotted in Fig. 2.21, where it can be seen that the frequency
content shifts in time.

Code 2.13 Spectrogram of quadratic chirp, shown in Fig. 2.21.

t = 0:0.001:2;
f0 = 50;
f1 = 250;
t1 = 2;
x = chirp(t,f0,t1,f1,’quadratic’);
x = cos(2*pi*t.*(f0 + (f1-f0)*t.^2/(3*t1^2)));
% There is a typo in Matlab documentation...
% ... divide by 3 so derivative amplitude matches frequency

spectrogram(x,128,120,128,1e3,’yaxis’)
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Figure 2.21 Spectrogram of quadratic chirp signal. The PSD is shown on the left, corresponding to
the integrated power across rows of the spectrogram.

Example: Beethoven’s Sonata Pathétique
It is possible to analyze richer signals with the spectrogram, such as Beethoven’s Sonata
Pathétique, shown in Fig. 2.22. The spectrogram is widely used to analyze music, and has
recently been leveraged in the Shazam algorithm, which searches for key point markers
in the spectrogram of songs to enable rapid classification from short clips of recorded
music [545].

Fig. 2.22 shows the first two bars of Beethoven’s Sonata Pathétique, along with the
spectrogram. In the spectrogram, the various chords and harmonics can be seen clearly. A
zoom-in of the frequency shows two octaves, and how cleanly the various notes are excited.
Code 2.14 loads the data, computes the spectrogram, and plots the result.

Code 2.14 Compute spectrogram of Beethoven’s Sonata Pathétique (Fig. 2.22).

% Download mp3read from http://www.mathworks.com/matlabcentral/
fileexchange/13852-mp3read-and-mp3write

[Y,FS,NBITS,OPTS] = mp3read(’beethoven.mp3’);

%% Spectrogram using ‘spectrogram’ comand
T = 40; % 40 seconds
y=Y(1:T*FS); % First 40 seconds
spectrogram(y,5000,400,24000,24000,’yaxis’);

%% Spectrogram using short-time Fourier transform ‘stft’
wlen = 5000; % Window length
h=400; % Overlap is wlen - h
% Perform time-frequency analysis
[S,f,t_stft] = stft(y, wlen, h, FS/4, FS); % y axis 0-4000HZ

imagesc(log10(abs(S))); % Plot spectrogram (log-scaled)

To invert the spectrogram and generate the original sound:

[x_istft, t_istft] = istft(S, h, FS/4, FS);
sound(x_istft,FS);
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Figure 2.22 First two bars of Beethoven’s Sonata Pathétique (No. 8 in C minor, Op. 13), along with
annotated spectrogram.

Artists, such as Aphex Twin, have used the inverse spectrogram of images to generate
music. The frequency of a given piano key is also easily computed. For example, the 40th
key frequency is given by:

freq = @(n)(((2^(1/12))^(n-49))*440);
freq(40) % frequency of 40th key = C



74 Fourier and Wavelet Transforms

Uncertainty Principles
In time-frequency analysis, there is a fundamental uncertainty principle that limits the
ability to simultaneously attain high resolution in both the time and frequency domains.
In the extreme limit, a time series is perfectly resolved in time, but provides no information
about frequency content, and the Fourier transform perfectly resolves frequency content,
but provides no information about when in time these frequencies occur. The spectrogram
resolves both time and frequency information, but with lower resolution in each domain, as
illustrated in Fig. 2.23. An alternative approach, based on a multi-resolution analysis, will
be the subject of the next section.

Stated mathematically, the time-frequency uncertainty principle [429] may be written as:(∫ ∞

−∞
x2|f (x)|2 dx

)(∫ ∞

−∞
ω2|f̂ (ω)|2 dω

)
≥ 1

16π2
. (2.51)

This is true if f (x) is absolutely continuous and both xf (x) and f ′(x) are square integrable.
The function x2|f (x)|2 is the dispersion about x = 0. For real-valued functions, this is the
second moment, which measures the variance if f (x) is a Gaussian function. In other
words, a function f (x) and its Fourier transform cannot both be arbitrarily localized. If the

Figure 2.23 Illustration of resolution limitations and uncertainty in time-frequency analysis.
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function f approaches a delta function, then the Fourier transform must become broadband,
and vice versa. This has implications for the Heisenberg uncertainty principle [240], as the
position and momentum wave functions are Fourier transform pairs.

In time-frequency analysis, the uncertainty principle has implication for the ability to
localize the Fourier transform in time. These uncertainty principles are known as the Gabor
limit. As the frequency content of a signal is resolved more finely, we lose information
about when in time these events occur, and vice versa. Thus, there is a fundamental tradeoff
between the simultaneously attainable resolutions in the time and frequency domains.
Another implication is that a function f and its Fourier transform cannot both have finite
support, meaning that they are localized, as stated in Benedick’s theorem [8, 51].

2.5 Wavelets and Multi-Resolution Analysis
Wavelets [359, 145] extend the concepts in Fourier analysis to more general orthogonal
bases, and partially overcome the uncertainty principle discussed above by exploiting a
multi-resolution decomposition, as shown in Fig. 2.23 (d). This multi-resolution approach
enables different time and frequency fidelities in different frequency bands, which is par-
ticularly useful for decomposing complex signals that arise from multi-scale processes
such as are found in climatology, neuroscience, epidemiology, finance, and turbulence.
Images and audio signals are also amenable to wavelet analysis, which is currently the
leading method for image compression [16], as will be discussed in subsequent sections and
chapters. Moreover, wavelet transforms may be computed using similar fast methods [58],
making them scalable to high-dimensional data. There are a number of excellent books on
wavelets [521, 401, 357], in addition to the primary references [359, 145].

The basic idea in wavelet analysis is to start with a function ψ(t), known as the mother
wavelet, and generate a family of scaled and translated versions of the function:

ψa,b(t) = 1√
a
ψ

(
t − b

a

)
. (2.52)

The parameters a and b are responsible for scaling and translating the function ψ , respec-
tively. For example, one can imagine choosing a and b to scale and translate a function to
fit in each of the segments in Fig. 2.23 (d). If these functions are orthogonal then the basis
may be used for projection, as in the Fourier transform.

The simplest and earliest example of a wavelet is the Haar wavelet, developed in
1910 [227]:

ψ(t) =
⎧⎨
⎩

1 0 ≤ t < 1/2
−1 1/2 ≤ t < 1

0 otherwise.
(2.53)

The three Haar wavelets, ψ1,0, ψ1/2,0, and ψ1/2,1/2, are shown in Fig. 2.24, representing
the first two layers of the multi-resolution in Fig. 2.23 (d). Notice that by choosing each
higher frequency layer as a bisection of the next layer down, the resulting Haar wavelets
are orthogonal, providing a hierarchical basis for a signal.

The orthogonality property of wavelets described above is critical for the development
of the discrete wavelet transform (DWT) below. However, we begin with the continuous
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Figure 2.24 Three Haar wavelets for the first two levels of the multi-resolution in Fig. 2.23 (d).

wavelet transform (CWT), which is given by:

Wψ(f )(a, b) = 〈f,ψa,b〉 =
∫ ∞

−∞
f (t)ψ̄a,b(t) dt, (2.54)

where ψ̄a,b denotes the complex conjugate of ψa,b. This is only valid for functions ψ(t)

that satisfy the boundedness property that

Cψ =
∫ ∞

−∞
|ψ̂(ω)|2

|ω| dω < ∞. (2.55)

The inverse continuous wavelet transform (iCWT) is given by:

f (t) = 1

Cψ

∫ ∞

−∞

∫ ∞

−∞
Wψ(f )(a, b)ψa,b(t)

1

a2
da db. (2.56)

New wavelets may also be generated by the convolution ψ ∗ φ if ψ is a wavelet and
φ is a bounded and integrable function. There are many other popular mother wavelets ψ

beyond the Haar wavelet, designed to have various properties. For example, the Mexican
hat wavelet is given by:

ψ(t) = (1 − t2)e−t2/2 (2.57a)

ψ̂(ω) =
√

2πω2e−ω2/2. (2.57b)
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Discrete Wavelet Transform
As with the Fourier transform and Gabor transform, when computing the wavelet transform
on data, it is necessary to introduce a discretized version. The discrete wavelet transform
(DWT) is given by:

Wψ(f )(j, k) = 〈f,ψj,k〉 =
∫ ∞

−∞
f (t)ψ̄j,k(t) dt (2.58)

where ψj,k(t) is a discrete family of wavelets:

ψj,k(t) = 1

aj
ψ

(
t − kb

aj

)
. (2.59)

Again, if this family of wavelets is orthogonal, as in the case of the discrete Haar wavelets
described earlier, it is possible to expand a function f (t) uniquely in this basis:

f (t) =
∞∑

j,k=−∞
〈f (t), ψj,k(t)〉ψj,k(t). (2.60)

The explicit computation of a DWT is somewhat involved, and is the subject of several
excellent papers and texts [359, 145, 521, 401, 357]. However, the goal here is not to
provide computational details, but rather to give a high-level idea of what the wavelet trans-
form accomplishes. By scaling and translating a given shape across a signal, it is possible
to efficiently extract multi-scale structures in an efficient hierarchy that provides an optimal
tradeoff between time and frequency resolution. This general procedure is widely used in
audio and image processing, compression, scientific computing, and machine learning, to
name a few examples.

2.6 2D Transforms and Image Processing
Although we analyzed both the Fourier transform and the wavelet transform on one-
dimensional signals, both methods readily generalize to higher spatial dimensions, such as
two-dimensional and three-dimensional signals. Both the Fourier and wavelet transforms
have had tremendous impact on image processing and compression, which provides a
compelling example to investigate higher-dimensional transforms.

2D Fourier Transform for Images
The two-dimensional Fourier transform of a matrix of data X ∈ Rn×m is achieved by first
applying the one-dimensional Fourier transform to every row of the matrix, and then apply-
ing the one-dimensional Fourier transform to every column of the intermediate matrix. This
sequential row-wise and column-wise Fourier transform is shown in Fig. 2.25. Switching
the order of taking the Fourier transform of rows and columns does not change the result.

Code 2.15 Two-dimensional Fourier transform via one-dimensional row-wise and column-wise
FFTs.

A = imread(’../../CH01_SVD/DATA/dog.jpg’);
B = rgb2gray(A); % Convert to grayscale image
subplot(1,3,1), imagesc(B); % Plot image

for j=1:size(B,1); % Compute row-wise FFT
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Figure 2.25 Schematic of 2D FFT. First, the FFT is taken of each row, and then the FFT is taken of
each column of the resulting transformed matrix.

Cshift(j,:) = fftshift(fft(B(j,:)));
C(j,:) = (fft(B(j,:)));

end
subplot(1,3,2), imagesc(log(abs(Cshift)))

for j=1:size(C,2); % Compute column-wise FFT
D(:,j) = fft(C(:,j));

end
subplot(1,3,3), imagesc(fftshift(log(abs(D))))

D = fft2(B); % Much more efficient to use fft2

The two-dimensional FFT is effective for image compression, as many of the Fourier
coefficients are small and may be neglected without loss in image quality. Thus, only a few
large Fourier coefficients must be stored and transmitted.

Code 2.16 Image compression via the FFT.

Bt=fft2(B); % B is grayscale image from above
Btsort = sort(abs(Bt(:))); % Sort by magnitude

% Zero out all small coefficients and inverse transform
for keep=[.1 .05 .01 .002];

thresh = Btsort(floor((1-keep)*length(Btsort)));
ind = abs(Bt)>thresh; % Find small indices
Atlow = Bt.*ind; % Threshold small indices
Alow=uint8(ifft2(Atlow)); % Compressed image
figure, imshow(Alow) % Plot Reconstruction

end

Finally, the FFT is extensively used for denoising and filtering signals, as it is straight-
forward to isolate and manipulate particular frequency bands. Code 2.17 and Fig. 2.27
demonstrate the use of a FFT threshold filter to denoise an image with Gaussian noise
added. In this example, it is observed that the noise is especially pronounced in high
frequency modes, and we therefore zero out any Fourier coefficient outside of a given
radius containing low frequencies.
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Figure 2.26 Compressed image using various thresholds to keep 5%, 1%, and 0.2% of the largest
Fourier coefficients.

Code 2.17 Image denoising via the FFT.

Bnoise = B + uint8(200*randn(size(B))); % Add some noise
Bt=fft2(Bnoise);
F = log(abs(Btshift)+1); % Put FFT on log-scale

subplot(2,2,1), imagesc(Bnoise) % Plot image
subplot(2,2,2), imagesc(F) % Plot FFT

[nx,ny] = size(B);
[X,Y] = meshgrid(-ny/2+1:ny/2,-nx/2+1:nx/2);
R2 = X.^2+Y.^2;
ind = R2<150^2;
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Figure 2.27 Denoising image by eliminating high-frequency Fourier coefficients outside of a given
radius (bottom right).

Btshiftfilt = Btshift.*ind;
Ffilt = log(abs(Btshiftfilt)+1); % Put FFT on log-scale
subplot(2,2,4), imagesc(Ffilt) % Plot filtered FFT

Btfilt = ifftshift(Btshiftfilt);
Bfilt = ifft2(Btfilt);
subplot(2,2,3), imagesc(uint8(real(Bfilt))) % Filtered image

2D wavelet Transform for Images
Similar to the FFT, the discrete wavelet transform is extensively used for image processing
and compression. Code 2.18 computes the wavelet transform of an image, and the first
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Figure 2.28 Illustration of three level discrete wavelet transform.

three levels are illustrated in Fig. 2.28. In this figure, the hierarchical nature of the wavelet
decomposition is seen. The upper left corner of the DWT image is a low-resolution version
of the image, and the subsequent features add fine details to the image.

Code 2.18 Example of a two level wavelet decomposition.

%% Wavelet decomposition (2 level)
n = 2; w = ’db1’; [C,S] = wavedec2(B,n,w);

% LEVEL 1
A1 = appcoef2(C,S,w,1); % Approximation
[H1 V1 D1] = detcoef2(’a’,C,S,k); % Details
A1 = wcodemat(A1,128);
H1 = wcodemat(H1,128);
V1 = wcodemat(V1,128);
D1 = wcodemat(D1,128);

% LEVEL 2
A2 = appcoef2(C,S,w,1); % Approximation
[H2 V2 D2] = detcoef2(’a’,C,S,k); % Details
A2 = wcodemat(A2,128);
H2 = wcodemat(H2,128);
V2 = wcodemat(V2,128);
D2 = wcodemat(D2,128);

dec2 = [A2 H2; V2 D2];
dec1 = [imresize(dec2,size(H1)) H1 ; V1 D1];
image(dec1);

Fig. 2.29 shows several versions of the compressed image for various compression
ratios, as computed by Code 2.19. The hierarchical representation of data in the wavelet
transform is ideal for image compression. Even with an aggressive truncation, retaining
only 0.5% of the DWT coefficients, the coarse features of the image are retained. Thus,
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Figure 2.29 Compressed image using various thresholds to keep 5%, 1%, and 0.5% of the largest
wavelet coefficients.

when transmitting data, even if bandwidth is limited and much of the DWT information is
truncated, the most important features of the data are transferred.

Code 2.19 Wavelet decomposition for image compression.

[C,S] = wavedec2(B,4,’db1’);
Csort = sort(abs(C(:))); % Sort by magnitude

for keep = [.1 .05 .01 .005]
thresh = Csort(floor((1-keep)*length(Csort)));
ind = abs(C)>thresh;
Cfilt = C.*ind; % Threshold small indices
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% Plot Reconstruction
Arecon=uint8(waverec2(Cfilt,S,’db1’));
figure, imagesc(uint8(Arecon))

end

Suggested Reading
Texts
(1) The analytical theory of heat, by J.-B. J. Fourier, 1978 [185].
(2) A wavelet tour of signal processing, by S. Mallat, 1999 [357].
(3) Spectral methods in MATLAB, by L. N. Trefethen, 2000 [523].

Papers and reviews
(1) An algorithm for the machine calculation of complex Fourier series, by J. W.

Cooley and J. W. Tukey, Mathematics of Computation, 1965 [137].
(2) The wavelet transform, time-frequency localization and signal analysis, by I.

Daubechies, IEEE Transactions on Information Theory, 1990 [145].
(3) An industrial strength audio search algorithm, by A. Wang et al., Ismir,

2003 [545].



3 Sparsity and Compressed Sensing

The inherent structure observed in natural data implies that the data admits a sparse repre-
sentation in an appropriate coordinate system. In other words, if natural data is expressed in
a well-chosen basis, only a few parameters are required to characterize the modes that are
active, and in what proportion. All of data compression relies on sparsity, whereby a signal
is represented more efficiently in terms of the sparse vector of coefficients in a generic
transform basis, such as Fourier or wavelet bases. Recent fundamental advances in math-
ematics have turned this paradigm upside down. Instead of collecting a high-dimensional
measurement and then compressing, it is now possible to acquire compressed measure-
ments and solve for the sparsest high-dimensional signal that is consistent with the mea-
surements. This so-called compressed sensing is a valuable new perspective that is also
relevant for complex systems in engineering, with potential to revolutionize data acqui-
sition and processing. In this chapter, we discuss the fundamental principles of sparsity
and compression as well as the mathematical theory that enables compressed sensing, all
worked out on motivating examples.

Our discussion on sparsity and compressed sensing will necessarily involve the critically
important fields of optimization and statistics. Sparsity is a useful perspective to promote
parsimonious models that avoid overfitting and remain interpretable because they have the
minimal number of terms required to explain the data. This is related to Occam’s razor,
which states that the simplest explanation is generally the correct one. Sparse optimiza-
tion is also useful for adding robustness with respect to outliers and missing data, which
generally skew the results of least-squares regression, such as the SVD. The topics in this
chapter are closely related to randomized linear algebra discussed in Section 1.8, and they
will also be used in several subsequent chapters. Sparse regression will be explored further
in Chapter 4 and will be used in Section 7.3 to identify interpretable and parsimonious
nonlinear dynamical systems models from data.

3.1 Sparsity and Compression
Most natural signals, such as images and audio, are highly compressible. This compress-
ibility means that when the signal is written in an appropriate basis only a few modes are
active, thus reducing the number of values that must be stored for an accurate representa-
tion. Said another way, a compressible signal x ∈ Rn may be written as a sparse vector
s ∈ Rn (containing mostly zeros) in a transform basis � ∈ Rn×n:

x = �s. (3.1)

84
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Specifically, the vector s is called K-sparse in � if there are exactly K nonzero elements. If
the basis � is generic, such as the Fourier or wavelet basis, then only the few active terms
in s are required to reconstruct the original signal x, reducing the data required to store or
transmit the signal.

Images and audio signals are both compressible in Fourier or wavelet bases, so that
after taking the Fourier or wavelet transform, most coefficients are small and may be set
exactly equal to zero with negligible loss of quality. These few active coefficients may be
stored and transmitted, instead of the original high-dimensional signal. Then, to reconstruct
the original signal in the ambient space (i.e., in pixel space for an image), one need only
take the inverse transform. As discussed in Chapter 2, the fast Fourier transform is the
enabling technology that makes it possible to efficiently reconstruct an image x from the
sparse coefficients in s. This is the foundation of JPEG compression for images and MP3
compression for audio.

The Fourier modes and wavelets are generic or universal bases, in the sense that nearly
all natural images or audio signals are sparse in these bases. Therefore, once a signal is
compressed, one needs only store or transmit the sparse vector s rather than the entire
matrix �, since the Fourier and wavelet transforms are already hard-coded on most
machines. In Chapter 1 we found that it is also possible to compress signals using the
SVD, resulting in a tailored basis. In fact, there are two ways that the SVD can be used
to compress an image: 1) we may take the SVD of the image directly and only keep the
dominant columns of U and V (Section 1.2), or 2) we may represent the image as a linear
combination of eigen images, as in the eigenface example (Section 1.6). The first option is
relatively inefficient, as the basis vectors U and V must be stored. However, in the second
case, a tailored basis U may be computed and stored once, and then used to compress an
entire class of images, such as human faces. This tailored basis has the added advantage
that the modes are interpretable as correlation features that may be useful for learning.
It is important to note that both the Fourier basis F and the SVD basis U are unitary
transformations, which will become important in the following sections.

Although the majority of compression theory has been driven by audio, image, and video
applications, there are many implications for engineering systems. The solution to a high-
dimensional system of differential equations typically evolves on a low-dimensional man-
ifold, indicating the existence of coherent structures that facilitate sparse representation.
Even broadband phenomena, such as turbulence, may be instantaneously characterized by
a sparse representation. This has a profound impact on how to sense and compute, as will
be described throughout this chapter and the remainder of the book.

Example: Image Compression
Compression is relatively simple to implement on images, as described in Section 2.6 and
revisited here (see Fig. 3.1). First, we load an image, convert to grayscale, and plot:

A=imread(’jelly’, ’jpeg’); % Load image
Abw=rgb2gray(A); % Convert image to grayscale
imshow(Abw). % Plot image

Next, we take the fast Fourier transform and plot the coefficients on a logarithmic scale:

At=fft2(Abw);
F = log(abs(fftshift(At))+1); % put FFT on log-scale
imshow(mat2gray(F),[]);
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Figure 3.1 Illustration of compression with the fast Fourier transform (FFT) F .

To compress the image, we first arrange all of the Fourier coefficients in order of mag-
nitude and decide what percentage to keep (in this case 5 %). This sets the threshold for
truncation:

Bt = sort(abs(At(:)));
keep = 0.05;
thresh = Bt(floor((1-keep)*length(Bt)));
ind = abs(At)>thresh;
Atlow = At.*ind;
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Figure 3.2 Compressed image (left), and viewed as a surface (right).

Finally, we plot the compressed image by taking the inverse FFT (iFFT):

Alow=uint8(ifft2(Atlow));
imshow(Alow)

To understand the role of the sparse Fourier coefficients in a compressed image, it helps
to view the image as a surface, where the height of a point is given by the brightness of the
corresponding pixel. This is shown in Fig. 3.2. Here we see that the surface is relatively
simple, and may be represented as a sum of a few spatial Fourier modes.

Anew = imresize(Abw,.2);
surf(double(Anew));
shading flat, view(-168,86)

Why Signals Are Compressible: The Vastness of Image Space
It is important to note that the compressibility of images is related to the overwhelming
dimensionality of image space. For even a simple 20 × 20 pixel black and white image,
there are 2400 distinct possible images, which is larger than the number of nucleons in
the known universe. The number of images is considerably more staggering for higher
resolution images with greater color depth.

In the space of one megapixel images (i.e., 1000 × 1000 pixels), there is an image of us
each being born, of me typing this sentence, and of you reading it. However vast the space
of these natural images, they occupy a tiny, minuscule fraction of the total image space. The
majority of the images in image space represent random noise, resembling television static.
For simplicity, consider grayscale images, and imagine drawing a random number for the
gray value of each of the pixels. With exceedingly high probability, the resulting image will
look like noise, with no apparent significance. You could draw these random images for an
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Figure 3.3 Illustration of the vastness of image (pixel) space, with natural images occupying a
vanishingly small fraction of the space.

entire lifetime and never find an image of a mountain, or a person, or anything physically
recognizable1.

In other words, natural images are extremely rare in the vastness of image space, as
illustrated in Fig. 3.3. Because so many images are unstructured or random, most of the
dimensions used to encode images are only necessary for these random images. These
dimensions are redundant if all we cared about was encoding natural images. An important
implication is that the images we care about (i.e., natural images) are highly compressible,
if we find a suitable transformed basis where the redundant dimensions are easily identified.

3.2 Compressed Sensing
Despite the considerable success of compression in real-world applications, it still relies
on having access to full high-dimensional measurements. The recent advent of compressed
sensing [150, 112, 111, 113, 115, 109, 39, 114, 40] turns the compression paradigm upside
down: instead of collecting high-dimensional data just to compress and discard most of
the information, it is instead possible to collect surprisingly few compressed or random
measurements and then infer what the sparse representation is in the transformed basis.
The idea behind compressed sensing is relatively simple to state mathematically, but until
recently finding the sparsest vector consistent with measurements was a non-polynomial
(NP) hard problem. The rapid adoption of compressed sensing throughout the engineering
and applied sciences rests on the solid mathematical framework2 that provides conditions

1 The vastness of signal space was described in Borges’s “The Library of Babel" in 1944, where he describes a
library containing all possible books that could be written, of which actual coherent books occupy a nearly
immeasurably small fraction [69]. In Borges’s library, there are millions of copies of this very book, with
variations on this single sentence. Another famous variation on this theme considers that given enough
monkeys typing on enough typewriters, one would eventually recreate the works of Shakespeare. One of the
oldest related descriptions of these combinatorially large spaces dates back to Aristotle.

2 Interestingly, the incredibly important collaboration between Emmanuel Candès and Terrance Tao began with
them discussing the odd properties of signal reconstruction at their kids’ daycare.
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for when it is possible to reconstruct the full signal with high probability using convex
algorithms.

Mathematically, compressed sensing exploits the sparsity of a signal in a generic basis to
achieve full signal reconstruction from surprisingly few measurements. If a signal x is K-
sparse in �, then instead of measuring x directly (n measurements) and then compressing,
it is possible to collect dramatically fewer randomly chosen or compressed measurements
and then solve for the nonzero elements of s in the transformed coordinate system. The
measurements y ∈ Rp, with K < p � n are given by

y = Cx. (3.2)

The measurement matrix3 C ∈ Rp×n represents a set of p linear measurements on the state
x. The choice of measurement matrix C is of critical importance in compressed sensing,
and is discussed in Section 3.4. Typically, measurements may consist of random projections
of the state, in which case the entries of C are Gaussian or Bernoulli distributed random
variables. It is also possible to measure individual entries of x (i.e., single pixels if x is an
image), in which case C consists of random rows of the identity matrix.

With knowledge of the sparse vector s it is possible to reconstruct the signal x from (3.1).
Thus, the goal of compressed sensing is to find the sparsest vector s that is consistent with
the measurements y:

y = C�s = �s. (3.3)

The system of equations in (3.3) is underdetermined since there are infinitely many consis-
tent solutions s. The sparsest solution ŝ satisfies the following optimization problem:

ŝ = argmin
s

‖s‖0 subject to y = C�s, (3.4)

where ‖ · ‖0 denotes the 
0 pseudo-norm, given by the number of nonzero entries; this is
also referred to as the cardinality of s.

The optimization in (3.4) is non-convex, and in general the solution can only be found
with a brute-force search that is combinatorial in n and K . In particular, all possible K-
sparse vectors in Rn must be checked; if the exact level of sparsity K is unknown, the
search is even broader. Because this search is combinatorial, solving (3.4) is intractable
for even moderately large n and K , and the prospect of solving larger problems does not
improve with Moore’s law of exponentially increasing computational power.

Fortunately, under certain conditions on the measurement matrix C, it is possible to relax
the optimization in (3.4) to a convex 
1-minimization [112, 150]:

ŝ = argmin
s

‖s‖1 subject to y = C�s, (3.5)

where ‖ · ‖1 is the 
1 norm, given by

‖s‖1 =
n∑

k=1

|sk|. (3.6)

3 In the compressed sensing literature, the measurement matrix is often denoted �; instead, we use C to be
consistent with the output equation in control theory. � is also already used to denote DMD modes in
Chapter 7.
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Figure 3.4 Schematic of measurements in the compressed sensing framework.
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Figure 3.5 
1 and 
2 minimum norm solutions to compressed sensing problem. The difference in
solutions for this regression are further considered in Chapter 4.

The 
1 norm is also known as the taxicab or Manhattan norm because it represents the
distance a taxi would take between two points on a rectangular grid. The overview of
compressed sensing is shown schematically in Fig. 3.4. The 
1 minimum-norm solution is
sparse, while the 
2 minimum norm solution is not, as shown in Fig. 3.5.

There are very specific conditions that must be met for the 
1-minimization in (3.5) to
converge with high probability to the sparsest solution in (3.4) [109, 111, 39]. These will
be discussed in detail in Sec. 3.4, although they may be summarized as:

1. The measurement matrix C must be incoherent with respect to the sparsifying basis
�, meaning that the rows of C are not correlated with the columns of �,

2. The number of measurements p must be sufficiently large, on the order of

p ≈ O(K log(n/K)) ≈ k1K log(n/K). (3.7)

The constant multiplier k1 depends on how incoherent C and � are.
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Figure 3.6 Schematic illustration of compressed sensing using 
1 minimization. Note, this is a
dramatization, and is not actually based on a compressed sensing calculation. Typically, compressed
sensing of images requires a significant number of measurements and is computationally prohibitive.

Roughly speaking, these two conditions guarantee that the matrix C� acts as a unitary
transformation on K sparse vectors s, preserving relative distances between vectors and
enabling almost certain signal reconstruction with 
1 convex minimization. This is formu-
lated precisely in terms of the restricted isometry property (RIP) in Sec. 3.4.

The idea of compressed sensing may be counterintuitive at first, especially given clas-
sical results on sampling requirements for exact signal reconstruction. For instance, the
Shannon-Nyquist sampling theorem [486, 409] states that perfect signal recovery requires
that it is sampled at twice the rate of the highest frequency present. However, this result only
provides a strict bound on the required sampling rate for signals with broadband frequency
content. Typically, the only signals that are truly broadband are those that have already been
compressed. Since an uncompressed signal will generally be sparse in a transform basis,
the Shannon-Nyquist theorem may be relaxed, and the signal may be reconstructed with
considerably fewer measurements than given by the Nyquist rate. However, even though the
number of measurements may be decreased, compressed sensing does still rely on precise
timing of the measurements, as we will see. Moreover, the signal recovery via compressed
sensing is not strictly speaking guaranteed, but is instead possible with high probability,
making it foremost a statistical theory. However, the probability of successful recovery
becomes astronomically large for moderate sized problems.

Disclaimer
A rough schematic of compressed sensing is shown in Fig. 3.6. However, this schematic is
a dramatization, and is not actually based on a compressed sensing calculation since using
compressed sensing for image reconstruction is computationally prohibitive. It is important
to note that for the majority of applications in imaging, compressed sensing is not practical.
However, images are often still used to motivate and explain compressed sensing because
of their ease of manipulation and our intuition for pictures. In fact, we are currently guilty
of this exact misdirection.

Upon closer inspection of this image example, we are analyzing an image with 1024 ×
768 pixels and approximately 5 % of the Fourier coefficients are required for accurate
compression. This puts the sparsity level at K = 0.05 × 1024 × 768 ≈ 40, 000. Thus,
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a back of the envelope estimate using (3.7), with a constant multiplier of k1 = 3, indicates
that we need p ≈ 350, 000 measurements, which is about 45 % of the original pixels. Even
if we had access to these 45 % random measurements, inferring the correct sparse vector
of Fourier coefficients is computationally prohibitive, much more so than the efficient FFT
based image compression in Section 3.1.

Compressed sensing for images is typically only used in special cases where a reduc-
tion of the number of measurements is significant. For example, an early application of
compressed sensing technology was for infant MRI (magnetic resonance imaging), where
reduction of the time a child must be still could reduce the need for dangerous heavy
sedation.

However, it is easy to see that the number of measurements p scales with the sparsity
level K , so that if the signal is more sparse, then fewer measurements are required. The
viewpoint of sparsity is still valuable, and the mathematical innovation of convex relaxation
of combinatorially hard 
0 problems to convex 
1 problems may be used much more
broadly than for compressed sensing of images.

Alternative Formulations
In addition to the 
1-minimization in (3.5), there are alternative approaches based on greedy
algorithms [525, 526, 528, 527, 530, 243, 529, 207, 531, 205, 398, 206] that determine the
sparse solution of (3.3) through an iterative matching pursuit problem. For instance, the
compressed sensing matching pursuit (CoSaMP) [398] is computationally efficient, easy
to implement, and freely available.

When the measurements y have additive noise, say white noise of magnitude ε, there are
variants of (3.5) that are more robust:

ŝ = argmin
s

‖s‖1, subject to ‖C�s − y‖2 < ε. (3.8)

A related convex optimization is the following:

ŝ = argmin
s

‖C�s − y‖2 + λ‖s‖1, (3.9)

where λ ≥ 0 is a parameter that weights the importance of sparsity. Eqs. (3.8) and (3.9) are
closely related [528].

3.3 Compressed Sensing Examples
This section explores concrete examples of compressed sensing for sparse signal recovery.
The first example shows that the 
1 norm promotes sparsity when solving a generic under-
determined system of equations, and the second example considers the recovery of a sparse
two-tone audio signal with compressed sensing.


1 and Sparse Solutions to an Underdetermined System
To see the sparsity promoting effects of the 
1 norm, we consider a generic underdeter-
mined system of equations. We build a matrix system of equations y = �s with p = 200
rows (measurements) and n = 1000 columns (unknowns). In general, there are infinitely
many solutions s that are consistent with these equations, unless we are very unfortunate
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and the row equations are linearly dependent while the measurements are inconsistent in
these rows. In fact, this is an excellent example of the probabilistic thinking used more
generally in compressed sensing: if we generate a linear system of equations at random,
that has sufficiently many more unknowns than knowns, then the resulting equations will
have infinitely many solutions with high probability.

In MATLAB, it is straightforward to solve this underdetermined linear system for both
the minimum 
1 norm and minimum 
2 norm solutions. The minimum 
2 norm solution is
obtained using the pseudo-inverse (related to the SVD from Chapters 1 and 4). The min-
imum 
1 norm solution is obtained via the cvx (ConVeX) optimization package. Fig. 3.7
shows that the 
1-minimum solution is in fact sparse (with most entries being nearly zero),
while the 
2-minimum solution is dense, with a bit of energy in each vector coefficient.

Code 3.1 Solutions to underdetermined linear system y = �s.

% Solve y = Theta * s for "s"
n = 1000; % dimension of s
p = 200; % number of measurements, dim(y)
Theta = randn(p,n);
y = randn(p,1);

% L1 minimum norm solution s_L1
cvx_begin;

variable s_L1(n);
minimize( norm(s_L1,1) );
subject to

Theta*s_L1 == y;
cvx_end;

s_L2 = pinv(Theta)*y; % L2 minimum norm solution s_L2
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Figure 3.7 Comparison of 
1-minimum (blue, left) and 
2-minimum norm (red, right) solutions to an
underdetermined linear system.
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Recovering an Audio Signal from Sparse Measurements
To illustrate the use of compressed sensing to reconstruct a high-dimensional signal from
a sparse set of random measurements, we consider a signal consisting of a two-tone audio
signal:

x(t) = cos(2π × 97t) + cos(2π × 777t). (3.10)

This signal is clearly sparse in the frequency domain, as it is defined by a sum of exactly
two cosine waves. The highest frequency present is 777 Hz, so that the Nyquist sampling
rate is 1554 Hz. However, leveraging the sparsity of the signal in the frequency domain, we
can accurately reconstruct the signal with random samples that are spaced at an average
sampling rate of 128 Hz, which is well below the Nyquist sampling rate. Fig. 3.8 shows the
result of compressed sensing, as implemented in Code 3.2. In this example, the full signal
is generated from t = 0 to t = 1 with a resolution of n = 4, 096 and is then randomly
sampled at p = 128 locations in time. The sparse vector of coefficients in the discrete
cosine transform (DCT) basis is solved for using matching pursuit.

Code 3.2 Compressed sensing reconstruction of two-tone cosine signal.

%% Generate signal, DCT of signal
n = 4096; % points in high resolution signal

Figure 3.8 Compressed sensing reconstruction of a two-tone audio signal given by
x(t) = cos(2π × 97t) + cos(2π × 777t). The full signal and power spectral density are shown in
panels (a) and (b), respectively. The signal is measured at random sparse locations in time,
demarcated by red points in (a), and these measurements are used to build the compressed sensing
estimate in (c) and (d). The time series shown in (a) and (c) are a zoom-in of the entire time range,
which is from t = 0 to t = 1.
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t = linspace(0, 1, n);
x = cos(2* 97 * pi * t) + cos(2* 777 * pi * t);
xt = fft(x); % Fourier transformed signal
PSD = xt.*conj(xt)/n; % Power spectral density

%% Randomly sample signal
p = 128; % num. random samples, p=n/32
perm = round(rand(p, 1) * n);
y = x(perm); % compressed measurement

%% Solve compressed sensing problem
Psi = dct(eye(n, n)); % build Psi
Theta = Psi(perm, :); % Measure rows of Psi

s = cosamp(Theta,y’,10,1.e-10,10); % CS via matching pursuit
xrecon = idct(s); % reconstruct full signal

It is important to note that the p = 128 measurements are randomly chosen from the 4, 096
resolution signal. Thus, we know the precise timing of the sparse measurements at a much
higher resolution than our sampling rate. If we chose p = 128 measurements uniformly in
time, the compressed sensing algorithm fails. Specifically, if we compute the PSD directly
from these uniform measurements, the high-frequency signal will be aliased resulting in
erroneous frequency peaks.

Finally, it is also possible to replace the matching pursuit algorithm

s = cosamp(Theta,y’,10,1.e-10,10); % CS via matching pursuit

with an 
1 minimization using the CVX package [218]:

%% L1-Minimization using CVX
cvx_begin;

variable s(n);
minimize( norm(s,1) );
subject to

Theta*s == y’;
cvx_end;

In the compressed sensing matching pursuit (CoSaMP) code, the desired level of sparsity
K must be specified, and this quantity may not be known ahead of time. The 
1 mini-
mization routine does not require knowledge of the desired sparsity level a priori, although
convergence to the sparsest solution relies on having sufficiently many measurements p,
which indirectly depends on K .

3.4 The Geometry of Compression
Compressed sensing can be summarized in a relatively simple statement: A given signal,
if it is sufficiently sparse in a known basis, may be recovered (with high probability) using
significantly fewer measurements than the signal length, if there are sufficiently many mea-
surements and these measurements are sufficiently random. Each part of this statement can
be made precise and mathematically rigorous in an overarching framework that describes
the geometry of sparse vectors, and how these vectors are transformed through random
measurements. Specifically, enough good measurements will result in a matrix

� = C� (3.11)
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that preserves the distance and inner product structure of sparse vectors s. In other words,
we seek a measurement matrix C so that � acts as a near isometry map on sparse vectors.
Isometry literally means same distance, and is closed related to unitarity, which not only
preserves distance, but also angles between vectors. When � acts as a near isometry,
it is possible to solve the following equation for the sparsest vector s using convex 
1

minimization:

y = �s. (3.12)

The remainder of this section describes the conditions on the measurement matrix C that
are required for � to act as a near isometry map with high probability. The geometric
properties of various norms are shown in Fig. 3.9.

Determining how many measurements to take is relatively simple. If the signal is K-
sparse in a basis �, meaning that all but K coefficients are zero, then the number of
measurements scales as p ∼ O(K log(n/K)) = k1K log(n/K), as in (3.7). The constant
multiplier k1, which defines exactly how many measurements are needed, depends on
the quality of the measurements. Roughly speaking, measurements are good if they are
incoherent with respect to the columns of the sparsifying basis, meaning that the rows
of C have small inner product with the columns of �. If the measurements are coherent
with columns of the sparsifying basis, then a measurement will provide little information
unless that basis mode happens to be non-zero in s. In contrast, incoherent measurements
are excited by nearly any active mode, making it possible to infer the active modes. Delta
functions are incoherent with respect to Fourier modes, as they excite a broadband fre-

�0 �1/3 �1

�2 �4 �∞

Figure 3.9 The minimum norm point on a line in different 
p norms. The blue line represents the
solution set of an under-determined system of equations, and the red curves represent the
minimum-norm level sets that intersect this blue line for different norms. In the norms between 
0
and 
1, the minimum-norm solution also corresponds to the sparsest solution, with only one
coordinate active. In the 
2 and higher norms, the minimum-norm solution is not sparse, but has all
coordinates active.
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quency response. The more incoherent the measurements, the smaller the required number
of measurements p.

The incoherence of measurements C and the basis � is given by μ(C,�):

μ(C, �) = √
n max

j,k
|〈ck,ψj 〉|, (3.13)

where ck is the kth row of the matrix C and ψj is the j th column of the matrix �. The
coherence μ will range between 1 and

√
n.

The Restricted Isometry Property (RIP)
When measurements are incoherent, the matrix C� satisfies a restricted isometry property
(RIP) for sparse vectors s,

(1 − δK)‖s‖2
2 ≤ ‖C�s‖2

2 ≤ (1 + δK)‖s‖2
2,

with restricted isometry constant δK [114]. The constant δK is defined as the smallest
number that satisfies the above inequality for all K-sparse vectors s. When δK is small,
then C� acts as a near isometry on K-sparse vectors s. In practice, it is difficult to compute
δK directly; moreover, the measurement matrix C may be chosen to be random, so that it
is more desirable to derive statistical properties about the bounds on δK for a family of
measurement matrices C, rather than to compute δK for a specific C. Generally, increasing
the number of measurements will decrease the constant δK , improving the property of
C� to act isometrically on sparse vectors. When there are sufficiently many incoherent
measurements, as described above, it is possible to accurately determine the K nonzero
elements of the n-length vector s. In this case, there are bounds on the constant δK that
guarantee exact signal reconstruction for noiseless data. An in-depth discussion of incoher-
ence and the RIP can be found in [39, 114].

Incoherence and Measurement Matrices
Another significant result of compressed sensing is that there are generic sampling matrices
C that are sufficiently incoherent with respect to nearly all transform bases. Specifically,
Bernouli and Gaussian random measurement matrices satisfy the RIP for a generic basis
� with high probability [113]. There are additional results generalizing the RIP and inves-
tigating incoherence of sparse matrices [205].

In many engineering applications, it is advantageous to represent the signal x in a generic
basis, such as Fourier or wavelets. One key advantage is that single-point measurements are
incoherent with respect to these bases, exciting a broadband frequency response. Sampling
at random point locations is appealing in applications where individual measurements
are expensive, such as in ocean monitoring. Examples of random measurement matrices,
including single pixel, Gaussian, Bernoulli, and sparse random, are shown in Fig. 3.10.

A particularly useful transform basis for compressed sensing is obtained by the SVD4,
resulting in a tailored basis in which the data is optimally sparse [316, 80, 81, 31, 98].
A truncated SVD basis may result in a more efficient signal recovery from fewer mea-
surements. Progress has been made developing a compressed SVD and PCA based on the

4 The SVD provides an optimal low-rank matrix approximation, and it is used in principal components analysis
(PCA) and proper orthogonal decomposition (POD).
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Figure 3.10 Examples of good random measurement matrices C.

Johnson-Lindenstrauss (JL) lemma [267, 187, 436, 206]. The JL lemma is closely related
to the RIP, indicating when it is possible to embed high-dimensional vectors in a low-
dimensional space while preserving spectral properties.

Bad Measurements
So far we have described how to take good compressed measurements. Fig. 3.11 shows a
particularly poor choice of measurements C, corresponding to the last p columns of the
sparsifying basis �. In this case, the product � = C� is a p × p identity matrix padded
with zeros on the left. In this case, any signal s that is not active in the last p columns of �

is in the null-space of �, and is completely invisible to the measurements y. In this case,
these measurements incur significant information loss for many sparse vectors.

3.5 Sparse Regression
The use of the 
1 norm to promote sparsity significantly predates compressed sensing.
In fact, many benefits of the 
1 norm were well-known and oft-used in statistics decades
earlier. In this section, we show that the 
1 norm may be used to regularize statistical
regression, both to penalize statistical outliers and also to promote parsimonious statistical
models with as few factors as possible. The role of 
2 versus 
1 in regression is further
detailed in Chapter 4.

Outlier Rejection and Robustness
Least squares regression is perhaps the most common statistical model used for data fitting.
However, it is well known that the regression fit may be arbitrarily corrupted by a single
large outlier in the data; outliers are weighted more heavily in least-squares regression
because their distance from the fit-line is squared. This is shown schematically in Fig. 3.12.

In contrast, 
1-minimum solutions give equal weight to all data points, making it poten-
tially more robust to outliers and corrupt data. This procedure is also known as least
absolute deviations (LAD) regression, among other names. A script demonstrating the
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Figure 3.11 Examples of a bad measurement matrix C.

use of least-squares (
2) and LAD (
1) regression for a dataset with an outlier is given
in Code 3.3.

Code 3.3 Use of 
1 norm for robust statistical regression.

x = sort(4*(rand(25,1)-.5)); % Random data from [-2,2]
b = .9*x + .1*randn(size(x)); % Line y=.9x with noise
atrue = x\b; % Least-squares slope (no outliers)

b(end) = -5.5; % Introduce outlier
acorrupt = x\b; % New slope

cvx_begin; % L1 optimization to reject outlier
variable aL1; % aL1 is slope to be optimized
minimize( norm(aL1*x-b,1) ); % aL1 is robust

cvx_end;
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Figure 3.12 Least-squares regression is sensitive to outliers (red), while minimum 
1-norm
regression is robust to outliers (blue).

Feature Selection and LASSO Regression
Interpretability is important in statistical models, as these models are often communicated
to a non-technical audience, including business leaders and policy makers. Generally, a
regression model is more interpretable if it has fewer terms that bear on the outcome,
motivating yet another perspective on sparsity.

The least absolute shrinkage and selection operator (LASSO) is an 
1 penalized regres-
sion technique that balances model complexity with descriptive capability [518]. This
principle of parsimony in a model is also a reflection of Occam’s razor, stating that among
all possible descriptions, the simplest correct model is probably the true one. Since its
inception by Tibshirani in 1996 [518], the LASSO has become a cornerstone of statistical
modeling, with many modern variants and related techniques [236, 558, 264]. The LASSO
is closely related to the earlier nonnegative garrote of Breimen [76], and is also related
to earlier work on soft-thresholding by Donoho and Johnstone [153, 154]. LASSO may
be thought of as a sparsity-promoting regression that benefits from the stability of the 
2

regularized ridge regression [249], also known as Tikhonov regularization. The elastic net
is a frequently used regression technique that combines the 
1 and 
2 penalty terms from
LASSO and ridge regression [573]. Sparse regression will be explored in more detail in
Chapter 4.

Given a number of observations of the predictors and outcomes of a system, arranged
as rows of a matrix A and a vector b, respectively, regression seeks to find the relationship
between the columns of A that is most consistent with the outcomes in b. Mathematically,
this may be written as:

Ax = b. (3.14)
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Least-squares regression will tend to result in a vector x that has nonzero coefficients for
all entries, indicating that all columns of A must be used to predict b. However, we often
believe that the statistical model should be simpler, indicating that x may be sparse. The
LASSO adds an 
1 penalty term to regularize the least-squares regression problem; i.e., to
prevent overfitting:

x = argmin
x′

‖Ax′ − b‖2 + λ‖x‖1. (3.15)

Typically, the parameter λ is varied through a range of values and the fit is validated
against a test set of holdout data. If there is not enough data to have a sufficiently large
training and test set, it is common to repeatedly train and test the model on random selection
of the data (often 80 % for training and 20 % for testing), resulting in a cross-validated per-
formance. This cross-validation procedure enables the selection of a parsimonious model
that has relatively few terms and avoids overfitting.

Many statistical systems are overdetermined, as there are more observations than candi-
date predictors. Thus, it is not possible to use standard compressed sensing, as measure-
ment noise will guarantee that no exact sparse solution exists that minimizes ‖Ax − b‖2.
However, the LASSO regression works well with overdetermined problems, making it a
general regression method. Note that an early version of the geometric picture in Fig. 3.9
to explain the sparsity-promoting nature of the 
1 norm was presented in Tibshirani’s 1996
paper [518].

LASSO regression is frequently used to build statistical models for disease, such as
cancer and heart failure, since there are many possible predictors, including demographics,
lifestyle, biometrics and genetic information. Thus, LASSO represents a clever version of
the kitchen-sink approach, whereby nearly all possible predictive information is thrown
into the mix, and afterwards these are then sifted and sieved through for the truly relevant
predictors.

As a simple example, we consider an artificial data set consisting of 100 observations of
an outcome, arranged in a vector b ∈ R100. Each outcome in b is given by a combination
of exactly 2 out of 10 candidate predictors, whose observations are arranged in the rows of
a matrix A ∈ R100×10:

A = randn(100,10); % Matrix of possible predictors
x = [0; 0; 1; 0; 0; 0; -1; 0; 0; 0]; % 2 nonzero predictors
b = A*x + 2*randn(100,1); % Observations (with noise)

The vector x is sparse by construction, with only two nonzero entries, and we also add
noise to the observations in b. The least-squares regression is:

>>xL2 = pinv(A)*b

xL2 = -0.0232
-0.3395
0.9591

-0.1777
0.2912

-0.0525
-1.2720
-0.0411
0.0413

-0.0500
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Note that all coefficients are nonzero.
Implementing the LASSO, with 10-fold cross-validation, is a single straightforward

command in MATLAB:

[XL1 FitInfo] = lasso(A,b,’CV’,10);

The lasso command sweeps through a range of values for λ, and the resulting x are
each stored as columns of the matrix in XL1. To select the most parsimonious model that
describes the data while avoiding overfitting, we may plot the cross-validated error as a
function of λ, as in Fig. 3.13:

lassoPlot(XL1,FitInfo,’PlotType’,’CV’)

The green point is at the value of λ that minimizes the cross-validated mean-square error,
and the blue point is at the minimum cross-validated error plus one standard deviation. The
resulting model is found via FitInfo.Index1SE:

>> xL1 = XL1(:,FitInfo.Index1SE)

xL1 = 0
0

0.7037
0
0
0

-0.4929
0
0
0
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Figure 3.13 Output of lassoPlot command to visualize cross-validated mean-squared error (MSE) as
a function of λ.
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Note that the resulting model is sparse and the correct terms are active. However, the
regression values for these terms are not accurate, and so it may be necessary to de-bias the
LASSO by applying a final least-squares regression to the nonzero coefficients identified:

>>xL1DeBiased = pinv(A(:,abs(xL1)>0))*b
xL1DeBiased = 1.0980

-1.0671

3.6 Sparse Representation
Implicit in our discussion on sparsity is the fact that when high-dimensional signals exhibit
low-dimensional structure, they admit a sparse representation in an appropriate basis or
dictionary. In addition to a signal being sparse in an SVD or Fourier basis, it may also be
sparse in an overcomplete dictionary whose columns consist of the training data itself. In
essence, in addition to a test signal being sparse in generic feature library U from the SVD,
X = U�V∗, it may also have a sparse representation in the dictionary X.

Wright et al. [560] demonstrated the power of sparse representation in a dictionary of
test signals for robust classification of human faces, despite significant noise and occlu-
sions. The so-called sparse representation for classification (SRC) has been widely used in
image processing, and more recently to classify dynamical regimes in nonlinear differential
equations [98, 433, 191, 308].

The basic schematic of SRC is shown in Fig. 3.14, where a library of images of faces is
used to build an overcomplete library �. In this example, 30 images are used for each of 20
different people in the Yale B database, resulting in 600 columns in �. To use compressed
sensing, i.e. 
1-minimization, we need � to be underdetermined, and so we downsample
each image from 192 × 168 to 12 × 10, so that the flattened images are 120-component
vectors. The algorithm used to downsample the images has an impact on the classification
accuracy. A new test image y corresponding to class c, appropriately downsampled to
match the columns of �, is then sparsely represented as a sum of the columns of � using
the compressed sensing algorithm. The resulting vector of coefficients s should be sparse,
and ideally will have large coefficients primarily in the regions of the library corresponding
to the correct person in class c. The final classification stage in the algorithm is achieved by
computing the 
2 reconstruction error using the coefficients in the s vector corresponding
to each of the categories separately. The category that minimizes the 
2 reconstruction error
is chosen for the test image.

Code 3.4 Load Yale faces data and build training and test sets.

load ../../CH01_SVD/DATA/allFaces.mat
X = faces;
%% Build Training and Test sets
nTrain = 30; nTest = 20; nPeople = 20;
Train = zeros(size(X,1),nTrain*nPeople);
Test = zeros(size(X,1),nTest*nPeople);
for k=1:nPeople

baseind = 0;
if(k>1) baseind = sum(nfaces(1:k-1));
end
inds = baseind + (1:nfaces(k));
Train(:,(k-1)*nTrain+1:k*nTrain)=X(:,inds(1:nTrain));
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Figure 3.14 Schematic overview of sparse representation for classification.

Test(:,(k-1)*nTest+1:k*nTest)=X(:,inds(nTrain+1:nTrain+nTest
));

end

Code 3.5 Downsample training images to build � library.

M = size(Train,2);
Theta = zeros(120,M);
for k=1:M

temp = reshape(Train(:,k),n,m);
tempSmall = imresize(temp,[12 10],’lanczos3’);
Theta(:,k) = reshape(tempSmall,120,1);

end
for k=1:M % Normalize columns of Theta

Theta(:,k) = Theta(:,k)/norm(Theta(:,k));
end
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Figure 3.15 Sparse representation for classification demonstrated using a library of faces. A clean test
image is correctly identified as the 7th person in the library.

Figure 3.16 Sparse representation for classification demonstrated on example face from person #7
occluded by a fake mustache.
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Figure 3.17 Sparse representation for classification demonstrated on example image with 30%
occluded pixels (randomly chosen and uniformly distributed).

Figure 3.18 Sparse representation for classification demonstrated on example with white noise added
to image.
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Code 3.6 Build test images and downsample to obtain y.

x1 = Test(:,126); % clean image
mustache = double(rgb2gray(imread(’mustache.jpg’))/255);
x2 = Test(:,126).*reshape(mustache,n*m,1); % mustache
randvec = randperm(n*m);
first30 = randvec(1:floor(.3*length(randvec)));
vals30 = uint8(255*rand(size(first30)));
x3 = x1;
x3(first30) = vals30; % 30% occluded
x4 = x1 + 50*randn(size(x1)); % random noise

%% DOWNSAMPLE TEST IMAGES
X = [x1 x2 x3 x4];
Y = zeros(120,4);
for k=1:4

temp = reshape(X(:,k),n,m);
tempSmall = imresize(temp,[12 10],’lanczos3’);
Y(:,k) = reshape(tempSmall,120,1);

end

%% L1 SEARCH, TESTCLEAN

Code 3.7 Search for sparse representation of test image. The same code is used for each of the test
images y1 through y4.

y1 = Y(:,1);
eps = .01;
cvx_begin;

variable s1(M); % sparse vector of coefficients
minimize( norm(s1,1) );
subject to

norm(Theta*s1 - y1,2) < eps;
cvx_end;

plot(s1)
imagesc(reshape(Train*(s1./normTheta’),n,m))
imagesc(reshape(x1-(Train*(s1./normTheta’)),n,m))

binErr = zeros(nPeople,1);
for k=1:nPeople

L = (k-1)*nTrain+1:k*nTrain;
binErr(k)=norm(x1-(Train(:,L)*(s1(L)./normTheta(L)’)))/norm(

x1)
end
bar(binErr)

3.7 Robust Principal Component Analysis (RPCA)
As mentioned earlier in Section 3.5, least-squares regression models are highly susceptible
to outliers and corrupted data. Principal component analysis (PCA) suffers from the same
weakness, making it fragile with respect to outliers. To ameliorate this sensitivity, Candès
et al. [110] have developed a robust principal component analysis (RPCA) that seeks to
decompose a data matrix X into a structured low-rank matrix L and a sparse matrix S
containing outliers and corrupt data:

X = L + S. (3.16)



108 Sparsity and Compressed Sensing

The principal components of L are robust to the outliers and corrupt data in S. This
decomposition has profound implications for many modern problems of interest, including
video surveillance (where the background objects appear in L and foreground objects
appear in S), face recognition (eigenfaces are in L and shadows, occlusions, etc. are in
S), natural language processing and latent semantic indexing, and ranking problems5.

Mathematically, the goal is to find L and S that satisfy the following:

min
L,S

rank(L) + ‖S‖0 subject to L + S = X. (3.17)

However, neither the rank(L) nor the ‖S‖0 terms are convex, and this is not a tractable
optimization problem. Similar to the compressed sensing problem, it is possible to solve
for the optimal L and S with high probability using a convex relaxation of (3.17):

min
L,S

‖L‖∗ + λ‖S‖1 subject to L + S = X. (3.18)

Here, ‖ ·‖∗ denotes the nuclear norm, given by the sum of singular values, which is a proxy
for rank. Remarkably, the solution to (3.18) converges to the solution of (3.17) with high
probability if λ = 1/

√
max(n,m), where n and m are the dimensions of X, given that L

and S satisfy the following conditions:

1. L is not sparse
2. S is not low-rank; we assume that the entries are randomly distributed so that they

do not have low-dimensional column space.

The convex problem in (3.17) is known as principal component pursuit (PCP), and
may be solved using the augmented Lagrange multiplier (ALM) algorithm. Specifically,
an augmented Lagrangian may be constructed:

L(L, S, Y) = ‖L‖∗ + λ‖S‖1 + 〈Y, X − L − S〉 + μ

2
‖X − L − S‖2

F . (3.19)

A general solution would solve for the Lk and Sk that minimize L, update the Lagrange
multipliers Yk+1 = Yk+μ(X−Lk−Sk), and iterate until the solution converges. However,
for this specific system, the alternating directions method (ADM) [337, 566] provides a
simple procedure to find L and S.

First, a shrinkage operator Sτ (x) = sign(x) max(|x| − τ, 0) is constructed (MATLAB
function shrink below):

function out = shrink(X,tau)
out = sign(X).*max(abs(X)-tau,0);

end

Next, the singular value threshold operator SVTτ (X) = USτ (�)V∗ is constructed (MAT-
LAB function SVT below):

function out = SVT(X,tau)
[U,S,V] = svd(X,’econ’);
out = U*shrink(S,tau)*V’;

end

5 The ranking problem may be thought of in terms of the Netflix prize for matrix completion. In the Netflix
prize, a large matrix of preferences is constructed, with rows corresponding to users and columns
corresponding to movies. This matrix is sparse, as most users only rate a handful of movies. The Netflix prize
seeks to accurately fill in the missing entries of the matrix, revealing the likely user rating for movies the user
has not seen.
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Finally, it is possible to use Sτ and SVT operators iteratively to solve for L and S:

Code 3.8 RPCA using alternating directions method (ADM).

function [L,S] = RPCA(X)
[n1,n2] = size(X);
mu = n1*n2/(4*sum(abs(X(:))));
lambda = 1/sqrt(max(n1,n2));
thresh = 1e-7*norm(X,’fro’);

L = zeros(size(X));
S = zeros(size(X));
Y = zeros(size(X));
count = 0;
while((norm(X-L-S,’fro’)>thresh)&&(count<1000))

L = SVT(X-S+(1/mu)*Y,1/mu);
S = shrink(X-L+(1/mu)*Y,lambda/mu);
Y = Y + mu*(X-L-S);
count = count + 1

end

This is demonstrated on the eigenface example with the following code:

load allFaces.mat
X = faces(:,1:nfaces(1));
[L,S] = RPCA(X);

In this example, the original columns of X, along with the low-rank and sparse com-
ponents, are shown in Fig. 3.19. Notice that in this example, RPCA effectively fills in
occluded regions of the image, corresponding to shadows. In the low-rank component
L, shadows are removed and filled in with the most consistent low-rank features from
the eigenfaces. This technique can also be used to remove other occlusions such as fake
mustaches, sunglasses, or noise.

Figure 3.19 Output of RPCA for images in the Yale B database.
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3.8 Sparse Sensor Placement
Until now, we have investigated signal reconstruction in a generic basis, such as Fourier
or wavelets, with random measurements. This provides considerable flexibility, as no prior
structure is assumed, except that the signal is sparse in a known basis. For example, com-
pressed sensing works equally well for reconstructing an image of a mountain, a face, or a
cup of coffee. However, if we know that we will be reconstructing a human face, we can
dramatically reduce the number of sensors required for reconstruction or classification by
optimizing sensors for a particular feature library �r = Ũ built from the SVD.

Thus, it is possible to design tailored sensors for a particular library, in contrast to the
previous approach of random sensors in a generic library. Near-optimal sensor locations
may be obtained using fast greedy procedures that scale well with large signal dimension,
such as the matrix QR factorization. The following discussion will closely follow Manohar
et al. [366] and B. Brunton et al. [89], and the reader is encouraged to find more details
there. Similar approaches will be used for efficient sampling of reduced-order models
in Chapter 12, where they are termed hyper-reduction. There are also extensions of the
following for sensor and actuator placement in control [365], based on the balancing trans-
formations discussed in Chapter 9.

Optimizing sensor locations is important for nearly all downstream tasks, including
classification, prediction, estimation, modeling, and control. However, identifying optimal
locations involves a brute force search through the combinatorial choices of p sensors
out of n possible locations in space. Recent greedy and sparse methods are making this
search tractable and scalable to large problems. Reducing the number of sensors through
principled selection may be critically enabling when sensors are costly, and may also enable
faster state estimation for low latency, high bandwidth control.

Sparse Sensor Placement for Reconstruction
The goal of optimized sensor placement in a tailored library �r ∈ Rn×r is to design a
sparse measurement matrix C ∈ Rp×n, so that inversion of the linear system of equations

y = C�ra = θa (3.20)

is as well-conditioned as possible. In other words, we will design C to minimize the con-
dition number of C�r = θ , so that it may be inverted to identify the low-rank coefficients
a given noisy measurements y. The condition number of a matrix θ is the ratio of its
maximum and minimum singular values, indicating how sensitive matrix multiplication
or inversion is to errors in the input. Larger condition numbers indicate worse performance
inverting a noisy signal. The condition number is a measure of the worst-case error when
the signal a is in the singular vector direction associated with the minimum singular value
of θ , and noise is added which is aligned with the maximum singular vector:

θ(a + εa) = σmina + σmaxεa. (3.21)

Thus, the signal-to-noise ratio decreases by the condition number after mapping through
θ . We therefore seek to minimize the condition number through a principled choice of C.
This is shown schematically in Fig. 3.20 for p = r .

When the number of sensors is equal to the rank of the library, i.e. p = r , then θ is a
square matrix, and we are choosing C to make this matrix as well-conditioned for inversion
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y
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C a
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aΨr Θ

Figure 3.20 Least squares with r sparse sensors provides a unique solution to a, hence x. Reproduced
with permission from Manohar et al. [366].

as possible. When p > r , we seek to improve the condition of M = θT θ , which is involved
in the pseudo-inverse. It is possible to develop optimization criteria that optimize the min-
imum singular value, the trace, or the determinant of θ (resp. M). However, each of these
optimization problems is np-hard, requiring a combinatorial search over the possible sensor
configurations. Iterative methods exist to solve this problem, such as convex optimization
and semidefinite programming [74, 269], although these methods may be expensive, requir-
ing iterative n × n matrix factorizations. Instead, greedy algorithms are generally used to
approximately optimize the sensor placement. These gappy POD [179] methods originally
relied on random sub-sampling. However, significant performance advances where demon-
strated by using principled sampling strategies for reduced order models (ROMs) [53] in
fluid dynamics [555] and ocean modeling [565]. More recently, variants of the so-called
empirical interpolation method (EIM, DEIM and Q-DEIM) [41, 127, 159] have provided
near optimal sampling for interpolative reconstruction of nonlinear terms in ROMs.

Random sensors. In general, randomly placed sensors may be used to estimate mode
coefficients a. However, when p = r and the number of sensors is equal to the number
of modes, the condition number is typically very large. In fact, the matrix � is often
numerically singular and the condition number is near 1016. Oversampling, as in Sec. 1.8,
rapidly improves the condition number, and even p = r + 10 usually has much better
reconstruction performance.

QR Pivoting for sparse sensors. The greedy matrix QR factorization with column piv-
oting of �T

r , explored by Drmac and Gugercin [159] for reduced-order modeling, provides
a particularly simple and effective sensor optimization. The QR pivoting method is fast,
simple to implement, and provides nearly optimal sensors tailored to a specific SVD/POD
basis. QR factorization is optimized for most scientific computing libraries, including Mat-
lab, LAPACK, and NumPy. In addition QR can be sped-up by ending the procedure after
the first p pivots are obtained.
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The reduced matrix QR factorization with column pivoting decomposes a matrix A ∈
Rm×n into a unitary matrix Q, an upper-triangular matrix R and a column permutation
matrix CT such that ACT = QR. The pivoting procedure provides an approximate greedy
solution method to minimize the matrix volume, which is the absolute value of the deter-
minant. QR column pivoting increments the volume of the submatrix constructed from the
pivoted columns by selecting a new pivot column with maximal 2-norm, then subtracting
from every other column its orthogonal projection onto the pivot column.

Thus QR factorization with column pivoting yields r point sensors (pivots) that best
sample the r basis modes �r

�T
r CT = QR. (3.22)

Based on the same principle of pivoted QR, which controls the condition number by mini-
mizing the matrix volume, the oversampled case is handled by the pivoted QR factorization
of �r�

T
r ,

(�r�
T
r )CT = QR. (3.23)

The code for handling both cases is give by

if (p==r) % QR sensor selection, p=r
[Q,R,pivot] = qr(Psi_r’,’vector’);

elseif (p>r) % Oversampled QR sensors, p>r
[Q,R,pivot] = qr(Psi_r*Psi_r’,’vector’);

end
C = zeros(p,n);
for j=1:p

C(j,pivot(j))=1;
end

Example: Reconstructing a Face with Sparse Sensors
To demonstrate the concept of signal reconstruction in a tailored basis, we will design
optimized sparse sensors in the library of eigenfaces from Section 1.6. Fig. 3.21 shows
the QR sensor placement and reconstruction, along with the reconstruction using random
sensors. We use p = 100 sensors in a r = 100 mode library. This code assumes that

Figure 3.21 (left) Original image and p = 100 QR sensors locations in a r = 100 mode library.
(middle) Reconstruction with QR sensors. (right) Reconstruction with random sensors.
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Figure 3.22 Schematic illustrating SVD for feature extraction, followed by LDA for the automatic
classification of data into two categories A and B. Reproduced with permission from Bai et al. [29].

the faces have been loaded and the singular vectors are in a matrix U. Optimized QR
sensors result in a more accurate reconstruction, with about three times less reconstruction
error. In addition, the condition number is orders of magnitude smaller than with random
sensors. Both QR and random sensors may be improved by oversampling. The following
code computes the QR sensors and the approximate reconstruction from these sensors.

r = 100; p = 100; % # of modes r, # of sensors p
Psi = U(:,1:r);
[Q,R,pivot] = qr(Psi’,’vector’);
C = zeros(p,n*m);
for j=1:p

C(j,pivot(j))=1;
end
%
Theta = C*Psi;
y = faces(pivot(1:p),1); % Measure at pivot locations
a = Theta\y; % Estimate coefficients
faceRecon = U(:,1:r)*a; % Reconstruct face

Sparse Classification
For image classification, even fewer sensors may be required than for reconstruction. For
example, sparse sensors may be selected that contain the most discriminating information
to characterize two categories of data [89]. Given a library of r SVD modes �r , it is
often possible to identify a vector w ∈ Rr in this subspace that maximally distinguishes
between two categories of data, as described in Section 5.6 and shown in Fig. 3.22. Sparse
sensors s that map into this discriminating direction, projecting out all other information,
are found by:

s = argmin
s′

‖s′‖1 subject to �T
r s′ = w. (3.24)

This sparse sensor placement optimization for classification (SSPOC) is shown in
Fig. 3.23 for an example classifying dogs versus cats. The library �r contains the first
r eigenpets and the vector w identifies the key differences between dogs and cats. Note
that this vector does not care about the degrees of freedom that characterize the various
features within the dog or cat clusters, but rather only the differences between the two
categories. Optimized sensors are aligned with regions of interest, such as the eyes, nose,
mouth, and ears.
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Figure 3.23 Sparse sensor placement optimization for classification (SSPOC) illustrated for
optimizing sensors to classify dogs and cats. Reproduced with permission from B. Brunton
et al. [89].
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4 Regression and Model Selection

All of machine learning revolves around optimization. This includes regression and model
selection frameworks that aim to provide parsimonious and interpretable models for
data [266]. Curve fitting is the most basic of regression techniques, with polynomial and
exponential fitting resulting in solutions that come from solving the linear system

Ax = b . (4.1)

When the model is not prescribed, then optimization methods are used to select the best
model. This changes the underlying mathematics for function fitting to either an overdeter-
mined or underdetermined optimization problem for linear systems given by:

argmin
x

(‖Ax − b‖2 + λg(x)) or (4.2a)

argmin
x

g(x) subject to ‖Ax − b‖2 ≤ ε , (4.2b)

where g(x) is a given penalization (with penalty parameter λ for overdetermined systems).
For over and underdetermined linear systems of equations, which result in either no solu-
tions or an infinite number of solutions of (4.1), a choice of constraint or penalty, which is
also known as regularization, must be made in order to produce a solution. For instance,
one can enforce a solution minimizing the smallest 
2 norm in an underdetermined system
so that min g(x) = min ‖x‖2. More generally, when considering regression to nonlinear
models, then the overall mathematical framework takes the more general form

argmin
x

(f (A, x, b) + λg(x)) or (4.3a)

argmin
x

g(x) subject to f (A, x, b) ≤ ε (4.3b)

which are often solved using gradient descent algorithms. Indeed, this general framework
is also at the center of deep learning algorithms.

In addition to optimization strategies, a central concern in data science is understanding
if a proposed model has over-fit or under-fit the data. Thus cross-validation strategies are
critical for evaluating any proposed model. Cross-validation will be discussed in detail in
what follows, but the main concepts can be understood from Fig. 4.1. A given data set
must be partitioned into a training, validation and withhold set. A model is constructed
from the training and validation data and finally tested on the withhold set. For over-
fitting, increasing the model complexity or training epochs (iterations) improves the error
on the training set while leading to increased error on the withhold set. Fig. 4.1(a) shows
the canonical behavior of data over-fitting, suggesting that the model complexity and/or
training epochs be limited in order to avoid the over-fitting. In contrast, under-fitting limits
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Figure 4.1 Prototypical behavior of over- and under-fitting of data. (a) For over-fitting, increasing the
model complexity or training epochs (iterations) leads to improved reduction of error on training
data while increasing the error on the withheld data. (b) For under-fitting, the error performance is
limited due to restrictions on model complexity. These canonical graphs are ubiquitous in data
science and of paramount importance when evaluating a model.

the ability to achieve a good model as shown in Fig. 4.1(b). However, it is not always
clear if you are under-fitting or if the model can be improved. Cross-validation is of such
paramount importance that it is automatically included in most machine learning algo-
rithms in MATLAB. Importantly, the following mantra holds: if you don’t cross-validate,
you is dumb.

The next few chapters will outline how optimization and cross-validation arise in prac-
tice, and will highlight the choices that need to be made in applying meaningful constraints
and structure to g(x) so as to achieve interpretable solutions. Indeed, the objective (loss)
function f (·) and regularization g(·) are equally important in determining computationally
tractable optimization strategies. Often times, proxy loss and regularization functions are
chosen in order to achieve approximations to the true objective of the optimization. Such
choices depend strongly upon the application area and data under consideration.

4.1 Classic Curve Fitting
Curve fitting is one of the most basic and foundational tools in data science. From our
earliest educational experiences in the engineering and physical sciences, least-square poly-
nomial fitting was advocated for understanding the dominant trends in real data. Andrien-
Marie Legendre used least-squares as early as 1805 to fit astronomical data [328], with
Gauss more fully developing the theory of least squares as an optimization problem in
a seminal contribution of 1821 [197]. Curve fitting in such astronomical applications was
highly effective given the simple elliptical orbits (quadratic polynomial functions) manifest
by planets and comets. Thus one can argue that data science has long been a cornerstone
of our scientific efforts. Indeed, it was through Kepler’s access to Tycho Brahe’s state-of-
the art astronomical data that he was able, after eleven years of research, to produce the
foundations for the laws of planetary motion, positing the elliptical nature of planetary
orbits, which were clearly best-fit solutions to the available data [285].

A broader mathematical viewpoint of curve fitting, which we will advocate throughout
this text, is regression. Like curve fitting, regression attempts to estimate the relationship
among variables using a variety of statistical tools. Specifically, one can consider the
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general relationship between independent variables X, dependent variables Y, and some
unknown parameters β:

Y = f (X,β) (4.4)

where the regression function f (·) is typically prescribed and the parameters β are found
by optimizing the goodness-of-fit of this function to data. In what follows, we will consider
curve fitting as a special case of regression. Importantly, regression and curve fitting dis-
cover relationships among variables by optimization. Broadly speaking, machine learning
is framed around regression techniques, which are themselves framed around optimization
based on data. Thus, at its absolute mathematical core, machine learning and data science
revolve around positing an optimization problem. Of course, the success of optimization
itself depends critically on defining an objective function to be optimized.

Least-Squares Fitting Methods
To illustrate the concepts of regression, we will consider classic least-squarespolynomial
fitting for characterizing trends in data. The concept is straightforward and simple: use
a simple function to describe a trend by minimizing the sum-square error between the
selected function f (·) and its fit to the data. As we show here, classical curve fitting is
formulated as a simple solution of Ax = b.

Consider a set of n data points

(x1, y1), (x2, y2), (x3, y3), · · · , (xn, yn) . (4.5)

Further, assume that we would like to find a best fit line through these points. We can
approximate the line by the function

f (x) = β1x + β2 (4.6)

where the constants β1 and β2, which are the parameters of the vector β of (4.4), are chosen
to minimize some error associated with the fit. The line fit gives the linear regression model
Y = f (A,β) = β1X + β2. Thus the function gives a linear model which approximates the
data, with the approximation error at each point given by

f (xk) = yk + Ek (4.7)

where yk is the true value of the data and Ek is the error of the fit from this value.
Various error metrics can be minimized when approximating with a given function f (x).

The choice of error metric, or norm, used to compute a goodness-of-fit will be critical in
this chapter. Three standard possibilities are often considered which are associated with the

2 (least-squares), 
1, and 
∞ norms. These are defined as follows:

E∞(f ) = max
1<k<n

|f (xk) − yk| Maximum Error (
∞) (4.8a)

E1(f ) = 1
n

n∑
k=1

|f (xk) − yk| Mean Absolute Error (
1) (4.8b)

E2(f ) =
(

1
n

n∑
k=1

|f (xk) − yk|2
)1/2

Least-squares Error (
2). (4.8c)
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Figure 4.2 Line fits for the three different error metrics E∞, E1 and E2. In (a), the data has not
outliers and the three linear models, although different, produce approximately the same model.
With outliers, (b) shows that the predictions are significantly different.

Such regression error metrics have been previously considered in Chapter 1, but they will
be considered once again here in the framework of model selection. In addition to the above
norms, one can more broadly consider the error based on the 
p-norm

Ep(f ) =
(

1

n

n∑
k=1

|f (xk) − yk|p
)1/p

. (4.9)

For different values of p, the best fit line will be different. In most cases, the differences
are small. However, when there are outliers in the data, the choice of norm can have a
significant impact.

When fitting a curve to a set of data, the root-mean square (RMS) error (4.8c) is often
chosen to be minimized. This is called a least-squares fit. Fig. 4.2 depicts three line fits
that minimize the errors E∞, E1 and E2 listed previously. The E∞ error line fit is strongly
influenced by the one data point which does not fit the trend. The E1 and E2 line fit nicely
through the bulk of the data, although their slopes are quite different in comparison to when
the data has no outliers. The linear models for these three error metrics are constructed
using MATLAB’s fminsearch command. The code for all three is given as follows:

Code 4.1 Regression for linear fit.

% The data
x=[1 2 3 4 5 6 7 8 9 10]
y=[0.2 0.5 0.3 3.5 1.0 1.5 1.8 2.0 2.3 2.2]

p1=fminsearch(’fit1’,[1 1],[],x,y);
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p2=fminsearch(’fit2’,[1 1],[],x,y);
p3=fminsearch(’fit3’,[1 1],[],x,y);

xf=0:0.1:11
y1=polyval(p1,xf); y2=polyval(p2,xf); y3=polyval(p3,xf);

subplot(2,1,2)
plot(xf,y1,’k’), hold on
plot(xf,y2,’k--’,’Linewidth’,[2])
plot(xf,y3,’k’,’Linewidth’,[2])
plot(x,y,’ro’,’Linewidth’,[2]), hold on

For each error metric, the computation of the error metrics (4.8) must be computed. The
fminsearch command requires that the objective function for minimization be given. For
the three error metrics considered, this results in the following set of functions for fmin-
search:

Code 4.2 Maximum error 
∞.

function E=fit1(x0,x,y)
E=max(abs( x0(1)*x+x0(2)-y ));

Code 4.3 Sum of absolute error 
1.

function E=fit2(x0,x,y)
E=sum(abs( x0(1)*x+x0(2)-y ));

Code 4.4 Least-squares error 
2.

function E=fit3(x0,x,y)
E=sum(abs( x0(1)*x+x0(2)-y ).^2 );

Finally, for the outlier data, an additional point is added to the data in order to help illustrate
the influence of the error metrics on producing a linear regression model.

Code 4.5 Data which includes an outlier.

x=[1 2 3 4 5 6 7 8 9 10]
y=[0.2 0.5 0.3 0.7 1.0 1.5 1.8 2.0 2.3 2.2]

Least-Squares Line
Least-squares fitting to linear models has critical advantages over other norms and metrics.
Specifically, the optimization is inexpensive, since the error can be computed analytically.
To show this explicitly, consider applying the least-square fit criteria to the data points
(xk, yk) where k = 1, 2, 3, · · · , n. To fit the curve

f (x) = β1x + β2 (4.10)

to this data, the error E2 is found by minimizing the sum

E2(f ) =
n∑

k=1

|f (xk) − yk|2 =
n∑

k=1

(β1xk + β2 − yk)
2 . (4.11)

Minimizing this sum requires differentiation. Specifically, the constants β1 and β2 are
chosen so that a minimum occurs. Thus we require: ∂E2/∂β1 = 0 and ∂E2/∂β2 = 0.
Note that although a zero derivative can indicate either a minimum or maximum, we know
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this must be a minimum of the error since there is no maximum error, i.e. we can always
choose a line that has a larger error. The minimization condition gives:

∂E2

∂β1
= 0 :

n∑
k=1

2(β1xk + β2 − yk)xk = 0 (4.12a)

∂E2

∂β2
= 0 :

n∑
k=1

2(β1xk + β2 − yk) = 0 . (4.12b)

Upon rearranging, a 2 × 2 system of linear equations is found for A and B( ∑n
k=1 x2

k

∑n
k=1 xk∑n

k=1 xk n

)(
β1

β2

)
=
( ∑n

k=1 xkyk∑n
k=1 yk

)
−→ Ax = b. (4.13)

This linear system of equations can be solved using the backslash command in MATLAB.
Thus an optimization procedure is unnecessary since the solution is computed exactly from
a 2 × 2 matrix.

This method can be easily generalized to higher polynomial fits. In particular, a parabolic
fit to a set of data requires the fitting function

f (x) = β1x
2 + β2x + β3 (4.14)

where now the three constants β1, β2, and β3 must be found. These can be solved for with
the 3 × 3 system resulting from minimizing the error E2(β1, β2, β3) by taking

∂E2

∂β1
= 0 (4.15a)

∂E2

∂β2
= 0 (4.15b)

∂E2

∂β3
= 0 . (4.15c)

In fact, any polynomial fit of degree k will yield a (k + 1) × (k + 1) linear system of
equations Ax = b whose solution can be found.

Data Linearization
Although a powerful method, the minimization procedure for general fitting of arbitrary
functions results in equations which are nontrivial to solve. Specifically, consider fitting
data to the exponential function

f (x) = β2 exp(β1x) . (4.16)

The error to be minimized is

E2(β1, β2) =
n∑

k=1

(β2 exp(β1xk) − yk)
2 . (4.17)

Applying the minimizing conditions leads to

∂E2

∂β1
= 0 :

n∑
k=1

2(β2 exp(β1xk) − yk)β2xk exp(β1xk) = 0 (4.18a)
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∂E2

∂β2
= 0 :

n∑
k=1

2(β2 exp(β1xk) − yk) exp(β1xk) = 0 . (4.18b)

This in turn leads to the 2 × 2 system

β2

n∑
k=1

xk exp(2β1xk) −
n∑

k=1

xkyk exp(β1xk) = 0 (4.19a)

β2

n∑
k=1

exp(2β1xk) −
n∑

k=1

yk exp(β1xk) = 0 . (4.19b)

This system of equations is nonlinear and cannot be solved in a straightforward fashion.
Indeed, a solution may not even exist. Or many solution may exist. Section 4.2 describes
a possible iterative procedure, called gradient descent, for solving this nonlinear system of
equations.

To avoid the difficulty of solving this nonlinear system, the exponential fit can be lin-
earized by the transformation

Y = ln(y) (4.20a)

X = x (4.20b)

β3 = ln β2 . (4.20c)

Then the fit function

f (x) = y = β2 exp(β1x) (4.21)

can be linearized by taking the natural log of both sides so that

ln y = ln(β2 exp(β1x)) = ln β2 + ln(exp(β1x)) = β3 + β1x 	⇒ Y = β1X + β3 . (4.22)

By fitting to the natural log of the y-data

(xi, yi) → (xi, ln yi) = (Xi, Yi) (4.23)

the curve fit for the exponential function becomes a linear fitting problem which is easily
handled. Thus, if a transform exists that linearizes the data, then standard polynomial fitting
methods can be used to solve the resulting linear system Ax = b.

4.2 Nonlinear Regression and Gradient Descent
Polynomial and exponential curve fitting admit analytically tractable, best-fit least-squares
solutions. However, such curve fits are highly specialized and a more general mathematical
framework is necessary for solving a broader set of problems. For instance, one may wish
to fit a nonlinear function of the form f (x) = β1 cos(β2x + β3) + β4 to a data set. Instead
of solving a linear system of equations, general nonlinear curve fitting leads to a system
of nonlinear equations. The general theory of nonlinear regression assumes that the fitting
function takes the general form

f (x) = f (x,β) (4.24)
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where the m < n fitting coefficients β ∈ Rm are used to minimize the error. The root-mean
square error is then defined as

E2(β) =
n∑

k=1

(f (xk,β) − yk)
2 (4.25)

which can be minimized by considering the m×m system generated from minimizing with
respect to each parameter βj

∂E2

∂βj

= 0 j = 1, 2, · · · ,m . (4.26)

In general, this gives the nonlinear set of equations

n∑
k=1

(f (xk,β) − yk)
∂f

∂βj

= 0 j = 1, 2, 3, · · · ,m . (4.27)

There are no general methods available for solving such nonlinear systems. Indeed, nonlin-
ear systems can have no solutions, several solutions, or even an infinite number of solutions.
Most attempts at solving nonlinear systems are based on iterative schemes which require
a good initial guesse to converge to the global minimum error. Regardless, the general
fitting procedure is straightforward and allows for the construction of a best fit curve to
match the data. In such a solution procedure, it is imperative that a reasonable initial guess
be provided for by the user. Otherwise, rapid convergence to the desired root may not be
achieved.

Fig. 4.3 shows two example functions to be minimized. The first is a convex function
(Fig. 4.3(a)). Convex functions are ideal in that guarantees of convergence exist for many
algorithms, and gradient descent can be tuned to perform exceptionally well for such
functions. The second illustrates a nonconvex function and shows many of the typical
problems associated with gradient descent, including the fact that the function has multiple
local minima as well as flat regions where gradients are difficult to actually compute, i.e.
the gradient is near zero. Optimizing this nonconvex function requires a good guess for
the initial conditions of the gradient descent algorithm, although there are many advances

Figure 4.3 Two objective function landscapes representing (a) a convex function and (b) a nonconvex
function. Convex functions have many guarantees of convergence, while nonconvex functions have
a variety of pitfalls that can limit the success of gradient descent. For nonconvex functions, local
minima and an inability to compute gradient directions (derivatives that are near zero) make it
challenging for optimization.
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around gradient descent for restarting and ensuring that one is not stuck in a local min-
ima. Recent training algorithms for deep neural networks have greatly advanced gradient
descent innovations. This will be further considered in Chapter 6 on neural networks.

Gradient Descent
For high-dimensional systems, we generalize the concept of a minimum or maximum, i.e.
an extremum of a multi-dimensional function f (x). At an extremum, the gradient must be
zero, so that

∇f (x) = 0 . (4.28)

Since saddles exist in higher-dimensional spaces, one must test if the extremum point is a
minimum or maximum. The idea behind gradient descent, or steepest descent, is to use the
derivative information as the basis of an iterative algorithm that progressively converges to
a local minimum point of f (x).

To illustrate how to proceed in practice, consider the simple two-dimensional surface

f (x, y) = x2 + 3y2 (4.29)

which has a single minimum located at the origin (x, y) = 0. The gradient for this func-
tion is

∇f (x) = ∂f

∂x
x̂ + ∂f

∂y
ŷ = 2xx̂ + 6yŷ (4.30)

where x̂ and ŷ are unit vectors in the x and y directions, respectively.
Fig. 4.4 illustrates the gradient steepest descent algorithm. At the initial guess point,

the gradient ∇f (x) is computed. This gives the direction of steepest descent towards the
minimum point of f (x), i.e. the minimum is located in the direction given by −∇f (x).
Note that the gradient does not point at the minimum, but rather gives the locally steepest
path for minimizing f (x). The geometry of the steepest descent suggests the construction
of an algorithm whereby the next point in the iteration is picked by following the steepest
descent so that

xk+1(δ) = xk − δ∇f (xk) (4.31)

where the parameter δ dictates how far to move along the gradient descent curve. This
formula represents a generalization of a Newton method where the derivative is used to
compute an update in the iteration scheme. In gradient descent, it is crucial to determine
how much to step forward according to the computed gradient, so that the algorithm is
always is going downhill in an optimal way. This requires the determination of the correct
value of δ in the algorithm.

To compute the value of δ, consider the construction of a new function

F(δ) = f (xk+1(δ)) (4.32)

which must be minimized now as a function of δ. This is accomplished by computing
∂F/∂δ = 0. Thus one finds

∂F

∂δ
= −∇f (xk+1)∇f (xk) = 0 . (4.33)
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f(x, y)

yx

Figure 4.4 Gradient descent algorithm applied to the function f (x, y) = x2 + 3y2. In the top panel,
the contours are plotted for each successive value (x, y) in the iteration algorithm given the initial
guess (x, y) = (3, 2). Note the orthogonality of each successive gradient in the steepest descent
algorithm. The bottom panel demonstrates the rapid convergence and error (E) to the minimum
(optimal) solution.

The geometrical interpretation of this result is the following: ∇f (xk) is the gradient direc-
tion of the current iteration point and ∇f (xk+1) is the gradient direction of the future point,
thus δ is chosen so that the two gradient directions are orthogonal.

For the example given above with f (x, y) = x2 + 3y2, we can compute this conditions
as follows:

xk+1 = xk − δ∇f (xk) = (1 − 2δ)x x̂ + (1 − 6δ)y ŷ . (4.34)

This expression is used to compute

F(δ) = f (xk+1(δ)) = (1 − 2δ)2x2 + 3(1 − 6δ)2y2 (4.35)

whereby its derivative with respect to δ gives

F ′(δ) = −4(1 − 2δ)x2 − 36(1 − 6δ)y2 . (4.36)

Setting F ′(δ) = 0 then gives

δ = x2 + 9y2

2x2 + 54y2
(4.37)

as the optimal descent step length. Note that the length of δ is updated as the algorithm
progresses. This gives us all the information necessary to perform the steepest descent
search for the minimum of the given function.
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Code 4.6 Gradient descent example.

x(1)=3; y(1)=2; % initial guess
f(1)=x(1)^2+3*y(1)^2; % initial function value
for j=1:10

del=(x(j)^2 +9*y(j)^2)/(2*x(j)^2 + 54*y(j)^2);
x(j+1)=(1-2*del)*x(j); % update values
y(j+1)=(1-6*del)*y(j);
f(j+1)=x(j+1)^2+3*y(j+1)^2;

if abs(f(j+1)-f(j))<10^(-6) % check convergence
break

end
end

As is clearly evident, this descent search algorithm based on derivative information is
similar to Newton’s method for root finding both in one-dimension as well as higher-
dimensions. Fig. 4.4 shows the rapid convergence to the minimum for this convex function.
Moreover, the gradient descent algorithm is the core algorithm of advanced iterative solvers
such as the bi-conjugate gradient descent method (bicgstab) and the generalized method
of residuals (gmres) [220].

In the example above, the gradient could be computed analytically. More generally, given
just data itself, the gradient can be computed with numerical algorithms. The gradient
command can be used to compute local or global gradients. Fig. 4.5 shows the gradient
terms ∂f/∂x and ∂f/∂y for the two functions shown in Fig. 4.3. The code used to produce
these critical terms for the gradient descent algorithm is given by

[dfx,dfy]=gradient(f,dx,dy);

where the function f (x, y) is a two-dimensional function computed from a known function
or directly from data. The output are matrices containing the values of ∂f/∂x and ∂f/∂y

over the discretized domain. The gradient can then be used to approximate either local
or global gradients to execute the gradient descent. The following code, whose results
are shown in Fig. 4.6, uses the interp2 function to extract the values of the function and
gradient of the function in Fig. 4.3(b).

Code 4.7 Gradient descent example using interpolation.

x(1)=x0(jj); y(1)=y0(jj);
f(1)=interp2(X,Y,F,x(1),y(1));
dfx=interp2(X,Y,dFx,x(1),y(1));
dfy=interp2(X,Y,dFy,x(1),y(1));

for j=1:10
del=fminsearch(’delsearch’,0.2,[],x(end),y(end),dfx,dfy,X,Y,

F); % optimal tau
x(j+1)=x(j)-del*dfx; % update x, y, and f
y(j+1)=y(j)-del*dfy;
f(j+1)=interp2(X,Y,F,x(j+1),y(j+1));
dfx=interp2(X,Y,dFx,x(j+1),y(j+1));
dfy=interp2(X,Y,dFy,x(j+1),y(j+1));

if abs(f(j+1)-f(j))<10^(-6) % check convergence
break

end
end
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Figure 4.5 Computation of the gradient for the two functions illustrated in Fig. 4.3. In the left panels,
the gradient terms (a) ∂f/∂x and (c) ∂f/∂y are computed for Fig. 4.3(a), while the right panels
compute these same terms for Fig. 4.3(b) in (b) and (d), respectively. The gradient command
numerically generates the gradient.

In this code, the fminsearch command is used to find the correct value of δ. The function
to optimize the size of the iterative step is given by

function mindel=delsearch(del,x,y,dfx,dfy,X,Y,F)
x0=x-del*dfx;
y0=y-del*dfy;
mindel=interp2(X,Y,F,x0,y0);

This discussion provides a rudimentary introduction to gradient descent. A wide range
of innovations have attempted to speed up this dominant nonlinear optimization procedure,
including alternating descent methods. Some of these will be discussed further in the neural
network chapter where gradient descent plays a critical role in training a network. For now,
one can see that there are a number of issues for this nonlinear optimization procedure
including determining the initial guess, step size δ, and computing the gradient efficiently.

Alternating Descent
Another common technique for optimizing nonlinear functions of several variables is the
alternating descent method (ADM). Instead of computing the gradient in several variables,
optimization is done iteratively in one variable at a time. For the example just demon-
strated, this would make the computation of the gradient unnecessary. The basic strategy
is simple: optimize along one variable at a time, seeking the minimum while holding all
other variables fixed. After passing through each variable once, the process is repeated
until a desired convergence is reached. The following code shows a portion of the iteration
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Figure 4.6 Gradient descent applied to the function featured in Fig. 4.3(b). Three initial conditions
are shown: (x0, y0) = {(4, 0), (0, −5), (−5, 2)} . The first of these (red circles) gets stuck in a local
minima while the other two initial conditions (blue and magenta) find the global minima.
Interpolation of the gradient functions of Fig. 4.5 are used to update the solutions.
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Figure 4.7 Alternating descent applied to the function in Fig. 4.3(b). Three initial conditions are
shown: (x0, y0) = {(4, 0), (0,−5), (−5, 2)} . The first of these (red circles) gets stuck in a local
minima while the other two initial conditions (blue and magenta) find the global minima. No
gradients are computed to update the solution. Note the rapid convergence in comparison with
Fig. 4.6.

procedure for the example of Fig. 4.6. This replaces the gradient computation to produce
an iterative update.

Code 4.8 Alternating descent algorithm for updating solution.

fx=interp2(X,Y,F,xa(1),y); xa(2)=xa(1); [~,ind]=min(fx); ya(2)=y
(ind);

fy=interp2(X,Y,F,x,ya(2)); ya(3)=ya(2); [~,ind]=min(fy); xa(3)=x
(ind);

Note that the alternating descent only requires a line search along one variable at a time,
thus potentially speeding up computations. Moreover, the method is derivative free, which
is attractive in many applications.
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4.3 Regression and Ax = b: Over- and Under-Determined Systems
Curve fitting, as shown in the previous two sections, results in a optimization problem.
In many cases, the optimization can be mathematically framed as solving the linear sys-
tem of equations Ax = b. Before proceeding to discuss model selection and the various
optimization methods available for this problem, it is instructive to consider that in many
circumstances in modern data science, the linear system Ax = b is typically massively
over- or under-determined. Over-determined systems have more constraints (equations)
than unknown variables while under-determined systems have more unknowns than con-
straints. Thus in the former case, there are generally no solutions satisfying the linear
system, and instead, approximate solutions are found to minimize a given error. In the latter
case, there are an infinite number of solutions, and some choice of constraint must be made
in order to select an appropriate and unique solution. The goal of this section is to highlight
two different norms (
2 and 
1) used for optimization that are used to solve Ax = b for
over- and under-determined systems. The choice of norm has a profound impact on the
optimal solution achieved.

Before proceeding further, it should be noted that the system Ax = b considered here
is a restricted instance of Y = f (X,β) in (4.4). Thus the solution x contains the loadings
or leverage scores relating the relationship between the input data A and outcome data b.
A simple solution for this linear problem uses the Moose-Penrose pseudo inverse A† from
Sec. 1.4:

x = A†b . (4.38)

This operator is computed with the pinv(A) command in MATLAB. However, such a
solution is restrictive, and a greater degree of flexibility is sought for computing solutions.
Our particular aim in this section is to demonstrate the interplay in solving over- and under-
determined systems using the 
1 and 
2 norms.

Over-Determined Systems
Fig. 4.8 shows the general structure of an over-determined system. As already stated, there
are generally no solutions that satisfy Ax = b. Thus, the optimization problem to be solved
involves minimizing the error, for example the least-squares 
2 error E2, by finding an
appropriate value of x̂:

x̂ = argmin
x

‖Ax − b‖2. (4.39)

This basic architecture does not explicitly enforce any constraints on the loadings x.
In order to both minimize the error and enforce a constraint on the solution, the basic
optimization architecture can be modified to the following

x̂ = argmin
x

‖Ax − b‖2 + λ1‖x‖1 + λ2‖x‖2 (4.40)

where the parameters λ1 and λ2 control the penalization of the 
1 and 
2 norms, respec-
tively. This now explicitly enforces a constraint on the solution vector itself, not just the
error. The ability to design the penalty by adding regularizing constraints is critical for
understanding model selection in the following.

In the examples that follow, a particular focus will be given to the role of the 
1 norm.
The 
1 norm, as already shown in Chapter 3, promotes sparsity so that many of the loadings
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Figure 4.8 Regression framework for overdetermined systems. In this case, Ax = b cannot be
satisfied in general. Thus, finding solutions for this system involves minimizing, for instance, the
least-square error ‖Ax − b‖2 subject to a constraint on the solution x, such as minimizing the 
2
norm ‖x‖2.

of the solution x are zero. This will play an important role in variable and model selection
in the next section. For now, consider solving the optimization problem (4.40) with λ2 = 0.
We use the open-source convex optimization package cvx in MATLAB [218], to compute
our solution to (4.40). The following code considers various values of the 
1 penaliza-
tion in producing solutions to an over-determined systems with 500 constraints and 100
unknowns.

Code 4.9 Solutions for an over-determined system.

n=500; m=100;
A=rand(n,m);
b=rand(n,1);
xdag=pinv(A)*b;

lam=[0 0.1 0.5];
for j=1:3

cvx_begin;
variable x(m)
minimize( norm(A*x-b,2) + lam(j)*norm(x,1) );
cvx_end;



132 Regression and Model Selection

Figure 4.9 Solutions to an overdetermined system with 500 constraints and 100 unknowns. Panels
(a)-(c) show a bar plot of the values of the loadings of the vectors x. Note that as the 
1 penalty is
increased from (a) λ1 = 0 to (b) λ1 = 0.1 to (c) λ1 = 0.5, the number of zero elements of the vector
increases, i.e. it becomes more sparse. A histogram of the loading values for (a)-(c) is shown in the
panels (d)-(f), respectively. This highlights the role that the 
1 norm plays in promoting sparsity in
the solution.

subplot(4,1,j),bar(x)
subplot(4,3,9+j), hist(x,20)

end

Fig. 4.9 highlights the results of the optimization process as a function of the parameter
λ1. It should be noted that the solution with λ1 = 0 is equivalent to the solution xdag
produced by computing the pseudo-inverse of the matrix A. Note that the 
1 norm promotes
a sparse solution where many of the components of the solution vector x are zero. The
histograms of the solution values of x in Fig. 4.9(d)-(f) are particularly revealing as they
show the sparsification process for increasing λ1.

The regression for over-determined systems can be generalized to matrix systems as
shown in Fig. 4.8. In this case, the cvx command structure simply modifies the size of the
matrix b and solution matrix x. Consider the two solutions of an over-determined system
generated from the following code.

Code 4.10 Solutions for over-determined matrix system.

n=300; m=60; p=20;
A=rand(n,m); b=rand(n,p);

lam=[0 0.1];
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Figure 4.10 Solutions to an overdetermined system Ax = b with 300 constraints and 60×20
unknowns. Panels (a) and (b) show a plot of the values of the loadings of the matrix x with 
1
penalty (a) λ1 = 0 to (b) λ1 = 0.1.

for j=1:2
cvx_begin;
variable x(m,p)
minimize(norm(A*x-b,2) + lam(j)*norm(x,1));
cvx_end;
subplot(2,1,j), pcolor(x.’), colormap(hot), colorbar

end

Fig. 4.10 shows the results of this matrix over-determined systems for two different values
of the added 
1 penalty. Note that the addition of the 
1 norm sparsifies the solution and
produces a matrix which is dominated by zero entries. The two examples in Figs. 4.9 and
4.10 show the important role that the 
2 and 
1 norms have in generating different types of
solutions. In the following sections of this book, these norms will be exploited to produce
parsimonious models from data.

Under-Determined Systems
For undetermined systems, there are an infinite number of possible solutions satisfying
Ax = b. The goal in this case is to impose an additional constraint, or set of constraints,
whereby a unique solution is generated from the infinite possibilities. The basic mathemati-
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Figure 4.11 Regression framework for underdetermined systems. In this case, Ax = b can be
satisfied. In fact, there are an infinite number of solutions. Thus pinning down a unique solution for
this system involves minimizing a constraint. For instance, from an infinite number of solutions, we
choose the one that minimizes the 
2 norm ‖x‖2, which is subject to the constraint Ax = b.

cal structure is shown in Fig. 4.11. As an optimization, the solution to the under-determined
system can be stated as

min ‖x‖p subject to Ax = b (4.41)

where the p denotes the p-norm of the vector x. For simplicity, we consider the 
2 and 
1

norms only. As has already been shown for over-determined systems, the 
1 norm promotes
sparsity of the solution.

We again use the convex optimization package cvx to compute our solution to (4.41).
The following code considers both 
2 and 
1 penalization in producing solutions to an
under-determined systems with 20 constraints and 100 unknowns.

Code 4.11 Solutions for an under-determined matrix systems.

n=20; m=100
A=rand(n,m); b=rand(n,1);

cvx_begin;
variable x2(m)
minimize( norm(x2,2) );
subject to
A*x2 == b;
cvx_end;

cvx_begin;
variable x1(m)
minimize( norm(x1,1) );
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subject to
A*x1 == b;
cvx_end;

This code produces two solution vectors x2 and x1 which minimize the 
2 and 
1 norm
respectively. Note the way that cvx allows one to impose constraints in the optimization
routine. Fig. 4.12 shows a bar plot and histogram of the two solutions produced. As before,
the sparsity promoting 
1 norm yields a solution vector dominated be zeros. In fact, for this
case, there are exactly 80 zeros for this linear system since there are only 20 constraints for
the 100 unknowns.

As with the over-determined system, the optimization can be modified to handle more
general under-determined matrix equations as shown in Fig. 4.11. The cvx optimization
package may be used for this case as before with over-determined systems. The software
engine can also work with more general p-norms as well as minimize with both 
1 an

2 penalties simultaneously. For instance, a common optimization modifies (4.41) to the
following

min (λ1‖x‖1 + λ2‖x‖2) subject to Ax = b (4.42)

Figure 4.12 Solutions to an under-determined system with 20 constraints and 100 unknowns. Panels
(a) and (b) show a bar plot of the values of the loadings of the vectors x. In the former panel, the
optimization is subject to minimizing the 
2 norm of the solution, while the latter panel is subject to
minimizing the 
1 norm. Note that the 
1 penalization produces a sparse solution vector. A
histogram of the loading values for (a) and (b) is shown in the panels (c) and (d) respectively.
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Figure 4.13 (a) One hundred realizations of the parabolic function (4.43) with additive white noise
parametrized by σ = 0.1. Although the noise is small, the least-square fitting procedure produces
significant variability when fitting to a polynomial of degree twenty. Panels (b)-(e) demonstrate the
loadings (coefficients) for the various polynomial coefficients for four different noise realizations.
This demonstrated model variability frames the model selection architecture.

where the weighting between λ1 and λ2 can be used to promote a desired sparsification
of the solution. These different optimization strategies are common and will be considered
further in the following.

4.4 Optimization as the Cornerstone of Regression
In the previous two sections of this chapter, the fitting function f (x) was specified. For
instance, it may be desirable to produce a line fit so that f (x) = β1x +β2. The coefficients
are then found by the regression and optimization methods already discussed. In what
follows, our objective is to develop techniques which allow us to objectively select a good
model for fitting the data, i.e. should one use a quadratic or cubic fit? The error metric alone
does not dictate a good model selection as the more terms that are chosen for fitting, the
more parameters are available for lowering the error, regardless of whether the additional
terms have any meaning or interpretability.

Optimization strategies will play a foundational role in extracting interpretable results
and meaningful models from data. As already shown in previous sections, the interplay of
the 
2 and 
1 norms has a critical impact on the optimization outcomes. To illustrate further
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the role of optimization and the variety of possible outcomes, consider the simple example
of data generated from noisy measurements of a parabola

f (x) = x2 + N (0, σ ) (4.43)

where N (0, σ ) is a normally distributed random variable with mean zero and standard
deviation σ . Fig. 4.13(a) shows an example of 100 random measurements of (4.43). The
parabolic structure is clearly evident despite the noise added to the measurement. Indeed, a
parabolic fit is trivial to compute using classic least-square fitting methods outlined in the
first section of this chapter.

The goal is to discover the best model for the data given. So instead of specifying a model
a priori, in practice, we do not know what the function is and need to discover it. We can
begin by positing a regression to a set of polynomial models. In particular, consider framing
the model selection problem Y = f (X,β) of (4.4) as the following system Ax = b:⎡

⎢⎢⎢⎢⎣
· · ·

1 xj x2
j · · · x

p−1
j

· · ·

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎣

β1
...

βp

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

f (x1)

f (x2)
...

f (x100)

⎤
⎥⎥⎥⎦ (4.44)

where the matrix A contains polynomial models up to degree p − 1 with each row rep-
resenting a measurement, the βk are the coefficients for each polynomial, and the matrix
b contains the outcomes (data) f (xj ). In what follows, we will consider a scenario where
100 measurements are taken and 20 term (19th order) polynomial is fit. Thus the matrix
system Ax = b results in an over-determined system as illustrated in Fig. 4.8.

The following code solves the over-determined system (4.44) using least-square regres-
sion via the pinv function. For this case, four realizations are run in order to illustrate the
impact that a small amount of noise has on the regression procedure.

Code 4.12 Least-squares polynomial fit to parabola with noise.

n=100; L=4;
x=linspace(0,L,n);
f=(x.^2).’; % parabola with 100 data points

M=20; % polynomial degree
for j=1:M
phi(:,j)=(x.’).^(j-1); % build matrix A

end

for j=1:4
fn=(x.^2+0.1*randn(1,n)).’;
an=pinv(phi)*fn; fna=phi*an; % least-square fit
En=norm(f-fna)/norm(f);
subplot(4,2,4+j),bar(an)

end

Fig. 4.13(b)-(e) shows four typical loadings β computed from the regression procedure.
Note that despite the low-level of noise added, the loadings are significantly different from
one another. Thus each noise realization produces a very different model to explain the
data.

The variability of the regression results are problematic for model selection. It suggests
that even a small amount of measurement noise can lead to significantly different conclu-
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sions about the underlying model. In what follows, we quantify this variability while also
considering various regression procedures for solving the over-determined linear system
Ax = b. Highlighted here are five standard methods: least-square regression (pinv), the
backslash operator (\), LASSO (least absolute shrinkage and selection operator) (lasso),
robust fit (robustfit), and ridge regression (ridge). Returning to the last section, and specif-
ically (4.40), helps frame the mathematical architecture for these various Ax = b solvers.
Specifically, the Moore-Penrose pseudo-inverse (pinv) solves (4.40) with λ1 = λ2 = 0.
The backslash command (\) for over-determined systems solves the linear system via a
QR decomposition [524]. The LASSO (lasso) solves (4.40) with λ1 > 0 and λ2 = 0.
Ridge regression (ridge) solves (4.40) with λ1 = 0 and λ2 > 0. However, the modern
implementation of ridge in MATLAB is a bit more nuanced. The popular elastic net algo-
rithm weights both the 
2 and 
1 penalty, thus providing a tunable hybrid model regression
between ridge and LASSO. Robust fit (robustfit) solves (4.40) by a weighted least-squares
fitting. Moreover, it allows one to leverage robust statistics methods and penalize according
to the Huber norm so as to promote outlier rejection [260]. In the data considered here, no
outliers are imposed on the data so that the power of robust fit is not properly leveraged.
Regardless, it is an important technique one should consider.

Fig. 4.14 shows a series of box plots for 100 realizations of data that illustrate the
differences with the various regression techniques considered. It also highlights critically
important differences with optimization strategies based on the 
2 and 
1 norm. From
a model selection point of view, the least-square fitting procedure produces significant
variability in the loading parameters β as illustrated in Fig. 4.14, panels (a), (b) and (e).
The least-square fitting was produced by the Moore-Penrose pseudo-inverse or QR decom-
position respectively. If some 
1 penalty (regularization) is allowed, then Fig. 4.14, panels
(d), (d) and (f), show that a more parsimonious model is selected with low variability.
This is expected as the 
1 norm sparsifies the solution vector of loading values β. Indeed,
the standard LASSO regression correctly selects the quadratic polynomial as the dominant
contribution to the data. The following code was used to generate this data.

Code 4.13 Comparison of regression methods.

lambda=0.1; phi2=phi(:,2:end);
for jj=1:100

f=(x.^2+0.2*randn(1,n)).’;
a1=pinv(phi)*f; f1=phi*a1; E1(jj)=norm(f-f1)/norm(f);
a2=phi\f; f2=phi*a2; E2(jj)=norm(f-f2)/norm(f);
[a3,stats]=lasso(phi,f,’Lambda’,lambda); f3=phi*a3; E3(jj)=

norm(f-f3)/norm(f);
[a4,stats]=lasso(phi,f,’Lambda’,lambda,’Alpha’,0.8); f4=phi*a4

; E4(jj)=norm(f-f4)/norm(f);
a5=robustfit(phi2,f);f5=phi*a5;E5(jj)=norm(f-f5)/norm(f);
a6=ridge(f,phi2,0.5,0);f6=phi*a6;E6(jj)=norm(f-f6)/norm(f);

A1(:,jj)=a1;A2(:,jj)=a2;A3(:,jj)=a3;A4(:,jj)=a4;A5(:,jj)=a5;A6
(:,jj)=a6;

plot(x,f), hold on
end
Err=[E1; E2; E3; E4; E5; E6];
Err2=[E1; E2; E3; E4; E5];

This code also produces the 100 realizations visualized in Fig. 4.13(a).
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Figure 4.14 Comparison of regression methods for Ax = b for an over-determined system of linear
equations. The 100 realizations of data are generated from a simple parabola (4.43) that is fit to a
20th degree polynomial via (4.44). The box plots show (a) least-square regression via the
Moore-Penrose pseudo-inverse (pinv), (b) the backslash command (\), (c) LASSO regression
(lasso), (d) LASSO regression with different 
2 versus 
1 penalization, (e) robust fit, and (f) ridge
regression. Note the significant variability in the loading values for the strictly 
2 based methods
((a), (b) and (e)), and the low-variability for 
1 weighted methods ((c), (d) and (f)). Only the
standard LASSO (c) identifies the dominance of the parabolic term.

Despite the significant variability exhibited in Fig. 4.14 for most of the loading values
by the different regression techniques, the error produced in the fitting procedure has little
variability. Moreover, the various methods all produce regressions that have comparable
error. Thus despite their differences in optimization frameworks, the error from fitting is
relatively agnostic to the underlying method. This suggests that using the error alone as a
metric for model selection is potentially problematic since almost any method can produce
a reliable, low-error model. Fig. 4.15(a) shows a box plot of the error produced using the
regression methods of Fig. 4.14. All of the regression techniques produce comparably low
error and low variability results using significantly different strategies.

As a final note to this section and the code provided, we can consider instead the
regression procedure as a function of the number of polynomials in (4.44). In our example
of Fig. 4.14, polynomials up to degree 20 were considered. If instead, we sweep through
polynomial degrees, then something interesting and important occurs as illustrated in
Fig. 4.15(b)-(c). Specifically, the error of the regression collapses to 10−3 after the
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Figure 4.15 (a) Comparison of the error for the six regression methods used in Fig. 4.14. Despite the
variability across the optimization methods, all of them produce low-error solutions. (b) Error using
least-square regression as a function of increasing degree of polynomial. The error drops rapidly
until the quadratic term is used in the regression. (c) Detail of the error showing that the error
actually increases slightly by using a higher-degree of polynomial to fit the data.

quadratic term is added as shown in panel (b). This is expected since the original model
was a quadratic function with a small amount of noise. Remarkably, as more polynomial
terms are added, the ensemble error actually increases in the regression procedure as
highlighted in panel (c). Thus simply adding more terms does not improve the error, which
is counter-intuitive at first. The code to produce these results are given by the following:

Code 4.14 Model fitting with polynomials of varying degree.

En=zeros(100,M);
for jj=1:M

for j=1:jj
phi(:,j)=(x.’).^(j-1);

end
f=(x.^2).’;
for j=1:100
fn=(x.^2+0.1*randn(1,n)).’;
an=pinv(phi)*fn; fna=phi*an;
En(j,jj)=norm(f-fna)/norm(f);

end
end

Note that we have only swept through polynomials up to degree 10. Note further that panel
(c) of Fig. 4.15 is a detail of panel (b). The error produced by a simple parabolic fit is
approximately twice as good as a polynomial with degree 10. These results will help frame
our model selection framework of the remaining sections.

4.5 The Pareto Front and Lex Parsimoniae
The preceding chapters show that regression is more nuanced than simply choosing a model
and performing a least-square fit. Not only are there numerous metrics for constraining the
solution, the model itself should be carefully selected in order to achieve a better, more
interpretable description of the data. Such considerations on an appropriate model date
back to William of Occam (c. 1287–1347), who was an English Franciscan friar, scholastic
philosopher, and theologian. Occam proposed his law of parsimony (in latin lex parsi-
moniae), commonly known as Occam’s razor, whereby he stated that among competing
hypotheses, the one with the fewest assumptions should be selected, or when you have two
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competing theories that make exactly the same predictions, the simpler one is the more
likely. The philosophy of Occam’s razor has been used extensively throughout the physical
and biological sciences for developing governing equations to model observed phenomena.

Parsimony also plays a central role in the mathematical work of Vilfredo Pareo (c.
1848–1923). Pareto was an Italian engineer, sociologist, economist, political scientist, and
philosopher. He made several important contributions to economics, specifically in the
study of income distribution and in the analysis of individuals’ choices. He was also respon-
sible for popularizing the use of the term elite in social analysis. In more recent times, he
has become known for the popular 80/20 rule which is qualitatively illustrated in Fig. 4.16,
named after him as the Pareto principle by management consultant Joseph M. Juran in
1941. Stated simply, it is a common principle in business and consulting management
that, for instance, observes that 80% of sales come from 20% of clients. This concept
was popularized by Richard Koch’s book The 80/20 Principle [294] (along with several
follow-up books [295, 296, 297]), which illustrated a number of practical applications of
the Pareto principle in business management and life.

Pareto and Occam ultimately advocated the same philosophy: explain the majority of
observed data with a parsimonious model. Importantly, model selection is not simply about
reducing error, it is about producing a model that has a high degree of interpretability,
generalization and predictive capabilities. Fig. 4.16 shows the basic concept of the Pareto

Figure 4.16 For model selection, the criteria of accuracy (low error) is balanced against parsimony.
There can be a variety of models with the same number of terms (green and magenta points), but the
Pareto Frontier (magenta points) is defined by the envelope of models that produce the lowest error
for a given number of terms. The solid line provides an approximation to the Pareto frontier. The
Pareto optimal solutions (shaded region) are those models that produce accurate models while
remaining parsimonious.
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Frontier and Pareto Optimal solutions. Specifically, for each model considered, the number
of terms and the error in matching the data is computed. The solutions with the lowest error
for a given number of terms define the Pareto frontier. Those parsimonious solutions that
optimally balance error and complexity are in the shaded region and represent the Pareto
optimal solutions. In game theory, the Pareto optimal solution is thought of as a strategy
that cannot be made to perform better against one opposing strategy without performing
less well against another (in this case error and complexity). In economics, it describes a
situation in which the profit of one party cannot be increased without reducing the profit
of another. Our objective is to select, in an principled way, the best model from the space
of Pareto optimal solutions. To this end, information criteria, which will be discussed in
subsequent sections, will be used to select from candidate modes in the Pareto optimal
region.

Overfitting
The Pareto concept needs amending when considering application to real data. Specifically,
when building models with many free parameters, it is often the case in machine learning
applications with high-dimensional data, it is easy to overfit a model to the data. Indeed,
the increase in error illustrated in Fig. 4.15(c) as a function of increasing model complexity
illustrates this point. Thus, unlike what is depicted in Fig. 4.16 where the error goes
towards zero as the number of model terms (parameters) is increased, the error may actually
increase when considering models with a higher number of terms and/or parameters. To
determine the correct model, various cross-validation and model selection algorithms are
necessary.

To illustrate the overfitting that occurs with real data, consider the simple example of the
last section. In this example, we are simply trying to find the correct parabolic model mea-
sured with additive noise (4.43). The results of Figs. 4.15(b) and 4.15(c) already indicate
that overfitting is occurring for polynomial models beyond second order. The following
MATLAB example will highlight the effects of overfitting. Consider the following code
that produces a training and test set for the parabola of (4.43). The training set is on the
region x ∈ [0, 4] while the test set (extrapolation region) will be for x ∈ [4, 8].

Code 4.15 Parabolic model with training and test data.

n=200; L=8;
x=linspace(0,L,n);
x1=x(1:100); % train
x2=x(101:200); % test
n1=length(x1);
n2=length(x2);
ftrain=(x1.^2).’; % train parabola x=[0,4]
ftest=(x2.^2).’; % test parbola x=[4,5]
figure(1), subplot(3,1,1),
plot(x1,ftrain,’r’,x2,ftest,’b’,’Linewidth’,[2])

This code produces the ideal model on two distinct regions: x ∈ [0, 4] and x ∈ [4, 8].
Once measurement noise is added to the model, then the parameters for a polynomial fit no
longer produce the perfect parabolic model. We can compute for given noisy measurements
both an interpolation error, where measurements are taken in the data regime of x ∈ [0, 4],
and extrapolation error, where measurements are taken in the data regime of x ∈ [4, 8]. For
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this example, a least squares regression is performed using the pseudo-inverse (pinv) from
MATLAB.

Code 4.16 Overfitting a quadratic model.

M=30; % number of model terms
Eni=zeros(100,M); Ene=zeros(100,M);
for jj=1:M

for j=1:jj
phi_i(:,j)=(x1.’).^(j-1); % interpolation key
phi_e(:,j)=(x2.’).^(j-1); % extrapolation key

end

f=(x.^2).’;
for j=1:100

fni=(x1.^2+0.1*randn(1,n1)).’; % interpolation
fne=(x2.^2+0.1*randn(1,n2)).’; % extrapolation

ani=pinv(phi_i)*fni; fnai=phi_i*ani;
Eni(j,jj)=norm(ftrain-fnai)/norm(ftrain);

fnae=phi_e*ani; % use loadings from x in [0,4]
Ene(j,jj)=norm(ftest-fnae)/norm(ftest);

end
end

This simple example shows some of the most basic and common features associated
with overfitting of models. Specifically, overfitting does not allow for generalization. Con-
sider the results of Fig. 4.17 generated from the above code. In this example, the least-
square loadings (4.44) for a polynomial are computed using the pseudo-inverse for data
in the range x ∈ [0, 4]. The interpolation error for these loadings are demonstrated in
Figs. 4.17(b) and (c). Note the impact of overfitting by polynomials for this interpolation of
the data. Specifically, the error of the interpolated fit increases from beyond a second degree
polynomial. Extrapolation for an overfit model produces significant errors. Figs. 4.17(d)
and (e) show the error growth as a function of the least-square fit pth degree polynomial
model. The error in Fig. 4.17(d) is on a logarithmic plot since it grows to 1013. This
demonstrates a clear inability of the overfit model to generalize to the range x ∈ [4, 8].
Indeed, only a parsimonious model with a 2nd degree polynomial can easily generalize to
the range x ∈ [4, 8] while keeping the error small.

The above example shows that some form of model selection to systematically deduce
a parsimonious model is critical for producing viable models that can generalize outside
of where data is collected. Much of machine learning revolves around (i) using data to
generate predictive models, and (ii) cross-validation techniques to remove the most dele-
terious effects of overfitting. Without a cross-validation strategy, one will almost certainly
produce a nongeneralizable model such as that exhibited in Fig. 4.17. In what follows, we
will consider some standard strategies for producing reasonable models.

4.6 Model Selection: Cross-Validation
The previous section highlights many of the fundamental problems with regression. Specif-
ically, it is easy to overfit a model to the data, thus leading to a model that is incapable
of generalizing for extrapolation. This is an especially pernicious issue in training deep
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Figure 4.17 (a) The ideal model f (x)=x2 over the domain x ∈ [0, 8]. Data is collected in the region
x ∈ [0, 4] in order to build a polynomial regression model (4.44) with increasing polynomial degree.
In the interpolation regime x ∈ [0, 4], the model error stays constrained, with increasing error due to
overfitting for polynomials of degree greater than 2. The error is shown in panel (b) with a zoom in
of the error in panel (c). For extrapolation, x ∈ [4, 8], the error grows exponentially beyond a
parabolic fit. In panel (d), the error is shown to grow to 1013. A zoom in of the region on a
logarithmic scale of the error (log(E+1) where unity is added so that zero error produces a zero
score) shows the exponential growth of error. This clearly shows that the model trained on the
interval x ∈ [0, 4] does not generalize (extrapolate) to the region x ∈ [4, 8]. This example should
serve as a serious warning and note of caution in model fitting.

neural nets. To overcome the consequences of overfitting, various techniques have been
proposed to more appropriately select a parsimonious model with only a few parameters,
thus balancing the error with a model that can more easily generalize, or extrapolate.
This provides a reinterpretation of the Pareto front in Fig. 4.16. Specifically, the error
increases dramatically with the number of terms due to overfitting, especially when used
for extrapolation.

There are two common mathematical strategies for circumventing the effects of overfit-
ting in model selection: cross-validation and computing information criteria. This section
considers the former, while the later method is considered in the next section. Cross-
validation strategies are perhaps the most common and critical techniques in almost all
machine learning algorithms. Indeed, one should never trust a model unless properly cross-
validated. Cross-validation can be stated quite simply: Take random portions of your data
and build a model. Do this k times and average the parameter scores (regression loadings)
to produce the cross-validated model. Test the model predictions against withheld (extrap-
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olation) data and evaluate whether the model is actually any good. This commonly used
strategy is called k-fold cross-validation. It is simple, intuitively appealing, and the k-fold
model building procedure produces a statistically based model for evaluation.

To illustrate the concept of cross-validation, we will once again consider fitting polyno-
mial models to the simple function f (x) = x2 (See Fig. 4.18). The previous sections of
this chapter have already considered this problem in detail, both from the various regression
frameworks available (pseudo-inverse, LASSO, robust fit, etc..), as well as their ability to
accurately produce a model for interpolating and extrapolating data. The following MAT-
LAB code considers three regression techniques (least-square fitting of pseudo-inverse, the
QR-based backslash, and the sparsity promoting LASSO) for k-fold cross-validation (k =
2, 20 and 100). In this case, one can think of the k snapshots of data as trial measurements.
As one might expect, there would be an advantage as more trials are taken and k = 100
models are averaged for a final model.

Figure 4.18 Cross-validation using k-fold strategy with k = 2, 20 and 100 (left, middle and right
columns respectively). Three different regression strategies are cross-validated: least-square fitting
of pseudo-inverse, the QR-based backslash, and the sparsity promoting LASSO. Note that the
LASSO for this example produces the quadratic model within even a one or two fold validation. The
backslash based QR algorithm has a strong signature after 100-fold cross-validation, while the
least-square fitting suggests that the quadratic and cubic terms are both important even after
100-fold cross-validation.
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Code 4.17 k-fold cross-validation using 100 foldings.

n=100; L=4;
x=linspace(0,L,n);
f=(x.^2).’; % parabola with 100 data points

M=21; % polynomial degree
for j=1:M

phi(:,j)=(x.’).^(j-1); % build matrix A
end

trials=[2 10 100];
for j=1:3

for jj=1:trials(j)
f=(x.^2+0.2*randn(1,n)).’;
a1=pinv(phi)*f; f1=phi*a1; E1(jj)=norm(f-f1)/norm(f);
a2=phi\f; f2=phi*a2; E2(jj)=norm(f-f2)/norm(f);
[a3,stats]=lasso(phi,f,’Lambda’,0.1); f3=phi*a3; E3(jj)=

norm(f-f3)/norm(f);
A1(:,jj)=a1; A2(:,jj)=a2; A3(:,jj)=a3;

end
A1m=mean(A1.’); A2m=mean(A2.’); A3m=mean(A3.’);
Err=[E1; E2; E3];

subplot(3,3,j), bar(A1m), axis([0 21 -1 1.2])
subplot(3,3,3+j), bar(A2m), axis([0 21 -1 1.2])
subplot(3,3,6+j), bar(A3m), axis([0 21 -1 1.2])

end

Fig. 4.18 shows the results of the k-fold cross-validation computations. By promoting
sparsity (parsimony), the LASSO achieves the desired quadratic model after even a single
k = 1 fold (i.e. thus this is not even cross-validated). In contrast the least-square regression
(pseudo-inverse) and QR-based regression both require a significant number of folds to
produce the dominant quadratic term. The least-square regression, even after k = 100
folds, still includes both a quadratic and cubic term.

The final model selection process under k-fold cross-validation often can involve a
thresholding of terms that are small in the regression. The above code demonstrates the
regression on three regression strategies. Although the LASSO looks almost ideal, it still
has a small contributing linear component. The QR strategy of backslash produces a num-
ber of small components scattered among the polynomials used in the fit. The least-square
regression has the dominant quadratic and cubic terms with a large number of nonzero coef-
ficients scattered across the polynomials. If one thresholds the loadings, then the LASSO
and backslash will produce exactly the quadratic model, while the least-square fit produces
a quadratic-cubic model. The following code thresholds the loading coefficients and then
produces the final cross-validated model. This model can then be evaluated against both
the interpolated and extrapolated data regions as in Fig. 4.19.

Code 4.18 Comparison of cross-validated models.

Atot=[A1m; A2m; A3m]; % average loadings of three methods
Atot2=(Atot>0.2).*Atot; % threshold
Atot3=[Atot; Atot2]; % combine both thresholded and not

figure(3), bar3(Atot.’)
figure(4), bar3(Atot2.’)
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Figure 4.19 Error and loading results for k = 100 fold cross-validation. The loadings for the k-fold
validation (with thresholding denoted by subscript +, (b) and without (a) thresholding) are shown
for least-square fitting of pseudo-inverse, the QR-based backslash, and the sparsity promoting
LASSO (See Fig. 4.18). Both the (c) interpolation error (and detail in (e)) and (d) extrapolation error
(and detail in (f)) are computed. The LASSO performs well for both interpolation and extrapolation
while a least-square fit gives poor performance under extrapolation. The 6 models considered are: 1.
pseudo-inverse, 2. backslash, 3. LASSO, 4. thresholded pseudo-inverse, 5. thresholded backslash,
and 6. thresholded LASSO.

n=200; L=8;
x=linspace(0,L,n);
x1=x(1:100); % train (interpolation)
x2=x(101:200); % test (extrapolation)

ftrain=(x1.^2).’; % interpolated parabola x=[0,4]
ftest=(x2.^2).’; % extrapolated parbola x=[4,5]

for j=1:M
phi_i(:,j)=(x1.’).^(j-1); % interpolation key
phi_e(:,j)=(x2.’).^(j-1); % extrapolation key

end

for jj=1:6 % compute inter/extra-polation scores
ani=Atot3(jj,:).’;
fnai=phi_i*ani;
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Eni(jj)=norm(ftrain-fnai)/norm(ftrain);
fnae=phi_e*ani;
Ene(jj)=norm(ftest-fnae)/norm(ftest);

end

The results of Fig. 4.19 show that the model selection process, and the regression tech-
nique used, makes a critical difference in producing a viable model. It further shows that
despite a k-fold cross-validation, the extrapolation error, or generalizability, of the model
can still be poor. A good model is one that keeps errors small and also generalizes well, as
does the LASSO in the previous example.

k-fold Cross-Validation
The process of k-fold cross validation is highlighted in Fig. 4.20. The concept is to partition
a data set into a training set and a test set. The test set, or withhold set, is kept separate
from any training procedure for the model. Importantly, the test set is where the model
produces an extrapolation approximation, which the figures of the last two sections show
to be challenging. In k-fold cross-validation, the training data is further partitioned into k-
folds, which are typically randomly selected portions of the data. For instance, in standard
10-fold cross validation, the training data is randomly partitioned into 10 partitions (or
folds). Each partition is used to construct a regression model Yj = f (Xj ,βj ) for j =
1, 2, · · · , 10. One method for constructing the final model is to average the loading values
β̄ = (1/k)

∑k
j=1 βj , which are then used for the final, cross-validated regression model

Y=f (X, β̄). This model is then used on the withhold data to test its extrapolation power,
or generalizability. The error on this withhold test set is what determines the efficacy of the
model. There are a variety of other methods for selecting the best model, including simply
choosing the best of the k-fold models. As for partitioning the data, a common strategy is
to break the data into 70% training data, 20% validation data, and 10% withheld data. For
very large data sets, the validation and withheld can be reduced provided there is enough
data to accurately assess the model constructed.

Leave p-out Cross-Validation
Another standard technique for cross-validation involves the so-called leave p-out cross
validation (LpO CV). In this case, p-samples of the training data are removed from the
data and kept as the validation set. A model is built on the remaining training data and
the accuracy of the model is tested on the p withheld samples. This is repeated with a new
selection of p samples until all the training data has been part of the validation data set. The
accuracy of the model is then evaluated on the withheld data from averaging the accuracy
of the models and the loadings produced from the various partitions of the data.

4.7 Model Selection: Information Criteria
There is a different approach to model selection than the cross-validation strategies outlined
in the previous section. Indeed, model selection has a rigorous set of mathematical innova-
tions starting from the early 1950s. The Kullback-Leibler (KL) divergence [314] measures
the distance between two probability density distributions (or data sets which represent the
truth and a model) and is the core of modern information theory criteria for evaluating the
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Figure 4.20 Procedure for k-fold cross-validation of models. The data is initially partitioned into a
training and test (withold) set. Typically the withhold set is generated from a random sample of the
overall data. The training data is partitioned into k-folds whereby a random sub-selection of the
training data is collected in order to build a regression model Yj=f (Xj ,βj ). Importantly, each
model generates the loading parameters βj . After the k-fold models are generated, the best model

Y=f (X, β̄) is produced. There are different ways to get the best model, in some cases, it may be
appropriate to average the model parameters so that β̄ = (1/k)

∑k
j=1 βj . One could also simply

pick the best parameters from the k-fold set. In either case, the best model is then tested on the
withheld data to evaluate its viability.

viability of a model. The KL divergence has deep mathematical connections to statistical
methods characterizing entropy as developed by Ludwig E. Boltzmann (c. 1844-1906), as
well as a relation to information theory developed by Claude Shannon [486]. Model selec-
tion is a well developed field with a large body of literature, most of which is exceptionally
well reviewed by Burnham and Anderson [105]. In what follows, only brief highlights will
be given to demonstrate some of the standard methods.

The KL divergence between two models f (X,β) and g(X,μ) is defined as

I (f, g) =
∫

f (X,β) log

[
f (X,β)

g(X,μ)

]
dX (4.45)

where β and μ are parameterizations of the the models f (·) and g(·) respectively. From an
information theory perspective, the quantity I (f, g) measures the information lost when g

is used to represent f . Note that if f = g, then the log term is zero (i.e. log(1) = 0) and
I (f, g) = 0 so that there is no information lost. In practice, f will represent the truth, or
measurements of an experiment, while g will be a model proposed to describe f .

Unlike the regression and cross-validation performed previously, when computing KL
divergence a model must be specified. Recall that we used cross-validation previously to
generate a model using different regression strategies (See Fig. 4.20 for instance). Here
a number of models will be posited and the loss of information, or KL divergence,
of each model will be computed. The model with the lowest loss of information is
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generally regarded as the best model. Thus given M proposed models gj (X,μj ) where
j = 1, 2, · · · ,M , we can compute Ij (f, gj ) for each model. The correct model, or best
model, is the one that minimizes the information loss minj Ij (f, gj ).

As a simple example, consider Fig. 4.21 which shows three different models that are
compared to the truth data. To generate this figure, the following code was used. The
computation of the KL divergence score is also illustrated. Note that in order to avoid
division by zero, a constant offset is added to each probability distribution. The truth data
generated, f (x), is a simple normally distributed variable. The three models shown are
variants of normally and uniformly distributed functions.

Code 4.19 Computation of KL divergence.

n=10000;
x1=randn(n,1); % "truth" model (data)
x2=0.8*randn(n,1)+1; % model 1
x3=0.5*randn(n,1)-1; % model 3 components
x4=0.7*randn(n,1)-3;
x5=5*rand(n,1)-0.5;
x=-6:0.01:6; % range for data

f=hist(x1,x)+0.01; % generate PDFs
g1=hist(x2,x)+0.01;
g2a=hist(x3,x); g2b=hist(x4,x); g2=g2a+0.3*g2b+0.01;
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Figure 4.21 Comparison of three models g1(x), g2(x) and g3(x) against the truth model f (x). The
KL divergence Ij (f, gj ) for each model is computed, showing that the model g1(x) is closest to
statistically representing the true data.



4.7 Model Selection: Information Criteria 151

g3=hist(x5,x)+0.01;

f=f/trapz(x,f); % normalize data
g1=g1/trapz(x,g1); g2=g2/trapz(x,g2); g3=g3/trapz(x,g3);
plot(x,f,x,g1,x,g2,x,g3,’Linewidth’,[2])

% compute integrand
Int1=f.*log(f./g1); Int2=f.*log(f./g2); Int3=f.*log(f./g3);

% use if needed
%Int1(isinf(Int1))=0; Int1(isnan(Int1))=0;
%Int2(isinf(Int2))=0; Int2(isnan(Int2))=0;

% KL divergence
I1=trapz(x,Int1); I2=trapz(x,Int2); I3=trapz(x,Int3);

Information Criteria: AIC and BIC
This simple example shows the basic ideas behind model selection: compute a distance
between a proposed model output gj (x) and the measured truth f (x). In the early 1970s,
Hirotugu Akaike combined Fisher’s maximum likelihood computation [183] with the KL
divergence score to produce what is now called the Akaike Information Criterion (AIC) [7].
The was later modified by Gideon Schwarz to the so-called Bayesian Information Criterion
BIC [480] which provided an information score that was guaranteed to converge to the
correct model in the large data limit, provided the correct model was included in the set of
candidate models.

To be more precise, we turn to Akaike’s seminal contribution [7]. Akaike was aware
that KL divergence cannot be computed in practice since it requires full knowledge of
the statistics of the truth model f (x) and of all the parameters in the proposed models
gj (x). Thus, Akaike proposed an alternative way to estimate KL divergence based on the
empirical log-likelihood function at its maximum point. This is computable in practice and
was a critically enabling insight for rigorous methods of model selection. The technical
aspects of Akaike’s work connecting log-likehood estimates and KL divergence [7, 105]
was a paradigm shifting mathematical achievement, and thus led to the development of the
AIC score

AIC = 2K − 2 log
[
L(μ̂|x)

]
, (4.46)

where K is the number of parameters used in the model, μ̂ is an estimate of the best
parameters used (i.e. lowest KL divergence) in g(X,μ) computed from a maximum like-
lihood estimate (MLE), and x are independent samples of the data to be fit. Thus, instead
of a direct measure of the distance between two models, the AIC provides an estimate
of the relative distance between the approximating model and the true model or data. As
the number of terms gets large in a proposed model, the AIC score increases with slope
2K , thus providing a penalty for nonparsimonious models. Importantly, due to its relative
measure, it will always result in an objective “best" model with the lowest AIC score, but
this best model may still be quite poor in prediction and reconstruction of the data.

AIC is one of the standard model selection criteria used today. However, there are others.
Highlighted here is the modification of AIC by Gideon Schwarz to construct BIC [480].
BIC is almost identical to AIC aside from the penalization of the information criteria by
the number of terms. Specifically, BIC is defined as
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BIC = log(n)K − 2 log
[
L(μ̂|x)

]
, (4.47)

where n is the number of data points, or sample size, considered. This slightly different
version of the information criteria has one significant consequence. The seminal contri-
bution of Schwarz was to prove that if the correct model was included along with a set of
candidate models, then it would be theoretically guaranteed to be selected as the best model
based upon BIC for sufficiently large set of data x. This is in contrast to AIC for which in
certain pathological cases, it can select the wrong model.

Computing AIC and BIC Scores
MATLAB allows us to directly compute the AIC and/or BIC score from the aicbic com-
mand. This computational tool is embedded in the econometrics toolbox, and it allows
one to evaluate a set of models against one another. The evaluation is made from the log-
likelihood estimate of the models under consideration. An arbitrary number of models can
be compared.

In the specific example considered here, we consider a ground truth model constructed
from the autoregressive model

xn = −4 + 0.2xn−1 + 0.5xn−2 + N (0, 2) (4.48)

where xn is the value of the time series at time tn and N (0, 2) is a white-noise process
with mean zero and variance two. We fit three autoregressive integrated moving average
(ARIMA) models to the data. The three ARIMA models have one, two and three time
delays in their models. The following code computes their log-likelihood and correspond-
ing AIC and BIC scores.

Code 4.20 Computation of AIC and BIC scores.

T = 100; % Sample size
DGP = arima(’Constant’,-4,’AR’,[0.2, 0.5],’Variance’,2);
y = simulate(DGP,T);

EstMdl1 = arima(’ARLags’,1);
EstMdl2 = arima(’ARLags’,1:2);
EstMdl3 = arima(’ARLags’,1:3);

logL = zeros(3,1); % Preallocate loglikelihood vector
[~,~,logL(1)] = estimate(EstMdl1,y,’print’,false);
[~,~,logL(2)] = estimate(EstMdl2,y,’print’,false);
[~,~,logL(3)] = estimate(EstMdl3,y,’print’,false);

[aic,bic] = aicbic(logL, [3; 4; 5], T*ones(3,1))

Note that the best model, the one with both the lowest AIC and BIC score, is the second
model which has two time delays. This is expected as it corresponds to the ground truth
model. The output in this case is given by the following.

aic =
381.7732
358.2422
358.8479

bic =
389.5887
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368.6629
371.8737

The lowest AIC and BIC score is 358.2422 and 368.6629 respectively. Note that although
the correct model was selected, the AIC score provides little distinction between models,
especially the two and three time-delay models.
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5 Clustering and Classification

Machine learning is based upon optimization techniques for data. The goal is to find both
a low-rank subspace for optimally embedding the data, as well as regression methods
for clustering and classification of different data types. Machine learning thus provides
a principled set of mathematical methods for extracting meaningful features from data, i.e.
data mining, as well as binning the data into distinct and meaningful patterns that can be
exploited for decision making. Specifically, it learns from and makes predictions based
on data. For business applications, this is often called predictive analytics, and it is at the
forefront of modern data-driven decision making. In an integrated system, such as is found
in autonomous robotics, various machine learning components (e.g., for processing visual
and tactile stimulus) can be integrated to form what we now call artificial intelligence (AI).
To be explicit: AI is built upon integrated machine learning algorithms, which in turn are
fundamentally rooted in optimization.

There are two broad categories for machine learning: supervised machine learning and
unsupervised machine learning. In the former, the algorithm is presented with labelled
datasets. The training data, as outlined in the cross-validation method of the last chap-
ter, is labeled by a teacher/expert. Thus examples of the input and output of a desired
model are explicitly given, and regression methods are used to find the best model for the
given labeled data, via optimization. This model is then used for prediction and classifica-
tion using new data. There are important variants of supervised methods, including semi-
supervised learning in which incomplete training is given so that some of the input/output
relationships are missing, i.e. for some input data, the actual output is missing. Active
learning is another common subclass of supervised methods whereby the algorithm can
only obtain training labels for a limited set of instances, based on a budget, and also has
to optimize its choice of objects to acquire labels for. In an interactive framework, these
can be presented to the user for labeling. Finally, in reinforcement learning, rewards or
punishments are the training labels that help shape the regression architecture in order to
build the best model. In contrast, no labels are given for unsupervised learning algorithms.
Thus, they must find patterns in the data in a principled way in order to determine how to
cluster data and generate labels for predicting and classifying new data. In unsupervised
learning, the goal itself may be to discover patterns in the data embedded in the low-
rank subspaces so that feature engineering or feature extraction can be used to build an
appropriate model.

In this chapter, we will consider some of the most commonly used supervised and
unsupervised machine learning methods. As will be seen, our goal is to highlight how
data mining can produce important data features (feature engineering) for later use in
model building. We will also show that the machine learning methods can be broadly used

154
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for clustering and classification, as well as for building regression models for prediction.
Critical to all of this machine learning architecture is finding low-rank feature spaces that
are informative and interpretable.

5.1 Feature Selection and Data Mining
To exploit data for diagnostics, prediction and control, dominant features of the data must
be extracted. In the opening chapter of this book, SVD and PCA were introduced as
methods for determining the dominant correlated structures contained within a data set. In
the eigenfaces example of Section 1.6, for instance, the dominant features of a large number
of cropped face images were shown. These eigenfaces, which are ordered by their ability
to account for commonality (correlation) across the data base of faces was guaranteed to
give the best set of r features for reconstructing a given face in an 
2 sense with a rank-r
truncation. The eigenface modes gave clear and interpretable features for identifying faces,
including highlighting the eyes, nose and mouth regions as might be expected. Importantly,
instead of working with the high-dimensional measurement space, the feature space allows
one to consider a significantly reduced subspace where diagnostics can be performed.

The goal of data mining and machine learning is to construct and exploit the intrinsic
low-rank feature space of a given data set. The feature space can be found in an unsu-
pervised fashion by an algorithm, or it can be explicitly constructed by expert knowledge
and/or correlations among the data. For eigenfaces, the features are the PCA modes gen-
erated by the SVD. Thus each PCA mode is high-dimensional, but the only quantity of
importance in feature space is the weight of that particular mode in representing a given
face. If one performs an r-rank truncation, then any face needs only r features to represent it
in feature space. This ultimately gives a low-rank embedding of the data in an interpretable
set of r features that can be leveraged for diagnostics, prediction, reconstruction and/or
control.

Several examples will be developed that illustrate how to generate a feature space,
starting with a standard data set included with MATLAB. The Fisher iris data set includes
measurements of 150 irises of three varieties: setosa, versicolor, and virginica. The 50
samples of each flower include measurements in centimeters of the sepal length, sepal
width, petal length, and petal width. For this data set, the four features are already defined
in terms of interpretable properties of the biology of the plants. For visualization purposes,
Fig. 5.1 considers only the first three of these features. The following code accesses the
Fisher iris data set:

Code 5.1 Features of the Fisher irises.

load fisheriris;
x1=meas(1:50,:); % setosa
x2=meas(51:100,:); % versicolor
x3=meas(101:150,:); % virginica

plot3(x1(:,1),x1(:,2),x1(:,4),’go’), hold on
plot3(x2(:,1),x2(:,2),x2(:,4),’mo’)
plot3(x3(:,1),x3(:,2),x3(:,4),’ro’)

Fig. 5.1 shows that the properties measured can be used as a good set of features for
clustering and classification purposes. Specifically, the three iris varieties are well separated
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Figure 5.1 Fisher iris data set with 150 measurements over three varieties including 50 measurements
each of setosa, versicolor, and virginica. Each flower includes a measurement of sepal length, sepal
width, petal length, and petal width. The first three of these are illustrated here showing that these
simple biological features are sufficient to show that the data has distinct, quantifiable differences
between the species.

in this feature space. The setosa iris is most distinctive in its feature profile, while the
versicolor and virginica have a small overlap among the samples taken. For this data set,
machine learning is certainly not required to generate a good classification scheme. How-
ever, data generally does not so readily reduce down to simple two- and three-dimensional
visual cues. Rather, decisions about clustering in feature space occur with many more
variables, thus requiring the aid of computational methods to provide good classification
schemes.

As a second example, we consider in Fig. 5.2 a selection from an image database of 80
dogs and 80 cats. A specific goal for this data set is to develop an automated classification
method whereby the computer can distinguish between cats and dogs. In this case, the data
for each cat and dog is the 64×64 pixel space of the image. Thus each image has 4096
measurements, in contrast to the 4 measurements for each example in the iris data set. Like
eigenfaces, we will use the SVD to extract the dominant correlations among the images.
The following code loads the data and performs a singular value decomposition on the data
after the mean is subtracted. The SVD produces an ordered set of modes characterizing the
correlation between all the dog and cat images. Fig. 5.3 shows the first four SVD modes of
the 160 images (80 dogs and 80 cats).

Code 5.2 Features of dogs and cats.

load dogData.mat
load catData.mat
CD=double([dog cat]);
[u,s,v]=svd(CD-mean(CD(:)),’econ’);
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Figure 5.2 Example images of dogs (left) and cats (right). Our goal is to construct a feature space
where automated classification of these images can be efficiently computed.

Figure 5.3 First four features (a)-(d) generated from the SVD of the 160 images of dogs and cats, i.e.
these are the first four columns of the U matrix of the SVD. Typical cat and dog images are shown
in Fig. 5.2. Note that the first two modes (a) and (b) show that the triangular ears are important
features when images are correlated. This is certainly a distinguishing feature for cats, while dogs
tend to lack this feature. Thus in feature space, cats generally add these two dominant modes to
promote this feature while dogs tend to subtract these features to remove the triangular ears from
their representation.

The original image space, or pixel space, is only one potential set of data to work with.
The data can be transformed into a wavelet representation where edges of the images are
emphasized. The following code loads in the images in their wavelet representation and
computes a new low-rank embedding space.
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Figure 5.4 First four features (a)-(d) generated from the SVD of the 160 images of dogs and cats in
the wavelet domain. As before, the first two modes (a) and (b) show that the triangular ears are
important. This is an alternative representation of the dogs and cats that can help better classify dogs
versus cats.

Code 5.3 Wavelet features of dogs and cats.

load catData_w.mat
load dogData_w.mat
CD2=[dog_wave cat_wave];
[u2,s2,v2]=svd(CD2-mean(CD2(:)),’econ’);

The equivalent of Fig. 5.3 in wavelet space is shown in Fig. 5.4. Note that the wavelet rep-
resentation helps emphasize many key features such as the eyes, nose, and ears, potentially
making it easier to make a classification decision. Generating a feature space that enables
classification is critical for constructing effective machine learning algorithms.

Whether using the image space directly or a wavelet representation, Figs. 5.3 and 5.4
respectively, the goal is to project the data onto the feature space generated by each. A
good feature space helps find distinguishing features that allow one to perform a variety
of tasks that may include clustering, classification, and prediction. The importance of each
feature to an individual image is given by the V matrix in the SVD. Specifically, each
column of V determines the loading, or weighting, of each feature onto a specific image.
Histograms of these loadings can then be used to visualize how distinguishable cats and
dogs are from each other by each feature (See Fig. 5.5). The following code produces a
histogram of the distribution of loadings for the dogs and the cats (first 80 images versus
second 80 images respectively).

Code 5.4 Feature histograms of dogs and cats.

xbin=linspace(-0.25,0.25,20);
for j=1:4
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Figure 5.5 Histogram of the distribution of loadings for dogs (blue) and cats (red) on the first four
dominant SVD modes. The left panel shows the distributions for the raw images (See Fig. 5.3) while
the right panels show the distribution for wavelet transformed data (See Fig. 5.4. The loadings come
from the columns of the V matrix of the SVD. Note the good separability between dogs and cats
using the second mode.

subplot(4,2,2*j-1)
pdf1=hist(v(1:80,j),xbin)
pdf2=hist(v(81:160,j),xbin)
plot(xbin,pdf1,xbin,pdf2,’Linewidth’,[2])

end

Fig. 5.5 shows the distribution of loading scores for the first four modes for both the raw
images as well as the wavelet transformed images. For both the sets of images, the distri-
bution of loadings on the second mode clearly shows a strong separability between dogs
and cats. The wavelet processed images also show a nice separability on the fourth mode.
Note that the first mode for both shows very little discrimination between the distributions
and is thus not useful for classification and clustering objectives.

Features that provide strong separability between different types of data (e.g. dogs and
cats) are typically exploited for machine learning tasks. This simple example shows that
feature engineering is a process whereby an initial data exploration is used to help iden-
tify potential pre-processing methods. These features can then help the computer identify
highly distinguishable features in a higher-dimensional space for accurate clustering, clas-
sification and prediction. As a final note, consider Fig. 5.6 which projects the dog and cat
data onto the first three PCA modes (SVD modes) discovered from the raw images or their
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Figure 5.6 Projection of dogs (green) and cats (magenta) into feature space. Note that the raw images
and their wavelet counterparts produce different embeddings of the data. Both exhibit clustering
around their labeled states of dog and cat. This is exploited in the learning algorithms that follow.
The wavelet images are especially good for clustering and classification as this feature space more
easily separates the data.

wavelet transformed counterparts. As will be seen later, the wavelet transformed images
provide a higher degree of separability, and thus improved classification.

5.2 Supervised versus Unsupervised Learning
As previously stated, the goal of data mining and machine learning is to construct and
exploit the intrinsic low-rank feature space of a given data set. Good feature engineering
and feature extraction algorithms can then be used to learn classifiers and predictors for
the data. Two dominant paradigms exist for learning from data: supervised methods and
unsupervised methods. Supervised data-mining algorithms are presented with labeled data
sets, where the training data is labeled by a teacher/expert/supervisor. Thus examples of the
input and output of a desired model are explicitly given, and regression methods are used
to find the best model via optimization for the given labeled data. This model is then used
for prediction and classification using new data. There are important variants of this basic
architecture which include semi-supervised learning, active learning and reinforcement
learning. For unsupervised learning algorithms, no training labels are given so that an
algorithm must find patterns in the data in a principled way in order to determine how to
cluster and classify new data. In unsupervised learning, the goal itself may be to discover
patterns in the data embedded in the low-rank subspaces so that feature engineering or
feature extraction can be used to build an appropriate model.

To illustrate the difference in supervised versus unsupervised learning, consider Fig. 5.7.
This shows a scatter plot of two Gaussian distributions. In one case, the data is well
separated so that their means are sufficiently far apart and two distinct clusters are observed.
In the second case, the two distributions are brought close together so that separating the
data is a challenging task. The goal of unsupervised learning is to discover clusters in
the data. This is a trivial task by visual inspection, provided the two distributions are
sufficiently separated. Otherwise, it becomes very difficult to distinguish clusters in the
data. Supervised learning provides labels for some of the data. In this case, points are either
labeled with green dots or magenta dots and the task is to classify the unlabeled data (grey
dots) as either green or magenta. Much like the unsupervised architecture, if the statistical
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Figure 5.7 Illustration of unsupervised versus supervised learning. In the left panels (a) and (c),
unsupervised learning attempts to find clusters for the data in order to classify them into two groups.
For well separated data (a), the task is straightforward and labels can easily be produced. For
overlapping data (c), it is a very difficult task for an unsupervised algorithm to accomplish. In the
right panels (b) and (d), supervised learning provides a number of labels: green balls and magenta
balls. The remaining unlabeled data is then classified as green or magenta. For well separated data
(b), labeling data is easy, while overlapping data presents significant challenge.

distributions that produced the data are well separated, then using the labels in combination
with the data provides a simple way to classify all the unlabeled data points. Supervised
algorithms also perform poorly if the data distributions have significant overlap.

Supervised and unsupervised learning can be stated mathematically. Let

D ⊂ Rn (5.1)

so that D is an open bounded set of dimension n. Further, let

D′ ⊂ D . (5.2)

The goal of classification is to build a classifier labeling all data in D given data from D′.
To make our problem statement more precise, consider a set of data points xj ∈ Rn and

labels yj for each point where j = 1, 2, · · · ,m. Labels for the data can come in many
forms, from numeric values, including integer labels, to text strings. For simplicity, we will
label the data in a binary way as either plus or minus one so that yj ∈ {±1}.
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For unsupervised learning, the following inputs and outputs are then associated with
learning a classification task

Input

data
{
xj ∈ Rn, j ∈ Z := {1, 2, · · · ,m}} (5.3a)

Output

labels
{
yj ∈ {±1}, j ∈ Z

}
. (5.3b)

Thus the mathematical framing of unsupervised learning is focused on producing labels
yj for all the data. Generally, the data xj used for training the classifier is from D′. The
classifier is then more broadly applied, i.e. it generalizes, to the open bounded domain D.
If the data used to build a classifier only samples a small portion of the larger domain, then
it is often the case that the classifier will not generalize well.

Supervised learning provides labels for the training stage. The inputs and outputs for this
learning classification task can be stated as follows

Input

data
{
xj ∈ Rn, j ∈ Z := {1, 2, · · · ,m}} (5.4a)

labels
{
yj ∈ {±1}, j ∈ Z′ ⊂ Z

}
(5.4b)

Output

labels
{
yj ∈ {±1}, j ∈ Z

}
. (5.4c)

In this case, a subset of the data is labeled and the missing labels are provided for the
remaining data. Technically speaking, this is a semi-supervised learning task since some of
the training labels are missing. For supervised learning, all the labels are known in order to
build the classifier on D′. The classifier is then applied to D. As with unsupervised learning,
if the data used to build a classifier only samples a small portion of the larger domain, then
it is often the case that the classifier will not generalize well.

For the data sets considered in our feature selection and data mining section, we can
consider in more detail the key components required to build a classification model: xj , yj ,
D and D′. The Fisher iris data of Fig. 5.1 is a classic example for which we can detail these
quantities. We begin with the data collected

xj = {sepal length, sepal width, petal length, petal width} . (5.5)

Thus each iris measurement contains four data fields, or features, for our analysis. The
labels can be one of the following

yj = {setosa, versicolor, virginica} . (5.6)

In this case the labels are text strings, and there are three of them. Note that in our formula-
tion of supervised and unsupervised learning, there were only two outputs (binary) which
were labeled either ±1. Generally, there can be many labels, and they are often text strings.
Finally, there is the domain of the data. For this case

D′ ∈ {150 iris samples: 50 setosa, 50 versicolor, and 50 virginica} (5.7)
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and

D ∈ {the universe of setosa, versicolor and virginica irises}. (5.8)

We can similarly assess the dog and cat data as follows:

xj = {64×64 image= 4096 pixels} (5.9)

where each dog and cat is labeled as

yj = {dog, cat} = {1, -1} . (5.10)

In this case the labels are text strings which can also be translated to numeric values. This
is consistent with our formulation of supervised and unsupervised learning where there are
only two outputs (binary) labeled either ±1. Finally, there is the domain of the data which is

D′ ∈ {160 image samples: 80 dogs and 80 cats} (5.11)

and

D ∈ {the universe of dogs and cats}. (5.12)

Supervised and unsupervised learning methods aim to either create algorithms for clas-
sification, clustering, or regression. The discussion above is a general strategy for classi-
fication. The previous chapter discusses regression architectures. For both tasks, the goal
is to build a model from data on D′ that can generalize to D. As already shown in the
preceding chapter on regression, generalization can be very difficult and cross-validation
strategies are critical. Deep neural networks, which are state-of-the-art machine learning
algorithms for regression and classification, often have difficulty generalizing. Creating
strong generalization schemes is at the forefront of machine learning research.

Some of the difficulties in generalization can be illustrated in Fig. 5.8. These data sets,
although easily classified and clustered through visual inspection can be difficulty for many
regression and classification schemes. Essentially, the boundary between the data forms a
nonlinear manifold that is often difficult to characterize. Moreover, if the sampling data
D′ only captures a portion of the manifold, then a classification or regression model will

Figure 5.8 Classification and regression models for data can be difficult when the data have nonlinear
functions which separate them. In this case, the function separating the green and magenta balls can
be difficult to extract. Moreover, if only a small sample of the data D′ is available, then a
generalizable model may be impossible to construct for D. The left data set (a) represents two
half-moon shapes that are just superimposed while the concentric rings in (b) requires a circle as a
separation boundary between the data. Both are challenging to produce.
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almost surely fail in characterizing D. These are also only two-dimensional depictions of a
classification problem. It is not difficult to imagine how complicated such data embeddings
can be in higher dimensional space. Visualization in such cases is essentially impossible
and one must rely on algorithms to extract the meaningful boundaries separating data. What
follows in this chapter and the next are methods for classification and regression given data
on D′ that may or may not be labelled. There is quite a diversity of mathematical methods
available for performing such tasks.

5.3 Unsupervised Learning: k-means Clustering
A variety of supervised and unsupervised algorithms will be highlighted in this chapter. We
will start with one of the most prominent unsupervised algorithms in use today: k-means
clustering. The k-means algorithm assumes one is given a set of vector valued data with the
goal of partitioning m observations into k clusters. Each observation is labeled as belonging
to a cluster with the nearest mean, which serves as a proxy (prototype) for that cluster. This
results in a partitioning of the data space into Voronoi cells.

Although the number of observations and dimension of the system are known, the num-
ber of partitions k is generally unknown and must also be determined. Alternatively, the
user simply chooses a number of clusters to extract from the data. The k-means algorithm
is iterative, first assuming initial values for the mean of each cluster and then updating
the means until the algorithm has converged. Fig. 5.9 depicts the update rule of the k-
means algorithm. The algorithm proceeds as follows: (i) given initial values for k distinct
means, compute the distance of each observation xj to each of the k means. (ii) Label each
observation as belonging to the nearest mean. (iii) Once labeling is completed, find the
center-of-mass (mean) for each group of labeled points. These new means are then used to

Figure 5.9 Illustration of the k-means algorithm for k = 2. Two initial starting values of the man are
given (black +). Each point is labeled as belonging to one of the two means. The green balls are
thus labeled as part of the cluster with the left + and the magenta balls are labeled as part of the
right +. Once labeled, the mean of the two clusters is recomputed (red +). The process is repeated
until the means converge.
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start back at step (i) in the algorithm. This is a heuristic algorithm that was first proposed
by Stuart Lloyd in 1957 [339], although it was not published until 1982.

The k-means objective can be stated formally in terms of an optimization problem.
Specifically, the following minimization describes this process

argmin
μj

k∑
j=1

∑
xj ∈D′

j

‖xj − μj‖2 (5.13)

where the μj denote the mean of the j th cluster and D′
j denotes the subdomain of data

associated with that cluster. This minimizes the within-cluster sum of squares. In gen-
eral, solving the optimization problem as stated is NP-hard, making it computationally
intractable. However, there a number of heuristic algorithms that provide good performance
despite not having a guarantee that they will converge to the globally optimal solution.

Cross-validation of the k-means algorithm, as well as any machine learning algorithm,
is critical for determining its effectiveness. Without labels the cross validation procedure is
more nuanced as there is no ground truth to compare with. The cross-validation methods of
the last section, however, can still be used to test the robustness of the classifier to different
sub-selections of the data through k-fold cross-validation. The following portions of code
generate Lloyd’s algorithm for k-means clustering. We first consider making two clusters
of data and partitioning the data into a training and test set.

Code 5.5 k-means data generation.

% training & testing set sizes
n1=100; % training set size
n2=50; % test set size

% random ellipse 1 centered at (0,0)
x=randn(n1+n2,1); y=0.5*randn(n1+n2,1);

% random ellipse 2 centered at (1,-2) and rotated by theta
x2=randn(n1+n2,1)+1; y2=0.2*randn(n1+n2,1)-2; theta=pi/4;
A=[cos(theta) -sin(theta); sin(theta) cos(theta)];
x3=A(1,1)*x2+A(1,2)*y2; y3=A(2,1)*x2+A(2,2)*y2;
subplot(2,2,1)
plot(x(1:n1),y(1:n1),’ro’), hold on
plot(x3(1:n1),y3(1:n1),’bo’)

% training set: first 200 of 240 points
X1=[x3(1:n1) y3(1:n1)];
X2=[x(1:n1) y(1:n1)];

Y=[X1; X2]; Z=[ones(n1,1); 2*ones(n1,1)];

% test set: remaining 40 points
x1test=[x3(n1+1:end) y3(n1+1:end)];
x2test=[x(n1+1:end) y(n1+1:end)];

Fig. 5.11 shows the data generated from two distinct Gaussian distributions. In this case,
we have ground truth data to check the k-means clustering against. In general, this is not
the case. The Lloyd algorithm guesses the number of clusters and the initial cluster means
and then proceeds to update them in an iterative fashion. k-means is sensitive to the initial
guess and many modern versions of the algorithm also provide principled strategies for
initialization.
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Figure 5.10 Illustration of the k-means iteration procedure based upon Lloyd’s algorithm [339]. Two
clusters are sought so that k = 2. The initial guesses (black circles in panel (a)) are used to initially
label all the data according to their distance from each initial guess for the mean. The means are
then updated by computing the means of the newly labeled data. This two-stage heuristic converges
after approximately four iterations.

Code 5.6 Lloyd algorithm for k-means.

g1=[-1 0]; g2=[1 0]; % Initial guess
for j=1:4

class1=[]; class2=[];
for jj=1:length(Y)

d1=norm(g1-Y(jj,:));
d2=norm(g2-Y(jj,:));
if d1<d2

class1=[class1; [Y(jj,1) Y(jj,2)]];
else

class2=[class2; [Y(jj,1) Y(jj,2)]];
end

end
g1=[mean(class1(1:end,1)) mean(class1(1:end,2))];
g2=[mean(class2(1:end,1)) mean(class2(1:end,2))];

end

Fig. 5.10 shows the iterative procedure of the k-means clustering. The two initial guesses
are used to initially label all the data points (Fig. 5.10(a)). New means are computed and the
data relabeled. After only four iterations, the clusters converge. This algorithm was explic-
itly developed here to show how the iteration procedure rapidly provides an unsupervised
labeling of all of the data. MATLAB has a built in k-means algorithm that only requires a
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Figure 5.11 k-means clustering of the data using MATLAB’s means command. Only the data and
number of clusters need be specified. (a) The training data is used to produce a decision line (black
line) separating the clusters. Note that the line is clearly not optimal. The classification line can then
be used on withheld data to test the accuracy of the algorithm. For the test data, one (of 50) magenta
ball would be mislabeled while six (of 50) green balls are mislabeled.

data matrix and the number of clusters desired. It is simple to use and provides a valuable
diagnostic tool for data. The following code uses the MATLAB command mean and also
extracts the decision line generated from the algorithm separating the two clusters.

Code 5.7 k-means using MATLAB.

% kmeans code
[ind,c]=kmeans(Y,2);
plot(c(1,1),c(1,2),’k*’,’Linewidth’,[2])
plot(c(2,1),c(2,2),’k*’,’Linewidth’,[2])

midx=(c(1,1)+c(2,1))/2; midy=(c(1,2)+c(2,2))/2;
slope=(c(2,2)-c(1,2))/(c(2,1)-c(1,1)); % rise/run
b=midy+(1/slope)*midx;
xsep=-1:0.1:2; ysep=-(1/slope)*xsep+b;

figure(1), subplot(2,2,1), hold on
plot(xsep,ysep,’k’,’Linewidth’,[2]),axis([-2 4 -3 2])

% error on test data
figure(1), subplot(2,2,2)
plot(x(n1+1:end),y(n1+1:end),’ro’), hold on
plot(x3(n1+1:end),y3(n1+1:end),’bo’)
plot(xsep,ysep,’k’,’Linewidth’,[2]), axis([-2 4 -3 2])

Fig. 5.11 shows the results of the k-means algorithm and depicts the decision line sep-
arating the data into two clusters. The green and magenta balls denote the true labels of
the data, showing that the k-means line does not correctly extract the labels. Indeed, a
supervised algorithm is more proficient in extracting the ground truth results, as will be
shown later in this chapter. Regardless, the algorithm does get a majority of the data labeled
correctly.

The success of k-means is based on two factors: (i) no supervision is required, and (ii) it
is a fast heuristic algorithm. The example here shows that the method is not very accurate,
but this is often the case in unsupervised methods as the algorithm has limited knowledge
of the data. Cross-validation efforts, such as k-fold cross-validation, can help improve the
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model and make the unsupervised learning more accurate, but it will generally be less
accurate than a supervised algorithm that has labeled data.

5.4 Unsupervised Hierarchical Clustering: Dendrogram
Another commonly used unsupervised algorithm for clustering data is a dendrogram.
Like k-means clustering, dendrograms are created from a simple hierarchical algorithm,
allowing one to efficiently visualize if data is clustered without any labeling or supervision.
This hierarchical approach will be applied to the data illustrated in Fig. 5.12 where a ground
truth is known. Hierarchical clustering methods are generated either from a top-down or a
bottom-up approach. Specifically, they are one of two types:

Agglomerative: Each data point xj is its own cluster initially. The data is merged in pairs
as one creates a hierarchy of clusters. The merging of data eventually stops once all the data
has been merged into a single über cluster. This is the bottom-up approach in hierarchical
clustering.

Divisive: In this case, all the observations xj are initially part of a single giant cluster. The
data is then recursively split into smaller and smaller clusters. The splitting continues until
the algorithm stops according to a user specified objective. The divisive method can split
the data until each data point is its own node.

In general, the merging and splitting of data is accomplished with a heuristic, greedy
algorithm which is easy to execute computationally. The results of hierarchical clustering
are usually presented in a dendrogram.
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Figure 5.12 Example data used for construction of a dendrogram. The data is constructed from two
Gaussian distributions (50 points each) that are easy to discern through a visual inspection. The
dendrogram will produce a hierarchy that ideally would separate green balls from magenta balls.
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Figure 5.13 Illustration of the agglomerative hierarchical clustering scheme applied to four data
points. In the algorithm, the distance between the four data points is computed. Initially the
Euclidian distance between points 2 and 3 is closest. Points 2 and 3 are now merged into a point
mid-way between them and the distances are once again computed. The dendrogram on the right
shows how the process generates a summary (dendrogram) of the hierarchical clustering. Note that
the length of the branches of the dendrogram tree are directly related to the distance between the
merged points.

In this section, we will focus on agglomerative hierarchical clustering and the dendro-
gram command from MATLAB. Like the Lloyd algorithm for k-means clustering, building
the dendrogram proceeds from a simple algorithmic structure based on computing the
distance between data points. Although we typically use a Euclidean distance, there are
a number of important distance metrics one might consider for different types of data.
Some typical distances are given as follows:

Euclidean distance ‖xj − xk‖2 (5.14a)

Squared Euclidean distance ‖xj − xk‖2
2 (5.14b)

Manhattan distance ‖xj − xk‖1 (5.14c)

Maximum distance ‖xj − xk‖∞ (5.14d)

Mahalanobis distance
√

(xj − xk)T C−1(xj − xk) (5.14e)

where C−1 is the covariance matrix. As already illustrated in the previous chapter, the
choice of norm can make a tremendous difference for exposing patterns in the data that can
be exploited for clustering and classification.

The dendrogram algorithm is shown in Fig. 5.13. The algorithm is as follows: (i) the dis-
tance between all m data points xj is computed (the figure illustrates the use of a Euclidian
distance), (ii) the closest two data points are merged into a single new data point midway
between their original locations, and (iii) repeat the calculation with the new m − 1 points.
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Figure 5.14 Dendrogram structure produced from the data in Fig. 5.12. The dendrogram shows
which points are merged as well as the distance between points. Two clusters are generated for this
level of threshold.

The algorithm continues until the data has been hierarchically merged into a single data
point.

The following code performs a hierarchical clustering using the dendrogram command
from MATLAB. The example we use is the same as that considered for k-means clustering.
Fig. 5.12 shows the data under consideration. Visual inspection shows two clear clusters
that are easily discernible. As with k-means, our goal is to see how well a dendrogram can
extract the two clusters.

Code 5.8 Dendrogram for unsupervised clustering.

Y3=[X1(1:50,:); X2(1:50,:)];
Y2 = pdist(Y3,’euclidean’);
Z = linkage(Y2,’average’);
thresh=0.85*max(Z(:,3));
[H,T,O]=dendrogram(Z,100,’ColorThreshold’,thresh);

Fig. 5.14 shows the dendrogram associated with the data in Fig. 5.12. The structure of
the algorithm shows which points are merged as well as the distance between points. The
threshold command is important in labeling where each point belongs in the hierarchical
scheme. By setting the threshold at different levels, there can be more or fewer clusters
in the dendrogram. The following code uses the output of the dendrogram to show how
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Figure 5.15 Clustering outcome from dendrogram routine. This is a summary of Fig. 5.14, showing
how each of the points was clustered through the distance metric. The horizontal red dotted line
shows where the ideal separation should occur. The first 50 points (green dots of Fig. 5.12) should
be grouped so that they are below the red horizontal line in the lower left quadrant. The second 50
points (magenta dots of Fig. 5.12) should be grouped above the red horizontal line in the upper right
quadrant. In summary, the dendrogram only misclassified two green points and two magenta points.

the data was labeled. Recall that the first 50 data points are from the green cluster and the
second 50 data points are from the magenta cluster.

Code 5.9 Dendrogram labels for cats and dogs.

bar(O), hold on
plot([0 100],[50 50],’r:’,’Linewidth’,2)
plot([50.5 50.5],[0 100],’r:’,’Linewidth’,2)

Fig. 5.15 shows how the data was clustered in the dendrogram. If perfect clustering had
been achieved, then the first 50 points would have been below the horizontal dotted red
line while the second 50 points would have been above the horizontal dotted red line. The
vertical dotted red line is the line separating the green dots on the left from the magenta
dots on the right.

The following code shows how a greater number of clusters are generated by adjusting
the threshold in the dendrogram command. This is equivalent to setting the number of
clusters in k-means to something greater than two. Recall that one rarely has a ground truth
to compare with when doing unsupervised clustering, so tuning the threshold becomes
important.

thresh=0.25*max(Z(:,3));
[H,T,O]=dendrogram(Z,100,’ColorThreshold’,thresh);
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Figure 5.16 Dendrogram structure produced from the data in Fig. 5.12 with a different threshold used
than in Fig. 5.14. The dendrogram shows which points are merged as well as the distance between
points. In this case, more than a dozen clusters are generated.

Fig. 5.16 shows a new dendrogram with a different threshold. Note that in this case,
the hierarchical clustering produces more than a dozen clusters. The tuning parameter
can be seen to be critical for unsupervised clustering, much like choosing the number
of clusters in k-means. In summary, both k-means and hierarchical clustering provide a
method whereby data can be parsed automatically into clusters. This provides a starting
point for interpretations and analysis in data mining.

5.5 Mixture Models and the Expectation-Maximization Algorithm
The third unsupervised method we consider is known as finite mixture models. Often the
models are assumed to be Gaussian distributions in which case this method is known
as Gaussian mixture models (GMM). The basic assumption in this method is that data
observations xj are a mixture of a set of k processes that combine to form the measurement.
Like k-means and hierarchical clustering, the GMM model we fit to the data requires that
we specify the number of mixtures k and the individual statistical properties of each mixture
that best fit the data. GMMs are especially useful since the assumption that each mixture
model has a Gaussian distribution implies that it can be completely characterized by two
parameters: the mean and the variance.
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The algorithm that enables the GMM computes the maximum-likelihood using the
famous Expectation-Maximization (EM) algorithm of Dempster, Laird and Rubin [148].
The EM algorithm is designed to find maximum likelihood parameters of statistical models.
Generally, the iterative structure of the algorithm finds a local maximum-likelihood, which
estimates the true parameters that cannot be directly solved for. As with most data, the
observed data involves many latent or unmeasured variables and unknown parameters.
Regardless, the alternating and iterative construction of the algorithm recursively estimates
the best parameters possible from an initial guess. The EM algorithm proceeds like the k-
means algorithm in that initial guesses for the mean and variance are given for the assumed
k-distributions. The algorithm then recursively updates the weights of the mixtures versus
the parameters of each mixture. One alternates between these two until convergence is
achieved.

In any such iteration scheme, it is not obvious that the solution will converge, or that
the solution is good, since it typically falls into a local value of the maximum-likelihood.
But it can be proven that in this context it does converge, and that the derivative of the
likelihood is arbitrarily close to zero at that point, which in turn means that the point is
either a maximum or a saddle point [561]. In general, multiple maxima may occur, with no
guarantee that the global maximum will be found. Some likelihoods also have singularities,
i.e., nonsensical maxima. For example, one of the solutions that may be found by EM in a
mixture model involves setting one of the components to have zero variance and the mean
equal to one of the data points. Cross-validation can often alleviate some of the common
pitfalls that can occur by initializing the algorithm with some bad initial guesses.

The fundamental assumption of the mixture model is that the probability density function
(PDF) for observations of data xj is a weighted linear sum of a set of unknown distributions

f (xj ,�) =
k∑

p=1

αpfp(xj ,�p) (5.15)

where f (·) is the measured PDF, fp(·) is the PDF of the mixture j , and k is the total
number of mixtures. Each of the PDFs fj (·) is weighted by αp (α1 + α2 + · · · + αk = 1)
and parametrized by an unknown vector of parameters �p. To state the objective of mixture
models more precisely then: Given the observed PDF f (xj ,�), estimate the mixture
weights αp and the parameters of the distribution �p. Note that � is a vector containing
all the parameters �p. Making this task somewhat easier is the fact that we assume the
form of the PDF distribution fp(·).

For GMM, the parameters in the vector �p are known to include only two variables: the
mean μp and variance σp. Moreover, the distribution fp(·) is normally distributed so that
(5.15) becomes

f (xj ,�) =
k∑

p=1

αpNp(xj , μp, σp). (5.16)

This gives a much more tractable framework since there are now a limited set of parameters.
Thus once one assumes a number of mixtures k, then the task is to determine αp along
with μp and σp for each mixture. It should be noted that there are many other distribu-
tions besides Gaussian that can be imposed, but GMM are common since without prior
knowledge, an assumption of Gaussian distribution is typically assumed.
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An estimate of the parameter vector � can be computed using the maximum likelihood
estimate (MLE) of Fisher. The MLE computes the value of � from the roots of

∂L(�)

∂�
= 0 (5.17)

where the log-likelihood function L is

L(�) =
n∑

j=1

log f (xj |�) (5.18)

and the sum is over all the n data vectors xj . The solution to this optimization problem, i.e.
when the derivative is zero, produces a local maximizer. This maximizer can be computed
using the EM algorithm since derivatives cannot be explicitly computed without an analytic
form.

The EM algorithm starts by assuming an initial estimate (guess) of the parameter vector
�. This estimate can be used to estimate

τp(xj ,�) = αpfp(xj ,�p)

f (xj ,�)
(5.19)

which is the posterior probability of component membership of xj in the pth distribution.
In other words, does xj belong to the pth mixture? The E-step of the EM algorithm uses this
posterior to compute memberships. For GMM, the algorithm proceeds as follows: Given
an initial parametrization of � and αp, compute

τ (k)
p (xj ) = α

(k)
p Np(xj , μ

(k)
p , σ

(k)
p )

N (xj ,�
(k))

. (5.20)

With an estimated posterior probability, the M-step of the algorithm then updates the
parameters and mixture weights

α(k+1)
p = 1

n

n∑
j=1

τ (k)
p (xj ) (5.21a)

μ(k+1)
p =

∑n
j=1 xj τ

(k)
p (xj )∑n

j=1 τ
(k)
p (xj )

(5.21b)

�(k+1)
p =

∑n
j=1 τ

(k)
p (xj )

(
xj − μ

(k+1)
p

) (
xj − μ

(k+1)
p

)T

∑n
j=1 τ

(k)
p (xj )

(5.21c)

where the matrix �
(k+1)
p is the covariance matrix containing the variance parameters.

The E- and M-steps are alternated until convergence within a specified tolerance. Recall
that to initialize the algorithm, the number of mixture models k must be specified and
initial parametrization (guesses) of the distributions given. This is similar to the k-means
algorithm where the number of clusters k is prescribed and an initial guess for the cluster
centers is specified.

The GMM is popular since it simply fits k Gaussian distributions to data, which is
reasonable for unsupervised learning. The GMM algorithm also has a stronger theoretical
base than most unsupervised methods as both k-means and hierarchical clustering are
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Figure 5.17 GMM fit of the second and fourth principal components of the dog and cat wavelet
image data. The two Gaussians are well placed over the distinct dog and cat features as shown in (a).
The PDF of the Gaussian models extracted are highlighted in (b) in arbitrary units.

simply defined as algorithms. The primary assumption in GMM is the number of clusters
and the form of the distribution f (·).

The following code executes a GMM model on the second and fourth principal compo-
nents of the dog and cat wavelet image data introduced previously in Figs. 5.4-5.6. Thus
the features are the second and fourth columns of the right singular vector of the SVD. The
fitgmdist command is used to extract the mixture model.

Code 5.10 Gaussian mixture model for cats versus dogs.

dogcat=v(:,2:2:4);
GMModel=fitgmdist(dogcat,2)
AIC= GMModel.AIC

subplot(2,2,1)
h=ezcontour(@(x1,x2)pdf(GMModel,[x1 x2]));
subplot(2,2,2)
h=ezmesh(@(x1,x2)pdf(GMModel,[x1 x2]));

The results of the algorithm can be plotted for visual inspection, and the parameters
associated with each Gaussian are given. Specifically, the mixing proportion of each model
along with the mean in each of the two dimensions of the feature space. The following is
displayed to the screen.

Component 1:
Mixing proportion: 0.355535
Mean: -0.0290 -0.0753

Component 2:
Mixing proportion: 0.644465
Mean: 0.0758 0.0076

AIC =

-792.8105

The code can also produce an AIC score for how well the mixture of Gaussians explain the
data. This gives a principled method for cross-validating in order to determine the number
of mixtures required to describe the data.
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Figure 5.18 Illustration of linear discriminant analysis (LDA). The LDA optimization method
produces an optimal dimensionality reduction to a decision line for classification. The figure
illustrates the projection of data onto the second and fourth principal component modes of the dog
and cat wavelet data considered in Fig. 5.4. Without optimization, a general projection can lead to
very poor discrimination between the data. However, the LDA separates the probability distribution
functions in an optimal way.

Fig. 5.17 shows the results of the GMM fitting procedure along with the original data
of cats and dogs. The Gaussians produced from the fitting procedure are also illustrated.
The fitgmdist command can also be used with cluster to label new data from the feature
separation discovered by GMM.

5.6 Supervised Learning and Linear Discriminants
We now turn our attention to supervised learning methods. One of the earliest supervised
methods for classification of data was developed by Fisher in 1936 in the context of taxon-
omy [182]. His linear discriminant analysis (LDA) is still one of the standard techniques
for classification. It was generalized by C. R. Rao for multi-class data in 1948 [446].
The goal of these algorithms is to find a linear combination of features that character-
izes or separates two or more classes of objects or events in the data. Importantly, for
this supervised technique we have labeled data which guides the classification algorithm.
Fig. 5.18 illustrates the concept of finding an optimal low-dimensional embedding of the
data for classification. The LDA algorithm aims to solve an optimization problem to find a
subspace whereby the different labeled data have clear separation between their distribution
of points. This then makes classification easier because an optimal feature space has been
selected.

The supervised learning architecture includes a training and withhold set of data. The
withhold set is never used to train the classifier. However, the training data can be par-
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titioned into k-folds, for instance, to help build a better classification model. The last
chapter details how cross-validation should be appropriately used. The goal here is to
train an algorithm that uses feature space to make a decision about how to classify data.
Fig. 5.18 gives a cartoon of the key idea involved in LDA. In our example, two data sets
are considered and projected onto new bases. In the left figure, the projection shows that
the data is completely mixed, making it difficult to separate the data. In the right figure,
which is the ideal charicature for LDA, the data are well separated with the means μ1

and μ2 being well apart when projected onto the chosen subspace. Thus the goal of LDA
is two-fold: find a suitable projection that maximizes the distance between the inter-class
data while minimizing the intra-class data.

For a two-class LDA, this results in the following mathematical formulation. Construct
a projection w such that

w = arg max
w

wT SBw
wT SW w

(5.22)

where the scatter matrices for between-class SB and within-class SW data are given by

SB = (μ2 − μ1)(μ2 − μ1)
T (5.23)

SW =
2∑

j=1

∑
x

(x − μj )(x − μj )
T . (5.24)

These quantities essentially measure the variance of the data sets as well as the variance of
the difference in the means. The criterion in (5.22) is commonly known as the generalized
Rayleigh quotient whose solution can be found via the generalized eigenvalue problem

SBw = λSW w (5.25)

where the maximum eigenvalue λ and its associated eigenvector gives the quantity of inter-
est and the projection basis. Thus, once the scatter matrices are constructed, the generalized
eigenvectors can be constructed with MATLAB.

Performing an LDA analysis in MATLAB is simple. One needs only to organize the data
into a training set with labels, which can then be applied to a test data set. Given a set of data
xj for j = 1, 2, · · · ,m with corresponding labels yj , the algorithm will find an optimal
classification space as shown in Fig. 5.18. New data xk with k = m+ 1,m+ 2, · · · ,m+n

can then be evaluated and labeled. We illustrate the classification of data using the dog and
cat data set introduced in the feature section of this chapter. Specifically, we consider the
dog and cat images in the wavelet domain and label them so that yj ∈ {±1} (yj = 1 is a
dog and yj = −1 is a cat). The following code trains on the first 60 images of dogs and
cats, and then tests the classifier on the remaining 20 dog and cat images. For simplicity,
we train on the second and fourth principal components as these show good discrimination
between dogs and cats (See Fig. 5.5).

Code 5.11 LDA analysis of dogs versus cats.

load catData_w.mat
load dogData_w.mat
CD=[dog_wave cat_wave];
[u,s,v]=svd(CD-mean(CD(:)));

xtrain=[v(1:60,2:2:4); v(81:140,2:2:4)];
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Figure 5.19 Depiction of the performance achieved for classification using the second and fourth
principal component modes. The top two panels are PCA modes (features) used to build a classifier.
The labels returned are either yj ∈ {±1}. The ground truth answer in this case should produce a
vector of 20 ones followed by 20 negative ones.

label=[ones(60,1); -1*ones(60,1)];
test=[v(61:80,2:2:4); v(141:160,2:2:4)];

class=classify(test,xtrain,label);
truth=[ones(20,1); -1*ones(20,1)];
E=100-sum(0.5*abs(class-truth))/40*100

Note that the classify command in MATLAB takes in the three matrices of interest: the
training data, the test data, and the labels for the training data. What is produced are the
labels for the test set. One can also extract from this command the decision line for online
use. Fig. 5.19 shows the results of the classification on the 40 test data samples. Recall that
this classification is performed using only the second and fourth PCA modes which cluster
as shown in Fig. 5.18. The returned labels are either ±1 depending on whether a cat or dog
is labeled. The ground truth labels for the test data should return a +1 (dogs) for the first
20 test sets and a −1 (cats) for the second test set. The accuracy of classification for this
realization is 82.5% (2/20 cats are mislabeled while 5/20 dogs are mislabeled). Comparing
the wavelet images to the raw images we see that the feature selection in the raw images is
not as good. In particular, for the same two principal components, 9/20 cats are mislabeled
and 4/20 dogs are mislabeled.

Of course, the data is fairly limited and cross-validation should always be performed to
evaluate the classifier. The following code runs 100 trials of the classify command where
60 dog and cat images are randomly selected and tested against the remaining 20 images.
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Code 5.12 Cross-validation of the LDA analysis.

for jj=1:100;
r1=randperm(80); r2=randperm(80);
ind1=r1(1:60); ind2=r2(1:60)+60;
ind1t=r1(61:80); ind2t=r2(61:80)+60;

xtrain=[v(ind1,2:2:4); v(ind2,2:2:4)];
test=[v(ind1t,2:2:4); v(ind2t,2:2:4)];

label=[ones(60,1); -1*ones(60,1)];
truth=[ones(20,1); -1*ones(20,1)];
class=classify(test,xtrain,label);
E(jj)=sum(abs(class-truth))/40*100;

end

Fig. 5.20 shows the results of the cross-validation over 100 trials. Note the variability that
can occur from trial to trial. Specifically, the performance can achieve 100%, but can also be
as low as 40%, which is worse than a coin flip. The average classification score (red dotted
line) is around 70%. Cross-validation, as already highlighted in the regression chapter, is
critical for testing and robustifying the model. Recall that the methods for producing a
classifier are based on optimization and regression, so that all the cross-validation methods
can be ported to the clustering and classification problem.

In addition to a linear discriminant line, a quadratic discriminant line can be found
to separate the data. Indeed, the classify command in MATLAB allows one to not only
produce the classifier, but also extract the line of separation between the data. The following

Figure 5.20 Performance of the LDA over 100 trials. Note the variability that can occur in the
classifier depending on which data is selected for training and testing. This highlights the
importance of cross-validation for building a robust classifier.
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commands are used to produce labels for new data as well as the discrimination line
between the dogs and cats.

Code 5.13 Plotting the linear and quadratic discrimination lines.

subplot(2,2,1)
[class,~,~,~,coeff]=classify(test,xtrain,label);
K = coeff(1,2).const;
L = coeff(1,2).linear;
f = @(x,y) K + [x y]*L;
h2 = ezplot(f,[-.15 0.25 -.3 0.2]);
subplot(2,2,2)
[class,~,~,~,coeff]=classify(test,xtrain,label,’quadratic’);
K = coeff(1,2).const;
L = coeff(1,2).linear;
Q = coeff(1,2).quadratic;
f = @(x,y) K + [x y]*L + sum(([x y]*Q) .* [x y], 2);
h2 = ezplot(f,[-.15 0.25 -.3 0.2]);

Fig. 5.21 shows the dog and cat data along with the linear and quadratic lines separating
them. This linear or quadratic fit is found in the structured variable coeff which is returned
with classify. The quadratic line of separation can often offer a little more flexibility when
trying to fit boundaries separating data. A major advantage of LDA based methods: they are
easily interpretable and easy to compute. Thus, they are widely used across many branches
of the sciences for classification of data.

5.7 Support Vector Machines (SVM)
One of the most successful data mining methods developed to date is the support vector
machine (SVM). It is a core machine learning tool that is used widely in industry and
science, often providing results that are better than competing methods. Along with the
random forest algorithm, they have been pillars of machine learning in the last few decades.
With enough training data, the SVM can now be replaced with deep neural nets. But

Figure 5.21 Classification line for (a) linear discriminant (LDA) and (b) quadratic discriminant
(QDA) for dog (green dots) versus cat (magenta dots) data projected onto the second and fourth
principal components. This two dimensional feature space allows for a good discrimination in the
data. The two lines represent the best line and parabola for separating the data for a given training
sample.
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otherwise, SVM and random forest are frequently used algorithms for applications where
the best classification scores are required.

The original SVM algorithm by Vapnik and Chervonenkis evolved out of the statistical
learning literature in 1963, where hyperplanes are optimized to split the data into distinct
clusters. Nearly three decades later, Boser, Guyon and Vapnik created nonlinear classifiers
by applying the kernel trick to maximum-margin hyperplanes [70]. The current standard
incarnation (soft margin) was proposed by Cortes and Vapnik in the mid-1990s [138].

Linear SVM
The key idea of the linear SVM method is to construct a hyperplane

w · x+b=0 (5.26)

where the vector w and constant b parametrize the hyperplane. Fig. 5.22 shows two poten-
tial hyperplanes splitting a set of data. Each has a different value of w and constant b.
The optimization problem associated with SVM is to not only optimize a decision line
which makes the fewest labeling errors for the data, but also optimizes the largest margin
between the data, shown in the gray region of Fig. 5.22. The vectors that determine the
boundaries of the margin, i.e. the vectors touching the edge of the gray regions, are termed
the support vectors. Given the hyperplane (5.26), a new data point xj can be classified by
simply computing the sign of (w · xj +b). Specifically, for classification labels yj ∈ {±1},

Figure 5.22 The SVM classification scheme constructs a hyperplane w · x+b=0 that optimally
separates the labeled data. The area of the margin separating the labeled data is maximal in (a) and
much less in (b). Determining the vector w and parameter b is the goal of the SVM optimization.
Note that for data to the right of the hyperplane w · x+b>0, while for data to the left w · x+b<0.
Thus the classification labels yj ∈ {±1} for the data to the left or right of the hyperplane is given by
yj (w · xj +b) = sign(w · xj +b). So only the sign of w · x+b needs to be determined in order to
label the data. The vectors touching the edge of the gray regions of are termed the support vectors.
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the data to the left or right of the hyperplane is given by

yj (w · xj +b) = sign(w · xj +b) =
{ +1 magenta ball

−1 green ball.
(5.27)

Thus the classifier yj is explicitly dependent on the position of xj .
Critical to the success of the SVM is determining w and b in a principled way. As

with all machine learning methods, an appropriate optimization must be formulated. The
optimization is aimed at both minimizing the number of misclassified data points as well
as creating the largest margin possible. To construct the optimization objective function,
we define a loss function


(yj , ȳj ) = 
(yj , sign(w · xj +b)) =
{

0 if yj = sign(w · xj +b)

+1 if yj �= sign(w · xj +b)
. (5.28)

Stated more simply


(yj , ȳj ) =
{

0 if data is correctly labeled
+1 if data is incorrectly labeled

. (5.29)

Thus each mislabeled point produces a loss of unity. The training error over m data points
is the sum of the loss functions 
(yj , ȳj ).

In addition to minimizing the loss function, the goal is also to make the margin as large
as possible. We can then frame the linear SVM optimization problem as

argmin
w,b

m∑
j=1


(yj , ȳj ) + 1

2
‖w‖2 subject to min

j
|xj · w| = 1. (5.30)

Although this is a concise statement of the optimization problem, the fact that the loss
function is discrete and constructed from ones and zeros makes it very difficult to actually
optimize. Most optimization algorithms are based on some form of gradient descent which
requires smooth objective functions in order to compute derivatives or gradients to update
the solution. A more common formulation then is given by

argmin
w,b

m∑
j=1

H(yj , ȳj ) + 1

2
‖w‖2 subject to min

j
|xj · w| = 1 (5.31)

where α is the weighting of the loss function and H(z) = max(0, 1 − z) is called a Hinge
loss function. This is a smooth function that counts the number of errors in a linear way
and that allows for piecewise differentiation so that standard optimization routines can be
employed.

Nonlinear SVM
Although easily interpretable, linear classifiers are of limited value. They are simply too
restrictive for data embedded in a high-dimensional space and which may have the struc-
tured separation as illustrated in Fig. 5.8. To build more sophisticated classification curves,
the feature space for SVM must be enriched. SVM does this by included nonlinear features
and then building hyperplanes in this new space. To do this, one simply maps the data into
a nonlinear, higher-dimensional space

x �→ �(x) . (5.32)
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We can call the �(x) new observables of the data. The SVM algorithm now learns the
hyperplanes that optimally split the data into distinct clusters in a new space. Thus one
now considers the hyperplane function

f (x) = w · �(x) + b (5.33)

with corresponding labels yj ∈ {±1} for each point f (xj ).
This simple idea, of enriching feature space by defining new functions of the data x, is

exceptionally powerful for clustering and classification. As a simple example, consider two
dimensional data x = (x1, x2). One can easily enrich the space by considering polynomials
of the data.

(x1, x2) �→ (z1, z2, z3) := (x1, x2, x
2
1 + x2

2). (5.34)

This gives a new set of polynomial coordinates in x1 and x2 that can be used to embed
the data. This philosophy is simple: by embedding the data in a higher dimensional space,
it is much more likely to be separable by hyperplanes. As a simple example, consider the
data illustrated in Fig. 5.8(b). A linear classifier (or hyperplane) in the x1-x2 plane will
clearly not be able to separate the data. However, the embedding (5.34) projects into a
three dimensional space which can be easily separated by a hyperplane as illustrated in
Fig. 5.23.

The ability of SVM to embed in higher-dimensional nonlinear spaces makes it one of
the most successful machine learning algorithms developed. The underlying optimization
algorithm (5.31) remains unchanged, except that the previous labeling function ȳj =
sign(w · xj +b) is now

ȳj = sign(w · �(xj )+b). (5.35)

The function �(x) specifies the enriched space of observables. As a general rule, more
features are better for classification.

Kernel Methods for SVM
Despite its promise, the SVM method of building nonlinear classifiers by enriching in
higher-dimensions leads to a computationally intractable optimization. Specifically, the
large number of additional features leads to the curse of dimensionality. Thus computing
the vectors w is prohibitively expensive and may not even be represented explicitly in
memory. The kernel trick solves this problem. In this scenario, the w vector is represented
as follows

w =
m∑

j=1

αj�(xj ) (5.36)

where αj are parameters that weight the different nonlinear observable functions �(xj ).
Thus the vector w is expanded in the observable set of functions. We can then generalize
(5.33) to the following

f (x) =
m∑

j=1

αj�(xj ) · �(x) + b. (5.37)
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Figure 5.23 The nonlinear embedding of Fig. 5.8(b) using the variables
(x1, x2) �→ (z1, z2, z3) := (x1, x2, x2

1 + x2
2 ) in (5.34). A hyperplane can now easily separate the

green from magenta balls, showing that linear classification can be accomplished simply be
enriching the measurement space of the data. Visual inspection alone suggests that nearly optimal
separation can be achieved with the plane z3 ≈ 14 (shaded gray plane). In the original coordinate
system this gives a circular classification line (black line on the plane x1 versus x2) with radius

r = √
z3 =

√
x2

1 + x2
2 ≈ √

14. This example makes it obvious how a hyperplane in
higher-dimensions can produce curved classification lines in the original data space.

The kernel function [479] is then defined as

K(xj , x) = �(xj ) · �(x) . (5.38)

With this new definition of w, the optimization problem (5.31) becomes

argmin
α,b

m∑
j=1

H(yj , ȳj ) + 1

2
‖

m∑
j=1

αj�(xj )‖2 subject to min
j

|xj · w| = 1 (5.39)

where α is the vector of αj coefficients that must be determined in the minimization
process. There are different conventions for representing the minimization. However, in
this formulation, the minimization is now over α instead of w.

In this formulation, the kernel function K(xj , x) essentially allows us to represent Taylor
series expansions of a large (infinite) number of observables in a compact way [479]. The
kernel function enables one to operate in a high-dimensional, implicit feature space without
ever computing the coordinates of the data in that space, but rather by simply computing
the inner products between all pairs of data in the feature space. For instance, two of the
most commonly used kernel functions are

Radial basis functions (RBF): K(xj , x)=exp
(
−γ ‖xj − x‖2

)
(5.40a)
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Polynomial kernel: K(xj , x)=(xj · x + 1)N (5.40b)

where N is the degree of polynomials to be considered, which is exceptionally large to
evaluate without using the kernel trick, and γ is the width of the Gaussian kernel measuring
the distance between individual data points xj and the classification line. These functions
can be differentiated in order to optimize (5.39).

This represents the major theoretical underpinning of the SVM method. It allows us
to construct higher-dimensional spaces using observables generated by kernel functions.
Moreover, it results in a computationally tractable optimization. The following code shows
the basic workings of the kernel method on the example of dog and cat classification data.
In the first example, a standard linear SVM is used, while in the second, the RBF is executed
as an option.

Code 5.14 SVM classification.

load catData_w.mat
load dogData_w.mat
CD=[dog_wave cat_wave];
[u,s,v]=svd(CD-mean(CD(:)));

features=1:20;
xtrain=[v(1:60,features); v(81:140,features)];
label=[ones(60,1); -1*ones(60,1)];
test=[v(61:80,features); v(141:160,features)];
truth=[ones(20,1); -1*ones(20,1)];

Mdl = fitcsvm(xtrain,label);
test_labels = predict(Mdl,test);

Mdl = fitcsvm(xtrain,label,’KernelFunction’,’RBF’);
test_labels = predict(Mdl,test);
CMdl = crossval(Mdl); % cross-validate the model
classLoss = kfoldLoss(CMdl) % compute class loss

Note that in this code we have demonstrated some of the diagnostic features of the SVM
method in MATLAB, including the cross-validation and class loss scores that are associated
with training. This is a superficial treatment of the SVM. Overall, SVM is one of the most
sophisticated machine learning tools in MATLAB and there are many options that can be
executed in order to tune performance and extract accuracy/cross-validation metrics.

5.8 Classification Trees and Random Forest
Decision trees are common in business. They establish an algorithmic flow chart for mak-
ing decisions based on criteria that are deemed important and related to a desired out-
come. Often the decision trees are constructed by experts with knowledge of the workflow
involved in the decision making process. Decision tree learning provides a principled
method based on data for creating a predictive model for classification and/or regression.
Along with SVM, classification and regression trees are core machine learning and data
mining algorithms used in industry given their demonstrated success. The work of Leo
Breiman and co-workers [79] established many of the theoretical foundations exploited
today for data mining.
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The decision tree is a hierarchical construct that looks for optimal ways to split the data in
order to provide a robust classification and regression. It is the opposite of the unsupervised
dendrogram hierarchical clustering previously demonstrated. In this case, our goal is not
to move from bottom up in the clustering process, but from top down in order to create the
best splits possible for classification. The fact that it is a supervised algorithm, which uses
labeled data, allows us to split the data accordingly.

There are significant advantages in developing decision trees for classification and
regression: (i) they often produce interpretable results that can be graphically displayed,
making them easy to interpret even for nonexperts, (ii) they can handle numerical or
categorical data equally well, (iii) they can be statistically validated so that the reliability
of the model can be assessed, (iv) they perform well with large data sets at scale, and (v)
the algorithms mirror human decision making, again making them more interpretable and
useful.

As one might expect, the success of decision tree learning has produced a large number
of innovations and algorithms for how to best split the data. The coverage here will be
limited, but we will highlight the basic architecture for data splitting and tree construction.
Recall that we have the following:

data
{
xj ∈ Rn, j ∈ Z := {1, 2, · · · ,m}} (5.41a)

labels
{
yj ∈ {±1}, j ∈ Z′ ⊂ Z

}
. (5.41b)

The basic decision tree algorithm is fairly simple: (i) scan through each component (fea-
ture) xk (k = 1, 2, · · · , n) of the vector xj to identify the value of xj that gives the best
labeling prediction for yj . (ii) Compare the prediction accuracy for each split on the feature
xj . The feature giving the best segmentation of the data is selected as the split for the tree.
(iii) With the two new branches of the tree created, this process is repeated on each branch.
The algorithm terminates once the each individual data point is a unique cluster, known as
a leaf, on a new branch of the tree. This is essentially the inverse of the dendrogram.

As a specific example, consider the Fisher iris data set from Fig. 5.1. For this data, each
flower had four features (petal width and length, sepal width and length), and three labels
(setosa, versicolor and virginica). There were fifty flowers of each variety for a total of 150
data points. Thus for this data the vector xj has the four components

x1 = sepal width (5.42a)

x2 = sepal length (5.42b)

x3 = petal width (5.42c)

x4 = petal length. (5.42d)

The decision tree algorithm scans over these four features in order to decide how to best
split the data. Fig. 5.24 shows the splitting process in the space of the four variables x1

through x4. Illustrated are two data planes containing x1 versus x2 (panel (b)) and x3

versus x4 (panel (a)). By visual inspection, one can see that the x3 (petal length) variable
maximally separates the data. In fact, the decision tree performs the first split of the data at
x3 = 2.35. No further splitting is required to predict setosa, as this first split is sufficient.
The variable x4 then provides the next most promising split at x4 = 1.75. Finally, a third
split is performed at x3 = 4.95. Only three splits are shown. This process shows that the
splitting procedure is has an intuitive appeal as the data splits optimally separating the data
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Figure 5.24 Illustration of the splitting procedure for decision tree learning performed on the Fisher
iris data set. Each variable x1 through x4 is scanned over to determine the best split of data which
retains the best correct classification of the labeled data in the split. The variable x3 = 2.35 provides
the first split in the data for building a classification tree. This is followed by a second split at
x4 = 1.75 and a third split at x3 = 4.95. Only three splits are shown. The classification tree after
three splits is shown in Fig. 5.25. Note that although the setosa data in the x1 and x2 direction seems
to be well separated along a diagonal line, the decision tree can only split along horizontal and
vertical lines.

setosa

virginica

versicolor virginica

x3 < 2.35   

x4 < 1.75   

x3 < 4.95   

  x3 >= 2.35

  x4 >= 1.75

  x3 >= 4.95

Figure 5.25 Tree structure generated by the MATLAB fitctree command. Note that only three splits
are conducted, creating a classification tree that produces a class error of 4.67%

are clear visible. Moreover, the splitting does not occur on the x1 and x2 (width and length)
variables as they do not provide a clear separation of the data. Fig. 5.25 shows the tree used
for Fig. 5.24.

The following code fits a tree to the Fisher iris data. Note that the fitctree command
allows for many options, including a cross-validation procedure (used in the code) and
parameter tuning (not used in the code).
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Code 5.15 Decision tree classification of Fisher iris data.

load fisheriris;
tree=fitctree(meas,species,’MaxNumSplits’,3,’CrossVal’,’on’)
view(tree.Trained{1},’Mode’,’graph’);
classError = kfoldLoss(tree)

x1=meas(1:50,:); % setosa
x2=meas(51:100,:); % versicolor
x3=meas(101:150,:); % virginica

The results of the splitting procedure are demonstrated in Fig. 5.25. The view command
generates an interactive window showing the tree structure. The tree can be pruned and
other diagnostics are shown in this interactive graphic format. The class error achieved for
the Fisher iris data is 4.67%.

As a second example, we construct a decision tree to the classify dogs versus cats using
our previously considered wavelet images. The following code loads and splits the data.

Code 5.16 Decision tree classification of dogs versus cats.

load catData_w.mat
load dogData_w.mat
CD=[dog_wave cat_wave];
[u,s,v]=svd(CD-mean(CD(:)));

features=1:20;
xtrain=[v(1:60,features); v(81:140,features)];
label=[ones(60,1); -1*ones(60,1)];
test=[v(61:80,features); v(141:160,features)];
truth=[ones(20,1); -1*ones(20,1)];

Mdl = fitctree(xtrain,label,’MaxNumSplits’,2,’CrossVal’,’on’);
classError = kfoldLoss(Mdl)
view(Mdl.Trained{1},’Mode’,’graph’);
classError = kfoldLoss(Mdl)

Fig. 5.26 shows the resulting classification tree. Note that the decision tree learning algo-
rithm identifies the first two splits as occurring along the x2 and x4 variables respectively.
These two variables have been considered previously since their histograms show them to
be more distinguishable than the other PCA components (See Fig. 5.5). For this splitting,
which has been cross-validated, the class error achieved is approximately 16%, which can
be compared with the 30% error of LDA.

As a final example, we consider census data that is included in MATLAB. The following
code shows some important uses of the classification and regression tree architecture. In
particular, the variables included can be used to make associations between relationships.
In this case, the various data is used to predict the salary data. Thus, salary is the outcome of
the classification. Moreover, the importance of each variable and its relation to salary can be
computed, as shown in Fig. 5.27. The following code highlights some of the functionality
of the tree architecture.

Code 5.17 Decision tree classification of census data.

load census1994
X = adultdata(:,{’age’,’workClass’,’education_num’,’

marital_status’,’race’,’sex’,’capital_gain’,...
’capital_loss’,’hours_per_week’,’salary’});
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Figure 5.26 Tree structure generated by the MATLAB fitctree command for dog versus cat data.
Note that only two splits are conducted, creating a classification tree that produces a class error of
approximately 16%

Mdl = fitctree(X,’salary’,’PredictorSelection’,’curvature’,’
Surrogate’,’on’);

imp = predictorImportance(Mdl);

bar(imp,’FaceColor’,[.6 .6 .6],’EdgeColor’,’k’);
title(’Predictor Importance Estimates’);
ylabel(’Estimates’); xlabel(’Predictors’); h = gca;
h.XTickLabel = Mdl.PredictorNames;
h.XTickLabelRotation = 45;

As with the SVM algorithm, there exists a wide variety of tuning parameters for classi-
fication trees, and this is a superficial treatment. Overall, such trees are one of the most
sophisticated machine learning tools in MATLAB and there are many options that can be
executed to tune performance and extract accuracy/cross-validation metrics.

Random Forest Algorithms
Before closing this section, it is important to mention Breiman’s random forest [77] inno-
vations for decision learning trees. Random forests, or random decision forests, are an
ensemble learning method for classification and regression. This is an important innovation
since the decision trees created by splitting are generally not robust to different samples
of the data. Thus one can generate two significantly different classification trees with
two subsamples of the data. This presents significant challenges for cross-validation. In
ensemble learning, a multitude of decision trees are constructed in the training process. The
random decision forests correct for a decision trees’ habit of overfitting to their training set,
thus providing a more robust framework for classification.



190 Clustering and Classification

Predictor Importance Estimates
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Figure 5.27 Importance of variables for prediction of salary data for the US census of 1994. The
classification tree architecture allows for sophisticated treatment of data, including understanding
how each variable contributes statistically to predicting a classification outcome.

There are many variants of the random forest architecture, including variants with boost-
ing and bagging. These will not be considered here except to mention that the MATLAB
figctree exploits many of these techniques through its options. One way to think about
ensemble learning is that it allows for robust classification trees. It often does this by focus-
ing its training efforts on hard-to-classify data instead of easy-to-classify data. Random
forests, bagging and boosting are all extensive subjects in their own right, but have already
been incorporated into leading software which build decision learning trees.

5.9 Top 10 Algorithms in Data Mining 2008
This chapter has illustrated the tremendous diversity of supervised and unsupervised meth-
ods available for the analysis of data. Although the algorithms are now easily accessible
through many commercial and open-source software packages, the difficulty is now eval-
uating which method(s) should be used on a given problem. In December 2006, various
machine learning experts attending the IEEE International Conference on Data Mining
(ICDM) identified the top 10 algorithms for data mining [562]. The identified algorithms
where the following: C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN,
Naive Bayes, and CART. These top 10 algorithms were identified at the time as being
among the most influential data mining algorithms in the research community. In the
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summary article, each algorithm was briefly described along with its impact and potential
future directions of research. The 10 algorithms covered classification, clustering, statistical
learning, association analysis, and link mining, which are all among the most important
topics in data mining research and development. Interestingly, deep learning and neural
networks, which are the topic of the next chapter, are not mentioned in the article. The
landscape of data science would change significantly in 2012 with the ImageNET data set,
and deep convolutional neural networks began to dominate almost any meaningful metric
for classification and regression accuracy.

In this section, we highlight their identified top 10 algorithms and the basic mathematical
structure of each. Many of them have already been covered in this chapter. This list is not
exhaustive, nor does it rank them beyond their inclusion in the top 10 list. Our objective
is simply to highlight what was considered by the community as the state-of-the-art data
mining tools in 2008. We begin with those algorithms already considered previously in this
chapter.

k-means
This is one of the workhorse unsupervised algorithms. As already demonstrated, the goal
of k-means is simply to cluster by proximity to a set of k points. By updating the locations
of the k points according to the mean of the points closest to them, the algorithm iterates to
the k-means. The structure of the MATLAB command is as follows

[labels,centers]=kmeans(X,k)

The means command takes in data X and the number of prescribed clusters k. It returns
labels for each point labels along with their location centers.

EM (mixture models)
Mixture models are the second workhorse algorithm for unsupervised learning. The
assumption underlying the mixture models is that the observed data is produced by a
mixture of different probability distribution functions whose weightings are unknown.
Moreover, the parameters must be estimated, thus requiring the Expectation-Maximization
(EM) algorithm. The structure of the MATLAB command is as follows

Model=fitgmdist(X,k)

where the fitgmdist by default fits Gaussian mixtures to the data X in k clusters. The
Model output is a structured variable containing information on the probability distribu-
tions (mean, variance, etc.) along with the goodness-of-fit.

Support Vector Machine (SVM)
One of the most powerful and flexible supervised learning algorithms used for most of
the 90s and 2000s, the SVM is an exceptional off-the-shelf method for classification and
regression. The main idea: project the data into higher dimensions and split the data with
hyperplanes. Critical to making this work in practice was the kernel trick for efficiently
evaluating inner products of functions in higher-dimensional space. The structure of the
MATLAB command is as follows

Model = fitcsvm(xtrain,label);
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test_labels = predict(Model,test);

where the fitcsvm command takes in labeled training data denoted by train and label, and
it produces a structured output Model. The structured output can be used along with the
predict command to take test data test and produce labels (testlabels). There exist many
options and tuning parameters for fitcsvm, making it one of the best off-the-shelf methods.

CART (Classification and Regression Tree)
This was the subject of the last section and was demonstrated to provide another powerful
technique of supervised learning. The underlying idea was to split the data in a principled
and informed way so as to produce an interpretable clustering of the data. The data splitting
occurs along a single variable at a time to produce branches of the tree structure. The
structure of the MATLAB command is as follows

tree = fitctree(xtrain,label);

where the fitctree command takes in labeled training data denoted by train and label, and
it produces a structured output tree. There are many options and tuning parameters for
fitctree, making it one of the best off-the-shelf methods.

k-nearest Neighbors (kNN)
This is perhaps the simplest supervised algorithm to understand. It is highly interpretable
and easy to execute. Given a new data point xk which does not have a label, simply find
the k nearest neighbors xj with labels yj . The label of the new point xk is determined by a
majority vote of the kNN. Given a model for the data, the MATLAB command to execute
the kNN search is the following

label = knnsearch(Mdl,test)

where the knnsearch uses the Mdl to label the test data test.

Naive Bayes
The Naive Bayes algorithm provides an intuitive framework for supervised learning. It is
simple to construct and does not require any complicated parameter estimation, similar to
SVM and/or classification trees. It further gives highly interpretable results that are remark-
ably good in practice. The method is based upon Bayes’s theorem and the computation of
conditional probabilities. Thus one can estimate the label of a new data point based on the
prior probability distributions of the labeled data. The MATLAB command structure for
constructing a Naive Bayes model is the following

Model = fitNaiveBayes(xtrain,label)

where the fitcNativeBayes command takes in labeled training data denoted by train and
label, and it produces a structured output Model. The structured output can be used with
the predict command to label test data test.

AdaBoost (Ensemble Learning and Boosting)
AdaBoost is an example of an ensemble learning algorithm [188]. Broadly speaking,
AdaBoost is a form of random forest [77] which takes into account an ensemble of
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decision tree models. The way all boosting algorithms work is to first consider an equal
weighting for all training data xj . Boosting re-weights the importance of the data according
to how difficult they are to classify. Thus the algorithm focuses on harder to classify data.
Thus a family of weak learners can be trained to yield a strong learner by boosting
the importance of hard to classify data [470]. This concept and its usefulness are based
upon a seminal theoretical contribution by Kearns and Valiant [283]. The structure of the
MATLAB command is as follows

ada = fitcensemble(xtrain,label,’Method’,’AdaBoostM1’)

where the fitcensemble command is a general ensemble learner that can do many more
things than AdaBoost, including robust boosting and gradient boosting. Gradient boosting
is one of the most powerful techniques [189].

C4.5 (Ensemble Learning of Decision Trees)
This algorithm is another variant of decision tree learning developed by J. R. Quinlan [443,
444]. At its core, the algorithm splits the data according to an information entropy score.
In its latest versions, it supports boosting as well as many other well known functionalities
to improve performance. Broadly, we can think of this as a strong performing version of
CART. The fitcensemble algorithm highlighted with AdaBoost gives a generic ensemble
learning architecture that can incorporate decision trees, allowing for a C4.5-like algorithm.

Apriori Algorithm
The last two methods highlighted here tend to focus on different aspects of data mining. In
the Apriori algorithm, the goal is to find frequent itemsets from data. Although this may
sound trivial, it is not since data sets tend to be very large and can easily produce NP-hard
computations because of the combinatorial nature of the algorithms. The Apriori algorithm
provides an efficient algorithm for finding frequent itemsets using a candidate generation
architecture [4]. This algorithm can then be used for fast learning of associate rules in the
data.

PageRank
The founding of Google by Sergey Brin and Larry Page revolved around the PageRank
algorithm [82]. PageRank produces a static ranking of variables, such as web pages, by
computing an off-line value for each variable that does not depend on search queries. The
PageRank is associated with graph theory as it originally interpreted a hyperlink from one
page to another as a vote. From this, and various modifications of the original algorithm,
one can then compute an importance score for each variable and provide an ordered rank
list. The number of enhancements for this algorithm is quite large. Producing accurate
orderings of variables (web pages) and their importance remains an active topic of research.
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6 Neural Networks and Deep Learning

Neural networks (NNs) were inspired by the Nobel prize winning work of Hubel and
Wiesel on the primary visual cortex of cats [259]. Their seminal experiments showed
that neuronal networks were organized in hierarchical layers of cells for processing visual
stimulus. The first mathematical model of the NN, termed the Neocognitron in 1980 [193],
had many of the characteristic features of today’s deep convolutional NNs (or DCNNs),
including a multi-layer structure, convolution, max pooling and nonlinear dynamical nodes.
The recent success of DCNNs in computer vision has been enabled by two critical com-
ponents: (i) the continued growth of computational power, and (ii) exceptionally large
labeled data sets which take advantage of the power of a deep multi-layer architecture.
Indeed, although the theoretical inception of NNs has an almost four-decade history, the
analysis of the ImageNet data set in 2012 [310] provided a watershed moment for NNs and
deep learning [324]. Prior to this data set, there were a number of data sets available with
approximately tens of thousands of labeled images. ImageNet provided over 15 million
labeled, high-resolution images with over 22,000 categories. DCNNs, which are only one
potential category of NNs, have since transformed the field of computer vision by domi-
nating the performance metrics in almost every meaningful computer vision task intended
for classification and identification.

Although ImageNet has been critically enabling for the field, NNs were textbook mate-
rial in the early 1990s with a focus typically on a small number of layers. Critical machine
learning tasks such as principal component analysis (PCA) were shown to be intimately
connected with networks which included back propagation. Importantly, there were a num-
ber of critical innovations which established multilayer feedforward networks as a class
of universal approximators [255]. The past five years have seen tremendous advances in
NN architectures, many designed and tailored for specific application areas. Innovations
have come from algorithmic modifications that have led to significant performance gains
in a variety of fields. These innovations include pretraining, dropout, inception modules,
data augmentation with virtual examples, batch normalization, and/or residual learning
(See Ref. [216] for a detailed exposition of NNs). This is only a partial list of potential
algorithmic innovations, thus highlighting the continuing and rapid pace of progress in the
field. Remarkably, NNs were not even listed as one of the top 10 algorithms of data mining
in 2008 [562]. But a decade later, its undeniable and growing list of successes on challenge
data sets make it perhaps the most important data mining tool for our emerging generation
of scientists and engineers.

195
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As already shown in the last two chapters, all of machine learning revolves fundamen-
tally around optimization. NNs specifically optimize over a compositional function

argmin
Aj

(
fM(AM, · · · , f2(A2, f1(A1, x)) · · · ) + λg(Aj )

)
(6.1)

which is often solved using stochastic gradient descent and back propagation algorithms.
Each matrix Ak denotes the weights connecting the neural network from the kth to (k+1)th
layer. It is a massively underdetermined system which is regularized by g(Aj ). Composi-
tion and regularization are critical for generating expressive representations of the data
and preventing overfitting, respectively. This general optimization framework is at the
center of deep learning algorithms, and its solution will be considered in this chapter.
Importantly, NNs have significant potential for overfitting of data so that cross-validation
must be carefully considered. Recall that if you don’t cross-validate, you is dumb.

6.1 Neural Networks: 1-Layer Networks
The generic architecture of a multi-layer NN is shown in Fig. 6.1. For classification tasks,
the goal of the NN is to map a set of input data to a classification. Specifically, we train the
NN to accurately map the data xj to their correct label yj . As shown in Fig. 6.1, the input
space has the dimension of the raw data xj ∈ Rn. The output layer has the dimension of
the designed classification space. Constructing the output layer will be discussed further in
the following.

Immediately, one can see that there are a great number of design questions regarding
NNs. How many layers should be used? What should be the dimension of the layers? How
should the output layer be designed? Should one use all-to-all or sparsified connections
between layers? How should the mapping between layers be performed: a linear mapping
or a nonlinear mapping? Much like the tuning options on SVM and classification trees,
NNs have a significant number of design options that can be tuned to improve performance.

Initially, we consider the mapping between layers of Fig. 6.1. We denote the various
layers between input and output as x(k) where k is the layer number. For a linear mapping
between layers, the following relations hold

x(1) = A1x (6.2a)

x(2) = A2x(1) (6.2b)

y = A3x(2). (6.2c)

This forms a compositional structure so that the mapping between input and output can be
represented as

y = A3A2A1x. (6.3)

This basic architecture can scale to M layers so that a general representation between input
data and the output layer for a linear NN is given by

y = AMAM−1 · · · A2A1x. (6.4)

This is generally a highly underdetermined system that requires some constraints on the
solution in order to select a unique solution. One constraint is immediately obvious: The
mapping must generate M distinct matrices that give the best mapping. It should be noted
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Figure 6.1 Illustration of a neural net architecture mapping an input layer x to an output layer y. The
middle (hidden) layers are denoted x(j) where j determines their sequential ordering. The matrices
Aj contain the coefficients that map each variable from one layer to the next. Although the
dimensionality of the input layer x ∈ Rn is known, there is great flexibility in choosing the
dimension of the inner layers as well as how to structure the output layer. The number of layers and
how to map between layers is also selected by the user. This flexible architecture gives great
freedom in building a good classifier.

that linear mappings, even with a compositional structure, can only produce a limited range
of functional responses due to the limitations of the linearity.

Nonlinear mappings are also possible, and generally used, in constructing the NN.
Indeed, nonlinear activation functions allow for a richer set of functional responses than
their linear counterparts. In this case, the connections between layers are given by

x(1) = f1(A1, x) (6.5a)

x(2) = f2(A2, x(1)) (6.5b)

y = f3(A3, x(2)). (6.5c)

Note that we have used different nonlinear functions fj (·) between layers. Often a single
function is used; however, there is no constraint that this is necessary. In terms of mapping
the data between input and output over M layers, the following is derived

y = fM(AM, · · · , f2(A2, f1(A1, x)) · · · ) (6.6)

which can be compared with (6.1) for the general optimization which constructs the NN.
As a highly underdetermined system, constraints should be imposed in order to extract
a desired solution type, as in (6.1). For big data applications such as ImageNET and
computer vision tasks, the optimization associated with this compositional framework is
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expensive given the number of variables that must be determined. However, for moderate
sized networks, it can be performed on workstation and laptop computers. Modern stochas-
tic gradient descent and back propagation algorithms enable this optimization, and both are
covered in later sections.

A One-Layer Network
To gain insight into how an NN might be constructed, we will consider a single layer net-
work that is optimized to build a classifier between dogs and cats. The dog and cat example
was considered extensively in the previous chapter. Recall that we were given images of
dogs and cats, or a wavelet version of dogs and cats. Fig. 6.2 shows our construction. To
make this as simple as possible, we consider the simple NN output

y = {dog, cat} = {+1,−1} (6.7)

which labels each data vector with an output y ∈ {±1}. In this case the output layer is
a single node. As in previous supervised learning algorithms the goal is to determine a
mapping so that each data vector xj is labeled correctly by yj .

The easiest mapping is a linear mapping between the input images xj ∈ Rn and the
output layer. This gives a linear system AX = Y of the form

AX = Y → [a1 a2 · · · an]

⎡
⎣ x1 x2 · · · xp

⎤
⎦ = [+1 + 1 · · · − 1 − 1] (6.8)

Figure 6.2 Single layer network for binary classification between dogs and cats. The output layer for
this case is a perceptron with y ∈ {±1}. A linear mapping between the input image space and output
output layer can be constructed for training data by solving A = YX†. This gives a least square
regression for the matrix A mapping the images to label space.
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where each column of the matrix X is a dog or cat image and the columns of Y are its
corresponding labels. Since the output layer is a single node, both A and Y reduce to
vectors. In this case, our goal is to determine the matrix (vector) A with components aj .
The simplest solution is to take the pseudo-inverse of the data matrix X

A = YX†. (6.9)

Thus a single output layer allows us to build a NN using least-square fitting. Of course, we
could also solve this linear system in a variety of other ways, including with sparsity-
promoting methods. The following code solves this problem through both least-square
fitting (pinv) and the LASSO.

Code 6.1 1-layer, linear neural network.

load catData_w.mat; load dogData_w.mat; CD=[dog_wave cat_wave];
train=[dog_wave(:,1:60) cat_wave(:,1:60)];
test=[dog_wave(:,61:80) cat_wave(:,61:80)];
label=[ones(60,1); -1*ones(60,1)].’;

A=label*pinv(train); test_labels=sign(A*test);
subplot(4,1,1), bar(test_labels)
subplot(4,1,2), bar(A)
figure(2), subplot(2,2,1)
A2=flipud(reshape(A,32,32)); pcolor(A2), colormap(gray)

figure(1), subplot(4,1,3)
A=lasso(train.’,label.’,’Lambda’,0.1).’;
test_labels=sign(A*test);
bar(test_labels)
subplot(4,1,4)
bar(A)
figure(2), subplot(2,2,2)
A2=flipud(reshape(A,32,32)); pcolor(A2), colormap(gray)

Figs. 6.3 and 6.4 show the results of this linear single-layer NN with single node output
layer. Specifically, the four rows of Fig. 6.3 show the output layer on the withheld test data
for both the pseudo-inverse and LASSO methods along with a bar graph of the 32×32
(1024 pixels) weightings of the matrix A. Note that all matrix elements are nonzero in
the pseudo-inverse solution, while the LASSO highlights a small number of pixels that
can classify the pictures as well as using all pixels. Fig. 6.4 shows the matrix A for the
two solution strategies reshaped into 32×32 images. Note that for the pseudo-inverse, the
weightings of the matrix elements A show many features of the cat and dog face. For
the LASSO method, only a few pixels are required that are clustered near the eyes and
ears. Thus for this single layer network, interpretable results are achieved by looking at the
weights generated in the matrix A.

6.2 Multi-Layer Networks and Activation Functions
The previous section constructed what is perhaps the simplest NN possible. It was linear,
had a single layer, and a single output layer neuron. The potential generalizations are
endless, but we will focus on two simple extensions of the NN in this section. The first
extension concerns the assumption of linearity in which we assumed that there is a linear
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Figure 6.3 Classification of withheld data tested on a trained, single-layer network with linear
mapping between inputs (pixel space) and a single output. (a) and (c) are the bar graph of the output
layer score y ∈ {±1} achieved for the withheld data using a pseudo-inverse for training and the
LASSO for training respectively. The results show in both cases that dogs are more often
misclassified than cats are misclassified. (b) and (d) show the coefficients of the matrix A for the
pseudo-inverse and LASSO respectively. Note that the LASSO has only a small number of nonzero
elements, thus suggesting the NN is highly sparse.

Figure 6.4 Weightings of the matrix A reshaped into 32×32 arrays. The left matrix shows the matrix
A computed by least-square regression (the pseudo-inverse) while the right matrix shows the matrix
A computed by LASSO. Both matrices provide similar classification scores on withheld data. They
further provide interpretability in the sense that the results from the pseudo-inverse show many of
the features of dogs and cats while the LASSO shows that measuring near the eyes and ears alone
can give the features required for distinguishing between dogs and cats.



6.2 Multi-Layer Networks and Activation Functions 201

transform from the image space to the output layer: Ax = y in (6.8). We highlight here
common nonlinear transformations from input-to-output space represented by

y = f (A, x) (6.10)

where f (·) is a specified activation function (transfer function) for our mapping.
The linear mapping used previously, although simple, does not offer the flexibility and

performance that other mappings offer. Some standard activation functions are given by

f (x) = x − linear (6.11a)

f (x) =
{

0 x ≤ 0
1 x > 0

− binary step (6.11b)

f (x) = 1

1 + exp(−x)
− logistic (soft step) (6.11c)

f (x) = tanh(x) − TanH (6.11d)

f (x) =
{

0 x ≤ 0
x x > 0

− rectified linear unit (ReLU). (6.11e)

There are other possibilities, but these are perhaps the most commonly considered in prac-
tice and they will serve for our purposes. Importantly, the chosen function f (x) will be dif-
ferentiated in order to be used in gradient descent algorithms for optimization. Each of the
functions above is either differentiable or piecewise differentiable. Perhaps the most com-
monly used activation function is currently the ReLU, which we denote f (x) = ReLU(x).

With a nonlinear activation function f (x), or if there are more than one layer, then
standard linear optimization routines such as the pseudo-inverse and LASSO can no longer
be used. Although this may not seem immediately significant, recall that we are optimizing
in a high-dimensional space where each entry of the matrix A needs to be found through
optimization. Even moderate to small problems can be computationally expensive to solve
without using specialty optimization methods. Fortunately, the two dominant optimiza-
tion components for training NNs, stochastic gradient descent and backpropagation, are
included with the neural network function calls in MATLAB. As these methods are criti-
cally enabling, both of them are considered in detail in the next two sections of this chapter.

Multiple layers can also be considered as shown in (6.4) and (6.5c). In this case, the
optimization must simultaneously identify multiple connectivity matrices A1, A2, · · · AM ,
in contrast to the linear case where only a single matrix is determined Ā = AM · · · A2AM .
The multiple layer structure significantly increases the size of the optimization problem as
each matrix element of the M matrices must be determined. Even for a one layer structure,
an optimization routine such as fminsearch will be severely challenged when considering
a nonlinear transfer function and one needs to move to a gradient descent-based algorithm.

MATLAB’s neural network toolbox, much like TensorFlow in python, has a wide range
of features which makes it exceptionally powerful and convenient for building NNs. In the
following code, we will train a NN to classify between dogs and cats as in the previous
example. However, in this case, we allow the single layer to have a nonlinear transfer
function that maps the input to the output layer. The output layer for this example will be
modified to the following
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y =
[

1
0

]
= {dog} and y =

[
0
1

]
= {cat}. (6.12)

Half of the data is extracted for training, while the other half is used for testing the results.
The following code builds a network using the train command to classify between our
images.

Code 6.2 Neural network with nonlinear transfer functions.

load catData_w.mat; load dogData_w.mat;
CD=[dog_wave cat_wave];

x=[dog_wave(:,1:40) cat_wave(:,1:40)];
x2=[dog_wave(:,41:80) cat_wave(:,41:80)];
label=[ones(40,1) zeros(40,1);

zeros(40,1) ones(40,1)].’;

net = patternnet(2,’trainscg’);
net.layers{1}.transferFcn = ’tansig’;

net = train(net,x,label);
view(net)
y = net(x);
y2= net(x2);
perf = perform(net,label,y);
classes2 = vec2ind(y);
classes3 = vec2ind(y2);

In the code above, the patternnet command builds a classification network with two
outputs (6.12). It also optimizes with the option trainscg which is a scaled conjugate
gradient backpropagation. The net.layers also allows us to specify the transfer function,
in this case hyperbolic tangent functions (6.11d). The view(net) command produces a
diagnostic tool shown in Fig. 6.5 that summarizes the optimization and NN.

The results of the classification for a cross-validated training set as well as a withhold set
are shown in Fig. 6.6. Specifically, the desired outputs are given by the vectors (6.12). For
both the training and withhold sets, the two components of the vector are shown for the 80
training images (40 cats and 40 dogs) and the 80 withheld images (40 cats and 40 dogs).
The training set produces a perfect classifier using a one layer network with a hyperbolic
tangent transfer function (6.11d). On the withheld data, it incorrectly identifies 6 of 40 dogs
and cats, yielding an accuracy of ≈ 85% on new data.

The diagnostic tool shown in Fig. 6.5 allows access to a number of features critical
for evaluating the NN. Fig. 6.7 is a summary of the performance achieved by the NN
training tool. In this figure, the training algorithm automatically breaks the data into a
training, validation and test set. The backpropagation enabled, stochastic gradient descent
optimization algorithm then iterates through a number of training epochs until the cross-
validated error achieves a minimum. In this case, twenty-two epochs is sufficient to achieve
a minimum. The error on the test set is significantly higher than what is achieved for cross-
validation. For this case, only a limited amount of data is used for training (40 dogs and 40
cats), thus making it difficult to achieve great performance. Regardless, as already shown,
once the algorithm has been trained it can be used to evaluate new data as shown in Fig. 6.6.

There are two other features easily available with the NN diagnostic tool of Fig. 6.5.
Fig. 6.8 shows an error histogram associated with the trained network. As with Fig. 6.7, the
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Figure 6.5 MATLAB neural network visualization tool. The number of iterations along with the
performance can all be accessed from the interactive graphical tool. The performance, error
histogram and confusion buttons produce Figs. 6.7-6.9 respectively.

data is divided into training, validation, and test sets. This provides an overall assessment
of the classification quality that can be achieved by the NN training algorithm. Another
view of the performance can be seen in the confusion matrices for the training, validation,
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Figure 6.6 Comparison of the output vectors y = [y1 y2]T which are ideally (6.12) for the dogs and
cats considered here. The NN training stage produces a cross-validated classifier that achieves 100%
accuracy in classifying the training data (top two panels for 40 dogs and 40 cats). When applied to a
withheld set, 85% accuracy is achieved (bottom two panels for 40 dogs and 40 cats).

and test data. This is shown in Fig. 6.9. Overall, between Figs. 6.7 to 6.9, high-quality diag-
nostic tools are available to evaluate how well the NN is able to achieve its classification
task. The performance limits are easily seen in these figures.

6.3 The Backpropagation Algorithm
As was shown for the NNs of the last two sections, training data is required to determine
the weights of the network. Specifically, the network weights are determined so as to best
classify dog versus cat images. In the 1-layer network, this was done using both least-square
regression and LASSO. This shows that at its core, an optimization routine and objective
function is required to determine the weights. The objective function should minimize
a measure of the misclassified images. The optimization, however, can be modified by
imposing a regularizer or constraints, such as the 
1 penalization in LASSO.

In practice, the objective function chosen for optimization is not the true objective func-
tion desired, but rather a proxy for it. Proxies are chosen largely due to the ability to differ-
entiate the objective function in a computationally tractable manner. There are also many
different objective functions for different tasks. Instead, one often considers a suitably
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Figure 6.7 Summary of training of the NN over a number of epochs. The NN architecture
automatically separates the data into training, validation and test sets. The training continues (with a
maximum of 1000 epochs) until the validation error curve hits a minimum. The training then stops
and the trained algorithm is then used on the test set to evaluate performance. The NN trained here
has only a limited amount of data (40 dogs and 40 cats), thus limiting the performance. This figure
is accessed with the performance button on the NN interactive tool of Fig. 6.6.

chosen loss function so as to approximate the true objective. Ultimately, computational
tractability is critical for training NNs.

The backpropagation algorithm (backprop) exploits the compositional nature of NNs
in order to frame an optimization problem for determining the weights of the network.
Specifically, it produces a formulation amenable to standard gradient descent optimization
(See Section 4.2). Backprop relies on a simple mathematical principle: the chain rule
for differentiation. Moreover, it can be proven that the computational time required to
evaluate the gradient is within a factor of five of the time required for computing the
actual function itself [44]. This is known as the Baur-Strassen theorem. Fig. 6.10 gives
the simplest example of backprop and how the gradient descent is to be performed. The
input-to-output relationship for this single node, one hidden layer network, is given by

y = g(z, b) = g(f (x, a), b). (6.13)

Thus given a function f (·) and g(·) with weighting constants a and b, the output error
produce by the network can be computed against the ground truth as

E = 1

2
(y0 − y)2 (6.14)
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Figure 6.8 Summary of the error performance of the NN architecture for training, validation and test
sets. This figure is accessed with the errorhistogram button on the NN interactive tool of Fig. 6.6.

where y0 is the correct output and y is the NN approximation to the output. The goal is to
find a and b to minimize the error. The minimization requires

∂E

∂a
= −(y0 − y)

dy

dz

dz

da
= 0 . (6.15)

A critical observation is that the compositional nature of the network along with the chain
rule forces the optimization to backpropagate error through the network. In particular, the
terms dy/dz dz/da show how this backprop occurs. Given functions f (·) and g(·), the chain
rule can be explicitly computed.

Backprop results in an iterative, gradient descent update rule

ak+1 = ak + δ
∂E

∂ak

(6.16a)

bk+1 = bk + δ
∂E

∂bk

(6.16b)

where δ is the so-called learning rate and ∂E/∂a along with ∂E/∂b can be explicitly com-
puted using (6.15). The iteration algorithm is executed to convergence. As with all iterative
optimization, a good initial guess is critical to achieve a good solution in a reasonable
amount of computational time.

Backprop proceeds as follows: (i) A NN is specified along with a labeled training set.
(ii) The initial weights of the network are set to random values. Importantly, one must
not initialize the weights to zero, similar to what may be done in other machine learning
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Figure 6.9 Summary of the error performance through confusion matrices of the NN architecture for
training, validation and test sets. This figure is accessed with the confusion button on the NN
interactive tool of Fig. 6.6.

algorithms. If weights are initialized to zero, after each update, the outgoing weights of each
neuron will be identical, because the gradients will be identical. Moreover, NNs often get
stuck at local optima where the gradient is zero but that are not global minima, so random
weight initialization allows one to have a chance of circumventing this by starting at many
different random values. (iii) The training data is run through the network to produce
an output y, whose ideal ground-truth output is y0. The derivatives with respect to each
network weight is then computed using backprop formulas (6.15). (iv) For a given learning
rate δ, the network weights are updated as in (6.16). (v) We return to step (iii) and continue
iterating until a maximum number of iterations is reached or convergence is achieved.

As a simple example, consider the linear activation function

f (ξ, α) = g(ξ, α) = αξ. (6.17)

In this case we have in Fig. 6.10

z = ax (6.18a)

y = bz. (6.18b)
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Figure 6.10 Illustration of the backpropagation algorithm on a one-node, one hidden layer
network. The compositional nature of the network gives the input-output relationship
y = g(z, b) = g(f (x, a), b). By minimizing the error between the output y and its desired output
y0, the composition along with the chain rule produces an explicit formula (6.15) for updating the
values of the weights. Note that the chain rule backpropagates the error all the way through the
network. Thus by minimizing the output, the chain rule acts on the compositional function to
produce a product of derivative terms that advance backward through the network.

We can now explicitly compute the gradients such as (6.15). This gives

∂E

∂a
= −(y0 − y)

dy

dz

dz

da
= −(y0 − y) · b · x (6.19a)

∂E

∂b
= −(y0 − y)

dy

db
= −(y0 − y)z = −(y0 − y) · a · x. (6.19b)

Thus with the current values of a and b, along with the input-output pair x and y and
target truth y0 , each derivative can be evaluated. This provides the required information to
perform the update (6.16).

The backprop for a deeper net follows in a similar fashion. Consider a network with M

hidden layers labeled z1 to zm with the first connection weight a between x and z1. The
generalization of Fig. 6.10 and (6.15) is given by

∂E

∂a
= −(y0 − y)

dy

dzm

dzm

dzm−1
· · · dz2

dz1

dz1

da
. (6.20)

The cascade of derivates induced by the composition and chain rule highlights the back-
propagation of errors that occurs when minimizing the classification error.

A full generalization of backprop involves multiple layers as well multiple nodes per
layer. The general situation is illustrated in Fig. 6.1. The objective is to determine the
matrix elements of each matrix Aj . Thus a significant number of network parameters need
to be updated in gradient descent. Indeed, training a network can often be computationally
infeasible even though the update rules for individual weights is not difficult. NNs can thus
suffer from the curse of dimensionality as each matrix from one layer to another requires
updating n2 coefficients for an n-dimensional input, assuming the two connected layers are
both n-dimensional.

Denoting all the weights to be updated by the vector w, where w contains all the elements
of the matrices Aj illustrated in Fig. 6.1, then

wk+1 = wk + δ∇E (6.21)

where the gradient of the error ∇E, through the composition and chain rule, produces the
backpropagation algorithm for updating the weights and reducing the error. Expressed in a
component-by-component way
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wj

k+1 = wj
k + δ

∂E

∂wj
k

(6.22)

where this equation holds for the j th component of the vector w. The term ∂E/∂wj

produces the backpropagation through the chain rule, i.e. it produces the sequential set
of functions to evaluate as in (6.20). Methods for solving this optimization more quickly,
or even simply enabling the computation to be tractable, remain of active research interest.
Perhaps the most important method is stochastic gradient descent which is considered in
the next section.

6.4 The Stochastic Gradient Descent Algorithm
Training neural networks is computationally expensive due to the size of the NNs being
trained. Even NNs of modest size can become prohibitively expensive if the optimization
routines used for training are not well informed. Two algorithms have been especially
critical for enabling the training of NNs: stochastic gradient descent (SGD) and backprop.
Backprop allows for an efficient computation of the objective function’s gradient while
SGD provides a more rapid evaluation of the optimal network weights. Although alternative
optimization methods for training NNs continue to provide computational improvements,
backprop and SGD are both considered here in detail so as to give the reader an idea of the
core architecture for building NNs.

Gradient descent was considered in Section 4.2. Recall that this algorithm was developed
for nonlinear regression where the data fit takes the general form

f (x) = f (x,β) (6.23)

where β are fitting coefficients used to minimize the error. In NNs, the parameters β are
the network weights, thus we can rewrite this in the form

f (x) = f (x, A1, A2, · · · , AM) (6.24)

where the Aj are the connectivity matrices from one layer to the next in the NN. Thus A1

connects the first and second layers, and there are M hidden layers.
The goal of training the NN is to minimize the error between the network and the data.

The standard root-mean square error for this case is defined as

argmin
Aj

E(A1, A2, · · · , AM) = argmin
Aj

n∑
k=1

(f (xk, A1, A2, · · · , AM) − yk)
2 (6.25)

which can be minimized by setting the partial derivative with respect to each matrix com-
ponent to zero, i.e. we require ∂E/∂(aij)k = 0 where (aij)k is the ith row and j th column
of the kth matrix (k = 1, 2, · · · M). Recall that the zero derivate is a minimum since there
is no maximum error. This gives the gradient ∇f (x) of the function with respect to the NN
parameters. Note further that f (·) is the function evaluated at each of the n data points.

As was shown in Section 4.2, this leads to a Newton-Raphson iteration scheme for
finding the minima

xj+1(δ) = xj − δ∇f (xj ) (6.26)
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where δ is a parameter determining how far a step should be taken along the gradient
direction. In NNs, this parameter is called the learning rate. Unlike standard gradient
descent, it can be computationally prohibitive to compute an optimal learning rate.

Although the optimization formulation is easily constructed, evaluating (6.25) is often
computationally intractable for NNs. This due to two reasons: (i) the number of matrix
weighting parameters for each Aj is quite large, and (ii) the number of data points n is
generally also large.

To render the computation (6.25) potentially tractable, SGD does not estimate the gra-
dient in (6.26) using all n data points. Rather, a single, randomly chosen data point, or a
subset for batch gradient descent, is used to approximate the gradient at each step of the
iteration. In this case, we can reformulate the least-square fitting of (6.25) so that

E(A1, A2, · · · , AM) =
n∑

k=1

Ek(A1, A2, · · · , AM) (6.27)

and

Ek(A1, A2, · · · , AM) = (fk(xk, A1, A2, · · · , AM) − yk)
2 (6.28)

where fk(·) is now the fitting function for each data point, and the entries of the matrices
Aj are determined from the optimization process.

The gradient descent iteration algorithm (6.26) is now updated as follows

wj+1(δ) = wj − δ∇fk(wj ) (6.29)

where wj is the vector of all the network weights from Aj (j = 1, 2, · · · ,M) at the j th
iteration, and the gradient is computed using only the kth data point and fk(·). Thus instead
of computing the gradient with all n points, only a single data point is randomly selected
and used. At the next iteration, another randomly selected point is used to compute the
gradient and update the solution. The algorithm may require multiple passes through all the
data to converge, but each step is now easy to evaluate versus the expensive computation
of the Jacobian which is required for the gradient. If instead of a single point, a subset of
points is used, then we have the following batch gradient descent algorithm

wj+1(δ) = wj − δ∇fK(wj ) (6.30)

where K ∈ [k1, k2, · · · kp] denotes the p randomly selected data points kj used to approx-
imate the gradient.

The following code is a modification of the code shown in Section 4.2 for gradient
descent. The modification here involves taking a significant subsampling of the data to
approximate the gradient. Specifically, a batch gradient descent is illustrated with a fixed
learning rate of δ = 2. Ten points are used to approximate the gradient of the function at
each step.

Code 6.3 Stochastic gradient descent algorithm.

h=0.1; x=-6:h:6; y=-6:h:6; n=length(x);
[X,Y]=meshgrid(x,y); clear x, clear y

F1=1.5-1.6*exp(-0.05*(3*(X+3).^2+(Y+3).^2));
F=F1 + (0.5-exp(-0.1*(3*(X-3).^2+(Y-3).^2)));
[dFx,dFy]=gradient(F,h,h);
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x0=[4 0 -5]; y0=[0 -5 2]; col=[’ro’,’bo’,’mo’];
for jj=1:3
q=randperm(n); i1=sort(q(1:10));
q2=randperm(n); i2=sort(q2(1:10));
x(1)=x0(jj); y(1)=y0(jj);
f(1)=interp2(X(i1,i2),Y(i1,i2),F(i1,i2),x(1),y(1));
dfx=interp2(X(i1,i2),Y(i1,i2),dFx(i1,i2),x(1),y(1));
dfy=interp2(X(i1,i2),Y(i1,i2),dFy(i1,i2),x(1),y(1));

tau=2;
for j=1:50

x(j+1)=x(j)-tau*dfx; % update x, y, and f
y(j+1)=y(j)-tau*dfy;
q=randperm(n); ind1=sort(q(1:10));
q2=randperm(n); ind2=sort(q2(1:10));
f(j+1)=interp2(X(i1,i2),Y(i1,i2),F(i1,i2),x(j+1),y(j+1))
dfx=interp2(X(i1,i2),Y(i1,i2),dFx(i1,i2),x(j+1),y(j+1));
dfy=interp2(X(i1,i2),Y(i1,i2),dFy(i1,i2),x(j+1),y(j+1));
if abs(f(j+1)-f(j))<10^(-6) % check convergence

break
end

end
if jj==1; x1=x; y1=y; f1=f; end
if jj==2; x2=x; y2=y; f2=f; end
if jj==3; x3=x; y3=y; f3=f; end
clear x, clear y, clear f

end

Fig. 6.11 shows the convergence of SGD for three initial conditions. As with gradient
descent, the algorithm can get stuck in local minima. However, the SGD now approxi-
mates the gradient with only 100 points instead of the full 104 points, thus allowing for a
computation which is three orders of magnitude smaller. Importantly, the SGD is a scalable
algorithm, allowing for significant computational savings even as the data grows to be high-
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Figure 6.11 Stochastic gradient descent applied to the function featured in Fig. 4.3(b). The
convergence can be compared to a full gradient descent algorithm as shown in Fig. 4.6. Each
step of the stochastic (batch) gradient descent selects 100 data points for approximating the
gradient, instead of the 104 data points of the data. Three initial conditions are shown:
(x0, y0) = {(4, 0), (0,−5), (−5, 2)} . The first of these (red circles) gets stuck in a local minima
while the other two initial conditions (blue and magenta) find the global minima. Interpolation of
the gradient functions of Fig. 4.5 are used to update the solutions.
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dimensional. For this reason, SGD has become a critically enabling part of NN training.
Note that the learning rate, batch size, and data sampling play an important role in the
convergence of the method.

6.5 Deep Convolutional Neural Networks
With the basics of the NN architecture in hand, along with an understanding of how to
formulate an optimization framework (backprop) and actually compute the gradient descent
efficiently (SGD), we are ready to construct deep convolution neural nets (DCNN) which
are the fundamental building blocks of deep learning methods. Indeed, today when practi-
tioners generally talk about NNs for practical use, they are typically talking about DCNNs.
But as much as we would like to have a principled approach to building DCNNs, there
remains a great deal of artistry and expert intuition for producing the highest performing
networks. Moreover, DCNNs are especially prone to overtraining, thus requiring special
care to cross-validate the results. The recent textbook on deep learning by Goodfellow
et al. [216] provides a detailed an extensive account of the state-of-the-art in DCNNs. It
is especially useful for highlighting many rules-of-thumb and tricks for training effective
DCNNs.

Like SVM and random forest algorithms, the MATLAB package for building NNs has a
tremendous number of features and tuning parameters. This flexibility is both advantageous
and overwhelming at the same time. As was pointed out at the beginning of this chapter,
it is immediately evident that there are a great number of design questions regarding NNs.
How many layers should be used? What should be the dimension of the layers? How
should the output layer be designed? Should one use all-to-all or sparsified connections
between layers? How should the mapping between layers be performed: a linear mapping
or a nonlinear mapping?

The prototypical structure of a DCNN is illustrated in Fig. 6.12. Included in the visualiza-
tion is a number of commonly used convolutional and pooling layers. Also illustrated is the
fact that each layer can be used to build multiple downstream layers, or feature spaces, that
can be engineered by the choice of activation functions and/or network parametrizations.
All of these layers are ultimately combined into the output layer. The number of connec-
tions that require updating through backprop and SGD can be extraordinarily high, thus
even modest networks and training data may require signifiant computational resources.
A typical DCNN is constructed of a number of layers, with DCNNs typically having
between 7-10 layers. More recent efforts have considered the advantages of a truly deep
network with approximately 100 layers, but the merits of such architectures are still not
fully known. The following paragraphs highlight some of the more prominent elements that
comprise DCNNs, including convolutional layers, pooling layers, fully-connected layers
and dropout.

Convolutional Layers
Convolutional layers are similar to windowed (Gabor) Fourier transforms or wavelets from
Chapter 2, in that a small selection of the full high-dimensional input space is extracted and
used for feature engineering. Fig. 6.12 shows the convolutional windows (dark gray boxes)
that are slid across the entire layer (light gray boxes). Each convolution window transforms
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Figure 6.12 Prototypical DCNN architecture which includes commonly used convolutional and
pooling layers. The dark gray boxes show the convolutional sampling from layer to layer. Note that
for each layer, many functional transformations can be used to produce a variety of feature spaces.
The network ultimately integrates all this information into the output layer.

the data into a new node through a given activation function, as shown in Fig. 6.12(a).
The feature spaces are thus built from the smaller patches of the data. Convolutional
layers are especially useful for images as they can extract important features such as
edges. Wavelets are also known to efficiently extract such features and there are deep
mathematical connections between wavelets and DCNNs as shown by Mallat and co-
workers [358, 12]. Note that in Fig. 6.12, the input layer can be used to construct many
layers by simply manipulating the activation function f (·) to the next layer as well the size
of the convolutional window.

Pooling Layers
It is common to periodically insert a Pooling layer between successive convolutional layers
in a DCNN architecture. Its function is to progressively reduce the spatial size of the
representation in order to reduce the number of parameters and computation in the network.
This is an effective strategy to (i) help control overfitting and (ii) fit the computation in
memory. Pooling layers operate independently on every depth slice of the input and resize
them spatially. Using the max operation, i.e. the maximum value for all the nodes in its
convolutional window, is called max pooling. In image processing, the most common form
of max pooling is a pooling layer with filters of size 2×2 applied with a stride of 2 down-
samples every depth slice in the input by 2 along both width and height, discarding 75%
of the activations. Every max pooling operation would in this case be taking a max over 4
numbers (a 2x2 region in some depth slice). The depth dimension remains unchanged. An
example max pooling operation is shown in Fig. 6.12(b), where a 3×3 convolutional cell
is transformed to a single number which is the maximum of the 9 numbers.
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Fully-Connected Layers
Occasionally, fully-connected layers are inserted into the DCNN so that different regions
can be connected. The pooling and convolutional layers are local connections only, while
the fully-connected layer restores global connectivity. This is another commonly used
layer in the DCNN architecture, providing a potentially important feature space to improve
performance.

Dropout
Overfitting is a serious problem in DCNNs. Indeed, overfitting is at the core of why DCNNs
often fail to demonstrate good generalizability properties (See Chapter 4 on regression).
Large DCNNs are also slow to use, making it difficult to deal with overfitting by combining
the predictions of many different large neural nets for online implementation. Dropout is
a technique which helps address this problem. The key idea is to randomly drop nodes
in the network (along with their connections) from the DCNN during training, i.e. during
SGD/backprop updates of the network weights. This prevents units from co-adapting too
much. During training, dropout samples form an exponential number of different “thinned"
networks. This idea is similar to the ensemble methods for building random forests. At
test time, it is easy to approximate the effect of averaging the predictions of all these
thinned networks by simply using a single unthinned network that has smaller weights.
This significantly reduces overfitting and has shown to give major improvements over other
regularization methods [499].

There are many other techniques that have been devised for training DCNNs, but the
above methods highlight some of the most commonly used. The most successful applica-
tions of these techniques tend to be in computer vision tasks where DCNNs offer unpar-
alleled performance in comparison to other machine learning methods. Importantly, the
ImageNET data set is what allowed these DCNN layers to be maximally leveraged for
human level recognition performance.

To illustrate how to train and execute a DCNN, we use data from MATLAB. Specifically,
we use a data set that has a training and test set with the alphabet characters A, B, and C.
The following code loads the data set and plots a representative sample of the characters in
Fig. 6.13.

Code 6.4 Loading alphabet images.

load lettersTrainSet
perm = randperm(1500,20);
for j = 1:20

subplot(4,5,j);
imshow(XTrain(:,:,:,perm(j)));

end

This code loads the training data, XTrain, that contains 1500 28×28 grayscale images of
the letters A, B, and C in a 4-D array. There are equal numbers of each letter in the data set.
The variable TTrain contains the categorical array of the letter labels, i.e. the truth labels.
The following code constructs and trains a DCNN.

Code 6.5 Train a DCNN.

layers = [imageInputLayer([28 28 1]);
convolution2dLayer(5,16);
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Figure 6.13 Representative images of the alphabet characters A, B, and C. There are a total of 1500
28×28 grayscale images (XTrain) of the letters that are labeled (TTrain).

reluLayer();
maxPooling2dLayer(2,’Stride’,2);
fullyConnectedLayer(3);
softmaxLayer();
classificationLayer()];

options = trainingOptions(’sgdm’);
rng(’default’) % For reproducibility
net = trainNetwork(XTrain,TTrain,layers,options);

Note the simplicity in how diverse network layers are easily put together. In addition,
a ReLu activation layer is specified along with the training method of stochastic gradient
descent (sgdm). The trainNetwork command integrates the options and layer specifica-
tions to build the best classifier possible. The resulting trained network can now be used on
a test data set.

Code 6.6 Test the DCNN performance.

load lettersTestSet;
YTest = classify(net,XTest);
accuracy = sum(YTest == TTest)/numel(TTest)

The resulting classification performance is approximately 93%. One can see by this code
structure that modifying the network architecture and specifications is trivial. Indeed, one
can probably easily engineer a network to outperform the illustrated DCNN. As already
mentioned, artistry and expert intuition are critical for producing the highest performing
networks.
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6.6 Neural Networks for Dynamical Systems
Neural networks offer an amazingly flexible architecture for performing a diverse set of
mathematical tasks. To return to S. Mallat: Supervised learning is a high-dimensional
interpolation problem [358]. Thus if sufficiently rich data can be acquired, NNs offer the
ability to interrogate the data for a variety of tasks centered on classification and prediction.
To this point, the tasks demonstrated have primarily been concerned with computer vision.
However, NNs can also be used for future state predictions of dynamical systems (See
Chapter 7).

To demonstrate the usefulness of NNs for applications in dynamical systems, we will
consider the Lorenz system of differential equations [345]

ẋ = σ(y − x) (6.31a)

ẏ = x(ρ − z) − y (6.31b)

ż = xy − βz, (6.31c)

where the state of the system is given by x = [x y z]T with the parameters σ = 10, ρ =
28, and β = 8/3. This system will be considered in further detail in the next chapter.
For the present, we will simulate this nonlinear system and use it as a demonstration of
how NNs can be trained to characterize dynamical systems. Specifically, the goal of this
section is to demonstrate that we can train a NN to learn an update rule which advances the
state space from xk to xk+1, where k denotes the state of the system at time tk . Accurately
advancing the solution in time requires a nonlinear transfer function since Lorenz itself is
nonlinear.

The training data required for the NN is constructed from high-accuracy simulations of
the Lorenz system. The following code generates a diverse set of initial conditions. One
hundred initial conditions are considered in order to generate one hundred trajectories. The
sampling time is fixed at �t = 0.01. Note that the sampling time is not the same as the
time-steps taken by the 4th-order Runge-Kutta method [316]. The time-steps are adaptively
chosen to meet the stringent tolerances of accuracy chosen for this example.

Code 6.7 Create training data of Lorenz trajectories.

% Simulate Lorenz system
dt=0.01; T=8; t=0:dt:T;
b=8/3; sig=10; r=28;

Lorenz = @(t,x)([ sig * (x(2) - x(1)) ; ...
r * x(1)-x(1) * x(3) - x(2) ; ...
x(1) * x(2) - b*x(3) ]);

ode_options = odeset(’RelTol’,1e-10, ’AbsTol’,1e-11);

input=[]; output=[];
for j=1:100 % training trajectories

x0=30*(rand(3,1)-0.5);
[t,y] = ode45(Lorenz,t,x0);
input=[input; y(1:end-1,:)];
output=[output; y(2:end,:)];
plot3(y(:,1),y(:,2),y(:,3)), hold on
plot3(x0(1),x0(2),x0(3),’ro’)

end
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Figure 6.14 Evolution of the Lorenz dynamical equations for one hundred randomly chosen initial
conditions (red circles). For the parameters σ = 10, ρ = 28, and β = 8/3, all trajectories collapse
to an attractor. These trajectories, generated from a diverse set of initial data, are used to train a
neural network to learn the nonlinear mapping from xk to xk+1.

The simulation of the Lorenz system produces to key matrices: input and output. The
former is a matrix of the system at xk , while the latter is the corresponding state of the
system xk+1 advanced �t = 0.01.

The NN must learn the nonlinear mapping from xk to xk+1. Fig. 6.14 shows the various
trajectories used to train the NN. Note the diversity of initial conditions and the underlying
attractor of the Lorenz system.

We now build a NN trained on trajectories of Fig. 6.14 to advance the solution �t = 0.01
into the future for an arbitrary initial condition. Here, a three-layer network is constructed
with ten nodes in each layer and a different activation unit for each layer. The choice of
activation types, nodes in the layer and number of layers are arbitrary. It is trivial to make
the network deeper and wider and enforce different activation units. The performance of
the NN for the arbitrary choices made is quite remarkable and does not require additional
tuning. The NN is build with the following few lines of code.

Code 6.8 Build a neural network for Lorenz system.

net = feedforwardnet([10 10 10]);
net.layers{1}.transferFcn = ’logsig’;
net.layers{2}.transferFcn = ’radbas’;
net.layers{3}.transferFcn = ’purelin’;
net = train(net,input.’,output.’);
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Figure 6.15 (a) Network architecture used to train the NN on the trajectory data of Fig. 6.14. A
three-layer network is constructed with ten nodes in each layer and a different activation unit for
each layer. (b) Performance summary of the NN optimization algorithm. Over 1000 epochs of
training, accuracies on the order of 10−5 are produced. The NN is also cross-validated in the
process.

The code produces a function net which can be used with a new set of data to produce
predictions of the future. Specifically, the function net gives the nonlinear mapping from
xk to xk+1. Fig. 6.15 shows the structure of the network along with the performance of
the training over 1000 epochs of training. The results of the cross-validation are also
demonstrated. The NN converges steadily to a network that produces accuracies on the
order of 10−5.

Once the NN is trained on the trajectory data, the nonlinear model mapping xk to xk+1

can be used to predict the future state of the system from an initial condition. In the
following code, the trained function net is used to take an initial condition and advance
the solution �t . The output can be re-inserted into the net function to estimate the solution
2�t into the future. This iterative mapping can produce a prediction for the future state
as far into the future as desired. In what follows, the mapping is used to predict the
Lorenz solutions eight time units into the future from for a given initial condition. This
can then be compared against the ground truth simulation of the evolution using a 4th-
order Runge-Kutta method. The following iteration scheme gives the NN approximation to
the dynamics.
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Figure 6.16 Comparison of the time evolution of the Lorenz system (solid line) with the NN
prediction (dotted line) for two randomly chosen initial conditions (red dots). The NN prediction
stays close to the dynamical trajectory of the Lorenz model. A more detailed comparison is given in
Fig. 6.17.

Code 6.9 Neural network for prediction.

ynn(1,:)=x0;
for jj=2:length(t)

y0=net(x0);
ynn(jj,:)=y0.’; x0=y0;

end
plot3(ynn(:,1),ynn(:,2),ynn(:,3),’:’,’Linewidth’,[2])

Fig. 6.16 shows the evolution of two randomly drawn trajectories (solid lines) com-
pared against the NN prediction of the trajectories (dotted lines). The NN prediction is
remarkably accurate in producing an approximation to the high-accuracy simulations. This
shows that the data used for training is capable of producing a high-quality nonlinear model
mapping xk to xk+1. The quality of the approximation is more clearly seen in Fig. 6.17
where the time evolution of the individual components of x are shown against the NN
predictions. See Section 7.5 for further details.

In conclusion, the NN can be trained to learn dynamics. More precisely, the NN seems to
learn an algorithm which is approximately equivalent to a 4th-order Runge-Kutta scheme
for advancing the solution a time-step �t . Indeed, NNs have been used to model dynamical
systems [215] and other physical processes [381] for decades. However, great strides have
been made recently in using DNNs to learn Koopman embeddings, resulting in several
excellent papers [550, 368, 513, 564, 412, 332]. For example, the VAMPnet architec-
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Figure 6.17 Comparison of the time evolution of the Lorenz system for two randomly chosen initial
conditions (Also shown in Fig. 6.16). The left column shows that the evolution of the Lorenz
differential equations and the NN mapping gives identical results until t ≈ 5.5, at which point they
diverge. In contrast, the NN prediction stays on the trajectory of the second initial condition for the
entire time window.

ture [550, 368] uses a time-lagged auto-encoder and a custom variational score to identify
Koopman coordinates on an impressive protein folding example. In an alternative formu-
lation, variational auto-encoders can build low-rank models that are efficient and compact
representations of the Koopman operator from data [349]. By construction, the resulting
network is both parsimonious and interpretable, retaining the flexibility of neural networks
and the physical interpretation of Koopman theory. In all of these recent studies, DNN
representations have been shown to be more flexible and exhibit higher accuracy than other
leading methods on challenging problems.

6.7 The Diversity of Neural Networks
There are a wide variety of NN architectures, with only a few of the most dominant
architectures considered thus far. This chapter and book does not attempt to give a com-
prehensive assessment of the state-of-the-art in neural networks. Rather, our focus is on
illustrating some of the key concepts and enabling mathematical architectures that have led
NNs to a dominant position in modern data science. For a more in-depth review, please
see [216]. However, to conclude this chapter, we would like to highlight some of the



6.7 The Diversity of Neural Networks 221

NN architectures that are used in practice for various data science tasks. This overview
is inspired by the neural network zoo as highlighted by Fjodor Van Veen of the Asimov
Institute (http://www.asimovinstitute.org).

The neural network zoo highlights some of the different architectural structures around
NNs. Some of the networks highlighted are commonly used across industry, while others
serve niche roles for specific applications. Regardless, it demonstrates that tremendous
variability and research effort focused on NNs as a core data science tool. Fig. 6.18 high-
lights the prototype structures to be discussed in what follows. Note that the bottom panel
has a key to the different type of nodes in the network, including input cells, output cells,
and hidden cells. Additionally, the hidden layer NN cells can have memory effects, kernel
structures and/or convolution/pooling. For each NN architecture, a brief description is
given along with the original paper proposing the technique.

Perceptron
The first mathematical model of NNs by Fukushima was termed the Neocognitron in
1980 [193]. His model had a single layer with a single output cell called the perceptron,
which made a categorial decision based on the sign of the output. Fig. 6.2 shows this archi-
tecture to classify between dogs and cats. The perceptron is an algorithm for supervised
learning of binary classifiers.

Feed Forward (FF)
Feed forward networks connect the input layer to output layer by forming connections
between the units so that they do not form a cycle. Fig. 6.1 has already shown a version
of this architecture where the information simply propagates from left to right in the
network. It is often the workhorse of supervised learning where the weights are trained
so as to best classify a given set of data. A feedforward network was used in Figs. 6.5
and 6.15 for training a classifier for dogs versus cats and predicting time-steps of the
Lorenz attractor respectively. An important subclass of feed forward networks is deep feed
forward (DFF) NNs. DFFs simply put together a larger number of hidden layers, typically
7-10 layers, to form the NN. A second important class of FF is the radial basis network,
which uses radial basis functions as the activation units [87]. Like any FF network, radial
basis function networks have many uses, including function approximation, time series
prediction, classification, and control.

Recurrent Neural Network (RNN)
Illustrated in Fig. 6.18(a), RNNs are characterized by connections between units that form
a directed graph along a sequence. This allows it to exhibit dynamic temporal behavior for
a time sequence [172]. Unlike feedforward neural networks, RNNs can use their internal
state (memory) to process sequences of inputs. The prototypical architecture in Fig. 6.18(a)
shows that each cell feeds back on itself. This self-interaction, which is not part of the
FF architecture, allows for a variety of innovations. Specifically, it allows for time delays
and/or feedback loops. Such controlled states are referred to as gated state or gated memory,
and are part of two key innovations: long-short term memory (LSTM)networks [248] and
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Figure 6.18 Neural network architectures commonly considered in the literature. The NNs are
comprised of input nodes, output nodes, and hidden nodes. Additionally, the nodes can have
memory, perform convolution and/or pooling, and perform a kernel transformation. Each network,
and their acronym is explained in the text.

gated recurrent units (GRU) [132]. LSTM is of particular importance as it revolutionized
speech recognition, setting a variety of performance records and outperforming traditional
models in a variety of speech applications. GRUs are a variation of LSTMs which have
been demonstrated to exhibit better performance on smaller datasets.
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Auto Encoder (AE)
The aim of an auto encoder, represented in Fig. 6.18(b), is to learn a representation (encod-
ing) for a set of data, typically for the purpose of dimensionality reduction. For AEs, the
input and output cells are matched so that the AE is essentially constructed to be a nonlinear
transform into and out of a new representation, acting as an approximate identity map on
the data. Thus AEs can be thought of as a generalization of linear dimensionality reduction
techniques such as PCA. AEs can potentially produce nonlinear PCA representations of
the data, or nonlinear manifolds on which the data should be embedded [71]. Since most
data lives in nonlinear subspaces, AEs are an important class of NN for data science, with
many innovations and modifications. Three important modifications of the standard AE are
commonly used. The variational auto encoder (VAE) [290] (shown in Fig. 6.18(c)) is a
popular approach to unsupervised learning of complicated distributions. By making strong
assumptions concerning the distribution of latent variables, it can be trained using standard
gradient descent algorithms to provide a good assessments of data in an unsupervised
fashion. The denoising auto encoder (DAE) [541] (shown in Fig. 6.18(c)) takes a partially
corrupted input during training to recover the original undistorted input. Thus noise is
intentionally added to the input in order to learn the nonlinear embedding. Finally, the
sparse auto encoder (SAE) [432] (shown in Fig. 6.18(d)) imposes sparsity on the hidden
units during training, while having a larger number of hidden units than inputs, so that an
autoencoder can learn useful structures in the input data. Sparsity is typically imposed by
thresholding all but the few strongest hidden unit activations.

Markov Chain (MC)
A Markov chain is a stochastic model describing a sequence of possible events in which
the probability of each event depends only on the state attained in the previous event. So
although not formally a NN, it shares many common features with RNNs. Markov chains
are standard even in undergraduate probability and statistics courses. Fig. 6.18(f) shows the
basic architecture where each cell is connected to the other cells by a probability model for
a transition.

Hopfield Network (HN)
A Hopfield network is a form of a RNN which was popularized by John Hopfield in
1982 for understanding human memory [254]. Fig. 6.18(g) shows the basic architecture
of an all-to-all connected network where each node can act as an input cell. The network
serves as a trainable content-addressable associative memory system with binary threshold
nodes. Given an input, it is iterated on the network with a guarantee to converge to a local
minimum. Sometimes it converge to a false pattern, or memory (wrong local minimum),
rather than the stored pattern (expected local minimum).

Boltzmann Machine (BM)
The Boltzmann machine, sometimes called a stochastic Hopfield network with hidden
units, is a stochastic, generative counterpart of the Hopfield network. They were one of the
first neural networks capable of learning internal representations, and are able to represent
and (given sufficient time) solve difficult combinatoric problems [246]. Fig. 6.18(h) shows
the structure of the BM. Note that unlike Markov chains (which have no input units) or
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Hopfield networks (where all cells are inputs), the BM is a hybrid which has a mixture
of input cells and hidden units. Boltzmann machines are intuitively appealing due to their
resemblance to the dynamics of simple physical processes. They are named after the Boltz-
mann distribution in statistical mechanics, which is used in their sampling function.

Restricted Boltzmann Machine (RBM)
Introduced under the name Harmonium by Paul Smolensky in 1986 [493], RBMs have
been proposed for dimensionality reduction, classification, collaborative filtering, feature
learning, and topic modeling. They can be trained for either supervised or unsupervised
tasks. G. Hinton helped bring them to prominence by developing fast algorithms for eval-
uating them [397]. RBMs are a subset of BMs where restrictions are imposed on the NN
such that nodes in the NN must form a bipartite graph (See Fig. 6.18(e)). Thus a pair of
nodes from each of the two groups of units (commonly referred to as the “visible" and
“hidden" units, respectively) may have a symmetric connection between them; there are no
connections between nodes within a group. RBMs can be used in deep learning networks
and deep belief networks by stacking RBMs and optionally fine-tuning the resulting deep
network with gradient descent and backpropagation.

Deep Belief Network (DBN)
DBNs are a generative graphical model that are composed of multiple layers of latent
hidden variables, with connections between the layers but not between units within each
layer [52]. Fig. 6.18(i) shows the architecture of the DBN. The training of the DBNs can
be done stack by stack from AE or RBM layers. Thus each of these layers only has to
learn to encode the previous network, which is effectively a greedy training algorithm for
finding locally optimal solutions. Thus DBNs can be viewed as a composition of simple,
unsupervised networks such as RBMs and AEs where each sub-network’s hidden layer
serves as the visible layer for the next.

Deep Convolutional Neural Network (DCNN)
DCNNs are the workhorse of computer vision and have already been considered in this
chapter. They are abstractly represented in Fig. 6.18(j), and in a more specific fashion in
Fig. 6.12. Their impact and influence on computer vision cannot be overestimated. They
were originally developed for document recognition [325].

Deconvolutional Network (DN)
Deconvolutional Networks, shown in Fig. 6.18(k), are essentially a reverse of DCNNs [567].
The mathematical structure of DNs permit the unsupervised construction of hierarchical
image representations. These representations can be used for both low-level tasks such as
denoising, as well as providing features for object recognition. Each level of the hierarchy
groups information from the level beneath to form more complex features that exist over a
larger scale in the image. As with DCNNs, it is well suited for computer vision tasks.
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Deep Convolutional Inverse Graphics Network (DCIGN)
The DCIGN is a form of a VAE that uses DCNNs for the encoding and decoding [313]. As
with the AE/VAE/SAE structures, the output layer shown in Fig. 6.18(l) is constrained to
match the input layer. DCIGN combine the power of DCNNs with VAEs, which provides
a formative mathematical architecture for computer visions and image processing.

Generative Adversarial Network (GAN)
In an innovative modification of NNs, the GAN architecture of Fig. 6.18(m) trains two
networks simultaneously [217]. The networks, often which are a combination of DCNNs
and/or FFs, train by one of the networks generating content which the other attempts
to judge. Specifically, one network generates candidates and the other evaluates them.
Typically, the generative network learns to map from a latent space to a particular data
distribution of interest, while the discriminative network discriminates between instances
from the true data distribution and candidates produced by the generator. The generative
network’s training objective is to increase the error rate of the discriminative network (i.e.,
"fool" the discriminator network by producing novel synthesized instances that appear to
have come from the true data distribution). The GAN architecture has produced interesting
results in computer vision for producing synthetic data, such as images and movies.

Liquid State Machine (LSM)
The LSM shown in Fig. 6.18(n) is a particular kind of spiking neural network [352]. An
LSM consists of a large collection of nodes, each of which receives time varying input from
external sources (the inputs) as well as from other nodes. Nodes are randomly connected
to each other. The recurrent nature of the connections turns the time varying input into a
spatio-temporal pattern of activations in the network nodes. The spatio-temporal patterns
of activation are read out by linear discriminant units. This architecture is motivated by
spiking neurons in the brain, thus helping understand how information processing and
discrimination might happen using spiking neurons.

Extreme Learning Machine (ELM)
With the same underlying architecture of an LSM shown in Fig. 6.18(n), the ELM is a
FF network for classification, regression, clustering, sparse approximation, compression
and feature learning with a single layer or multiple layers of hidden nodes, where the
parameters of hidden nodes (not just the weights connecting inputs to hidden nodes) need
not be tuned. These hidden nodes can be randomly assigned and never updated, or can be
inherited from their ancestors without being changed. In most cases, the output weights of
hidden nodes are usually learned in a single step, which essentially amounts to learning a
linear model [108].

Echo State Network (ESN)
ESNs are RNNs with a sparsely connected hidden layer (with typically 1% connectivity).
The connectivity and weights of hidden neurons have memory and are fixed and randomly
assigned (See Fig. 6.18(o)). Thus like LSMs and ELMs they are not fixed into a well-
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ordered layered structure. The weights of output neurons can be learned so that the network
can generate specific temporal patterns [263].

Deep Residual Network (DRN)
DRNs took the deep learning world by storm when Microsoft Research released Deep
Residual Learning for Image Recognition [237]. These networks led to 1st-place winning
entries in all five main tracks of the ImageNet and COCO 2015 competitions, which
covered image classification, object detection, and semantic segmentation. The robustness
of ResNets has since been proven by various visual recognition tasks and by nonvisual
tasks involving speech and language. DRNs are very deep FF networks where there are
extra connections that pass from one layer to a layer two to five layers downstream. This
then carries input from an earlier stage to a future stage. These networks can be 150 layers
deep, which is only abstractly represented in Fig. 6.18(p).

Kohonen Network (KN)
Kohonen networks are also known as self-organizing feature maps [298]. KNs use com-
petitive learning to classify data without supervision. Input is presented to the KN as
in Fig. 6.18(q), after which the network assesses which of the neurons closely match
that input. These self-organizing maps differ from other NNs as they apply competitive
learning as opposed to error-correction learning (such as backpropagation with gradient
descent), and in the sense that they use a neighborhood function to preserve the topological
properties of the input space. This makes KNs useful for low-dimensional visualization of
high-dimensional data.

Neural Turing Machine (NTM)
An NTM implements a NN controller coupled to an external memory resource (See
Fig. 6.18(r)), which it interacts with through attentional mechanisms [219]. The memory
interactions are differentiable end-to-end, making it possible to optimize them using
gradient descent. An NTM with a LSTM controller can infer simple algorithms such as
copying, sorting, and associative recall from input and output examples.
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7 Data-Driven Dynamical Systems

Dynamical systems provide a mathematical framework to describe the world around us,
modeling the rich interactions between quantities that co-evolve in time. Formally, dynami-
cal systems concerns the analysis, prediction, and understanding of the behavior of systems
of differential equations or iterative mappings that describe the evolution of the state of a
system. This formulation is general enough to encompass a staggering range of phenom-
ena, including those observed in classical mechanical systems, electrical circuits, turbulent
fluids, climate science, finance, ecology, social systems, neuroscience, epidemiology, and
nearly every other system that evolves in time.

Modern dynamical systems began with the seminal work of Poincaré on the chaotic
motion of planets. It is rooted in classical mechanics, and may be viewed as the culmination
of hundreds of years of mathematical modeling, beginning with Newton and Leibniz. The
full history of dynamical systems is too rich for these few pages, having captured the inter-
est and attention of the greatest minds for centuries, and having been applied to countless
fields and challenging problems. Dynamical systems provides one of the most complete
and well-connected fields of mathematics, bridging diverse topics from linear algebra and
differential equations, to topology, numerical analysis, and geometry. Dynamical systems
has become central in the modeling and analysis of systems in nearly every field of the
engineering, physical, and life sciences.

Modern dynamical systems is currently undergoing a renaissance, with analytical deriva-
tions and first principles models giving way to data-driven approaches. The confluence of
big data and machine learning is driving a paradigm shift in the analysis and understanding
of dynamical systems in science and engineering. Data are abundant, while physical laws or
governing equations remain elusive, as is true for problems in climate science, finance, epi-
demiology, and neuroscience. Even in classical fields, such as optics and turbulence, where
governing equations do exist, researchers are increasingly turning toward data-driven anal-
ysis. Many critical data-driven problems, such as predicting climate change, understanding
cognition from neural recordings, predicting and suppressing the spread of disease, or
controlling turbulence for energy efficient power production and transportation, are primed
to take advantage of progress in the data-driven discovery of dynamics.

In addition, the classical geometric and statistical perspectives on dynamical systems
are being complemented by a third operator-theoretic perspective, based on the evolu-
tion of measurements of the system. This so-called Koopman operator theory is poised
to capitalize on the increasing availability of measurement data from complex systems.
Moreover, Koopman theory provides a path to identify intrinsic coordinate systems to
represent nonlinear dynamics in a linear framework. Obtaining linear representations of
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strongly nonlinear systems has the potential to revolutionize our ability to predict and
control these systems.

This chapter presents a modern perspective on dynamical systems in the context of
current goals and open challenges. Data-driven dynamical systems is a rapidly evolving
field, and therefore, we focus on a mix of established and emerging methods that are driving
current developments. In particular, we will focus on the key challenges of discovering
dynamics from data and finding data-driven representations that make nonlinear systems
amenable to linear analysis.

7.1 Overview, Motivations, and Challenges
Before summarizing recent developments in data-driven dynamical systems, it is important
to first provide a mathematical introduction to the notation and summarize key motivations
and open challenges in dynamical systems.

Dynamical Systems
Throughout this chapter, we will consider dynamical systems of the form:

d

dt
x(t) = f(x(t), t;β), (7.1)

where x is the state of the system and f is a vector field that possibly depends on the state
x, time t , and a set of parameters β.

For example, consider the Lorenz equations [345]

ẋ = σ(y − x) (7.2a)

ẏ = x(ρ − z) − y (7.2b)

ż = xy − βz, (7.2c)

with parameters σ = 10, ρ = 28, and β = 8/3. A trajectory of the Lorenz system is shown

in Fig. 7.1. In this case, the state vector is x = [
x y z

]T
and the parameter vector is

β = [σ ρ β
]T

.
The Lorenz system is among the simplest and most well-studied dynamical systems that

exhibits chaos, which is characterized as a sensitive dependence on initial conditions. Two
trajectories with nearby initial conditions will rapidly diverge in behavior, and after long
times, only statistical statements can be made.

It is simple to simulate dynamical systems, such as the Lorenz system. First, the vector
field f(x, t;β) is defined in the function lorenz:

function dx = lorenz(t,x,Beta)
dx = [
Beta(1)*(x(2)-x(1));
x(1)*(Beta(2)-x(3))-x(2);
x(1)*x(2)-Beta(3)*x(3);
];

Next, we define the system parameters β, initial condition x0, and time span:

Beta = [10; 28; 8/3]; % Lorenz’s parameters (chaotic)

x0=[0; 1; 20]; % Initial condition



7.1 Overview, Motivations, and Challenges 231

x

y

z

Figure 7.1 Chaotic trajectory of the Lorenz system from (7.2).

dt = 0.001;
tspan=dt:dt:50;
options = odeset(’RelTol’,1e-12,’AbsTol’,1e-12*ones(1,3));

Finally, we simulate the equations with ode45, which implements a fourth-order Runge
Kutta integration scheme with adaptive time step:

[t,x]=ode45(@(t,x) lorenz(t,x,Beta),tspan,x0,options);
plot3(x(:,1),x(:,2),x(:,3));

We will often consider the simpler case of an autonomous system without time depen-
dence or parameters:

d

dt
x(t) = f(x(t)). (7.3)

In general, x(t) ∈ M is an n-dimensional state that lives on a smooth manifold M, and
f is an element of the tangent bundle TM of M so that f(x(t)) ∈ Tx(t)M. However, we
will typically consider the simpler case where x is a vector, M = Rn, and f is a Lipschitz
continuous function, guaranteeing existence and uniqueness of solutions to (7.3). For the
more general formulation, see [1].

Discrete-Time Systems
We will also consider the discrete-time dynamical system

xk+1 = F(xk). (7.4)

Also known as a map, the discrete-time dynamics are more general than the continuous-
time formulation in (7.3), encompassing discontinuous and hybrid systems as well.

For example, consider the logistic map:

xk+1 = βxk(1 − xk). (7.5)
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Figure 7.2 Attracting sets of the logistic map for varying parameter β.

As the parameter β is increased, the attracting set becomes increasingly complex, shown
in Fig. 7.2. A series of period-doubling bifurcations occur until the attracting set becomes
fractal.

Discrete-time dynamics may be induced from continuous-time dynamics, where xk is
obtained by sampling the trajectory in (7.3) discretely in time, so that xk = x(k�t). The
discrete-time propagator F�t is now parameterized by the time step �t . For an arbitrary
time t , the flow map Ft is defined as

Ft (x(t0)) = x(t0) +
∫ t0+t

t0

f(x(τ )) dτ . (7.6)

The discrete-time perspective is often more natural when considering experimental data
and digital control.

Linear Dynamics and Spectral Decomposition
Whenever possible, it is desirable to work with linear dynamics of the form

d

dt
x = Ax. (7.7)

Linear dynamical systems admit closed-form solutions, and there are a wealth of techniques
for the analysis, prediction, numerical simulation, estimation, and control of such systems.
The solution of (7.7) is given by

x(t0 + t) = eAtx(t0). (7.8)

The dynamics are entirely characterized by the eigenvalues and eigenvectors of the matrix
A, given by the spectral decomposition (eigen-decomposition) of A:

AT = T�. (7.9)

When A has n distinct eigenvalues, then � is a diagonal matrix containing the eigenvalues
λj and T is a matrix whose columns are the linearly independent eigenvectors ξ j associated
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with eigenvalues λj . In this case, it is possible to write A = T�T−1, and the solution in
(7.8) becomes

x(t0 + t) = Te�tT−1x(t0). (7.10)

More generally, in the case of repeated eigenvalues, the matrix � will consist of Jordan
blocks [427]. See Section 8.2 for a detailed derivation of the above arguments for control
systems. Note that the continuous-time system gives rise to a discrete-time dynamical
system, with Ft given by the solution map exp(At) in (7.8). In this case, the discrete-time
eigenvalues are given by eλt .

The matrix T−1 defines a transformation, z = T−1x, into intrinsic eigenvector coordi-
nates, z, where the dynamics become decoupled:

d

dt
z = �z. (7.11)

In other words, each coordinate, zj , only depends on itself, with simple dynamics given by

d

dt
zj = λj zj . (7.12)

Thus, it is highly desirable to work with linear systems, since it is possible to easily
transform the system into eigenvector coordinates where the dynamics become decoupled.
No such closed-form solution or simple linear change of coordinates exist in general for
nonlinear systems, motivating many of the directions described in this chapter.

Goals and Challenges in Modern Dynamical Systems
As we generally use dynamical systems to model real-world phenomena, there are a num-
ber of high-priority goals associated with the analysis of dynamical systems:

1. Future state prediction. In many cases, such as meteorology and climatology, we
seek predictions of the future state of a system. Long-time predictions may still be
challenging.

2. Design and optimization. We may seek to tune the parameters of a system for
improved performance or stability, for example through the placement of fins on
a rocket.

3. Estimation and control. It is often possible to actively control a dynamical system
through feedback, using measurements of the system to inform actuation to modify
the behavior. In this case, it is often necessary to estimate the full state of the system
from limited measurements.

4. Interpretability and physical understanding. Perhaps a more fundamental goal of
dynamical systems is to provide physical insight and interpretability into a system’s
behavior through analyzing trajectories and solutions to the governing equations of
motion.

Real-world systems are generally nonlinear and exhibit multi-scale behavior in both
space and time. It must also be assumed that there is uncertainty in the equations of motion,
in the specification of parameters, and in the measurements of the system. Some systems
are more sensitive to this uncertainty than others, and probabilistic approaches must be
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used. Increasingly, it is also the case that the basic equations of motion are not specified
and they might be intractable to derive from first principles.

This chapter will cover recent data-driven techniques to identify and analyze dynamical
systems. The majority of this chapter addresses two primary challenges of modern dynam-
ical systems:

1. Nonlinearity. Nonlinearity remains a primary challenge in analyzing and controlling
dynamical systems, giving rise to complex global dynamics. We saw above that lin-
ear systems may be completely characterized in terms of the spectral decomposition
(i.e., eigenvalues and eigenvectors) of the matrix A, leading to general procedures
for prediction, estimation, and control. No such overarching framework exists for
nonlinear systems, and developing this general framework is a mathematical grand
challenge of the 21st century.

The leading perspective on nonlinear dynamical systems considers the geometry
of subspaces of local linearizations around fixed points and periodic orbits, global
heteroclinic and homoclinic orbits connecting these structures, and more general
attractors [252]. This geometric theory, originating with Poincaré, has transformed
how we model complex systems, and its success can be largely attributed to theo-
retical results, such as the Hartman-Grobman theorem, which establish when and
where it is possible to approximate a nonlinear system with linear dynamics. Thus,
it is often possible to apply the wealth of linear analysis techniques in a small
neighborhood of a fixed point or periodic orbit. Although the geometric perspective
provides quantitative locally linear models, global analysis has remained largely
qualitative and computational, limiting the theory of nonlinear prediction, estima-
tion, and control away from fixed points and periodic orbits.

2. Unknown dynamics. Perhaps an even more central challenge arises from the lack
of known governing equations for many modern systems of interest. Increasingly,
researchers are tackling more complex and realistic systems, such as are found in
neuroscience, epidemiology, and ecology. In these fields, there is a basic lack of
known physical laws that provide first principles from which it is possible to derive
equations of motion. Even in systems where we do know the governing equations,
such as turbulence, protein folding, and combustion, we struggle to find patterns in
these high-dimensional systems to uncover intrinsic coordinates and coarse-grained
variables along which the dominant behavior evolves.

Traditionally, physical systems were analyzed by making ideal approximations
and then deriving simple differential equation models via Newton’s second law.
Dramatic simplifications could often be made by exploiting symmetries and clever
coordinate systems, as highlighted by the success of Lagrangian and Hamiltonian
dynamics [2, 369]. With increasingly complex systems, the paradigm is shifting from
this classical approach to data-driven methods to discover governing equations.

All models are approximations, and with increasing complexity, these approxima-
tions often become suspect. Determining what is the correct model is becoming more
subjective, and there is a growing need for automated model discovery techniques
that illuminate underlying physical mechanisms. There are also often latent variables
that are relevant to the dynamics but may go unmeasured. Uncovering these hidden
effects is a major challenge for data-driven methods.
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Identifying unknown dynamics from data and learning intrinsic coordinates that enable
the linear representation of nonlinear systems are two of the most pressing goals of modern
dynamical systems. Overcoming the challenges of unknown dynamics and nonlinearity
has the promise of transforming our understanding of complex systems, with tremendous
potential benefit to nearly all fields of science and engineering.

Throughout this chapter we will explore these issues in further detail and describe a
number of the emerging techniques to address these challenges. In particular, there are two
key approaches that are defining modern data-driven dynamical systems:

1. Operator theoretic representations. To address the issue of nonlinearity, operator-
theoretic approaches to dynamical systems are becoming increasingly used. As we
will show, it is possible to represent nonlinear dynamical systems in terms of infinite-
dimensional but linear operators, such as the Koopman operator from Section 7.4 that
advances measurement functions, and the Perron-Frobenius operator that advances
probability densities and ensembles through the dynamics.

2. Data-driven regression and machine learning. As data becomes increasingly
abundant, and we continue to investigate systems that are not amenable to first-
principles analysis, regression and machine learning are becoming vital tools to
discover dynamical systems from data. This is the basis of many of the techniques
described in this chapter, including the dynamic mode decomposition (DMD) in
Section 7.2, the sparse identification of nonlinear dynamics (SINDy) in Section 7.3,
the data-driven Koopman methods in Section 7.5, as well as the use of genetic
programming to identify dynamics from data [68, 477].

It is important to note that many of the methods and perspectives described in this
chapter are interrelated, and continuing to strengthen and uncover these relationships is
the subject of ongoing research. It is also worth mentioning that a third major challenge
is the high-dimensionality associated with many modern dynamical systems, such as are
found in population dynamics, brain simulations, and high-fidelity numerical discretiza-
tions of partial differential equations. High-dimensionality is addressed extensively in the
subsequent chapters on reduced-order models (ROMs).

7.2 Dynamic Mode Decomposition (DMD)
Dynamic mode decomposition was developed by Schmid [474, 472] in the fluid dynamics
community to identify spatio-temporal coherent structures from high-dimensional data.
DMD is based on proper orthogonal decomposition (POD), which utilizes the computation-
ally efficient singular value decomposition (SVD), so that it scales well to provide effective
dimensionality reduction in high-dimensional systems. In contrast to SVD/POD, which
results in a hierarchy of modes based entirely on spatial correlation and energy content,
while largely ignoring temporal information, DMD provides a modal decomposition where
each mode consists of spatially correlated structures that have the same linear behavior in
time (e.g., oscillations at a given frequency with growth or decay). Thus, DMD not only
provides dimensionality reduction in terms of a reduced set of modes, but also provides a
model for how these modes evolve in time.

Soon after the development of the original DMD algorithm [474, 472], Rowley, Mezic,
and collaborators established an important connection between DMD and Koopman the-
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ory [456] (see Section 7.4). DMD may be formulated as an algorithm to identify the
best-fit linear dynamical system that advances high-dimensional measurements forward
in time [535]. In this way, DMD approximates the Koopman operator restricted to the set
of direct measurements of the state of a high-dimensional system. This connection between
the computationally straightforward and linear DMD framework and nonlinear dynamical
systems has generated considerable interest in these methods [317].

Within a short amount of time, DMD has become a workhorse algorithm for the data-
driven characterization of high-dimensional systems. DMD is equally valid for experimen-
tal and numerical data, as it is not based on knowledge of the governing equations, but
is instead based purely on measurement data. The DMD algorithm may also be seen as
connecting the favorable aspects of the SVD (see Chapter 1) for spatial dimensionality
reduction and the FFT (see Chapter 2) for temporal frequency identification [129, 317].
Thus, each DMD mode is associated with a particular eigenvalue λ = a + ib, with a
particular frequency of oscillation b and growth or decay rate a.

There are many variants of DMD and it is connected to existing techniques from sys-
tem identification and modal extraction. DMD has become especially popular in recent
years in large part due to its simple numerical implementation and strong connections to
nonlinear dynamical systems via Koopman spectral theory. Finally, DMD is an extremely
flexible platform, both mathematically and numerically, facilitating innovations related to
compressed sensing, control theory, and multi-resolution techniques. These connections
and extensions will be discussed at the end of this section.

The DMD Algorithm
Several algorithms have been proposed for DMD, although here we present the exact DMD
framework developed by Tu et al. [535]. Whereas earlier formulations required uniform
sampling of the dynamics in time, the approach presented here works with irregularly
sampled data and with concatenated data from several different experiments or numerical
simulations. Moreover, the exact formulation of Tu et al. provides a precise mathematical
definition of DMD that allows for rigorous theoretical results. Finally, exact DMD is based
on the efficient and numerically well-conditioned singular value decomposition, as is the
original formulation by Schmid [472].

DMD is inherently data-driven, and the first step is to collect a number of pairs of
snapshots of the state of a system as it evolves in time. These snapshot pairs may be denoted
by {(x(tk), x(t ′k)}mk=1, where t ′k = tk + �t , and the timestep �t is sufficiently small to
resolve the highest frequencies in the dynamics. As before, a snapshot may be the state of a
system, such as a three-dimensional fluid velocity field sampled at a number of discretized
locations, that is reshaped into a high-dimensional column vector. These snapshots are then
arranged into two data matrices, X and X′:

X =
⎡
⎣x(t1) x(t2) · · · x(tm)

⎤
⎦ (7.13a)

X′ =
⎡
⎣x(t ′1) x(t ′2) · · · x(t ′m)

⎤
⎦ . (7.13b)
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The original formulations of Schmid [472] and Rowley et al. [456] assumed uniform
sampling in time, so that tk = k�t and t ′k = tk + �t = tk+1. If we assume uniform
sampling in time, we will adopt the notation xk = x(k�t).

The DMD algorithm seeks the leading spectral decomposition (i.e., eigenvalues and
eigenvectors) of the best-fit linear operator A that relates the two snapshot matrices in
time:

X′ ≈ AX. (7.14)

The best fit operator A then establishes a linear dynamical system that best advances
snapshot measurements forward in time. If we assume uniform sampling in time, this
becomes:

xk+1 ≈ Axk. (7.15)

Mathematically, the best-fit operator A is defined as

A = argmin
A

‖X′ − AX‖F = X′X† (7.16)

where ‖ · ‖F is the Frobenius norm and † denotes the pseudo-inverse. The optimized DMD
algorithm generalizes the optimization framework of exact DMD to perform a regression
to exponential time dynamics, thus providing an improved computation of the DMD modes
and their eigenvalues [20].

It is worth noting at this point that the matrix A in (7.15) closely resembles the Koopman
operator in (7.53), if we choose direct linear measurements of the state, so that g(x) = x.
This connection was originally established by Rowley, Mezic and collaborators [456], and
has sparked considerable interest in both DMD and Koopman theory. These connections
will be explored in more depth below.

For a high-dimensional state vector x ∈ Rn, the matrix A has n2 elements, and repre-
senting this operator, let alone computing its spectral decomposition, may be intractable.
Instead, the DMD algorithm leverages dimensionality reduction to compute the dominant
eigenvalues and eigenvectors of A without requiring any explicit computations using A
directly. In particular, the pseudo-inverse X† in (7.16) is computed via the singular value
decomposition of the matrix X. Since this matrix typically has far fewer columns than
rows, i.e. m � n, there are at most m nonzero singular values and corresponding singular
vectors, and hence the matrix A will have at most rank m. Instead of computing A directly,
we compute the projection of A onto these leading singular vectors, resulting in a small
matrix Ã of size at most m × m. A major contribution of Schmid [472] was a procedure
to approximate the high-dimensional DMD modes (eigenvectors of A) from the reduced
matrix Ã and the data matrix X without ever resorting to computations on the full A. Tu
et al. [535] later proved that these approximate modes are in fact exact eigenvectors of the
full A matrix under certain conditions. Thus, the exact DMD algorithm of Tu et al. [535] is
given by the following steps:

Step 1. Compute the singular value decomposition of X (see Chapter 1):

X ≈ Ũ�̃Ṽ
∗
, (7.17)
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where Ũ ∈ Cn×r , �̃ ∈ Cr×r , and Ṽ ∈ Cm×r and r ≤ m denotes either the exact or
approximate rank of the data matrix X. In practice, choosing the approximate rank
r is one of the most important and subjective steps in DMD, and in dimensionality
reduction in general. We advocate the principled hard-thresholding algorithm of Gav-
ish and Donoho [200] to determine r from noisy data (see Section 1.7). The columns
of the matrix Ũ are also known as POD modes, and they satisfy Ũ

∗
Ũ = I. Similarly,

columns of Ṽ are orthonormal and satisfy Ṽ
∗
Ṽ = I.

Step 2. According to (7.16), the full matrix A may be obtained by computing the
pseudo-inverse of X:

A = X′Ṽ�̃
−1

Ũ
∗
. (7.18)

However, we are only interested in the leading r eigenvalues and eigenvectors of A,
and we may thus project A onto the POD modes in U:

Ã = Ũ
∗
AŨ = Ũ

∗
X′Ṽ�̃

−1
. (7.19)

The key observation here is that the reduced matrix Ã has the same nonzero eigen-
values as the full matrix A. Thus, we need only compute the reduced Ã directly,
without ever working with the high-dimensional A matrix. The reduced-order matrix
Ã defines a linear model for the dynamics of the vector of POD coefficients x̃:

x̃k+1 = Ãx̃k. (7.20)

Note that the matrix Ũ provides a map to reconstruct the full state x from the reduced
state x̃: x = Ũx̃.

Step 3. The spectral decomposition of Ã is computed:

ÃW = W�. (7.21)

The entries of the diagonal matrix � are the DMD eigenvalues, which also cor-
respond to eigenvalues of the full A matrix. The columns of W are eigenvectors
of Ã, and provide a coordinate transformation that diagonalizes the matrix. These
columns may be thought of as linear combinations of POD mode amplitudes that
behave linearly with a single temporal pattern given by λ.

Step 4. The high-dimensional DMD modes � are reconstructed using the eigenvec-
tors W of the reduced system and the time-shifted snapshot matrix X′ according to:

� = X′Ṽ�̃
−1

W. (7.22)

Remarkably, these DMD modes are eigenvectors of the high-dimensional A matrix
corresponding to the eigenvalues in �, as shown in Tu et al. [535]:

A� = (X′Ṽ�̃
−1

Ũ
∗
)(X′Ṽ�̃

−1︸ ︷︷ ︸
Ã

W)

= X′Ṽ�̃
−1

ÃW

= X′Ṽ�̃
−1

W�

= ��.
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In the original paper by Schmid [472], DMD modes are computed using � = ŨW,
which are known as projected modes; however, these modes are not guaranteed to be exact
eigenvectors of A. Because A is defined as A = X′X†, eigenvectors of A should be in the
column space of X′, as in the exact DMD definition, instead of the column space of X in
the original DMD algorithm. In practice, the column spaces of X and X′ will tend to be
nearly identical for dynamical systems with low-rank structure, so that the projected and
exact DMD modes often converge.

To find a DMD mode corresponding to a zero eigenvalue, λ = 0, it is possible to use

the exact formulation if φ = X′Ṽ�̃
−1

w �= 0. However, if this expression is null, then the
projected mode φ = Ũw should be used.

Historical Perspective
In the original formulation, the snapshot matrices X and X′ were formed with a collection
of sequential snapshots, evenly spaced in time:

X =
⎡
⎣x1 x2 · · · xm

⎤
⎦ (7.23a)

X′ =
⎡
⎣x2 x3 · · · xm+1

⎤
⎦ . (7.23b)

Thus, the matrix X can be written in terms of iterations of the matrix A as:

X ≈
⎡
⎣x1 Ax1 · · · Am−1x1

⎤
⎦ . (7.24)

Thus, the columns of the matrix X belong to a Krylov subspace generated by the propagator
A and the initial condition x1. In addition, the matrix X′ may be related to X through the
shift operator as:

X′ = XS, (7.25)

where S is defined as

S =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 a1

1 0 0 · · · 0 a2

0 1 0 · · · 0 a3
...

...
...

. . .
...

...

0 0 0 · · · 1 am

⎤
⎥⎥⎥⎥⎥⎦ . (7.26)

Thus, the first m − 1 columns of X′ are obtained directly by shifting the corresponding
columns of X, and the last column is obtained as a best-fit combination of the m columns
of X that minimizes the residual. In this way, the DMD algorithm resembles an Arnoldi
algorithm used to find the dominant eigenvalues and eigenvectors of a matrix A through
iteration. The matrix S will share eigenvalues with the high-dimensional A matrix, so that
decomposition of S may be used to obtain dynamic modes and eigenvalues. However,
computations based on S is not as numerically stable as the exact algorithm above.
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Spectral Decomposition and DMD Expansion
One of the most important aspects of the DMD is the ability to expand the system state in
terms of a data-driven spectral decomposition:

xk =
r∑

j=1

φj λ
k−1
j bj = ��k−1b, (7.27)

where φj are DMD modes (eigenvectors of the A matrix), λj are DMD eigenvalues (eigen-
values of the A matrix), and bj is the mode amplitude. The vector b of mode amplitudes is
generally computed as

b = �†x1. (7.28)

More principled approaches to select dominant and sparse modes have been consid-
ered [129, 270]. However, computing the mode amplitudes is generally quite expensive,
even using the straightforward definition in (7.28). Instead, it is possible to compute these
amplitudes using POD projected data:

x1 = �b (7.29a)

	⇒ Ũx̃1 = X′Ṽ�̃
−1

Wb (7.29b)

	⇒ x̃1 = Ũ
∗
X′Ṽ�̃

−1
Wb (7.29c)

	⇒ x̃1 = ÃWb (7.29d)

	⇒ x̃1 = W�b (7.29e)

	⇒ b = (W�)−1 x̃1. (7.29f)

The matrices W and � are both size r × r , as opposed to the large � matrix that is n × r .
The spectral expansion above may also be written in continuous time by introducing the

continuous eigenvalues ω = log(λ)/�t :

x(t) =
r∑

j=1

φj e
ωj t bj = � exp(�t)b, (7.30)

where � is a diagonal matrix containing the continuous-time eigenvalues ωj .

Example and Code
A basic DMD code is provided here:

function [Phi, Lambda, b] = DMD(X,Xprime,r)

[U,Sigma,V] = svd(X,’econ’); % Step 1
Ur = U(:,1:r);
Sigmar = Sigma(1:r,1:r);
Vr = V(:,1:r);

Atilde = Ur’*Xprime*Vr/Sigmar; % Step 2
[W,Lambda] = eig(Atilde); % Step 3

Phi = Xprime*(Vr/Sigmar)*W; % Step 4
alpha1 = Sigmar*Vr(1,:)’;
b = (W*Lambda)\alpha1;
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Figure 7.3 Overview of DMD illustrated on the fluid flow past a circular cylinder at Reynolds
number 100. Reproduced from [317].

This DMD code is demonstrated in Fig. 7.3 for the fluid flow past a circular cylinder at
Reynolds number 100, based on the cylinder diameter. The two-dimensional Navier-Stokes
equations are simulated using the immersed boundary projection method (IBPM) solver1

based on the fast multi-domain method of Taira and Colonius [511, 135]. The data required
for this example may be downloaded without running the IBPM code at dmdbook.com.

With this data, it is simple to compute the dynamic mode decomposition:

% VORTALL contains flow fields reshaped into column vectors
X = VORTALL;
[Phi, Lambda, b] = DMD(X(:,1:end-1),X(:,2:end),21);

Extensions, Applications, and Limitations
One of the major advantages of dynamic mode decomposition is its simple framing in
terms of linear regression. DMD does not require knowledge of governing equations. For
this reason, DMD has been rapidly extended to include several methodological innovations
and has been widely applied beyond fluid dynamics [317], where it originated. Here, we
present a number of the leading algorithmic extensions and promising domain applications,
and we also present current limitations of the DMD theory that must be addressed in future
research.

Methodological Extensions
• Compression and randomized linear algebra. DMD was originally designed for

high-dimensional data sets in fluid dynamics, such as a fluid velocity or vortic-
ity field, which may contain millions of degrees of freedom. However, the fact
that DMD often uncovers low-dimensional structure in these high dimensional data
implies that there may be more efficient measurement and computational strategies
based on principles of sparsity (see Chapter 3). There have been several independent
and highly successful extensions and modifications of DMD to exploit low-rank
structure and sparsity.

1 The IBPM code is publicly available at: https://github.com/cwrowley/ibpm.



242 Data-Driven Dynamical Systems

In 2014, Jovanovic et al. [270] used sparsity promoting optimization to identify
the fewest DMD modes required to describe a data set, essentially identifying a
few dominant DMD mode amplitudes in b. The alternative approach, of testing and
comparing all subsets of DMD modes, represents a computationally intractable brute
force search.

Another line of work is based on the fact that DMD modes generally admit a
sparse representation in Fourier or wavelet bases. Moreover, the time dynamics of
each mode are simple pure tone harmonics, which are the definition of sparse in a
Fourier basis. This sparsity has facilitated several efficient measurement strategies
that reduce the number of measurements required in time [536] and space [96, 225,
174], based on compressed sensing. This has the broad potential to enable high-
resolution characterization of systems from under-resolved measurements.

Related to the use of compressed sensing, randomized linear algebra has recently
been used to accelerate DMD computations when full-state data is available. Instead
of collecting subsampled measurements and using compressed sensing to infer high-
dimensional structures, randomized methods start with full data and then randomly
project into a lower-dimensional subspace, where computations may be performed
more efficiently. Bistrian and Navon [66] have successfully accelerated DMD using
a randomized singular value decomposition, and Erichson et al. [175] demonstrates
how all of the expensive DMD computations may be performed in a projected sub-
space.

Finally, libraries of DMD modes have also been used to identify dynamical
regimes [308], based on the sparse representation for classification [560] (see
Section 3.6), which was used earlier to identify dynamical regimes using libraries of
POD modes [80, 98].

• Inputs and control. A major strength of DMD is the ability to describe complex and
high-dimensional dynamical systems in terms of a small number of dominant modes,
which represent spatio-temporal coherent structures. Reducing the dimensionality of
the system from n (often millions or billions) to r (tens or hundreds) enables faster
and lower-latency prediction and estimation. Lower-latency predictions generally
translate directly into controllers with higher performance and robustness. Thus,
compact and efficient representations of complex systems such as fluid flows have
been long-sought, resulting in the field of reduced order modeling. However, the
original DMD algorithm was designed to characterize naturally evolving systems,
without accounting for the effect of actuation and control.

Shortly after the original DMD algorithm, Proctor et al. [434] extended the algo-
rithm to disambiguate between the natural unforced dynamics and the effect of
actuation. This essentially amounts to a generalized evolution equation

xk+1 ≈ Axk + Buk, (7.31)

which results in another linear regression problem (see Section 10.1).
The original motivation for DMD with control (DMDc) was the use of DMD to

characterize epidemiological systems (e.g., malaria spreading across a continent),
where it is not possible to stop intervention efforts, such as vaccinations and bed
nets, in order to characterize the unforced dynamics [433].
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Since the original DMDc algorithm, the compressed sensing DMD and DMDc
algorithms have been combined, resulting in a new framework for compressive sys-
tem identification [30]. In this framework, it is possible to collect undersampled
measurements of an actuated system and identify an accurate and efficient low-
order model, related to DMD and the eigensystem realization algorithm (ERA; see
Section 9.3) [272].

DMDc models, based on linear and nonlinear measurements of the system, have
recently been used with model predictive control (MPC) for enhanced control of
nonlinear systems by Korda and Mezić [302]. Model predictive control using DMDc
models were subsequently used as a benchmark comparison for MPC based on fully
nonlinear models in the work of Kaiser et al. [277], and the DMDc models performed
surprisingly well, even for strongly nonlinear systems.

• Nonlinear measurements. Much of the excitement around DMD is due to the strong
connection to nonlinear dynamics via the Koopman operator [456]. Indeed, DMD is
able to accurately characterize periodic and quasi-periodic behavior, even in nonlin-
ear systems, as long as a sufficient amount of data is collected. However, the basic
DMD algorithm uses linear measurements of the system, which are generally not
rich enough to characterize truly nonlinear phenomena, such as transients, intermit-
tent phenomena, or broadband frequency cross-talk. In Williams et al. [556], DMD
measurements were augmented to include nonlinear measurements of the system,
enriching the basis used to represent the Koopman operator. The so-called extended
DMD (eDMD) algorithm then seeks to obtain a linear model AY advancing nonlinear
measurements y = g(x):

yk+1 ≈ AYyk. (7.32)

For high-dimensional systems, this augmented state y may be intractably large,
motivating the use of kernel methods to approximate the evolution operator
AY [557]. This kernel DMD has since been extended to include dictionary learning
techniques [332].

It has recently been shown that eDMD is equivalent to the variational approach
of conformation dynamics (VAC) [405, 407, 408], first derived by Noé and Nüske
in 2013 to simulate molecular dynamics with a broad separation of timescales. Fur-
ther connections between eDMD and VAC and between DMD and the time lagged
independent component analysis (TICA) are explored in a recent review [293]. A
key contribution of VAC is a variational score enabling the objective assessment of
Koopman models via cross-validation.

Following the extended DMD, it was shown that there are relatively restrictive
conditions for obtaining a linear regression model that includes the original state of
the system [92]. For nonlinear systems with multiple fixed points, periodic orbits,
and other attracting structures, there is no finite-dimensional linear system including
the state x that is topologically conjugate to the nonlinear system. Instead, it is
important to identify Koopman invariant subspaces, spanned by eigenfunctions of
the Koopman operator; in general, it will not be possible to directly write the state x
in the span of these eigenvectors, although it may be possible to identify x through
a unique inverse. A practical algorithm for identifying eigenfunctions is provided by
Kaiser et al. [276].
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• De-noising. The DMD algorithm is purely data-driven, and is thus equally applicable
to experimental and numerical data. When characterizing experimental data with
DMD, the effects of sensor noise and stochastic disturbances must be accounted for.
The original DMD algorithm is particularly sensitive to noise, and it was shown that
significant and systematic biases are introduced to the eigenvalue distribution [164,
28, 147, 241]. Although increased sampling decreases the variance of the eigenvalue
distribution, it does not remove the bias [241].

There are several approaches to correct for the effect of sensor noise and dis-
turbances. Hemati et al. [241] use the total least-squares regression to account for
the possibility of noisy measurements and disturbances to the state, replacing the
original least-squares regression. Dawson et al. [147] compute DMD on the data in
forward and backward time and then average the resulting operator, removing the
systematic bias. This work also provides an excellent discussion on the sources of
noise and a comparison of various denoising algorithms.

More recently, Askham and Kutz [20] introduced the optimized DMD algorithm,
which uses a variable projection method for nonlinear least squares to compute the
DMD for unevenly timed samples, significantly mitigating the bias due to noise. The
subspace DMD algorithm of Takeishi et al. [514] also compensates for measurement
noise by computing an orthogonal projection of future snapshots onto the space of
previous snapshots and then constructing a linear model. Extensions that combine
DMD with Bayesian approaches have also been developed [512].

• Multiresolution. DMD is often applied to complex, high-dimensional dynamical
systems, such as fluid turbulence or epidemiological systems, that exhibit multiscale
dynamics in both space and time. Many multiscale systems exhibit transient or inter-
mittent phenomena, such as the El Niño observed in global climate data. These tran-
sient dynamics are not captured accurately by DMD, which seeks spatio-temporal
modes that are globally coherent across the entire time series of data. To address
this challenge, the multiresolution DMD (mrDMD) algorithm was introduced [318],
which effectively decomposes the dynamics into different timescales, isolating tran-
sient and intermittent patterns. Multiresolution DMD modes were recently shown to
be advantageous for sparse sensor placement by Manohar et al. [367].

• Delay measurements. Although DMD was developed for high-dimensional data
where it is assumed that one has access to the full-state of a system, it is often
desirable to characterize spatio-temporal coherent structures for systems with incom-
plete measurements. As an extreme example, consider a single measurement that
oscillates as a sinusoid, x(t) = sin(ωt). Although this would appear to be a perfect
candidate for DMD, the algorithm incorrectly identifies a real eigenvalue because the
data does not have sufficient rank to extract a complex conjugate pair of eigenvalues
±iω. This paradox was first explored by Tu et al. [535], where it was discovered
that a solution is to stack delayed measurements into a larger matrix to augment
the rank of the data matrix and extract phase information. Delay coordinates have
been used effectively to extract coherent patterns in neural recordings [90]. The
connections between delay DMD and Koopman [91, 18, 144] will be discussed more
in Section 7.5.

• Streaming and parallelized codes. Because of the computational burden of com-
puting the DMD on high-resolution data, several advances have been made to accel-
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erate DMD in streaming applications and with parallelized algorithms. DMD is often
used in a streaming setting, where a moving window of snapshots are processed
continuously, resulting in redundant computations when new data becomes available.
Several algorithms exist for streaming DMD, based on the incremental SVD [242],
a streaming method of snapshots SVD [424], and rank-one updates to the DMD
matrix [569]. The DMD algorithm is also readily parallelized, as it is based on the
SVD. Several parallelized codes are available, based on the QR [466] and SVD [175,
177, 176].

Applications
• Fluid dynamics. DMD originated in the fluid dynamics community [472], and has

since been applied to a wide range of flow geometries (jets, cavity flow, wakes,
channel flow, boundary layers, etc.), to study mixing, acoustics, and combustion,
among other phenomena. In the original paper of Schmid [474, 472], both a cavity
flow and a jet were considered. In the original paper of Rowley et al. [456], a jet in
cross-flow was investigated. It is no surprise that DMD has subsequently been used
widely in both cavity flows [472, 350, 481, 43, 42] and jets [473, 49, 483, 475].

DMD has also been applied to wake flows, including to investigate frequency lock-
on [534], the wake past a gurney flap [415], the cylinder wake [28], and dynamic
stall [166]. Boundary layers have also been extensively studied with DMD [411, 465,
383]. In acoustics, DMD has been used to capture the near-field and far-field acous-
tics that result from instabilities observed in shear flows [495]. In combustion, DMD
has been used to understand the coherent heat release in turbulent swirl flames [387]
and to analyze a rocket combustor [258]. DMD has also been used to analyze non-
normal growth mechanisms in thermoacoustic interactions in a Rijke tube. DMD
has been compared with POD for reacting flows [459]. DMD has also been used to
analyze more exotic flows, including a simulated model of a high-speed train [392].
Shock turbulent boundary layer interaction (STBLI) has also been investigated, and
DMD was used to identify a pulsating separation bubble that is accompanied by
shockwave motion [222]. DMD has also been used to study self-excited fluctuations
in detonation waves [373]. Other problems include identifying hairpin vortices [516],
decomposing the flow past a surface mounted cube [393], modeling shallow water
equations [65], studying nano fluids past a square cylinder [463], and measuring the
growth rate of instabilities in annular liquid sheets [163].

• Epidemiology. DMD has recently been applied to investigate epidemiological sys-
tems by Proctor and Eckhoff [435]. This is a particularly interpretable application,
as modal frequencies often correspond to yearly or seasonal fluctuations. Moreover,
the phase of DMD modes gives insight into how disease fronts propagate spatially,
potentially informing future intervention efforts. The application of DMD to disease
systems also motivated the DMD with control [434], since it is infeasible to stop
vaccinations in order to identify the unforced dynamics.

• Neuroscience. Complex signals from neural recordings are increasingly high-
fidelity and high dimensional, with advances in hardware pushing the frontiers
of data collection. DMD has the potential to transform the analysis of such
neural recordings, as evidenced in a recent study that identified dynamically
relevant features in ECOG data of sleeping patients [90]. Since then, several works
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have applied DMD to neural recordings or suggested possible implementation in
hardware [3, 85, 520].

• Video processing. Separating foreground and background objects in video is a com-
mon task in surveillance applications. Real-time separation is a challenge that is only
exacerbated by ever increasing video resolutions. DMD provides a flexible platform
for video separation, as the background may be approximated by a DMD mode with
zero eigenvalue [223, 174, 424].

• Other applications. DMD has been applied to an increasingly diverse array of
problems, including robotics [56], finance [363], and plasma physics [517]. It is
expected that this trend will increase.

Challenges
• Traveling waves. DMD is based on the SVD of a data matrix X = U�V∗ whose

columns are spatial measurements evolving in time. In this case, the SVD is a space-
time separation of variables into spatial modes, given by the columns of U, and time
dynamics, given by the columns of V. As in POD, DMD thus has limitations for
problems that exhibit traveling waves, where separation of variables is known to
fail.

• Transients. Many systems of interest are characterized by transients and intermittent
phenomena. Several methods have been proposed to identify these events, such as the
multi-resolution DMD and the use of delay coordinates. However, it is still necessary
to formalize the choice of relevant timescales and the window size to compute DMD.

• Continuous spectrum. Related to the above, many systems are characterized by
broadband frequency content, as opposed to a few distinct and discrete frequencies.
This broadband frequency content is also known as a continuous spectrum, where
every frequency in a continuous range is observed. For example, the simple pendu-
lum exhibits a continuous spectrum, as the system has a natural frequency for small
deflections, and this frequency continuously deforms and slows as energy is added
to the pendulum. Other systems include nonlinear optics and broadband turbulence.
These systems pose a serious challenge for DMD, as they result in a large number of
modes, even though the dynamics are likely generated by the nonlinear interactions
of a few dominant modes.

Several data-driven approaches have been recently proposed to handle systems
with continuous spectra. Applying DMD to a vector of delayed measurements of a
system, the so-called HAVOK analysis in Section 7.5, has been shown to approxi-
mate the dynamics of chaotic systems, such as the Lorenz system, which exhibits
a continuous spectrum. In addition, Lusch et al. [349] showed that it is possible to
design a deep learning architecture with an auxiliary network to parameterize the
continuous frequency.

• Strong nonlinearity and choice of measurements. Although significant progress
has been made connecting DMD to nonlinear systems [557], choosing nonlinear
measurements to augment the DMD regression is still not an exact science. Identi-
fying measurement subspaces that remain closed under the Koopman operator is an
ongoing challenge [92]. Recent progress in deep learning has the potential to enable
the representation of extremely complex eigenfunctions from data [550, 368, 513,
564, 412, 349].
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7.3 Sparse Identification of Nonlinear Dynamics (SINDy)
Discovering dynamical systems models from data is a central challenge in mathematical
physics, with a rich history going back at least as far as the time of Kepler and Newton
and the discovery of the laws of planetary motion. Historically, this process relied on a
combination of high-quality measurements and expert intuition. With vast quantities of
data and increasing computational power, the automated discovery of governing equations
and dynamical systems is a new and exciting scientific paradigm.

Typically, the form of a candidate model is either constrained via prior knowledge of
the governing equations, as in Galerkin projection [402, 455, 471, 404, 119, 549, 32, 118]
(see Chapter 12), or a handful of heuristic models are tested and parameters are optimized
to fit data. Alternatively, best-fit linear models may be obtained using DMD or ERA.
Simultaneously identifying the nonlinear structure and parameters of a model from data
is considerably more challenging, as there are combinatorially many possible model struc-
tures.

The sparse identification of nonlinear dynamics (SINDy) algorithm [95] bypasses the
intractable combinatorial search through all possible model structures, leveraging the fact
that many dynamical systems

d

dt
x = f(x) (7.33)

have dynamics f with only a few active terms in the space of possible right-hand side
functions; for example, the Lorenz equations in (7.2) only have a few linear and quadratic
interaction terms per equation.

We then seek to approximate f by a generalized linear model

f(x) ≈
p∑

k=1

θk(x)ξk = �(x)ξ , (7.34)

with the fewest nonzero terms in ξ as possible. It is then possible to solve for the relevant
terms that are active in the dynamics using sparse regression [518, 573, 236, 264] that
penalizes the number of terms in the dynamics and scales well to large problems.

First, time-series data is collected from (7.33) and formed into a data matrix:

X = [x(t1) x(t2) · · · x(tm)
]T

. (7.35)

A similar matrix of derivatives is formed:

Ẋ = [ẋ(t1) ẋ(t2) · · · ẋ(tm)
]T

. (7.36)

In practice, this may be computed directly from the data in X; for noisy data, the total-
variation regularized derivative tends to provide numerically robust derivatives [125].
Alternatively, it is possible to formulate the SINDy algorithm for discrete-time systems
xk+1 = F(xk), as in the DMD algorithm, and avoid derivatives entirely.

A library of candidate nonlinear functions �(X) may be constructed from the data in X:

�(X) = [1 X X2 · · · Xd · · · sin(X) · · ·] . (7.37)

Here, the matrix Xd denotes a matrix with column vectors given by all possible time-series
of d-th degree polynomials in the state x. In general, this library of candidate functions is
only limited by one’s imagination.
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The dynamical system in (7.33) may now be represented in terms of the data matrices in
(7.36) and (7.37) as

Ẋ = �(X). (7.38)

Each column ξ k in  is a vector of coefficients determining the active terms in the k-th
row in (7.33). A parsimonious model will provide an accurate model fit in (7.38) with as
few terms as possible in . Such a model may be identified using a convex 
1-regularized
sparse regression:

ξ k = argminξ ′
k
‖Ẋk − �(X)ξ ′

k‖2 + λ‖ξ ′
k‖1. (7.39)

Here, Ẋk is the k-th column of Ẋ, and λ is a sparsity-promoting knob. Sparse regression,
such as the LASSO [518] or the sequential thresholded least-squares (STLS) algorithm
used in SINDy [95], improves the numerical robustness of this identification for noisy
overdetermined problems, in contrast to earlier methods [548] that used compressed sens-
ing [150, 109, 112, 111, 113, 39, 529]. We advocate the STLS (Code 7.1) to select active
terms.

Code 7.1 Sequentially thresholded least-squares.

function Xi = sparsifyDynamics(Theta,dXdt,lambda,n)
% Compute Sparse regression: sequential least squares
Xi = Theta\dXdt; % Initial guess: Least-squares

% Lambda is our sparsification knob.
for k=1:10

smallinds = (abs(Xi)<lambda); % Find small coefficients
Xi(smallinds)=0; % and threshold
for ind = 1:n % n is state dimension

biginds = ~smallinds(:,ind);
% Regress dynamics onto remaining terms to find sparse Xi

Xi(biginds,ind) = Theta(:,biginds)\dXdt(:,ind);
end

end

The sparse vectors ξ k may be synthesized into a dynamical system:

ẋk = �(x)ξ k. (7.40)

Note that xk is the k-th element of x and �(x) is a row vector of symbolic functions of x, as
opposed to the data matrix �(X). Fig. 7.4 shows how SINDy may be used to discover the
Lorenz equations from data. Code 7.2 generates data and performs the SINDy regression
for the Lorenz system.

Code 7.2 SINDy regression to identify the Lorenz system from data.

%% Generate Data
Beta = [10; 28; 8/3]; % Lorenz’s parameters (chaotic)
n = 3;
x0=[-8; 8; 27]; % Initial condition
tspan=[.01:.01:50];
options = odeset(’RelTol’,1e-12,’AbsTol’,1e-12*ones(1,n));
[t,x]=ode45(@(t,x) lorenz(t,x,Beta),tspan,x0,options);

%% Compute Derivative
for i=1:length(x)
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Figure 7.4 Schematic of the sparse identification of nonlinear dynamics (SINDy) algorithm [95].
Parsimonious models are selected from a library of candidate nonlinear terms using sparse
regression. This library �(X) may be constructed purely from measurement data. Modified from
Brunton et al. [95].

dx(i,:) = lorenz(0,x(i,:),Beta);
end

%% Build library and compute sparse regression
Theta = poolData(x,n,3); % up to third order polynomials
lambda = 0.025; % lambda is our sparsification knob.
Xi = sparsifyDynamics(Theta,dx,lambda,n)

This code also relies on a function poolData that generates the library �. In this case,
polynomials up to third order are used. This code is available online.

The output of the SINDy algorithm is a sparse matrix of coefficients :

’’ ’xdot’ ’ydot’ ’zdot’
’1’ [ 0] [ 0] [ 0]
’x’ [-10.0000] [28.0000] [ 0]
’y’ [ 10.0000] [-1.0000] [ 0]
’z’ [ 0] [ 0] [-2.6667]
’xx’ [ 0] [ 0] [ 0]
’xy’ [ 0] [ 0] [ 1.0000]
’xz’ [ 0] [-1.0000] [ 0]
’yy’ [ 0] [ 0] [ 0]
’yz’ [ 0] [ 0] [ 0]
’zz’ [ 0] [ 0] [ 0]
’xxx’ [ 0] [ 0] [ 0]
’xxy’ [ 0] [ 0] [ 0]
’xxz’ [ 0] [ 0] [ 0]
’xyy’ [ 0] [ 0] [ 0]
’xyz’ [ 0] [ 0] [ 0]
’xzz’ [ 0] [ 0] [ 0]
’yyy’ [ 0] [ 0] [ 0]
’yyz’ [ 0] [ 0] [ 0]
’yzz’ [ 0] [ 0] [ 0]
’zzz’ [ 0] [ 0] [ 0]

The result of the SINDy regression is a parsimonious model that includes only the
most important terms required to explain the observed behavior. The sparse regression
procedure used to identify the most parsimonious nonlinear model is a convex procedure.
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Figure 7.5 Schematic overview of nonlinear model identification from high-dimensional data using
the sparse identification of nonlinear dynamics (SINDy) [95]. This procedure is modular, so that
different techniques can be used for the feature extraction and regression steps. In this example
of flow past a cylinder, SINDy discovers the model of Noack et al. [402]. Modified from Brunton
et al. [95].

The alternative approach, which involves regression onto every possible sparse nonlinear
structure, constitutes an intractable brute-force search through the combinatorially many
candidate model forms. SINDy bypasses this combinatorial search with modern convex
optimization and machine learning. It is interesting to note that for discrete-time dynamics,
if �(X) consists only of linear terms, and if we remove the sparsity promoting term by
setting λ = 0, then this algorithm reduces to the dynamic mode decomposition [472, 456,
535, 317]. If a least-squares regression is used, as in DMD, then even a small amount
of measurement error or numerical round-off will lead to every term in the library being
active in the dynamics, which is non-physical. A major benefit of the SINDy architecture is
the ability to identify parsimonious models that contain only the required nonlinear terms,
resulting in interpretable models that avoid overfitting.

Applications, Extensions, and Historical Context
The SINDy algorithm has recently been applied to identify high-dimensional dynamical
systems, such as fluid flows, based on POD coefficients [95, 341, 342]. Fig. 7.5 illustrates
the application of SINDy to the flow past a cylinder, where the generalized mean-field
model of Noack et al. [402] was discovered from data. SINDy has also been applied to
identify models in nonlinear optics [497] and plasma physics [141].

Because SINDy is formulated in terms of linear regression in a nonlinear library, it is
highly extensible. The SINDy framework has been recently generalized by Loiseau and
Brunton [341] to incorporate known physical constraints and symmetries in the equations
by implementing a constrained sequentially thresholded least-squares optimization. In par-
ticular, energy preserving constraints on the quadratic nonlinearities in the Navier-Stokes
equations were imposed to identify fluid systems [341], where it is known that these con-
straints promote stability [355, 32, 118]. This work also showed that polynomial libraries
are particularly useful for building models of fluid flows in terms of POD coefficients,
yielding interpretable models that are related to classical Galerkin projection [95, 341].
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Loiseau et al. [342] also demonstrated the ability of SINDy to identify dynamical sys-
tems models of high-dimensional systems, such as fluid flows, from a few physical sensor
measurements, such as lift and drag measurements on the cylinder in Fig. 7.5. For actuated
systems, SINDy has been generalized to include inputs and control [100], and these models
are highly effective for model predictive control [277]. It is also possible to extend the
SINDy algorithm to identify dynamics with rational function nonlinearities [361], integral
terms [469], and based on highly corrupt and incomplete data [522]. SINDy was also
recently extended to incorporate information criteria for objective model selection [362],
and to identify models with hidden variables using delay coordinates [91]. Finally, the
SINDy framework was generalized to include partial derivatives, enabling the identification
of partial differential equation models [460, 468]. Several of these recent innovations will
be explored in more detail below.

More generally, the use of sparsity-promoting methods in dynamics is quite recent [548,
467, 414, 353, 98, 433, 31, 29, 89, 364, 366]. Other techniques for dynamical system dis-
covery include methods to discover equations from time-series [140], equation-free model-
ing [288], empirical dynamic modeling [503, 563], modeling emergent behavior [452], the
nonlinear autoregressive model with exogenous inputs (NARMAX) [208, 571, 59, 484],
and automated inference of dynamics [478, 142, 143]. Broadly speaking, these techniques
may be classified as system identification, where methods from statistics and machine
learning are used to identify dynamical systems from data. Nearly all methods of system
identification involve some form of regression of data onto dynamics, and the main distinc-
tion between the various techniques is the degree to which this regression is constrained.
For example, the dynamic mode decomposition generates best-fit linear models. Recent
nonlinear regression techniques have produced nonlinear dynamic models that preserve
physical constraints, such as conservation of energy. A major breakthrough in automated
nonlinear system identification was made by Bongard and Lipson [68] and Schmidt and
Lipson [477], where they used genetic programming to identify the structure of nonlinear
dynamics. These methods are highly flexible and impose very few constraints on the form
of the dynamics identified. In addition, SINDy is closely related to NARMAX [59], which
identifies the structure of models from time-series data through an orthogonal least squares
procedure.

Discovering Partial Differential Equations
A major extension of the SINDy modeling framework generalized the library to include
partial derivatives, enabling the identification of partial differential equations [460, 468].
The resulting algorithm, called the partial differential equation functional identification
of nonlinear dynamics (PDE-FIND), has been demonstrated to successfully identify
several canonical PDEs from classical physics, purely from noisy data. These PDEs
include Navier-Stokes, Kuramoto-Sivashinsky, Schrödinger, reaction diffusion, Burgers,
Korteweg–de Vries, and the diffusion equation for Brownian motion [460].

PDE-FIND is similar to SINDy, in that it is based on sparse regression in a library
constructed from measurement data. The sparse regression and discovery method is shown
in Fig. 7.6. PDE-FIND is outlined below for PDEs in a single variable, although the theory
is readily generalized to higher dimensional PDEs. The spatial time-series data is arranged
into a single column vector ϒ ∈ Cmn, representing data collected over m time points
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Figure 7.6 Steps in the PDE functional identification of nonlinear dynamics (PDE-FIND) algorithm,
applied to infer the Navier-Stokes equations from data (reproduced from Rudy et al. [460]). 1a. Data
is collected as snapshots of a solution to a PDE. 1b. Numerical derivatives are taken and data is
compiled into a large matrix �, incorporating candidate terms for the PDE. 1c. Sparse regressions is
used to identify active terms in the PDE. 2a. For large datasets, sparse sampling may be used to
reduce the size of the problem. 2b. Subsampling the dataset is equivalent to taking a subset of rows
from the linear system in (7.42). 2c. An identical sparse regression problem is formed but with
fewer rows. d. Active terms in ξ are synthesized into a PDE.

and n spatial locations. Additional inputs, such as a known potential for the Schrödinger
equation, or the magnitude of complex data, is arranged into a column vector Q ∈ Cmn.
Next, a library �(ϒ, Q) ∈ Cmn×D of D candidate linear and nonlinear terms and partial
derivatives for the PDE is constructed. Derivatives are taken either using finite differences
for clean data, or when noise is added, with polynomial interpolation. The candidate linear
and nonlinear terms and partial derivatives are then combined into a matrix �(ϒ, Q) which
takes the form:

�(ϒ, Q)=[1 ϒ ϒ2 . . . Q . . . ϒx ϒϒx . . .
]
. (7.41)

Each column of � contains all of the values of a particular candidate function across all
of the mn space-time grid points on which data is collected. The time derivative ϒ t is also
computed and reshaped into a column vector. Fig. 7.6 demonstrates the data collection and
processing. As an example, a column of �(ϒ, Q) may be qu2

x .
The PDE evolution can be expressed in this library as follows:

ϒ t = �(ϒ, Q)ξ . (7.42)

Each entry in ξ is a coefficient corresponding to a term in the PDE, and for canonical
PDEs, the vector ξ is sparse, meaning that only a few terms are active.

If the library � has a sufficiently rich column space that the dynamics are in it’s span,
then the PDE should be well-represented by (7.42) with a sparse vector of coefficients ξ . To
identify the few active terms in the dynamics, a sparsity-promoting regression is employed,
as in SINDy. Importantly, the regression problem in (7.42) may be poorly conditioned.
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Algorithm 1 STRidge(�,ϒ t , λ, tol, iters)

ξ̂ = arg minξ‖�ξ − ϒ t‖2
2 + λ‖ξ‖2

2 % ridge regression
bigcoeffs = {j : |ξ̂j | ≥ tol} % select large coefficients
ξ̂ [ ∼ bigcoeffs] = 0 % apply hard threshold
ξ̂ [bigcoeffs] = STRidge(�[:, bigcoeffs],ϒ t , tol, iters − 1)

% recursive call with fewer coefficients
return ξ̂

Error in computing the derivatives will be magnified by numerical errors when inverting
�. Thus a least squares regression radically changes the qualitative nature of the inferred
dynamics.

In general, we seek the sparsest vector ξ that satisfies (7.42) with a small residual.
Instead of an intractable combinatorial search through all possible sparse vector structures,
a common technique is to relax the problem to a convex 
1 regularized least squares [518];
however, this tends to perform poorly with highly correlated data. Instead, we use ridge
regression with hard thresholding, which we call sequential threshold ridge regression
(STRidge in Algorithm 1, reproduced from Rudy et al. [460]). For a given tolerance and
threshold λ, this gives a sparse approximation to ξ . We iteratively refine the tolerance of
Algorithm 1 to find the best predictor based on the selection criteria,

ξ̂ = argminξ‖�(ϒ, Q)ξ − ϒ t‖2
2 + εκ(�(ϒ, Q))‖ξ‖0 (7.43)

where κ(�) is the condition number of the matrix �, providing stronger regularization for
ill-posed problems. Penalizing ‖ξ‖0 discourages over fitting by selecting from the optimal
position in a Pareto front.

As in the SINDy algorithm, it is important to provide sufficiently rich training data to
disambiguate between several different models. For example, Fig. 7.7 illustrates the use of
PDE-FIND algorithm identifying the Korteweg–de Vries (KdV) equation. If only a single
traveling wave is analyzed, the method incorrectly identifies the standard linear advection
equation, as this is the simplest equation that describes a single traveling wave. However,
if two traveling waves of different amplitudes are analyzed, the KdV equation is correctly
identified, as it describes the different amplitude-dependent wave speeds.

The PDE-FIND algorithm can also be used to identify PDEs based on Lagrangian mea-
surements that follow the path of individual particles. For example, Fig. 7.8 illustrates the
identification of the diffusion equation describing Brownian motion of a particle based on
a single long time-series measurement of the particle position. In this example, the time
series is broken up into several short sequences, and the evolution of the distribution of
these positions is used to identify the diffusion equation.

Extension of SINDy for Rational Function Nonlinearities
Many dynamical systems, such as metabolic and regulatory networks in biology, contain
rational function nonlinearities in the dynamics. Often, these rational function nonlineari-
ties arise because of a separation of time scales. Although the original SINDy algorithm is
highly flexible in terms of the choice of the library of nonlinearities, it is not straightforward
to identify rational functions, since general rational functions are not sparse linear combi-
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Figure 7.7 Inferring nonlinearity via observing solutions at multiple amplitudes (reproduced from
Rudy et al. [460]). (a) An example 2-soliton solution to the KdV equation. (b) Applying our method
to a single soliton solution determines that it solves the standard advection equation. (c) Looking at
two completely separate solutions reveals nonlinearity.
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Figure 7.8 Inferring the diffusion equation from a single Brownian motion (reproduced from Rudy
et al. [460]). (a) Time series is broken into many short random walks that are used to construct
histograms of the displacement. (b) The Brownian motion trajectory, following the diffusion
equation. (c) Parameter error (‖ξ∗ − ξ̂‖1) vs. length of known time series. Blue symbols correspond
to correct identification of the structure of the diffusion model, ut = cuxx.

nations of a few basis functions. Instead, it is necessary to reformulate the dynamics in an
implicit ordinary differential equation and modify the optimization procedure accordingly,
as in Mangan et al. [361].
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We consider dynamical systems with rational nonlinearities:

ẋk = fN(x)

fD(x)
(7.44)

where xk is the k-th variable, and fN(x) and fD(x) represent numerator and denominator
polynomials in the state variable x. For each index k, it is possible to multiply both sides
by the denominator fD , resulting in the equation:

fN(x) − fD(x)ẋk = 0. (7.45)

The implicit form of (7.45) motivates a generalization of the function library � in (7.37)
in terms of the state x and the derivative ẋk:

�(X, ẋk(t)) = [�N(X) diag (ẋk(t))�D(X)
]
. (7.46)

The first term, �N(X), is the library of numerator monomials in x, as in (7.37). The
second term, diag (ẋk(t))�D(X), is obtained by multiplying each column of the library
of denominator polynomials �D(X) with the vector ẋk(t) in an element-wise fashion. For
a single variable xk , this would give the following:

diag(ẋk(t))�(X)=[ẋk(t) (ẋkxk)(t) (ẋkx
2
k )(t) . . .

]
. (7.47)

In most cases, we will use the same polynomial degree for both the numerator and
denominator library, so that �N(X) = �D(X). Thus, the augmented library in (7.46)
is only twice the size of the original library in (7.37).

We may now write the dynamics in (7.45) in terms of the augmented library in (7.46):

�(X, ẋk(t))ξ k = 0. (7.48)

The sparse vector of coefficients ξ k will have nonzero entries for the active terms in the
dynamics. However, it is not possible to use the same sparse regression procedure as in
SINDy, since the sparsest vector ξ k that satisfies (7.48) is the trivial zero vector.

Instead, the sparsest nonzero vector ξ k that satisfies (7.48) is identified as the sparsest
vector in the null space of �. This is generally a nonconvex problem, although there are
recent algorithms developed by Qu et al. [440], based on the alternating directions method
(ADM), to identify the sparsest vector in a subspace. Unlike the original SINDy algorithm,
this procedure is quite sensitive to noise, as the null-space is numerically approximated as
the span of the singular vectors corresponding to small singular value. When noise is added
to the data matrix X, and hence to �, the noise floor of the singular value decomposition
goes up, increasing the rank of the numerical null space.

General Formulation for Implicit ODEs
The optimization procedure above may be generalized to include a larger class of implicit
ordinary differential equations, in addition to those containing rational function nonlinear-
ities. The library �(X, ẋk(t)) contains a subset of the columns of the library �(

[
X Ẋ

]
),

which is obtained by building nonlinear functions of the state x and derivative ẋ. Identifying
the sparsest vector in the null space of �(

[
X Ẋ

]
) provides more flexibility in identifying
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Figure 7.9 Illustration of model selection using SINDy and information criteria, as in Mangan
et al. [362]. The most parsimonious model on the Pareto front is chosen to minimize the AIC score
(blue circle), preventing overfitting.

nonlinear equations with mixed terms containing various powers of any combination of
derivatives and states. For example, the system given by

ẋ2x2 − ẋx − x2 = 0 (7.49)

may be represented as a sparse vector in the null space of �(
[
X Ẋ

]
). This formulation

may be extended to include higher order derivatives in the library � library, for example
to identify second-order implicit differential equations:

�
([

X Ẋ Ẍ
])

. (7.50)

The generality of this approach enables the identification of many systems of interest,
including those systems with rational function nonlinearities.

Information Criteria for Model Selection
When performing the sparse regression in the SINDy algorithm, the sparsity-promoting
parameter λ is a free variable. In practice, different values of λ will result in different
models with various levels of sparsity, ranging from the trivial model ẋ = 0 for very large
λ to the simple least-squares solution for λ = 0. Thus, by varying λ, it is possible to sweep
out a Pareto front, balancing error versus complexity, as in Fig. 7.9. To identify the most
parsimonious model, with low error and a reasonable complexity, it is possible to leverage
information criteria for model selection, as described in Mangan et al. [362]. In particular,
if we compute the Akaike information criterion (AIC) [6, 7], which penalizes the number of
terms in the model, then the most parsimonious model minimizes the AIC. This procedure
has been applied to several sparse identification problems, and in every case, the true model
was correctly identified [362].
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7.4 Koopman Operator Theory
Koopman operator theory has recently emerged as an alternative perspective for dynamical
systems in terms of the evolution of measurements g(x). In 1931, Bernard O. Koopman
demonstrated that it is possible to represent a nonlinear dynamical system in terms of an
infinite-dimensional linear operator acting on a Hilbert space of measurement functions
of the state of the system. This so-called Koopman operator is linear, and its spectral
decomposition completely characterizes the behavior of a nonlinear system, analogous
to (7.7). However, it is also infinite-dimensional, as there are infinitely many degrees of
freedom required to describe the space of all possible measurement functions g of the
state. This poses new challenges. Obtaining finite-dimensional, matrix approximations of
the Koopman operator is the focus of intense research efforts and holds the promise of
enabling globally linear representations of nonlinear dynamical systems. Expressing non-
linear dynamics in a linear framework is appealing because of the wealth of optimal esti-
mation and control techniques available for linear systems (see Chapter 8) and the ability to
analytically predict the future state of the system. Obtaining a finite-dimensional approxi-
mation of the Koopman operator has been challenging in practice, as it involves identifying
a subspace spanned by a subset of eigenfunctions of the Koopman operator.

Mathematical Formulation of Koopman Theory
The Koopman operator advances measurement functions of the state with the flow of
the dynamics. We consider real-valued measurement functions g : M → R, which are
elements of an infinite-dimensional Hilbert space. The functions g are also commonly
known as observables, although this may be confused with the unrelated observability
from control theory. Typically, the Hilbert space is given by the Lebesgue square-integrable
functions on M; other choices of a measure space are also valid.

The Koopman operator Kt is an infinite-dimensional linear operator that acts on mea-
surement functions g as:

Kt g = g ◦ Ft (7.51)

where ◦ is the composition operator. For a discrete-time system with timestep �t , this
becomes:

K�tg(xk) = g(F�t (xk)) = g(xk+1). (7.52)

In other words, the Koopman operator defines an infinite-dimensional linear dynamical
system that advances the observation of the state gk = g(xk) to the next time step:

g(xk+1) = K�tg(xk). (7.53)

Note that this is true for any observable function g and for any state xk .
The Koopman operator is linear, a property which is inherited from the linearity of the

addition operation in function spaces:

Kt (α1g1(x) + α2g2(x)) = α1g1 (Ft (x)) + α2g2 (Ft (x)) (7.54a)

= α1Kt g1(x) + α2Kt g2(x). (7.54b)
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For sufficiently smooth dynamical systems, it is also possible to define the continuous-
time analogue of the Koopman dynamical system in (7.53):

d

dt
g = Kg. (7.55)

The operator K is the infinitesimal generator of the one-parameter family of transforma-
tions Kt [1]. It is defined by its action on an observable function g:

Kg = lim
t→0

Ktg − g

t
= lim

t→0

g ◦ Ft − g

t
. (7.56)

The linear dynamical systems in (7.55) and (7.53) are analogous to the dynamical systems
in (7.3) and (7.4), respectively. It is important to note that the original state x may be the
observable, and the infinite-dimensional operator Kt will advance this function. However,
the simple representation of the observable g = x in a chosen basis for Hilbert space may
become arbitrarily complex once iterated through the dynamics. In other words, finding a
representation for Kx may not be simple or straightforward.

Koopman Eigenfunctions and Intrinsic Coordinates
The Koopman operator is linear, which is appealing, but is infinite dimensional, posing
issues for representation and computation. Instead of capturing the evolution of all mea-
surement functions in a Hilbert space, applied Koopman analysis attempts to identify key
measurement functions that evolve linearly with the flow of the dynamics. Eigenfunctions
of the Koopman operator provide just such a set of special measurements that behave
linearly in time. In fact, a primary motivation to adopt the Koopman framework is the
ability to simplify the dynamics through the eigen-decomposition of the operator.

A discrete-time Koopman eigenfunction ϕ(x) corresponding to eigenvalue λ satisfies

ϕ(xk+1) = K�tϕ(xk) = λϕ(xk). (7.57)

In continuous-time, a Koopman eigenfunction ϕ(x) satisfies

d

dt
ϕ(x) = Kϕ(x) = λϕ(x). (7.58)

Obtaining Koopman eigenfunctions from data or from analytic expressions is a central
applied challenge in modern dynamical systems. Discovering these eigenfunctions enables
globally linear representations of strongly nonlinear systems.

Applying the chain rule to the time derivative of the Koopman eigenfunction ϕ(x) yields

d

dt
ϕ(x) = ∇ϕ(x) · ẋ = ∇ϕ(x) · f(x). (7.59)

Combined with (7.58), this results in a partial differential equation (PDE) for the eigen-
function ϕ(x):

∇ϕ(x) · f(x) = λϕ(x). (7.60)

With this nonlinear PDE, it is possible to approximate the eigenfunctions, either by
solving for the Laurent series or with data via regression, both of which are explored
below. This formulation assumes that the dynamics are both continuous and differentiable.
The discrete-time dynamics in (7.4) are more general, although in many examples the
continuous-time dynamics have a simpler representation than the discrete-time map for
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long times. For example, the simple Lorenz system has a simple continuous-time repre-
sentation, yet is generally unrepresentable for even moderately long discrete-time updates.

The key takeaway from (7.57) and (7.58) is that the nonlinear dynamics become com-
pletely linear in eigenfunction coordinates, given by ϕ(x). As a simple example, any con-
served quantity of a dynamical system is a Koopman eigenfunction corresponding to eigen-
value λ = 0. This establishes a Koopman extension of the famous Noether’s theorem [406],
implying that any symmetry in the governing equations gives rise to a new Koopman
eigenfunction with eigenvalue λ = 0. For example, the Hamiltonian energy function is a
Koopman eigenfunction for a conservative system. In addition, the constant function ϕ = 1
is always a trivial eigenfunction corresponding to λ = 0 for every dynamical system.

Eigenvalue lattices Interestingly, a set of Koopman eigenfunctions may be used to gen-
erate more eigenfunctions. In discrete time, we find that the product of two eigenfunctions
ϕ1(x) and ϕ2(x) is also an eigenfunction

Kt (ϕ1(x)ϕ2(x)) = ϕ1(Ft (x))ϕ2(Ft (x)) (7.61a)

= λ1λ2ϕ1(x)ϕ2(x) (7.61b)

corresponding to a new eigenvalue λ1λ2 given by the product of the two eigenvalues of
ϕ1(x) and ϕ2(x).

In continuous time, the relationship becomes:

K (ϕ1ϕ2) = d

dt
(ϕ1ϕ2) (7.62a)

= ϕ̇1ϕ2 + ϕ1ϕ̇2 (7.62b)

= λ1ϕ1ϕ2 + λ2ϕ1ϕ2 (7.62c)

= (λ1 + λ2)ϕ1ϕ2. (7.62d)

Interestingly, this means that the set of Koopman eigenfunctions establishes a commuta-
tive monoid under point-wise multiplication; a monoid has the structure of a group, except
that the elements need not have inverses. Thus, depending on the dynamical system, there
may be a finite set of generator eigenfunction elements that may be used to construct
all other eigenfunctions. The corresponding eigenvalues similarly form a lattice, based on
the product λ1λ2 or sum λ1 + λ2, depending on whether the dynamics are in discrete
time or continuous time. For example, given a linear system ẋ = λx, then ϕ(x) = x is
an eigenfunction with eigenvalue λ. Moreover, ϕα = xα is also an eigenfunction with
eigenvalue αλ for any α.

The continuous time and discrete time lattices are related in a simple way. If the
continuous-time eigenvalues are given by λ, then the corresponding discrete-time eigenval-
ues are given by eλt . Thus, the eigenvalue expressions in (7.61b) and (7.62d) are related as:

eλ1t eλ2t ϕ1(x)ϕ2(x) = e(λ1+λ2)tϕ1(x)ϕ2(x). (7.63)

As another simple demonstration of the relationship between continuous-time and
discrete-time eigenvalues, consider the continuous-time definition in (7.56) applied to an
eigenfunction:

lim
t→0

Kt ϕ(x) − ϕ(x)

t
= lim

t→0

eλtϕ(x) − ϕ(x)

t
= λϕ(x). (7.64)
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Koopman Mode Decomposition and Finite Representations
Until now, we have considered scalar measurements of a system, and we uncovered special
eigen-measurements that evolve linearly in time. However, we often take multiple measure-
ments of a system. In extreme cases, we may measure the entire state of a high-dimensional
spatial system, such as an evolving fluid flow. These measurements may then be arranged
in a vector g:

g(x) =

⎡
⎢⎢⎢⎣

g1(x)

g2(x)
...

gp(x)

⎤
⎥⎥⎥⎦ . (7.65)

Each of the individual measurements may be expanded in terms of the eigenfunctions
ϕj (x), which provide a basis for Hilbert space:

gi(x) =
∞∑

j=1

vijϕj (x). (7.66)

Thus, the vector of observables, g, may be similarly expanded:

g(x) =

⎡
⎢⎢⎢⎣

g1(x)

g2(x)
...

gp(x)

⎤
⎥⎥⎥⎦ =

∞∑
j=1

ϕj (x)vj , (7.67)

where vj is the j -th Koopman mode associated with the eigenfunction ϕj .
For conservative dynamical systems, such as those governed by Hamiltonian dynamics,

the Koopman operator is unitary. Thus, the Koopman eigenfunctions are orthonormal for
conservative systems, and it is possible to compute the Koopman modes vj directly by
projection:

vj =

⎡
⎢⎢⎢⎣

〈ϕj , g1〉
〈ϕj , g2〉

...

〈ϕj , gp〉

⎤
⎥⎥⎥⎦ , (7.68)

where 〈·, ·〉 is the standard inner product of functions in Hilbert space. These modes have
a physical interpretation in the case of direct spatial measurements of a system, g(x) = x,
in which case the modes are coherent spatial modes that behave linearly with the same
temporal dynamics (i.e., oscillations, possibly with linear growth or decay).

Given the decomposition in (7.67), it is possible to represent the dynamics of the mea-
surements g as follows:

g(xk) = Kk
�tg(x0) = Kk

�t

∞∑
j=0

ϕj (x0)vj (7.69a)

=
∞∑

j=0

Kk
�tϕj (x0)vj (7.69b)
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Figure 7.10 Schematic illustrating the Koopman operator for nonlinear dynamical systems. The
dashed lines from yk → xk indicate that we would like to be able to recover the original state.

=
∞∑

j=0

λk
jϕj (x0)vj . (7.69c)

This sequence of triples, {(λj , ϕj , vj )}∞j=0 is known as the Koopman mode decomposition,
and was introduced by Mezic in 2005 [376]. The Koopman mode decomposition was later
connected to data-driven regression via the dynamic mode decomposition [456], which will
be discussed in Section 7.2.

Invariant Eigenspaces and Finite-Dimensional Models
Instead of capturing the evolution of all measurement functions in a Hilbert space, applied
Koopman analysis approximates the evolution on an invariant subspace spanned by a finite
set of measurement functions.

A Koopman-invariant subspace is defined as the span of a set of functions {g1, g2, · · · , gp}
if all functions g in this subspace

g = α1g1 + α2g2 + · · · + αpgp (7.70)

remain in this subspace after being acted on by the Koopman operator K:

Kg = β1g1 + β2g2 + · · · + βpgp. (7.71)

It is possible to obtain a finite-dimensional matrix representation of the Koopman operator
by restricting it to an invariant subspace spanned by a finite number of functions {gj }pj=0.
The matrix representation K acts on a vector space Rp, with the coordinates given by the
values of gj (x). This induces a finite-dimensional linear system, as in (7.53) and (7.55).

Any finite set of eigenfunctions of the Koopman operator will span an invariant sub-
space. Discovering these eigenfunction coordinates is, therefore, a central challenge, as
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they provide intrinsic coordinates along which the dynamics behave linearly. In practice, it
is more likely that we will identify an approximately invariant subspace, given by a set of
functions {gj }pj=0, where each of the functions gj is well approximated by a finite sum of

eigenfunctions: gj ≈∑p

k=0 αkϕk .

Examples of Koopman Embeddings
Nonlinear System with Single Fixed Point and a Slow Manifold
Here, we consider an example system with a single fixed point, given by:

ẋ1 = μx1 (7.72a)

ẋ2 = λ(x2 − x2
1). (7.72b)

For λ < μ < 0, the system exhibits a slow attracting manifold given by x2 = x2
1 . It

is possible to augment the state x with the nonlinear measurement g = x2
1 , to define

a three-dimensional Koopman invariant subspace. In these coordinates, the dynamics
become linear:

d

dt

⎡
⎣y1

y2

y3

⎤
⎦ =

⎡
⎣μ 0 0

0 λ −λ

0 0 2μ

⎤
⎦
⎡
⎣y1

y2

y3

⎤
⎦ for

⎡
⎣y1

y2

y3

⎤
⎦ =

⎡
⎣x1

x2

x2
1

⎤
⎦ . (7.73a)

The full three-dimensional Koopman observable vector space is visualized in Fig. 7.11.
Trajectories that start on the invariant manifold y3 = y2

1 , visualized by the blue surface, are
constrained to stay on this manifold. There is a slow subspace, spanned by the eigenvectors
corresponding to the slow eigenvalues μ and 2μ; this subspace is visualized by the green
surface. Finally, there is the original asymptotically attracting manifold of the original
system, y2 = y2

1 , which is visualized as the red surface. The blue and red parabolic surfaces
always intersect in a parabola that is inclined at a 45◦ angle in the y2-y3 direction. The
green surface approaches this 45◦ inclination as the ratio of fast to slow dynamics become
increasingly large. In the full three-dimensional Koopman observable space, the dynamics
produce a single stable node, with trajectories rapidly attracting onto the green subspace
and then slowly approaching the fixed point.

Intrinsic coordinates defined by eigenfunctions of the Koopman operator The left
eigenvectors of the Koopman operator yield Koopman eigenfunctions (i.e., eigenobserv-
ables). The Koopman eigenfunctions of (7.73a) corresponding to eigenvalues μ and λ are:

ϕμ = x1, and ϕλ = x2 − bx2
1 with b = λ

λ − 2μ
. (7.74)

The constant b in ϕλ captures the fact that for a finite ratio λ/μ, the dynamics only
shadow the asymptotically attracting slow manifold x2 = x2

1 , but in fact follow neighboring
parabolic trajectories. This is illustrated more clearly by the various surfaces in Fig. 7.11
for different ratios λ/μ.

In this way, a set of intrinsic coordinates may be determined from the observable func-
tions defined by the left eigenvectors of the Koopman operator on an invariant subspace.
Explicitly,

ϕα(x) = ξαy(x), where ξαK = αξα. (7.75)
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Figure 7.11 Visualization of three-dimensional linear Koopman system from (7.73a) along with
projection of dynamics onto the x1-x2 plane. The attracting slow manifold is shown in red, the
constraint y3 = y2

1 is shown in blue, and the slow unstable subspace of (7.73a) is shown in green.
Black trajectories of the linear Koopman system in y project onto trajectories of the full nonlinear
system in x in the y1-y2 plane. Here, μ = −0.05 and λ = 1. Reproduced from Brunton et al. [92].

These eigen-observables define observable subspaces that remain invariant under the Koop-
man operator, even after coordinate transformations. As such, they may be regarded as
intrinsic coordinates [556] on the Koopman-invariant subspace.

Example of Intractable Representation
Consider the logistic map, given by:

xk+1 = βxk(1 − xk). (7.76)

Let our observable subspace include x and x2:

yk =
[

x

x2

]
k

�
[
xk

x2
k

]
. (7.77)

Writing out the Koopman operator, the first row equation is simple:

yk+1 =
[

x

x2

]
k+1

=
[
β −β

? ?

] [
x

x2

]
k

, (7.78)

but the second row is not obvious. To find this expression, expand x2
k+1:

x2
k+1 = (βxk(1 − xk))

2 = β2
(
x2
k − 2x3

k + x4
k

)
. (7.79)
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Thus, cubic and quartic polynomial terms are required to advance x2. Similarly, these terms
need polynomials up to sixth and eighth order, respectively, and so on, ad infinitum:

x x2 x3 x4 x5 x6 x7 x8 x9 x10⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x

x2

x3

x4

x5

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

k+1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

β −β 0 0 0 0 0 0 0 0 · · ·
0 β2 −2β2 r2 0 0 0 0 0 0 · · ·
0 0 β3 −3β3 3β3 β3 0 0 0 0 · · ·
0 0 0 β4 −4β4 6β4 −4β4 β4 0 0 · · ·
0 0 0 0 β5 −5β5 10β5 −10β5 5β5 −β5 · · ·
...

...
...

...
...

...
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x

x2

x3

x4

x5

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

k

.

It is interesting to note that the rows of this equation are related to the rows of Pascal’s
triangle, with the n-th row scaled by rn, and with the omission of the first row:[

x0
]
k+1

= [0] [x0
]
k
. (7.80)

The above representation of the Koopman operator in a polynomial basis is somewhat
troubling. Not only is there no closure, but the determinant of any finite-rank truncation
is very large for β > 1. This illustrates a pitfall associated with naive representation of
the infinite dimensional Koopman operator for a simple chaotic system. Truncating the
system, or performing a least squares fit on an augmented observable vector (i.e., DMD on
a nonlinear measurement; see Section 7.5) yields poor results, with the truncated system
only agreeing with the true dynamics for a small handful of iterations, as the complexity of
the representation grows quickly:

1
x

x2

x3

x4

x5

x6

x7

x8

...

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
0
0
0
0
0
0
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

K	⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
β

−β

0
0
0
0
0
0
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

K	⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
β2

−β2 − β3

2β3

−β3

0
0
0
0
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

K	⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
β3

−β3 − β4 − β5

2β4 + 2β5 + 2β6

−β4 − β5 − 6β6 − β7

6β6 + 4β7

−2β6 − 6β7

4β7

−β7

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7.81)

Analytic Series Expansions for Eigenfunctions
Given the dynamics in (7.1), it is possible to solve the PDE in (7.60) using standard
techniques, such as recursively solving for the terms in a Taylor or Laurent series. A number
of simple examples are explored below.

Linear Dynamics
Consider the simple linear dynamics

d

dt
x = x. (7.82)
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Assuming a Taylor series expansion for ϕ(x):

ϕ(x) = c0 + c1x + c2x
2 + c3x

3 + · · ·
then the gradient and directional derivatives are given by:

∇ϕ = c1 + 2c2x + 3c3x
2 + 4c4x

3 + · · ·
∇ϕ · f = c1x + 2c2x

2 + 3c3x
3 + 4c4x

4 + · · ·
Solving for terms in the Koopman eigenfunction PDE (7.60), we see that c0 = 0 must
hold. For any positive integer λ in (7.60), only one of the coefficients may be nonzero.
Specifically, for λ = k ∈ Z+, then ϕ(x) = cxk is an eigenfunction for any constant c. For
instance, if λ = 1, then ϕ(x) = x.

Quadratic Nonlinear Dynamics
Consider a nonlinear dynamical system

d

dt
= x2. (7.83)

There is no Taylor series that satisfies (7.60), except the trivial solution ϕ = 0 for λ = 0.
Instead, we assume a Laurent series:

ϕ(x) = · · · + c−3x
−3 + c−2x

−2 + c−1x
−1 + c0

+ c1x + c2x
2 + c3x

3 + · · · .

The gradient and directional derivatives are given by:

∇ϕ = · · · − 3c−3x
−4 − 2c−2x

−3 − c−1x
−2 + c1 + 2c2x

+ 3c3x
2 + 4c4x

3 + · · ·
∇ϕ · f = · · · − 3c−3x

−2 − 2c−2x
−1 − c−1 + c1x

2 + 2c2x
3

+ 3c3x
4 + 4c4x

5 + · · · .

Solving for the coefficients of the Laurent series that satisfy (7.60), we find that all coef-
ficients with positive index are zero, i.e. ck = 0 for all k ≥ 1. However, the nonpositive
index coefficients are given by the recursion λck+1 = kck , for negative k ≤ −1. Thus, the
Laurent series is

ϕ(x) = c0

(
1 − λx−1 + λ2

2
x−2 − λ3

3
x−3 + · · ·

)
= c0e

−λ/x.

This holds for all values of λ ∈ C. There are also other Koopman eigenfunctions that can
be identified from the Laurent series.

Polynomial Nonlinear Dynamics
For a more general nonlinear dynamical system

d

dt
= axn, (7.84)

ϕ(x) = e
λ

(1−n)a
x1−n

is an eigenfunction for all λ ∈ C.
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As mentioned above, it is also possible to generate new eigenfunctions by taking pow-
ers of these primitive eigenfunctions; the resulting eigenvalues generate a lattice in the
complex plane.

History and Recent Developments
The original analysis of Koopman in 1931 was introduced to describe the evolution of
measurements of Hamiltonian systems [300], and this theory was generalized by Koopman
and von Neumann to systems with continuous eigenvalue spectrum in 1932 [301]. In the
case of Hamiltonian flows, the Koopman operator Kt is unitary, and forms a one-parameter
family of unitary transformations in Hilbert space. Unitary operators should be familiar by
now, as the discrete Fourier transform (DFT) and the singular value decomposition (SVD)
both provide unitary coordinate transformations. Unitarity implies that the inner product of
any two observable functions remains unchanged through action of the Koopman operator,
which is intuitively related to the phase-space volume preserving property of Hamiltonian
systems. In the original paper [300], Koopman drew connections between the Koopman
eigenvalue spectrum and conserved quantities, integrability, and ergodicity. Interestingly,
Koopman’s 1931 paper was central in the celebrated proofs of the ergodic theorem by
Birkhoff and von Neumann [62, 399, 61, 389].

Koopman analysis has recently gained renewed interest with the pioneering work of
Mezic and collaborators [379, 376, 102, 104, 103, 377, 322]. The Koopman operator is
also known as the composition operator, which is formally the pull-back operator on the
space of scalar observable functions [1], and it is the dual, or left-adjoint, of the Perron-
Frobenius operator, or transfer operator, which is the push-forward operator on the space of
probability density functions. When a polynomial basis is chosen to represent the Koopman
operator, then it is closely related to Carleman linearization [121, 122, 123], which has
been used extensively in nonlinear control [500, 305, 38, 509]. Koopman analysis is also
connected to the resolvent operator theory from fluid dynamics [487].

Recently, it has been shown that the operator theoretic framework complements the
traditional geometric and probabilistic perspectives. For example, level sets of Koopman
eigenfunctions form invariant partitions of the state-space of a dynamical system [103];
in particular, eigenfunctions of the Koopman operator may be used to analyze the ergodic
partition [380, 102]. Koopman analysis has also been recently shown to generalize the
Hartman-Grobman theorem to the entire basin of attraction of a stable or unstable equilib-
rium point or periodic orbit [322].

At the time of this writing, representing Koopman eigenfunctions for general dynamical
systems remains a central unsolved challenge. Significant research efforts are focused on
developing data-driven techniques to identify Koopman eigenfunctions and use these for
control, which will be discussed in the following sections and chapters. Recently, new work
has emerged that attempts to leverage the power of deep learning to discover and represent
eigenfunctions from data [550, 368, 513, 564, 412, 349].

7.5 Data-Driven Koopman Analysis
Obtaining linear representations for strongly nonlinear systems has the potential to revolu-
tionize our ability to predict and control these systems. The linearization of dynamics near
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fixed points or periodic orbits has long been employed for local linear representation of the
dynamics [252]. The Koopman operator is appealing because it provides a global linear
representation, valid far away from fixed points and periodic orbits. However, previous
attempts to obtain finite-dimensional approximations of the Koopman operator have had
limited success. Dynamic mode decomposition [472, 456, 317] seeks to approximate the
Koopman operator with a best-fit linear model advancing spatial measurements from one
time to the next, although these linear measurements are not rich enough for many non-
linear systems. Augmenting DMD with nonlinear measurements may enrich the model,
but there is no guarantee that the resulting models will be closed under the Koopman
operator [92]. Here, we describe several approaches for identifying Koopman embeddings
and eigenfunctions from data. These methods include the extended dynamic mode decom-
position [556], extensions based on SINDy [276], and the use of delay coordinates [91].

Extended DMD
The extended DMD algorithm [556] is essentially the same as standard DMD [535], except
that instead of performing regression on direct measurements of the state, regression is
performed on an augmented vector containing nonlinear measurements of the state. As
discussed earlier, eDMD is equivalent to the variational approach of conformation dynam-
ics [405, 407, 408], which was developed in 2013 by Noé and Nüske.

Here, we will modify the notation slightly to conform to related methods. In eDMD, an
augmented state is constructed:

y = �T (x) =

⎡
⎢⎢⎢⎣

θ1(x)

θ2(x)
...

θp(x)

⎤
⎥⎥⎥⎦ . (7.85)

� may contain the original state x as well as nonlinear measurements, so often p � n.
Next, two data matrices are constructed, as in DMD:

Y =
⎡
⎣y1 y2 · · · ym

⎤
⎦ , Y′ =

⎡
⎣y2 y3 · · · ym+1

⎤
⎦ . (7.86a)

Finally, a best-fit linear operator AY is constructed that maps Y into Y′:

AY = argmin
AY

‖Y′ − AYY‖ = Y′Y†. (7.87)

This regression may be written in terms of the data matrices �(X) and �(X′):

AY = argmin
AY

‖�T (X′) − AY�T (X)‖ = �T (X′)
(
�T (X)

)†
. (7.88)

Because the augmented vector y may be significantly larger than the state x, kernel methods
are often employed to compute this regression [557]. In principle, the enriched library �

provides a larger basis in which to approximate the Koopman operator. It has been shown
recently that in the limit of infinite snapshots, the extended DMD operator converges to
the Koopman operator projected onto the subspace spanned by � [303]. However, if �

does not span a Koopman invariant subspace, then the projected operator may not have any
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resemblance to the original Koopman operator, as all of the eigenvalues and eigenvectors
may be different. In fact, it was shown that the extended DMD operator will have spurious
eigenvalues and eigenvectors unless it is represented in terms of a Koopman invariant
subspace [92]. Therefore, it is essential to use validation and cross-validation techniques to
ensure that eDMD models are not overfit, as discussed below. For example, it was shown
that eDMD cannot contain the original state x as a measurement and represent a system
that has multiple fixed points, periodic orbits, or other attractors, because these systems
cannot be topologically conjugate to a finite-dimensional linear system [92].

Approximating Koopman Eigenfunctions from Data
In discrete-time, a Koopman eigenfunctionϕ(x) evaluated at a number of data points in X
will satisfy: ⎡

⎢⎢⎢⎣
λϕ(x1)

λϕ(x2)
...

λϕ(xm)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ϕ(x2)

ϕ(x3)
...

ϕ(xm+1)

⎤
⎥⎥⎥⎦ . (7.89)

It is possible to approximate this eigenfunction as an expansion in terms of a set of candi-
date functions,

�(x) = [θ1(x) θ2(x) · · · θp(x)
]
. (7.90)

The Koopman eigenfunctionmay be approximated in this basis as:

ϕ(x) ≈
p∑

k=1

θk(x)ξk = �(x)ξ . (7.91)

Writing (7.89) in terms of this expansion yields the matrix system:(
λ�(X) − �(X′)

)
ξ = 0. (7.92)

If we seek the best least-squares fit to (7.92), this reduces to the extended DMD [557, 556]
formulation:

λξ = �(X)†�(X′)ξ . (7.93)

Note that (7.93) is the transpose of (7.88), so that left eigenvectors become right eigen-
vectors. Thus, eigenvectors ξ of �†�′ yield the coefficients of the eigenfunction ϕ(x)

represented in the basis �(x). It is absolutely essential to then confirm that predicted eigen-
functions actually behave linearly on trajectories, by comparing them with the predicted
dynamics ϕk+1 = λϕk , because the regression above will result in spurious eigenvalues
and eigenvectors unless the basis elements θj span a Koopman invariant subspace [92].

Sparse Identification of Eigenfunctions
It is possible to leverage the SINDy regression [95] to identify Koopman eigenfunctions
corresponding to a particular eigenvalue λ, selecting only the few active terms in the library
�(x) to avoid overfitting. Given the data matrices, X and Ẋ from above it is possible to
construct the library of basis functions �(X) as well as a library of directional derivatives,
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representing the possible terms in ∇ϕ(x) · f(x) from (7.60):

�(x, ẋ) = [∇θ1(x) · ẋ ∇θ2(x) · ẋ · · · ∇θp(x) · ẋ
]
. (7.94)

It is then possible to construct � from data:

�(X, Ẋ) =

⎡
⎢⎢⎣

∇θ1(x1) · ẋ1 ∇θ2(x1) · ẋ1 · · · ∇θp(x1) · ẋ1
∇θ1(x2) · ẋ2 ∇θ2(x2) · ẋ2 · · · ∇θp(x2) · ẋ2

.

.

.
.
.
.

. . .
.
.
.

∇θ1(xm) · ẋm ∇θ2(xm) · ẋm · · · ∇θp(xm) · ẋm

⎤
⎥⎥⎦ .

For a given eigenvalue λ, the Koopman PDE in (7.60) may be evaluated on data:(
λ�(X) − �(X, Ẋ)

)
ξ = 0. (7.95)

The formulation in (7.95) is implicit, so that ξ will be in the null-space of λ�(X)−
�(X, Ẋ). The right null-space of (7.95) for a given λ is spanned by the right singular vectors
of λ�(X) − �(X, Ẋ) = U�V∗ (i.e., columns of V) corresponding to zero-valued singular
values. It may be possible to identify the few active terms in an eigenfunction by finding the
sparsest vector in the null-space [440], as in the implicit-SINDy algorithm [361] described
in Section 7.3. In this formulation, the eigenvalues λ are not known a priori, and must
be learned with the approximate eigenfunction. Koopman eigenfuntions and eigenvalues
can also be determined as the solution to the eigenvalue problem AYξα = λαξα , where
AY = �†� is obtained via least-squares regression, as in the continuous-time version of
eDMD. While many eigenfunctions are spurious, those corresponding to lightly damped
eigenvalues can be well approximated.

From a practical standpoint, data in X does not need to be sampled from full trajectories,
but can be obtained using more sophisticated strategies such as latin hypercube sampling
or sampling from a distribution over the phase space. Moreover, reproducing kernel Hilbert
spaces (RKHS) can be employed to describe ϕ(x) locally in patches of state space.

Example: Duffing System (Kaiser et al [276])
We demonstrate the sparse identification of Koopman eigenfunctions on the undamped
Duffing oscillator:

d

dt

[
x1

x2

]
=
[

x2

x1 − x3
1

]

where x1 is the position and x2 is the velocity of a particle in a double well potential
with equilibria (0, 0) and (±1, 0). This system is conservative, with Hamiltonian H =
1
2x2

2 − 1
2x2

1 + 1
4x4

1 . The Hamiltonian, and in general any conserved quantity, is a Koopman
eigenfunction with zero eigenvalue.

For the eigenvalue λ = 0, (7.95) becomes −�(X, Ẋ)ξ = 0, and hence a sparse ξ is
sought in the null-space of −�(X, Ẋ). A library of candidate functions is constructed from
data, employing polynomials up to fourth order:

�(X) =
⎡
⎣ | | | | |

x1(t) x2(t) x2
1 (t) x1(t)x2(t) · · · x4

2 (t)

| | | | |

⎤
⎦
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and

�(X, Ẋ) =
⎡
⎣ | | | | |

ẋ1(t) ẋ2(t) 2x1(t)ẋ1(t) x2(t)ẋ1(t) + x1(t) + ẋ2(t) · · · 4x2(t)3ẋ2(t)
| | | | |

⎤
⎦ .

A sparse vector of coefficients ξ may be identified, with the few nonzero entries deter-
mining the active terms in the Koopman eigenfunction. The identified Koopman eigenfunc-
tionassociated with λ = 0 is

ϕ(x) = −2/3x2
1 + 2/3x2

2 + 1/3x4
1 . (7.96)

This eigenfunction matches the Hamiltonian perfectly up to a constant scaling.

Data-Driven Koopman and Delay Coordinates
Instead of advancing instantaneous linear or nonlinear measurements of the state of a
system directly, as in DMD, it may be possible to obtain intrinsic measurement coordinates
for Koopman based on time-delayed measurements of the system [506, 91, 18, 144]. This
perspective is data-driven, relying on the wealth of information from previous measure-
ments to inform the future. Unlike a linear or weakly nonlinear system, where trajectories
may get trapped at fixed points or on periodic orbits, chaotic dynamics are particularly
well-suited to this analysis: trajectories evolve to densely fill an attractor, so more data
provides more information. The use of delay coordinates may be especially important for
systems with long-term memory effects, where the Koopman approach has recently been
shown to provide a successful analysis tool [508]. Interestingly, a connection between the
Koopman operator and the Takens embedding was explored as early as 2004 [379], where
a stochastic Koopman operator is defined and a statistical Takens theorem is proven.

The time-delay measurement scheme is shown schematically in Fig. 7.12, as illustrated
on the Lorenz system for a single time-series measurement of the first variable, x(t). The
conditions of the Takens embedding theorem are satisfied [515], so it is possible to obtain
a diffeomorphism between a delay embedded attractor and the attractor in the original
coordinates. We then obtain eigen-time-delay coordinates from a time-series of a single
measurement x(t) by taking the SVD of the Hankel matrix H:

H =

⎡
⎢⎢⎢⎣

x(t1) x(t2) · · · x(tmc )

x(t2) x(t3) · · · x(tmc+1)
...

...
. . .

...

x(tmo) x(tmo+1) · · · x(tm)

⎤
⎥⎥⎥⎦ = U�V∗. (7.97)

The columns of U and V from the SVD are arranged hierarchically by their ability to model
the columns and rows of H, respectively. Often, H may admit a low-rank approximation
by the first r columns of U and V. Note that the Hankel matrix in (7.97) is the basis of the
eigensystem realization algorithm [272] in linear system identification (see Section 9.3)
and singular spectrum analysis (SSA) [88] in climate time-series analysis.

The low-rank approximation to (7.97) provides a data-driven measurement system that
is approximately invariant to the Koopman operator for states on the attractor. By definition,
the dynamics map the attractor into itself, making it invariant to the flow. In other words,
the columns of U form a Koopman invariant subspace. We may re-write (7.97) with the



7.5 Data-Driven Koopman Analysis 271

Figure 7.12 Decomposition of chaos into a linear system with forcing. A time series x(t) is stacked
into a Hankel matrix H. The SVD of H yields a hierarchy of eigen time series that produce a
delay-embedded attractor. A best-fit linear regression model is obtained on the delay coordinates v;
the linear fit for the first r − 1 variables is excellent, but the last coordinate vr is not well-modeled as
linear. Instead, vr is an input that forces the first r − 1 variables. Rare forcing events correspond to
lobe switching in the chaotic dynamics. This architecture is called the Hankel alternative view of
Koopman (HAVOK) analysis, from [91]. Figure modified from Brunton et al. [91].

Koopman operator K � K�t :

H =

⎡
⎢⎢⎢⎣

x(t1) Kx(t1) · · · Kmc−1x(t1)

Kx(t1) K2x(t1) · · · Kmcx(t1)
...

...
. . .

...

Kmo−1x(t1) Kmox(t1) · · · Km−1x(t1)

⎤
⎥⎥⎥⎦ . (7.98)

The columns of (7.97) are well-approximated by the first r columns of U. The first r

columns of V provide a time series of the magnitude of each of the columns of U� in
the data. By plotting the first three columns of V, we obtain an embedded attractor for the
Lorenz system (See Fig. 7.12).

The connection between eigen-time-delay coordinates from (7.97) and the Koopman
operator motivates a linear regression model on the variables in V. Even with an approx-
imately Koopman-invariant measurement system, there remain challenges to identifying
a linear model for a chaotic system. A linear model, however detailed, cannot capture
multiple fixed points or the unpredictable behavior characteristic of chaos with a positive
Lyapunov exponent [92]. Instead of constructing a closed linear model for the first r

variables in V, we build a linear model on the first r − 1 variables and recast the last
variable, vr , as a forcing term:

d

dt
v(t) = Av(t) + Bvr (t), (7.99)
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where v = [
v1 v2 · · · vr−1

]T
is a vector of the first r − 1 eigen-time-delay coordi-

nates. Other work has investigated the splitting of dynamics into deterministic linear, and
chaotic stochastic dynamics [376].

In all of the examples explored in [91], the linear model on the first r − 1 terms is
accurate, while no linear model represents vr . Instead, vr is an input forcing to the linear
dynamics in (7.99), which approximates the nonlinear dynamics. The statistics of vr (t) are
non-Gaussian, with long tails correspond to rare-event forcing that drives lobe switching in
the Lorenz system; this is related to rare-event forcing distributions observed and modeled
by others [355, 461, 356]. The forced linear system in (7.99) was discovered after apply-
ing the SINDy algorithm [95] to delay coordinates of the Lorenz system. Continuing to
develop Koopman on delay coordinates has significant promise in the context of closed-
loop feedback control, where it may be possible to manipulate the behavior of a chaotic
system by treating vr as a disturbance.

In addition, the use of delay coordinates as intrinsic measurements for Koopman analysis
suggests that Koopman theory may also be used to improve spatially distributed sensor
technologies. A spatial array of sensors, for example the O(100) strain sensors on the wings
of flying insects, may use phase delay coordinates to provide nearly optimal embeddings
to detect and control convective structures (e.g., stall from a gust, leading edge vortex
formation and convection, etc.).

HAVOK Code for Lorenz System
Below is the code to generate a HAVOK model for the same Lorenz system data generated
in Code 7.2. Here we use �t = 0.01, mo = 10, and r = 10, although the results would be
more accurate for �t = 0.001, mo = 100, and r = 15.

Code 7.3 HAVOK code for Lorenz data generated in Section 7.1.

%% EIGEN-TIME DELAY COORDINATES
stackmax = 10; % Number of shift-stacked rows
r=10; % Rank of HAVOK Model
H = zeros(stackmax,size(x,1)-stackmax);
for k=1:stackmax

H(k,:) = x(k:end-stackmax-1+k,1);
end
[U,S,V] = svd(H,’econ’); % Eigen delay coordinates

%% COMPUTE DERIVATIVES (4TH ORDER CENTRAL DIFFERENCE)
dV = zeros(length(V)-5,r);
for i=3:length(V)-3

for k=1:r
dV(i-2,k) = (1/(12*dt))*(-V(i+2,k)+8*V(i+1,k)-8*V(i-1,k)

+V(i-2,k));
end

end
% trim first and last two that are lost in derivative
V = V(3:end-3,1:r);

%% BUILD HAVOK REGRESSION MODEL ON TIME DELAY COORDINATES
Xi = V\dV;
A = Xi(1:r-1,1:r-1)’;
B = Xi(end,1:r-1)’;
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Neural Networks for Koopman Embeddings
Despite the promise of Koopman embeddings, obtaining tractable representations has
remained a central challenge. Recall that even for relatively simple dynamical systems, the
eigenfunctions of the Koopman operator may be arbitrarily complex. Deep learning,
which is well-suited for representing arbitrary functions, has recently emerged as a
promising approach for discovering and representing Koopman eigenfunctions [550,
368, 513, 564, 412, 332, 349], providing a data-driven embedding of strongly nonlinear
systems into intrinsic linear coordinates. In particular, the Koopman perspective fits
naturally with the deep auto-encoder structure discussed in Chapter 6, where a few key
latent variables y = ϕ(x) are discovered to parameterize the dynamics. In a Koopman
network, an additional constraint is enforced so that the dynamics must be linear on
these latent variables, forcing the functions ϕ(x) to be Koopman eigenfunctions, as
illustrated in Fig. 7.13. The constraint of linear dynamics is enforced by the loss function
‖ϕ(xk+1) − Kϕ(xk)‖, where K is a matrix. In general, linearity is enforced over multiple
time steps, so that a trajectory is captured by iterating K on the latent variables. In addition,
it is important to be able to map back to physical variables x, which is why the autoencoder
structure is favorable [349]. Variational autoencoders are also used for stochastic dynamical
systems, such as molecular dynamics, where the map back to physical configuration space
from the latent variables is probabilistic [550, 368].

For simple systems with a discrete eigenvalue spectrum, a compact representation may
be obtained in terms of a few autoencoder variables. However, dynamical systems with con-
tinuous eigenvalue spectra defy low-dimensional representations using many existing neu-
ral network or Koopman representations. Continuous spectrum dynamics are ubiquitous,
ranging from the simple pendulum to nonlinear optics and broadband turbulence. For
example, the classical pendulum, given by

ẍ = − sin(ωx) (7.100)

Figure 7.13 Deep neural network architecture used to identify Koopman eigenfunctions ϕ(x). The
network is based on a deep auto-encoder (a), which identifies intrinsic coordinates y = ϕ(x).
Additional loss functions are included to enforce linear dynamics in the auto-encoder variables
(b,c). Reproduced with permission from Lusch et al. [349].
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(λ)
λΛ

Figure 7.14 Modified network architecture with auxiliary network to parameterize the continuous
eigenvalue spectrum. A continuous eigenvalue λ enables aggressive dimensionality reduction in the
auto-encoder, avoiding the need for higher harmonics of the fundamental frequency that are
generated by the nonlinearity. Reproduced with permission from Lusch et al. [349].

exhibits a continuous range of frequencies, from ω to 0, as the amplitude of the pendulum
oscillation is increased. Thus, the continuous spectrum confounds a simple description in
terms of a few Koopman eigenfunctions [378]. Indeed, away from the linear regime, an
infinite Fourier sum is required to approximate the shift in frequency.

In a recent work by Lusch et al. [349], an auxiliary network is used to parameterize the
continuously varying eigenvalue, enabling a network structure that is both parsimonious
and interpretable. This parameterized network is depicted schematically in Fig. 7.14 and
illustrated on the simple pendulum in Fig. 7.15. In contrast to other network structures,
which require a large autoencoder layer to encode the continuous frequency shift with an
asymptotic expansion in terms of harmonics of the natural frequency, the parameterized
network is able to identify a single complex conjugate pair of eigenfunctions with a vary-
ing imaginary eigenvalue pair. If this explicit frequency dependence is unaccounted for,
then a high-dimensional network is necessary to account for the shifting frequency and
eigenvalues.

It is expected that neural network representations of dynamical systems, and Koopman
embeddings in particular, will remain a growing area of interest in data-driven dynamics.
Combining the representational power of deep learning with the elegance and simplicity of
Koopman embeddings has the potential to transform the analysis and control of complex
systems.

Suggested Reading
Texts
(1) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, by

P. Holmes and J. Guckenheimer, 1983 [252].
(2) Dynamic mode decomposition: Data-driven modeling of complex systems, by J.

N. Kutz, S. L. Brunton, B. W. Brunton, and J. L. Proctor, 2016 [317].
(3) Differential equations and dynamical systems, by L. Perko, 2013 [427].
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The focus of this book has largely been on characterizing complex systems through dimen-
sionality reduction, sparse sampling, and dynamical systems modeling. However, an over-
arching goal for many systems is the ability to actively manipulate their behavior for a
given engineering objective. The study and practice of manipulating dynamical systems is
broadly known as control theory, and it is one of the most successful fields at the interface
of applied mathematics and practical engineering. Control theory is inseparable from data
science, as it relies on sensor measurements (data) obtained from a system to achieve a
given objective. In fact, control theory deals with living data, as successful application
modifies the dynamics of the system, thus changing the characteristics of the measure-
ments. Control theory forces the reader to confront reality, as simplifying assumptions and
model approximations are tested.

Control theory has helped shape the modern technological and industrial landscape.
Examples abound, including cruise control in automobiles, position control in construc-
tion equipment, fly-by-wire autopilots in aircraft, industrial automation, packet routing in
the internet, commercial heating ventilation and cooling systems, stabilization of rockets,
and PID temperature and pressure control in modern espresso machines, to name only a
few of the many applications. In the future, control will be increasingly applied to high-
dimensional, strongly nonlinear and multiscale problems, such as turbulence, neuroscience,
finance, epidemiology, autonomous robots, and self driving cars. In these future applica-
tions, data-driven modeling and control will be vitally important; this is be the subject of
Chapters 7 and 10.

This chapter will introduce the key concepts from closed-loop feedback control. The
goal is to build intuition for how and when to use feedback control, motivated by practical
real-world challenges. Most of the theory will be developed for linear systems, where a
wealth of powerful techniques exist [165, 492]. This theory will then be demonstrated on
simple and intuitive examples, such as to develop a cruise controller for an automobile or
stabilize an inverted pendulum on a moving cart.

Types of Control
There are many ways to manipulate the behavior of a dynamical system, and these control
approaches are organized schematically in Fig. 8.1. Passive control does not require input
energy, and when sufficient, it is desirable because of its simplicity, reliability, and low cost.
For example, stop signs at a traffic intersection regulate the flow of traffic. Active control
requires input energy, and these controllers are divided into two broad categories based on
whether or not sensors are used to inform the controller. In the first category, open-loop

276
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Figure 8.1 Schematic illustrating the various types of control. Most of this chapter will focus on
closed-loop feedback control.

control relies on a pre-programmed control sequence; in the traffic example, signals may
be pre-programmed to regulate traffic dynamically at different times of day. In the second
category, active control uses sensors to inform the control law. Disturbance feedforward
control measures exogenous disturbances to the system and then feeds this into an open-
loop control law; an example of feedforward control would be to preemptively change the
direction of the flow of traffic near a stadium when a large crowd of people are expected
to leave. Finally, the last category is closed-loop feedback control, which will be the main
focus of this chapter. Closed-loop control uses sensors to measure the system directly and
then shapes the control in response to whether the system is actually achieving the desired
goal. Many modern traffic systems have smart traffic lights with a control logic informed
by inductive sensors in the roadbed that measure traffic density.

8.1 Closed-Loop Feedback Control
The main focus of this chapter is closed-loop feedback control, which is the method of
choice for systems with uncertainty, instability, and/or external disturbances. Fig. 8.2
depicts the general feedback control framework, where sensor measurements, y, of a
system are fed back into a controller, which then decides on an actuation signal, u, to
manipulate the dynamics and provide robust performance despite model uncertainty and
exogenous disturbances. In all of the examples discussed in this chapter, the vector of

exogenous disturbances may be decomposed as w = [
wT

d wT
n wT

r

]T
, where wd are

disturbances to the state of the system, wn is measurement noise, and wr is a reference
trajectory that should be tracked by the closed-loop system.

Mathematically, the system and measurements are typically described by a dynamical
system:

d

dt
x = f(x, u, wd) (8.1a)
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Figure 8.2 Standard framework for feedback control. Measurements of the system, y(t), are fed back
into a controller, which then decides on the appropriate actuation signal u(t) to control the system.
The control law is designed to modify the system dynamics and provide good performance,
quantified by the cost J , despite exogenous disturbances and noise in w. The exogenous input w
may also include a reference trajectory wr that should be tracked.

y = g(x, u, wn). (8.1b)

The goal is to construct a control law

u = k(y, wr ) (8.2)

that minimizes a cost function

J � J (x, u, wr ). (8.3)

Thus, modern control relies heavily on techniques from optimization [74]. In general, the
controller in (8.2) will be a dynamical system, rather than a static function of the inputs.
For example, the Kalman filter in Section 8.5 dynamically estimates the full state x from
measurements of u and y. In this case, the control law will become u = k(y, x̂, wr ), where
x̂ is the full-state estimate.

To motivate the added cost and complexity of sensor-based feedback control, it is helpful
to compare with open-loop control. For reference tracking problems, the controller is
designed to steer the output of a system towards a desired reference output value wr , thus
minimizing the error ε = y − wr . Open-loop control, shown in Fig. 8.3, uses a model
of the system to design an actuation signal u that produces the desired reference output.
However, this pre-planned strategy cannot correct for external disturbances to the system
and is fundamentally incapable of changing the dynamics. Thus, it is impossible to stabilize
an unstable system, such as an inverted pendulum, with open-loop control, since the system
model would have to be known perfectly and the system would need to be perfectly isolated
from disturbances. Moreover, any model uncertainty will directly contribute to open-loop
tracking error.

In contrast, closed-loop feedback control, shown in Fig. 8.4 uses sensor measurements
of the system to inform the controller about how the system is actually responding. These
sensor measurements provide information about unmodeled dynamics and disturbances
that would degrade the performance in open-loop control. Further, with feedback it is
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Figure 8.3 Open-loop control diagram. Given a desired reference signal wr , the open-loop control
law constructs a control protocol u to drive the system based on a model. External disturbances
(wd) and sensor noise (wn), as well as unmodeled system dynamics and uncertainty, are not
accounted for and degrade performance.

Figure 8.4 Closed-loop feedback control diagram. The sensor signal y is fed back and subtracted
from the reference signal wr , providing information about how the system is responding to
actuation and external disturbances. The controller uses the resulting error ε to determine the correct
actuation signal u for the desired response. Feedback is often able to stabilize unstable dynamics
while effectively rejecting disturbances wd and attenuating noise wn.

often possible to modify and stabilize the dynamics of the closed-loop system, something
which is not possible with open-loop control. Thus, closed-loop feedback control is often
able to maintain high-performance operation for systems with unstable dynamics, model
uncertainty, and external disturbances.

Examples of the Benefits of Feedback Control
To summarize, closed-loop feedback control has several benefits over open-loop control:

• It may be possible to stabilize an unstable system;

• It may be possible to compensate for external disturbances;

• It may be possible to correct for unmodeled dynamics and model uncertainty.

These issues are illustrated in the following two simple examples.

Inverted pendulum Consider the unstable inverted pendulum equations, which will be
derived later in Section 8.2. The linearized equations are:

d

dt

[
x1

x2

]
=
[

0 1
g/L d

] [
x1

x2

]
+
[

0
1

]
u (8.4)

where x1 = θ , x2 = θ̇ , u is a torque applied to the pendulum arm, g is gravitational
acceleration, L is the length of the pendulum arm, and d is damping. We may write this
system in standard form as
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d

dt
x = Ax + Bu.

If we choose constants so that the natural frequency is ωn = √
g/L = 1 and d = 0, then

the system has eigenvalues λ = ±1, corresponding to an unstable saddle-type fixed point.
No open-loop control strategy can change the dynamics of the system, given by the

eigenvalues of A. However, with full-state feedback control, given by u = −Kx, the closed-
loop system becomes

d

dt
x = Ax + Bu = (A − BK) x.

Choosing K = [4 4
]
, corresponding to a control law u = −4x1 − 4x2 = −4θ − 4θ̇ , the

closed loop system (A − BK) has stable eigenvalues λ = −1 and λ = −3.
Determining when it is possible to change the eigenvalues of the closed-loop system,

and determining the appropriate control law K to achieve this, will be the subject of future
sections.

Cruise control To appreciate the ability of closed-loop control to compensate for unmod-
eled dynamics and disturbances, we will consider a simple model of cruise control in an
automobile. Let u be the rate of gas fed into the engine, and let y be the car’s speed.
Neglecting transients, a crude model1 is:

y = u. (8.5)

Thus, if we double the gas input, we double the automobile’s speed.
Based on this model, we may design an open-loop cruise controller to track a reference

speed wr by simply commanding an input of u = wr . However, an incorrect automobile
model (i.e., in actuality y = 2u), or external disturbances, such as rolling hills (i.e., if
y = u + sin(t)), are not accounted for in the simple open-loop design.

In contrast, a closed-loop control law, based on measurements of the speed, is able to
compensate for unmodeled dynamics and disturbances. Consider the closed-loop control
law u = K(wr − y), so that gas is increased when the measured velocity is too low, and
decreased when it is too high. Then if the dynamics are actually y = 2u instead of y = u,
the open-loop system will have 50% steady-state tracking error, while the performance of
the closed-loop system can be significantly improved for large K:

y = 2K(wr − y) 	⇒ (1 + 2K)y = 2Kwr 	⇒ y = 2K

1 + 2K
wr . (8.6)

For K = 50, the closed-loop system only has 1% steady-state tracking error. Similarly, an
added disturbance wd will be attenuated by a factor of 1/(2K + 1).

As a concrete example, consider a reference tracking problem with a desired reference
speed of 60 mph. The model is y = u, and the true system is y = 0.5 u. In addition, there is
a disturbance in the form of rolling hills that increase and decrease the speed by ±10 mph at
a frequency of 0.5 Hz. An open-loop controller is compared with a closed-loop proportional
controller with K = 50 in Fig. 8.5 and Code 8.1. Although the closed-loop controller has
significantly better performance, we will see later that a large proportional gain may come
at the cost of robustness. Adding an integral term will improve performance.

1 A more realistic model would have acceleration dynamics, so that ẋ = −x + u and y = x.
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Figure 8.5 Open-loop vs. closed-loop cruise control.

Code 8.1 Compare open-loop and closed-loop cruise control.

clear all, close all, clc

t = 0:.01:10; % time

wr = 60*ones(size(t)); % reference speed
d = 10*sin(pi*t); % disturbance

aModel = 1; % y = aModel*u
aTrue = .5; % y = aTrue*u

uOL = wr/aModel; % Open-loop u based on model
yOL = aTrue*uOL + d; % Open-loop response

K = 50; % control gain, u=K(wr-y);
yCL = aTrue*K/(1+aTrue*K)*wr + d/(1+aTrue*K);

8.2 Linear Time-Invariant Systems
The most complete theory of control has been developed for linear systems [492, 165, 22].
Linear systems are generally obtained by linearizing a nonlinear system about a fixed point
or a periodic orbit. However, instability may quickly take a trajectory far away from the
fixed point. Fortunately, an effective stabilizing controller will keep the state of the system
in a small neighborhood of the fixed point where the linear approximation is valid. For
example, in the case of the inverted pendulum, feedback control may keep the pendulum
stabilized in the vertical position where the dynamics behave linearly.

Linearization of Nonlinear Dynamics
Given a nonlinear input–output system

d

dt
x = f(x, u) (8.7a)
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y = g(x, u) (8.7b)

it is possible to linearize the dynamics near a fixed point (x̄, ū) where f(x̄, ū) = 0. For small
�x = x − x̄ and �u = u − ū the dynamics f may be expanded in a Taylor series about the
point (x̄, ū):

f(x̄ + �x, ū + �u) = f(x̄, ū) + df
dx

∣∣∣∣
(x̄,ū)︸ ︷︷ ︸

A

·�x + df
du

∣∣∣∣
(x̄,ū)︸ ︷︷ ︸

B

·�u + · · · . (8.8)

Similarly, the output equation g may be expanded as:

g(x̄ + �x, ū + �u) = g(x̄, ū) + dg
dx

∣∣∣∣
(x̄,ū)︸ ︷︷ ︸

C

·�x + dg
du

∣∣∣∣
(x̄,ū)︸ ︷︷ ︸

D

·�u + · · · . (8.9)

For small displacements around the fixed point, the higher order terms are negligibly small.
Dropping the � and shifting to a coordinate system where x̄, ū, and ȳ are at the origin, the
linearized dynamics may be written as:

d

dt
x = Ax + Bu (8.10a)

y = Cx + Du. (8.10b)

Note that we have neglected the disturbance and noise inputs, wd and wn, respectively;
these will be added back in the discussion on Kalman filtering in Section 8.5.

Unforced Linear System
In the absence of control (i.e., u = 0), and with measurements of the full state (i.e., y = x),
the dynamical system in (8.10) becomes

d

dt
x = Ax. (8.11)

The solution x(t) is given by

x(t) = eAtx(0), (8.12)

where the matrix exponential is defined by:

eAt = I + At + A2t2

2
+ A3t3

3
+ · · · . (8.13)

The solution in (8.12) is determined entirely by the eigenvalues and eigenvectors of the
matrix A. Consider the eigendecomposition of A:

AT = T�. (8.14)

In the simplest case, � is a diagonal matrix of distinct eigenvalues and T is a matrix
whose columns are the corresponding linearly independent eigenvectors of A. For repeated
eigenvalues, � may be written in Jordan form, with entries above the diagonal for degen-
erate eigenvalues of multiplicity ≥ 2; the corresponding columns of T will be generalized
eigenvectors.



8.2 Linear Time-Invariant Systems 283

In either case, it is easier to compute the matrix exponential e�t than eAt . For diagonal
�, the matrix exponential is given by:

e�t =

⎡
⎢⎢⎢⎣

eλ1t 0 · · · 0
0 eλ2t · · · 0
...

...
. . .

...

0 0 · · · eλnt

⎤
⎥⎥⎥⎦ . (8.15)

In the case of a nontrivial Jordan block in � with entries above the diagonal, simple
extensions exist related to nilpotent matrices (for details, see Perko [427]).

Rearranging the terms in (8.14), we find that it is simple to represent powers of A in
terms of the eigenvectors and eigenvalues:

A = T�T−1 (8.16a)

A2 =
(

T�T−1
) (

T�T−1
)

= T�2T−1 (8.16b)

· · ·
Ak =

(
T�T−1

) (
T�T−1

)
· · ·
(

T�T−1
)

= T�kT−1. (8.16c)

Finally, substituting these expressions into (8.13) yields:

eAt = eT�T−1t = TT−1 + T�T−1t + T�2T−1t2

2
+ T�3T−1t3

3
+ · · · (8.17a)

= T

[
I + �t + �2t2

2
+ �3t3

3
+ · · ·

]
T−1 (8.17b)

= Te�tT−1. (8.17c)

Thus, we see that it is possible to compute the matrix exponential efficiently in terms of
the eigendecomposition of A. Moreover, the matrix of eigenvectors T defines a change of
coordinates that dramatically simplifies the dynamics:

x = Tz 	⇒ ż = T−1ẋ = T−1Ax = T−1ATz 	⇒ ż = �z. (8.18)

In other words, changing to eigenvector coordinates, the dynamics become diagonal. Com-
bining (8.12) with (8.17c), it is possible to write the solution x(t) as

x(t) = T e�t T−1x(0)︸ ︷︷ ︸
z(0)︸ ︷︷ ︸

z(t)︸ ︷︷ ︸
x(t)

. (8.19)

In the first step, T−1 maps the initial condition in physical coordinates, x(0), into eigen-
vector coordinates, z(0). The next step advances these initial conditions using the diagonal
update e�t , which is considerably simpler in eigenvector coordinates z. Finally, multiplying
by T maps z(t) back to physical coordinates, x(t).

In addition to making it possible to compute the matrix exponential, and hence the
solution x(t), the eigendecomposition of A is even more useful to understand the dynamics
and stability of the system. We see from (8.19) that the only time-varying portion of the
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solution is e�t . In general, these eigenvalues λ = a + ib may be complex numbers, so that
the solutions are given by eλt = eat (cos(bt) + i sin(bt)). Thus, if all of the eigenvalues λk

have negative real part (i.e., Re(λ) = a < 0), then the system is stable, and solutions all
decay to x = 0 as t → ∞. However, if even a single eigenvalue has positive real part,
then the system is unstable and will diverge from the fixed point along the corresponding
unstable eigenvector direction. Any random initial condition is likely to have a component
in this unstable direction, and moreover, disturbances will likely excite all eigenvectors of
the system.

Forced Linear System
With forcing, and for zero initial condition, x(0) = 0, the solution to (8.10a) is

x(t) =
∫ t

0
eA(t−τ)Bu(τ )dτ � eAtB ∗ u(t). (8.20)

The control input u(t) is convolved with the kernel eAtB. With an output y = Cx,
we have y(t) = CeAtB ∗ u(t). This convolution is illustrated in Fig. 8.6 for a single-
input, single-output (SISO) system in terms of the impulse response g(t) = CeAtB =∫ t

0 CeA(t−τ)Bδ(τ ) dτ given a Dirac delta input u(t) = δ(t).

Discrete-Time Systems
In many real-world applications, systems are sampled at discrete instances in time. Thus,
digital control systems are typically formulated in terms of discrete-time dynamical
systems:

xk+1 = Adxk + Bduk (8.21a)

yk = Cdxk + Dduk, (8.21b)

where xk = x(k�t). The system matrices in (8.21) can be obtained from the continuous-
time system in (8.10) as

Ad = eA�t (8.22a)

Bd =
∫ �t

0
eAτ B dτ (8.22b)

Cd = C (8.22c)

Dd = D. (8.22d)

The stability of the discrete-time system in (8.21) is still determined by the eigenvalues of
Ad , although now a system is stable if and only if all discrete-time eigenvalues are inside
the unit circle in the complex plane. Thus, exp(A�t) defines a conformal mapping on the
complex plane from continuous-time to discrete-time, where eigenvalues in the left-half
plane map to eigenvalues inside the unit circle.
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Figure 8.6 Convolution for a single-input, single-output (SISO) system.

Example: Inverted Pendulum
Consider the inverted pendulum in Fig. 8.8 with a torque input u at the base. The equation
of motion, derived using the Euler–Lagrange equations2, is:

θ̈ = − g

L
sin(θ) + u. (8.23)

Introducing the state x, given by the angular position and velocity, we can write this second
order differential equation as a system of first order equations:

x =
[
x1

x2

]
=
[
θ

θ̇

]
	⇒ d

dt

[
x1

x2

]
=
[

x2

− g
L

sin(x1) + u

]
. (8.24)

2 The Lagrangian is L = m
2 L2θ̇2 − mgL cos(θ), and the Euler–Lagrange equation is d

dt ∂L/∂θ̇ − ∂L/∂θ = τ ,
where τ is the input torque.
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Figure 8.7 The matrix exponential defines a conformal map on the complex plane, mapping stable
eigenvalues in the left half plane into eigenvalues inside the unit circle.

g
L

m

θ

u = τ

Figure 8.8 Schematic of inverted pendulum system.

Taking the Jacobian of f(x, u) yields

df
dx

=
[

0 1
− g

L
cos(x1) 0

]
,

df
du

=
[

0
1

]
. (8.25)

Linearizing at the pendulum up (x1 = π , x2 = 0) and down (x1 = 0, x2 = 0) equilibria
gives

d

dt

[
x1

x2

]
=
[

0 1
g
L

0

] [
x1

x2

]
+
[

0
1

]
u︸ ︷︷ ︸

Pendulum up, λ=±√
g/L

d

dt

[
x1

x2

]
=
[

0 1
− g

L
0

] [
x1

x2

]
+
[

0
1

]
u︸ ︷︷ ︸

Pendulum down, λ=±i
√

g/L

.

Thus, we see that the down position is a stable center with eigenvalues λ = ±i
√

g/L

corresponding to oscillations at a natural frequency of
√

g/L. The pendulum up position is
an unstable saddle with eigenvalues λ = ±√

g/L.
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8.3 Controllability and Observability
A natural question arises in linear control theory: To what extent can closed-loop feedback
u = −Kx manipulate the behavior of the system in (8.10a)? We already saw in Section 8.1
that it was possible to modify the eigenvalues of the unstable inverted pendulum system via
closed-loop feedback, resulting in a new system matrix (A − BK) with stable eigenvalues.
This section will provide concrete conditions on when and how the system dynamics may
be manipulated through feedback control. The dual question, of when it is possible to
estimate the full state x from measurements y, will also be addressed.

Controllability
The ability to design the eigenvalues of the closed-loop system with the choice of K
relies on the system in (8.10a) being controllable. The controllability of a linear system
is determined entirely by the column space of the controllability matrix C:

C = [B AB A2B · · · An−1B
]
. (8.26)

If the matrix C has n linearly independent columns, so that it spans all of Rn, then the
system in (8.10a) is controllable. The span of the columns of the controllability matrix
C forms a Krylov subspace that determines which state vector directions in Rn may be
manipulated with control. Thus, in addition to controllability implying arbitrary eigenvalue
placement, it also implies that any state ξ ∈ Rn is reachable in a finite time with some
actuation signal u(t).

The following three conditions are equivalent:

1. Controllability. The span of C is Rn. The matrix C may be generated by

>> ctrb(A,B)

and the rank may be tested to see if it is equal to n, by

>> rank(ctrb(A,B))

2. Arbitrary eigenvalue placement. It is possible to design the eigenvalues of the closed-
loop system through choice of feedback u = −Kx:

d

dt
x = Ax + Bu = (A − BK) x. (8.27)

Given a set of desired eigenvalues, the gain K can be determined by

>> K = place(A,B,neweigs);

Designing K for the best performance will be discussed in Section 8.4.
3. Reachability of Rn. It is possible to steer the system to any arbitrary state x(t) = ξ ∈

Rn in a finite time with some actuation signal u(t).

Note that reachability also applies to open-loop systems. In particular, if a direction ξ is
not in the span of C, then it is impossible for control to push in this direction in either
open-loop or closed-loop.
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Examples The notion of controllability is more easily understood by investigating a few
simple examples. First, consider the following system

d

dt

[
x1

x2

]
=
[

1 0
0 2

] [
x1

x2

]
+
[

0
1

]
u 	⇒ C =

[
0 0
1 2

]
. (8.28)

This system is not controllable, because the controllability matrix C consists of two linearly
dependent vectors and does not span R2. Even before checking the rank of the controlla-
bility matrix, it is easy to see that the system won’t be controllable since the states x1 and
x2 are completely decoupled and the actuation input u only effects the second state.

Modifying this example to include two actuation inputs makes the system controllable
by increasing the control authority:

d

dt

[
x1

x2

]
=
[

1 0
0 2

] [
x1

x2

]
+
[

1 0
0 1

] [
u1

u2

]
	⇒ C =

[
1 0 1 0
0 1 0 2

]
. (8.29)

This fully actuated system is clearly controllable because x1 and x2 may be independently
controlled with u1 and u2. The controllability of this system is confirmed by checking that
the columns of C do span R2.

The most interesting cases are less obvious than these two examples. Consider the system

d

dt

[
x1

x2

]
=
[

1 1
0 2

] [
x1

x2

]
+
[

0
1

]
u 	⇒ C =

[
0 1
1 2

]
. (8.30)

This two-state system is controllable with a single actuation input because the states x1 and
x2 are now coupled through the dynamics. Similarly,

d

dt

[
x1

x2

]
=
[

1 0
0 2

] [
x1

x2

]
+
[

1
1

]
u 	⇒ C =

[
1 1
1 2

]
. (8.31)

is controllable even though the dynamics of x1 and x2 are decoupled, because the actuator

B = [1 1
]T

is able to simultaneously affect both states and they have different timescales.
We will see in Section 8.3 that controllability is intimately related to the alignment of

the columns of B with the eigenvector directions of A.

Observability
Mathematically, observability of the system in (8.10) is nearly identical to controllabil-
ity, although the physical interpretation differs somewhat. A system is observable if it is
possible to estimate any state ξ ∈ Rn from a time-history of the measurements y(t).

Again, the observability of a system is entirely determined by the row space of the
observability matrix O:

O =

⎡
⎢⎢⎢⎢⎢⎣

C
CA
CA2

...

CAn−1

⎤
⎥⎥⎥⎥⎥⎦ . (8.32)

In particular, if the rows of the matrix O span Rn, then it is possible to estimate any full-
dimensional state x ∈ Rn from the time-history of y(t). The matrix O may be generated by
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>> obsv(A,C);

The motivation for full-state estimation is relatively straightforward. We have already
seen that with full-state feedback, u = −Kx, it is possible to modify the behavior of a
controllable system. However, if full-state measurements of x are not available, it is neces-
sary to estimate x from the measurements. This is possible when the system is observable.
In Section 8.5, we will see that it is possible to design an observer dynamical system to
estimate the full-state from noisy measurements. As in the case of a controllable system,
if a system is observable, it is possible to design the eigenvalues of the estimator dynam-
ical system to have desirable characteristics, such as fast estimation and effective noise
attenuation.

Interestingly, the observability criterion is mathematically the dual of the controllability
criterion. In fact, the observability matrix is the transpose of the controllability matrix for
the pair (AT , CT ):

>> O = ctrb(A’,C’)’; % ’obsv’ is dual of ’crtb’

The PBH Test for Controllability
There are many tests to determine whether or not a system is controllable. One of the
most useful and illuminating is the Popov–Belevitch–Hautus (PBH) test. The PBH test
states that the pair (A, B) is controllable if and only if the column rank of the matrix[
(A − λI) B

]
is equal to n for all λ ∈ C. This test is particularly fascinating because it

connects controllability3 to a relationship between the columns of B and the eigenspace of
A.

First, the PBH test only needs to be checked at λ that are eigenvalues of A, since the
rank of A − λI is equal to n except when λ is an eigenvalue of A. In fact, the characteristic
equation det(A −λI) = 0 is used to determine the eigenvalues of A as exactly those values
where the matrix A − λI becomes rank deficient, or degenerate.

Now, given that (A − λI) is only rank deficient for eigenvalues λ, it also follows that the
null-space, or kernel, of A−λI is given by the span of the eigenvectors corresponding to that
particular eigenvalue. Thus, for

[
(A − λI) B

]
to have rank n, the columns in B must have

some component in each of the eigenvector directions associated with A to complement
the null-space of A − λI.

If A has n distinct eigenvalues, then the system will be controllable with a single actu-
ation input, since the matrix A − λI will have at most one eigenvector direction in the
null-space. In particular, we may choose B as the sum of all of the n linearly independent
eigenvectors, and it will be guaranteed to have some component in each direction. It is
also interesting to note that if B is a random vector (>>B=randn(n,1);), then (A, B) will
be controllable with high probability, since it will be exceedingly unlikely that B will be
randomly chosen so that it has zero contribution from any given eigenvector.

If there are degenerate eigenvalues with multiplicity ≥ 2, so that the null-space of A−λI
is multidimensional, then the actuation input must have as many degrees of freedom. In
other words, the only time that multiple actuators (columns of B) are strictly required is for

3 There is an equivalent PBH test for observability that states that

[
(A − λI)

C

]
must have row rank n for all

λ ∈ C for the system to be observable.
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systems that have degenerate eigenvalues. However, if a system is highly nonnormal, it may
helpful to have multiple actuators in practice for better control authority. Such nonnormal
systems are characterized by large transient growth due to destructive interference between
nearly parallel eigenvectors, often with similar eigenvalues.

The Cayley–Hamilton Theorem and Reachability
To provide insight into the relationship between the controllability of the pair (A, B) and
the reachability of any vector ξ ∈ Rn via the actuation input u(t), we will leverage the
Cayley–Hamilton theorem. This is a gem of linear algebra that provides an elegant way
to represent solutions of ẋ = Ax in terms of a finite sum of powers of A, rather than the
infinite sum required for the matrix exponential in (8.13).

The Cayley–Hamilton theorem states that every matrix A satisfies its own characteristic
(eigenvalue) equation, det(A − λI) = 0:

det(A − λI) =λn + an−1λ
n−1 + · · · + a2λ

2 + a1λ + a0 = 0 (8.33a)

	⇒ An + an−1An−1 + · · · + a2A2 + a1A + a0I = 0. (8.33b)

Although this is relatively simple to state, it has profound consequences. In particular, it is
possible to express An as a linear combination of smaller powers of A:

An = −a0I − a1A − a2A2 − · · · − an−1An−1. (8.34)

It is straightforward to see that this also implies that any higher power Ak≥n may also be
expressed as a sum of the matrices {I, A, · · · , An−1}:

Ak≥n =
n−1∑
j=0

αj Aj . (8.35)

Thus, it is possible to express the infinite sum in the exponential eAt as:

eAt = I + At + A2t2

2
+ · · · (8.36a)

= β0(t)I + β1(t)A + β2(t)A2 + · · · + βn−1(t)An−1. (8.36b)

We are now equipped to see how controllability relates to the reachability of an arbitrary
vector ξ ∈ Rn. From (8.20), we see that a state ξ is reachable if there is some u(t) so that:

ξ =
∫ t

0
eA(t−τ)Bu(τ ) dτ. (8.37)

Expanding the exponential in the right hand side in terms of (8.36b), we have:

ξ =
∫ t

0
[β0(t − τ)IBu(τ ) + β1(t − τ)ABu(τ ) + · · ·

· · · + βn−1(t − τ)An−1Bu(τ )]dτ

= B
∫ t

0
β0(t − τ)u(τ ) dτ + AB

∫ t

0
β1(t − τ)u(τ ) dτ + · · ·

· · · + An−1B
∫ t

0
βn−1(t − τ)u(τ ) dτ
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= [B AB · · · An−1B
]
⎡
⎢⎢⎢⎣
∫ t

0 β0(t − τ)u(τ ) dτ∫ t

0 β1(t − τ)u(τ ) dτ
...∫ t

0 βn−1(t − τ)u(τ ) dτ

⎤
⎥⎥⎥⎦ .

Note that the matrix on the left is the controllability matrix C, and we see that the only
way that all of Rn is reachable is if the column space of C spans all of Rn. It is somewhat
more difficult to see that if C has rank n then it is possible to design a u(t) to reach any
arbitrary state ξ ∈ Rn, but this relies on the fact that the n functions {βj (t)}n−1

j=0 are linearly
independent functions. It is also the case that there is not a unique actuation input u(t) to
reach a given state ξ , as there are many different paths one may take.

Gramians and Degrees of Controllability/Observability
The previous tests for controllability and observability are binary, in the sense that the rank
of C (resp. O) is either n, or it isn’t. However, there are degrees of controllability and
observability, as some states x may be easier to control or estimate than others.

To identify which states are more or less controllable, one must analyze the eigendecom-
position of the controllability Gramian:

Wc(t) =
∫ t

0
eAτ BB∗eA∗τ dτ. (8.38)

Similarly, the observability Gramian is given by:

Wo(t) =
∫ t

0
eA∗τ C∗CeAτ dτ. (8.39)

These Gramians are often evaluated at infinite time, and unless otherwise stated, we refer
to Wc = limt→∞ Wc(t) and Wo = limt→∞ Wo(t).

The controllability of a state x is measured by x∗Wcx, which will be larger for more
controllable states. If the value of x∗Wcx is large, then it is possible to navigate the system
far in the x direction with a unit control input. The observability of a state is similarly
measured by x∗Wox. Both Gramians are symmetric and positive semi-definite, having
nonnegative eigenvalues. Thus, the eigenvalues and eigenvectors may be ordered hierarchi-
cally, with eigenvectors corresponding to large eigenvalues being more easily controllable
or observable. In this way, the Gramians induce a new inner-product over state-space in
terms of the controllability or observability of the states.

Gramians may be visualized by ellipsoids in state-space, with the principal axes given
by directions that are hierarchically ordered in terms of controllability or observability.
An example of this visualization is shown in Fig. 9.2 in Chapter 9. In fact, Gramians
may be used to design reduced-order models for high-dimensional systems. Through a
balancing transformation, a key subspace is identified with the most jointly controllable
and observable modes. These modes then define a good projection basis to define a model
that captures the dominant input–output dynamics. This form of balanced model reduction
will be investigated further in Section 9.2.
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Gramians are also useful to determine the minimum-energy control u(t) required to
navigate the system to x(tf ) at time tf from x(0) = 0:

u(t) = B∗
(
eA(tf −t)

)∗
Wc(tf )−1x(tf ). (8.40)

The total energy expended by this control law is given by∫ tf

0
‖u(τ )‖2 dτ = x∗Wc(tf )−1x. (8.41)

It can now be seen that if the controllability matrix is nearly singular, then there are direc-
tions that require extreme actuation energy to manipulate. Conversely, if the eigenvalues of
Wc are all large, then the system is easily controlled.

It is generally impractical to compute the Gramians directly using (8.38) and (8.39).
Instead, the controllablity Gramian is the solution to the following Lyapunov equation:

AWc + WcA∗ + BB∗ = 0, (8.42)

while the observability Gramian is the solution to

A∗Wo + WoA + C∗C = 0. (8.43)

Obtaining Gramians by solving a Lyapunov equation is typically quite expensive for
high-dimensional systems [213, 231, 496, 489, 55]. Instead, Gramians are often approx-
imated empirically using snapshot data from the direct and adjoint systems, as will be
discussed in Section 9.2.

Stabilizability and Detectability
In practice, full-state controllability and observability may be too much to expect in high-
dimensional systems. For example, in a high-dimensional fluid system, it may be unrealistic
to manipulate every minor fluid vortex; instead control authority over the large, energy-
containing coherent structures is often enough.

Stabilizability refers to the ability to control all unstable eigenvector directions of A,
so that they are in the span of C. In practice, we might relax this definition to include
lightly damped eigenvector modes, corresponding to eigenvalues with a small, negative
real part. Similarly, if all unstable eigenvectors of A are in the span of O∗, then the system
is detectable.

There may also be states in the model description that are superfluous for control. As
an example, consider the control system for a commercial passenger jet. The state of
the system may include the passenger seat positions, although this will surely not be
controllable by the pilot, nor should it be.

8.4 Optimal Full-State Control: Linear Quadratic Regulator (LQR)
We have seen in the previous sections that if (A, B) is controllable, then it is possible to
arbitrarily manipulate the eigenvalues of the closed-loop system (A − BK) through choice
of a full-state feedback control law u = −Kx. This implicitly assumes that full-state
measurements are available (i.e., C = I and D = 0, so that y = x). Although full-state
measurements are not always available, especially for high-dimensional systems, we will
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show in the next section that if the system is observable, it is possible to build a full-state
estimate from the sensor measurements.

Given a controllable system, and either measurements of the full-state or an observ-
able system with a full-state estimate, there are many choices of stabilizing control laws
u = −Kx. It is possible to make the eigenvalues of the closed-loop system (A − BK) arbi-
trarily stable, placing them as far as desired in the left-half of the complex plane. However,
overly stable eigenvalues may require exceedingly expensive control expenditure and might
also result in actuation signals that exceed maximum allowable values. Choosing very sta-
ble eigenvalues may also cause the control system to over-react to noise and disturbances,
much as a new driver will over-react to vibrations in the steering wheel, causing the closed-
loop system to jitter. Over stabilization can counterintuitively degrade robustness and may
lead to instability if there are small time delays or unmodeled dynamics. Robustness will
be discussed in Section 8.8.

Choosing the best gain matrix K to stabilize the system without expending too much
control effort is an important goal in optimal control. A balance must be struck between
the stability of the closed-loop system and the aggressiveness of control. It is important
to take control expenditure into account 1) to prevent the controller from over-reacting
to high-frequency noise and disturbances, 2) so that actuation does not exceed maximum
allowed amplitudes, and 3) so that control is not prohibitively expensive. In particular, the
cost function

J (t) =
∫ t

0
x(τ )∗Qx(τ ) + u(τ )∗Ru(τ ) dτ (8.44)

balances the cost of effective regulation of the state with the cost of control. The matrices Q
and R weight the cost of deviations of the state from zero and the cost of actuation, respec-
tively. The matrix Q is positive semi-definite, and R is positive definite; these matrices are
often diagonal, and the diagonal elements may be tuned to change the relative importance
of the control objectives.

Adding such a cost function makes choosing the control law a well-posed optimization
problem, for which there is a wealth of theoretical and numerical techniques [74]. The
linear-quadratic-regulator (LQR) control law u = −Krx is designed to minimize J =
limt→∞ J (t). LQR is so-named because it is a linear control law, designed for a linear
system, minimizing a quadratic cost function, that regulates the state of the system to
limt→∞ x(t) = 0. Because the cost-function in (8.44) is quadratic, there is an analytical
solution for the optimal controller gains Kr , given by

Kr = R−1B∗X, (8.45)

where X is the solution to an algebraic Riccati equation:

A∗X + XA − XBR−1B∗X + Q = 0. (8.46)

Solving the above Riccati equation for X, and hence for Kr , is numerically robust and
already implemented in many programming languages [323, 55]. In Matlab, Kr is obtained
via

>> Kr = lqr(A,B,Q,R);

However, solving the Riccati equation scales as O(n3) in the state-dimension n, making it
prohibitively expensive for large systems or for online computations for slowly changing
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Figure 8.9 Schematic of the linear quadratic regulator (LQR) for optimal full-state feedback. The
optimal controller for a linear system given measurements of the full state, y = x, is given by
proportional control u = −Krx where Kr is a constant gain matrix obtained by solving an algebraic
Riccati equation.

state equations or linear parameter varying (LPV) control. This motivates the development
of reduced-order models that capture the same dominant behavior with many fewer states.
Control-oriented reduced-order models will be developed more in Chapter 9.

The LQR controller is shown schematically in Fig. 8.9. Out of all possible control laws
u = K(x), including nonlinear controllers, the LQR controller u = −Krx is optimal, as we
will show in Section 8.4. However, it may be the case that a linearized system is linearly
uncontrollable while the full nonlinear system in (8.7) is controllable with a nonlinear
control law u = K(x).

Derivation of the Riccati Equation for Optimal Control
It is worth taking a theoretical detour here to derive the Riccati equation in (8.46) for the
problem of optimal full-state regulation. This derivation will provide an example of how to
solve convex optimization problems using the calculus of variations, and it will also provide
a template for computing the optimal control solution for nonlinear systems. Because of
the similarity of optimal control to the formulation of Lagrangian and Hamiltonian classical
mechanics in terms of the variational principal, we adopt similar language and notation.

First, we will add a terminal cost to our LQR cost function in (8.44), and also introduce
a factor of 1/2 to simplify computations:

J =
∫ tf

0

1

2

(
x∗Qx + u∗Ru

)
︸ ︷︷ ︸

Lagrangian, L

dτ + 1

2
x(tf )∗Qf x(tf )︸ ︷︷ ︸

Terminal cost

. (8.47)

The goal is to minimize the quadratic cost function J subject to the dynamical constraint:

ẋ = Ax + Bu. (8.48)
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We may solve this using the calculus of variations by introducing the following aug-
mented cost function

Jaug =
∫ tf

0

[
1

2

(
x∗Qx + u∗Ru

)+ λ∗ (Ax + Bu − ẋ)

]
dτ + 1

2
x(tf )∗Qf x(tf ). (8.49)

The variable λ is a Lagrange multiplier, called the co-state, that enforces the dynamic
constraints. λ may take any value and Jaug = J will hold.

Taking the total variation of Jaug in (8.49) yields:

δJaug =
∫ tf

0

[
∂L
∂x

δx + ∂L
∂u

δu + λ∗Aδx + λ∗Bδu − λ∗δẋ
]

dτ + Qf x(tf )δx(tf ). (8.50)

The partial derivatives4 of the Lagrangian are ∂L/∂x = x∗Q and ∂L/∂u = u∗R. The last
term in the integral may be modified using integration by parts:

−
∫ tf

0
λ∗δẋ dτ = −λ∗(tf )δx(tf ) + λ∗(0)δx(0) +

∫ tf

0
λ̇∗δx dτ.

The term λ∗(0)δx(0) is equal to zero, or else the control system would be non-causal (i.e.,
then future control could change the initial condition of the system).

Finally, the total variation of the augmented cost function in (8.50) simplifies as follows:

δJaug =
∫ tf

0

(
x∗Q + λ∗A + λ̇∗) δx dτ +

∫ tf

0

(
u∗R + λ∗B

)
δu dτ

+ (x(tf )∗Qf − λ∗(tf )
)
δx(tf ). (8.51)

Each variation term in (8.51) must equal zero for an optimal control solution that minimizes
J . Thus, we may break this up into three equations:

x∗Q + λ∗A + λ̇∗ = 0 (8.52a)

u∗R + λ∗B = 0 (8.52b)

x(tf )∗Qf − λ∗(tf ) = 0. (8.52c)

Note that the constraint in (8.52c) represents an initial condition for the reverse-time equa-
tion for λ starting at tf . Thus, the dynamics in (8.48) with initial condition x(0) = x0 and
(8.52) with the final-time condition λ(tf ) = Qf x(tf ) form a two-point boundary value
problem. This may be integrated numerically to find the optimal control solution, even for
nonlinear systems.

Because the dynamics are linear, it is possible to posit the form λ = Px, and substitute
into (8.52) above. The first equation becomes:(

Ṗx + Pẋ
)∗ + x∗Q + λ∗A = 0.

Taking the transpose, and substituting (8.48) in for ẋ, yields:

Ṗx + P(Ax + Bu) + Qx + A∗Px = 0.

From (8.52b), we have

u = −R−1B∗λ = −R−1B∗Px.

4 The derivative of a matrix expression Ax with respect to x is A, and the derivative of x∗A with respect to x is
A∗.
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Finally, combining yields:

Ṗx + PAx + A∗Px − PBR−1B∗Px + Qx = 0. (8.53)

This equation must be true for all x, and so it may also be written as a matrix equation.
Dropping the terminal cost and letting time go to infinity, the Ṗ term disappears, and we
recover the algebraic Riccati equation:

PA + AP∗ − PBR−1B∗P + Q = 0.

Although this procedure is somewhat involved, each step is relatively straightforward. In
addition, the dynamics in Eq (8.48) may be replaced with nonlinear dynamics ẋ = f(x, u),
and a similar nonlinear two-point boundary value problem may be formulated with ∂f/∂x
replacing A and ∂f/∂u replacing B. This procedure is extremely general, and may be used
to numerically obtain nonlinear optimal control trajectories.

Hamiltonian Formulation Similar to the Lagrangian formulation above, it is also possi-
ble to solve the optimization problem by introducing the following Hamiltonian:

H = 1

2

(
x∗Qx + u∗Ru

)
︸ ︷︷ ︸

L

+λ∗ (Ax + Bu) . (8.54)

Then Hamilton’s equations become:

ẋ =
(

∂H
∂λ

)∗
= Ax + Bu x(0) = x0

−λ̇ =
(

∂H
∂x

)∗
= Qx + A∗λ λ(tf ) = Qf x(tf ).

Again, this is a two-point boundary value problem in x and λ. Plugging in the same
expression λ = Px will result in the same Riccati equation as above.

8.5 Optimal Full-State Estimation: The Kalman Filter
The optimal LQR controller from Section 8.4 relies on full-state measurements of the
system. However, full-state measurements may either be prohibitively expensive or techno-
logically infeasible to obtain, especially for high-dimensional systems. The computational
burden of collecting and processing full-state measurements may also introduce unaccept-
able time delays that will limit robust performance.

Instead of measuring the full state x, it may be possible to estimate the state from limited
noisy measurements y. In fact, full-state estimation is mathematically possible as long as
the pair (A, C) are observable, although the effectiveness of estimation depends on the
degree of observability as quantified by the observability Gramian. The Kalman filter [279,
551, 221] is the most commonly used full-state estimator, as it optimally balances the
competing effects of measurement noise, disturbances, and model uncertainty. As will be
shown in the next section, it is possible to use the full-state estimate from a Kalman filter
in conjunction with the optimal full-state LQR feedback law.
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When deriving the optimal full-state estimator, it is necessary to re-introduce distur-
bances to the state, wd , and sensor noise, wn:

d

dt
x = Ax + Bu + wd (8.56a)

y = Cx + Du + wn. (8.56b)

The Kalman filter assumes that both the disturbance and noise are zero-mean Gaussian
processes with known covariances:

E
(
wd(t)wd(τ )∗

) = Vdδ(t − τ), (8.57a)

E
(
wn(t)wn(τ )∗

) = Vnδ(t − τ). (8.57b)

Here E is the expected value and δ(·) is the Dirac delta function. The matrices Vd and
Vn are positive semi-definite with entries containing the covariances of the disturbance and
noise terms. Extensions to the Kalman filter exist for correlated, biased, and unknown noise
and disturbance terms [498, 372].

It is possible to obtain an estimate x̂ of the full-state x from measurements of the input u
and output y, via the following estimator dynamical system:

d

dt
x̂ = Ax̂ + Bu + Kf

(
y − ŷ

)
(8.58a)

ŷ = Cx̂ + Du. (8.58b)

The matrices A, B, C, and D are obtained from the system model, and the filter gain Kf is
determined via a similar procedure as in LQR. Kf is given by

Kf = YC∗Vn, (8.59)

where y is the solution to another algebraic Riccati equation:

YA∗ + AY − YC∗V−1
n CY + Vd = 0. (8.60)

This solution is commonly referred to as the Kalman filter, and it is the optimal full-state
estimator with respect to the following cost function:

J = lim
t→∞ E

((
x(t) − x̂(t)

)∗ (x(t) − x̂(t)
))

. (8.61)

This cost function implicitly includes the effects of disturbance and noise, which are
required to determine the optimal balance between aggressive estimation and noise
attenuation. Thus, the Kalman filter is referred to as linear quadratic estimation (LQE),
and has a dual formulation to the LQR optimization. The cost in (8.61) is computed as an
ensemble average over many realizations.

The filter gain Kf may be determined in Matlab via

>> Kf = lqe(A,Vd,C,Vd,Vn); % design Kalman filter gain

Optimal control and estimation are mathematical dual problems, as are controllability and
observability, so the Kalman filter may also be found using LQR:

>> Kf = (lqr(A’,C’,Vd,Vn))’; % LQR and LQE are dual problems

The Kalman filter is shown schematically in Fig. 8.10.
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Figure 8.10 Schematic of the Kalman filter for full-state estimation from noisy measurements
y = Cx + wn with process noise (disturbances) wd . This diagram does not have a feedthrough term
D, although it may be included.

Substituting the output estimate ŷ from (8.58b) into (8.58a) yields:

d

dt
x̂ = (A − Kf C

)
x̂ + Kf y + (B − Kf D

)
u (8.62a)

= (A − Kf C
)

x̂ + [Kf ,
(
B − Kf D

)] [y
u

]
. (8.62b)

The estimator dynamical system is expressed in terms of the estimate x̂ with inputs y and
u. If the system is observable it is possible to place the eigenvalues of A − Kf C arbitrarily
with choice of Kf . When the eigenvalues of the estimator are stable, then the state estimate
x̂ converges to the full-state x asymptotically, as long as the model faithfully captures the
true system dynamics. To see this convergence, consider the dynamics of the estimation
error ε = x − x̂:

d

dt
ε = d

dt
x − d

dt
x̂

= [Ax + Bu + wd ] − [(A − Kf C)x̂ + Kf y + (B − Kf D)u
]

= Aε + wd + Kf Cx̂ − Kf y + Kf Du

= Aε + wd + Kf Cx̂ − Kf [Cx + Du + wn]︸ ︷︷ ︸
y

+Kf Du

= (A − Kf C)ε + wd − Kf wn.
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Therefore, the estimate x̂ will converge to the true full state when A − Kf C has stable
eigenvalues. As with LQR, there is a tradeoff between over-stabilization of these eigenval-
ues and the amplification of sensor noise. This is similar to the behavior of an inexperienced
driver who may hold the steering wheel too tightly and will overreact to every minor bump
and disturbance on the road.

There are many variants of the Kalman filter for nonlinear systems [274, 275, 538],
including the extended and unscented Kalman filters. The ensemble Kalman filter [14] is
an extension that works well for high-dimensional systems, such as in geophysical data
assimilation [449]. All of these methods still assume Gaussian noise processes, and the
particle filter provides a more general, although more computationally intensive, alterna-
tive that can handle arbitrary noise distributions [226, 451]. The unscented Kalman filter
balances the efficiency of the Kalman filter and accuracy of the particle filter.

8.6 Optimal Sensor-Based Control: Linear Quadratic Gaussian (LQG)
The full-state estimate from the Kalman filter is generally used in conjunction with the
full-state feedback control law from LQR, resulting in optimal sensor-based feedback.
Remarkably, the LQR gain Kr and the Kalman filter gain Kf may be designed separately,
and the resulting sensor-based feedback will remain optimal and retain the closed-loop
eigenvalues when combined.

Combining the LQR full-state feedback with the Kalman fitler full-state estimator results
in the linear-quadratic Gaussian (LQG) controller. The LQG controller is a dynamical
system with input y, output u, and internal state x̂:

d

dt
x̂ = (A − Kf C − BKr

)
x̂ + Kf y (8.63a)

u = −Kr x̂. (8.63b)

The LQG controller is optimal with respect to the following ensemble-averaged version of
the cost function from (8.44):

J (t) =
〈∫ t

0

[
x(τ )∗Qx(τ ) + u(τ )∗Ru(τ )

]
dτ

〉
. (8.64)

The controller u = −Kr x̂ is in terms of the state estimate, and so this cost function must be
averaged over many realizations of the disturbance and noise. Applying LQR to x̂ results
in the following state dynamics:

d

dt
x = Ax − BKr x̂ + wd (8.65a)

= Ax − BKrx + BKr

(
x − x̂

)+ wd (8.65b)

= Ax − BKrx + BKrε + wd . (8.65c)

Again ε = x − x̂ as before. Finally, the closed-loop system may be written as

d

dt

[
x
ε

]
=
[

A − BKr BKr

0 A − Kf C

] [
x
ε

]
+
[

I 0
I −Kf

] [
wd

wn

]
. (8.66)
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Figure 8.11 Schematic illustrating the linear quadratic Gaussian (LQG) controller for optimal
closed-loop feedback based on noisy measurements y. The optimal LQR and Kalman filter gain
matrices Kr and Kf may be designed independently, based on two different algebraic Riccati
equations. When combined, the resulting sensor-based feedback remains optimal.

Thus, the closed-loop eigenvalues of the LQG regulated system are given by the eigenval-
ues of A−BKr and A−Kf C, which were optimally chosen by the LQR and Kalman filter
gain matrices, respectively.

The LQG framework, shown in Fig. 8.11, relies on an accurate model of the system
and knowledge of the magnitudes of the disturbances and measurement noise, which are
assumed to be Gaussian processes. In real-world systems, each of these assumptions may
be invalid, and even small time delays and model uncertainty may destroy the robustness
of LQG and result in instability [155]. The lack of robustness of LQG regulators to model
uncertainty motivates the introduction of robust control in Section 8.8. For example, it is
possible to robustify LQG regulators through a process known as loop-transfer recovery.
However, despite robustness issues, LQG control is extremely effective for many systems,
and is among the most common control paradigms.

In contrast to classical control approaches, such as proportional-integral-derivative (PID)
control and designing faster inner-loop control and slow outer-loop control assuming a
separation of timescales, LQG is able to handle multiple-input, multiple output (MIMO)
systems with overlapping timescales and multi-objective cost functions with no additional
complexity in the algorithm or implementation.

8.7 Case Study: Inverted Pendulum on a Cart
To consolidate the concepts of optimal control, we will implement a stabilizing controller
for the inverted pendulum on the cart, shown in Fig. 8.12. The full nonlinear dynamics are
given by

ẋ = v (8.67a)

v̇ = −m2L2g cos(θ) sin(θ) + mL2(mLω2 sin(θ) − δv) + mL2u

mL2(M + m(1 − cos(θ)2))
(8.67b)
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Figure 8.12 Schematic of inverted pendulum on a cart. The control forcing acts to accelerate or
decelerate cart. For this example, we assume the following parameter values: pendulum mass
(m = 1), cart mass (M = 5), pendulum length (L = 2), gravitational acceleration (g = −10), and
cart damping (δ = 1).

θ̇ = ω (8.67c)

ω̇ = (m + M)mgL sin(θ) − mL cos(θ)(mLω2 sin(θ) − δv) + mL cos(θ)u

mL2(M + m(1 − cos(θ)2))
(8.67d)

where x is the cart position, v is the velocity, θ is the pendulum angle, ω is the angular
velocity, m is the pendulum mass, M is the cart mass, L is the pendulum arm, g is the
gravitational acceleration, δ is a friction damping on the dart, and u is a control force
applied to the cart.

The following Matlab function, pendcart, may be used to simulate the full nonlinear
system in (8.67):

Code 8.2 Right-hand side function for inverted pendulum on cart.

function dx = pendcart(x,m,M,L,g,d,u)

Sx = sin(x(3));
Cx = cos(x(3));
D = m*L*L*(M+m*(1-Cx^2));

dx(1,1) = x(2);
dx(2,1) = (1/D)*(-m^2*L^2*g*Cx*Sx + m*L^2*(m*L*x(4)^2*Sx - d*x

(2))) + m*L*L*(1/D)*u;
dx(3,1) = x(4);
dx(4,1) = (1/D)*((m+M)*m*g*L*Sx - m*L*Cx*(m*L*x(4)^2*Sx - d*x(2)

)) - m*L*Cx*(1/D)*u;

There are two fixed points, corresponding to either the pendulum down (θ = 0) or
pendulum up (θ = π ) configuration; in both cases, v = ω = 0 for the fixed point, and
the cart position x is a free variable, as the equations do not depend explicitly on x. It is
possible to linearize the equations in (8.67) about either the up or down solutions, yielding
the following linearized dynamics:
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d

dt

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0 0
0 − δ

M
b

mg
M

0
0 0 0 1
0 −b δ

ML −b
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ML 0

⎤
⎥⎥⎦
⎡
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x1

x2

x3

x4

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
1
M

0
b 1

ML

⎤
⎥⎥⎦ u, for

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x

v
θ

ω

⎤
⎥⎥⎦ ,

(8.68)
where b = 1 for the pendulum up fixed point, and b = −1 for the pendulum down fixed
point. The system matrices A and B may be entered in Matlab using the values for the
constants given in Fig. 8.12:

Code 8.3 Construct system matrices for inverted pendulum on a cart.

clear all, close all, clc

m = 1; M = 5; L = 2; g = -10; d = 1;

b = 1; % Pendulum up (b=1)

A = [0 1 0 0;
0 -d/M b*m*g/M 0;
0 0 0 1;
0 -b*d/(M*L) -b*(m+M)*g/(M*L) 0];

B = [0; 1/M; 0; b*1/(M*L)];

We may also confirm that the open-loop system is unstable by checking the eigenvalues
of A:

>> lambda = eig(A)

lambda =
0

-2.4311
-0.2336
2.4648

In the following, we will test for controllability and observability, develop full-state
feedback (LQR), full-state estimation (Kalman filter), and sensor-based feedback (LQG)
solutions.

Full-state Feedback Control of the Cart-Pendulum
In this section, we will design an LQR controller to stabilize the inverted pendulum config-
uration (θ = π ) assuming full-state measurements, y = x. Before any control design, we
must confirm that the system is linearly controllable with the given A and B matrices:

>> rank(ctrb(A,B))

ans =
4

Thus, the pair (A, B) is controllable, since the controllability matrix has full rank. It is
then possible to specify given Q and R matrices for the cost function and design the LQR
controller gain matrix K:

Code 8.4 Design LQR controller to stabilize inverted pendulum on a cart.

%% Design LQR controller
Q = eye(4); % 4x4 identify matrix
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Figure 8.13 Closed-loop system response of inverted pendulum on a cart stabilized with an LQR
controller.

R = .0001;

K = lqr(A,B,Q,R);

We may then simulate the closed-loop system response of the full nonlinear system. We

will initialize our simulation slightly off equilibrium, at x0 = [−1 0 π + .1 0
]T

, and
we also impose a desired step change in the reference position of the cart, from x = −1 to
x = 1.

Code 8.5 Simulate closed-loop inverted pendulum on a cart system.

%% Simulate closed-loop system
tspan = 0:.001:10;
x0 = [-1; 0; pi+.1; 0]; % initial condition
wr = [1; 0; pi; 0]; % reference position
u=@(x)-K*(x - wr); % control law
[t,x] = ode45(@(t,x)pendcart(x,m,M,L,g,d,u(x)),tspan,x0);

In this code, the actuation is set to:

u = −K (x − wr ) , (8.69)

where wr = [1 0 π 0
]T

is the reference position. The closed-loop response is shown
in Fig. 8.13.

In the above procedure, specifying the system dynamics and simulating the closed-loop
system response is considerably more involved than actually designing the controller,
which amounts to a single function call in Matlab. It is also helpful to compare the LQR
response to the response obtained by nonoptimal eigenvalue placement. In particular,
Fig. 8.14 shows the system response and cost function for 100 randomly generated sets of
stable eigenvalues, chosen in the interval [−3.5,−.5]. The LQR controller has the lowest
overall cost, as it is chosen to minimize J . The code to plot the pendulum–cart system is
provided online.

Non-minimum phase systems It can be seen from the response that in order to move
from x = −1 to x = 1, the system initially moves in the wrong direction. This behavior
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Figure 8.14 Comparison of LQR controller response and cost function with other pole placement
locations. Bold lines represent the LQR solutions.

indicates that the system is non-minimum phase, which introduces challenges for robust
control, as we will soon see. There are many examples of non-minimum phase systems
in control. For instance, parallel parking an automobile first involves moving the center of
mass of the car away from the curb before it then moves closer. Other examples include
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increasing altitude in an aircraft, where the elevators must first move the center of mass
down to increase the angle of attack on the main wings before lift increases the altitude.
Adding cold fuel to a turbine may also initially drop the temperature before it eventually
increases.

Full-State Estimation of the Cart-Pendulum
Now we turn to the full-state estimation problem based on limited noisy measurements
y. For this example, we will develop the Kalman filter for the pendulum-down condition
(θ = 0), since without feedback the system in the pendulum-up condition will quickly leave
the fixed point where the linear model is valid. When we combine the Kalman filter with
LQR in the next example, it will be possible to control to the unstable inverted pendulum
configuration. Switching to the pendulum-down configuration is simple in the code:

b = -1; % pendulum down (b=-1)

Before designing a Kalman filter, we must choose a sensor and test for observability. If
we measure the cart position, y = x1,

C = [1 0 0 0]; % measure cart position, x

then the observability matrix has full rank:

>> rank(obsv(A,C))

ans =
4

Because the cart position x1 does not appear explicitly in the dynamics, the system is
not fully observable for any measurement that doesn’t include x1. Thus, it is impossible
to estimate the cart position with a measurement of the pendulum angle. However, if the
cart position is not important for the cost function (i.e., if we only want to stabilize the
pendulum, and don’t care where the cart is located), then other choices of sensor will be
admissible.

Now we design the Kalman filter, specifying disturbance and noise covariances:

%% Specify disturbance and noise magnitude
Vd = eye(4); % disturbance covariance
Vn = 1; % noise covariance

% Build Kalman filter
[Kf,P,E] = lqe(A,eye(4),C,Vd,Vn); % design Kalman filter
% alternatively, possible to design using "LQR" code
Kf = (lqr(A’,C’,Vd,Vn))’;

The Kalman filter gain matrix is given by

Kf =
1.9222
1.3474

-0.6182
-1.8016

Finally, to simulate the system and Kalman filter, we must augment the original system
to include disturbance and noise inputs:



306 Linear Control Theory

%% Augment system with additional inputs
B_aug = [B eye(4) 0*B]; % [u I*wd 0*wn]
D_aug = [0 0 0 0 0 1]; % D matrix passes noise through

sysC = ss(A,B_aug,C,D_aug); % single-measurement system

% "true" system w/ full-state output, disturbance, no noise
sysTruth = ss(A,B_aug,eye(4),zeros(4,size(B_aug,2)));

sysKF = ss(A-Kf*C,[B Kf],eye(4),0*[B Kf]); % Kalman filter

We now simulate the system with a single output measurement, including additive dis-
turbances and noise, and we use this as the input to a Kalman filter estimator. At time t = 1
and t = 15, we give the system a large positive and negative impulse in the actuation,
respectively.

%% Estimate linearized system in "down" position
dt = .01;
t = dt:dt:50;

uDIST = sqrt(Vd)*randn(4,size(t,2)); % random disturbance
uNOISE = sqrt(Vn)*randn(size(t)); % random noise
u = 0*t;
u(1/dt) = 20/dt; % positive impulse
u(15/dt) = -20/dt; % negative impulse

u_aug = [u; uDIST; uNOISE]; % input w/ disturbance and noise

[y,t] = lsim(sysC,u_aug,t); % noisy measurement
[xtrue,t] = lsim(sysTruth,u_aug,t); % true state
[xhat,t] = lsim(sysKF,[u; y’],t); % state estimate

Fig. 8.15 shows the noisy measurement signal used by the Kalman filter, and Fig. 8.16
shows the full noiseless state, with disturbances, along with the Kalman filter estimate.

To build intuition, it is recommended that the reader investigate the performance of the
Kalman filter when the model is an imperfect representation of the simulated dynamics.
When combined with full-state control in the next section, small time delays and changes
to the system model may cause fragility.

Sensor-Based Feedback Control of the Cart-Pendulum
To apply an LQG regulator to the inverted pendulum on a cart, we will simulate the
full nonlinear system in Simulink, as shown in Fig. 8.17. The nonlinear dynamics are
encapsulated in the block ‘cartpend_sim’, and the inputs consist of the actuation signal
u and disturbance wd . We record the full state for performance analysis, although only
noisy measurements y = Cx + wn and the actuation signal u are passed to the Kalman
filter. The full-state estimate is then passed to the LQR block, which commands the desired
actuation signal. For this example, we use the following LQR and LQE weighting matrices:

Q = eye(4); % state cost
R = .000001; % actuation cost

Vd = .04*eye(4); % disturbance covariance
Vn = .0002; % noise covariance
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Figure 8.15 Noisy measurement that is used for the Kalman filter, along with the underlying
noiseless signal and the Kalman filter estimate.
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Figure 8.16 The true and Kalman filter estimated states for the pendulum on a cart system.

The system starts near the vertical equilibrium, at x0 = [
0 0 3.14 0

]T
, and we

command a step in the cart position from x = 0 to x = 1 at t = 10. The resulting response
is shown in Fig. 8.18. Despite noisy measurements (Fig. 8.19) and disturbances (Fig. 8.20),
the controller is able to effectively track the reference cart position while stabilizing the
inverted pendulum.
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Figure 8.17 Matlab Simulink model for sensor-based LQG feedback control.
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Figure 8.18 Output response using LQG feedback control.

8.8 Robust Control and Frequency Domain Techniques
Until now, we have described control systems in terms of state-space systems of ordinary
differential equations. This perspective readily lends itself to stability analysis and design
via placement of closed-loop eigenvalues. However, in a seminal paper by John Doyle in
1978 [155]5, it was shown that LQG regulators can have arbitrarily small stability margins,
making them fragile to model uncertainties, time delays, and other model imperfections.

Fortunately, a short time after Doyle’s famous 1978 paper, a rigorous mathematical
theory was developed to design controllers that promote robustness. Indeed, this new theory

5 Title: Guaranteed margins for LQG regulators; Abstract: There are none.
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Figure 8.19 Noisy measurement used for the Kalman filter, along with the underlying noiseless
signal and the Kalman filter estimate.
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Figure 8.20 Noisy measurement used for the Kalman filter, along with the underlying noiseless
signal and the Kalman filter estimate.

of robust control generalizes the optimal control framework used to develop LQR/LQG, by
incorporating a different cost function that penalizes worse-case scenario performance.

To understand and design controllers for robust performance, it will be helpful to look
at frequency domain transfer functions of various signals. In particular, we will consider
the sensitivity, complementary sensitivity, and loop transfer functions. These enable quan-
titative and visual approaches to assess robust performance, and they enable intuitive and
compact representations of control systems.

Robust control is a natural perspective when considering uncertain models obtained from
noisy or incomplete data. Moreover, it may be possible to manage system nonlinearity as
a form of structured model uncertainty. Finally, we will discuss known factors that limit
robust performance, including time delays and non-minimum phase behavior.
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Frequency Domain Techniques
To understand and manage the tradeoffs between robustness and performance in a control
system, it is helpful to design and analyze controllers using frequency domain techniques.

The Laplace transform allows us to go between the time-domain (state-space) and fre-
quency domain:

L{f (t)} = f (s) =
∫ ∞

0−
f (t)e−stdt. (8.70)

Here, s is the complex-valued Laplace variable. The Laplace transform may be thought of
as a one-sided generalized Fourier transform that is valid for functions that don’t converge
to zero as t → ∞. The Laplace transform is particularly useful because it transforms
differential equations into algebraic equations, and convolution integrals in the time domain
become simple products in the frequency domain. To see how time derivatives pass through
the Laplace transform, we use integration by parts:

L
{

d

dt
f (t)

}
=
∫ ∞

0−

d

dt
f (t)︸ ︷︷ ︸
dv

e−st︸︷︷︸
u

dt

=
[
f (t)e−st

]t=∞
t=0− −

∫ ∞

0−
f (t)(−se−st)dt

= f (0−) + sL{f (t)}.
Thus, for zero initial conditions, L{df /dt} = sf (s).

Taking the Laplace transform of the control system in (8.10) yields

sx(s) = Ax(s) + Bu(s) (8.71a)

y(s) = Cx(s) + Du(s). (8.71b)

It is possible to solve for x(s) in the first equation, as

(sI − A)x(s) = Bu(s) 	⇒ x(s) = (sI − A)−1Bu(s). (8.72)

Substituting this into the second equation we arrive at a mapping from inputs u to outputs y:

y(s) =
[
C(sI − A)−1C + D

]
u(s). (8.73)

We define this mapping as the transfer function:

G(s) = y(s)

u(s)
= C (sI − A)−1 B + D. (8.74)

For linear systems, there are three equivalent representations: 1) time-domain, in terms
of the impulse response; 2) frequency domain, in terms of the transfer function; and 3)
state-space, in terms of a system of differential equations. These representations are shown
schematically in Fig. 8.21. As we will see, there are many benefits to analyzing control
systems in the frequency domain.

Frequency Response
The transfer function in (8.74) is particularly useful because it gives rise to the frequency
response, which is a graphical representation of the control system in terms of measurable
data. To illustrate this, we will consider a single-input, single-output (SISO) system. It is a
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Figure 8.21 Three equivalent representations of linear time invariant systems.

property of linear systems with zero initial conditions, that a sinusoidal input will give rise
to a sinusoidal output with the same frequency, perhaps with a different magnitude A and
phase φ:

u(t) = sin(ωt) 	⇒ y(t) = A sin(ωt + φ). (8.75)

This is true for long-times, after initial transients die out. The amplitude A and phase φ

of the output sinusoid depend on the input frequency ω. These functions A(ω) and φ(ω)

may be mapped out by running a number of experiments with sinusoidal input at different
frequencies ω. Alternatively, this information is obtained from the complex-valued transfer
function G(s):

A(ω) = |G(iω)|, φ(ω) = � G(iω). (8.76)

Thus, the amplitude and phase angle for input sin(ωt) may be obtained by evaluating the
transfer function at s = iω (i.e., along the imaginary axis in the complex plane). These
quantities may then be plotted, resulting in the frequency response or Bode plot.

For a concrete example, consider the spring-mass-damper system, shown in Fig. 8.22.
The equations of motion are given by:

mẍ = −δẋ − kx + u. (8.77)

Choosing values m = 1, δ = 1, k = 2, and taking the Laplace transform yields:

G(s) = 1

s2 + s + 2
. (8.78)

Here we are assuming that the output y is a measurement of the position of the mass,
x. Note that the denominator of the transfer function G(s) is the characteristic equation
of (8.77), written in state-space form. Thus, the poles of the complex function G(s) are
eigenvalues of the state-space system.
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Figure 8.22 Spring-mass-damper system.
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Figure 8.23 Frequency response of spring-mass-damper system. The magnitude is plotted on a
logarithmic scale, in units of decibel (dB), and the frequency is likewise on a log-scale.

It is now possible to create this system in Matlab and plot the frequency response, as
shown in Fig. 8.23. Note that the frequency response is readily interpretable and pro-
vides physical intuition. For example, the zero slope of the magnitude at low frequencies
indicates that slow forcing translates directly into motion of the mass, while the roll-off
of the magnitude at high frequencies indicates that fast forcing is attenuated and doesn’t
significantly effect the motion of the mass. Moreover, the resonance frequency is seen as a
peak in the magnitude, indicating an amplification of forcing at this frequency.

Code 8.6 Create transfer function and plot frequency response (Bode) plot.

s = tf(’s’); % Laplace variable
G = 1/(s^2 + s + 2); % Transfer function

bode(G); % Frequency response

Given a state-space realization,

>> A = [0 1; -2 -1];
>> B = [0; 1];
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>> C = [1 0];
>> D = 0;

it is simple to obtain a frequency domain representation:

>> [num,den] = ss2tf(A,B,C,D); % State space to transf. fun.
>> G = tf(num,den) % Create transfer function

G =
1

-----------
s^2 + s + 2

Similarly, it is possible to obtain a state-space system from a transfer function, although
this representation is not unique:

>> [A,B,C,D] = tf2ss(G.num{1},G.den{1})

A =
-1.0000 -2.0000
1.0000 0

B =
1
0

C =
0 1

D =
0

Notice that this representation has switched the ordering of our variables to x = [v x
]T

,
although it still has the correct input–output characteristics.

The frequency-domain is also useful because impulsive or step inputs are particularly
simple to represent with the Laplace transform. These are also simple in Matlab. The
impulse response (Fig. 8.24) is given by

>> impulse(G); % Impulse response

and the step response (Fig. 8.25) is given by

>> step(G); % Step response

Performance and the Loop Transfer Function: Sensitivity and Complementary
Sensitivity
Consider a slightly modified version of Fig. 8.4, where the disturbance has a model, Pd .
This new diagram, shown in Fig. 8.26, will be used to derive the important transfer func-
tions relevant for assessing robust performance.

y = GK(wr − y − wn) + Gdwd (8.79a)

	⇒ (I + GK)y = GKwr − GKwn + Gdwd . (8.79b)

	⇒ y = (I + GK)−1GK︸ ︷︷ ︸
T

wr − (I + GK)−1GK︸ ︷︷ ︸
T

wn + (I + GK)−1︸ ︷︷ ︸
S

Gdwd . (8.79c)

Here, S is the sensitivity function, and T is the complementary sensitivity function. We may
denote L = GK the loop transfer function, which is the open-loop transfer function in the
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Figure 8.24 Impulse response of spring-mass-damper system.
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Figure 8.25 Step response of spring-mass-damper system.

absence of feedback. Both S and T may be simplified in terms of L:

S = (I + L)−1 (8.80a)

T = (I + L)−1L. (8.80b)

Conveniently, the sensitivity and complementary sensitivity functions must add up to the
identity: S + T = I.

In practice, the transfer function from the exogenous inputs to the noiseless error ε is
more useful for design:

ε = wr − y = Swr + Twn − SGdwd . (8.81)
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Figure 8.26 Closed-loop feedback control diagram with reference input, noise, and disturbance. We
will consider the various transfer functions from exogenous inputs to the error ε, thus deriving the
loop transfer function, as well as the sensitivity and complementary sensitivity functions.
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Figure 8.27 Loop transfer function along with sensitivity and complementary sensitivity functions.

Thus, we see that the sensitivity and complementary sensitivity functions provide the
maps from reference, disturbance, and noise inputs to the tracking error. Since we desire
small tracking error, we may then specify S and T to have desirable properties, and ideally
we will be able to achieve these specifications by designing the loop transfer function L. In
practice, we will choose the controller K with knowledge of the model G so that the loop
transfer function has beneficial properties in the frequency domain. For example, small
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gain at high frequencies will attenuate sensor noise, since this will result in T being small.
Similarly, high gain at low frequencies will provide good reference tracking performance,
as S will be small at low frequencies. However, S and T cannot both be small everywhere,
since S + T = I, from (8.80), and so these design objectives may compete.

For performance and robustness, we want the maximum peak of S, MS = ‖S‖∞, to be
as small as possible. From (8.81), it is clear that in the absence of noise, feedback control
improves performance (i.e. reduces error) for all frequencies where |S| < 1; thus control is
effective when T ≈ 1. As explained in [492] (pg. 37), all real systems will have a range of
frequencies where |S| > 1, in which case performance is degraded. Minimizing the peak
MS mitigates the amount of degradation experienced with feedback at these frequencies,
improving performance. In addition, the minimum distance of the loop transfer function L
to the point −1 in the complex plane is given by M−1

S . By the Nyquist stability theorem, the
larger this distance, the greater the stability margin of the closed-loop system, improving
robustness. These are the two major reasons to minimize MS.

The controller bandwidth ωB is the frequency below which feedback control is effective.
This is a subjective definition. Often, ωB is the frequency where |S(jω)| first crosses -3 dB
from below. We would ideally like the controller bandwidth to be as large as possible
without amplifying sensor noise, which typically has a high frequency. However, there are
fundamental bandwidth limitations that are imposed for systems that have time delays or
right half plane zeros [492].

Inverting the Dynamics
With a model of the form in (8.10) or (8.73), it may be possible to design an open-loop
control law to achieve some desired specification without the use of measurement-based
feedback or feedforward control. For instance, if perfect tracking of the reference input wr

is desired in Fig. 8.3, under certain circumstances it may be possible to design a controller
by inverting the system dynamics G: K(s) = G−1(s). In this case, the transfer function
from reference wr to output s is given by GG−1 = 1, so that the output perfectly matches
the reference. However, perfect control is never possible in real-world systems, and this
strategy should be used with caution, since it generally relies on a number of significant
assumptions on the system G. First, effective control based on inversion requires extremely
precise knowledge of G and well-characterized, predictable disturbances; there is little
room for model errors or uncertainties, as there are no sensor measurements to determine if
performance is as expected and no corrective feedback mechanisms to modify the actuation
strategy to compensate.

For open-loop control using system inversion, G must also be stable. It is impossible
to fundamentally change the dynamics of a linear system through open-loop control, and
thus an unstable system cannot be stabilized without feedback. Attempting to stabilize an
unstable system by inverting the dynamics will typically have disastrous consequences.
For instance, consider the following unstable system with a pole at s = 5 and a zero at
s = −10: G(s) = (s + 10)/(s − 5). Inverting the dynamics would result in a controller
K = (s − 5)/(s + 10); however, if there is even the slightest uncertainty in the model, so
that the true pole is at 5 − ε, then the open-loop system will be:

Gtrue(s)K(s) = s − 5

s − 5 + ε
.
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This system is still unstable, despite the attempted pole cancelation. Moreover, the unstable
mode is now nearly unobservable.

In addition to stability, G must not have any time delays or zeros in the right-half plane,
and it must have the same number of poles as zeros. If G has any zeros in the right-half
plane, then the inverted controller K will be unstable, since it will have right-half plane
poles. These systems are called non-minimum phase, and there have been generalizations
to dynamic inversion that provide bounded inverses to these systems [149]. Similarly, time
delays are not invertible, and if G has more poles than zeros, then the resulting controller
will not be realizable and may have extremely large actuation signals b. There are also
generalizations that provide regularized model inversion, where optimization schemes are
applied with penalty terms added to keep the resulting actuation signal b bounded. These
regularized open-loop controllers are often significantly more effective, with improved
robustness.

Combined, these restrictions on G imply that model-based open-loop control should only
be used when the system is well-behaved, accurately characterized by a model, when distur-
bances are characterized, and when the additional feedback control hardware is unnecessar-
ily expensive. Otherwise, performance goals must be modest. Open-loop model inversion
is often used in manufacturing and robotics, where systems are well-characterized and
constrained in a standard operating environment.

Robust Control
As discussed previously, LQG controllers are known to have arbitrarily poor robustness
margins. This is a serious problem in systems such as turbulence control, neuromechanical
systems, and epidemiology, where the dynamics are wrought with uncertainty and time
delays.

Fig. 8.2 shows the most general schematic for closed-loop feedback control, encom-
passing both optimal and robust control strategies. In the generalized theory of modern
control, the goal is to minimize the transfer function from exogenous inputs w (reference,
disturbances, noise, etc.) to a multi-objective cost function J (accuracy, actuation cost,
time-domain performance, etc.). Optimal control (e.g., LQR, LQE, LQG) is optimal with
respect to the H2 norm, a bounded two-norm on a Hardy space, consisting of stable and
strictly proper transfer functions (meaning gain rolls off at high frequency). Robust control
is similarly optimal with respect to the H∞ bounded infinity-norm, consisting of stable
and proper transfer functions (gain does not grow infinite at high frequencies). The infinity
norm is defined as:

‖G‖∞ � max
ω

σ1 (G(iω)) . (8.82)

Here, σ1 denotes the maximum singular value. Since the ‖ · ‖∞ norm is the maximum
value of the transfer function at any frequency, it is often called a worst-case scenario
norm; therefore, minimizing the infinity norm provides robustness to worst-case exogenous
inputs. H∞ robust controllers are used when robustness is important. There are many
connections between H2 and H∞ control, as they exist within the same framework and
simply optimize different norms. We refer the reader to the excellent reference books
expanding on this theory [492, 165].
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If we let Gw→J denote the transfer function from w to J, then the goal of H∞ control
is to construct a controller to minimize the infinity norm: min ‖Gw→J‖∞. This is typi-
cally difficult, and no analytic closed-form solution exists for the optimal controller in
general. However, there are relatively efficient iterative methods to find a controller such
that ‖Gw→J‖∞ < γ , as described in [156]. There are numerous conditions and caveats
that describe when this method can be used. In addition, there are computationally efficient
algorithms implemented in both Matlab and Python, and these methods require relatively
low overhead from the user.

Selecting the cost function J to meet design specifications is a critically important part
of robust control design. Considerations such as disturbance rejection, noise attenuation,
controller bandwidth, and actuation cost may be accounted for by a weighted sum of the
transfer functions S, T, and KS. In the mixed sensitivity control problem, various weighting
transfer function are used to balance the relative importance of these considerations at
various frequency ranges. For instance, we may weight S by a low-pass filter and KS by
a high-pass filter, so that disturbance rejection at low frequency is promoted and control
response at high-frequency is discouraged. A general cost function may consist of three
weighting filters Fk multiplying S, T, and KS:

∥∥∥∥∥∥
⎡
⎣ F1S

F2T
F3KS

⎤
⎦
∥∥∥∥∥∥

∞

.

Another possible robust control design is called H∞ loop-shaping. This procedure may
be more straightforward than mixed sensitivity synthesis for many problems. The loop-
shaping method consists of two major steps. First, a desired open-loop transfer function is
specified based on performance goals and classical control design. Second, the shaped loop
is made robust with respect to a large class of model uncertainty. Indeed, the procedure
of H∞ loop shaping allows the user to design an ideal controller to meet performance
specifications, such as rise-time, band-width, settling-time, etc. Typically, a loop shape
should have large gain at low frequency to guarantee accurate reference tracking and
slow disturbance rejection, low gain at high frequencies to attenuate sensor noise, and a
cross-over frequency that ensures desirable bandwidth. The loop transfer function is then
robustified so that there are improved gain and phase margins.

H2 optimal control (e.g., LQR, LQE, LQG) has been an extremely popular control
paradigm because of its simple mathematical formulation and its tunability by user input.
However, the advantages of H∞ control are being increasingly realized. Additionally, there
are numerous consumer software solutions that make implementation relatively straight-
forward. In Matlab, mixed sensitivity is accomplished using the mixsyn command in the
robust control toolbox. Similarly, loop-shaping is accomplished using the loopsyn com-
mand in the robust control toolbox.

Fundamental Limitations on Robust Performance
As discussed above, we want to minimize the peaks of S and T to improve robustness. Some
peakedness is inevitable, and there are certain system characteristics that significantly limit
performance and robustness. Most notably, time delays and right-half plane zeros of the
open-loop system will limit the effective control bandwidth and will increase the attainable
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lower-bound for peaks of S and T. This contributes to both degrading performance and
decreasing robustness.

Similarly, a system will suffer from robust performance limitations if the number of poles
exceeds the number of zeros by more than 2. These fundamental limitations are quantified
in the waterbed integrals, which are so named because if you push a waterbed down in one
location, it must rise in a another. Thus, there are limits to how much one can push down
peaks in S without causing other peaks to pop up.

Time delays are relatively easy to understand, since a time delay τ will introduce an
additional phase lag of τω at the frequency ω, limiting how fast the controller can respond
effectively (i.e. bandwidth). Thus, the bandwidth for a controller with acceptable phase
margins is typically ωB < 1/τ .

Following the discussion in [492], these fundamental limitations may be understood in
relation to the limitations of open-loop control based on model inversion. If we consider
high-gain feedback u = K(wr − y) for a system as in Fig. 8.26 and (8.81), but without
disturbances or noise, we have

u = Kε = KSwr . (8.83)

We may write this in terms of the complementary sensitivity T, by noting that since T =
I − S, we have T = L(I + L)−1 = GKS:

u = G−1Twr . (8.84)

Thus, at frequencies where T is nearly the identity I and control is effective, the actuation
is effectively inverting G. Even with sensor-based feedback, perfect control is unattain-
able. For example, if G has right-half plane zeros, then the actuation signal will become
unbounded if the gain K is too aggressive. Similarly, limitations arise with time delays and
when the number of poles of G exceed the number of zeros, as in the case of open-loop
model-based inversion.

As a final illustration of the limitation of right-half plane zeros, we consider the
case of proportional control u = Ky in a single-input, single output system with
G(s) = N(s)/D(s). Here, roots of the numerator N(s) are zeros and roots of the
denominator D(s) are poles. The closed-loop transfer function from reference wr to
sensors s is given by:

y(s)

wr (s)
= GK

1 + GK
= NK/D

1 + NK/D
= NK

D + NK
. (8.85)

For small control gain K , the term NK in the denominator is small, and the poles of the
closed-loop system are near the poles of G, given by roots of D. As K is increased, the NK
term in the denominator begins to dominate, and closed-loop poles are attracted to the roots
of N , which are the open-loop zeros of G. Thus, if there are right-half plane zeros of the
open-loop system G, then high-gain proportional control will drive the system unstable.
These effects are often observed in the root locus plot from classical control theory. In this
way, we see that right-half plane zeros will directly impose limitations on the gain margin
of the controller.
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9 Balanced Models for Control

Many systems of interest are exceedingly high dimensional, making them difficult to char-
acterize. High dimensionality also limits controller robustness due to significant com-
putational time delays. For example, for the governing equations of fluid dynamics, the
resulting discretized equations may have millions or billions of degrees of freedom, making
them expensive to simulate. Thus, significant effort has gone into obtaining reduced-order
models that capture the most relevant mechanisms and are suitable for feedback control.

Unlike reduced-order models based on proper orthogonal decomposition (see Chapters
11 and 12), which order modes based on energy content in the data, here we will discuss
a class of balanced reduced-order models that employ a different inner product to order
modes based on input–output energy. Thus, only modes that are both highly controllable
and highly observable are selected, making balanced models ideal for control applications.
In this chapter we also describe related procedures for model reduction and system identi-
fication, depending on whether or not the user starts with a high-fidelity model or simply
has access to measurement data.

9.1 Model Reduction and System Identification
In many nonlinear systems, it is still possible to use linear control techniques. For example,
in fluid dynamics there are numerous success stories of linear model-based flow control [27,
180, 94], for example to delay transition from laminar to turbulent flow in a spatially
developing boundary layer, to reduce skin-friction drag in wall turbulence, and to stabilize
the flow past an open cavity. However, many linear control approaches do not scale well to
large state spaces, and they may be prohibitively expensive to enact for real-time control
on short timescales. Thus, it is often necessary to develop low-dimensional approximations
of the system for use in real-time feedback control.

There are two broad approaches to obtain reduced-order models (ROMs): First, it is
possible to start with a high-dimensional system, such as the discretized Navier–Stokes
equations, and project the dynamics onto a low-dimensional subspace identified, for exam-
ple, using proper orthogonal decomposition (POD; Chapter 11) [57, 251] and Galerkin
projection [441, 53]. There are numerous variations to this procedure, including the dis-
crete empirical interpolation methods (DEIM; Section 12.5) [127, 419], gappy POD (Sec-
tion 12.1) [179], balanced proper orthogonal decomposition (BPOD; Section 9.2) [554,
458], and many more. The second approach is to collect data from a simulation or an
experiment and identify a low-rank model using data-driven techniques. This approach is
typically called system identification, and is often preferred for control design because of
the relative ease of implementation. Examples include the dynamic mode decomposition
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(DMD; Section 7.2) [472, 456, 535, 317], the eigensystem realization algorithm (ERA;
Section 9.3) [272, 351], the observer–Kalman filter identification (OKID; Section 9.3) [273,
428, 271], NARMAX [59], and the sparse identification of nonlinear dynamics (SINDy;
Section 7.3) [95].

After a linear model has been identified, either by model reduction or system identifica-
tion, it may then be used for model-based control design. However, there are a number of
issues that may arise in practice, as linear model-based control might not work for a large
class of systems. First, the system being modeled may be strongly nonlinear, in which
case the linear approximation might only capture a small portion of the dynamic effects.
Next, the system may be stochastically driven, so that the linear model will average out
the relevant fluctuations. Finally, when control is applied to the full system, the attractor
dynamics may change, rendering the linearized model invalid. Exceptions include the sta-
bilization of fixed points, where feedback control rejects nonlinear disturbances and keeps
the system in a neighborhood of the fixed point where the linearized model is accurate.
There are also methods for system identification and model reduction that are nonlinear,
involve stochasticity, and change with the attractor. However, these methods are typically
advanced and they also may limit the available machinery from control theory.

9.2 Balanced Model Reduction
The high dimensionality and short timescales associated with complex systems may render
the model-based control strategies described in Chapter 8 infeasible for real-time appli-
cations. Moreover, obtaining H2 and H∞ optimal controllers may be computationally
intractable, as they involve either solving a high-dimensional Riccati equation, or an expen-
sive iterative optimization. As has been demonstrated throughout this book, even if the
ambient dimension is large, there may still be a few dominant coherent structures that
characterize the system. Reduced-order models provide efficient, low-dimensional rep-
resentations of these most relevant mechanisms. Low-order models may then be used
to design efficient controllers that can be applied in realtime, even for high-dimensional
systems. An alternative is to develop controllers based on the full-dimensional model and
then apply model reduction techniques directly to the full controller [209, 194, 410, 128].

Model reduction is essentially data reduction that respects the fact that the data is gener-
ated by a dynamic process. If the dynamical system is a linear time-invariant (LTI) input–
output system, then there is a wealth of machinery available for model reduction, and
performance bounds may be quantified. The techniques explored here are based on the
singular value decomposition (SVD; Chapter 1) [212, 106, 211], and the minimal realiza-
tion theory of Ho and Kalman [247, 388]. The general idea is to determine a hierarchical
modal decomposition of the system state that may be truncated at some model order, only
keeping the coherent structures that are most important for control.

The Goal of Model Reduction
Consider a high-dimensional system, depicted schematically in Fig. 9.1,

d

dt
x = Ax + Bu, (9.1a)

y = Cx + Du, (9.1b)
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Figure 9.1 Input–output system. A control-oriented reduced-order model will capture the transfer
function from u to y.

for example from a spatially discretized simulation of a PDE. The primary goal of model
reduction is to find a coordinate transformation x = �x̃ giving rise to a related system
(Ã, B̃, C̃, D̃) with similar input–output characteristics,

d

dt
x̃ = Ãx̃ + B̃u, (9.2a)

y = C̃x̃ + D̃u, (9.2b)

in terms of a state x̃ ∈ Rr with reduced dimension, r � n. Note that u and y are the same
in (9.1) and (9.2) even though the system states are different. Obtaining the projection
operator � will be the focus of this section.

As a motivating example, consider the following simplified model:

d

dt

[
x1

x2

]
=
[−2 0

0 −1

] [
x1

x2

]
+
[

1
10−10

]
u (9.3a)

y = [1 10−10
] [x1

x2

]
. (9.3b)

In this case, the state x2 is barely controllable and barely observable. Simply choosing
x̃ = x1 will result in a reduced-order model that faithfully captures the input–output
dynamics. Although the choice x̃ = x1 seems intuitive in this extreme case, many model
reduction techniques would erroneously favor the state x̃ = x2, since it is more lightly
damped. Throughout this section, we will investigate how to accurately and efficiently find
the transformation matrix � that best captures the input–output dynamics.

The proper orthogonal decomposition [57, 251] from Chapter 11 provides a transform
matrix �, the columns of which are modes that are ordered based on energy content.1

POD has been widely used to generate ROMs of complex systems, many for control, and
it is guaranteed to provide an optimal low-rank basis to capture the maximal energy or
variance in a data set. However, it may be the case that the most energetic modes are nearly
uncontrollable or unobservable, and therefore may not be relevant for control. Similarly,
in many cases the most controllable and observable state directions may have very low
energy; for example, acoustic modes typically have very low energy, yet they mediate the
dominant input–output dynamics in many fluid systems. The rudder on a ship provides a
good analogy: although it accounts for a small amount of the total energy, it is dynamically
important for control.

1 When the training data consists of velocity fields, for example from a high-dimensional discretized fluid
system, then the singular values literally indicate the kinetic energy content of the associated mode. It is
common to refer to POD modes as being ordered by energy content, even in other applications, although
variance is more technically correct.
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Instead of ordering modes based on energy, it is possible to determine a hierarchy of
modes that are most controllable and observable, therefore capturing the most input–output
information. These modes give rise to balanced models, giving equal weighting to the
controllability and observability of a state via a coordinate transformation that makes the
controllability and observability Gramians equal and diagonal. These models have been
extremely successful, although computing a balanced model using traditional methods
is prohibitively expensive for high-dimensional systems. In this section, we describe the
balancing procedure, as well as modern methods for efficient computation of balanced
models. A computationally efficient suite of algorithms for model reduction and system
identification may be found in [50].

A balanced reduced-order model should map inputs to outputs as faithfully as possible
for a given model order r . It is therefore important to introduce an operator norm to
quantify how similarly (9.1) and (9.2) act on a given set of inputs. Typically, we take the
infinity norm of the difference between the transfer functions G(s) and Gr (s) obtained
from the full system (9.1) and reduced system (9.2), respectively. This norm is given by:

‖G‖∞ � max
ω

σ1 (G(iω)) . (9.4)

See Section 8.8 for a primer on transfer functions. To summarize, we seek a reduced-order
model (9.2) of low order, r � n, so the operator norm ‖G − Gr‖∞ is small.

Change of Variables in Control Systems
The balanced model reduction problem may be formulated in terms of first finding a
coordinate transformation

x = Tz, (9.5)

that hierarchically orders the states in z in terms of their ability to capture the input–output
characteristics of the system. We will begin by considering an invertible transformation
T ∈ Rn×n, and then provide a method to compute just the first r columns, which will
comprise the transformation � in (9.2). Thus, it will be possible to retain only the first r

most controllable/observable states, while truncating the rest. This is similar to the change
of variables into eigenvector coordinates in (8.18), except that we emphasize controllability
and observability rather than characteristics of the dynamics.

Substituting Tz into (9.1) gives:

d

dt
Tz = ATz + Bu (9.6a)

y = CTz + Du. (9.6b)

Finally, multiplying (9.6a) by T−1 yields:

d

dt
z = T−1ATz + T−1Bu (9.7a)

y = CTz + Du. (9.7b)

This results in the following transformed equations:

d

dt
z = Âz + B̂u (9.8a)
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y = Ĉz + Du, (9.8b)

where Â = T−1AT, B̂ = T−1B, and Ĉ = CT. Note that when the columns of T are
orthonormal, the change of coordinates becomes:

d

dt
z = T∗ATz + T∗Bu (9.9a)

y = CTz + Du. (9.9b)

Gramians and Coordinate Transformations
The controllability and observability Gramians each establish an inner product on state
space in terms of how controllable or observable a given state is, respectively. As such,
Gramians depend on the particular choice of coordinate system and will transform under
a change of coordinates. In the coordinate system z given by (9.5), the controllability
Gramian becomes:

Ŵc =
∫ ∞

0
eÂτ B̂B̂∗eÂ

∗
τ dτ (9.10a)

=
∫ ∞

0
eT−1ATτ T−1BB∗T−∗eT∗A∗T−∗τ dτ (9.10b)

=
∫ ∞

0
T−1eAτ TT−1BB∗T−∗T∗eA∗τ T−∗ dτ (9.10c)

= T−1
(∫ ∞

0
eAτ BB∗eAτ

dτ

)
T−∗ (9.10d)

= T−1WcT−∗. (9.10e)

Note that here we introduce T−∗ := (T−1
)∗ = (T∗)−1. The observability Gramian trans-

forms similarly:

Ŵo = T∗WoT, (9.11)

which is an exercise for the reader. Both Gramians transform as tensors (i.e., in terms of
the transform matrix T and its transpose, rather than T and its inverse), which is consistent
with them inducing an inner product on state-space.

Simple Rescaling
This example, modified from Moore 1981 [388], demonstrates the ability to balance a
system through a change of coordinates. Consider the system

d

dt

[
x1

x2

]
=
[−1 0

0 −10

] [
x1

x2

]
+
[

10−3

103

]
u (9.12a)

y = [103 10−3
] [x1

x2

]
. (9.12b)

In this example, the first state x1 is barely controllable, while the second state is barely
observable. However, under the change of coordinates z1 = 103x1 and z2 = 10−3x2, the
system becomes balanced:
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d

dt

[
z1

z2

]
=
[−1 0

0 −10

] [
z1

z2

]
+
[

1
1

]
u (9.13a)

y = [1 1
] [z1

z2

]
. (9.13b)

In this example, the coordinate change simply rescales the state x. For instance, it may
be that the first state had units of millimeters while the second state had units of kilome-
ters. Writing both states in meters balances the dynamics; that is, the controllability and
observability Gramians are equal and diagonal.

Balancing Transformations
Now we are ready to derive the balancing coordinate transformation T that makes the
controllability and observability Gramians equal and diagonal:

Ŵc = Ŵo = �. (9.14)

First, consider the product of the Gramians from (9.10) and (9.11):

ŴcŴo = T−1WcWoT. (9.15)

Plugging in the desired Ŵc = Ŵo = � yields

T−1WcWoT = �2 	⇒ WcWoT = T�2. (9.16)

The latter expression in (9.16) is the equation for the eigendecomposition of WcWo, the
product of the Gramians in the original coordinates. Thus, the balancing transformation
T is related to the eigendecomposition of WcWo. The expression 9.16 is valid for any
scaling of the eigenvectors, and the correct rescaling must be chosen to exactly balance the
Gramians. In other words, there are many such transformations T that make the product
ŴcŴo = �2, but where the individual Gramians are not equal (for example diagonal
Gramians Ŵc = �c and Ŵo = �o will satisfy (9.16) if �c�o = �2).

We will introduce the matrix S = T−1 to simplify notation.

Scaling Eigenvectors for the balancing Transformation
To find the correct scaling of eigenvectors to make Ŵc = Ŵo = �, first consider the
simplified case of balancing the first diagonal element of �. Let ξu denote the unscaled
first column of T, and let ηu denote the unscaled first row of S = T−1. Then

ηuWcη
∗
u = σc (9.17a)

ξ∗
uWoξu = σo. (9.17b)

The first element of the diagonalized controllability Gramian is thus σc, while the first
element of the diagonalized observability Gramian is σo. If we scale the eigenvector ξu

by σs , then the inverse eigenvector ηu is scaled by σ−1
s . Transforming via the new scaled

eigenvectors ξ s = σsξu and ηs = σ−1
s ηu, yields:

ηsWcη
∗
s = σ−2

s σc, (9.18a)

ξ∗
s Woξ s = σ 2

s σo. (9.18b)
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Thus, for the two Gramians to be equal,

σ−2
s σc = σ 2

s σo 	⇒ σs =
(

σc

σo

)1/4

. (9.19)

To balance every diagonal entry of the controllability and observability Gramians, we
first consider the unscaled eigenvector transformation Tu from (9.16); the subscript u sim-
ply denotes unscaled. As an example, we use the standard scaling in most computational
software so that the columns of Tu have unit norm. Then both Gramians are diagonalized,
but are not necessarily equal:

T−1
u WcT−∗

u = �c (9.20a)

T∗
uWoTu = �o. (9.20b)

The scaling that exactly balances these Gramians is then given by �s = �
1/4
c �

−1/4
o . Thus,

the exact balancing transformation is given by

T = Tu�s . (9.21)

It is possible to directly confirm that this transformation balances the Gramians:

(Tu�s)
−1Wc (Tu�s)

−∗ = �−1
s T−1

u WcT−∗
u �−1

s = �−1
s �c�

−1
s = �

1/2
c �

1/2
o (9.22a)

(Tu�s)
∗Wo (Tu�s) = �sT∗

uWoTu�s = �s�o�s = �
1/2
c �

1/2
o . (9.22b)

Manipulations 9.22a and 9.22b rely on the fact that diagonal matrices commute, so that
�c�o = �o�c, etc.

Example of the Balancing Transform and Gramians
Before confronting the practical challenges associated with accurately and efficiently com-
puting the balancing transformation, it is helpful to consider an illustrative example.

In Matlab, computing the balanced system and the balancing transformation is a simple
one-line command:

[sysb,g,Ti,T] = balreal(sys); % Balance system

In this code, T is the transformation, Ti is the inverse transformation, sysb is the balanced
system, and g is a vector containing the diagonal elements of the balanced Gramians.

The following example illustrates the balanced realization for a two-dimensional system.
First, we generate a system and compute its balanced realization, along with the Gramians
for each system. Next, we visualize the Gramians of the unbalanced and balanced systems
in Fig. 9.2.

Code 9.1 Obtaining a balanced realization.

A = [-.75 1; -.3 -.75];
B = [2; 1];
C = [1 2];
D = 0;

sys = ss(A,B,C,D);

Wc = gram(sys,’c’); % Controllability Gramian
Wo = gram(sys,’o’); % Observability Gramian
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x1

x2

Wc

Wo

Wb‖x‖ = 1

Figure 9.2 Illustration of balancing transformation on Gramians. The reachable set with unit control

input is shown in red, given by W1/2
c x for ‖x‖ = 1. The corresponding observable set is shown in

blue. Under the balancing transformation T, the Gramians are equal, shown in purple.

[sysb,g,Ti,T] = balreal(sys); % Balance the system

BWc = gram(sysb,’c’) % Balanced Gramians
BWo = gram(sysb,’o’)

The resulting balanced Gramians are equal, diagonal, and ordered from most control-
lable/observable mode to least:

>>BWc =
1.9439 -0.0000

-0.0000 0.3207

>>BWo =
1.9439 0.0000
0.0000 0.3207

To visualize the Gramians in Fig. 9.2, we first recall that the distance the system can go
in a direction x with a unit actuation input is given by x∗Wcx. Thus, the controllability
Gramian may be visualized by plotting W1/2

c x for x on a sphere with ‖x‖ = 1. The
observability Gramian may be similarly visualized.

In this example, we see that the most controllable and observable directions may not be
well aligned. However, by a change of coordinates, it is possible to find a new direction that
is the most jointly controllable and observable. It is then possible to represent the system
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in this one-dimensional subspace, while still capturing a significant portion of the input–
output energy. If the red and blue Gramians were exactly perpendicular, so that the most
controllable direction was the least observable direction, and vice versa, then the balanced
Gramian would be a circle. In this case, there is no preferred state direction, and both
directions are equally important for the input–output behavior.

Instead of using the balreal command, it is possible to manually construct the balancing
transformation from the eigendecomposition of WcWo, as described earlier and provided
in code available online.

Balanced Truncation
We have now shown that it is possible to define a change of coordinates so that the control-
lability and observability Gramians are equal and diagonal. Moreover, these new coordi-
nates may be ranked hierarchically in terms of their joint controllability and observability.
It may be possible to truncate these coordinates and keep only the most controllable/ob-
servable directions, resulting in a reduced-order model that faithfully captures input–output
dynamics.

Given the new coordinates z = T−1x ∈ Rn, it is possible to define a reduced-order state
x̃ ∈ Rr , as

z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1
...

zr

zr+1
...

zn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎬
⎭ x̃

(9.23)

in terms of the first r most controllable and observable directions. If we partition the
balancing transformation T and inverse transformation S = T−1 into the first r modes
to be retained and the last n − r modes to be truncated,

T = [� Tt

]
, S =

[
�∗

St

]
, (9.24)

then it is possible to rewrite the transformed dynamics in (9.7) as:

d

dt

[
x̃
zt

]
=
[

�∗A� �∗ATt

StA� StATt

] [
x̃
zt

]
+
[

�∗B
StB

]
u (9.25a)

y = [ C� CTt

] [ x̃
zt

]
+ Du. (9.25b)

In balanced truncation, the state zt is simply truncated (i.e., discarded and set equal to zero),
and only the x̃ equations remain:

d

dt
x̃ = �∗A�x̃ + �∗Bu (9.26a)

y = C�x̃ + Du. (9.26b)
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Only the first r columns of T and S∗ = T−∗ are required to construct � and �, and thus
computing the entire balancing transformation T is unnecessary. Note that the matrix �

here is different than the matrix of DMD modes in Section 7.2. The computation of � and
� without T will be discussed in the following sections. A key benefit of balanced trun-
cation is the existence of upper and lower bounds on the error of a given order truncation:

Upper bound: ‖G − Gr‖∞ ≤ 2
n∑

j=r+1

σj , (9.27a)

Lower bound: ‖G − Gr‖∞ > σr+1, (9.27b)

where σj is the j th diagonal entry of the balanced Gramians. The diagonal entries of � are
also known as Hankel singular values.

Computing Balanced Realizations
In the previous section we demonstrated the feasibility of obtaining a coordinate transfor-
mation that balances the controllability and observability Gramians. However, the com-
putation of this balancing transformation is nontrivial, and significant work has gone into
obtaining accurate and efficient methods, starting with Moore in 1981 [388], and continu-
ing with Lall, Marsden, and Glavaški in 2002 [321], Willcox and Peraire in 2002 [554] and
Rowley in 2005 [458]. For an excellent and complete treatment of balanced realizations
and model reduction, see Antoulas [17].

In practice, computing the Gramians Wc and Wo and the eigendecomposition of the
product WcWo in (9.16) may be prohibitively expensive for high-dimensional systems.
Instead, the balancing transformation may be approximated from impulse-response data,
utilizing the singular value decomposition for efficient extraction of the most relevant
subspaces.

We will first show that Gramians may be approximated via a snapshot matrix from
impulse-response experiments/simulations. Then, we will show how the balancing trans-
formation may be obtained from this data.

Empirical Gramians
In practice, computing Gramians via the Lyapunov equation is computationally expensive,
with computational complexity of O(n3). Instead, the Gramians may be approximated by
full-state measurements of the discrete-time direct and adjoint systems:

direct: xk+1 = Adxk + Bduk, (9.28a)

adjoint: xk+1 = A∗
dxk + C∗

dyk. (9.28b)

(9.28a) is the discrete-time dynamic update equation from (8.21), and (9.28b) is the adjoint
equation. The matrices Ad , Bd , and Cd are the discrete-time system matrices from (8.22).
Note that the adjoint equation is generally nonphysical, and must be simulated; thus the
methods here apply to analytical equations and simulations, but not to experimental data.
An alternative formulation that does not rely on adjoint data, and therefore generalizes to
experiments, will be provided in Section 9.3.
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Computing the impulse-response of the direct and adjoint systems yields the following
discrete-time snapshot matrices:

Cd =
[
Bd AdBd · · · Amc−1

d Bd

]
Od =

⎡
⎢⎢⎢⎣

Cd

CdAd

...

CdAmo−1
d

⎤
⎥⎥⎥⎦ . (9.29)

Note that when mc = n, Cd is the discrete-time controllability matrix and when mo = n,
Od is the discrete-time observability matrix; however, we generally consider mc,mo � n.
These matrices may also be obtained by sampling the continuous-time direct and adjoint
systems at a regular interval �t .

It is now possible to compute empirical Gramians that approximate the true Gramians
without solving the Lyapunov equations in (8.42) and (8.43):

Wc ≈ We
c = CdC∗

d , (9.30a)

Wo ≈ We
o = O∗

dOd . (9.30b)

The empirical Gramians essentially comprise a Riemann sum approximation of the integral
in the continuous-time Gramians, which becomes exact as the time-step of the discrete-
time system becomes arbitrarily small and the duration of the impulse response becomes
arbitrarily large. In practice, the impulse-response snapshots should be collected until the
lightly-damped transients die out. The method of empirical Gramians is quite efficient,
and is widely used [388, 320, 321, 554, 458]. Note that p adjoint impulse responses are
required, where p is the number of outputs. This becomes intractable when there are a large
number of outputs (e.g., full state measurements), motivating the output projection in the
next section.

Balanced POD
Instead of computing the eigendecomposition of WcWo, which is an n × n matrix, it is
possible to compute the balancing transformation via the singular value decomposition of
the product of the snapshot matrices,

OdCd , (9.31)

reminiscent of the method of snapshots from Section 1.3 [490]. This is the approach taken
by Rowley [458].

First, define the generalized Hankel matrix as the product of the adjoint (Od ) and direct
(Cd ) snapshot matrices from (9.29), for the discrete-time system:

H = OdCd =

⎡
⎢⎢⎢⎣

Cd

CdAd

...

CdAmo−1
d

⎤
⎥⎥⎥⎦
[
Bd AdBd · · · Amc−1

d Bd

]
(9.32a)
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=

⎡
⎢⎢⎢⎢⎣

CdBd CdAdBd · · · CdAmc−1
d Bd

CdAdBd CdA2
dBd · · · CdAmc

d Bd

...
...

. . .
...

CdAmo−1
d Bd CdAmo

d Bd · · · CdAmc+mo−2
d Bd

⎤
⎥⎥⎥⎥⎦ . (9.32b)

Next, we factor H using the SVD:

H = U�V∗ =
[
Ũ Ut

] [
�̃ 0
0 �t

][
Ṽ

∗

V∗
t

]
≈ Ũ�̃Ṽ

∗
. (9.33)

For a given desired model order r � n, only the first r columns of U and V are retained,
along with the first r × r block of �; the remaining contribution from Ut�tV∗

t may be
truncated. This yields a bi-orthogonal set of modes given by:

direct modes: � = CdṼ�̃
−1/2

, (9.34a)

adjoint modes: � = O∗
dŨ�̃

−1/2
. (9.34b)

The direct modes � ∈ Rn×r and adjoint modes � ∈ Rn×r are bi-orthogonal, �∗� = Ir×r ,
and Rowley [458] showed that they establish the change of coordinates that balance the
truncated empirical Gramians. Thus, � approximates the first r-columns of the full n × n

balancing transformation, T, and �∗ approximates the first r-rows of the n × n inverse
balancing transformation, S = T−1.

Now, it is possible to project the original system onto these modes, yielding a balanced
reduced-order model of order r:

Ã = �∗Ad�, (9.35a)

B̃ = �∗Bd , (9.35b)

C̃ = Cd�. (9.35c)

It is possible to compute the reduced system dynamics in (9.35a) without having direct
access to Ad . In some cases, Ad may be exceedingly large and unwieldy, and instead it is
only possible to evaluate the action of this matrix on an input vector. For example, in many
modern fluid dynamics codes the matrix Ad is not actually represented, but because it is
sparse, it is possible to implement efficient routines to multiply this matrix by a vector.

It is important to note that the reduced-order model in (9.35) is formulated in discrete
time, as it is based on discrete-time empirical snapshot matrices. However, it is simple to
obtain the corresponding continuous-time system:

>>sysD = ss(Atilde,Btilde,Ctilde,D,dt); % Discrete-time
>>sysC = d2c(sysD); % Continuous-time

In this example, D is the same in continuous time and discrete time, and in the full-order
and reduced-order models.

Note that a BPOD model may not exactly satisfy the upper bound from balanced trun-
cation (see (9.27)) due to errors in the empirical Gramians.

Output Projection
Often, in high-dimensional simulations, we assume full-state measurements, so that p = n

is exceedingly large. To avoid computing p = n adjoint simulations, it is possible instead
to solve an output-projected adjoint equation [458]:
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xk+1 = A∗
dxk + C∗

dŨy (9.36)

where Ũ is a matrix containing the first r singular vectors of Cd . Thus, we first identify a
low-dimensional POD subspace Ũ from a direct impulse response, and then only perform
adjoint impulse response simulations by exciting these few POD coefficient measurements.
More generally, if y is high dimensional but does not measure the full state, it is possible to
use a POD subspace trained on the measurements, given by the first r singular vectors Ũ of
CdCd . Adjoint impulse responses may then be performed in these output POD directions.

Data Collection and Stacking
The powers mc and mo in (9.32) signify that data must be collected until the matrices Cd

and O∗
d are full rank, after which the controllable/observable subspaces have been sampled.

Unless we collect data until transients decay, the true Gramians are only approximately
balanced. Instead, it is possible to collect data until the Hankel matrix is full rank, balance
the resulting model, and then truncate. This more efficient approach is developed in [533]
and [346].

The snapshot matrices in (9.29) are generated from impulse-response simulations of the
direct (9.28a) and adjoint (9.36) systems. These time-series snapshots are then interleaved
to form the snapshot matrices.

Historical Note
The balanced POD method described in the previous subsection originated with the seminal
work of Moore in 1981 [388], which provided a data-driven generalization of the minimal
realization theory of Ho and Kalman [247]. Until then, minimal realizations were defined
in terms of idealized controllable and observable subspaces, which neglected the subtlety
of degrees of controllability and observability.

Moore’s paper introduced a number of critical concepts that bridged the gap from theory
to reality. First, he established a connection between principal component analysis (PCA)
and Gramians, showing that information about degrees of controllability and observability
may be mined from data via the SVD. Next, Moore showed that a balancing transfor-
mation exists that makes the Gramians equal, diagonal, and hierarchically ordered by
balanced controllability and observability; moreover, he provides an algorithm to compute
this transformation. This set the stage for principled model reduction, whereby states may
be truncated based on their joint controllability and observability. Moore further introduced
the notion of an empirical Gramian, although he didn’t use this terminology. He also
realized that computing Wc and Wo directly is less accurate than computing the SVD
of the empirical snapshot matrices from the direct and adjoint systems, and he avoided
directly computing the eigendecomposition of WcWo by using these SVD transformations.
In 2002, Lall, Marsden, and Glavaški in 2002 [321] generalized this theory to nonlinear
systems.

One drawback of Moore’s approach is that he computed the entire n × n balancing
transformation, which is not suitable for exceedingly high-dimensional systems. In 2002,
Willcox and Peraire [554] generalized the method to high-dimensional systems, introduc-
ing a variant based on the rank-r decompositions of Wc and Wo obtained from the direct
and adjoint snapshot matrices. It is then possible to compute the eigendecomposition of
WcWo using efficient eigenvalue solvers without ever actually writing down the full n × n

matrices. However, this approach has the drawback of requiring as many adjoint impulse-
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response simulations as the number of output equations, which may be exceedingly large
for full-state measurements. In 2005, Rowley [458] addressed this issue by introducing the
output projection, discussed previously, which limits the number of adjoint simulations to
the number of relevant POD modes in the data. He also showed that it is possible to use the
eigendecomposition of the product OdCd . The product OdCd is often smaller, and these
computations may be more accurate.

It is interesting to note that a nearly equivalent formulation was developed twenty years
earlier in the field of system identification. The so-called eigensystem realization algorithm
(ERA) [272], introduced in 1985 by Juang and Pappa, obtains equivalent balanced models
without the need for adjoint data, making it useful for system identification in experiments.
This connection between ERA and BPOD was established by Ma et al. in 2011 [351].

Balanced Model Reduction Example
In this example we will demonstrate the computation of balanced truncation and balanced
POD models on a random state-space system with n = 100 states, q = 2 inputs, and p = 2
outputs. First, we generate a system in Matlab:

q = 2; % Number of inputs
p = 2; % Number of outputs
n = 100; % State dimension
sysFull = drss(n,p,q); % Discrete random system

Next, we compute the Hankel singular values, which are plotted in Fig. 9.3. We see that
r = 10 modes captures over 90% of the input–output energy.

hsvs = hsvd(sysFull); % Hankel singular values

Now we construct an exact balanced truncation model with order r = 10:

%% Exact balanced truncation
sysBT = balred(sysFull,r); % Balanced truncation

The full-order system, and the balanced truncation and balanced POD models are com-
pared in Fig. 9.4. The BPOD model is computed using Code 9.2. It can be seen that the
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Figure 9.3 Hankel singular values (left) and cumulative energy (right) for random state space system
with n = 100, p = q = 2. The first r = 10 HSVs contain 92.9% of the energy.
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Figure 9.4 Impulse response of full-state model with n = 100, p = q = 2, along with balanced
truncation and balanced POD models with r = 10.

balanced model accurately captures the dominant input–output dynamics, even when only
10% of the modes are kept.

Code 9.2 Balanced proper orthogonal decomposition (BPOD).

sysBPOD = BPOD(sysFull,sysAdj,r)

[yFull,t,xFull] = impulse(sysFull,0:1:(r*5)+1);
sysAdj = ss(sysFull.A’,sysFull.C’,sysFull.B’,sysFull.D’,-1);
[yAdj,t,xAdj] = impulse(sysAdj,0:1:(r*5)+1);
% Not the fastest way to compute, but illustrative
% Both xAdj and xFull are size m x n x 2
HankelOC = []; % Compute Hankel matrix H=OC
for i=2:size(xAdj,1) % Start at 2 to avoid the D matrix

Hrow = [];
for j=2:size(xFull,1)

Ystar = permute(squeeze(xAdj(i,:,:)),[2 1]);
MarkovParameter = Ystar*squeeze(xFull(j,:,:));
Hrow = [Hrow MarkovParameter];

end
HankelOC = [HankelOC; Hrow];

end
[U,Sig,V] = svd(HankelOC);
Xdata = [];
Ydata = [];
for i=2:size(xFull,1) % Start at 2 to avoid the D matrix

Xdata = [Xdata squeeze(xFull(i,:,:))];
Ydata = [Ydata squeeze(xAdj(i,:,:))];

end
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Phi = Xdata*V*Sig^(-1/2);
Psi = Ydata*U*Sig^(-1/2);
Ar = Psi(:,1:r)’*sysFull.a*Phi(:,1:r);
Br = Psi(:,1:r)’*sysFull.b;
Cr = sysFull.c*Phi(:,1:r);
Dr = sysFull.d;
sysBPOD = ss(Ar,Br,Cr,Dr,-1);

9.3 System Identification
In contrast to model reduction, where the system model (A, B, C, D) was known, system
identification is purely data-driven. System identification may be thought of as a form of
machine learning, where an input–output map of a system is learned from training data
in a representation that generalizes to data that was not in the training set. There is a
vast literature on methods for system identification [271, 338], and many of the leading
methods are based on a form of dynamic regression that fits models based on data, such
as the DMD from Section 7.2. For this section, we consider the eigensystem realization
algorithm (ERA) and observer-Kalman filter identification (OKID) methods because of
their connection to balanced model reduction [388, 458, 351, 535] and their successful
application in high-dimensional systems such as vibration control of aerospace structures
and closed-loop flow control [27, 26, 261]. The ERA/OKID procedure is also applicable to
multiple-input, multiple-output (MIMO) systems. Other methods include the autoregres-
sive moving average (ARMA) and autoregressive moving average with exogenous inputs
(ARMAX) models [552, 72], the nonlinear autoregressive-moving average with exogenous
inputs (NARMAX) [59] model, and the SINDy method from Section 7.3.

Eigensystem Realization Algorithm
The eigensystem realization algorithm produces low-dimensional linear input–output mod-
els from sensor measurements of an impulse response experiment, based on the “minimal
realization" theory of Ho and Kalman [247]. The modern theory was developed to identify
structural models for various spacecraft [272], and it has been shown by Ma et al. [351]
that ERA models are equivalent to BPOD models2. However, ERA is based entirely on
impulse response measurements and does not require prior knowledge of a model.

We consider a discrete-time system, as described in Section 8.2:

xk+1 = Adxk + Bduk (9.37a)

yk = Cdxk + Dduk. (9.37b)

A discrete-time delta function input in the actuation u:

uδ
k � uδ(k�t) =

{
I, k = 0
0, k = 1, 2, 3, · · · (9.38)

2 BPOD and ERA models both balance the empirical Gramians and approximate balanced truncation [388] for
high-dimensional systems, given a sufficient volume of data.
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gives rise to a discrete-time impulse response in the sensors y:

yδ
k � yδ(k�t) =

{
Dd , k = 0

CdAk−1
d Bd , k = 1, 2, 3, · · · .

(9.39)

In an experiment or simulation, typically q impulse responses are performed, one for
each of the q separate input channels. The output responses are collected for each impulsive
input, and at a given time-step k, the output vector in response to the j -th impulsive input
will form the j -th column of yδ

k . Thus, each of the yδ
k is a p × q matrix CAk−1B. Note

that the system matrices (A, B, C, D) don’t actually need to exist, as the method in the next
section is purely data-driven.

The Hankel matrix H from (9.32), is formed by stacking shifted time-series of impulse-
response measurements into a matrix, as in the HAVOK method from Section 7.5:

H =

⎡
⎢⎢⎢⎢⎣

yδ
1 yδ

2 · · · yδ
mc

yδ
2 yδ

3 · · · yδ
mc+1

...
...

. . .
...

yδ
mo

yδ
mo+1 · · · yδ

mc+mo−1

⎤
⎥⎥⎥⎥⎦ (9.40a)

=

⎡
⎢⎢⎢⎢⎣

CdBd CdAdBd · · · CdAmc−1
d Bd

CdAdBd CdA2
dBd · · · CdAmc

d Bd

...
...

. . .
...

CdAmo−1
d Bd CdAmo

d Bd · · · CdAmc+mo−2
d Bd

⎤
⎥⎥⎥⎥⎦ . (9.40b)

The matrix H may be constructed purely from measurements yδ , without separately con-
structing Od and Cd . Thus, we do not need access to adjoint equations.

Taking the SVD of the Hankel matrix yields the dominant temporal patterns in the time-
series data:

H = U�V∗ =
[
Ũ Ut

] [
�̃ 0
0 �t

][
Ṽ

∗

V∗
t

]
≈ Ũ�̃Ṽ

∗
. (9.41)

The small small singular values in �t are truncated, and only the first r singular values in
�̃ are retained. The columns of Ũ and Ṽ are eigen-time-delay coordinates.

Until this point, the ERA algorithm closely resembles the BPOD procedure from
Section 9.2. However, we don’t require direct access to Od and Cd or the system
(A, B, C, D) to construct the direct and adjoint balancing transformations. Instead, with
sensor measurements from an impulse-response experiment, it is also possible to create a
second, shifted Hankel matrix H′:

H′ =

⎡
⎢⎢⎢⎢⎣

y2 yδ
3 · · · yδ

mc+1
yδ

3 yδ
4 · · · yδ

mc+2
...

...
. . .

...

yδ
mo+1 yδ

mo+2 · · · yδ
mc+mo

⎤
⎥⎥⎥⎥⎦ (9.42a)
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=

⎡
⎢⎢⎢⎢⎣

CdAdBd CdA2
dBd · · · CdAmc

d Bd

CdA2
dBd CdA3

dBd · · · CdAmc+1
d Bd

...
...

. . .
...

CdAmo

d Bd CdAmo+1
d Bd · · · CdAmc+mo−1

d Bd

⎤
⎥⎥⎥⎥⎦ = OdACd . (9.42b)

Based on the matrices H and H′, we are able to construct a reduced-order model as
follows:

Ã = �̃
−1/2

Ũ
∗
H′Ṽ�̃

−1/2; (9.43a)

B̃ = �̃
1/2

Ṽ
∗
[

Ip 0
0 0

]
; (9.43b)

C̃ =
[

Iq 0
0 0

]
Ũ�̃

1/2
. (9.43c)

Here Ip is the p × p identity matrix, which extracts the first p columns, and Iq is the
q × q identity matrix, which extracts the first q rows. Thus, we express the input–output
dynamics in terms of a reduced system with a low-dimensional state x̃ ∈ Rr :

x̃k+1 = Ãx̃k + B̃u (9.44a)

y = C̃x̃k. (9.44b)

H and H′ are constructed from impulse response simulations/experiments, without the
need for storing direct or adjoint snapshots, as in other balanced model reduction tech-
niques. However, if full-state snapshots are available, for example, by collecting velocity
fields in simulations or PIV experiments, it is then possible to construct direct modes. These
full-state snapshots form Cd , and modes can be constructed by:

� = CdṼ�̃
−1/2

. (9.45)

These modes may then be used to approximate the full-state of the high-dimensional system
from the low-dimensional model in (9.44) by:

x ≈ �x̃. (9.46)

If enough data is collected when constructing the Hankel matrix H, then ERA balances
the empirical controllability and observability Gramians, OdO∗

d and C∗
dCd . However, if

less data is collected, so that lightly damped transients do not have time to decay, then
ERA will only approximately balance the system. It is instead possible to collect just
enough data so that the Hankel matrix H reaches numerical full-rank (i.e., so that remaining
singular values are below a threshold tolerance), and compute an ERA model. The resulting
ERA model will typically have a relatively low order, given by the numerical rank of the
controllability and observability subspaces. It may then be possible to apply exact balanced
truncation to this smaller model, as is advocated in [533] and [346].
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The code to compute ERA is provided in Code 9.3.

Code 9.3 Eigensystem realization algorithm.

function [Ar,Br,Cr,Dr,HSVs] = ERA(YY,m,n,nin,nout,r)
for i=1:nout

for j=1:nin
Dr(i,j) = YY(i,j,1);
Y(i,j,:) = YY(i,j,2:end);

end
end

% Yss = Y(1,1,end);
% Y = Y-Yss;
% Y(i,j,k)::
% i refers to i-th output
% j refers to j-th input
% k refers to k-th timestep

% nin,nout number of inputs and outputs
% m,n dimensions of Hankel matrix
% r, dimensions of reduced model

assert(length(Y(:,1,1))==nout);
assert(length(Y(1,:,1))==nin);
assert(length(Y(1,1,:))>=m+n);

for i=1:m
for j=1:n

for Q=1:nout
for P=1:nin

H(nout*i-nout+Q,nin*j-nin+P) = Y(Q,P,i+j-1);
H2(nout*i-nout+Q,nin*j-nin+P) = Y(Q,P,i+j);

end
end

end
end

[U,S,V] = svd(H,’econ’);
Sigma = S(1:r,1:r);
Ur = U(:,1:r);
Vr = V(:,1:r);
Ar = Sigma^(-.5)*Ur’*H2*Vr*Sigma^(-.5);
Br = Sigma^(-.5)*Ur’*H(:,1:nin);
Cr = H(1:nout,:)*Vr*Sigma^(-.5);
HSVs = diag(S);

Observer Kalman Filter Identification
OKID was developed to complement the ERA for lightly damped experimental systems
with noise [273]. In practice, performing isolated impulse response experiments is chal-
lenging, and the effect of measurement noise can contaminate results. Moreover, if there is
a large separation of timescales, then a tremendous amount of data must be collected to use
ERA. This section poses the general problem of approximating the impulse response from
arbitrary input–output data. Typically, one would identify reduced-order models according
to the following general procedure:
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Figure 9.5 Schematic overview of OKID procedure. The output of OKID is an impulse response that
can be used for system identification via ERA.

1. Collect the output in response to a pseudo-random input.
2. This information is passed through the OKID algorithm to obtain the de-noised linear

impulse response.
3. The impulse response is passed through the ERA to obtain a reduced-order state-

space system.

The output yk in response to a general input signal uk , for zero initial condition x0 = 0,
is given by:

y0 = Ddu0 (9.47a)

y1 = CdBdu0 + Ddu1 (9.47b)

y2 = CdAdBdu0 + CdBdu1 + Ddu2 (9.47c)

· · ·
yk = CdAk−1

d Bdu0 + CdAk−2
d Bdu1 + · · · + CdBduk−1 + Dduk. (9.47d)

Note that there is no C term in the expression for y0 since there is zero initial condition
x0 = 0. This progression of measurements yk may be further simplified and expressed in
terms of impulse-response measurements yδ

k:

[
y0 y1 · · · ym

]
︸ ︷︷ ︸

S

= [yδ
0 yδ

1 · · · yδ
m

]
︸ ︷︷ ︸

Sδ

⎡
⎢⎢⎢⎣

u0 u1 · · · um

0 u0 · · · um−1
...

...
. . .

...

0 0 · · · u0

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
B

. (9.48)

It is often possible to invert the matrix of control inputs, B, to solve for the Markov param-
eters Sδ . However, B may either be un-invertible, or inversion may be ill-conditioned.
In addition, B is large for lightly damped systems, making inversion computationally
expensive. Finally, noise is not optimally filtered by simply inverting B to solve for the
Markov parameters.

The OKID method addresses each of these issues. Instead of the original discrete-time
system, we now introduce an optimal observer system:

x̂k+1 = Ad x̂k + Kf

(
yk − ŷk

)+ Bduk (9.49a)

ŷk = Cd x̂k + Dduk, (9.49b)

which may be re-written as:
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x̂k+1 = (Ad − Kf Cd)︸ ︷︷ ︸
Ād

x̂k + [Bd − Kf Dd , Kf

]
︸ ︷︷ ︸

B̄d

[
uk

yk

]
. (9.50)

Recall from earlier that if the system is observable, it is possible to place the poles
of Ad − Kf Cd anywhere we like. However, depending on the amount of noise in the
measurements, the magnitude of process noise, and uncertainty in our model, there are
optimal pole locations that are given by the Kalman filter (recall Section 8.5). We may now
solve for the observer Markov parameters S̄δ of the system in (9.50) in terms of measured
inputs and outputs according to the following algorithm from [273]:

1. Choose the number of observer Markov parameters to identify, l.
2. Construct the data matrices here:

S = [y0 y1 · · · yl · · · ym

]
(9.51)

V =

⎡
⎢⎢⎢⎣

u0 u1 · · · ul · · · um

0 v0 · · · vl−1 · · · vm−1
...

...
. . .

...
. . .

...

0 0 · · · v0 · · · vm−l

⎤
⎥⎥⎥⎦ (9.52)

where vi = [uT
i yT

i

]T
.

The matrix V resembles B, except that is has been augmented with the outputs
yi . In this way, we are working with a system that is augmented to include a Kalman
filter. We are now identifying the observer Markov parameters of the augmented
system, S̄δ , using the equation S = S̄δV . It will be possible to identify these
observer Markov parameters from the data and then extract the impulse response
(Markov parameters) of the original system.

3. Identify the matrix S̄δ of observer Markov parameters by solving S = S̄δV for S̄δ

using the right pseudo-inverse of V (i.e., SVD).
4. Recover system Markov parameters, Sδ , from the observer Markov parameters, S̄δ:

(a) Order the observer Markov parameters S̄δ as:

S̄δ
0 = D, (9.53)

S̄δ
k =

[
(S̄δ)

(1)
k (S̄δ)

(2)
k

]
for k ≥ 1, (9.54)

where (S̄δ)
(1)
k ∈ Rq×p, (S̄δ)

(2)
k ∈ Rq×q , and yδ

0 = S̄δ
0 = D.

(b) Reconstruct system Markov parameters:

yδ
k = (S̄δ)

(1)
k +

k∑
i=1

(S̄δ)
(2)
i yδ

k−i for k ≥ 1. (9.55)

Thus, the OKID method identifies the Markov parameters of a system augmented with an
asymptotically stable Kalman filter. The system Markov parameters are extracted from the
observer Markov parameters by (9.55). These system Markov parameters approximate the
impulse response of the system, and may be used directly as inputs to the ERA algorithm.
A code to compute OKID is provided in Code 9.4.
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ERA/OKID has been widely applied across a range of system identification tasks,
including to identify models of aeroelastic structures and fluid dynamic systems. There are
numerous extensions of the ERA/OKID methods. For example, there are generalizations
for linear parameter varying (LPV) systems and systems linearized about a limit cycle.

Code 9.4 Observer Kalman filter identification (OKID).

function H = OKID(y,u,r)
% Inputs: y (sampled output), u (sampled input), r (order)
% Output: H (Markov parameters)

% Step 0, check shapes of y,u
p = size(y,1); % p is the number of outputs
m = size(y,2); % m is the number of output samples
q = size(u,1); % q is the number of inputs

% Step 1, choose impulse length l (5 times system order r)
l = r*5;

% Step 2, form y, V, solve for observer Markov params, Ybar
V = zeros(q + (q+p)*l,m);
for i=1:m

V(1:q,i) = u(1:q,i);
end
for i=2:l+1

for j=1:m+1-i
vtemp = [u(:,j);y(:,j)];
V(q+(i-2)*(q+p)+1:q+(i-1)*(q+p),i+j-1) = vtemp;

end
end
Ybar = y*pinv(V,1.e-3);

% Step 3, isolate system Markov parameters H
D = Ybar(:,1:q); % Feed-through term (D) is first term
for i=1:l

Ybar1(1:p,1:q,i) = Ybar(:,q+1+(q+p)*(i-1):q+(q+p)*(i-1)+q);
Ybar2(1:p,1:q,i) = Ybar(:,q+1+(q+p)*(i-1)+q:q+(q+p)*i);

end
Y(:,:,1) = Ybar1(:,:,1) + Ybar2(:,:,1)*D;
for k=2:l

Y(:,:,k) = Ybar1(:,:,k) + Ybar2(:,:,k)*D;
for i=1:k-1

Y(:,:,k) = Y(:,:,k) + Ybar2(:,:,i)*Y(:,:,k-i);
end

end

H(:,:,1) = D;
for k=2:l+1

H(:,:,k) = Y(:,:,k-1);
end

Combining ERA and OKID
Here we demonstrate ERA and OKID on the same model system from Section 9.2. Because
ERA yields the same balanced models as BPOD, the reduced system responses should be
the same.

First, we compute an impulse response of the full system, and use this as an input
to ERA:
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%% Obtain impulse response of full system
[yFull,t] = impulse(sysFull,0:1:(r*5)+1);
YY = permute(yFull,[2 3 1]); % Reorder to be size p x q x m

% (default is m x p x q)

%% Compute ERA from impulse response
mco = floor((length(yFull)-1)/2); % m_c = m_o = (m-1)/2
[Ar,Br,Cr,Dr,HSVs] = ERA(YY,mco,mco,numInputs,numOutputs,r);
sysERA = ss(Ar,Br,Cr,Dr,-1);

Next, if an impulse response is unavailable, it is possible to excite the system with a
random input signal and use OKID to extract an impulse response. This impulse response
is then used by ERA to extract the model.

%% Compute random input simulation for OKID
uRandom = randn(numInputs,200); % Random forcing input
yRandom = lsim(sysFull,uRandom,1:200)’; % Output

%% Compute OKID and then ERA
H = OKID(yRandom,uRandom,r);
mco = floor((length(H)-1)/2); % m_c = m_o
[Ar,Br,Cr,Dr,HSVs] = ERA(H,mco,mco,numInputs,numOutputs,r);
sysERAOKID = ss(Ar,Br,Cr,Dr,-1);

Figure 9.6 shows the input–output data used by OKID to approximate the impulse
response. The impulse responses of the resulting systems are computed via

[y1,t1] = impulse(sysFull,0:1:200);
[y2,t2] = impulse(sysERA,0:1:100);
[y3,t3] = impulse(sysERAOKID,0:1:100);

Finally, the system responses can be seen in Fig. 9.7. The low-order ERA and ERA/OKID
models closely match the full model and have similar performance to the BPOD models
described previously. Because ERA and BPOD are mathematically equivalent, this
agreement is not surprising. However, the ability of ERA/OKID to extract a reduced-
order model from the random input data in Fig. 9.6 is quite remarkable. Moreover, unlike
BPOD, these methods are readily applicable to experimental measurements, as they do not
require nonphysical adjoint equations.
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Figure 9.6 Input–output data used by OKID.
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Figure 9.7 Impulse response of full-state model with n = 100, p = q = 2, along with ERA and
ERA/OKID models with r = 10.
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10 Data-Driven Control

As described in Chapter 8, control design often begins with a model of the system
being controlled. Notable exceptions include model-free adaptive control strategies
and many uses of PID control. For mechanical systems of moderate dimension, it
may be possible to write down a model (e.g., based on the Newtonian, Lagrangian,
or Hamiltonian formalism) and linearize the dynamics about a fixed point or periodic
orbit. However, for modern systems of interest, as are found in neuroscience, turbulence,
epidemiology, climate, and finance, typically there are no simple models suitable for
control design. Chapter 9 described techniques to obtain control-oriented reduced-order
models for high-dimensional systems from data, but these approaches are limited to
linear systems. Real-world systems are usually nonlinear and the control objective is
not readily achieved via linear techniques. Nonlinear control can still be posed as an
optimization problem with a high-dimensional, nonconvex cost function landscape with
multiple local minima. Machine learning is complementary, as it constitutes a growing
set of techniques that may be broadly described as performing nonlinear optimization
in a high-dimensional space from data. In this chapter we describe emerging tech-
niques that use machine learning to characterize and control strongly nonlinear, high-
dimensional, and multi-scale systems, leveraging the increasing availability of high-quality
measurement data.

Broadly speaking, machine learning techniques may be used to 1) characterize a system
for later use with model-based control, or 2) directly characterize a control law that
effectively interacts with a system. This is illustrated schematically in Fig. 10.1, where
data-driven techniques may be applied to either the System or Controller blocks. In
addition, related methods may also be used to identify good sensors and actuators, as
discussed previously in Section 3.8. In this chapter, Section 10.1 will explore the use
of machine learning to identify nonlinear input–output models for control, based on the
methods from Chapter 7. In Section 10.2 we will explore machine learning techniques
to directly identify controllers from input–output data. This is a rapidly developing field,
with many powerful methods, such as reinforcement learning, iterative learning control,
and genetic algorithms. Here we provide a high-level overview of these methods and
then explore an example using genetic algorithms. However, it is important to emphasize
the breadth and depth of this field, and the fact that any one method may be the subject
of an entire book. Finally, in Section 10.3 we describe the adaptive extremum-seeking
control strategy, which optimizes the control signal based on how the system responds to
perturbations.

345
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Figure 10.1 In the standard control framework from Chapter 8, machine learning may be used 1) to
develop a model of the system or 2) to learn a controller.

10.1 Nonlinear System Identification for Control
The data-driven modeling and control of complex systems is undergoing a revolution,
driven by the rise of big data, advanced algorithms in machine learning and optimiza-
tion, and modern computational hardware. Despite the increasing use of equation-free
and adaptive control methods, there remains a wealth of powerful model-based control
techniques, such as linear optimal control (see Chapter 8) and model predictive control
(MPC) [195, 107]. Increasingly, these model-based control strategies are aided by data-
driven techniques that characterize the input–output dynamics of a system of interest from
measurements alone, without relying on first principles modeling. Broadly speaking, this
is known as system identification, which has a long and rich history in control theory going
back decades to the time of Kalman. However, with increasingly powerful data-driven
techniques, such as those described in Chapter 7, nonlinear system identification is the
focus of renewed interest.

The goal of system identification is to identify a low-order model of the input–output
dynamics from actuation u to measurements y. If we are able to measure the full state x of
the system, then this reduces to identifying the dynamics f that satisfy:

d

dt
x = f(x, u). (10.1)

This problem may be formulated in discrete-time, since data is typically collected at dis-
crete instances in time and control laws are often implemented digitally. In this case, the
dynamics read:

xk+1 = F(xk, uk). (10.2)

When the dynamics are approximately linear, we may identify a linear system

xk+1 = Axk + Buk, (10.3)

which is the approach taken in the DMD with control (DMDc) algorithm below.
It may also be advantageous to identify a set of measurements y = g(x), in which the

unforced nonlinear dynamics appear linear:

yk+1 = AYyk. (10.4)
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This is the approach taken in the Koopman control method below. In this way, nonlinear
dynamics may be estimated and controlled using standard textbook linear control theory in
the intrinsic coordinates y [302, 276].

Finally, the nonlinear dynamics in (10.1) or (10.2) may be identified directly using the
SINDY with control algorithm. The resulting models may be used with model predictive
control for the control of fully nonlinear systems [277].

DMD with Control
Proctor et al. [434] extended the DMD algorithm to include the effect of actuation and
control, in the so-called DMD with control (DMDc) algorithm. It was observed that naively
applying DMD to data from a system with actuation would often result in incorrect dynam-
ics, as the effects of internal dynamics are confused with the effects of actuation. DMDc
was originally motivated by the problem of characterizing and controlling the spread of
disease, where it is unreasonable to stop intervention efforts (e.g., vaccinations) just to
obtain a characterization of the unforced dynamics [435]. Instead, if the actuation signal is
measured, a new DMD regression may be formulated in order to disambiguate the effect of
internal dynamics from that of actuation and control. Subsequently, this approach has been
extended to perform DMDc on heavily subsampled or compressed measurements by Bai
et al. [30].

The DMDc method seeks to identify the best-fit linear operators A and B that approxi-
mately satisfy the following dynamics on measurement data:

xk+1 ≈ Axk + Buk. (10.5)

In addition to the snapshot matrix X = [
x1 x2 · · · xm

]
and the time-shifted snap-

shot matrix X′ = [x2 x3 · · · xm+1
]

from (7.23), a matrix of the actuation input history
is assembled:

ϒ =
⎡
⎣u1 u2 · · · um

⎤
⎦ . (10.6)

The dynamics in (10.5) may be written in terms of the data matrices:

X′ ≈ AX + Bϒ. (10.7)

As in the DMD algorithm (see Section 7.2), the leading eigenvalues and eigenvectors
of the best-fit linear operator A are obtained via dimensionality reduction and regression.
If the actuation matrix B is known, then it is straightforward to correct for the actuation
and identify the spectral decomposition of A by replacing X′ with X′ − Bϒ in the DMD
algorithm: (

X′ − Bϒ
) ≈ AX. (10.8)

When B is unknown, both A and B must be simultaneously identified. In this case, the
dynamics in (10.7) may be recast as:

X′ ≈ [A B
] [X

ϒ

]
= G�, (10.9)
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and the matrix G = [A B
]

is obtained via least-squares regression:

G ≈ X′�†. (10.10)

The matrix � = [
X∗ ϒ∗]∗ is generally a high-dimensional data matrix, which may be

approximated using the SVD:

� = Ũ�̃Ṽ∗. (10.11)

The matrix Ũ must be split into two matrices, Ũ = [Ũ∗
1 Ũ∗

2

]∗
, to provide bases for X and

ϒ. Unlike the DMD algorithm, Ũ provides a reduced basis for the input space, while Û
from

X′ = Û�̂V̂∗ (10.12)

defines a reduced basis for the output space. It is then possible to approximate G = [A B
]

by projecting onto this basis:

G̃ = Û∗G
[

Û
I

]
. (10.13)

The resulting projected matrices Ã and B̃ in G̃ are:

Ã = Û∗AÛ = Û∗X′Ṽ�̃−1Ũ∗
1Û (10.14a)

B̃ = Û∗B = Û∗X′Ṽ�̃−1Ũ∗
2. (10.14b)

More importantly, it is possible to recover the DMD eigenvectors � from the eigendecom-
position ÃW = W�:

� = X′Ṽ�̃−1Ũ∗
1ÛW. (10.15)

Ambiguity in Identifying Closed-Loop Systems
For systems that are being actively controlled via feedback, with u = Kx,

xk+1 = Axk + Buk (10.16a)

= Axk + BKxk (10.16b)

= (A + BK)xk, (10.16c)

it is impossible to disambiguate the dynamics A and the actuation BK. In this case, it is
important to add perturbations to the actuation signal u to provide additional information.
These perturbations may be a white noise process or occasional impulses that provide a
kick to the system, providing a signal to disambiguate the dynamics from the feedback
signal.

Koopman Operator Nonlinear Control
For nonlinear systems, it may be advantageous to identify data-driven coordinate trans-
formations that make the dynamics appear linear. These coordinate transformations are
related to intrinsic coordinates defined by eigenfunctions of the Koopman operator (see
Section 7.4). Koopman analysis has thus been leveraged for nonlinear estimation [504, 505]
and control [302, 276, 423].
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It is possible to design estimators and controllers directly from DMD or eDMD models,
and Korda et al. [302] used model predictive control (MPC) to control nonlinear systems
with eDMD models. MPC performance is also surprisingly good for DMD models, as
shown in Kaiser et al. [277]. In addition, Peitz et al. [423] demonstrated the use of MPC
for switching control between a small number of actuation values to track a reference
value of lift in an unsteady fluid flow; for each constant actuation value, a separate eDMD
model was characterized. Surana [504] and Surana and Banaszuk [505] have also demon-
strated excellent nonlinear estimators based on Koopman Kalman filters. However, as dis-
cussed previously, eDMD models may contain many spurious eigenvalues and eigenvectors
because of closure issues related to finding a Koopman-invariant subspace. Instead, it may
be advantageous to identify a handful of relevant Koopman eigenfunctions and perform
control directly in these coordinates [276].

In Section 7.5, we described several strategies to approximate Koopman eigenfunctions,
ϕ(x), where the dynamics become linear:

d

dt
ϕ(x) = λϕ(x). (10.17)

In Kaiser et al. [276] the Koopman eigenfunction equation was extended for control-affine
nonlinear systems:

d

dt
x = f(x) + Bu. (10.18)

For these systems, it is possible to apply the chain rule to d
dt ϕ(x), yielding:

d

dt
ϕ(x) = ∇ϕ(x) · (f(x) + Bu) (10.19a)

= λϕ(x) + ∇ϕ(x) · Bu. (10.19b)

Note that even with actuation, the dynamics of Koopman eigenfunctions remain linear, and
the effect of actuation is still additive. However, now the actuation mode ∇ϕ(x) · B may be
state dependent. In fact, the actuation will be state dependent unless the directional deriva-
tive of the eigenfunction is constant in the B direction. Fortunately, there are many powerful
generalizations of standard Riccati-based linear control theory (e.g., LQR, Kalman filters,
etc.) for systems with a state-dependent Riccati equation.

SINDy with Control
Although it is appealing to identify intrinsic coordinates along which nonlinear dynamics
appear linear, these coordinates are challenging to discover, even for relatively simple
systems. Instead, it may be beneficial to directly identify the nonlinear actuated dynam-
ical system in (10.1) or (10.2), for use with standard model-based control. Using the
sparse identification of nonlinear dynamics (SINDy) method (see Section 7.3) results in
computationally efficient models that may be used in real-time with model predictive
control [277]. Moreover, these models may be identified from relatively small amounts of
training data, compared with neural networks and other leading machine learning methods,
so that they may even be characterized online and in response to abrupt changes to the
system dynamics.
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The SINDy algorithm is readily extended to include the effects of actuation [100, 277].
In addition to collecting measurements of the state snapshots x in the matrix X, actuation
inputs u are collected in the matrix ϒ from (10.6) as in DMDc. Next, an augmented library
of candidate right hand side functions �(

[
X ϒ

]
) is constructed:

�(
[
X ϒ

]
) = [1 X ϒ X2 X ⊗ ϒ ϒ2 · · ·] . (10.20)

Here, X ⊗ ϒ denotes quadratic cross-terms between the state x and the actuation u, evalu-
ated on the data.

In SINDy with control (SINDYc), the same sparse regression is used to determine the
fewest active terms in the library required to describe the observed dynamics. As in DMDc,
if the system is being actively controlled via feedback u = K(x), then it is impossible to
disambiguate from the internal dynamics and the actuation, unless an addition perturbation
signal is added to the actuation to provide additional information.

Model Predictive Control (MPC) Example
In this example, we will use SINDYc to identify a model of the forced Lorenz equations
from data and then control this model using model predictive control (MPC). MPC [107,
195, 438, 391, 447, 439, 196, 326, 173] has become a cornerstone of modern process
control and is ubiquitous in the industrial landscape. MPC is used to control strongly
nonlinear systems with constraints, time delays, non-minimum phase dynamics, and insta-
bility. Most industrial applications of MPC use empirical models based on linear system
identification (see Chapter 8), neural networks (see Chapter 6), Volterra series [86, 73],
and autoregressive models [6] (e.g., ARX, ARMA, NARX, and NARMAX). Recently,
deep learning and reinforcement learning have been combined with MPC [330, 570] with
impressive results. However, deep learning requires large volumes of data and may not be
readily interpretable. A complementary line of research seeks to identify models for MPC
based on limited data to characterize systems in response to abrupt changes.

Model predictive control determines the next immediate control action by solving an
optimal control problem over a receding horizon. In particular, the open-loop actuation
signal u is optimized on a receding time-horizon tc = mc�t to minimize a cost J over
some prediction horizon tp = mp�t . The control horizon is typically less than or equal
to the prediction horizon, and the control is held constant between tc and tp. The optimal
control is then applied for one time step, and the procedure is repeated and the receding-
horizon control re-optimized at each subsequent time step. This results in the control law:

K(xj ) = uj+1(xj ), (10.21)

where uj+1 is the first time step of the optimized actuation starting at xj . This is shown
schematically in Fig. 10.2. It is possible to optimize highly customized cost functions,
subject to nonlinear dynamics, with constraints on the actuation and state. However, the
computational requirements of re-optimizing at each time-step are considerable, putting
limits on the complexity of the model and optimization techniques. Fortunately, rapid
advances in computing power and optimization are enabling MPC for real-time nonlinear
control.
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Figure 10.2 Schematic overview of model predictive control, where the actuation input u is
iteratively optimized over a receding horizon. Reproduced with permission from Kaiser et al. [277].

MPC to Control the Lorenz Equations with SINDYc
The following example illustrates how to identify a model with SINDYc for use in MPC.
The basic code is the same as SINDy, except that the actuation is included as a variable
when building the library �.

We test the SINDYc model identification on the forced Lorenz equations:

ẋ = σ(y − x) + g(u) (10.22a)

ẏ = x(ρ − z) − y (10.22b)

ż = xy − βz. (10.22c)

In this example, we train a model using 20 time units of controlled data, and validate it on
another 20 time units where we switch the forcing to a periodic signal u(t) = 50 sin(10t).
The SINDY algorithm does not capture the effect of actuation, while SINDYc correctly
identifies the forced model and predicts the behavior in response to a new actuation that
was not used in the training data, as shown in Fig. 10.3.

Finally, SINDYc and neural network models of Lorenz are both used to design model
predictive controllers, as shown in Fig. 10.4. Both methods identify accurate models that
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Figure 10.3 SINDY and SINDYc predictions for the controlled Lorenz system in (10.22). Training
data consists of the Lorenz system with state feedback. For the training period the input is
u(t) = 26 − x(t) + d(t) with a Gaussian disturbance d . Afterward the input u switches to a periodic
signal u(t) = 50 sin(10t). Reproduced with permission from [100].

capture the dynamics, although the SINDYc procedure requires less data, identifies models
more rapidly, and is more robust to noise than the neural network model. This added
efficiency and robustness is due to the sparsity promoting optimization, which regularizes
the model identification problem. In addition, identifying a sparse model requires less data.

10.2 Machine Learning Control
Machine learning is a rapidly developing field that is transforming our ability to describe
complex systems from observational data, rather than first-principles modeling [382, 161,
64, 396]. Until recently, these methods have largely been developed for static data, although
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Figure 10.4 Model predictive control of the Lorenz system with a neural network model and a
SINDy model. Reproduced with permission from Kaiser et al. [277].

Figure 10.5 Schematic of machine learning control wrapped around a complex system using noisy
sensor-based feedback. The control objective is to minimize a well-defined cost function J within
the space of possible control laws. An off-line learning loop provides experiential data to train the
controller. Genetic programming provides a particularly flexible algorithm to search out effective
control laws. The vector z contains all of the information that may factor into the cost.

there is a growing emphasis on using machine learning to characterize dynamical systems.
The use of machine learning to learn control laws (i.e., to determine an effective map
from sensor outputs to actuation inputs), is even more recent [184]. As machine learning
encompasses a broad range of high-dimensional, possibly nonlinear, optimization tech-
niques, it is natural to apply machine learning to the control of complex, nonlinear systems.
Specific machine learning methods for control include adaptive neural networks, genetic
algorithms, genetic programming, and reinforcement learning. A general machine learning
control architecture is shown in Fig. 10.5. Many of these machine learning algorithms
are based on biological principles, such as neural networks, reinforcement learning, and
evolutionary algorithms.



354 Data-Driven Control

It is important to note that model-free control methodologies may be applied to numer-
ical or experimental systems with little modification. All of these model-free methods
have some sort of macroscopic objective function, typically based on sensor measurements
(past and present). Some challenging real-world example objectives in different disciplines
include:

Fluid dynamics: In aerodynamic applications, the goal is often some combination
of drag reduction, lift increase, and noise reduction, while in pharmaceutical and
chemical engineering applications the goal may involve mixing enhancement.

Finance: The goal is often to maximize profit at a given level of risk tolerance, subject
to the law.

Epidemiology: The goal may be to effectively suppress a disease with constraints of
sensing (e.g., blood samples, clinics, etc.) and actuation (e.g., vaccines, bed nets,
etc.).

Industry: The goal of increasing productivity must be balanced with several con-
straints, including labor and work safety laws, as well as environmental impact,
which often have significant uncertainty.

Autonomy and robotics: The goal of self-driving cars and autonomous robots is to
achieve a task while interacting safely with a complex environment, including coop-
erating with human agents.

In the examples above, the objectives involve some minimization or maximization of a
given quantity subject to some constraints. These constraints may be hard, as in the case
of disease suppression on a fixed budget, or they may involve a complex multi-objective
tradeoff. Often, constrained optimizations will result in solutions that live at the boundary
of the constraint, which may explain why many companies operate at the fringe of legality.
In all of the cases, the optimization must be performed with respect to the underlying
dynamics of the system: fluids are governed by the Navier-Stokes equations, finance is
governed by human behavior and economics, and disease spread is the result of a complex
interaction of biology, human behavior, and geography.

These real-world control problems are extremely challenging for a number of reasons.
They are high-dimensional and strongly nonlinear, often with millions or billions of degrees
of freedom that evolve according to possibly unknown nonlinear interactions. In addition,
it may be exceedingly expensive or infeasible to run different scenarios for system iden-
tification; for example, there are serious ethical issues associated with testing different
vaccination strategies when human lives are at stake.

Increasingly, challenging optimization problems are being solved with machine learning,
leveraging the availability of vast and increasing quantities of data. Many of the recent
successes have been on static data (e.g., image classification, speech recognition, etc.), and
marketing tasks (e.g., online sales and ad placement). However, current efforts are applying
machine learning to analyze and control complex systems with dynamics, with the potential
to revolutionize our ability to interact with and manipulate these systems.

The following sections describe a handful of powerful learning techniques that are being
widely applied to control complex systems where models may be unavailable. Note that the
relative importance of the following methods are not proportional to the amount of space
dedicated.
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Reinforcement Learning
Reinforcement learning (RL) is an important discipline at the intersection of machine
learning and control [507], and it is currently being used heavily by companies such as
Google for generalized artificial intelligence, autonomous robots, and self-driving cars. In
reinforcement learning, a control policy is refined over time, with improved performance
achieved through experience. The most common framework for RL is the Markov deci-
sion process, where the dynamics of the system and the control policy are described in a
probabilistic setting, so that stochasticity is built into the state dynamics and the actuation
strategy. In this way, control policies are probabilistic, promoting a balance of optimization
and exploration. Reinforcement learning is closely related to optimal control, although it
may be formulated in a more general framework.

Reinforcement learning may be viewed as partially supervised, since it is not always
known immediately if a control action was effective or not. In RL, a control policy is
enacted by an agent, and this agent may only receive partial information about the effec-
tiveness of their control strategy. For example, when learning to play a game like tic-tac-toe
or chess, it is not clear if a specific intermediate move is responsible for winning or losing.
The player receives binary feedback at the end of the game as to whether or not they win or
lose. A major challenge that is addressed by RL is the development of a value function, also
known as a quality function Q, that describes the value or quality of being in a particular
state and making a particular control policy decision. Over time, the agent learns and refines
this Q function, improving their ability to make good decisions. In the example of chess,
an expert player begins to have intuition for good strategy based on board position, which
is a complex value function over an extremely high-dimensional state space (i.e., the space
of all possible board configurations). Q-learning is a model-free reinforcement learning
strategy, where the value function is learned from experience. Recently, deep learning has
been leveraged to dramatically improve the Q-learning process in situations where data
is readily available [336, 385, 386, 384]. For example, the Google DeepMind algorithm
has been able to master many classic Atari video games and has recently defeated the best
players in the world at Go. We leave a more in-depth discussion of reinforcement learning
for other books, but emphasize its importance in the growing field of machine learning
control.

Iterative Learning Control
Iterative learning control (ILC) [5, 67, 83, 130, 343, 390] is a widely used technique that
learns how to refine and optimize repetitive control tasks, such as the motion of a robot arm
on a manufacturing line, where the robot arm will be repeating the same motion thousands
of times. In contrast to the feedback control methods from Chapter 8 which adjust the
actuation signal in real-time based on measurements, ILC refines the entire open-loop
actuation sequence after each iteration of a prescribed task. The refinement process may
be as simple as a proportional correction based on the measured error, or may involve a
more sophisticated update rule. Iterative learning control does not require one to know the
system equations and has performance guarantees for linear systems. ILC is therefore a
mainstay in industrial control for repetitive tasks in a well-controlled environment, such as
trajectory control of a robot arm or printer-head control in additive manufacturing.
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Figure 10.6 Depiction of parameter cube for PID control. The genetic algorithm represents a given
parameter value as a genetic sequence that concatenates the various parameters. In this example, the
parameters are expressed in binary representation that is scaled so that 000 is the minimum bound
and 111 is the upper bound. Color indicates the cost associated with each parameter value.

Genetic Algorithms
The genetic algorithm (GA) is one of the earliest and simplest algorithms for parameter
optimization, based on the biological principle of optimization through natural selection
and fitness [250, 146, 210]. GA is frequently used to tune and adapt the parameters of
a controller. In GA, a population comprised of many system realizations with different
parameter values compete to minimize a given cost function, and successful parameter
values are propagated to future generations through a set of genetic rules. The parameters
a system are generally represented by a binary sequence, as shown in Fig. 10.6 for a
PID control system with three parameters, given by the three control gains KP , KI , and
KD . Next, a number of realizations with different parameter values, called individuals, are
initialized in a population and their performance is evaluated and compared on a given well-
defined task. Successful individuals with a lower cost have a higher probability of being
selected to advance to the next generation, according to the following genetic operations:

Elitism (optional): A set number of the most fit individuals with the best performance
are advanced directly to the next generation.

Replication: An individual is selected to advance to the next generation.
Crossover: Two individuals are selected to exchange a portion of their code and then

advance to the next generation; crossover serves to exploit and enhance existing
successful strategies.

Mutation: An individual is selected to have a portion of its code modified with new
values; mutation promotes diversity and serves to increase the exploration of param-
eter space.

For the replication, crossover, and mutation operations, individuals are randomly selected
to advance to the next generation with the probability of selection increasing with fitness.
The genetic operations are illustrated for the PID control example in Fig. 10.7. These
generations are evolved until the fitness of the top individuals converges or other stopping
criteria are met.
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Figure 10.7 Schematic illustrating evolution in a genetic algorithm. The individuals in generation k

are each evaluated and ranked in ascending order based on their cost function, which is inversely
proportional to their probability of selection for genetic operations. Then, individuals are chosen
based on this weighted probability for advancement to generation k + 1 using the four operations:
elitism, replication, crossover, and mutation. This forms generation k + 1, and the sequence is
repeated until the population statistics converges or another suitable stopping criterion is reached.

Genetic algorithms are generally used to find nearly globally optimal parameter values,
as they are capable of exploring and exploiting local wells in the cost function. GA pro-
vides a middle ground between a brute-force search and a convex optimization, and is an
alternative to expensive Monte Carlo sampling, which does not scale to high-dimensional
parameter spaces. However, there is no guarantee that genetic algorithms will converge to
a globally optimal solution. There are also a number of hyper-parameters that may affect
performance, including the size of the populations, number of generations, and relative
selection rates of the various genetic operations.

Genetic algorithms have been widely used for optimization and control in nonlinear
systems [184]. For example, GA was used for parameter tuning in open loop control [394],
with applications in jet mixing [304], combustion processes [101], wake control [431, 192],
and drag reduction [201]. GA has also been employed to tune an H∞ controller in a
combustion experiment [233].

Genetic Programming
Genetic programming (GP) [307, 306] is a powerful generalization of genetic algorithms
that simultaneously optimizes both the structure and parameters of an input–output map.
Recently, genetic programming has also been used to obtain control laws that map sensor
outputs to actuation inputs, as shown in Fig. 10.8. The function tree representation in GP is
quite flexible, enabling the encoding of complex functions of the sensor signal y through a
recursive tree structure. Each branch is a signal, and the merging points are mathematical
operations. Sensors and constants are the leaves, and the overall control signal u is the root.
The genetic operations of crossover, mutation, and replication are shown schematically in
Fig. 10.9. This framework is readily generalized to include delay coordinates and temporal
filters, as discussed in Duriez et al. [167].

Genetic programming has been recently used with impressive results in turbulence con-
trol experiments, led by Bernd Noack and collaborators [403, 417, 199, 168, 169, 416].



358 Data-Driven Control

Figure 10.8 Illustration of function tree used to represent the control law u in genetic programming
control.

This provides a new paradigm of control for strongly nonlinear systems, where it is now
possible to identify the structure of nonlinear control laws. Genetic programming control is
particularly well-suited to experiments where it is possible to rapidly evaluate a given con-
trol law, enabling the testing of hundreds or thousands of individuals in a short amount of
time. Current demonstrations of genetic programming control in turbulence have produced
several macroscopic behaviors, such as drag reduction and mixing enhancement, in an
array of flow configurations. Specific flows include the mixing layer [417, 416, 168, 169],
the backward facing step [199, 169], and a turbulent separated boundary layer [169].

Example: Genetic Algorithm to Tune PID Control
In this example, we will use the genetic algorithm to tune a proportional-integral-derivative
(PID) controller. However, it should be noted that this is just a simple demonstration of
evolutionary algorithms, and such heavy machinery is not recommended to tune a PID
controller in practice, as there are far simpler techniques.

PID control is among the simplest and most widely used control architectures in indus-
trial control systems, including for motor position and velocity control, for tuning of vari-
ous sub-systems in an automobile, and for the pressure and temperature controls in modern
espresso machines, to name only a few of the myriad applications. As its name suggests,
PID control additively combines three terms to form the actuation signal, based on the
error signal and its integral and derivative in time. A schematic of PID control is shown in
Fig. 10.10.

In the cruise control example in Section 8.1, we saw that it was possible to reduce
reference tracking error by increasing the proportional control gain KP in the control law
u = −KP (wr − y). However, increasing the gain may eventually cause instability in some
systems, and it will not completely eliminate the steady-state tracking error. The addition
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Figure 10.9 Genetic operations used to advance function trees across generations in genetic
programming control. The relative selection rates of replication, crossover, and mutation are
p(R) = 0.1, p(C) = 0.7, and p(M) = 0.2, respectively.

of an integral control term, KI

∫ t

0 (wr − y) is useful to eliminate steady-state reference
tracking error while alleviating the work required by the proportional term.

There are formal rules for how to choose the PID gains for various design specifications,
such as fast response and minimal overshoot and ringing. In this example, we explore the
use of a genetic algorithm to find effective PID gains to minimize a cost function. We use
an LQR cost function

J =
∫ T

0
Q(wr − y)2 + Ru2 dτ

with Q = 1 and R = 0.001 for a step response wr = 1. The system to be controlled will
be given by the transfer function

G(s) = 1

s4 + s
.
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Figure 10.10 Proportional-integral-derivative (PID) control schematic. PID remains ubiquitous in
industrial control.

The first step is to write a function that evaluates a given PID controller, as in Code 10.1.
The three PID gains are stored in the variable parms.

Code 10.1 Evaluate cost function for PID controller.

function J = pidtest(G,dt,parms)

s = tf(’s’);
K = parms(1) + parms(2)/s + parms(3)*s/(1+.001*s);
Loop = series(K,G);
ClosedLoop = feedback(Loop,1);
t = 0:dt:20;
[y,t] = step(ClosedLoop,t);

CTRLtf = K/(1+K*G);
u = lsim(K,1-y,t);

Next, it is relatively simple to use a genetic algorithm to optimize the PID control gains,
as in Code 10.2. In this example, we run the GA for 10 generations, with a population size
of 25 individuals per generation.

Code 10.2 Genetic algorithm to tune PID controller.

dt = 0.001;
PopSize = 25;
MaxGenerations = 10;
s = tf(’s’);
G = 1/(s*(s*s+s+1));

options = optimoptions(@ga,’PopulationSize’,PopSize,’
MaxGenerations’,MaxGenerations,’OutputFcn’,@myfun);

[x,fval] = ga(@(K)pidtest(G,dt,K),3,-eye(3),zeros(3,1)
,[],[],[],[],[],options);

The results from intermediate generations are saved using the custom output function in
Code 10.3.
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Code 10.3 Special output function to save generations.

function [state,opts,optchanged]=myfun(opts,state,flag)
persistent history
persistent cost
optchanged = false;

switch flag
case ’init’

history(:,:,1) = state.Population;
cost(:,1) = state.Score;

case {’iter’,’interrupt’}
ss = size(history,3);
history(:,:,ss+1) = state.Population;
cost(:,ss+1) = state.Score;

case ’done’
ss = size(history,3);
history(:,:,ss+1) = state.Population;
cost(:,ss+1) = state.Score;
save history.mat history cost

end

The evolution of the cost function across various generations is shown in Fig. 10.11.
As the generations progress, the cost function steadily decreases. The individual gains
are shown in Fig. 10.12, with redder dots corresponding to early generations and bluer
generations corresponding to later generations. As the genetic algorithm progresses, the
PID gains begin to cluster around the optimal solution (black circle).

Fig. 10.13 shows the output in response to the PID controllers from the first generation.
It is clear from this plot that many of the controllers fail to stabilize the system, resulting in
large deviations in y. In contrast, Fig. 10.14 shows the output in response to the PID con-
trollers from the last generation. Overall, these controllers are more effective at producing
a stable step response.

The best controllers from each generation are shown in Fig. 10.15. In this plot, the
controllers from early generations are redder, while the controllers from later generations

Figure 10.11 Cost function across generations, as GA optimizes PID gains.
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Figure 10.12 PID gains generated from genetic algorithm. Red points correspond to early generations
while blue points correspond to later generations. The black point is the best individual found by
GA.
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Figure 10.13 PID controller response from first generation of genetic algorithm.

are bluer. As the GA progresses, the controller is able to minimizes output oscillations and
achieves fast rise time.

10.3 Adaptive Extremum-Seeking Control
Although there are many powerful techniques for model-based control design, there are
also a number of drawbacks. First, in many systems, there may not be access to a model,
or the model may not be suitable for control (i.e., there may be strong nonlinearities or the
model may be represented in a nontraditional form). Next, even after an attractor has been
identified and the dynamics characterized, control may invalidate this model by modifying
the attractor, giving rise to new and uncharacterized dynamics. The obvious exception is
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Figure 10.15 Best PID controllers from each generation. Red trajectories are from early generations,
and blue trajectories correspond to the last generation.

stabilizing a fixed point or a periodic orbit, in which case effective control keeps the system
in a neighborhood where the linearized model remains accurate. Finally, there may be slow
changes to the system that modify the underlying dynamics, and it may be difficult to
measure and model these effects.
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The field of adaptive control broadly addresses these challenges, by allowing the con-
trol law the flexibility to modify its action based on the changing dynamics of a system.
Extremum-seeking control (ESC) [312, 19] is a particularly attractive form of adaptive
control for complex systems because it does not rely on an underlying model and it has
guaranteed convergence and stability under a set of well-defined conditions. Extremum-
seeking may be used to track local maxima of an objective function, despite disturbances,
varying system parameters, and nonlinearities. Adaptive control may be implemented for
in-time control or used for slow tuning of parameters in a working controller.

Extremum-seeking control may be thought of as an advanced perturb-and-observe
method, whereby a sinusoidal perturbation is additively injected in the actuation signal
and used to estimate the gradient of an objective function J that should be maximized or
minimized. The objective function is generally computed based on sensor measurements of
the system, although it ultimately depends on the internal dynamics and the choice of the
input signal. In extremum-seeking, the control variable u may refer either to the actuation
signal or a set of parameters that describe the control behavior, such as the frequency of
periodic forcing or the gains in a PID controller.

The extremum-seeking control architecture is shown in Fig. 10.16. This schematic
depicts ESC for a scalar input u, although the methods readily generalize for vector-valued
inputs u. A convex objective function J (u), is shown in Fig. 10.17 for static plant dynamics
(i.e., for y = u). The extremum-seeking controller uses an input perturbation to estimate
the gradient of the objective function J and steer the mean actuation signal towards the
optimizing value.

Figure 10.16 Schematic illustrating an extremum-seeking controller. A sinusoidal perturbation is
added to the best guess of the input û, and it passes through the plant, resulting in a sinusoidal
output perturbation that may be observed in the sensor signal y and the cost J . The high-pass filter
results in a zero-mean output perturbation, which is then multiplied (demodulated) by the same
input perturbation resulting in the signal ξ . This demodulated signal is finally integrated into the
best guess û for the optimizing input u.
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Figure 10.17 Schematic illustrating extremum-seeking control on for a static objective function
J (u). The output perturbation (red) is in phase when the input is left of the peak value (i.e. u < u∗)
and out of phase when the input is to the right of the peak (i.e. u > u∗). Thus, integrating the
product of input and output sinusoids moves û towards u∗.

Three distinct time-scales are relevant for extremum-seeking control:

1. slow – external disturbances and parameter variation;
2. medium – perturbation frequency ω;
3. fast – system dynamics.

In many systems, the internal system dynamics evolve on a fast time-scale. For example,
turbulent fluctuations may equilibrate rapidly compared to actuation time-scales. In optical
systems, such as a fiber laser [93], the dynamics of light inside the fiber are extremely fast
compared to the time-scales of actuation.

In extremum-seeking control, a sinusoidal perturbation is added to the estimate of the
input that maximizes the objective function, û:

u = û + a sin(ωt). (10.23)

This input perturbation passes through the system dynamics and output, resulting in
an objective function J that varies sinusoidally about some mean value, as shown in
Fig. 10.17. The output J is high-pass filtered to remove the mean (DC component),
resulting in the oscillatory signal ρ. A simple high-pass filter is represented in the frequency
domain as

s

s + ωh

(10.24)



366 Data-Driven Control

where s is the Laplace variable, and ωh is the filter frequency. The high-pass filter is chosen
to pass the perturbation frequency ω. The high-pass filtered output is then multiplied by the
input sinusoid, possibly with a phase shift φ, resulting in the demodulated signal ξ :

ξ = a sin(ωt − φ)ρ. (10.25)

This signal ξ is mostly positive if the input u is to the left of the optimal value u∗ and
it is mostly negative if u is to the right of the optimal value u∗, shown as red curves in
Fig. 10.17. Thus, the demodulated signal ξ is integrated into û, the best estimate of the
optimizing value

d

dt
û = k ξ, (10.26)

so that the system estimate û is steered towards the optimal input u∗. Here, k is an integral
gain, which determines how aggressively the actuation climbs gradients in J .

Roughly speaking, the demodulated signal ξ measures gradients in the objective func-
tion, so that the algorithm climbs to the optimum more rapidly when the gradient is larger.
This is simple to see for constant plant dynamics, where J is simply a function of the
input J (u) = J (û + a sin(ωt)). Expanding J (u) in the perturbation amplitude a, which is
assumed to be small, yields:

J (u) = J (û + a sin(ωt)) (10.27a)

= J (û) + ∂J

∂u

∣∣∣∣
u=û

· a sin(ωt) + O(a2). (10.27b)

The leading-order term in the high-pass filtered signal is ρ ≈ ∂J/∂u|u=û · a sin(ωt).
Averaging ξ = a sin(ωt − φ)ρ over one period yields:

ξavg = ω

2π

∫ 2π/ω

0
a sin(ωt − φ)ρ dt (10.28a)

= ω

2π

∫ 2π/ω

0

∂J

∂u

∣∣∣∣
u=û

a2 sin(ωt − φ) sin(ωt) dt (10.28b)

= a2

2

∂J

∂u

∣∣∣∣
u=û

cos(φ). (10.28c)

Thus, for the case of trivial plant dynamics, the average signal ξavg is proportional to the
gradient of the objective function J with respect to the input u.

In general, extremum-seeking control may be applied to systems with nonlinear dynam-
ics relating the input u to the outputs y that act on a faster timescale than the perturbation
ω. Thus, J may be time-varying, which complicates the simplistic averaging analysis
above. The general case of extremum-seeking control of nonlinear systems is analyzed
by Krstić and Wang in [312], where they develop powerful stability guarantees based on a
separation of timescales and a singular perturbation analysis. The basic algorithm may also
be modified to add a phase φ to the sinusoidal input perturbation in (10.25). In [312], there
was an additional low-pass filter ωl/(s + ωl) placed before the integrator to extract the DC
component of the demodulated signal ξ . There is also an extension to extremum-seeking
called slope-seeking, where a specific slope is sought [19] instead of the standard zero
slope corresponding to a maximum or minimum. Slope-seeking is preferred when there is
not an extremum, as in the case when control inputs saturate. Extremum-seeking is often
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Figure 10.18 Extremum-seeking control response for cost function in (10.29).

used for frequency selection and slope-seeking is used for amplitude selection when tuning
an open-loop periodic forcing.

It is important to note that extremum-seeking control will only find local maxima of the
objective function, and there are no guarantees that this will correspond to a global maxima.
Thus, it is important to start with a good initial condition for the optimization. In a number
of studies, extremum-seeking control is used in conjunction with other global optimization
techniques, such as a genetic algorithm, or sparse representation for classification [191, 99].

Simple Example of Extremum-Seeking Control
Here we consider a simple application of extremum-seeking control to find the maximum
of a static quadratic cost function,

J (u) = 25 − (5 − u)2. (10.29)

This function has a single global maxima at u∗ = 5. Starting at u = 0, we apply extremum-
seeking control with a perturbation frequency of ω = 10 Hz and an amplitude of a = 0.2.
Fig. 10.18 shows the controller response and the rapid tracking of the optimal value u∗ = 5.
Code 10.4 shows how extremum-seeking may be implemented using a simple Butterworth
high-pass filter.

Notice that when the gradient of the cost function is larger (i.e., closer to u = 0), the
oscillations in J are larger, and the controller climbs more rapidly. When the input u gets
close to the optimum value at u∗ = 5, even though the input perturbation has the same
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amplitude a, the output perturbation is nearly zero (on the order of a2), since the quadratic
cost function is flat near the peak. Thus we achieve fast tracking far away from the optimum
value and small deviations near the peak.

Code 10.4 Extremum-seeking control code.

J = @(u,t)(25-(5-(u)).^2);
y0 = J(0,0); % u = 0

% Extremum Seeking Control Parameters
freq = 10*2*pi; % sample frequency
dt = 1/freq;
T = 10; % total period of simulation (in seconds)
A = .2; % amplitude
omega = 10*2*pi; % 10 Hz
phase = 0;
K = 5; % integration gain

% High pass filter (Butterworth filter)
butterorder=1;
butterfreq=2; % in Hz for ’high’
[b,a] = butter(butterorder,butterfreq*dt*2,’high’)
ys = zeros(1,butterorder+1)+y0;
HPF=zeros(1,butterorder+1);

uhat=u;
for i=1:T/dt

t = (i-1)*dt;
yvals(i)=J(u,t);

for k=1:butterorder
ys(k) = ys(k+1);
HPF(k) = HPF(k+1);

end
ys(butterorder+1) = yvals(i);
HPFnew = 0;
for k=1:butterorder+1

HPFnew = HPFnew + b(k)*ys(butterorder+2-k);
end
for k=2:butterorder+1

HPFnew = HPFnew - a(k)*HPF(butterorder+2-k);
end
HPF(butterorder+1) = HPFnew;

xi = HPFnew*sin(omega*t + phase);
uhat = uhat + xi*K*dt;
u = uhat + A*sin(omega*t + phase);
uhats(i) = uhat;
uvals(i) = u;

end

To see the ability of extremum-seeking control to handle varying system parameters,
consider the time-dependent cost function given by

J (u) = 25 − (5 − u − sin(t))2. (10.30)

The varying parameters, which oscillate at 1/2π Hz, may be consider slow compared
with the perturbation frequency 10 Hz. The response of extremum-seeking control for this
slowly varying system is shown in Fig. 10.19. In this response, the actuation signal is able
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Figure 10.19 Extremum-seeking control response with a slowly changing cost function J (u, t).

to maintain good performance by oscillating back and forth to approximately track the
oscillating optimal u∗, which oscillates between 4 and 6. The output function J remains
close to the optimal value of 25, despite the unknown varying parameter.

Challenging Example of Extremum-Seeking Control
Here we consider an example inspired by a challenging benchmark problem in Section
1.3 of [19]. This system has a time-varying objective function J (t) and dynamics with a
right-half plane zero, making it difficult to control.

In one formulation of extremum-seeking [133, 19], there are additional guidelines for
designing the controller if the plant can be split into three blocks that define the input
dynamics, a time-varying objective function with no internal dynamics, and the output
dynamics, as shown in Fig. 10.20. In this case, there are procedures to design the high-pass
filter and integrator blocks.

In this example, the objective function is given by

J (θ) = .05δ(t − 10) + (θ − θ∗(t))2,

where δ is the Dirac delta function, and the optimal value θ∗(t) is given by

θ∗ = .01 + .001t.
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Figure 10.20 Schematic of a specific extremum-seeking control architecture that benefits from a
wealth of design techniques [133, 19].

The optimal objective is given by J ∗ = .05δ(t − 10). The input and output dynamics are
taken from the example in [19], and are given by

Fin(s) = s − 1

(s + 2)(s + 1)
, Fout(s) = 1

s + 1
.

Using the design procedure in [19], one arrives at the high-pass filter s/(s + 5) and an
integrator-like block given by 50(s − 4)/(s − .01). In addition, a perturbation with ω = 5
and a = 0.05 is used, and the demodulating perturbation is phase-shifted by φ = .7955;
this phase is obtained by evaluating the input function Fin at iω. The response of this
controller is shown in Fig. 10.21, along with the Simulink implementation in Fig. 10.22.
The controller is able to accurately track the optimizing input, despite additive sensor noise.

Applications of Extremum-Seeking Control
Because of the lack of assumptions and ease of implementation, extremum-seeking control
has been widely applied to a number of complex systems. Although ESC is generally
applicable for in-time control of dynamical systems, it is also widely used as an online
optimization algorithm that can adapt to slow changes and disturbances. Among the many
uses of extremum-seeking control, here we highlight only a few.

Extremum-seeking has been used widely for maximum power point tracking algorithms
in photovoltaics [331, 178, 75, 97], and wind energy conversion [395]. In the case of
photovoltaics, the voltage or current ripple in power converters due to pulse-width mod-
ulation is used for the perturbation signal, and in the case of wind, turbulence is used
as the perturbation. Atmospheric turbulent fluctuations were also used as the perturbation
signal for the optimization of aircraft control [309]; in this example it is infeasible to add
a perturbation signal to the aircraft control surfaces, and a natural perturbation is required.
ESC has also been used in optics and electronics for laser pulse shaping [450], tuning
high-gain fiber lasers [93, 99], and for beam control in a reconfigurable holographic meta-
material antenna array [265]. Other applications include formation flight optimization [60],
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Figure 10.21 Extremum-seeking control response for a challenging test system with a right-half plane
zero, inspired by [19].
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Figure 10.22 Simulink model for extremum-seeking controller used in Fig. 10.21.

bioreactors [546], PID [289] and PI [311] tuning, active braking systems [568], and control
of Tokamaks [413].

Extremum-seeking has also been broadly applied in turbulent flow control. Despite
the ability to control dynamics in-time with ESC, it is often used as a slow feedback
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optimization to tune the parameters of a working open-loop controller. This slow feedback
has many benefits, such as maintaining performance despite slow changes to environmental
conditions. Extremum-seeking has been used to control an axial flow compressor [547],
to reduce drag over a bluff-body in an experiment [45, 46] using a rotating cylinder on
the upper trailing edge of the rear surface, and for separation control in a high-lift airfoil
configuration [47] using pressure sensors and pulsed jets on the leading edge of a single-
slotted flap. There have also been impressive industrial-scale uses of extremum-seeking
control, for example to control thermoacoustic modes across a range of frequencies in a
4 MW gas turbine combustor [37, 35]. It has also been utilized for separation control in a
planar diffusor that is fully turbulent and stalled [36], and to control jet noise [375].

There are numerous extensions to extremum-seeking that improve performance. For
example, extended Kalman filters were used as the filters in [202] to control thermoacoustic
instabilities in a combustor experiment, reducing pressure fluctuations by nearly 40 dB.
Kalman filters were also used with ESC to reduce the flow separation and increase the pres-
sure ratio in a high-pressure axial fan using an injected pulsed air stream [553]. Including
the Kalman filter improved the controller bandwidth by a factor of 10 over traditional ESC.
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11 Reduced Order Models (ROMs)

The proper orthogonal decomposition (POD) is the SVD algorithm applied to partial differ-
ential equations (PDEs). As such, it is one of the most important dimensionality reduction
techniques available to study complex, spatio-temporal systems. Such systems are typically
exemplified by nonlinear partial differential equations that prescribe the evolution in time
and space of the quantities of interest in a given physical, engineering and/or biological
system. The success of the POD is related to the seemingly ubiquitous observation that
in most complex systems, meaningful behaviors are encoded in low-dimensional patterns
of dynamic activity. The POD technique seeks to take advantage of this fact in order
to produce low-rank dynamical systems capable of accurately modeling the full spatio-
temporal evolution of the governing complex system. Specifically, reduced order models
(ROMs) leverage POD modes for projecting PDE dynamics to low-rank subspaces where
simulations of the governing PDE model can be more readily evaluated. Importantly, the
low-rank models produced by the ROM allow for significant improvements in computa-
tional speed, potentially enabling prohibitively expensive Monte-Carlo simulations of PDE
systems, optimization over parametrized PDE systems, and/or real-time control of PDE-
based systems. POD has been extensively used in the fluids dynamics community [251]. It
has also found a wide variety of applications in structural mechanics and vibrational anal-
ysis [287, 23, 232, 329], optical and MEMS technologies [333, 488], atmospheric sciences
(where it is called empirical orthogonal functions (EOFs)) [116, 117], wind engineering
applications [494], acoustics [181], and neuroscience [33, 519, 284]. The success of the
method relies on its ability to provide physically interpretable spatio-temporal decomposi-
tions of data [316, 57, 181, 286, 126, 333].

11.1 POD for Partial Differential Equations
Throughout the engineering, physical and biological sciences, many systems are known
to have prescribed relationships between time and space that drive patterns of dynami-
cal activity. Even simple spatio-temporal relationships can lead to highly complex, yet
coherent, dynamics that motivate the main thrust of analytic and computational studies.
Modeling efforts seek to derive these spatio-temporal relationships either through first prin-
ciple laws or through well-reasoned conjectures about existing relationships, thus leading
generally to an underlying partial differential equation (PDE) that constrains and governs
the complex system. Typically, such PDEs are beyond our ability to solve analytically.
As a result, two primary solution strategies are pursued: computation and/or asymptotic
reduction. In the former, the complex system is discretized in space and time to artifi-
cially produce an extremely high-dimensional system of equations which can be solved

375
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to a desired level of accuracy, with higher accuracy requiring a larger dimension of the
discretized system. In this technique, the high-dimensionality is artificial and simply a con-
sequence of the underlying numerical solution scheme. In contrast, asymptotic reduction
seeks to replace the complex system with a simpler set of equations, preferably that are
linear so as to be amenable to analysis. Before the 1960s and the rise of computation,
such asymptotic reductions formed the backbone of applied mathematics in fields such a
fluid dynamics. Indeed, asymptotics form the basis of the earliest efforts of dimensionality
reduction. Asymptotic methods are not covered in this book, but the computational methods
that enable reduced order models are.

To be more mathematically precise about our study of complex systems, we consider
generically a system of nonlinear PDEs of a single spatial variable that can be modeled as

ut = N (u, ux, uxx, · · · , x, t;β) (11.1)

where the subscripts denote partial differentiation and N(·) prescribes the generically non-
linear evolution. The parameter β will represent a bifurcation parameter for our later con-
siderations. Further, associated with (11.1) are a set of initial and boundary conditions
on a domain x ∈ [−L,L]. Historically, a number of analytic solution techniques have
been devised to study (11.1). Typically the aim of such methods is to reduce the PDE
(11.1) to a set of ordinary differential equations (ODEs). The standard PDE methods of
separation of variables and similarity solutions are constructed for this express purpose.
Once in the form of an ODE, a broader variety of analytic methods can be applied along
with a qualitative theory in the case of nonlinear behavior [252]. This again highlights the
role that asymptotics can play in characterizing behavior.

Although a number of potential solution strategies have been mentioned, (11.1) does
not admit a closed form solution in general. Even the simplest nonlinearity or a spatially
dependent coefficient can render the standard analytic solution strategies useless. However,
computational strategies for solving (11.1) are abundant and have provided transformative
insights across the physical, engineering and biological sciences. The various computa-
tional techniques devised lead to a approximate numerical solution of (11.1), which is of
high-dimension. Consider, for instance, a standard spatial discretization of (11.1) whereby
the spatial variable x is evaluated at n � 1 points

u(xk, t) for k = 1, 2, · · · , n (11.2)

with spacing �x = xk+1 − xk = 2L/n. Using standard finite-difference formulas, spatial
derivatives can be evaluated using neighboring spatial points so that, for instance,

ux = u(xk+1, t) − u(xk−1, t)

2�x
(11.3a)

uxx = u(xk+1, t) − 2u(xk, t) + u(xk−1, t)

�x2
. (11.3b)

Such spatial discretization transforms the governing PDE (11.1) into a set of n ODEs

duk

dt
= N (u(xk+1, t), u(xk, t), u(xk−1, t), · · · , xk, t,β) , k = 1, 2, · · · , n. (11.4)

This process of discretization produces a more manageable system of equations at the
expense of rendering (11.1) high-dimensional. It should be noted that as accuracy require-
ments become more stringent, the resulting dimension n of the system (11.4) also increases,



11.1 POD for Partial Differential Equations 377

since �x = 2L/n. Thus, the dimension of the underlying computational scheme is artifi-
cially determined by the accuracy of the finite-difference differentiation schemes.

The spatial discretization of (11.1) illustrates how high-dimensional systems are ren-
dered. The artificial production of high-dimensional systems is ubiquitous across com-
putational schemes and presents significant challenges for scientific computing efforts. To
further illustrate this phenomenon, we consider a second computational scheme for solving
(11.1). In particular, we consider the most common technique for analytically solving
PDEs: separation of variables. In this method, a solution is assumed, whereby space and
time are independent, so that

u(x, t) = a(t)ψ(x) (11.5)

where the variable a(t) subsumes all the time dependence of (11.1) and ψ(x) characterizes
the spatial dependence. Separation of variables is only guaranteed to work analytically if
(11.1) is linear with constant coefficients. In that restrictive case, two differential equations
can be derived that separately characterize the spatial and temporal dependences of the
complex system. The differential equations are related by a constant parameter that is
present in each.

For the general form of (11.1), separation of variables can be used to yield a compu-
tational algorithm capable of producing accurate solutions. Since the spatial solutions are
not known a priori, it is typical to assume a set of basis modes which are used to construct
ψ(x). Indeed, such assumptions on basis modes underlies the critical ideas of the method
of eigenfunction expansions. This yields a separation of variables solution ansatz of the
form

u(x, t) =
n∑

k=1

ak(t)ψk(x) (11.6)

where ψk(x) form a set of n � 1 basis modes. As before, this expansion artificially renders
a high dimensional system of equations since n modes are required. This separation of
variables solution approximates the true solution, provided n is large enough. Increasing
the number of modes n is equivalent to increasing the spatial discretization in a finite-
difference scheme.

The orthogonality properties of the basis functions ψk(x) enable us to make use of
(11.6). To illustrate this, consider a scalar version of (11.1) with the associated scalar
separable solution u(x, t) = ∑n

k=1 ak(t)ψk(x). Inserting this solution into the governing
equations gives∑

ψk

dak

dt
= N

(∑
akψk,

∑
ak(ψk)x,

∑
ak(ψk)xx, · · · , x, t,β

)
(11.7)

where the sums are from k = 1, 2, · · · , n. Orthogonality of our basis functions implies that

〈
ψk,ψj

〉 = δkj =
{

0 j �= k

1 j = k
(11.8)

where δkj is the Kronecker delta function and
〈
ψk,ψj

〉
is the inner product defined as:

〈
ψk,ψj

〉 = ∫ L

−L

ψkψ
∗
j dx (11.9)

where ∗ denotes complex conjugation.
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Once the modal basis is decided on, the governing equations for the ak(t) can be deter-
mined by multiplying (11.7) by ψj (x) and integrating from x ∈ [−L,L]. Orthogonality
then results in the temporal governing equations, or Galerkin projected dynamics, for each
mode

dak

dt
=
〈
N
(∑

ajψj ,
∑

aj (ψj )x,
∑

aj (ψj )xx, · · · , x, t,β
)

, ψk

〉
k = 1, 2, · · · , n.

(11.10)
The given form of N(·) determines the mode-coupling that occurs between the various
n modes. Indeed, the hallmark feature of nonlinearity is the production of modal mixing
from (11.10).

Numerical schemes based on the Galerkin projection (11.10) are commonly used to
perform simulations of the full governing system (11.1). Convergence to the true solution
can be accomplished by both judicious choice of the modal basis elements ψk as well as
the total number of modes n. Interestingly, the separation of variables strategy, which is
rooted in linear PDEs, works for nonlinear and nonconstant coefficient PDEs, provided
enough modal basis functions are chosen in order to accommodate all the nonlinear mode
mixing that occurs in (11.10). A good choice of modal basis elements allows for a smaller
set of n modes to be chosen to achieve a desired accuracy. The POD method is designed to
specifically address the data-driven selection of a set of basis modes that are tailored to the
particular dynamics, geometry, and parameters.

Fourier Mode Expansion
The most prolific basis used for the Galerkin projection technique is Fourier modes. More
precisely, the fast Fourier transform (FFT) and its variants have dominated scientific com-
puting applied to the engineering, physical, and biological sciences. There are two primary
reasons for this: (i) There is a strong intuition developed around the meaning of Fourier
modes as it directly relates to spatial wavelengths and frequencies, and more importantly,
(ii) the algorithm necessary to compute the right-hand side of (11.10) can be executed in
O(n log n) operations. The second fact has made the FFT one of the top ten algorithms of
the last century and a foundational cornerstone of scientific computing.

The Fourier mode basis elements are given by

ψk(x) = 1

L
exp

(
i
2πkx

L

)
x ∈ [0, L] and k = −n/2, · · · ,−1, 0, 1, · · · , n/2 − 1 .

(11.11)
It should be noted that in most software packages, including Matlab, the FFT command
assumes that the spatial interval is x ∈ [0, 2π ]. Thus one must rescale a domain of length
L to 2π before using the FFT.

Obviously the Fourier modes (11.11) are complex periodic functions on the interval
x ∈ [0, L]. However, they are applicable to a much broader class of functions that are not
necessarily periodic. For instance, consider a localized Gaussian function

u(x, t) = exp
(
−σx2

)
(11.12)

whose Fourier transform is also a Gaussian. In representing such a function with Fourier
modes, a large number of modes are often required since the function itself isn’t periodic.
Fig. 11.1 shows the Fourier mode representation of the Gaussian for three values of σ . Of
note is the fact that a large number of modes is required to represent this simple function,
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Figure 11.1 Illustration of Fourier modes for representing a localized Gaussian pulse. (a) n = 80
Fourier modes are used to represent the Gaussian u(x) = exp(−σx2) in the domain x ∈ [−10, 10]
for σ = 0.1 (red), σ = 1 (black) and σ = 10 (blue). (b) The Fourier mode representation of the
Gaussian, showing the modes required for an accurate representation of the localized function. (c)
The convergence of the n mode solution to the actual Gaussian (σ = 1) with the (d) L2 error from
the true solution for the three values of σ .

especially as the Gaussian width is decreased. Although the FFT algorithm is extremely fast
and widely applied, one can see immediately that a large number of modes are generically
required to represent simple functions of interest. Thus, solving problems using the FFT
often requires high-dimensional representations (i.e., n � 1) to accommodate generic,
localized spatial behaviors. Ultimately, our aim is to move away from artificially creating
such high-dimensional problems.

Special Functions and Sturm-Liouville Theory
In the 1800s and early 1900s, mathematical physics developed many of the governing
principles behind heat flow, electromagnetism and quantum mechanics, for instance. Many
of the hallmark problems considered were driven by linear dynamics, allowing for analyt-
ically tractable solutions. And since these problems arose before the advent of computing,
nonlinearities were typically treated as perturbations to an underlying linear equation. Thus
one often considered complex systems of the form

ut = Lu + εN (u, ux, uxx, · · · , x, t,β) (11.13)
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where L is a linear operator and ε � 1 is a small parameter used for perturbation calcu-
lations. Often in mathematical physics, the operator L is a Sturm-Liouville operator which
guarantees many advantageous properties of the eigenvalues and eigenfunctions.

To solve equations of the form in (11.13), special modes are often used that are ideally
suited for the problem. Such modes are eigenfunctions of the underlying linear operator L

in (11.13):

Lψk = λkψk (11.14)

where ψk(x) are orthonormal eigenfunctions of the operator L. The eigenfunctions allow
for an eigenfunction expansion solution whereby u(x, t) = ∑

ak(t)ψk(x). This leads to
the following solution form

dak

dt
= 〈Lu, ψk〉 + ε 〈N, ψk〉 . (11.15)

The key idea in such an expansion is that the eigenfunctions presumably are ideal for
modeling the spatial variations particular to the problem under consideration. Thus, they
would seem to be ideal, or perfectly suited, modes for (11.13). This is in contrast to the
Fourier mode expansion, as the sinusoidal modes may be unrelated to the particular physics
or symmetries in the geometry. For example, the Gaussian example considered can be
potentially represented more efficiently by Gauss-Hermite polynomials. Indeed, the wide
variety of special functions, including the Sturm-Liouville operators of Bessel, Laguerre,
Hermite, Legendre, for instance, are aimed at making the representation of solutions more
efficient and much more closely related to the underlying physics and geometry. Ultimately,
one can think of using such functions as a way of doing dimensionality reduction by using
an ideally suited set of basis functions.

Dimensionality Reduction
The examples above and solution methods for PDEs illustrate a common problem of scien-
tific computing: the generation of n degree, high-dimensional systems. For many complex
PDEs with several spatial dimensions, it is not uncommon for discretization or modal
expansion techniques to yield systems of differential equations with millions or billions
of degrees of freedom. Such large systems are extremely demanding for even the latest
computational architectures, limiting accuracies and run-times in the modeling of many
complex systems, such as high Reynolds number fluid flows.

To aid in computation, the selection of a set of optimal basis modes is critical, as it can
greatly reduce the number of differential equations generated. Many solution techniques
involve the solution of a linear system of size n, which generically involves O(n3) opera-
tions. Thus, reducing n is of paramount importance. One can already see that even in the
1800s and early 1900s, the special functions developed for various problems of mathemat-
ical physics were an analytic attempt to generate an ideal set of modes for representing
the dynamics of the complex system. However, for strongly nonlinear, complex systems
(11.1), even such special functions rarely give the best set of modes. In the next section, we
show how one might generate modes ψk that are tailored specifically for the dynamics and
geometry in (11.1). Based on the SVD algorithm, the proper orthogonal decomposition
(POD) generates a set of modes that are optimal for representing either simulation or
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measurement data, potentially allowing for significant reduction of the number of modes n

required to model the behavior of (11.1) for a given accuracy [57, 542, 543].

11.2 Optimal Basis Elements: The POD Expansion
As illustrated in the previous section, the selection of a good modal basis for solving (11.1)
using the Galerkin expansion in (11.6) is critical for efficient scientific computing strate-
gies. Many algorithms for solving PDEs rely on choosing basis modes a priori based on
(i) computational speed, (ii) accuracy, and/or (iii) constraints on boundary conditions. All
these reasons are justified and form the basis of computationally sound methods. However,
our primary concern in this chapter is in selecting a method that allows for maximal compu-
tational efficiency via dimensionality reduction. As already highlighted, many algorithms
generate artificially large systems of size n. In what follows, we present a data-driven
strategy, whereby optimal modes, also known as POD modes, are selected from numerical
and/or experimental observations, thus allowing for a minimal number of modes r � n to
characterize the dynamics of (11.1).

Two options exist for extracting the optimal basis modes from a given complex system.
One can either collect data directly from an experiment, or one can simulate the complex
system and sample the state of the system as it evolves according to the dynamics. In both
cases, snapshots of the dynamics are taken and optimal modes identified. In the case when
the system is simulated to extract modes, one can argue that no computational savings
are achieved. However, much like the LU decomposition, which has an initial one-time
computational cost of O(n3) before further O(n2) operations can be applied, the costly
modal extraction process is performed only once. The optimal modes can then be used in
a computationally efficient manner thereafter.

To proceed with the construction of the optimal POD modes, the dynamics of (11.1)
are sampled at some prescribed time interval. In particular, a snapshot uk consists of
samples of the complex system, with subscript k indicating sampling at time

tk: uk := [
u(x1, tk) u(x2, tk) · · · u(xn, tk)

]T
. Now, the continuous functions and

modes will be evaluated at n discrete spatial locations, resulting in a high-dimensional
vector representation; these will be denoted by bold symbols. We are generally interested
in analyzing the computationally or experimentally generated large data set X:

X =
⎡
⎣u1 u2 · · · um

⎤
⎦ (11.16)

where the columns uk = u(tk) ∈ Cn may be measurements from simulations or experi-
ments. X consists of a time-series of data, with m distinct measurement instances in time.
Often the state-dimension n is very large, on the order of millions or billions in the case of
fluid systems. Typically n � m, resulting in a tall-skinny matrix, as opposed to a short-fat
matrix when n � m.

As discussed previously, the singular value decomposition (SVD) provides a unique
matrix decomposition for any complex valued matrix X ∈ Cn×m:

X = U�V∗ (11.17)
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where U ∈ Cn×n and V ∈ Cm×m are unitary matrices and � ∈ Cn×m is a matrix with
nonnegative entries on the diagonal. Here ∗ denotes the complex conjugate transpose. The
columns of U are called left singular vectors of X and the columns of V are right singular
vectors. The diagonal elements of � are called singular values and they are ordered from
largest to smallest. The SVD provides critical insight into building an optimal basis set
tailored to the specific problem. In particular, the matrix U is guaranteed to provide the
best set of modes to approximate X in an 
2 sense. Specifically, the columns of this matrix
contain the orthogonal modes necessary to form the ideal basis. The matrix V gives the
time-history of each of the modal elements and the diagonal matrix � is the weighting of
each mode relative to the others. Recall that the modes are arranged with the most dominant
first and the least dominant last.

The total number of modes generated is typically determined by the number of snapshots
m taken in constructing X (where normally n � m). Our objective is to determine the
minimal number of modes necessary to accurately represent the dynamics of (11.1) with
a Galerkin projection (11.6). Thus we are interested in a rank-r approximation to the
true dynamics where typically r � m. The quantity of interest is then the low-rank
decomposition of the SVD given by

X̃ = Ũ�̃Ṽ∗ (11.18)

where ‖X − X̃‖ < ε for a given small value of epsilon. This low-rank truncation allows
us to construct the modes of interest ψk from the columns of the truncated matrix Ũ. In
particular, the optimal basis modes are given by

Ũ = � =
⎡
⎣ψ1 ψ2 · · · ψ r

⎤
⎦ (11.19)

where the truncation preserves the r most dominant modes used in (11.6). The truncated r

modes {ψ1,ψ2, · · · ,ψ r} are then used as the low-rank, orthogonal basis to represent the
dynamics of (11.1).

The above snapshot based method for extracting the low-rank, r-dimensional subspace
of dynamic evolution associated with (11.1) is a data-driven computational architecture.
Indeed, it provides an equation-free method, i.e. the governing equation (11.1) may actually
be unknown. In the event that the underlying dynamics are unknown, then the extraction
of the low-rank space allows one to build potential models in an r-dimensional subspace
as opposed to remaining in a high-dimensional space where n � r . These ideas will be
explored further in what follows. However, it suffices to highlight at this juncture that an
optimal basis representation does not require an underlying knowledge of the complex
system (11.1).

Galerkin Projection onto POD Modes
It is possible to approximate the state u of the PDE using a Galerkin expansion:

u(t) ≈ �a(t) (11.20)
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where a(t) ∈ Rr is the time-dependent coefficient vector and r � n. Plugging this modal
expansion into the governing equation (11.13) and applying orthogonality (multiplying by
�T ) gives the dimensionally reduced evolution

da(t)

dt
= �T L�a(t) + �T N(�a(t),β). (11.21)

By solving this system of much smaller dimension, the solution of a high-dimensional
nonlinear dynamical system can be approximated. Of critical importance is evaluating
the nonlinear terms in an efficient way using the gappy POD or DEIM mathematical
architecture in Chapter 12. Otherwise, the evaluation of the nonlinear terms still requires
calculation of functions and inner products with the original dimension n. In certain cases,
such as the quadratic nonlinearity of Navier-Stokes, the nonlinear terms can be computed
once in an off-line manner. However, parametrized systems generally require repeated
evaluation of the nonlinear terms as the POD modes change with β.

Example: The Harmonic Oscillator
To illustrate the POD method for selecting optimal basis elements, we will consider a
classic problem of mathematical physics: the quantum harmonic oscillator. Although the
ideal basis functions (Gauss-Hermite functions) for this problem are already known, we
would like to infer these special functions in a purely data-driven way. In other words, can
we deduce these special functions from snapshots of the dynamics alone? The standard
harmonic oscillator arises in the study of spring-mass systems. In particular, one often
assumes that the restoring force F of a spring is governed by the linear Hooke’s law:

F(t) = −kx (11.22)

where k is the spring constant and x(t) represents the displacement of the spring from its
equilibrium position. Such a force gives rise to a potential energy for the spring of the form
V = kx2/2.

In considering quantum mechanical systems, such a restoring force (with k = 1 without
loss of generality) and associated potential energy gives rise to the Schrödinger equation
with a parabolic potential

iut + 1

2
uxx − x2

2
u = 0 (11.23)

where the second term in the partial differential equation represents the kinetic energy of
a quantum particle while the last term is the parabolic potential associated with the linear
restoring force.

The solution for the quantum harmonic oscillator can be easily computed in terms of
special functions. In particular, by assuming a solution of the form

u(x, t) = akψk(x) exp
[−i(k + 1/2)t

]
(11.24)

with ak determined from initial conditions, one finds the following boundary value problem
for the eigenmodes of the system

d2ψk

dx2
+ (2k + 1 − x2)ψk (11.25)
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with the boundary conditions ψk → 0 as x → ±∞. Normalized solutions to this equa-
tion can be expressed in terms of Hermite polynomials, Hk(x) or the Gaussian-Hermite
functions

ψk =
(

2kk
√

π
)−1/2

exp(−x2/2)Hk(x) (11.26a)

= (−1)k
(

2kk
√

π
)−1/2

exp(−x2/2)
dk

dxk
exp(−x2) . (11.26b)

The Gauss-Hermite functions are typically thought of as the optimal basis functions for
the harmonic oscillator as they naturally represent the underlying dynamics driven by the
Schrödinger equation with parabolic potential. Indeed, solutions of the complex system
(11.23) can be represented as the sum

u(x, t) =
∞∑

k=0

ak

(
2kk

√
π
)−1/2

exp(−x2/2)Hk(x) exp
[−i(k + 1/2)t

]
. (11.27)

Such a solution strategy is ubiquitous in mathematical physics as is evidenced by the
large number of special functions, often of Sturm-Liouville form, for different geometries
and boundary conditions. These include Bessel functions, Laguerre polynomials, Legendre
polynomials, parabolic cylinder functions, spherical harmonics, etc.

A numerical solution to the governing PDE (11.23) based on the fast Fourier transform
is easy to implement [316]. The following code executes a full numerical solution with the
initial conditions u(x, 0) = exp(−0.2(x − x0)

2), which is a Gaussian pulse centered at
x = x0. This initial condition generically excites a number of Gauss-Hermite functions. In
particular, the initial projection onto the eigenmodes is computed from the orthogonality
conditions so that

ak = 〈u(x, 0), ψk〉 . (11.28)

This inner product projects the initial condition onto each mode ψk .

Code 11.1 Harmonic oscillator code.

L=30; n=512; x2=linspace(-L/2,L/2,n+1); x=x2(1:n); % spatial
discretization

k=(2*pi/L)*[0:n/2-1 -n/2:-1].’; % wavenumbers for FFT
V=x.^2.’; % potential
t=0:0.2:20; % time domain collection points

u=exp(-0.2*(x-1).^2); % initial conditions
ut=fft(u); % FFT initial data
[t,utsol]=ode45(’pod_harm_rhs’,t,ut,[],k,V); % integrate PDE
for j=1:length(t)

usol(j,:)=ifft(utsol(j,:)); % transforming back
end

The right-hand side function, pod_harm_rhs.m associated with the above code contains
the governing equation (11.23) in a three-line MATLAB code:

Code 11.2 Harmonic oscillator right-hand side.

function rhs=pod_harm_rhs(t,ut,dummy,k,V)
u=ifft(ut);
rhs=-(i/2)*(k.^2).*ut - 0.5*i*fft(V.*u);
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Figure 11.2 Dynamics of the quantum harmonic oscillator (11.23) given the initial condition
u(x, 0) = exp(−0.2(x − x0)2) for x0 = 0 (left panel) and x0 = 1 (right panel). The symmetric
initial data elicits a dominant five mode response while the initial condition with initial offset
x0 = 1 activates ten modes. The bottom panels show the singular values of the SVD of their
corresponding top panels along with the percentage of energy (or L2 norm) in each mode. The
dynamics are clearly low-rank given the rapid decay of the singular values.

The two codes together produce dynamics associated with the quantum harmonic
oscillator. Fig. 11.2 shows the dynamical evolution of an initial Gaussian u(x, 0) =
exp(−0.2(x − x0)

2) with x0 = 0 (left panel) and x0 = 1 (right panel). From the
simulation, one can see that there are a total of 101 snapshots (the initial condition
and an additional 100 measurement times). These snapshots can be organized as in (11.16)
and the singular value decomposition performed. The singular values of the decomposition
are suggestive of the underlying dimensionality of the dynamics. For the dynamical
evolution observed in the top panels of Fig. 11.2, the corresponding singular values of the
snapshots are given in the bottom panels. For the symmetric initial condition (symmetric
about x = 0), five modes dominate the dynamics. In contrast, for an asymmetric initial
condition, twice as many modes are required to represent the dynamics with the same
precision.

The singular value decomposition not only gives the distribution of energy within the
first set of modes, but it also produces the optimal basis elements as columns of the matrix
U. The distribution of singular values is highly suggestive of how to truncate with a low-
rank subspace of r modes, thus allowing us to construct the dimensionally reduced space
(11.19) appropriate for a Galerkin-POD expansion.

The modes of the quantum harmonic oscillator are illustrated in Fig. 11.3. Specifically,
the first five modes are shown for (i) the Gauss-Hermite functions representing the special
function solutions, (ii) the modes of the SVD for the symmetric (x0 = 0) initial conditions,
and (iii) the modes of the SVD for the offset (asymmetric, x0 = 1) initial conditions.
The Gauss-Hermite functions, by construction, are arranged from lowest eigenvalue
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Figure 11.3 First five modes of the quantum harmonic oscillator. In the top panel, the first five
Gauss-Hermite modes (11.26), arranged by their Sturm-Liouville eigenvalue, are illustrated. The
second panel shows the dominant modes computed from the SVD of the dynamics of the harmonic
oscillator with u(x, 0) = exp(−0.2x2), illustrated in Fig. 11.2 left panel. Note that the modes are all
symmetric since no asymmetric dynamics was actually manifested. For the bottom panel, where the
harmonic oscillator was simulated with the offset Gaussian u(x, 0) = exp(−0.2(x − 1)2),
asymmetry is certainly observed. This also produces modes that are very similar to the
Gauss-Hermite functions. Thus a purely snapshot based method is capable of reproducing the nearly
ideal basis set for the harmonic oscillator.

of the Sturm-Liouville problem (11.25). The eigenmodes alternate between symmetric
and asymmetric modes. For the symmetric (about x = 0) initial conditions given by
u(x, 0) = exp(−0.2x2), the first five modes are all symmetric as the snapshot based
method is incapable of producing asymmetric modes since they are actually not part
of the dynamics, and thus they are not observable, or manifested in the evolution. In
contrast, with a slight offset, u(x, 0) = exp(−0.2(x − 1)2), snapshots of the evolution
produce asymmetric modes that closely resemble the asymmetric modes of the Gauss-
Hermite expansion. Interestingly, in this case, the SVD arranges the modes by the
amount of energy exhibited in each mode. Thus the first asymmetric mode (bottom
panel in red – third mode) is equivalent to the second mode of the exact Gauss-Hermite
polynomials (top panel in green – second mode). The key observation here is that the
snapshot based method is capable of generating, or nearly so, the known optimal Gauss-
Hermite polynomials characteristic of this system. Importantly, the POD-Galerkin method
generalizes to more complex physics and geometries where the solution is not known
a priori.
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11.3 POD and Soliton Dynamics
To illustrate a full implementation of the Galerkin-POD method, we will consider an
illustrative complex system whose dynamics are strongly nonlinear. Thus, we consider the
nonlinear Schrödinger (NLS) equation

iut + 1

2
uxx + |u|2u = 0 (11.29)

with the boundary conditions u → 0 as x → ±∞. If not for the nonlinear term, this
equation could be solved easily in closed form. However, the nonlinearity mixes the eigen-
function components in the expansion (11.6), and it is impossible to derive a simple analytic
solution.

To solve the NLS computationally, a Fourier mode expansion is used. Thus the standard
fast Fourier transform may be leveraged. Rewriting (11.29) in the Fourier domain, i.e.
taking the Fourier transform, gives the set of differential equations

ût = − i

2
k2û + i |̂u|2u (11.30)

where the Fourier mode mixing occurs due to the nonlinear mixing in the cubic term.
This gives the system of differential equations to be solved in order to evaluate the NLS
behavior.

The following code formulates the PDE solution as an eigenfunction expansion (11.6)
of the NLS (11.29). The first step in the process is to define an appropriate spatial and
temporal domain for the solution along with the Fourier frequencies present in the system.
The following code produces both the time and space domains of interest:

Code 11.3 Nonlinear Schrödinger equation solver.

L=40; n=512; x2=linspace(-L/2,L/2,n+1); x=x2(1:n); % spatial
discretization

k=(2*pi/L)*[0:n/2-1 -n/2:-1].’; % wavenumbers for FFT
t=linspace(0,2*pi,21); % time domain collection points

N=1;
u=N*sech(x); % initial conditions
ut=fft(u); % FFT initial data
[t,utsol]=ode45(’pod_sol_rhs’,t,ut,[],k); % integrate PDE
for j=1:length(t)
usol(j,:)=ifft(utsol(j,:)); % transforming back

end

The right-hand side function, pod_sol_rhs.m associated with the above code contains
the governing equation (11.29) in a three-line MATLAB code:

Code 11.4 NLS right-hand side.

function rhs=pod_sol_rhs(t,ut,dummy,k)
u=ifft(ut);
rhs=-(i/2)*(k.^2).*ut + i*fft( (abs(u).^2).*u );

It now remains to consider a specific spatial configuration for the initial condition.
For the NLS, there are a set of special initial conditions called solitons where the initial
conditions are given by

u(x, 0) = Nsech(x) (11.31)



388 Reduced Order Models (ROMs)

Figure 11.4 Evolution of the (a) N = 1 and (b) N = 2 solitons. Here steady-state (N = 1, left panels
(a) and (c)) and periodic (N = 2, right panels (b) and (d)) dynamics are observed and approximately
50 and 200 Fourier modes, respectively, are required to model the behaviors.

where N is an integer. We will consider the soliton dynamics with N = 1 and N = 2. First,
the initial condition is projected onto the Fourier modes with the fast Fourier transform.

The dynamics of the N = 1 and N = 2 solitons are demonstrated in Fig. 11.4. During
evolution, the N = 1 soliton only undergoes phase changes while its amplitude remains
stationary. In contrast, the N = 2 soliton undergoes periodic oscillations. In both cases, a
large number of Fourier modes, about 50 and 200 respectively, are required to model the
simple behaviors illustrated.

The obvious question to ask in light of our dimensionality reduction thinking is this:
is the soliton dynamics really a 50 or 200 degrees-of-freedom system as required by the
Fourier mode solution technique. The answer is no. Indeed, with the appropriate basis, i.e.
the POD modes generated from the SVD, it can be shown that the dynamics is a simple
reduction to 1 or 2 modes respectively. Indeed, it can easily be shown that the N = 1 and
N = 2 solitons are truly low dimensional by computing the singular value decomposition
of the evolutions shown in Fig. 11.4.

Fig. 11.5 explicitly demonstrates the low-dimensional nature of the numerical solutions
by computing the singular values, along with the modes to be used in our new eigenfunction
expansion. For both of these cases, the dynamics are truly low dimensional with the N = 1
soliton being modeled well by a single POD mode while the N = 2 dynamics are modeled
quite well with two POD modes. Thus, in performing an eigenfunction expansion, the
modes chosen should be the POD modes generated from the simulations themselves. In
the next section, we will derive the dynamics of the modal interaction for these two cases,
which are low-dimensional and amenable to analysis.
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Figure 11.5 Projection of the N = 1 and N = 2 evolutions onto their POD modes. The top two
figures (a) and (b) are the singular values σj on a logarithmic scale of the two evolutions
demonstrated in (11.4). This demonstrates that the N = 1 and N = 2 soliton dynamics are primarily
low-rank, with the N = 1 being a single mode evolution and the N = 2 being dominated by two
modes that contain approximately 95% of the evolution variance. The first three modes in both cases
are shown in the bottom two panels (c) and (d).

Soliton Reduction (N = 1)
To take advantage of the low dimensional structure, we first consider the N = 1 soliton
dynamics. Fig. 11.5 shows that a single mode in the SVD dominates the dynamics. This is
the first column of the U matrix. Thus the dynamics are recast in a single mode so that

u(x, t) = a(t)ψ(x). (11.32)

Plugging this into the NLS equation (11.29) yields the following:

iatψ + 1

2
aψxx + |a|2a|ψ |2ψ = 0 . (11.33)

The inner product is now taken with respect to ψ which gives

iat + α

2
a + β|a|2a = 0 (11.34)

where

α = 〈ψxx, ψ〉
〈ψ,ψ〉 (11.35a)
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β = 〈|ψ |2ψ,ψ〉
〈ψ,ψ〉 . (11.35b)

This is the low-rank approximation achieved by the POD-Galerkin method.
The differential equation (11.34) for a(t) can be solved explicitly to yield

a(t) = a(0) exp
(
i
α

2
t + β|a(0)|2t

)
(11.36)

where a(0) is the initial condition for a(t). To find the initial condition, recall that

u(x, 0) = sech(x) = a(0)ψ(x) . (11.37)

Taking the inner product with respect to ψ(x) gives

a(0) = 〈sech(x), ψ〉
〈ψ,ψ〉 . (11.38)

Thus the one mode expansion gives the approximate PDE solution

u(x, t) = a(0) exp
(
i
α

2
t + β|a(0)|2t

)
ψ(x) . (11.39)

This solution is the low-dimensional POD approximation of the PDE expanded in the best
basis possible, i.e. the SVD basis.

For the N = 1 soliton, the spatial profile remains constant while its phase undergoes
a nonlinear rotation. The POD solution (11.39) can be solved exactly to characterize this
phase rotation.

Soliton Reduction (N = 2)
The N = 2 soliton case is a bit more complicated and interesting. In this case, two modes
clearly dominate the behavior of the system, as they contain 96% of the energy. These
two modes, ψ1 and ψ2, are the first two columns of the matrix U and are now used to
approximate the dynamics observed in Fig. (11.4). In this case, the two mode expansion
takes the form

u(x, t) = a1(t)ψ1(x) + a2(t)ψ2(x). (11.40)

Inserting this approximation into the governing equation (11.29) gives

i (a1tψ1 + a2tψ2)+ 1

2

(
a1ψ1xx + a2ψ2xx

)+(a1ψ1+a2ψ2)
2(a∗

1ψ∗
1 +a∗

2ψ∗
2 ) = 0. (11.41)

Multiplying out the cubic term gives

i (a1tψ1 + a2tψ2) + 1

2

(
a1ψ1xx + a2ψ2xx

)
+
(
|a1|2a1|ψ1|2ψ1 + |a2|2a2|ψ2|2ψ2 + 2|a1|2a2|ψ1|2ψ2 + 2|a2|2a1|ψ2|2ψ1

+a2
1a∗

2ψ2
1 ψ∗

2 + a2
2a∗

1ψ2
2 ψ∗

1

)
. (11.42)

All that remains is to take the inner product of this equation with respect to both ψ1(x) and
ψ2(x). Recall that these two modes are orthogonal, resulting in the following 2 × 2 system
of nonlinear equations:

ia1t + α11a1 + α12a2 +
(
β111|a1|2 + 2β211|a2|2

)
a1 (11.43a)
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+
(
β121|a1|2 + 2β221|a2|2

)
a2 + σ121a

2
1a∗

2 + σ211a
2
2a∗

1 = 0

ia2t + α21a1 + α22a2 +
(
β112|a1|2 + 2β212|a2|2

)
a1 (11.43b)

+
(
β122|a1|2 + 2β222|a2|2

)
a2 + σ122a

2
1a∗

2 + σ212a
2
2a∗

1 = 0

where

αjk = 〈ψj xx, ψk〉/2 (11.44a)

βjkl = 〈|ψj |2ψk,ψl〉 (11.44b)

σjkl = 〈ψ2
j ψ∗

k , ψl〉 (11.44c)

and the initial values of the two components are given by

a1(0) = 〈2sech(x), ψ1〉
〈ψ1, ψ1〉 (11.45a)

a2(0) = 〈2sech(x), ψ2〉
〈ψ2, ψ2〉 . (11.45b)

This gives a complete description of the two mode dynamics predicted from the SVD
analysis.

The two mode dynamics accurately approximates the solution. However, there is a phase
drift that occurs in the dynamics that would require higher precision in both the time series
of the full PDE and more accurate integration of the inner products for the coefficients.
Indeed, the most simple trapezoidal rule has been used to compute the inner products and its
accuracy is somewhat suspect; this issue will be addressed in the following section. Higher-
order schemes could certainly help improve the accuracy. Additionally, incorporating the
third or higher modes could also help. In either case, this demonstrates how one would use
the low dimensional structures to approximate PDE dynamics in practice.

11.4 Continuous Formulation of POD
Thus far, the POD reduction has been constructed to accommodate discrete data measure-
ment snapshots X as given by (11.16). The POD reduction generates a set of low-rank basis
modes � so that the following least-squares error is minimized:

argmin
� s.t. rank(�)=r

‖X − ��T X‖F . (11.46)

Recall that X ∈ Cn×m and � ∈ Cn×r where r is the rank of the truncation.
In many cases, measurements are performed on a continuous time process over a pre-

scribed spatial domain, thus the data we consider are constructed from trajectories

u(x, t) t ∈ [0, T ], x ∈ [−L,L]. (11.47)

Such data require a continuous time formulation of the POD reduction. In particular, an
equivalent of (11.46) must be constructed for these continuous time trajectories. Note that
instead of a spatially dependent function u(x, t), one can also consider a vector of trajec-
tories u(t) ∈ Cn. This may arise when a PDE is discretized so that the infinite dimensional
spatial variable x is finite dimensional. Wolkwein [542, 543] gives an excellent, technical
overview of the POD method and its continuous formulation.
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To define the continuous formulation, we prescribe the inner product

〈f (x), g(x)〉 =
∫ L

−L

f (x)g∗(x)dx . (11.48)

To find the best fit function through the entire temporal trajectory u(x, t) in (11.47), the
following minimization problem must be solved

min
ψ

1

T

∫ T

0
‖u(x, t) − 〈u(x, t), ψ(x)〉 ψ‖2 dt subject to ‖ψ‖2 = 1 (11.49)

where the normalization of the temporal integral by 1/T averages the difference between
the data and its low-rank approximation using the function ψ over the time t ∈ [0, T ].
Equation (11.49) is equivalent to maximizing the inner product between the data u(x, t) and
the function ψ(x), i.e. they are maximally parallel in function space. Thus the minimization
problem can be restated as

max
ψ

1

T

∫ T

0
| 〈u(x, t), ψ(x)〉 |2dt subject to ‖ψ‖2 = 1 . (11.50)

The constrained optimization problem in (11.50) can be reformulated as a Lagrangian
functional

L(ψ, λ) = 1

T

∫ T

0
| 〈u(x, t), ψ(x)〉 |2dt + λ

(
1 − ‖ψ‖2

)
(11.51)

where λ is the Lagrange multiplier that enforces the constraint ‖ψ‖2 = 1. This can be
rewritten as

L(ψ, λ) = 1

T

∫ T

0

(∫ L

−L

u(ξ, t)ψ∗(ξ)dξ

∫ L

−L

u∗(x, t)ψ(x)dx

)
dt

+λ
(

1 − ‖ψ‖2
)

+ λ

(
1 −

∫ L

−L

ψ(x)ψ∗(x)dx

)
. (11.52)

The Lagrange multiplier problem requires that the functional derivative be zero:

∂L
∂ψ∗ = 0. (11.53)

Applying this derivative constraint to (11.52) and interchanging integrals yields

∂L
∂ψ∗ =

∫ L

−L

dξ

[
1

T

∫ T

0

(
u(ξ, t)

∫ L

−L

u∗(x, t)ψ(x)dx

)
dt − λψ(x)

]
= 0 . (11.54)

Setting the integrand to zero, the following eigenvalue problem is derived

〈R(ξ, x), ψ〉 = λψ (11.55)

where R(ξ, x) is a two-point correlation tensor of the continuous data u(x, t) which is
averaged over the time interval where the data is sampled

R(ξ, x) = 1

T

∫ T

0
u(ξ, t)u∗(x, t)dt . (11.56)
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f(t)

0 T/2 T

f1
f2
f3

Figure 11.6 Illustration of an implementation of the quadrature rule to evaluate the integrals∫ T
0 f (t)dt. The rectangles of height f (tj ) = fj and width δt are summed to approximate the integral.

If the spatial direction x is discretized, resulting in a high-dimensional vector

u(t) = [u(x1, t) u(x2, t) · · · u(xn, t)
]T

, then R(ξ, x) becomes:

R = 1

T

∫ T

0
u(t)u∗(t)dt . (11.57)

In practice, the function R is evaluated using a quadrature rule for integration. This will
allow us to connect the method to the snapshot based method discussed thus far.

Quadrature Rules for R: Trapezoidal Rule
The evaluation of the integral (11.57) can be performed by numerical quadrature [316]. The
simplest quadrature rule is the trapezoidal rule which evaluates the integral via summation
of approximating rectangles. Fig. 11.6 illustrates a version of the trapezoidal rule where
the integral is approximated by a summation over a number of rectangles. This gives the
approximation of the two-point correlation tensor:

R = 1

T

∫ T

0
u(t)u∗(t)dt

≈ �t

T

[
u∗(t1)u(t1) + u∗(t2)u(t2) + · · · + u∗(tm)u(tm)

]
(11.58)

= �t

T

[
u∗

1u1 + u∗
2u2 + · · · + u∗

mum

]
where we have assumed u(x, t) is discretized into a vector uj = u(tj ), and there are m

rectangular bins of width �t so that (m)�t = T . Defining a data matrix

X = [u1 u2 · · · um] (11.59)

we can then rewrite the two-point correlation tensor as

R ≈ 1

m
X∗X (11.60)

which is exactly the definition of the covariance matrix in (1.27), i.e. C ≈ R. Note that the
role of 1/T is to average over the various trajectories so that the average is subtracted out,
giving rise to a definition consistent with the covariance.
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Higher-order Quadrature Rules
Numerical integration simply calculates the area under a given curve. The basic ideas for
performing such an operation come from the definition of integration∫ b

a

f (t)dt = lim
�t→0

m−1∑
j=0

f (tj )�t (11.61)

where b − a = (m − 1)�t . The area under the curve is a limiting process of summing up
an ever-increasing number of rectangles. This process is known as numerical quadrature.
Specifically, any sum can be represented as follows:

Q[f ] =
m−1∑
j=0

wj f (tj ) = w0f (t0) + w1f (t1) + · · · + wm−1f (tm−1) (11.62)

where a = t0 < t1 < t2 < · · · < tm−1 = b. Thus the integral is evaluated as∫ b

a

f (t)dt = Q[f ] + E[f ] (11.63)

where the term E[f ] is the error in approximating the integral by the quadrature sum
(11.62). Typically, the error E[f ] is due to truncation error. To integrate, we will use poly-
nomial fits to the y-values f (tj ). Thus we assume the function f (t) can be approximated
by a polynomial

Pn(t) = ant
n + an−1t

n−1 + · · · + a1t + a0 (11.64)

where the truncation error in this case is proportional to the (n + 1)th derivative
E[f ] = Af (n+1)(c) and A is a constant. This process of polynomial fitting the data
gives the Newton-Cotes Formulas.

The following integration approximations result from using a polynomial fit through the
data to be integrated. It is assumed that

tk = t0 + �tk fk = f (tk) . (11.65)

This gives the following integration algorithms:

Trapezoid Rule
∫ t1

t0

f (t)dt = �t

2
(f0 + f1) − �t3

12
f ′′(c) (11.66a)

Simpson’s Rule
∫ t2

t0

f (t)dt = �t

3
(f0 + 4f1 + f2) − �t5

90
f ′′′′(c) (11.66b)

Simpson’s 3/8 Rule
∫ t3

t0

f (t)dt= 3�t

8
(f0+3f1+3f2+f3) − 3�t5

80
f ′′′′(c) (11.66c)

Boole’s Rule
∫ t4

t0

f (t)dt= 2�t

45
(7f0+32f1+12f2+32f3+7f4)−8�t7

945
f (6)(c). (11.66d)

These algorithms have varying degrees of accuracy. Specifically, they are O(�t2), O(�t4),
O(�t4) and O(�t6) accurate schemes respectively. The accuracy condition is determined
from the truncation terms of the polynomial fit. Note that the trapezoidal rule uses a sum of
simple trapezoids to approximate the integral. Simpson’s rule fits a quadratic curve through
three points and calculates the area under the quadratic curve. Simpson’s 3/8 rule uses four
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points and a cubic polynomial to evaluate the area, while Boole’s rule uses five points and
a quartic polynomial fit to generate an evaluation of the integral.

The integration methods (11.66) give values for the integrals over only a small part of
the integration domain. The trapezoidal rule, for instance, only gives a value for t ∈ [t0, t1].
However, our fundamental aim is to evaluate the integral over the entire domain t ∈ [a, b].
Assuming once again that our interval is divided as a = t0 < t1 < t2 < · · · < tm−1 = b,
then the trapezoidal rule applied over the interval gives the total integral∫ b

a

f (t)dt ≈ Q[f ] =
m∑

j=1

�t

2

(
fj + fj+1

)
. (11.67)

Writing out this sum gives

m∑
j=1

�t

2

(
fj + fj+1

) = �t

2
(f0 + f1) + �t

2
(f1 + f2) + · · · + �t

2
(fm + fm−1)

= �t

2
(f0 + 2f1 + 2f2 + · · · + 2fm + fm−1) (11.68)

= �t

2

⎛
⎝f0 + fm−1 + 2

m∑
j=1

fj

⎞
⎠ .

The final expression no longer double counts the values of the points between f0 and fm−1.
Instead, the final sum only counts the intermediate values once, thus making the algorithm
about twice as fast as the previous sum expression. These are computational savings which
should always be exploited if possible.

POD Modes from Quadrature Rules
Any of these algorithms could be used to approximate the two-point correlation tensor
R(ξ, x). The method of snapshots implicitly uses the trapezoidal rule to produce the snap-
shot matrix X. Specifically, recall that

X =
⎡
⎣u1 u2 · · · um

⎤
⎦ (11.69)

where the columns uk ∈ Cn may be measurements from simulations or experiments. The
SVD of this matrix produces the modes used to produce a low-rank embedding � of the
data.

One could alternatively use a higher-order quadrature rule to produce a low-rank decom-
position. Thus the matrix (11.69) would be modified to

X =
⎡
⎣u1 4u2 2u3 4u4 2u5 · · · 4um−1 um

⎤
⎦ (11.70)

where the Simpson’s rule quadrature formula is used. Simpson’s rule is commonly used in
practice as it is simple to execute and provides significant improvement in accuracy over the
trapezoidal rule. Producing this matrix simply involves multiplying the data matrix on the
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right by
[
1 4 2 4 · · · 2 4 1

]T
. The SVD can then be used to construct a low-

rank embedding �. Before approximating the low-rank solution, the quadrature weighting
matrix must be undone. To our knowledge, very little work has been done in quantifying
the merits of various quadrature rules. However, the interested reader should consider the
optimal snapshot sampling strategy developed by Kunisch and Volkwein [315].

11.5 POD with Symmetries: Rotations and Translations
The POD method is not without its shortcomings. It is well known in the POD community
that the underlying SVD algorithm does handle invariances in the data in an optimal way.
The most common invariances arise from translational or rotational invariances in the
data. Translational invariance is observed in the simple phenomenon of wave propagation,
making it difficult for correlation to be computed since critical features in the data are no
longer aligned snapshot to snapshot.

In what follows, we will consider the effects of both translation and rotation. The exam-
ples are motivated from physical problems of practical interest. The important observation
is that unless the invariance structure is accounted for, the POD reduction will give an
artificially inflated dimension for the underlying dynamics. This challenges our ability to
use the POD as a diagnostic tool or as the platform for reduced order models.

Translation: Wave Propagation
To illustrate the impact of translation on a POD analysis, consider a simple translating
Gaussian propagating with velocity c.

u(x, t) = exp
[
−(x − ct + 15)2

]
. (11.71)

We consider this solution on the space and time intervals x ∈ [−20, 20] and t ∈ [0, 10].
The following code produces the representative translating solution and its low-rank repre-
sentation.

Code 11.5 Translating wave for POD analysis.

n=200; L=20; x=linspace(-L,L,n); y=x; % space
m=41; T=10; t=linspace(0,T,m); % time
c=3; % wave speed

X=[];
for j=1:m

X(:,j)=exp(-(x+15-c*t(j)).^2).’; % data snapshots
end
[U,S,V]=svd(X); % SVD decomposition

Figure 11.7(a) demonstrates the simple evolution to be considered. As is clear from
the figure, the translation of the pulse will clearly affect the correlation at a given spatial
location. Naive application of the SVD does not account for the translating nature of the
data. As a result, the singular values produced by the SVD decay slowly as shown in
Fig. 11.7(b) and (c). In fact, the first few modes each contain approximately 8% of the
variance.

The slow decay of singular values suggests that a low-rank embedding is not easily
constructed. Moreover, there are interesting issues interpreting the POD modes and their
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Figure 11.7 (a) Translating Gaussian with speed c = 3. The singular value decomposition produces a
slow decay of the singular values which is shown on a (b) normal and (c) logarithmic plot.

Figure 11.8 First four spatial modes (a) (first four columns of the U matrix) and temporal modes (b)
(first four columns of the V matrix). A wave translating at a constant speed produces Fourier mode
structures in both space and time.

time dynamics. Fig. 11.8 shows the first four spatial (U) and temporal (V) modes generated
by the SVD. The spatial modes are global in that they span the entire region where the
pulse propagation occurred. Interestingly, they appear to be Fourier modes over the region
where the pulse propagated. The temporal modes illustrate a similar Fourier mode basis for
this specific example of a translating wave propagating at a constant velocity.

The failure of POD in this case is due simply to the translational invariance. If the
invariance is removed, or factored out [457], before a data reduction is attempted, then
the POD method can once again be used to produce a low-rank approximation. In order



398 Reduced Order Models (ROMs)

Figure 11.9 Spiral waves (a) u(x, y), (b) |u(x, y)| and (c) u(x, y)5 on the domain x ∈ [−20, 20] and
y ∈ [−20, 20]. The spirals are made to spin clockwise with angular velocity ω.

to remove the invariance, the invariance must first be identified and an auxiliary variable
defined. Thus we consider the dynamics rewritten as

u(x, t) → u(x − c(t)) (11.72)

where c(t) corresponds to the translational invariance in the system responsible for lim-
iting the POD method. The parameter c can be found by a number of methods. Rowley
and Marsden [457] propose a template based technique for factoring out the invariance.
Alternatively, a simple center-of-mass calculation can be used to compute the location of
the wave and the variable c(t) [316].

Rotation: Spiral Waves
A second invariance commonly observed in simulations and data is associated with rota-
tion. Much like translation, rotation moves a coherent, low-rank structure in such a way
that correlations, which are produced at specific spatial locations, are no longer produced.
To illustrate the effects of rotational invariance, a localized spiral wave with rotation will
be considered.

A spiral wave centered at the origin can be defined as follows

u(x, y) = tanh

[√
x2 + y2 cos

(
A� (x + iy) −

√
x2 + y2

)]
(11.73)

where A is the number of arms of the spiral, and the � denotes the phase angle of the
quantity (x + iy). To localize the spiral on a spatial domain, it is multiplied by a Gaussian
centered at the origin so that our function of interest is given by

f (x, y) = u(x, y) exp
[
−0.01(x2 + y2)

]
. (11.74)

This function can be produced with the following code.

Code 11.6 Spiral wave for POD analysis.

n=100;
L=20; x=linspace(-L,L,n); y=x;
[X,Y]=meshgrid(x,y);

Xd=[];
for j=1:100

u=tanh(sqrt(X.^2+Y.^2)).*cos(angle(X+i*Y)-(sqrt(X.^2+Y.^2))+
j/10);

f=exp(-0.01*(X.^2+Y.^2));
uf=u.*f;
Xd(:,j)=reshape(uf,n^2,1);
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Figure 11.10 (a) First four temporal modes of the matrix V. To numerical precision, all the variance
is in the first two modes as shown by the singular value decay on a normal (b) and logarithmic (c)
plot. Remarkably, the POD extracts exactly two modes (See Fig. 11.11) to represent the rotating
spiral wave.

pcolor(x,y,uf), shading interp, colormap(hot)
end

Note that the code produces snapshots which advance the phase of the spiral wave by
j/10 each pass through the for loop. This creates the rotation structure we wish to consider.
The rate of spin can be made faster or slower by lowering or raising the value of the
denominator respectively.

In addition to considering the function u(x, y), we will also consider the closely related
functions |u(x, y)| and u(x, y)5 as shown in Fig. 11.9. Although these three functions
clearly have the same underlying function that rotates, the change in functional form is
shown to produce quite different low-rank approximations for the rotating waves.

To begin our analysis, consider the function u(x, y) illustrated in Fig. 11.9(a). The SVD
of this matrix can be computed and its low-rank structure evaluated using the following
code.

Code 11.7 SVD decomposition of spiral wave.

[U,S,V]=svd(Xd,0);

figure(2)
subplot(4,1,3)
plot(100*diag(S)/sum(diag(S)),’ko’,’Linewidth’,[2])
subplot(4,1,4)
semilogy(100*diag(S)/sum(diag(S)),’ko’,’Linewidth’,[2])
subplot(2,1,1)
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ψ1 ψ2

ψ3 ψ4

Figure 11.11 First four POD modes associated with the rotating spiral wave u(x, y). The first two
modes capture all the variance to numerical precision while the third and fourth mode are noisy due
to numerical round-off. The domain considered is x ∈ [−20, 20] and y ∈ [−20, 20].

plot(V(:,1:4),’Linewidth’,[2])
figure(3)
for j=1:4

subplot(4,4,j)
mode=reshape(U(:,j),n,n);
pcolor(X,Y,mode), shading interp,caxis([-0.03 0.03]),

colormap(gray)
end

Two figures are produced. The first assesses the rank of the observed dynamics and the
temporal behavior of the first four modes in V. Figs. 11.10 (b) and (c) show the decay
of singular values on a regular and logarithmic scale respectively. Remarkably, the first
two modes capture all the variance of the data to numerical precision. This is further
illustrated in the time dynamics of the first four modes. Specifically, the first two modes of
Fig. 11.10(a) have a clear oscillatory signature associated with the rotation of modes one
and two of Fig. 11.11. Modes three and four resemble noise in both time and space as a
result of numerical round off.

The spiral wave (11.74) allows for a two-mode truncation that is accurate to numerical
precision. This is in part due to the sinusoidal nature of the solution when circumnavigating
the solution at a fixed radius. Simply changing the data from u(x, t) to either |u(x, t)| or
u(x, t)5 reveals that the low-rank modes and their time dynamics are significantly different.
Figs. 11.12 (a) and (b) show the decay of the singular values for these two new functions
and demonstrate the significant difference from the two mode evolution previously con-
sidered. The dominant time dynamics computed from the matrix V are also demonstrated.
In the case of the absolute value of the function |u(x, t)|, the decay of the singular values
is slow and never approaches numerical precision. The quintic function suggests a rank
r = 6 truncation is capable of producing an approximation to numerical precision. This
highlights the fact that rotational invariance complicates the POD reduction procedure.
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Figure 11.12 Decay of the singular values on a normal (a) and logarithmic (b) scale showing that
the function |u(x, t)| produces a slow decay while u(x, t)5 produces an r = 6 approximation to
numerical accuracy. The first four temporal modes of the matrix V are shown for these two
functions in (c) and (d) respectively.

Figure 11.13 First four POD modes associated with the rotating spiral wave |u(x, y)| (top row) and
u(x, t)5 (bottom row). Unlike our previous example, the first four modes do not capture all the
variance to numerical precision, thus requiring more modes for accurate approximation. The domain
considered is x ∈ [−20, 20] and y ∈ [−20, 20].

After all, the only difference between the three rotating solutions is the actual shape of the
rotating function as they are all rotating with the same speed.

To conclude, invariances can severely limit the POD method. Most notably, it can artifi-
cially inflate the dimension of the system and lead to compromised interpretability. Expert
knowledge of a given system and its potential invariances can help frame mathematical
strategies to remove the invariances, i.e. re-aligning the data [316, 457]. But this strategy
also has limitations, especially if two or more invariant structures are present. For instance,
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if two waves of different speeds are observed in the data, then the methods proposed for
removing invariances will fail to capture both wave speeds simultaneously. Ultimately,
dealing with invariances remains an open research question.
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12 Interpolation for Parametric ROMs

In the last chapter, the mathematical framework of ROMs was outlined. Specifically, Chap-
ter 11 has already highlighted the POD method for projecting PDE dynamics to low-rank
subspaces where simulations of the governing PDE model can be more readily evaluated.
However, the complexity of projecting into the low-rank approximation subspace remains
challenging due to the nonlinearity. Interpolation in combination with POD overcomes
this difficulty by providing a computationally efficient method for discretely (sparsely)
sampling and evaluating the nonlinearity. This chapter leverages the ideas of the sparse
and compressive sampling algorithms of Chapter 3 where a small number of samples
are capable of reconstructing the low-rank dynamics of PDEs. Ultimately, these methods
ensure that the computational complexity of ROMs scale favorably with the rank of the
approximation, even for complex nonlinearities. The primary focus of this chapter is to
highlight sparse interpolation methods that enable a rapid and low dimensional construction
of the ROMs. In practice, these techniques dominate the ROM community since they are
critically enabling for evaluating parametrically dependent PDEs where frequent ROM
model updates are required.

12.1 Gappy POD
The success of nonlinear model order reduction is largely dependent upon two key inno-
vations: (i) the well-known POD-Galerkin method [251, 57, 542, 543], which is used to
project the high-dimensional nonlinear dynamics onto a low-dimensional subspace in a
principled way, and (ii) sparse sampling of the state space for interpolating the nonlin-
ear terms required for the subspace projection. Thus sparsity is already established as a
critically enabling mathematical framework for model reduction through methods such as
gappy POD and its variants [179, 555, 565, 120, 159]. Indeed, efficiently managing the
computation of the nonlinearity was recognized early on in the ROMs community, and a
variety of techniques were proposed to accomplish this task. Perhaps the first innovation
in sparse sampling with POD modes was the technique proposed by Everson and Sirovich
for which the gappy POD moniker was derived [179]. In their sparse sampling scheme,
random measurements were used to approximate inner products. Principled selection of
the interpolation points, through the gappy POD infrastructure [179, 555, 565, 120, 159]
or missing point (best points) estimation (MPE) [400, 21], were quickly incorporated
into ROMs to improve performance. More recently, the empirical interpolation method
(EIM) [41] and its most successful variant, the POD-tailored discrete empirical interpo-
lation method (DEIM) [127], have provided a greedy algorithm that allows for nearly
optimal reconstructions of nonlinear terms of the original high-dimensional system. The
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DEIM approach combines projection with interpolation. Specifically, DEIM uses selected
interpolation indices to specify an interpolation-based projection for a nearly optimal 
2

subspace approximating the nonlinearity.
The low-rank approximation provided by POD allows for a reconstruction of the solution

u(x, t) in (12.9) with r measurements of the n-dimensional state. This viewpoint has
profound consequences on how we might consider measuring our dynamical system [179].
In particular, only r � n measurements are required for reconstruction, allowing us to
define the sparse representation variable ũ ∈ Cr

ũ = Pu (12.1)

where the measurement matrix P ∈ Rr×n specifies r measurement locations of the full
state u ∈ Cn. As an example, the measurement matrix might take the form

P =

⎡
⎢⎢⎢⎢⎢⎣

1 0 · · · · · · 0
0 · · · 0 1 0 · · · · · · 0
0 · · · · · · 0 1 0 · · · 0
... 0 · · · 0 0 1 · · · ...

0 · · · · · · 0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎦ (12.2)

where measurement locations take on the value of unity and the matrix elements are zero
elsewhere. The matrix P defines a projection onto an r-dimensional space ũ that can be
used to approximate solutions of a PDE.

The insight and observation of (12.1) forms the basis of the gappy POD method intro-
duced by Everson and Sirovich [179]. In particular, one can use a small number of mea-
surements, or gappy data, to reconstruct the full state of the system. In doing so, we can
overcome the complexity of evaluating higher-order nonlinear terms in the POD reduction.

Sparse Measurements and Reconstruction
The measurement matrix P allows for an approximation of the state vector u from r

measurements. The approximation is obtained by using (12.1) with the standard POD
projection:

ũ ≈ P
r∑

k=1

ãkψk (12.3)

where the coefficients ãk minimize the error in approximation: ‖ũ − Pu‖. The challenge
now is how to determine the ãk given that taking inner products of (12.3) can no longer
be performed. Specifically, the vector ũ has dimension r whereas the POD modes have
dimension n, i.e. the inner product requires information from the full range of x, the
underlying discretized spatial variable, which is of length n. Thus, the modes ψk(x) are in
general not orthogonal over the r-dimensional support of ũ. The support will be denoted as
s[ũ]. More precisely, orthogonality must be considered on the full range versus the support
space. Thus the following two relationships hold

Mkj = 〈ψk,ψj

〉 = δkj (12.4a)

Mkj = 〈ψk,ψj

〉
s[ũ]

�= 0 for all k, j (12.4b)
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where Mkj are the entries of the Hermitian matrix M and δkj is the Kroenecker delta
function. The fact that the POD modes are not orthogonal on the support s[ũ] leads us
to consider alternatives for evaluating the vector ã.

To determine the ãk , a least-squares algorithm can be used to minimize the error

E =
∫

s[ũ]

[
ũ −

r∑
k=1

ãkψk

]2

dx (12.5)

where the inner product is evaluated on the support s[ũ], thus making the two terms in the
integral of the same size r . The minimizing solution to (12.5) requires the residual to be
orthogonal to each mode ψk so that〈

ũ −
r∑

k=1

ãkψk,ψj

〉
s[ũ]

=0 j �= k, j = 1, 2, · · · , r. (12.6)

In practice, we can project the full state vector u onto the support space and determine
the vector ã:

Mã = f (12.7)

where the elements of M are given by (12.4b) and the components of the vector f are given
by

fk = 〈u,ψk

〉
s[ũ] . (12.8)

Note that if the measurement space is sufficiently dense, or if the support space is the
entire space, then M = I, implying the eigenvalues of M approach unity as the number
of measurements become dense. Once the vector ã is determined, a reconstruction of the
solution can be performed as

u(x, t) ≈ �ã . (12.9)

As the measurements become dense, not only does the matrix M converge to the idenity,
but ã → a. Interestingly, these observations lead us to consider the efficacy of the method
and/or approximation by considering the condition number of the matrix M [524]:

κ(M) = ‖M‖‖M−1‖ = σ1

σm

. (12.10)

Here the 2-norm has been used. If κ(M) is small then the matrix is said to be well-
conditioned. A minimal value of κ(M) is achieved with the identify matrix M = I. Thus,
as the sampling space becomes dense, the condition number also approaches unity. This
can be used as a metric for determining how well the sparse sampling is performing. Large
condition numbers suggest poor reconstruction while values tending toward unity should
perform well.

Harmonic Oscillator Modes
To demonstrate the gappy sampling method and its reconstruction efficacy, we apply the
technique to the Gauss-Hermite functions defined by (11.25) and (11.26). In the code
that follows, we compute the first ten modes as given by (11.26). To compute the second
derivative, we use the fact that the Fourier transform F can produce a spectrally accurate
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approximation, i.e. uxx = F−1
[
(ik)2Fu

]
. For the sake of producing accurate derivatives,

we consider the domain x ∈ [−10, 10] but then work with the smaller domain of interest
x ∈ [−4, 4]. Recall further that the Fourier transform assumes a 2π -periodic domain.
This is handled by a scaling factor in the k-wavevectors. The first five modes have been
demonstrated in Fig. 11.3. In the code that follows, we view the first 10 modes with a
top-view color plot in order highlight the various features of the modes.

Code 12.1 Harmonic oscillator modes.

L=10; x3=-L:0.1:L; n=length(x3)-1; % define domain
x2=x3(1:n); k=(2*pi/(2*L))*[0:n/2-1 -n/2:-1]; % k-vector
ye=exp(-(x2.^2)); ye2=exp((x2.^2)/2); % define Gaussians
for j=0:9 % loop through 10 modes

yd=real(ifft(((i*k).^j).*fft(ye))); % 2nd derivative
mode=((-1)^(j))*(((2^j)*factorial(j)*sqrt(pi))^(-0.5))*ye2.*yd

;
y(:,j+1)=(mode).’; % store modes as columns

end

x=x2(n/2+1-40:n/2+1+40); % keep only -4<x<4
yharm=y(n/2+1-40:n/2+1+40,:);
pcolor(flipud((yharm(:,10:-1:1).’)))

The mode construction is shown in the top panel of Fig. 12.1. Each colored cell repre-
sents the discrete value of the mode in the interval x ∈ [−4, 4] with �x = 0.1. Thus there

Figure 12.1 The top panel shows the first 10 modes of the quantum harmonic oscillator considered in
(11.25) and (11.26). Three randomly generated measurement matrices, Pj with j = 1, 2 and 3, are
depicted. There is a 20% chance of performing a measurement at a given spatial location xj in the
interval x ∈ [−4, 4] with a spacing of �x = 0.1.
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Figure 12.2 The top panel shows the original function (black) along with a 10 mode reconstruction of
the test function f (x) = exp(−(x − 0.5)2) + 3 exp(−2(x + 3/2)2) sampled in the full space (red)
and three representative support spaces s[ũ] of Fig. 12.1, specifically (b) P1, (c) P2, and (d) P3.
Note that the error measurement is specific to the function being considered whereas the condition
number metric is independent of the specific function. Although both can serve as proxies for
performance, the condition number serves for any function, which is advantageous.

are 81 discrete values for each of the modes ψk . Our objective is to reconstruct a function
outside of the basis modes of the harmonic oscillator. In particular, consider the function

f (x) = exp[−(x − 0.5)2] + 3 exp[−2(x + 3/2)2] (12.11)

which will be discretized and defined over the same domain as the modal basis of the har-
monic oscillator. The following code builds this function and further numerically constructs
the projection of the function onto the basis functions ψn. The original function is plotted
in the top panel of Fig. 12.2. Note that the goal now is to reconstruct this function both with
a low-rank projection onto the harmonic oscillator modes, and with a gappy reconstruction
whereby only a sampling of the data is used, via the measurements Pj . The following code
builds the test function and does a basic reconstruction in the 10-mode harmonic oscillator
basis. Further, it builds the matrix M for the full state measurements and computes its
condition number.

Code 12.2 Test function and reconstruction.

f=(exp(-(x-0.5).^2)+3*exp(-2*(x+1.5).^2))’;
for j=1:10 % full reconstruction
a(j,1)=trapz(x,f.*yharm(:,j));

end
f2=yharm*a;
subplot(2,1,1), plot(x,f2,’r’)
Err(1)=norm(f2-f); % reconstruction error
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for j=1:10 % matrix M reconstruction
for jj=1:j

Area=trapz(x,yharm(:,j).*yharm(:,jj));
M(j,jj)=Area;
M(jj,j)=Area;

end
end
cond(M) % get condition number

Results of the low-rank and gappy reconstruction are shown in Fig. 12.2. The low-
rank reconstruction is performed using the full measurements projected to the 10 leading
harmonic oscillator modes. In this case, the inner product of the measurement matrix is
given by (12.4a) and is approximately the identify. The fact that we are working on a
limited domain x ∈ [−4, 4] with a discretization step of �x = 0.1 is what makes M ≈ I
versus being exactly the identify. For the three different sparse measurement scenarios
Pj of Fig. 12.1, the reconstruction is also shown along with the least-square error and
the logarithm of the condition number log[κ(Mj )]. We also visualize the three matrices
Mj in Fig. 12.3. The condition number of each of these matrices helps determine its
reconstruction accuracy.

M ≈ MI 1

M2 M3

Figure 12.3 Demonstration of the deterioration of the orthogonality of the modal basis in the support
space s[ũ] as given by the matrix M defined in (12.4). The top left shows that the identity matrix is
produced for full measurements, or nearly so but with errors due to truncation of the domain over
x ∈ [−4, 4]. The matrices Mj , which longer look diagonal, correspond to the sparse sampling
matrices Pj in Fig. 12.1. Thus it is clear that the modes are not orthogonal in the support space of
the measurements.
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Code 12.3 Gappy sampling of harmonic oscillator.

c=[’g’,’m’,’b’]; % three different measurement masks
for jloop=1:3

figure(1), subplot(6,1,3+jloop)
s=(rand(n,1)>0.8); % grab 20% random measurements
bar(x,double(s)), axis([-4.2 4.2 0 1]), axis off

figure(2) % construct M_j
for j=1:10

for jj=1:j
Area=trapz(x,s.*(yharm(:,j).*yharm(:,jj)));
M2(j,jj)=Area; M2(jj,j)=Area;

end
end
subplot(2,2,jloop+1), pcolor(10:-1:1,1:10,(M2’));
colormap(hot), caxis([-0.1 .3]), axis off
con(jloop)=cond(M2)

for j=1:10 % reconstruction using gappy
ftild(j,1)=trapz(x,s.*(f.*yharm(:,j)));

end

atild=M2\ftild; % compute error
f2=yharm*atild;
figure(4),subplot(2,1,1),plot(x,f2,c(jloop))
Err(jloop+1)=norm(f2-f);

end

12.2 Error and Convergence of Gappy POD
As was shown in the previous section, the ability of the gappy sampling strategy to accu-
rately reconstruct a given function depends critically on the placement of the measurement
(sensor) locations. Given the importance of this issue, we will discuss a variety of princi-
pled methods for placing a limited number of sensors in detail in subsequent sections. Our
goal in this section is to investigate the convergence properties and error associated with
the gappy method as a function of the percentage of sampling of the full system. Random
sampling locations will be used.

Given our random sampling strategy, the results that follow will be statistical in nature,
computing averages and variances for batches of randomly selected sampling. The modal
basis for our numerical experiments are again the Gauss-Hermite functions defined by
(11.25) and (11.26), generated by Code 12.1 and shown in the top panel of Fig. 12.1.

Random Sampling and Convergence
Our study begins with random sampling of the modes at a level of 10%, 20%, 30%, 40%,
50% and 100% respectively. The latter case represents the idealized full sampling of the
system. As one would expect, the error and reconstruction are improved as more samples
are taken. To show the convergence of the gappy sampling, we consider two error metrics:
(i) the 
2 error between our randomly subsampled reconstruction and (ii) the condition
number of the matrix M for a given measurement matrix Pj . Recall that the condition
number provides a way to measure the error without knowing the truth, i.e. (12.11).
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Figure 12.4 Logarithm of the least-square error, log(E+1) (unity is added to avoid negative
numbers), and the log of the condition number, log(κ(M)), as a function of percentage of random
measurements. For 10% measurements, the error and condition number are largest as expected.
However, the variance of the results, depicted by the red bars is also quite large, suggesting that the
performance for a small number of sensors is highly sensitive to their placement.

Fig. 12.4 depicts the average over 1000 trials of the logarithm of the least-square error,
log(E+1) (unity is added to avoid negative numbers), and the log of the condition number,
log(κ(M)), as a function of percentage of random measurements. Also depicted is the
variance σ with the red bars denoting μ ± σ where μ is the average value. The error and
condition number both perform better as the number of samples increases. Note that the
error does not approach zero since only a 10-mode basis expansion is used, thus limiting
the accuracy of the POD expansion and reconstruction even with full measurements.

The following code, which is the basis for constructing Fig. 12.4, draws over 1000
random sensor configurations using 10%, 20%, 30%, 40% and 50% sampling. The full
reconstruction (100% sampling) is actually performed in Code 12.2 and is used to make
the final graphic for Fig. 12.4. Note that as expected, the error and condition number
trends are similar, thus supporting the hypothesis that the condition number can be used
to evaluate the efficacy of the sparse measurements. Indeed, this clearly shows that the
condition number provides an evaluation that does not require knowledge of the function
in (12.11).

Code 12.4 Convergence of error and condition number.

for thresh=1:5;
for jloop=1:1000 % 1000 random trials
n2=randsample(n,8*thresh); % random sampling
P=zeros(n,1); P(n2)=1;
for j=1:10

for jj=1:j % compute M matrix
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Figure 12.5 Statistics of 20% random measurements considered in Fig. 12.4. The top panel (a)
depicts 200 random trials and the condition number log(κ(M)) of each trial. A histogram of (b) the
logarithm of the least-square error, log(E+1), and (c) condition number , log(κ(M)), are also
depicted for the 200 trials. The figures illustrate the extremely high variability generated from the
random, sparse measurements. In particular, 20% measurements can produce both exceptional
results and extremely poor performance depending upon the measurement locations. The
measurement vectors P are generating these statistics are depicted in Fig. 12.6.

Area=trapz(x,P.*(yharm(:,j).*yharm(:,jj)));
M2(j,jj)=Area; M2(jj,j)=Area;

end
end
for j=1:10 % reconstruction using gappy

ftild(j,1)=trapz(x,P.*(f.*yharm(:,j)));
end
atild=M2\ftild; % compute error
f2=yharm*atild; % compute reconstruction
Err(jloop)=norm(f2-f); % L2 error
con(jloop)=cond(M2); % condition number

end
% mean and variance
E(thresh)=mean(log(Err+1)); V(thresh)=(var(log(Err+1)));
Ec(thresh)=mean(log(con)); Vc(thresh)=(var(log(con)));

end
E=[E Efull]; V=[V 0];
Ec=[Ec log(Cfull)]; Vc=[Vc 0];

Gappy Measurements and Performance
We can continue this statistical analysis of the gappy reconstruction method by looking
more carefully at 200 random trials of 20% measurements. Fig. 12.5 shows three key
features of the 200 random trials. In particular, as shown in the top panel of this figure,
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Figure 12.6 Depiction of the 200 random 20% measurement vectors Pj considered in Fig. 12.5. Each
row is a randomly generated measurement trial (from 1 to 200) while the columns represent their
spatial location on the domain x ∈ [−4, 4] with �x = 0.1.

there is a large variance in the distribution of the condition number κ(M) for 20% sam-
pling. Specifically, the condition number can change by orders of magnitude with the same
number of sensors, but simply placed in different locations. A histogram of the distribution
of the log error log(E+1) and the log of the condition number are shown in the bottom two
panels. The error appears to be distributed in an exponentially decaying fashion whereas
the condition number distribution is closer to a Gaussian. There are distinct outliers whose
errors and condition numbers are exceptionally high, suggesting sensor configurations to
be avoided.

In order to visualize the random, gappy measurements of the 200 samples used in the
statistical analysis of Fig. 12.5, we plot the Pj measurement masks in each row of the
matrix in Fig. 12.6. The white regions represent regions where no measurements occur.
The black regions are where the measurements are taken. These are the measurements that
generate the orders of magnitude variance in the error and condition number.

As a final analysis, we can sift through the 200 random measurements of Fig. 12.6
and pick out both the ten best and ten worst measurement vectors Pj . Fig. 12.7 shows
the results of this sifting process. The top two panels depict the best and worst measure-
ment configurations. Interestingly, the worst measurements have long stretches of missing
measurements near the center of the domain where much of the modal variance occurs.
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Figure 12.7 Depiction of the 10 best and 10 worst random 20% measurement vectors Pj considered
in Figs. 12.5 and 12.6. The top panel shows that the best measurement vectors sample fairly
uniformly across the domain x ∈ [−4, 4] with �x = 0.1. In contrast, the worst randomly generated
measurements (middle panel) have large sampling gaps near the center of the domain, leading to a
large condition number κ(M). The bottom panel shows a bar chart of the best and worst values of
the condition number. Note that with 20% sampling, there can be two orders of magnitude difference
in the condition number, thus suggesting the importance of prescribing good measurement locations.

In contrast, the best measurements have well sampled domains with few long gaps between
measurement locations. The bottom panel shows that the best measurements (on the left)
offer an improvement of two orders of magnitude in the condition number over the poor
performing counterparts (on the right).

12.3 Gappy Measurements: Minimize Condition Number
The preceding section illustrates that the placement of gappy measurements is critical for
accurately reconstructing the POD solution. This suggests that a principled way to deter-
mine measurement locations is of great importance. In what follows, we outline a method
originally proposed by Willcox [555] for assessing the gappy measurement locations. The
method is based on minimizing the condition number κ(M) in the placement process. As
already shown, the condition number is a good proxy for evaluating the efficacy of the
reconstruction. Moreover, it is a measure that is independent of any specific function.

The algorithm proposed [555] is computationally costly, but it can be performed in an
offline training stage. Once the sensor locations are determined, they can be used for online
reconstruction. The algorithm is as follows:

1. Place sensor k at each spatial location possible and evaluate the condition number
κ(M). Only points not already containing a sensor are considered.
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Figure 12.8 Depiction of the first four iterations of the gappy measurement location algorithm of
Willcox [555]. The algorithm is applied to a 10-mode expansion given by the Gauss-Hermite
functions (11.25) and (11.26) discretized on the interval x ∈ [−4, 4] with �x = 0.1. The top panel
shows the condition number κ(M) as a single sensor is considered at each of the 81 discrete values
xk . The first sensor minimizes the condition number (shown in red) at x23. A second sensor is now
considered at all remaining 80 spatial locations, with the minimal condition number occurring at x52
(in red). Repeating this process gives x37 and x77 for the third and fourth sensor locations for
iteration 3 and 4 of the algorithm (highlighted in red). Once a location is selected for a sensor, it is
no longer considered in future iterations. This is represented by a gap.

2. Determine the spatial location that minimizes the condition number κ(M). This
spatial location is now the kth sensor location.

3. Add sensor k + 1 and repeat the previous two steps.

The algorithm is not optimal, nor are there guaranteed. However, it works quite well in
practice since sensor configurations with low condition number produce good reconstruc-
tions with the POD modes.

We apply this algorithm to construct the gappy measurement matrix P. As before, the
modal basis for our numerical experiments are the Gauss-Hermite functions defined by
(11.25) and (11.26). The gappy measurement matrix algorithm for constructing P is shown
in Note that the algorithm outlined above sets down one sensor at a time, thus with the
10 POD mode expansion, the system is underdetermined until 10 sensors are placed. This
gives condition numbers on the order of 1016 for the first 9 sensor placements. It also
suggests that the first 10 sensor locations may be generated from inaccurate calculations of
the condition number.

The following code builds upon Code 12.1 which is used to generate the 10-mode
expansion of the Gauss-Hermite functions. The code minimizes the condition number and
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identifies the first 20 sensor locations. Specifically, the code provides a principled way of
producing a measurement matrix P that allows for good reconstruction of the POD mode
expansion with limited measurements.

Code 12.5 Gappy placement: Minimize condition number.

n2=20; % number of sensors
nall=1:n; ns=[]; %
for jsense=1:n2

for jloop=1:(n-jsense)
P=zeros(n,1); P(ns)=1;
P(nall(jloop))=1;
for j=1:10

for jj=1:j % matrix M
Area=trapz(x,P.*(yharm(:,j).*yharm(:,jj)));
M2(j,jj)=Area; M2(jj,j)=Area;

end
end
con(jloop)=cond(M2); % compute condition number

end % end search through all points
[s1,n1]=min(con); % location to minimize condition #
kond(jsense)=s1; clear con
ns=[ns nall(n1)]; % add sensor location
nall=setdiff(nall,ns); % new sensor indeces
P=zeros(n,1); P(ns)=1;
Psum(:,jsense)=P;
for j=1:10

for jj=1:j
Area=trapz(x,P.*(yharm(:,j).*yharm(:,jj)));
M2(j,jj)=Area; M2(jj,j)=Area;

end
end
for j=1:10 % reconstruction using gappy

ftild(j,1)=trapz(x,P.*(f.*yharm(:,j)));
end
atild=M2\ftild; % compute error
f1(:,jsense)=yharm*atild; % iterative reconstruction
E(jsense)=norm(f1(:,jsense)-f); % iterative error

end % end sensor loop

In addition to identifying the placement of the first 20 sensors, the code also reconstructs
the example function given by (12.11) at each iteration of the routine. Note the use of the
setdiff command which removes the condition number minimizing sensor location from
consideration in the next iteration.

To evaluate the gappy sensor location algorithm, we track the condition number as a
function of the number of iterations, up to 20 sensors. Additionally, at each iteration, a
reconstruction of the test function (12.11) is computed and a least-square error evaluated.
Fig. 12.9 shows the progress of the algorithm as it evaluates the sensor locations for up to
20 sensors. By construction, the algorithm minimizes the condition number κ(M) at each
step of the iteration, thus as sensors are added, the condition number steadily decreases (top
panel of Fig. 12.9). Note that there is a significant decrease in the condition number once
10 sensors are selected since the system is no longer underdetermined with theoretically
infinite condition number. The least-square error for the reconstruction of the test function
(12.11) follows the same general trend, but the error does not monotonically decrease like
the condition number. The least-square error also makes a significant improvement once
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Figure 12.9 Condition number and least-square error (logarithms) as a function of the number of
iterations in the gappy sensor placement algorithm. The log of the condition number log[κ(M)]
monotonically decreases since this is being minimized at each iteration step. The log of the
least-square error in the reconstruction of the test function (12.11) also shows a trend towards
improvement as the number of sensors are increased. Once 10 sensors are placed, the system is of
full rank and the condition number drops by orders of magnitude. The bottom panel shows the
sensors as they turn on (black squares) over the first 20 iterations. The first measurement location is,
for instance, at x23.

10 measurements are made. In general, if an r-mode POD expansion is to be considered,
then reasonable results using the gappy reconstruction cannot be achieved until r sensors
are placed.

We now consider the placement of the sensors as a function of iteration in the bottom
panel of Fig. 12.9. Specifically, we depict when sensors are identified in the iteration.
The first sensor location is x23 followed by x52, x37 and x77, respectively. The process
is continued until the first 20 sensors are identified. The pattern of sensors depicted is
important as it illustrates a fairly uniform sampling of the domain. Alternative schemes
will be considered in the following.

As a final illustration of the gappy algorithm, we consider the reconstruction of the test
function (12.11) as the number of iterations (sensors) increases. As expected, the more
sensors that are used in the gappy framework, the better the reconstruction is, especially
if they are placed in a principled way as outlined by Wilcox [555]. Fig. 12.10 shows the
reconstructed function with increasing iteration number. In the left panel, iteration one
through twenty are shown with the z-axis set to illustrate the extremely poor reconstruction
in the early stages of the iteration. The right panel highlights the reconstruction from
iteration nine to twenty, and on a more limited z-axis scale, where the reconstruction
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Figure 12.10 Convergence of the reconstruction to the test function (12.11). The left panel shows
iterations one through twenty and the significant reconstruction errors of the early iterations and
limited number of sensors. Indeed, for the first nine iterations, the condition number and
least-square error is quite large since the system is not full rank. The right panel shows a zoom-in of
the solution from iteration nine to twenty where the convergence is clearly observed. Comparison in
both panels can be made to the test function.

Figure 12.11 Sum of diagonals minus off-diagonals (top left) and least-square error (logarithm) as a
function of the number of iterations in the second gappy sensor placement algorithm. The new proxy
metric for condition number monotonically increases since this is being maximized at each iteration
step. The log of the least-square error in the reconstruction of the test function (12.11) shows a trend
towards improvement as the number of sensors are increased, but convergence is extremely slow in
comparison to minimizing the condition number. The right panel shows the sensors as they turn on
(black squares) over the first 60 iterations. The first measurement location is, for instance, at x37.

converges to the test function. The true test function is also shown in order to visualize the
comparison. This illustrates in a tangible way the convergence of the iteration algorithm to
the test solution with a principled placement of sensors.

Proxy Measures to the Condition Number
We end this section by considering alternative measures to the condition number κ(M). The
computation of the condition number itself can be computationally expensive. Moreover,
until r sensors are chosen in an r-POD mode expansion, the condition number computation
is itself numerically unstable. However, it is clear what the condition number minimization
algorithm is trying to achieve: make the measurement matrix M as near to the identify as
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possible. This suggests the following alternative algorithm, which was also developed by
Willcox [555].

1. Place sensor k at each spatial location possible and evaluate the difference in the sum
of the diagonal entries of the matrix M minus the sum of the off-diagonal compo-
nents, call this κ2(M). Only points not already containing a sensor are considered.

2. Determine the spatial location that generates the maximum value of the above quan-
tify. This spatial location is now the kth sensor location.

3. Add sensor k + 1 and repeat the previous two steps.

This algorithm provides a simple modification of the original algorithm which minimizes
the condition number. In particular, the following lines of code provide modifications to
Code 12.5. Specifically, where the condition number is computed, the following line is
now included:

nall=setdiff(nall,ns); % new sensor indeces

Additonally, the sensor locations are now considered at the maximal points so that the
following line of code is applied

P=zeros(n,1); P(ns)=1;

Thus the modification of two lines of code can enact this new metric which circumvents
the computation of the condition number.

To evaluate this new gappy sensor location algorithm, we track the new proxy metric
we are trying to maximize as a function of the number of iterations along with the least-
square error of our test function (12.11). In this case, up to 60 sensors are considered
since the convergence is slower than before. Fig. 12.11 shows the progress of the algorithm
as it evaluates the sensor locations for up to 60 sensors. By construction, the algorithm
maximizes the sum of the diagonals minus the sum of the off-diagonals at each step of
the iteration, thus as sensors are added, this measure steadily increases (top left panel
of Fig. 12.11). The least-square error for the reconstruction of the test function (12.11)
decreases, but not monotonically. Further, the convergence is very slow. At least for this
example, the method does not work as well as the condition number metric. However, it can
improve performance in certain cases [555], and it is much more computationally efficient
to compute.

As before, we also consider the placement of the sensors as a function of iteration in
the right panel of Fig. 12.11. Specifically, we depict the turning on process of the sensors.
The first sensor location is x37 followed by x38, x36 and x31 respectively. The process
is continued until the first 60 sensors are turned on. The pattern of sensors depicted is
significantly different than in the condition number minimization algorithm. Indeed, this
algorithm, and with these modes, turns on sensors in local locations without sampling
uniformly from the domain.

12.4 Gappy Measurements: Maximal Variance
The previous section developed principled ways to determine the location of sensors for
gappy POD measurements. This was a significant improvement over simply choosing sen-
sor locations randomly. Indeed, the minimization of the condition number through location
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selection performed quite well, quickly improving accuracy and least-square reconstruction
error. The drawback to the proposed method was two-fold: the algorithm itself is expensive
to implement, requiring a computation of the condition number for every sensor location
selected under an exhaustive search. Secondly, the algorithm was ill-conditioned until the
rth sensor was chosen in an r-POD mode expansion. Thus the condition number was
theoretically infinite, but on the order of 1017 for computational purposes.

Karniadakis and co-workers [565] proposed an alternative to the Willcox [555] algorithm
to overcome the computational issues outlined. Specifically, instead of placing one sensor
at a time, the new algorithm places r sensors, for an r-POD mode expansion, at the first step
of the iteration. Thus the matrix generated is no longer ill-conditioned with a theoretically
infinite condition number.

The algorithm by Karniadakis further proposes a principled way to select the original r

sensor locations. This method selects locations that are extrema points of the POD modes,
which are designed to maximally capture variance in the data. Specifically, the following
algorithm is suggested:

1. Place r sensors initially.
2. Determine the spatial locations of these first r sensors by considering the maximum

of each of the POD modes ψk .
3. Add additional sensors at the next largest extrema of the POD modes.

The following code determines the maximum of each mode and constructs a gappy
measurement matrix P from such locations.

Code 12.6 Gappy placement: Maximize variance.

ns=[];
for j=1:10 % walk through the modes
[s1,n1]=max(yharm(:,j)); % pick max
ns=[ns n1];

end
P=zeros(n,1); P(ns)=1;

The performance of this algorithm is not strong for only r measurements, but it at least
produces stable condition number calculations. To improve performance, one could also
use the minimum of each of the modes ψk . Thus the maximal value and minimal value
of variance are considered. For the harmonic oscillator code, the first mode produces no
minimum as the minima are at x → ±∞. Thus 19 sensor locations are chosen in the
following code:

Code 12.7 Gappy placement: Max and min variance.

ns=[];
for j=1:10 % walk through the modes
[s1,n1]=max(yharm(:,j)); % pick max
ns=[ns n1];

end
for j=2:10
[s2,n2]=min(yharm(:,j)); % pick max
ns=[ns n2];

end
P=zeros(n,1); P(ns)=1;
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Figure 12.12 The top panel shows the mode structures of the Gauss-Hermite polynomials � in the
low-rank approximation of a POD expansion. The discretization interval is x ∈ [−4, 4] with a
spacing of �x = 0.1. The color map shows the maximum (white) and minimum (black) that occur
in the mode structures. The bottom panel shows the grid cells corresponding to maximum and
minimum (extrema) of POD mode variance. The extrema are candidates for sensor locations, or the
measurement matrix P, since they represent maximal variance locations. Typically one would take a
random subsample of these extrema to begin the evaluation of the gappy placement.

Note that in this case, the number of sensors is almost double that of the previous case.
Moreover it only searches for the the locations where variability is highest, which is intu-
itively appealing for measurements.

More generally, the Karniadakis algorithm [565] advocates randomly selecting p sen-
sors from M potential extrema, and then modifying the search positions with the goal
of improving the condition number. In this case, one must identify all the maxima and
minima of the POD modes in order to make the selection. The harmonic oscillator modes
and their maxima and minima are illustrated in Fig. 12.12. The algorithm used to produce
the extrema of each mode, and its potential for use in the gappy algorithm, is as follows:

Code 12.8 Gappy placement: Extrema locations.

nmax=[]; nmin=[];
Psum = zeros(n,10);
for j=1:10 % walk through the modes

nmaxt=[]; nmint=[];
for jj=2:n-1

if yharm(jj,j)>yharm(jj-1,j) & yharm(jj,j)>yharm(jj+1,j)
nmax=[nmax jj];
nmaxt=[nmaxt jj];

end
if yharm(jj,j)<yharm(jj-1,j) & yharm(jj,j)<yharm(jj+1,j)

nmin=[nmin jj];
nmint=[nmint jj];

end
end
nst=[nmaxt nmint]
Psum(nst,j)=1;

end
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Figure 12.13 Condition number and least-square error to test function (12.11) over 100 random trials
that draw 20 sensor locations from the possible 55 extrema depicted in Fig. 12.12. The 100 trials
produce a number of sensor configurations that perform close to the level of the condition number
minimization algorithm of the last section. However, the computational costs in generating such
trials can be significantly lower.

ns=[nmax nmin];
ni=randsample(length(ns),20);
nsr=ns(ni);
P=zeros(n,1); P(nsr)=1;

Note that the resulting vector ns contains all 55 possible extrema. This computation
assumes the data is sufficiently smooth so that extrema are simply found by considering
neighboring points, i.e. a maxima exists if its two neighbors have a lower value whereas an
minima exists if its neighbors have a higher value.

The maximal variance algorithm suggests trying different configurations of the sensors
at the extrema points. In particular, if 20 gappy measurements are desired, then we would
need to search through various configurations of the 55 locations using 20 sensors. This
combinatorial search is intractable. However, if we simply attempt 100 random trials and
select the best performing configuration, it is quite close to the performance of the condition
number minimizing algorithm. A full execution of this algorithm, along with a computa-
tion of the condition number and least-square fit error with (12.11), is generated by the
following code:

Code 12.9 Gappy placement: Random selection.

ntot=length(ns);
for jtrials=1:100
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Figure 12.14 Performance metrics for placing sensors based upon the extrema of the variance of the
POD modes. Both the least-square error for the reconstruction of the test function (12.11) and the
condition number are considered. Illustrated are the results from using (a) the maximum locations of
the POD modes, (b) the maximum and minimum locations of each POD mode, and (c) a random
selection of 20 of the 55 extremum locations of the POD modes. These are compared against (d) the
5 top selections of 20 sensors from the 100 random trials, and (e) the condition number minimization
algorithm (red bar). The random placement of sensors from the extremum locations provides
performance close to that of the condition minimization without the same high computational costs.

ni=randsample(ntot,20);
nsr=ns(ni);

P=zeros(n,1); P(nsr)=1;

for j=1:10
for jj=1:j

Area=trapz(x,P.*(yharm(:,j).*yharm(:,jj)));
M2(j,jj)=Area; M2(jj,j)=Area;

end
end

for j=1:10 % reconstruction using gappy
ftild(j,1)=trapz(x,P.*(f.*yharm(:,j)));

end
atild=M2\ftild; % compute error
f1=yharm*atild; % iterative reconstruction
E_tri(jtrials)=norm(f1-f); % iterative error
con_tri(jtrials)=cond(M2);
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end
subplot(2,1,1), bar(log(con_tri),’Facecolor’,[0.7 0.7 0.7])
subplot(2,1,2), bar(log(E_tri+1),’Facecolor’,[0.7 0.7 0.7])

The condition number and least-square error for the 100 trials is shown in Fig. 12.13. The
configurations perform well compared with random measurements, although some have
excellent performance.

A direct comparison of all these methods is shown in Fig. 12.14. Specifically, what is
illustrated are the results from using (a) the maximum locations of the POD modes, (b)
the maximum and minimum locations of each POD mode, and (c) a random selection
of 20 of the 55 extremum locations of the POD modes. These are compared against (d)
the best 5 sensor placement locations of 20 sensors selected from the extremum over 100
random trials, and (e) the condition number minimization algorithm in red. The maximal
variance algorithm performs approximately as well as the minimum condition number
algorithm. However, the algorithm is faster and never computes condition numbers on ill-
conditioned matrices. Karniadakis and co-workers [565] also suggest innovations on this
basic implementation. Specifically, it is suggested that one consider each sensor, one-by-
one, and try placing it in all other available spatial locations. If the condition number is
reduced, the sensor is moved to that new location and the next sensor is considered.

12.5 POD and the Discrete Empirical Interpolation Method (DEIM)
The POD method illustrated thus far aims to exploit the underlying low-dimensional
dynamics observed in many high-dimensional computations. POD is often used for
reduced-order models (ROMs), which are of growing importance in scientific applications
and computing. ROMS reduce the computational complexity and time needed to solve
large-scale, complex systems [53, 442, 244, 17]. Specifically, ROMs provide a principled
approach to approximating high-dimensional spatio-temporal systems [139], typically
generated from numerical discretization, by low-dimensional subspaces that produce
nearly identical input/output characteristics of the underlying nonlinear dynamical system.
However, despite the significant reduction in dimensionality with a POD basis, the
complexity of evaluating higher-order nonlinear terms may remain as challenging as the
original problem [41, 127]. The empirical interpolation method (EIM), and the simplified
discrete empirical interpolation method (DEIM) for the proper orthogonal decomposition
(POD) [347, 251], overcome this difficulty by providing a computationally efficient
method for discretely (sparsely) sampling and evaluating the nonlinearity. These methods
ensure that the computational complexity of ROMs scale favorably with the rank of the
approximation, even with complex nonlinearities.

EIM has been developed for the purpose of efficiently managing the computation of
the nonlinearity in dimensionality reduction schemes, with DEIM specifically tailored
to POD with Galerkin projection. Indeed, DEIM approximates the nonlinearity by using
a small, discrete sampling of points that are determined in an algorithmic way. This
ensures that the computational cost of evaluating the nonlinearity scales with the rank of
the reduced POD basis. As an example, consider the case of an r-mode POD-Galerkin
truncation. A simple cubic nonlinearity requires that the POD-Galerkin approximation
be cubed, resulting in r3 operations to evaluate the nonlinear term. DEIM approximates
the cubic nonlinearity by using O(r) discrete sample points of the nonlinearity, thus
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Table 12.1 DEIM algorithm for finding approximation basis for the nonlinearity and its interpolation
indices. The algorithm first constructs the nonlinear basis modes and initializes the first
measurement location, and the matrix P1, as the maximum of ξ1. The algorithm then successively
constructs columns of Pj by considering the location of the maximum of the residual Rj .

DEIM algorithm

Basis Construction and Initialization

• collect data, construct snapshot matrix X = [u(t1) u(t2) · · · u(tm)]
• construct nonlinear snapshot matrix N = [N(u(t1)) N(u(t2)) · · · N(u(tm))]
• singular value decomposition of N N = ��NV∗

N• construct rank-p approximating basis �p = [ξ1 ξ2 · · · ξp]
• choose the first index (initialization) [ρ, γ1] = max |ξ1|
• construct first measurement matrix P1 = [eγ1 ]

Interpolation Indices and Iteration Loop (j = 2, 3, ..., p)

• calculate cj PT
j

�j cj =PT
j

ξ j+1
• compute residual Rj+1 =ξ j+1−�j cj

• find index of maximum residual [ρ, γj ] = max |Rj+1|
• add new column to measurement matrix Pj+1 = [Pj eγj ]

preserving a low-dimensional (O(r)) computation, as desired. The DEIM approach
combines projection with interpolation. Specifically, DEIM uses selected interpolation
indices to specify an interpolation-based projection for a nearly 
2 optimal subspace
approximating the nonlinearity. EIM/DEIM are not the only methods developed to reduce
the complexity of evaluating nonlinear terms; see for instance the missing point estimation
(MPE) [400, 21] or gappy POD [555, 565, 120, 462] methods. However, they have
been successful in a large number of diverse applications and models [127]. In any
case, the MPE, gappy POD, and EIM/DEIM use a small selected set of spatial grid
points to avoid evaluation of the expensive inner products required to evaluate nonlinear
terms.

POD and DEIM
Consider a high-dimensional system of nonlinear differential equations that can arise,
for example, from the finite difference discretization of a partial differential equation.
In addition to constructing a snapshot matrix (12.12) of the solution of the PDE so that
POD modes can be extracted, the DEIM algorithm also constructs a snapshot matrix of the
nonlinear term of the PDE:

N =
⎡
⎣N1 N2 · · · Nm

⎤
⎦ (12.12)

where the columns Nk ∈ Cn are evaluations of the nonlinearity at time tk .
To achieve high accuracy solutions, n is typically very large, making the computation

of the solution expensive and/or intractable. The POD-Galerkin method is a principled
dimensionality-reduction scheme that approximates the function u(t) with rank-r optimal
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Figure 12.15 Demonstration of the first three iterations of the DEIM algorithm. For illustration only,
the nonlinearity matrix N = ��NV∗

N is assumed to be composed of harmonic oscillator modes with
the first ten modes comprising �p . The initial measurement location is chosen at the maximum of
the first mode ξ1. Afterwards, there is a three step process for selecting subsequent measurement
locations based upon the location of the maximum of the residual vector Rj . The first (red), second
(green) and third (blue) measurement locations are shown along with the construction of the
sampling matrix P

basis functions where r � n. As shown in the previous chapter, these optimal basis func-
tions are computed from a singular value decomposition of a series of temporal snapshots
of the complex system.

The standard POD procedure [251] is a ubiquitous algorithm in the reduced order mod-
eling community. However, it also helps illustrate the need for innovations such as DEIM,
Gappy POD and/or MPE. Consider the nonlinear component of the low-dimensional
evolution (11.21): �T N(�a(t)). For a simple nonlinearity such as N(u(x, t)) = u(x, t)3,
consider its impact on a spatially-discretized, two-mode POD expansion: u(x, t) =
a1(t)ψ1(x) + a2(t)ψ2(x). The algorithm for computing the nonlinearity requires the
evaluation:

u(x, t)3 = a3
1ψ3

1 + 3a2
1a2ψ

2
1 ψ2 + 3a1a

2
2ψ1ψ

2
2 + a3

2ψ3
2 . (12.13)
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The dynamics of a1(t) and a2(t) would then be computed by projecting onto the low-
dimensional basis by taking the inner product of this nonlinear term with respect to both
ψ1 and ψ2. Thus the number of computations not only doubles, but the inner products
must be computed with the n-dimensional vectors. Methods such as DEIM overcome this
high-dimensional computation.

DEIM
As outlined in the previous section, the shortcomings of the POD-Galerkin method are
generally due to the evaluation of the nonlinear term N(�a(t)). To avoid this difficulty,
DEIM approximates N(�a(t)) through projection and interpolation instead of evaluating
it directly. Specifically, a low-rank representation of the nonlinearity is computed from the
singular value decomposition

N = ��NV∗
N (12.14)

where the matrix � contains the optimal basis for spanning the nonlinearity. Specifically,
we consider the rank-p basis

�p = [ξ1 ξ2 · · · ξp] (12.15)

that approximates the nonlinear function (p � n and p ∼ r). The approximation to the
nonlinearity N is given by:

N ≈ �pc(t) (12.16)

where c(t) is similar to a(t) in (11.20). Since this is a highly overdetermined system, a
suitable vector c(t) can be found by selecting p rows of the system. The DEIM algorithm
was developed to identify which p rows to evaluate.

The DEIM algorithm begins by considering the vectors eγj
∈ Rn which are the γj -th

column of the n dimensional identity matrix. We can then construct the projection matrix
P = [eγ1 eγ2 · · · eγp ] which is chosen so that PT �p is nonsingular. Then c(t) is uniquely
defined from PT N = PT �pc(t), and thus,

N ≈ �p(PT �p)−1PT N. (12.17)

The tremendous advantage of this result for nonlinear model reduction is that the term
PT N requires evaluation of the nonlinearity only at p � n indices. DEIM further proposes
a principled method for choosing the basis vectors ξ j and indices γj . The DEIM algo-
rithm, which is based on a greedy search, is detailed in [127] and further demonstrated in
Table 12.1.

POD and DEIM provide a number of advantages for nonlinear model reduction of
complex systems. POD provides a principled way to construct an r-dimensional subspace
� characterizing the dynamics. DEIM augments POD by providing a method to evaluate
the problematic nonlinear terms using an p-dimensional subspace �p that represents the
nonlinearity. Thus a small number of points can be sampled to approximate the nonlinear
terms in the ROM.

12.6 DEIM Algorithm Implementation
To demonstrate model reduction with DEIM, we again consider the NLS equation (11.29).
Recall that the numerical method for solving this equation is given in Codes 11.3 and 11.4.
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The output of this code is a matrix usol whose rows represent the time snapshots and whose
columns represent the spatial discretization points. As in the first section of this chapter,
our first step is to transpose this data so that the time snapshots are columns instead of rows.
The following code transposes the data and also performs a singular value decomposition
to get the POD modes.

Code 12.10 Dimensionality reduction for NLS.

X=usol.’; % data matrix X
[U,S,W]=svd(X,0); % SVD reduction

In addition to the standard POD modes, the singular value decomposition of the nonlin-
ear term is also required for the DEIM algorithm. This computes the low-rank representa-
tion of N(u) = |u|2u directly as N = ��NV∗

N.

Code 12.11 Dimensionality reduction for nonlinearity of NLS.

NL=i*(abs(X).^2).*X;
[XI,S_NL,W]=svd(NL,0);

Once the low-rank structures are computed, the rank of the system is chosen with the
parameter r . In what follows, we choose r = p = 3 so that both the standard POD modes
and nonlinear modes, � and �p have three columns each. The following code selects the
POD modes for � and projects the initial condition onto the POD subspace.

Code 12.12 Rank selection and POD modes.

r=3; % select rank truncation
Psi=U(:,1:r); % select POD modes
a=Psi’*u0; % project initial conditions

We now build the interpolation matrix P by executing the DEIM algorithm outlined
in the last section. The algorithm starts by selecting the first interpolation point from the
maximum of the first most dominant mode of �p.

Code 12.13 First DEIM point.

[Xi_max,nmax]=max(abs(XI(:,1)));
XI_m=XI(:,1);
z=zeros(n,1);
P=z; P(nmax)=1;

The algorithm iteratively builds P one column at a time. The next step of the algorithm
is to compute the second to rth iterpolation point via the greedy DEIM algorithm. Specifi-
cally, the vector cj is computed from PT

j �j cj = PT
j ξ j+1 where ξ j are the columns of the

nonlinear POD modes matrix �p. The actual interpolation point comes from looking for
the maximum of the residual Rj+1 =ξ j+1−�j cj . Each iteration of the algorithm produces
another column of the sparse interpolation matrix P. The integers nmax give the location
of the interpolation points.

Code 12.14 DEIM points 2 through r .

for j=2:r
c=(P’*XI_m)\(P’*XI(:,j));
res=XI(:,j)-XI_m*c;
[Xi_max,nmax]=max(abs(res));
XI_m=[XI_m,XI(:,j)];
P=[P,z]; P(nmax,j)=1;

end
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Figure 12.16 Comparison of the (a) full simulation dynamics and (b) rank r = 3 ROM using the three
DEIM interpolation points. (c) A detail of the three POD modes used for simulation are shown
along with the first, second and third DEIM interpolation point location. These three interpolation
points are capable of accurately reproducing the evolution dynamics of the full PDE system.

With the interpolation matrix, we are ready to construct the ROM. The first part is
to construct the linear term �T L� of (11.21) where the linear operator for NLS is the
Laplacian. The derivatives are computed using the Fourier transform.

Code 12.15 Projection of linear terms.

for j=1:r % linear derivative terms
Lxx(:,j)=ifft(-k.^2.*fft(Psi(:,j)));

end
L=(i/2)*(Psi’)*Lxx; % projected linear term

The projection of the nonlinearity is accomplished using the interpolation matrix P with
the formula (12.17). Recall that the nonlinear term in (11.21) is multiplied by �T . Also
computed is the interpolated version of the low-rank subspace spanned by �.

Code 12.16 Projection of nonlinear terms.

P_NL=Psi’*( XI_m*inv(P’*XI_m) ); % nonlinear projection
P_Psi=P’*Psi; % interpolation of Psi

It only remains now to advance the solution in time using a numerical time stepper. This
is done with a 4th-order Runge-Kutta routine.

Code 12.17 Time stepping of ROM.

[tt,a]=ode45(’rom_deim_rhs’,t,a,[],P_NL,P_Psi,L);
Xtilde=Psi*a’; % DEIM approximation
waterfall(x,t,abs(Xtilde’)), shading interp, colormap gray

The right hand side of the time stepper is now completely low dimensional.
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Code 12.18 Right hand side of ROM.

function rhs=rom_deim_rhs(tspan, a,dummy,P_NL,P_Psi,L)
N=P_Psi*a;
rhs=L*a + i*P_NL*((abs(N).^2).*N);

A comparison of the full simulation dynamics and rank r = 3 ROM using the three
DEIM interpolation points is shown in Fig. 12.16. Additionally, the location of the DEIM
points relative to the POD modes is shown. Aside from the first DEIM point, the other
locations are not on the minima or maxima of the POD modes. Rather, the algorithms
places them to maximize the residual.

QDEIM Algorithm
Although DEIM is an efficient greedy algorithm for selecting interpolation points, there are
other techniques that are equally efficient. The recently proposed QDEIM algorithm [159]
leverages the QR decomposition to provide efficient, greedy interpolation locations. This
has been shown to be a robust mathematical architecture for sensor placement in many
applications [366]. See Section 3.8 for a more general discussion. The QR decomposition
can also provide a greedy strategy to identify interpolation points. In QDEIM, the QR pivot
locations are the sensor locations. The following code can replace the DEIM algorithm to
produce the interpolation matrix P.

Code 12.19 QR based interpolation points

[Q,R,pivot]=qr(NL.’);
P=pivot(:,1:r);

Using this interpolation matrix gives identical interpolation locations as shown in Fig. 12.16.
More generally, there are estimates that show that the QDEIM may improve error
performance over standard DEIM [159]. The ease of use of the QR algorithm makes
this an attractive method for sparse interpolation.

12.7 Machine Learning ROMs
Inspired by machine learning methods, the various POD bases for a parametrized system
are merged into a master library of POD modes �L which contains all the low-rank sub-
spaces exhibited by the dynamical system. This leverages the fact that POD provides a
principled way to construct an r-dimensional subspace �r characterizing the dynamics
while sparse sampling augments the POD method by providing a method to evaluate the
problematic nonlinear terms using a p-dimensional subspace projection matrix P. Thus a
small number of points can be sampled to approximate the nonlinear terms in the ROM.
Fig. 12.17 illustrates the library building procedure whereby a dynamical regime is sampled
in order to construct an appropriate POD basis �.

The method introduced here capitalizes on these methods by building low-dimensional
libraries associated with the full nonlinear system dynamics as well as the specific non-
linearities. Interpolation points, as will be shown in what follows, can be used with sparse
representation and compressive sensing to (i) identify dynamical regimes, (ii) reconstruct
the full state of the system, and (iii) provide an efficient nonlinear model reduction and
POD-Galerkin prediction for the future state.



430 Interpolation for Parametric ROMs
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Figure 12.17 Library construction from numerical simulations of the governing equations (11.1).
Simulations are performed of the parametrized system for different values of a bifurcation
parameter μ. For each regime, low-dimensional POD modes �r are computed via an SVD
decomposition. The various rank-r truncated subspaces are stored in the library of modes matrix
�L. This is the learning stage of the algorithm. (reproduced from Kutz et al. [319])

The concept of library building of low-rank features from data is well established in the
computer science community. In the reduced-order modeling community, it has recently
become an enabling computational strategy for parametric systems. Indeed, a variety of
recent works have produced libraries of ROM models [80, 98, 462, 10, 134, 422, 421, 420]
that can be selected and/or interpolated through measurement and classification. Alterna-
tively, cluster-based reduced order models use a k-means clustering to build a Markov
transition model between dynamical states [278]. These recent innovations are similar to
the ideas advocated here. However, our focus is on determining how a suitably chosen P
can be used across all the libraries for POD mode selection and reconstruction. One can
also build two sets of libraries: one for the full dynamics and a second for the nonlinearity
so as to make it computationally efficient with the DEIM strategy [462]. Before these
more formal techniques based on machine learning were developed, it was already realized
that parameter domains could be decomposed into subdomains and a local ROM/POD
computed in each subdomain. Patera and co-workers [171] used a partitioning based on a
binary tree whereas Amsallem et al. [9] used a Voronoi tessellation of the domain. Such
methods were closely related to the work of Du and Gunzburger [160] where the data
snapshots were partitioned into subsets and multiple reduced bases computed. The multiple
bases were then recombined into a single basis, so it doesn’t lead to a library, per se. For a
review of these domain partitioning strategies, please see Ref. [11].

POD Mode Selection
Although there are a number of techniques for selecting the correct POD library elements
to use, including the workhorse k-means clustering algorithm [10, 134, 422, 421, 420], one
can also instead make use of sparse sampling and the sparse representation for classification
(SRC) innovations outlined in Chapter 3 to characterize the nonlinear dynamical sys-
tem [80, 98, 462]. Specifically, the goal is to use a limited number of sensors (interpolation
points) to classify the dynamical regime of the system from a range of potential POD
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Figure 12.18 The sparse representation for classification (SRC) algorithm for library mode selection;
see Section 3.6 for more details. In this mathematical framework, a sparse measurement is taken of
the system (11.1) and a highly under-determined system of equations P�La = ũ is solved subject to

1 penalization so that ‖a‖1 is minimized. Illustrated is the selection of the μth POD modes. The
bar plot on the left depicts the nonzero values of the vector a which correspond to the �r library
elements. Note that the sampling matrix P that produces the sparse sample ũ = Pu is critical for
success in classification of the correct library elements �r and the corresponding reconstruction.
(reproduced from Kutz et al. [319])

library elements characterized by a parameter β. Once a correct classification is a achieved,
a standard 
2 reconstruction of the full state space can be accomplished with the selected
subset of POD modes, and a POD-Galerkin prediction can be computed for its future.

In general, we will have a sparse measurement vector ũ given by (12.1). The full state
vector u can be approximated with the POD library modes (u = �La), therefore

ũ = P�La, (12.18)

where �L is the low-rank matrix whose columns are POD basis vectors concatenated
across all β regimes and c is the coefficient vector giving the projection of u onto these
POD modes. If P�L obeys the restricted isometry property and u is sufficiently sparse in
�L, then it is possible to solve the highly-underdetermined system (12.18) with the sparsest
vector a. Mathematically, this is equivalent to an 
0 optimization problem which is np-hard.
However, under certain conditions, a sparse solution of equation (12.18) can be found (See
Chapter 3) by minimizing the l1 norm instead so that

c = arg min
a′ ||a′||1, subject to ũ = P�La. (12.19)

The last equation can be solved through standard convex optimization methods. Thus
the 
1 norm is a proxy for sparsity. Note that we only use the sparsity for classification,
not reconstruction. Fig. 12.18 demonstrates the sparse sampling strategy and prototypical
results for the sparse solution a.
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Figure 12.19 Time dynamics of the pressure field (top panels) for flow around a cylinder for
Reynolds number Re = 40, 150, 300 and 1000. Collecting snapshots of the dynamics reveals
low-dimensional structures dominate the dynamics. The dominant three POD pressure modes for
each Reynolds number regime are shown in polar coordinates. The pressure scale is in magenta
(bottom left). (reproduced from Kutz et al. [319])

Example: Flow around a Cylinder
To demonstrate the sparse classification and reconstruction algorithm developed, we
consider the canonical problem of flow around a cylinder. This problem is well under-
stood and has already been the subject of studies concerning sparse spatial measure-
ments [80, 98, 462, 281, 374, 89, 540]. Specifically, it is known that for low to moderate
Reynolds numbers, the dynamics are spatially low-dimensional and POD approaches
have been successful in quantifying the dynamics. The Reynolds number, Re, plays
the role of the bifurcation parameter β in (11.1), i.e. it is a parametrized dynamical
system.

The data we consider comes from numerical simulations of the incompressible Navier-
Stokes equation:

∂u

∂t
+ u · ∇u + ∇p − 1

Re
∇2u = 0 (12.20a)

∇ · u = 0 (12.20b)

where u (x, y, t) ∈ R2 represents the 2D velocity, and p (x, y, t) ∈ R2 the corresponding
pressure field. The boundary condition are as follows: (i) Constant flow of u = (1, 0)T at
x = −15, i.e., the entry of the channel, (ii) Constant pressure of p = 0 at x = 25, i.e., the
end of the channel, and (iii) Neumann boundary conditions, i.e. ∂u

∂n = 0 on the boundary of
the channel and the cylinder (centered at (x, y) = (0, 0) and of radius unity).

For each relevant value of the parameter Re we perform an SVD on the data matrix in
order to extract POD modes. It is well known that for relatively low Reynolds number, a
fast decay of the singular values is observed so that only a few POD modes are needed to
characterize the dynamics. Fig. 12.19 shows the 3 most dominant POD modes for Reynolds
number Re = 40, 150, 300, 1000. Note that 99% of the total energy (variance) is selected
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Figure 12.20 Illustration of m sparse sensor locations (left panel) for classification and reconstruction
of the flow field. The selection of sensory/interpolation locations can be accomplished by various
algorithms [80, 98, 462, 281, 374, 89, 540]. For a selected algorithm, the sensing matrix P
determines the classification and reconstruction performance. (reproduced from Kutz et al. [319])

for the POD mode selection cut-off, giving a total of 1, 3, 3, and 9 POD modes to represent
the dynamics in the regimes shown. For a threshold of 99.9%, more modes are required to
account for the variability.

Classification of the Reynolds number is accomplished by solving the optimization
problem (12.19) and obtaining the sparse coefficient vector a. Note that each entry in a
corresponds to the energy of a single POD mode from our library. For simplicity, we select
a number of local minima and maxima of the POD modes as sampling locations for the
matrix P. The classification of the Reynolds number is done by summing the absolute
value of the coefficient that corresponds to each Reynolds number. To account for the large
number of coefficients allocated for the higher Reynolds number (which may be 16 POD
modes for 99.9% variance at Re = 1000, rather than a single coefficient for Reynolds
number 40), we divide by the square root of the number of POD modes allocated in a for
each Reynolds number. The classified regime is the one that has the largest magnitude after
this process.

Although the classification accuracy is high, many of the false classifications are due
to categorizing a Reynolds number from a neighboring flow, i.e. Reynolds 1000 is often
mistaken for Reynolds number 800. This is due to the fact that these two Reynolds num-
bers are strikingly similar and the algorithm has a difficult time separating their modal
structures. Fig. 12.20 shows a schematic of the sparse sensing configuration along with the
reconstruction of the pressure field achieved at Re = 1000 with 15 sensors. Classification
and reconstruction performance can be improved using other methods for constructing the
sensing matrix P [80, 98, 462, 281, 374, 89, 540]. Regardless, this example demonstrate
the usage of sparsity promoting techniques for POD mode selection (
1 optimization) and
subsequent reconstruction (
2 projection).

Finally, to visualize the entire sparse sensing and reconstruction process more carefully,
Fig. 12.21 shows both the Reynolds number reconstruction for the time-varying flow field
along with the pressure field and flow field reconstructions at select locations in time. Note
that the SRC scheme along with the supervised ML library provide an effective method
for characterizing the flow strictly through sparse measurements. For higher Reynolds
numbers, it becomes much more difficult to accurately classify the flow field with such
a small number of sensors. However, this does not necessarily jeopardize the ability to
reconstruct the pressure field as many of the library elements at higher Reynolds numbers
are fairly similar.
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Figure 12.21 Sparse-sensing Reynolds number identification and pressure-field reconstruction for a
time-varying flow. The top panel shows the actual Reynolds number used in the full simulation
(solid line) along with its compressive sensing identification (crosses). Panels A-D show the
reconstruction of the pressure field at four different locations in time (top panel) demonstrating an
accurate (qualitatively) reconstruction of the pressure field. (The left side the simulated pressure
field is presented, while the right side contains the reconstruction.) Note that for higher Reynolds
numbers, the classification becomes more difficult. (reproduced from Bright et al. [80])
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Adjoint – For a finite-dimensional linear map (i.e., a matrix A), the adjoint A∗ is given
by the complex conjugate transpose of the matrix. In the infinite-dimensional context, the
adjoint A∗ of a linear operator A is defined so that 〈Af, g〉 = 〈f,A∗g〉, where 〈·, ·〉 is an
inner product.

Akaike information criterion (AIC) – An estimator of the relative quality of statistical
models for a given set of data. Given a collection of models for the data, AIC estimates the
quality of each model, relative to each of the other models. Thus, AIC provides a means
for model selection.

Backpropagation (Backprop) – A method used for computing the gradient descent
required for the training of neural networks. Based upon the chain rule, backprop exploits
the compositional nature of NNs in order to frame an optimization problem for updating
the weights of the network. It is commonly used to train deep neural networks.

Balanced input–output model – A model expressed in a coordinate system where the
states are ordered hierarchically in terms of their joint controllability and observability.
The controllability and observability Gramians are equal and diagonal for such a system.

Bayesian information criterion (BIC) – An estimator of the relative quality of statistical
models for a given set of data. Given a collection of models for the data, BIC estimates the
quality of each model, relative to each of the other models. Thus, BIC provides a means
for model selection.

Classification – A general process related to categorization, the process in which ideas
and objects are recognized, differentiated, and understood. Classification is a common task
for machine learning algorithms.

Closed-loop control – A control architecture where the actuation is informed by sensor
data about the output of the system.

Clustering – A task of grouping a set of objects in such a way that objects in the same
group (called a cluster) are more similar (in some sense) to each other than to those in other
groups (clusters). It is a primary goal of exploratory data mining, and a common technique
for statistical data analysis.

Coherent structure – A spatial mode that is correlated with the data from a system.

Compression – The process of reducing the size of a high-dimensional vector or array
by approximating it as a sparse vector in a transformed basis. For example, MP3 and JPG
compression use the Fourier basis or Wavelet basis to compress audio or image signals.
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Compressed sensing – The process of reconstructing a high-dimensional vector signal
from a random under sampling of the data using the fact that the high-dimensional signal
is sparse in a known transform basis, such as the Fourier basis.

Control theory – The framework for modifying a dynamical system to conform to desired
engineering specification through sensing and actuation.

Controllability – A system is controllable if it is possible to steer the system to any state
with actuation. Degrees of controllability are determined by the controllability Gramian.

Convex optimization – An algorithmic frameworks for minimizing convex functions over
convex sets.

Convolutional neural network (CNN) – A class of deep, feed-forward neural networks
that is especially amenable to analyzing natural images. The convolution is typically a
spatial filter which synthesizes local (neighboring) spatial information.

Cross-validation – A model validation technique for assessing how the results of a statis-
tical analysis will generalize to an independent (withheld) data set.

Data matrix – A matrix where each column vector is a snapshot of the state of a system at
a particular instance in time. These snapshots may be sequential in time, or they may come
from an ensemble of initial conditions or experiments.

Deep learning – A class of machine learning algorithms that typically uses deep CNNs
for feature extraction and transformation. Deep learning can leverage supervised (e.g.,
classification) and/or unsupervised (e.g., pattern analysis) algorithms, learning multiple
levels of representations that correspond to different levels of abstraction; the levels form a
hierarchy of concepts.

DMD amplitude – The amplitude of a given DMD mode as expressed in the data. These
amplitudes may be interpreted as the significance of a given DMD mode, similar to the
power spectrum in the FFT.

DMD eigenvalue – Eigenvalues of the best-fit DMD operator A (see dynamic mode
decomposition) representing an oscillation frequency and a growth or decay term.

DMD mode (also dynamic mode) – An eigenvector of the best-fit DMD operator A (see
dynamic mode decomposition). These modes are spatially coherent and oscillate in time at
a fixed frequency and a growth or decay rate.

Dynamic mode decomposition (DMD) – The leading eigendecomposition of a best-fit
linear operator A = X′X† that propagates the data matrix X into a future data matrix X′.
The eigenvectors of A are DMD modes and the corresponding eigenvalues determine the
time dynamics of these modes.

Dynamical system – A mathematical model for the dynamic evolution of a system.
Typically, a dynamical system is formulated in terms of ordinary differential equations
on a state-space. The resulting equations may be linear or nonlinear and may also include
the effect of actuation inputs and represent outputs as sensor measurements of the state.

Eigensystem realization algorithm (ERA) – A system identification technique that pro-
duces balanced input–output models of a system from impulse response data. ERA has
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been shown to produce equivalent models to balanced proper orthogonal decomposition
and dynamic mode decomposition under some circumstances.

Emission – The measurement functions for a hidden Markov model.

Feedback control – Closed-loop control where sensors measure the downstream effect
of actuators, so that information is fed back to the actuators. Feedback is essential for
robust control where model uncertainty and instability may be counteracted with fast sensor
feedback.

Feedforward control – Control where sensors measure the upstream disturbances to a
system, so that information is fed forward to actuators to cancel disturbances proactively.

Fast Fourier transform (FFT) – A numerical algorithm to compute the discrete Fourier
transform (DFT) in O(n log(n)) operations. The FFT has revolutionized modern computa-
tions, signal processing, compression, and data transmission.

Fourier transform – A change of basis used to represent a function in terms of an infinite
series of sines and cosines.

Galerkin projection – A process by which governing partial differential equations are
reduced into ordinary differential equations in terms of the dynamics of the coefficients of
a set of orthogonal basis modes that are used to approximate the solution.

Gramian – The controllability (resp. observability) Gramian determines the degree to
which a state is controllable (resp. observable) via actuation (resp. via estimation). The
Gramian establishes an inner product on the state space.

Hidden Markov model (HMM) – A Markov model where there is a hidden state that is
only observed through a set of measurements known as emissions.

Hilbert space – A generalized vector space with an inner product. When referred to in
this text, a Hilbert space typically refers to an infinite-dimensional function space. These
spaces are also complete metric spaces, providing a sufficient mathematical framework to
enable calculus on functions.

Incoherent measurements – Measurements that have a small inner product with the basis
vectors of a sparsifying transform. For instance, single pixel measurements (i.e., spatial
delta functions) are incoherent with respect to the spatial Fourier transform basis, since
these single pixel measurements excite all frequencies and do not preferentially align with
any single frequency.

Kalman filter – An estimator that reconstructs the full state of a dynamical system from
measurements of a time-series of the sensor outputs and actuation inputs. A Kalman filter
is itself a dynamical system that is constructed for observable systems to stably converge to
the true state of the system. The Kalman filter is optimal for linear systems with Gaussian
process and measurement noise of a known magnitude.

Koopman eigenfunction – An eigenfunction of the Koopman operator. These eigen-
functions correspond to measurements on the state-space of a dynamical system that form
intrinsic coordinates. In other words, these intrinsic measurements will evolve linearly in
time despite the underlying system being nonlinear.
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Koopman operator – An infinite-dimensional linear operator that propagates measure-
ment functions from an infinite dimensional Hilbert space through a dynamical system.

Least squares regression – A regression technique where a best-fit line or vector is found
by minimizing the sum of squares of the error between the model and the data.

Linear quadratic regulator (LQR) – An optimal proportional feedback controller for
full-state feedback, which balances the objectives of regulating the state while not expend-
ing too much control energy. The proportional gain matrix is determined by solving an
algebraic Riccati equation.

Linear system – A system where superposition of any two inputs results in the super-
position of the two corresponding outputs. In other words, doubling the input doubles
the output. Linear time-invariant dynamical systems are characterized by linear operators,
which are represented as matrices.

Low rank – A property of a matrix where the number of linearly independent rows and
columns is small compared with the size of the matrix. Generally, low-rank approximations
are sought for large data matrices.

Machine learning – A set of statistical tools and algorithms that are capable of extracting
the dominant patterns in data. The data mining can be supervised or unsupervised, with the
goal of clustering, classification and prediction.

Markov model – A probabilistic dynamical system where the state vector contains the
probability that the system will be in a given state; thus, this state vector must always sum
to unity. The dynamics are given by the Markov transition matrix, which is constructed so
that each row sums to unity.

Markov parameters – The output measurements of a dynamical system in response to an
impulsive input.

Max pooling – A data down-sampling strategy whereby an input representation (image,
hidden-layer output matrix, etc.) is reduced in dimensionality, thus allowing for assump-
tions to be made about features contained in the down-sampled sub-regions.

Model predictive control (MPC) – A form of optimal control that optimizes a control
policy over a finite-time horizon, based on a model. The models used for MPC are typically
linear and may be determined empirically via system identification.

Moore’s law – The observation that transistor density, and hence processor speed,
increases exponentially in time. Moore’s law is commonly used to predict future computa-
tional power and the associated increase in the scale of problem that will be computation-
ally feasible.

Multiscale – The property of having many scales in space and/or time. Many systems,
such as turbulence, exhibit spatial and temporal scales that vary across many orders of
magnitude.

Observability – A system is observable if it is possible to estimate any system state with
a time-history of the available sensors. Degrees of observability are determined by the
observability Gramian.
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Observable function – A function that measures some property of the state of a system.
Observable functions are typically elements of a Hilbert space.

Optimization – Generally a set of algorithms that find the "best available" values of some
objective function given a defined domain (or input), including a variety of different types
of objective functions and different types of domains. Mathematically, optimization aims
to maximize or minimize real function by systematically choosing input values from within
an allowed set and computing the value of the function. The generalization of optimization
theory and techniques to other formulations constitutes a large area of applied mathematics.

Overdetermined system – A system Ax = b where there are more equations than
unknowns. Usually there is no exact solution x to an overdetermined system, unless the
vector b is in the column space of A.

Pareto front – The allocation of resources from which it is impossible to reallocate so as
to make any one individual or preference criterion better off without making at least one
individual or preference criterion worse off.

Perron-Frobenius operator – The adjoint of the Koopman operator, the Perron-Frobenius
operator is an infinite-dimensional operator that advances probability density functions
through a dynamical system.

Power spectrum – The squared magnitude of each coefficient of a Fourier transform of a
signal. The power corresponds to the amount of each frequency required to reconstruct a
given signal.

Principal component – A spatially correlated mode in a given data set, often computed
using the singular value decomposition of the data after the mean has been subtracted.

Principal components analysis (PCA) – A decomposition of a data matrix into a hierar-
chy of principal component vectors that are ordered from most correlated to least correlated
with the data. PCA is computed by taking the singular value decomposition of the data
after subtracting the mean. In this case, each singular value represents the variance of the
corresponding principal component (singular vector) in the data.

Proper orthogonal decomposition (POD) – The decomposition of data from a dynam-
ical system into a hierarchical set of orthogonal modes, often using the singular value
decomposition. When the data consists of velocity measurements of a system, such as an
incompressible fluid, then the proper orthogonal decomposition orders modes in terms of
the amount of energy these modes contain in the given data.

Pseudo-inverse – The pseudo-inverse generalizes the matrix inverse for non-square matri-
ces, and is often used to compute the least-squares solution to a system of equations. The
SVD is a common method to compute the pseudo-inverse: given the SVD X = U�V∗, the
pseudo-inverse is X† = V�−1U∗.

Recurrent neural network (RNN) – A class of neural networks where connections
between units form a directed graph along a sequence. This allows it to exhibit dynamic
temporal behavior for a time sequence.
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Reduced-order model (ROM) – A model of a high-dimensional system in terms of a low-
dimensional state. Typically, a reduced-order model balances accuracy with computational
cost of the model.

Regression – A statistical model that represents an outcome variable in terms of indicator
variables. Least-squares regression is a linear regression that finds the line of best fit to
data; when generalized to higher dimensions and multi-linear regression, this generalizes to
principal components regression. Nonlinear regression, dynamic regression, and functional
or semantic regression are used in system identification, model reduction, and machine
learning.

Restricted isometry property (RIP) – The property that a matrix acts like a unitary
matrix, or an isometry map, on sparse vectors. In other words, the distance between any
two sparse vectors is preserved if these vectors are mapped through a matrix that satisfies
the restricted isometry property.

Robust control – A field of control that penalizes worst case scenario control outcomes,
thus promoting controllers that are robust to uncertainties, disturbances, and unmodeled
dynamics.

Robust statistics – Methods for producing good statistical estimates for data drawn from
a wide range of probability distributions, especially for distributions that are not normal
and where outliers compromise predictive capabilities.

Singular value decomposition (SVD) – Given a matrix X ∈ Cn×m, the SVD is given
by X = U�V∗ where U ∈ Cn×n, � ∈ Cn×m, and V ∈ Cm×m. The matrices U and V
are unitary, so that UU∗ = U∗U = I and VV∗ = V∗V = I. The matrix � has entries
along the diagonal corresponding to the singular values that are ordered from largest to
smallest. This produces a hierarchical matrix decomposition that splits a matrix into a sum
of rank-1 matrices given by the outer product of a column vector (left singular vector)
with a row vector (conjugate transpose of right singular vector). These rank-1 matrices are
ordered by the singular value so that the first r rank-1 matrices form the best rank-r matrix
approximation of the original matrix in a least-squares sense.

Snapshot – A single high-dimensional measurement of a system at a particular time. A
number of snapshots collected at a sequence of times may be arranged as column vectors
in a data matrix.

Sparse identification of nonlinear dynamics (SINDy) – A nonlinear system identifi-
cation framework used to simultaneously identify the nonlinear structure and parameters
of a dynamical system from data. Various sparse optimization techniques may be used to
determine SINDy models.

Sparsity – A vector is sparse if most of its entries are zero or nearly zero. Sparsity refers
to the observation that most data are sparse when represented as vectors in an appropriate
transformed basis, such as Fourier or POD bases.

Spectrogram – A short-time Fourier transform computed on a moving window, which
results in a time-frequency plot of which frequencies are active at a given time. The spectro-
gram is useful for characterizing nonperiodic signals, where the frequency content evolves
over time, as in music.
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State space – The set of all possible system states. Often the state-space is a vector space,
such as Rn, although it may also be a smooth manifold M.

Stochastic gradient descent – Also known as incremental gradient descent, it allows one
to approximate the gradient with a single data point instead of all available data. At each
step of the gradient descent, a randomly chosen data point is used to compute the gradient
direction.

System identification – The process by which a model is constructed for a system from
measurement data, possibly after perturbing the system.

Time delay coordinates – An augmented set of coordinates constructed by considering a
measurement at the current time along with a number of times in the past at fixed intervals
from the current time. Time delay coordinates are often useful in reconstructing attractor
dynamics for systems that do not have enough measurements, as in the Takens embedding
theorem.

Total least squares – A least-squares regression algorithm that minimizes the error on
both the inputs and the outputs. Geometrically, this corresponds to finding the line that
minimizes the sum of squares of the total distance to all points, rather than the sum of
squares of the vertical distance to all points.

Uncertainty quantification (UQ) – The principled characterization and management of
uncertainty in engineering systems. Uncertainty quantification often involves the applica-
tion of powerful tools from probability and statistics to dynamical systems.

Underdetermined system – A system Ax = b where there are fewer equations than
unknowns. Generally the system has infinitely many solutions x unless b is not in the
column space of A.

Unitary matrix – A matrix whose complex conjugate transpose is also its inverse. All
eigenvalues of a unitary matrix are on the complex unit circle, and the action of a unitary
matrix may be through of as a change of coordinates that preserves the Euclidean distance
between any two vectors.

Wavelet – A generalized function, or family of functions, used to generalize the Fourier
transform to approximate more complex and multiscale signals.
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[303] Milan Korda and Igor Mezić. On convergence of extended dynamic mode decomposition to

the Koopman operator. Journal of Nonlinear Science, 28(2): 687–710, 2018.
[304] Petros Koumoutsakos, Jonathan Freund, and David Parekh. Evolution strategies for automatic

optimization of jet mixing. AIAA Journal, 39(5):967–969, 2001.
[305] Krzysztof Kowalski, Willi-Hans Steeb, and K. Kowalksi. Nonlinear Dynamical Systems and

Carleman Linearization. World Scientific, 1991.



458 Bibliography

[306] John R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural
Selection, volume 1. MIT press, 1992.

[307] John R. Koza, Forrest H. Bennett III, and Oscar Stiffelman. Genetic programming as a
darwinian invention machine. In Genetic Programming, pages 93–108. Springer, 1999.

[308] Boris Kramer, Piyush Grover, Petros Boufounos, Mouhacine Benosman, and Saleh Nabi.
Sparse sensing and dmd based identification of flow regimes and bifurcations in complex
flows. SIAM Journal on Applied Dynamical Systems, 16(2):1164–1196, 2017.

[309] J. P. Krieger and M. Krstic. Extremum seeking based on atmospheric turbulence for aircraft
endurance. Journal of Guidance, Control, and Dynamics, 34(6):1876–1885, 2011.

[310] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems, pages
1097–1105, 2012.

[311] M. Krstic, A. Krupadanam, and C. Jacobson. Self-tuning control of a nonlinear model of
combustion instabilities. IEEE Tr. Contr. Syst. Technol., 7(4):424–436, 1999.
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[377] I. Mezić. Analysis of fluid flows via spectral properties of the Koopman operator. Ann. Rev.
Fluid Mech., 45:357–378, 2013.
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