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Preface

“This book s sbout
and th clasicl filds of engincering mathemtics and mathematcal physcs, We have

ben developineg this matcrial over a number of years, primarly 1o educate our advanced
dergrd and begining grdste et o engiesingand pyscal s dear
ments. Typica linear algebra, diff

and scientific computing, with niners often having some xpours (o o) oy

Likewise,

Our goal s o provide  broad ety point 0 apled at cence for bt of these groups
of students. We have chosen the methods discussed i this book for their (1) relevance,
(2)simplicity.and (3) generality and we have attempied to present a range of opics, from
basic ntroductory materil up o researchvlevel techniques.

e dcovery i cuely evluioning Lo we el i, nd conl
complex systems. The most pressing sci  engineering probl the mod-
om e e not amenule to mpical mdels or ervions basd o i prinines
I

e sy, ch e, e Iw1m, :nmm epidminogy, s, oot ar-d
autonor sonlinear, dyna

high maron i domin undcﬂymx e
modeled fo the eventual goal of sensing, prediction, estimation, and control. With modern
mathematical methods, enabled by unprecedented avalabilty of data and computational
resouces, we are now able (0 ackle previously unatainable challenge problems. A small
handfs

actuator placement, discovering interpretable nonlincar dynamical systems purely from
teduced order models to accelerate the study and optimization of systems with
complex multi-scale physics.

Driving. is vast and data,
in low-cost s
comptaions e, od vmually lmited . torage and e capabiicn. Such
st quantities of data are affording engineers and scientists across all disciplines new
S e ihe fourth parad

of scientific discovery [245]. This fourth paradig is the natural culmination of the first
empirical experimentation, analytical derivation, and computational
investigation. The integration of these techniques provides a transformative framewwork for



data-driven discovery efforts. This process of scienific discovery is not new, and in

mimics the effort of leading figures of the scientific revolution: Johannes Kepler (1571
1620w i s Nevio (1621721 Exch lyed il e n devclopin e
theoretical underpinnings of celestial mecha

i a combination of empirical
dirivn and i wprachen, D it o i el hysis

e reiane i revclaion
Data science tself i not new, having been proposed more than 50 years ago by John
ho envisioned the existence of a scienific effort focused on leaming from data,
o dats anays 1192 Snce that e, dota scence i been ey domineed by v
Jtural outlooks on data (78], The machine learning communiy, which is pre-
dominantly comprised of computer scientist, i typically centered on prediction uality
and scalable, fast agorithms. Althogh not necessarily in contras, the statistical learning
‘community, ofen centered in statistics departments, focuses on the inference of inter-

e mathematel and computaiona foundationsfo dtsclence methods For engloeers
and scientsts, the goal i to leverage these broad techniques to infer und compute models
(tpically nolinea rom observtons that oty senify he undeyin dyamics
and generalize qualiatively and quantitatively (© unmeasured parts of phase, parameter,
or application space. Our goal in this book is o leverage the power of both statistical and
‘machine learning o solve engincering problems.

‘Themes of This Book
There are a number of key themes that have emerged throughout this book. Fist, many
e

i reated to the second theme of finding coordinae transforms that simplify the system.
I, h i iy of ety 1 e s ot o
the Fourier

ihough fhese tchmique e Tl een i 1o e sealised scometries and
lincar dynamics. The ability to derive dara-driven transformations opens up opportunitcs
to generalize these techniques (o new research problems with more complex geomeies

ind boundary conditions. We also take the perspective of dnamical systems and control
throughout the book. applying data-driven technigues to model and control systems that
evolve in time. Perhaps the most pervasive theme is that of data-driven applied optimiza-

conl, ). Even more el it s crguned o ey o s
the exensive development of numercal inar algebra tols from the carly

of marix decom-
positions and solution stategies used throughout tis text

Acknowledgments
e are indebied to many wonderful sudents, callsborators. and colleagues for valuable
feedback, suggestions. and support. We are especially grateful o Joshua Proctor, who was




Prefce i

organization. We have also benefied from extensive interactions and conversations with
Bing Brunton, Igor Meric, Bernd Noack, and Sam Taira. This work would also not be

and whos rsearh s fetored throughont s book

“Throughout the writing of this book and teaching of related courses, we have received

great fecdback and comments from our excellent students and posidocs: Travis Askham,

Michcl Au-Yeung. he Bai o Brigh. Katheen Chanpion. Emily Clk, s
B

“Thomas Mohren, Megan Morrison, Markus Quade, Sam Rudy, Susanna Sargsyan,label
Scherl, Eli Shlizerman, George Stepaniants, Ben Strom, Chang Sun, Roy Taylor, Meghana
Nelagar, Jake Weholt, and Matt Williams. Our students are our inspiration for this book,
and they make it fun and exciting o come to work every

publisher
for being a relible supporter throvghout this process.

Online Material
We i designed thisbok t0 ke cxinsive e of onln spplementry el
can be found at the r..uuwm website:

databookuvcom

In addition . all of wsedin
“The codes online are more extensive than those presented in the book, including code
used 0 generate publication quality figures. Data visualization was ranked as the top used
daa-science methad in the Kaggle 2017 The State of Data Science and Machine Learning
study, and so we
of these plotting commands
We have also recorded and posted video lectures on YouTube for most of the topics in
his book.

lied mathemarics. We
2

preparation. Most ch:  may be converted boor
camps, containing roughly 10 hours of materials ach.

Huw to Use This Bork
in engincering and science. As such, the machine learing methds are introduced at 3
beginning level, whereas we assume students know how (o model physical systems with

covered thus range from introductory 10 state-of-the-art rescarch methods. Our aim is
1o provide an inegrated viewpoint and mathematical tolse for solving engincering and
science problems. Alernaively, the book can 3o be useful for computer sience and



satistis students who often have limited knowledge of dynamical systems and control
arious courses can be designed from this material, and several example syllabi may be
a d cod

for young sciatsts and cnglocers. Wo bave atempted o ek cveything sinple

possible,

othe il
e, we o v 0 b s compstensive sy be bl et o

ekt 1 0 i and movin a0 . We hope hat o oy ok, hse

et 0 hange the work i aplid s cence




Common
Symbols, and Acronyms

Most Common Optimization Strategies
Least-Squares (discussed in Chapters 1 and 4) mirimizes the sum of the squares of the
residuals between a given fiting model and data. Linear leas-squares, where the residuals
aking
the derivativ of the residual with respect to each unknown and settng it 0 zero. It is
commonly used in the engincering and applied sciences for fiting polynomial functions.
Nonlinear least-squares typically requirs iteative refinement based upon approximating
the nonlinear least-sg

g
E
£
g
H
H

jares with  lncar least.

quares at cach ieration,

Gradient Descent (discussed in Chapters 4 and 6)is the industry Ieading, convex opti-
mization method for high-dimensional systems. It minimizes tesiduals by computing the
gradint of given fting function. The fterative procedure updates the solution by moving
dovai

nnl) Tocal minima. C;
descent and the backpropagation algorithm which makes the optimization amenable to
computing the gradient tsel.

it by opiming i onc unkown s e Tl ko heldcomtant
arch (non-convex optimization) can be performed in a single variable. This
rale v he updted and hldcomtnt il anothcof e unknown s ot The

« o " ed

uniila desired level of aceuracy s achieved.
Augmented Lagrange Method (ALM) (discused in Chapters 3 and $) is a class of
algorithms for solving construined optmization problems. They are similar to penalty
ethods n ey rplc: 3 omtined optmizaion bl by & s of uicon
$ « it the desi
o, AL i s deigned 1o mimie  Lagrange il The aug
mented Lagran Ahod of Lagrange multiplirs

Linear Program and Simplex Method are the workhorse algorithms for convex opi
mization. A linear program has an objective function which is linear in the unknown
and the consraints consist of inear inequalites and equalites. By computing
region, which is a conves polytope, the linear programming algorithm finds a poiat in the
polyhedron where this function has the smallest (or largest) value i such a point exists.
“The simpl

feasible

a given basic feasible solution 1o another basic feasible solution for which the objective
function is smaller, thus producing an ierative procedure or optinizing.

i



Most Common Equations and Symbols
Linar Algebra
Linear System of Equations

Ax=b. on
The matrix A & RP¥"
unknown,

 vector b & B are generally known, and the vector x € B is

Eigenvalue Equation
AT=TA ©2)
The columns £, of the matrix T are the cigenvectors of A € € corresponding to

the cigenvalue 74: AE, = 74y, The matrx A is & diagonal mairix containing these
eigenvalues. in the simple case with n distinct eigenvalues,

Change of Coordinates

x= . 03
The vectorx € B eRr
P e R
Measurement Equation
¥ 04

The vector y € B7 is a measurement of the state x & B by the measurement malrix
Py

Singular Vlue Decomposition

X=UZv =0

s
“The matrx X € C<" may be decomposed ino the productof thee maries U € €7,
E e CO ¥ ¢ OV The maticss Ui V'm:rmmm sothat UU*
and V= VY spose. i columns of
U (esp. V) e othogonal, iy .y simguar o, Tt conns
decreasing, nonnegativ diagonal entries called singular values.

Ofien, X is approximated with a low- = UEV", where U and V contain
the first r < n columns of U and V, respectively, and £ contains the first  x r block of
5. The matrx U v duced order model
and sensor placement.

Kk matrix




Regression and Optimization
Overdetermined and Underdetermined Optimization for Linear Systems
argmin (JAx bl +7500)  or ©63)
argmin g(x) subject 0 [Ax bl < ¢ 6b)

Here g(x) i a repression penalty (with penlty parameter ) for overdetermined systems).
For over- and underdetermined linear systems of equations, which resul in cither no solu-
Ax= b achoice ol penalty, which

darization, must be made in order o produce 4 sol

argmin (fA X B) £ 3g00)or o)
argming(x) subjectto (A, x.b) = ¢ )
These

Compositional Optimization for Neural Networks
argmin (u(ha - 8. A1)+ 25(4)) 08

Each Ay denotes the weights connecting the neural network from the kih to (& + 1th

layer I is typically  massively underdetermined system which s regularized by g(A).

daa s well a preventing overfiting.

Dynamical Systems and Reduced Order Models
Nontinear Ordinary Differential Equation (Dynamical System)

(500 :B) ©9)

The vector x(1)  B” ] o
the vector field. Generally, i Lipschitz continuous 10 guarantee existence and unigueness
of solutions.

Linear Input-Output System

AxitBu 109
~cxbu. ©.105)

The sate of the system is X € B, the inputs (sctuators) are u € R, and the outputs
(sensors) arey & B The matrices A, B, C, D define the dynamics, the effect of actuation,
the sensing sirategy. and the effect of actuation fecd-through, respectively.



Common Optmizaion Technigues, Equations, Symbols, and Acronyms.

Nonlinear Map (Discrete-Time Dynamical System)
et = Flxo). iy

“The state of the system at the kih iteration is ;€ E, and F is a possibly nonlinear
‘mapping. Often, this map defines an ieration forward i tme, s0 that e
case the flow map s denoted .

An): in this

Koopman Operator Equation (Discrete-Time)

Kig=goF, = Kg=hy. ©12)
“The linear Koopman operator K advances measurement functions of the state £(x) with
the low F,. Eigenvalues and eigenvectors of K, are % and g(x), respecively. The operator
X operates on a Hilbertspace of measurements

Nonlinear Partial Diferetial Equation

=N ) oy
The st of the PDE is u. the nonlincar evlution operator is N, subseripts denote
il o s ¢ 1 0 g 1 ) s iy
The PDE is parameterized by values in B. The
nuous unction a1, o i may be s vt v s oo, ) =
[uxi6) wen) - wtrnn] €

the PDE may be a con-

Galerkin Expansion
“The continuous Gilerkin expansion i

x> Yaonco o

vy e
il s, Fr tigh o o e Gl i bones
) Yoy 4. The spatal modes ¥, 5 may be the columas of




Complete Symbols

Dimension
K Number of nonzero enries in a K-sparse vector s
- Number of data snapshots (i, columns of X)

Dimension of the sate, x € R"

Dimension of the measurement or output variable, y & &

4 Dimension of the input variable, u &
# Rank of truncated SV, or other low-ank approximation
Scalars

s Frequency in Laplace domain
5 leaming rate in gradient descent

A1 Time sip

x Spatial variable

© Spatialsiep

&

o Singular value

A Eigemalue

A Sparsity parameter for sparse optimization (Section 7.3)
A Lagrange muliplir (Sections. 3.7, 8.4, and 11.4)

© Threshold

ctors

@ Vector of mode amplitudes of  in basis ¥, a € B
b Vector of measurements in linear e
b Vector of DMD mode amplitudes
Q  Vector contining pote vt o PDE-FIND
 Residual

s Sparse veet

o Commtvarble (cm,.m»x 9,and 10)

tor (Chapters 11 and 12)

¢ Snapshotof data at ime s

X, Datasample j € Z:= (1.2, - .m] (Chapiers 5 and 6)
% Reduced state, € B, so thatx = U

& Estimated stae of a system

¥ Vector of measurements,y € B

¥; Datalabel j € Z:= (1,2, . m) (Chapters 5 and 6)
§ Estimated output measurement

2 Transformed state, x = T (Chapters 8 and 9)

€ Emorvector




i Common Optimization Techniques, Equations, Symbals, and Acronymns

Vectors, continued

B Bifurcation parameters
& Eigenvector of Koopman operator (Sections 74 and 7.5)
& Sparse vector of coeficints (Section 7.3)

4 DMD mode

¥ PODmode

T Vector of PDE measurements for PDE-FIND

Matrices

Matix for system of equations or dynamics
R ynanics o inensions POD e
Ax Mati representation of

Nt et o e i n e nmmm»y
Matrices for continious-time state-space syste
Mtrices fordert-ime st spoce e
Matrces for state-space system in new coordinates 2 = T-'x
Matrices for reduced state-space system with rank
cuuion et i
€ Linear measurement matri from statc o measurements.
c r..mmum..my marix
F Discrete Fourier transform
G M linear

dynamics o

o]
Hankel matrix
T Hankel i

Mt oot Koopman opersor (Cmpxcr ”
Closed-loop control g (Chapte

Kalman fler estimator gain
LR conteol gai
Lok porion of X Chapee )
Observabilty mai
Untry mas that st o ol of X
‘Weight matix for state penaly in LR (Sec. 8.4)
‘Onthogonal matrx from QR factorization
Weight matrix for actuation penalty in LQR (Sec. 8.4)
Uppengua ' o QR fctrizaon
Sparse portion of matix X (Chapter
Matrix of eigenvectors (Chapter 8)
Clanzool eortinas Claten §2045)
Left singular vectors e R
Let singular vectors o cconomy SVD of X, U & R
et singulr ecors (POD modes) of runcaed VD of X, U & R
Right singular vectors of X, V & B
Right singular vectorsof truncated SVD of X, V & R#*"

<‘<=,=»=.!.ymn,-.oc-qa.-?\”ux_s=



Matrices, continued
X Matris of singular values of X, ¥ € B
£ Matrix of singular values of economy SVD of X, € R
I Marix u!~\ngul|rv|l\l:~ of truncated SVD of X, E € R"*"
W Eigenvectors of

2 (mnmlln\ulﬂyummmu

W, Observability Gramian

z

X
X Time ol ot i, X' R0
18

hogonal b

¥ Dunmniotshmabio ¥ 2(X), ¥ € BP" (Chapter 7)

' Shifted data matrix of observables, Y’ = g(X'), Y’ € RP*" (Chapter 7)

7 Sketch matri for randomized SVD, Z € B (Sec. 1.9)
Measurement matrix times sparsifying basis, © = C¥ (Chapter 3)

r jons for SINDy (Sec. 7.3)
2 Manrix of coefficients of candidate functions for SIND (Se. 7.3)
= Matrix of nonlinear snapshots for DEIM (Sec. 125

A Disgonal matri of eigemvalues

Y Input snapshot matix, Y & B

@ Marix of DMD modes, 2 X'VE'W.

W Orthonormal basis (e, Fourier or POD modes)

Tensors
(4B N-way amay tensors ofsize £y x s x -+ Iy

I+l 1 norm of a vector x given by il

12 €2 nom of a vector x given by [
2-norm of a marix X given by X

v

I Nucksr nonm of  mas X gven by IXL. = e (V)
Gorm =)

() Tnner product. For functions, </m mnfl e F()g" (x)dx.

() Inner product For vectors,

Operators, Functions, and Maps

Isystem n
¥, Direcme fow nap o dymamicl syt trongh me
T jus-ime dynamical sysiem

G G mtom




Opeatrs, Funchons, and g,

O

z

saerEEamo

ontinued
“Transfer function from inputs to outputs (Chapter §)
Sealar measurement function on X

Vector-valued measurement functions on x
Costfunction for control

Loss function for suppor vector machines (Chapter 5)
Koopman operator (continuous time)

Koopman operator associated with time ¢ low map
Laplace transform

Loop transfer function (Chapter §)

Linear partial differential equation (Chapters 11 and 12)
Nonlinear parial diferential equation

Order of magnitude

Sensitivity function (Chapter 8)

‘Complementary sensitivity function (Chapter )
Wavelet ransform

Incoberence betveen measurement malrix €
Condition number

Kot

busis ¥

Gradient operator
‘Convolution operator



Most Common Asronyms
NN

Comliln e ek

o
DMD Dymmw node decomposition
FFT  Fast Fourier ransform
ODE Ordinary differential equation
PCA  Principal components analysis
PDE  Partal iffeential equation
POD  Proper orthogonal decompasition
ROM  Reduced order model

Singolar value decomposition

Other Acronyms
Alternating directions method
"N A mmaton son
ALM  Augmented Lugrange multiplier
AN Anificial neural network
ARMA  Autoregtessive moving average
ARMAX  Autoregressive moving average with exogenous inut
BIC  Bayesian information criterion
BPOD  Balanced proper orthogonal decomposition
DMDe  Dynamic mode decomposition with control

D
CoSaMP  Compressive samplin gmmm,mm...
CWT  Continuous wavelet ta
DEIM Discrte empinca erplation method
DCT  Discrete cosine transform
DFT  Discrete Fourier transform
DMD: - Dy made ecompostion v ol
DNS  Direet numerical simulation
VT Discee wavlet trnsforn
ECOG  Electrocorticography
<DMD  Extended DMD.
EIM  Empiricalinterpolation method
EM  Expectation maximization
EOF  Empirical orthogonal functions
Eigensystem realization algorithm

Extren 12 conirol

MM Gaussian mixture model

HAVOK  Hankel altermative view of Koopman
L oo g

Kullbac)

1CA_ Independentcomponent snlysis



Other Actonyms, ontinued
hunen-Lobve transform
LAD. Lot st v
LASSO  Least absolute shrinkage and selection operator
LDA  Linear discriminant analysis
LQE  Linear quadratc estimator
LQG  Linear quadratic Gavssian controller
LOR  Lincar quadratic egultor
LTI Linear fime invarian system
MIMO  Muliple input, multiple output
MLC  Machine learming control
MPE Missng pointestimation
mrDMD  Multi-esalution dynamic mode decompasition
NARMAX  Nonlinear autorcgressive model with exogenous inpus
NLS  Nonlinear Schridinger equation
OKID  Observer Kalman fler identification
PBH  Popov-Belevitch-Hautus (e
PCP  Principal component pursuit
PDE-FIND  Partial differential equation functional identifcation
of nonlincar dynamics.
PDF  Probabilty distribution function
PID  Proportional-integral-derivative control
PIV. Particle image velocimet
RIP Restricted isometry property
SVD  Randomized SVD
RKHS  Reproducing kemel Hilbert space
RN Recurrent neural network
RPCA - Robut princpl components i
SGD  Stochastic gradient descent
SINDy  Sparse identifcation of mnhnmr dynamics
SO Single input,single output
SRC. Spase epreenation for clsication
SSA  Singular spectrum analysis
STET  Short time Fourir transform
STLS  Sequentia thesholded least-squares
SYN Suport ctor micine
TICA  Tim ageed ndependent component iy
e Vaimions approach of conformation dynamics.
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Singular Value Decomposition (SVD)

of the computational era, providing a foundation for nearly al o the data methods in this
book. The SVD provides & numerically stable matrix decomposition that can be used for
a variet of purposes and is guaranteed to exist. We will use the SVID to obtain low-rank

non-say i
the soluton of a system of equarians Ax = b, Another important use of the SVD is s the
PCA) x

is decomposed DIPCA has been applicd
wide varity of problems n science and engincering.

Ina e e SVD gz thecocepof the s o tasorn (D), which
il be the subject of the next chapter. Many engineering texts begin with the FFT, a it
e of st analyical and numerical resuls, However, the FET works in

i T, we e with eSO, which may b hought of 5 providing s b
that s tailored

T many domin, omple syseme wil gencrnte s s il mullgcd in
arge matvices, or more generally in arrays. For example, 4 time-series of data from an
experimen or

the weather . itis posible to
reshape vec
large mari. Similaly. the pine vlues in  grayscal image may be siored n a mari,
or these images may be reshaped into large column vectors in & matrx to represent the
Remarkabl

The

Overview

many other techniques developed in this book, including classification methads in Chap-
ter 5, the dynamic mode decomposition (DMD) in Chapter 7, and the proper orthogonal
hapter 11

following sections.



Singular Value Decompositon (SVD)

High dimensionality is a common challenge in processing data from complex systems,
These systems may involve lusge measured data sets including audio, image, or video
data. The data may also be generated from a physical system, such as neural recordings
from a brain, or fluid velocity messurements from a simulation or experiment. In many
it patterns, which may

be characterized by a low-dimensional airactor or manifold [252, 251]
As an example, consider images, which typically contain a large number of measure-
ments (pixels), and are therefore elements of 4 h

the low-
dimensional structure underlying  high-dimensional state-space. Although high-fdelity
Muid simulations typically require at least millions or billions of degrees of reedom, there

vehicls or hurricanes in the weather
D

ie SVD provides a systematic way to determine a low-dimensional approximation
o high-dimensional data in terms of dominant patterns. This technique is dara-driven in

from data, of expert knowledge or
intition, The ind provid the
dan 2o o conlse e ey det oo vl i i

Moreover, the VI
“The SVD has many powerful applicat

beyond dimensionality reduction of high-
-

ing solutions 1o underdetermined or overdetermined marix equations, Ax = b. We will
s the SVD o drbosc dt . The SVD i i imprat 0 chasctris he

N ctor spaces. will
e cxplored n s s, proving  mtion o o i mghdlmcmu\ml
o

niton of the SVD
Generally, we are interested in analyzing a large data set X € "

” an

“The columns x; € C* may be measurements from simulations or experiments. For exam-
ple, columns may represent images that have been reshaped into colum vectors with as
T clements e 1 e mage. The cou esor ey sl rpresent e e of
 physical system that is evolving in time, such as the fluid velocity at a set of disrete
points,  setof neural measuremens, or the state of a weather simulation with one square
Kilometer resolution

The index 4 is a abel indicating the A™ distnct set of messuremens. For man of the
examples in this book, X will consist of & rme-series of data, and X = x(EAY). Often the
state-dimension n is ery large, on the order of millons or billions of degrees of frecdom.
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" ipshots in X. For many
i & tal-skinny matix, as opposed to a shorrfar matrix when

e SVD i nique matix decomposiion tht st o very complex-alued matrix
o

X

v a2
where U & ©*" and V' & C"*" are unitary matrices' with orthonormal columns, and
z

& R is a matria with real, nonnegative entries on the diagonal and zeros off the

diagonal. Here
i chper, e condion ot U s ¥ iy ey
When = m, the matix ¥ has at most m nonzero elements on the diagonal, and may

5
be writien s Theref ble to present X
[“}

[o o] [ﬁ]v»
“The full SVD and ecanomy SVID ar shown in Fig. 1.1 The columns of U span a vector
pace that s complementary and othogonal 1 it spanned by 0. Th columns of U are
e 1t sinular vectors of X and th <ol of ¥ are i sinular veciors. The
iagonal lemetsof £ € % e caled sngulr values and thy s ondered from
Tagent 0 smalls Th rank o X s eqal 1t b of nonver sigular sl

x

v v a3

Computing the SVD
< SVID is o comersione of compuiational scence and nginering, and the numerical
the SVD. enlightening. That said,

s, allowing y
computation dwe
Lok for aranid he exhacnee o fcent nd sl sumercl agorhn. T he st

that follow we demonsirate how 10 use the SVID i various computational gt

and
e o A e mos common comptationl e and Ttations. There e
numerous important resuls on the computation of the SVD [212, 106, 211, 292, 238
A mor horogh disusionof compuatonal s ca b ound in 214, Randomied
numerical the SVD of very

discussed i Section 18,

Matlab. In Matlsh, cumwnng e SV s sforvar:
vt 5

Value Decomposition

1 s i U s ity i UU° = U7
RS —




‘Singular Value Decomposiion (SVD)

Full SVD

Figure 11 Schematic of matrice n the ful and economy SVD,

X,

1> [0nac, shat vl = sva(x,econ’); ¢ economy sized SvD

a8 np
552 X« np_random zand(s, 3) % create random data matrix

553 Uhat, shat, Vhat = np.linalg.svd (X, full marices=False)
¥ aconomy Sup

3

2 X< replicare(s, mmomm(s)
)

Tonandensent (0.1}, [5.3))
} = SingularvalieDecosposition(x]

In fact, most SVD.
The
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DGESVD in LAPACK.
Armadillo ind Eigen.

Historical Perspective
“The SV has a long and rich history, ranging from carly work developing the theoretical

il e by Stevt[02), which provies ot snd iy o et
The review theoretical work of B s
(1889), Schmidt (1907), and Weyl (1912), I aso e mors e ok, g
heseminal conmputationsl work of Gola andcolsborston (212, 211 1n addiion, ere
are many excellent chapters o the SVD in modern texts [524, 17, 316]

Uses in This Book and Assumptions of the Reader
The SUD s the bais o mary el s i incnsionshy o, Tse
methods include principal component analysis (PCA) in staistics [418, 256, 257), the
Kathann Love tasiom (KLT) (380, 1401, empiicl anhogondt Pl
clmate (844, e prper onbogonaldesamgostion (00 i iddyaics 251,104

arange
of diverse fields, many. e o Dnly differ in how the data is collected and pre-
processed. There is an excellent discussion about the relatonship betsween the SVD, the
KLT and PCA by Gerbrands [204].

The SVD is also widely used in system identification and control theory 1o obiain
reduced order models that are balanced in the sense that states are hierarchically ordered
interms

For this chapter, we assume that the reader is familiar with liear algebra with some.

o numerical lincar algebra, with discussions on the SV [524, 17, 3161,

Matrix Approximation

Perhaps the most useful nd defining property of the SVD is tht it provides an aprimal

Tow-rank approximation to a matrix X. In fct, the SVD provides a hierarchy o low-rank
K s

Values and vectors, and discarding the e
Setmi o Gram St gcncﬂlm:d the SVD 1o function spaces and developed an
sppesimaion theoe, esablisin irncaed SVD s e il -k sy

i
by Eckart and Young [170], and is sometimes referted 0 s the Eckart- Young theorem.

“Theorem 1 (Eckart-Young [1701) The oprinal rank-+ approximation 1o X. in a leas-
squares sense, i given by the rank-r SVD truncation X:

_ ammin X=Xl =

s




Singular Value Decompositon (SVD)

Here, U and ¥ denore the firs  leading columns of U and V, and % contains the leading
s ockof . 115 5 the Fropens norm.

Here, we establish the notation U ated SV basis (und the resulting spproxi-
mated matrix ) will be denoted by Because % s diagomal the rankr SVD

3%
approximation i given by the sum of  distinet rank-1 m

I SO S s

data may
“This i an important property of the SVD, and we will eturn 10 it many times. There
i

for X, in the £ sense, than the truncated SV approximation X. Thus, high-dimensional
Tand V.

in'a lnge data matrx X, However, there ar ofen dominan low-dimensional patems in

the dat, and the trncated SVD basis U provides  coordiate transformation from the

‘high-dimensional measurement space into a low-dimensional pattern space. This has the
" e

benefitof arge data set,
It ind analysis. Finally, many red in Gsee

Chapter )

atsactor,

onder models(see Chapter 12),

Truncation

The truncated SVD is illustrsted in Fig. 12, with U, and ¥ denoting the trncatcd

i 1 dss ot el . s f e s s i oy be e
H hatare smller

{han the number of nonzero singulr alues . the rank of X), the runcated SVD only

approximates X:

X= UV, 1.6)
“There are mumerous choices for the truncation rank 7. and they are discussed in Sec. 1.7
I we ehoose the truncation value o keep all non-~ero singular values, then X = UEV” is
exac,

Exampl: Image Compression

vations. Natural e

ftive example of this inherent compressibilicy. A grayseale image may be thought of as &

real-valued matrix X € K", where n and m are the number of pixels in the vertical and
e

Fourier frequency domain, SVD transform coordinates), images may have very compact
approximations.

3 s ot ucrmmon fos s iz 0 b spciida ozl by vl XT € R, sthongh ve sk
il vesical by ezt o b consitnt withgenre Tt s,
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Full SVD

D —— Lty

P12
st runction.

Consider the imag of Mordeci the snow do i Fig 1.3, Tis image has 2000 x 1500
piel. I i posible 10 take the SVD of tis image and plot th diagonal singuls alues,
avin Fie. 4. Figare 1.3 shows the approximate mati X for various tunction vales
. . e ‘account
for almost 0% o the imge varianc, The SV trncation resals in # compression of
the orignal image, sinc only th fs 100 columns of U and V. along with the fst 100
digonl elements of . mustbesored in . % and V.

First we loadth i
heinwend (. /oATA/d03. jos*

ool lrskageey 07 ¥ comvere. RBG-sgray, 256 bit-sdouble
T eina(RAy BY o site (s
Tagenci): axis off. cotormap gray
and take the SVD:

.53 = svacn);

e e compte e st i s e VD o i s

(r=5.20,and

cor 1001, 8 runcation value
;12008 (152,157) V(2 10x) 1 8 Approx. inage
aagese dappron, smis ofF

figu
Eita(l e mmetr (r, W 1)
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Original 5, 0.57% storage

]

. ST

= 20, 2.33% storage = 100, 11.67% storage

e 1.3
Orgina image resoluion is 2000 x 1500,

Finally, we plot the singular values and cumulative enerey in Fig. 1.4

subplot(1,2,1), semilogy(diag(s), k')
bplot(1,2,2) )

Mathematical Properties and Manipulations

pretations of the unitary matrices U and V as wel as a discussion of the SVID in terms of
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)1

Singular value, o,

Fpure 1.4 (&) Singular

X XX XX
| .u!l‘&m '
s, .

P15 and XX foramati Note
hat both correlation matrices ar symmetric

s 1. (5) Comulativ energy in the s  modes.

the data will be explored [ "

Interpretation as Dominant Correlations
“The SVD is closely relted 1o an cigenvalue problem involving the correlation matices
XX* and XX, shown in Fig. 1S for a specific image, and in Figs. 16 and 17 for generic
matrices. 1f we plug (1.3) into the row-wise correlaion matrix XX* and the column-wise
corelation matrix X', we find:

[]wvis o

xx=v[s a]vu[ﬂv' —vitv am

0],
[5 Yo
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-

Pt X

Recalling that U and V ase unitary, U, %, and V ase soluions (0 th following eigenvalue
problems:

_—

weu-off ). aso

XXV = Vi (1:86)

nter v weorX Fr—

oF XX ad of XX, which e the same nonseo sgemale. It llows tt X s
adjoint (e, X o X the
cigemalues of X.

U are igen-
vectors of the correlaton matrix XX and columns of V are cigenvectors of X°X. We
ehoose 1o arrange the singulue values in descending order by magnitude, snd thos the
columns of U are hicrarchically ordered by how much corcltion they capture in the
columns of X; V similarly captures cortlation i the rows of X.

hots
It often impractical to consiruet the matrix XX because o the large size of the state-
. ‘ . e then XX~
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X

2.
E

has a tillion clemens. In 1987, Sirovich observed tha it is possible to bypass this large
matrix and compute the fistm columns of U using wha is now known a the method of
snapshos 490]

U, we only compute the cigen-decomposition of X*X, which is much smaller and more
manageable. From (1.86), we then obigin V and . If there are 2er0 singular values in
£, then we only keep the r non-zero part, £, and the comesponding columns V of V.
From these matsices, it is then possible (0 approximate U, the first r columns of U, as
follows:

9

Geometric Interpretation
“The columns of the matrix U provide an orthonormal basis for the column space of X,
Similarly, the columns of V provide an orthonormal buss for the row space of X. If the
columnsof X e syt mssreents i i, e U o sl e, snd ¥
encode temporal patterns

O proery ht mates the VD ity el he st it bt U Ve
unitary matsices, 5o that ans
that solving a system of mmm mvnlvmg Vaven Mlnvle a5 maltiplicaion by
the transpose, which scales as O(nr2), as opposed to traditional methods for the generic
inverse, which scale as O(1%). As noted in the previous section and in [S7], the SVD is
il st 1 et e o e compc ldot agrs KX

XX,

T D Xty mprted gy b o o g gaty
(x| lixl2 = 1) © B" maps into an ellpsoid. (y |y ) c R
|hmugh X. This is shown graphically in Fig. LS for a sphere in &* and a mapping X
th three non-zero singular values. Because the mapping through X (i, matrix muli-
plication) s inear, knowing how it maps the unit sphere determines how all other vectors
wil map.




Singular Value Decompositon (SVD)

For the specific case shown in Fig. 1.8, we consiruct the matrix X out of three rotation
trices, R,. R, and R..,and a fourth

con(Bs) —sin@y) 0] T cos) 0 sin(es)
sine) cosoy Of| 0 10
0 0 1] Lsine 0 cosn

1o 0 [ 0 0

x [0 costn —sin@n | [0 @ 0

0 sine) cosen JLo 0 o
—os.

o Ers
s oo mass do ot commuts, and 10 e o ofcoton i foneof

Inthis case. 6,

ower dmenson! sipece. The produet e,
X The matrix V s the identity.

is the unitary matrix U in the SVD of
oo 1.1 Consiruet rotation matices.

theta = [pi/15; -pi/9; -pi/20);
Signa - atag((3; 1; 05115

mx= 100 § rotate sbout x-axis
0 cos(theta(1)) -sin(theta(1));
© sin(theta(1)) cosl(cheta(i))l;

Ry = [cos(cheta(2)) O sin(theca(2)); ¥ rot yraxis
01 0;

“sin(theta(2)) 0 cos(theta(2))]:

Re - [cos (theta(3)) -sin(theta(3)) 0; ¢

sén(thea(3)) cos (cheta(s))

o
X = RevhysRxssigna; + rotate and scale

ot 12 Pl sphers.

XR = 0x; YR = Oay; 2R = Os2

e€(XR,YR,2R,2); ¥ using sphere :
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Invariance of the SVD to Unitary Transformations
X usefl property of the SVID i that i we It o right-mliply our data matx X by 3
onitry ransformaton, it preseres the terms in the SVD, excep ot the corresponding
et o ight unary mari U o V, respecively. This s importan imlicaion,snc e
e Ciaper ) F s unt
SVD o data X = X will b exacty he ame s the SV of X, except that the modes
0 will b be the DFT of modes U 0 = #U. Inadion. the marince o the SVD o
ity tansformaions eaabl e use of compeessed mezsurmea 1 rcondiet VD
e a re spars i some ransfo s (e Chaptr 3,
" imarince of SYD to uitry ransformations 1 eometicall e, a uniary

structures. We denote 4 left unitary transformation by C, 50 that ¥ = CX, and a right
unitary transformation by P, so that ¥ = XP*. The SVD of X will be denated UxBxV
and the SVD of ¥ wil be Uy Ey Vy.

Lah Uniry Trariemtion
i, coer 3 iy anformaton of X: Y = CX. Copuing the conation
maix Y'Y, we

VY =X'CCX=X'X. 0

The projected data has the same eigendecomposition, resultng in the same V and Sx
Using the method of snapshots (0 reconstruct Uy, we find

Uy = YVyy' = eXVy gy = Cux an

then

Thus, Uy = CUy. By = Zx, and Vy = V. The SVD of Y

¥ = CX = CUExVy an
Right Unitary Transformations
Forarightuntary transformation ¥ — XP, th coreation matex ¥°Y i

YV S POXP = PV TR VP s

withthe following eigendecomposition

VYRV =PV} a1
Thus. Vy = PV and Ey = Ex. We may e the method ofsnapshots t reconsirct Uy
Uy = YPVxEy = XVyEy! = Ux. (115)

Thus, Uy = U, and we may wite the SVD of ¥ as:
v

P = UxExViP" (0}

Pseudo-Inverse, Least-Squares, and Regression
b dasali

A

i



Singular Value Decompositon (SVD)
where the constraint marix A and vector b are known, and the veetor x is unknown. If A

one, none, o infiniely many soltions, depending on th specfic b and th colurn and
Tow spaces of
Fist,conside th wndenletermined sysiem. where A € €77 and n < m (e, A is a
Shor-at mati). s tht thee e fver cquatons than unknowns. This (ype of sysem is
likely to have full colum rank,since it has many more columns than are required for a
Jinarly independent basis. Generically, i a shorfu A has ull column rank, then tere
i b1

bere s ot
Similary, conside the ovenderemined e, where n > ...l skinny matei).
50 tht ther ar more equarons than unkaovwrs, This mauix canot have  full colunn
k. nd s it paranted that there st vectors b hat have o souton . Infct, there
will nly be  solution i b s n thecolumn space of A, . b € col(A)
Technical,there may be some hices of b that adiit infnitly many solaions x for
alskinny matrix A and othr chices of b (hat admit 261 slutions even for & short-at
. Th sl e o b sy i 17 it by ot el
Subspacesaf
. (A is A
“The column space o A s the same s he column spce of U
+ The orthogonalcomplement o col(h) i ker(A),given by the columnspace of 0+

ere the rank  is chosen toinclude all nonzero sngular values:

from Fig. 11;

+ e o s, ) i e s of e o of A, which i sl by the
columns of V. The row space of A i equal to row(A4) = col(A"):

© The Kemel space, ker(A), is the nrlhngnml complement to row(A), and is also
Known as the mul space. The null space is the subspace of vectors that map through

Moo 1. Ax . v by co V)

More precisely,if b € col(8) and if dim (ker(A)) # 0, then there are infinitcly many
solutions x. Note that the condition di (ker(A)) # 0is guaranteed for a short-fat mateix.
Similarl. if b ¢ col(A), then there are no solutions, and the system of equations n (1.17)
are called inconsistent.

col(A) & ker(A”) = B (1189)
Col(A”) @ ker(A) = B (isw)

mark 1 There is an extensive literature on random matrix theors, where the above

rverwmpev are almost certainly irue, meaning shat they are true with high Ivm’mmlm
wave a solution

A € R and random vector b B it 5 m since there s i chnce st b s
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e column space of A. These propertie of random matrices will play a prominens e in
compressed sensing (sce Chaper 3).

In the overdetermined case when no solution exists, we would ofien like to find the

solution x that minimizes the sum-squared crror Ax — . the so-called least-squares
soluton. Note that the lastsquares solution also minimizes | Ax — bl n the underde-
infinitely

‘minimum norm ] 5o that Ax = b, the so-called minima-norm solution.

TheSVD i e e o o o ke ol piiztion s i,
we subsitte an exact truncated SVD A for A, we can “invert” cach of the
e .. and VI . resling i the M- Peon e mere (435,
426,453, 572] A of A:

0 = A=l 19

“This may be used to find both the minimum norm and leastsquares solutons o (1.17)

AAx=Ab — x=VE'Ub .20

Plugging the solution & back in (0 (1.17) results in:

a2
a2

Note that 00" is not necessarily the identiy matix, bt s rather a prjection onto the
column space of O Therefore, % will ony be an exact soluion 0 (1.17) when b i in the
column space of U, and therfore in the column space of A

Computing the pscudo-inrse A” is computationaly cffcien, afer the expensive
pfront cost o compuig the SVD. Ivetin the uniry matices U and ¥ imvoles
‘mateix multiplicaion by the trnspose maties, which are (1) operations. Iverting £
s even more efficient since i is a diagonal matin, equiing O(n) operations, In comrast,

invertng a dense square matrix would equire an O(n) operation

One-Dimensional Linear Regression
Regression is an importan statistical (00l {0 relte variables to one another based on
data [360]. Consider th collction of dta n Fig. 1.9, The red xs are obiained by adding
Gaussian white noise 0 the black line, as shown in Code 1.4, We assume that the data
i ey e 0 (117 e e e e T i o
solution for the slope x below (bluc dashed fine). shown in Code:

In(122), 5 = fal, V = 1, and . Taking the left pseudorinverse:

a23)
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Trueline
iy data .
n lin
4 S
2
b
o
2
4
R R

Figure 1.0 Hlustration oflnea regresion using sy dat

“This makes physical sense, i we think of x a the value that best maps our vector a o the
vector b. Then, the bestsingle value x is obtained by taking the dot product of b with the
normalized  direction. We then sdd a second normalization factor Jalz because the a in
1:220)is not normalized.

Note that strange things happen if you use row vectors instead of column vectors in
(1.22). Also, if the noise magnitude becomes large reative 1o the slope . the pseudo-

subsequent sections

ot 1.4 Generte sy data for Fig. 19,

25:2)
+liranan(eizelal);
Dlottarmear k) + Tru
hola on, piot(a,b, xx') &

Jationship

ot 15 Compute least-squaes approximtion fo Fi. 1.
e -

in Matlab, as well 15 a piny command that may also be used.

Col 1.8 Atemative formultions ofesst-squars in Matah.
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Heat [cal /gram]

Mixture

Faure

10 Hest data forcement mixtures conainng fourbase ingredints

Mutilinear regression

Example 1: Cement heat generation data

First, we begin with a simple buil-in Matlab dataset that describes the heat generation
for various cement mixtures comprised of four basic ingredients.In this problem, we are
solving (1.17) where A & RI*1, sinc there are four ingredients and heat measurements

o the fou igredients o the hea geneaton. i possle o fiod the mimu cr
‘oo gt SVD. 5 sk n Code 1. Al sing s s . e
also

Got 17 Mulilincar regrssion forcement heatdat,

1oad pads 1 zoas 2o ‘ement dataset
ingredients;

H

5,11 - s cecon) s
vinv(8) s0" ab; + Solve Axeb using che

Plot(b,'k'); hold on
Blot (ux, 20, 1

ragress (b,8);

Example 2: Boston Housing Data
Inthis example, we explore a larger data set o determine which factors best predictprices

Repository [24].
There are 13 aributes th Jated h
These fea W the best fit price:
Fig 111
hown i Fig. 1.1 e rend.
quite well

linear its, as in this example.
“This data contains prices and attrbutes for 506 homes, so the atribute matix i of size
506 > 13, It is important to pad this matix with an additional column of ones, 10 take:
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(@ ()
— Fousing value|
@ s0}| = Rogression
3 0f
20 20|

Median home value [$1K]

200 00 % 20 0
Neighborhood Neighborhood

Figure .11 Mullinar regresion o home prices using varous facors. (a) Unsored data, and (5)
Data soted by home valuc.

Significance

12345678010111213
Attribute

Fgwot12

cance ofvaious atributes inthe rgresson.

into account the possibilty of a nonzero constant offset in the regression formula, This
tercept

Godl 1.8 Maliinear regrssion for Boston housing data

Load housing. a:

bousing (s 10);
mmr( A
REHEPHIT

hold on, plot(Aex,‘x-07);

Ib sorcind] - sort(housing(:,14)); § sorted va
plot b, 'k
hola on, plof

Atsarting, s)ex, 'x-o')
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aution
In et s U s o e i et o . 2 sy squne
matix. Thercfore, U"U = UU = L. Howerer, o compute the prcudo-inerse of X, we
5 sine only 5 i invertible G alsingula values st nonzero),
cncral in e, .

Uil now, we have asumed that X = DEV i a exact SVD, s tha therak  includes
allnonzero singular alucs. This usrants that the i 5 i inverilc.

smplication arises when working with  runcated basis of left singula vectors 0.1
5 5l 0 hat 00 = I, where 5 the rank of X. Howerer, U0 Ly, whih i

hac U0

i one of the most common aceidental misuses of the SV

-6,
S = et econ')
(240 g (3 omax s (1)) ezol)) s

ERTRRE T +o

Principal Component Analysis (PCA)
Prmuml components analysis (PCA) is one of the central uses of the SVD, providing a
coordinate syste comelated data.
[ER? dy
A pre-processes the data by mean sublraction and setiing the variance to unity before
performing the SVD. The geometry of the resulting coordinate system is determined by
rincipal components (PCS) that are uncorrelated (orthogonal) to each other, but have.
‘maximal correlation with the measurements. This theory was developed in 1901 by Pear-
son [418], and independently by Hotelling in the 1930s [256, 257]. Jolliffe [268] provides

4 good reference text
Iy a numlvcr of measurements are collected in a single experiment, and these
arranged into a row vector. The measurements may be features of an
obscrvable, h as demographic features of a specific human individual. A number of
experiments are conducted, and cach measurement vector is arranged as 4 row in a large
X.

pollng. Not that tis convnion for X, conisting ofrowsoffestures, s diferen han the
ihis chapter, feature “snapshot

o aringed s column. Howéve,we choos b comitnt with PCA gt i

scetion. The malrix

Cnmnumm
- the mean of all d subtract it f

Temontn s giventy
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and the mean matri is

X % a2

126
am

“The frst principal component uy i given as
= argmax ujB Bu, )

which i the eigenvector of BB corresponding o the largest eigenvalue. Now it is clear
thatuy is the

Itis b
arc:

cv=vp. 129

which s guaranteed to exst, since C is Hermitian.

pea Command
In Matab, there the additional commands pea and princomp (based on pea) for the
principal components analyss:

ll>> tv,5c0xe,021 = peatx);
The matrix V is equivalent 1o the V matrx from the SVD of X, up 10 sign changes of
the columns. The vector s2 contains eigenvalues of the covariance of X. also known as
principal component variances; these alues are the squares of the singular values. The

neral, we ofien
withthe various pre-processing steps. i n s

Example: Noisy Gaussian Data
Consider the noisy cloud of daa in Fig. 1.13 (4), generated using Code 1.9, The data is
‘zenerated by selecting 10, 000 vectors from & two-dimensional normal distribution with
2ero mean and unit variance. These vetors are then scaled i the x and y directions by the
values in Table 1.1 a /3 Finaly.

tiple standard deviations, shown in Fig. 1.13 (b). The singular values, shown in Table 1.1,
match the data scaling. The matrix U from the SVD also closely matches the rotation
matrix, up 0. sign on the columns;
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Table 1.1 Sandard devation of daa and normalzed sinquir values.
Daa 2 05
sV 1974 0303
@ ®
o § -
Y v
o o -
E E !
E 4 -
Fpuro 113 The

sl (o1 -+ X and o3 + 1, cyan).ar shown n b).

04998 0,862
08662 04998

sin(theta) cos(thetal]
X< matagie
atter (X(1,:,X(2,5), 'k,

Gode 110 Compute PCA and plot confidence intrvls.

Xavg = mean(x,2);

B Geanes (1, nPol
(0,501 = eva) sart (np ot
seatter(X(1,:),X(2,:), k. ", ‘Linel

theta = (0:.01:1

55 = Usgs [eos (thata); sin(tnetall; ¢ 1-std cont

) randn 2 neoinee) dlzqk/L)‘cre Garmbotnee) s
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Cumulative energy

Singular values, o,

5 0 150 200 50 10 150 20

Figure 114 Singular valuesfo the Ovarian cancer data.

plot (xava ) xava(2) s xeta(, )
plot (x \g(xnz.‘g:dn )iXava(2) + 2exetald, s}
Plot (e acd (1)) Xava(2) + Sexscal2; ),

Finally, it s also possibl to compute using the pea command;

‘Example: Ovarian Cancer Data
The ovarian cancer data set, which is buill into Matlab, provides & more reaistic example
o illustrate the benefts f PCA. This example consists of gene data for 216 patenis, 121
o hom have vrancancet and 9 fwhom do ot Forchptent. et s vetor o
data contaiing ype
of data, mamey the high dimension of the daa features. Howeer, we se from Fig. 114
tha there is significant variance captured i the firt few PCA modes. Said another way.
the gene data is highly corelatd, 5o that many patients have significant overlap in thir

PCA, and PCA ha
imensiond] bologiea and gncte dta (445

pea patients
withou cancer when plotted i the space spanned by the first three PCA modes. This is
shownin Fig. 1,15, which is generated by Code 1.11. Thisinherent clusering in PCA space
of " machine | "
For cxample, we will see in Sec. 1.6 that images of different. human faces will form
PCA space. The use of these clusters will be explored in greater detail

clusters
Chapter .
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prncipal componentcoordinates.

Gode 111 Compute PCA for ovarian cancer das,

Load ovariancancer; ) ovarian cancer data

w,5,v]
for

)
)
)
)

. Linewiath,2);

¢, Linewiath,2) ;

Eigenfaces Example

One
In this problem, PCA (1. SVD on mean-subiracted data) s applied 10 4 lage library of
facial images 10 extract the most dominant corrlations between images. The result of this
decomposition s a set of eigenfaces that define  new coordinate system. Images may
e represented in these coordinates by taking the dot product with cach of the principal
compuas. il be o n Chipior st maes o e s e e o o cuer
in the cigenface space, making this @ useful transformation for facial recogrition and
chmnc.mm 510, 48], The eigenface problem was firt sudied by Sirovich and Kirby
1491) and xgudsd on in 2911 aplicaon 0 s Gl cogsion
was. y:uewud by Turk and Pentland in 1991 (53

we demonstrate this algorithm using e Etendd Yl Fce Dabase B (20,
cmsmmg of cropped and aligned images [327] of 38 individuals (28 from the extended

daabase, and 10 from the original database) under 9 poss and 64 lighting condions’.
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Fpuot16 Yale databs
speciic person. Leftpane gencrated by Code (112,

Each image is 192 pixels tall and 168 pixels wide. Unlike the previous image example in
Section . arge column
Vector with 192 x 168 = 32, 256 clements. We use the first 36 people in the database (eft
panel of Fig. 1.16) as our raining data for the eigenfces example, and we hold back two
people as a test set. An example of all 64 images of one specific person are shown in the
right panel These images are loaded and plotid using Code 112,

Godo .12 Plot an image for cach person inth Yale database (Fig 116 3))

load .. /DATA/al1Faces. nat

al1peracns - zeros(nes,mes) ; s

for i=1:6

nl]l’c)sa'\s(]ou 1) ension, 1+ (3-1) ems S em)
o(faces (1. 1esum(nfaces (1:c:
1

b 1)) mm s

inagesc (allpersons), colormap sray

face is computed and sublracted from each column vetor. The mean-subiracted image.
hown in Fig. 1.17.
Ths,taking the SVD of the mean-subiracted matsx X results in the PCA. The columns
Of U are the eigenfaces, and they may be reshaped back into 192 x 168 images. This is
illusrated in Code 1.13.
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Mean-subtracted faces
Person1 Person2 Person3

srzse
svd(X,'econ’);)
[ 1] s
U= wm  w ow w2, ®
[ [
o (S
g
'I. - E m
Eigenfaces
B e e i e

1,5,V] = svalx, econ’);
tavarace )
1,8

inages
e ress (e =
Usin et 0, obtained by this code, we now atempt (0 sppnay
Fepresent an image that was not in the training data. At the beginning, we held back
s (e ST and 359 eopl. and e o ke o of e Imges 15 e
well a rank-r SVID basis will approximate this image using the

. We will see how
following projection:
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Test image :

v =00

of various oder . Test

Pl 18 Appoximas peston of s e wing s s
mage i not n trsiing s

“The cigenface approximation for various values of 1 i shown in Fig. 118, as computed
using Code 1.14. The approximation i relatively poor for r = 200, lthough for r > 400
it converges 04 passable representation of the test image.

Itis iteresting to note that the eigenface space is not only useful for representing
fuman s bt may b b wed 0 apposimae 8 og (i 119 or o appcine
(Fig. 3
P imagsapcs cotesponin 0 st ot sl st s
such as cheeks, forehead,

ot 108 Approvimate testimage that was omited from aining date
testFacens
o

testrace - avaFace;
25 50 100 200 400 800 1600]
reconFace = avgFace + (U(:,1:x)e (U(s,1:7) ‘atestFacels)) ;
imagesc (eshape (reconFace, ,m )

e further investigate the use of the eigenfaces as a coordinate system, defining an
ciger By pjcing an mage ot he st 7 PCA mode, we o 3t
of condinates i s spc . Some principal componenis may capture the most
faces, while other be
dividual may
capture differences in lghting angles. Figure 1.21 shows the coordinates of ll 64 images
oftmo s i oo e S 0 o ) owpoie, gt by
Code L1 well
o e e ecognion and chication cmpm
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Figur 119 Approximat representation f an image of 3 do usin cigenfaces.

Test image =50 =100
>

=

400

Figure 120 Approximat representation of a cappucein sing cigenfaces.
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ye
2
S5 -
o
3
;
PC5

‘and the corresponding image is shown.

Lesun(ntaces (1:Pinun-1)) :eun(nfaces (1:imum) ) ;
Ltoun(ntaces (1:p2nun1)) :sun(nfaces (1:p2mum) )] ;

P1 - Bl - avgFacesones(1,size(P1,2));
P2 - avgracesones(1,size(P2,2))

(¢ Peanodes) *+P1;
" PCanodes)  +p2;

plot (2cacoo
Bt (caceo:

P101, 1), POACooRds1 (2, 1), “kd')
4sP2 (1, 1), PeACoords S

Truncation and Alignment
Deciding how many singular values to keep. i.e. where 1o truncate, is one of the most
important and contentious decisions when using the SVID. There are many fuctors,includ-
ing specifications on the desired rank of the system, the magnitude of noise, and the
distribution of the singular values. Often, one truncates the SVD at  rank r that captures
pre-determined amount of the variance or energy in the original dat, such as 90

truncation. Although crude, this technique is commonly used. Other technigues involve
identifying “elbows” or “knees” in the singular value distibution, which may denote the
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ransition from singular values that represent important patterns from those that represent
noise. Truncation may be viewed as a hard threshold on singular values, where values

Jarger than a threshold 7 are kept, while remaining singular values are truncated. Recent

under certain conditions, providing a principled approach to obiaining low-rank marix
approximations using the SVD.

tion,
of adata matsi.
dat

Optimal Hard Threshold
A recent theoretical breakhrough dete

s the optimal bard threshold  for singular
hasa

with Gaussian white noise [200]. This work builds on 4 significant ierature susrounding
various techniques for hard and soft thresholding of singular values. I this section, we

parize the main results and demonsirate the thresholding on various examples. For
more detals, sec [200],

s, C orapprox-
imately low-rank, matrix Xime and a noise matrix Xooie:
X = Xine + 7 Xooie. 30

“The enties of Xy are assumed 10 be independent, identically distrbuted (i) Gaus-
sian random variables with zero mean and unit variance. The magnitude of the noise is
characterized by y. which deviates from the notation in [200]".

oise magnitude y s known, there are closed-form solutions for the optimal
hard threshold 1
LK € R s square, then
@3y, a3n
2. IfX & R"" is rectangular and m < n, then the constant 4/+/3 is replaced by a

function of the aspect rato f = /.

MBIy, 1.32)
vy
B0+ (2 1ap+1)
Not ht his xprsson e 0 (131) when = .11 <, then =/
When he i magnitade y i unknown, which s e yicl i resvordsppi
aton. h i 5 osaile 1 ctmate the e magnlde and sl te ibtion of

sl v I hs e, e . closed
om sotion o .. st b approxmated mmericaly,

= (e

7 (200, e o oo st o s 3 dete the KV gl vl
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For unknown noise . and a rectangular mairix X € R"*",the optimal hard thesh-
oldis given by

()0 (=)

Here, w(f)

) g where i he solution t0th following problens
/,., [+ VB =1)(-a —ﬁ)?}]”’m=1
Ju-pr Ed
Solutons o the expression above must be approximted numerically. Fortunely
12001 b st

“The new method of optimal hard thresholding works remarkably well, as demonstrated
on the examples below.

Example 1: Toy Problem
h

Fig. 12, 116
and we contaminate the signal with Gaussian white noise (Code 1.17). A de-noised and

ode 118),
s well as using a 90% energy truncation (Code 1.19). I is clear that the hard threshold
3 e e e ke e el g e Sgea s (G 120
Fig. 1.23, i clar that there are two values that are abov thres

ot 116 Compute the underlying ow-ank sgnal (Fig. 122 &)

clear all, close all, elc

NI
Utrue - [con (17at) . sexp(-£.°2) sin(1let)];
- (20, 0.5

st
Verue - [sin(set) . vexp(-t."2) cos (134t}

figure, inshow(x);

ot 117 Contaminatethe signal with noise. (Fig 122 ()

sionesrenta (siza 1))
w(xnoLs

God 118 Truncate using optimal ard hreshold. (P 122 (¢)

10,5,1] = svatxnoisy)

o (im0
Sutott o (47egtt]) e st ssigms; § Hcd i
© = max(tind (diag (3) >cutott) rode
Felean s s 1or) 230571 EICT =
Eigure, inshow (xelean)

[T ———
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Original Noisy
Hard Threshold 90 cutoff

an i after o
el (4157 . s e on 0% ey 9,

ot 119 Truncat using 90% energy citerion. (g, 122 (4)

DD G UG IO IENy OBl 5

730 - min(find(cdss0.50 capt

X90 = U(:,1:790) #5 (11290, 1:£90) +V (1, 1:290) ' ;
£igure, inshow(xo0)
Got 120 Plot singular values for hard thresholdexampie, (Fig. 1.23)

semtlosy(@lag(s) ok’ Linsiidta 1.5), hold on, grid on
@iag(3(11x,1:5)), "ox", LineRidth,1

Example 2: Eigenfaces
we revisit e 1.6, This provides

amore typical example, since the data matrix X is rectangular, with aspect ratio f = 3/4,
‘and the noise magitude is unknown. 10 s also not clear that the data is contaminated with
white noise. Nonetheless, the method determines a threshold . above which columns of
29t e S i Tt o hich sl of U st ey o
noise, shown in Fig,
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(: (b}
w o]

Zi0 Z o

£ £

2 ]

@ [+

0w ww ww @ 3
Figure 124 Hrd thresholding for eigenfaces example,
Importance of Data Alignment

Here, we discuss common piflls of the SVID associated with misaligned data, The fol-
lowing example is designed to illustrate one of the central weaknesses of the SV for

h i his would look like a white
rectangle placed on u black background (see Fig. 125 (). If the rectangle s perfectly
aligned with the - and y- axes of the figure, then the SVID is simple, having only one

Value o (see Fig. | \ and vy
that define the widih and height of the white ectangle.




1.7 Tuncation and Alignment

0° Rotation

(b) 10° Rotation
@,
0
10
10 %
0*
107
Z s 7m0 oo © 0 50 750 1000
it sqare su- . dis SVD
specrum (¢ 107 a5 o).
comples (0.

itis nolonger a
axes, additonal non-zero singular values begin to appear in the spectrum (s Figs. 1.25
(b.d) and 1.26)

ot 121 Compute the SVD for & well-lizned s rtsed s

25,

X(/:30n/4,0/4:3:0/8) = 1
imshow () 1

¥ - imrotate (x.10,

starcing:startinden-1)

seniiogy
semilogy (ding (81
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@ (b) 10°

7\
\ “

Singular value, 7,

0 20 50 70 000 ¢
Fgue 128
and the comesponding SV spectru, dagtS), ()

“The reason that this example breaks down i that the SVD is fundamentally geometric,
‘meaning that it depends on the
we have

oordinate system in which the data is represenied. As
seen earler the SVID is only generically invariant o unitary transformations.
‘meaning that the transformation preserves the inner product. This fact may be viewed as
both  strength and 2 weakness of the method. First,the dependence of SVD on the inner
» pretations. Morcaver, the SVD has
meaning However, this makes the

the data. In fict, the SVD rank explodes when objects in the columns translate, otate,
or sl ich vy i i o dat it s ot e el s procsd

had

For instance, the cigents

ple was built on a library of images
ity ropped cetred. and s
important pre-processing steps, the
whelming.

ad been
e scondingt0 3 e Wit ain these
es and clustering performance would be under-

inabili the

o, For xampl. he SVD 5l h methdaf choi o e ow 1k dcmnw\nnmn

of data from partial diffrential equations (PDES), as will be explored in Chapters 11 and

12. However, the SVID is fundamentall & data-driven separation of variables, i ve
. for

o duta

with symmetriesis a significant open challenge in the

i u

Gote 122 SVD for  sqire rotted through varous angles (Fig 126)
nangles - 12; o ang
imotate (x, (3-1) 4

startind:starcindin-1);
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subplon(1,2 1), dmsgere ror), colommap((o o 97 cnl)
bplot(1,2/2) | semiloay(diagi(s), x en(3, )

Randomizsd Singuar Velue neemnnasmm
large dat
oo computational mathemaics and data science. In many cases, maix decompo-
ions are explicitly focused on extracting dominant Iow-rank structure in the malrix, as
illustrated throughout the examples in this chapter. Recenly, it has been shown tha if &
matrix X has low-rank structure, then there are extremely effcient matix decomposition
algorithms based on the theory of random sampling; this is closely related (0 the idea of
sy and h igh-imensionalgeometry of s vetn, wichwil s exlored in
Chapter 3. These so- hve

cost Moreover, ly . from
4K and 8K video, internet of things,etc.) it i often the case that the ntrinsic rank of the
a

space grows. Thus. the computational savings of randomized methods will only become
more important i the coming yesrs and decades with the growing deluge of dats.

Randomized Linear Algebra
Randomized linear algebra is & much more general concep than the reatment presented
here for the SV In addition to th randomized SVD 464, 3711, randomized algorithms
veloped for principal component analysis [454, 2291, the pivoted LU decom-
poiion (455, (e piveed QR decompontion (162, nd he ymamic mode decompos-
tion [175]. Most randomized matix decompositions can be broken into a few common
steps, as described here, There are also several excellent surveys on the topic (354, 225,
334, 177, We assume that we are working with tallskinny matsices, so that n >
although the theory readily generalizes o short-fat mattices.

Step 0 denify a target rank, 1 < .

Step 13 Using random projections P 1o sample the column space, find o marix Q
e colanes spprsiic e colu s o X, . 0t X =

Step2: Projec pace, ¥ = Q'X, . X
sition on Y.

Step3: Reconstruct high dimensional modes U = QUy using Q and the
‘computed from Y.

Randomized SVD Algorithm
Over the past two decades, there have been several randomized algorithms proposed
0 compute a low-rank SVD, including the Monte Carlo SVD [190] and more robust

approaches based on random projections [464, 335, 371]. These methods were improv
by norpntng anched sl macissfor T s i 3 |sw
Here, we use the randomized SV algorithm of Halko, Martnsson, and Tropp
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which combined and expanded on these previous algorithms, providing favorable crror
bounds. Additional analysis and numerical implementation detils are found in Voronin
inFig. 127,

Step 1+ Permer
ofX € B

35

X, for “mn

Of X, and 50 7 approximates the calumn space of X with high probabiliy. Thus, it is
possible o compute the low-ank QR decomposition of Z to obtain an orthanormal
forX:

136)

Step1
Step2.

P17
oy
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Step 2: With the low-rank basis Q. we may project X into a smaller space:
v=o'x =)
It also follows that X = QY, with better agreement when the singular values o decay

rapidly for k
v

NIV 138

s Qi ool nd st he ol spce of X, the matics  snd
V are the same for ¥ and X, as discussed in Section |

Step 3: Finally, it is possible to reconsiruct the high-dimensional lef singular vectors U
using Uy and Q@
U=QUy 1.39)

Oversampling

‘Most matrices X do not have an exact low-ank structure, given by r modes. Instead, there
space of X. In general, incteasing the number of columns in P from r 0 7+ p,significantly
improves resuls, even with p adding around 5 or 10 columns [370]. This is known as
oversampling, and increasing p decreases the variance of the singular value spectrum of
the sketched matr.

Power Ierations
A second challenge in using randomized algorithms is when the singular value spectrum
decays slowly, so tha the remaining I variance

in the data X, In this case, it i possible to preprocess X thrugh g pover iterarions 1454,
228, 2241 0 create a new matrix X with  more raid singula vlue decay:

X

)X a0

singular value spectrum of X decays more rapidy:
X0 = upHly aan

H diional X,

every additional pass adds considersble expense.

Guaranteed Error Bounds
One o the ot important propetis of e oz SVD i e i o e
ertor bounds, pe

e ovemamin parsmetr 7 amdhe s ofpowes o 4. Th bt e
error bound for s deterministc algorithm s

IX-QVl; =

o (X). a4
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Inother word: P 7 subsp

ereater e
s posible to bound the expectarion o the eror:

sox-ovi = (14 aa®. 04
[ —

Choiceof andoms mairix P

Thers e sevral bl shice of e o i P, Gostian rndorsprojctions
ia

Inpuricat oas

WX Howerer,
d and e
 whers he

entries can be +1 or —1 with equal probabiliy (532, Structured random projection mat
es may provide efficient sketches, reducing computational costs 1o O(m l0g(r)) [559)
Yet another choice is a sparse projection matrix P, which improves storage and computa-
tion, but at the costof including less information i the sketch. In the extreme case, when
the ma n i
s random columns of the m x m identity matsx, S0 that it andomly sellcts columas of X
for the sketch Z. Thisis the fastest option, but should be used with caution, as information
may be lost i the structure of X is highly localized in 4 subset of columas, which may be
Tostby column sampling

Example of Randomized SVD
To demonstrate the randomized SVD algorithm, we will decompose a high-resolution
image. This particular implementation is only for llusirative purposes, as it has not been
opimized for spec, data transfer, or accuracy. In practcal applications, care should be
aken (228, 177].

Code 123 computes the randomized SVD of a matrx X, and Code 1.24 uses this

Got 12 Randomized SVD algoritim,

function [0,5,)

By = BizeiX,2)s
P randniny, rep) ;

q
2= en

ena
10,81 = ax(z,007

Conpute SUD on projected ¥=0'sX;
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P12
£SVD (ght

vv,5,v)
o ='qwr;

Gode 124 Computethe randomized SVID of igh-resoluion image.

Tensor Decompositions and N-Way Data Arra
Low-rank decompositions can be generalized beyond marices. This is important as the
ot be flatene order o evalu-

ate conelated structures. For instance, differen time snapshots (columns) of a matrix may
include messurements as diverse as lemperature, pressure, concs
etc. Additonally,there may be categorical data. Vectorizing this data generally does not
make sense. Ultimately, what i desired s to preserve the various data sruetures and types
i their own, independent directions. Matrices can be gencralized o N-way armays, or

iration of a substance,
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o v v v
_— == ==
X o +o2 +o3 +
SVD
w w us
® VAR A4
— f—  —
M= =M +Ay +As
Tensor
a a a
roeian

(sectorize) the dat.

tensors, where the data is more appropriately arranged without forcing a dat
process.

“The construction of data tensors requires thal we revisit the notation associated with
s addon, muplicston, snd o products (299, e s e 1 colam of 3
matsix A by 4. Given matices A € BVK and B ¢ their Khatei-Rao product
i denoted by A © B and is defncd t0 be the 17 x K’ matrix of column-wise Kronecker
products, namely

atening

AOB=(a@h ax @bx)

Foran N-way tensor A of size [y x Iz x -+ x Iy, e denote its
byar

“The inner product betsieen two N-way tensors A and B of compatible dimensions is
siven by

iz i) entry

“B) =Y an

A, denoted by | A pre

of A with tsef,namely LA} = T, AT. Final unfolding

of atensor A is denoted by mA,

Let M represent an N-way data tensorof size Iy Iz x -+~ Iy, We are inerested in
124,235,

A=Y mal oo mal, a4
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Fgure 1.3 Example N-way array dat st crated fromthe function (1.45). The dta matix is:
o

that produced th dat

o
mA™ of size I, x R. The CP decomposition refers to CANDECOMP/PARAFAC which
s o parlel ot i PARAFAC) s cannical decmposin (€A
1P)respecively. We refer to cach summand as a component. Assuming cach factor
It ha b coumn-normalzed o hve it Eclidea ogth e el o the s a5
weighis. We will use the shorthand notation where % = (i1, )" [25]. A tensor that
has a CP decompositon is sometimes referred o 15 a Kruskal tensor.
For we consider 3- 120

M= Ao

Let A € RIK and B € R denote the factor matices corresponding to the two state
modes and € & R*K denate the factor matrix corresponding to the time mode. This
way decomposition s compared o the SVD i Fig. 1.2
To llustrte the tensor decomposition, we use the MATLAB N-way toolbox developed
byR 184,

Wwe generate:
data from a spato-temporal function (See Fig. 1.30)
AP = 0.57°) cos(2) + sech(x) tanh(x) exp(—0.2%) sin(1). ~ (1.45)

Feuyn
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@ | |
i |
50
H ; e
® | |
l |
s v s
o
©
o
o
o T
o,

sttty

“The frt fctor “The three disinet

directions of the data (parallel facors) e llstcaed i 8) the  dircton, (6 the x direcion and

(@ thetime 1.

“This model has two spatial modes with two distnct temporal frequencies, thus  two

factor model should be suffcient o extract the underlying spatial and temporal modes.
MATLAB,

ot 125 Creaing tensor dat

0:0.2:2001,

& acxy, ¢
fieeir A sleosiaem)
(sech{X) _tanh {X) . axp (-0.207.

31 isinem

Note that the meshgrid command s capable of generating N-way armays. Indeed, MAT-
LAB has no diffculis specifying higher-dimensional arrays and tensors. Specifically.
one can casily generate N-vway data matrices with arbitary dimensions. The command
randn 10, 10) generates a 5-way hypercube with random values in each
ofthe five directionsofthe arry.
Figure the function (1
The N-vay array data generated from the MATLAB code produces A € RI21*10115,
which i oftotal dimension 107, The CP tensor decomposition can be used 0 exract  two
factor mode for this 3-ay aray, thus producing two veetors n cach direction of space .
space y. and time 1
-y ol provides  sinple et forprforning e decompos
tions which is
model

the output as model.
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ot 128 Two Factor ensor model
rodel-paratac
TokoAz A -facsiat m,aw
bplot (3,1,1), plotly,Al, Linewlden, [2])
Rubplot (3,23}, plot (k/AZ, Linewideh  [2])
subplot(3/1,3), 1 Linewiach | (2]}

Note that in this code, the fac2let command tums the factors in the model into their
component matices. Further note tha the meshgrid arrangement of the data is diferent
o st s he £ dctons e i

Figure 131 the V-
g ot Specifcaly, he two vectorsslong each f th e irections of he atay
are illustrated. For act nswer s

from he rank 2 mode (145 The st t of v e tong the gl » drction
are Gaussian as prescribed. The second set o two modes (along the original ¥ direction)
include a Gaussian for the first function, and the anti-symmetric sech(x) tanh(x) for the
second function. The third set of two modes correspond to the time dynamics of the two
functions: cos(21) and sin(r), respecively. Thus, the two factor model produced by the

low-runk functions
dimensional data matrix A.

the potentia for ensor decompositions in many fields. For N large, such decompositions

be computationslly intractable due to the size of the ed. even in the simple

xample st n Figs .30 and 13, e ars 10° dstapins Utimly, he CP
ot scale well ever,

1751, As with the SVD, randomized methods explot the umkllymg Tow-rank stn
of the data in order to produce an accurate approximation through the sum of rank-one
outer products. Additionally, tensor decompositions can be combined with constszints on
the form (345
“This gives a framework for producing interpretable and scalable computations of N-way
data amays.

Suggested Reading
Texts

(1) Matrix computations, by G. H. Golub and C. . Van Loan, 2012 [214],

Papers and reviews
(1) Calculating the singular values and pseudo-inverse of a matrix, by G. H. Golub
W. Kaan, Journal of the Societs for Industrial & Applied Mathemarics, Serics
B: Numerical Analysis, 1965 (212],
@) A low-dimensional procedure for the characterization of human faces, by
Sirovich and M. Kirby, Journal of the Opiical Society of America A, 1987 491].




Singular Value Decompositon (SVD)

Finding structure with randomness: Probabilistic algorithms for constructing
approvimate matl decompostions, by -k, -G, Misison, ). A
opp, SIAM Review, 2011 [230],
(@A vandomised agorth for the decomposion of matrces. by .. Marins
son, V. Rokblin, and M. Tygert, Applied and Compuational Harmonic Analysis,
2011 (371].

‘The optimal hard
Donoho, IEEE Transactions on Information Theory, 2014 [200],

threshold for singular values i 4//3, by M. Gavish and D. L
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decouple. and

are amenable d ana

in a wide variety of domains,including data analysis (.., the SVD), dynamical systems
d control (.., defining

coordinate systems by contollability and observability). Perhaps the most foundational
and ubiquitous coordinate transformation was introduced by 1.-B. Joseph Fourier in the
arly at [185],

and cosine functions of increasing frequency provide an orthogonl basis for the space of

with the specifi frequencies serving as the eigemalues,

ourie’s seminal work provided the mathematical foundation for Hilbert \pue\ oo
ator theory, approximation theory, and the subsequent revolution in ana
tational mathemaics. Fast forward two hundred ears, and the fast Fourier st

compresion, bl commiction ntworks modem deiesand bardvare, e
. and advanced data ly put, the fast Fouricr
Crform s b more gt and prfound e sapin (. e word 1
any other algorithm to dat.
With increasingly complex problems, data sets, and computational geometsies, simple
Fouricr sine and cosine bases have given way o ailored bases, such as the data-driven
SVD.Ins

e
PDES with complex geometrics, a wil be discussed later. In addition, related functions.
called wavelets, have been developed for advanced signal processing and compression
efforts. Inths chapter, we will demonsirat a few o the many uses of Fourier and wavelet
transforms.

Fourier Series and Fourier Transf
Before describing the computational m\DIeNenmmn of Fourier ransforms on vectors of
 dfed forcon-

n

Naturally, the di

o
related to the geomery of ifinite-dimensional function spaces, or Hilbert spaces, which

freedom, Thus, we begin with an introduction to function spaces
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e Jn

o 0

Figure 21 Discretized functions used o llstrae he nner product.

Inner Products of Functions and Vectors
In this section, we will make use of inner products and nomms of functions. In partcular,
we will use the common Hermitian inner product for functions /(x) and g(x) defined for
x on a domain x < [a. b}

mn.w»:] SR de en

Where § denotes the complex conjugate.
The inner p atfirst, bt tis defii-
tiom becomes clear when e consider the inner produt o vestors of data. In partculr if
fix)and Fig. 2.1, we would like
is increased. The inner product of the data vectors £ = [fi f2 5] andg =

[& & ] s defined by:

g =g0= 3" fifi = ) fr0dlx). @2

“The magnitude of this inner product wil grow as more data points are added; i, as n
increases. Thus, we may normalize by Ax = (b — a)/(n — 1)

b

e E/(mim)m, @3
‘which i the Riemann approximation (0 the continuous function inne produc. It i now
clear that as we take the limit of 1 —» o (i, infinite data resolution, with Ax — 0), the
vector inne product converges t the inner product of unctions in (2.1).
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“This inner product also induces & norm on functions, given by

([ roiwa)”. ao

“The set of all functions with bounded norm define the set o square integrable functions,
denoted by L3(la. b this is also known as the set of Lehesgue integrable functions.
(50, 50)), semiinfinte (e

1= =TT =

1. The square of / has it integral from 1 0 00, although the itegral of the function
itself diverges. The shape obtained by rotating this function about the x-axis is known as
iabricls horn )

s nfinite (relted to the integral of /).
As in fnite-dimes s, the et may be used to project &
funcion into an new conrdinte s deind by 3 basis o onthogonal fonctons. A
function  is precisely a function onto
the orthogonal set of sine and cosine functions with integer period on the domain [a. b]
“This i the subject of the following sections.

Fourier Series

A fundamental result in Fourier analysis is that if £(x) is periodic and piecewise smooth,
then it can be writen in terms of a Fourier series, which is an ininite sum of cosines and
of increasing frequency. In paticula, I f(x) is 27-periodic, it may be written as:

fo= 7+;(m cos(kx) + by sin(kx)) @35
The coeBciens o and b s givenby
L
o=z [ e 26
v
Ny Jry— o

i may e il e it B by prjtiag . o, o e

o Incther
may be re-writen i terms of th i product as:
'
[ p—— XN
Teoste /(9 costol e
n S170) sintko). am

TSR

where | cos(ko)|? = || sin(kx) | = 7. This factor of 1/ is asy to verify by numerically
integrating cos(x)? and sin(x)? from 7 107
The

10.L)is

PR e ) e

e
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with cocfficients a and by given by

2 ke

ukzz/; /mm( - )a: o
2 ke

e [ () an

Because we are expane

ng functions in texms of sine and cosine functions, it is also

form with complex coeffcients o

1= 3 adt

an iy

3 (e if st + iy

b+ 3 (0ot + 0~ ]

+[okk rcosthn) - s —asinko]. @100

I £ () s real-valued, then ¢ = A
“Thus, the functions i = ¢ for k € Z (. for ineger k) provide a bass fo periodic.
i interval [0, 2). T

orthogonal:

O T S =y F 7

50 (). ¥4) = 2, where  is the Kronecker delia function. Similarly. the functions
274171 provide a bass for L2 (0. 1)), the space of square inegrable functons defined
onre (0.0

In principle, a Fourier seres is just a change of coodinates of a function f(x) into
an infinte-dimensional orthogonal function space spanned by sines and cosines (1.
5 = cos(ka) + i sintln)

N .
P anw=t ¥ ywonmmo. e

S

“The coefficients are given by cx = 3/ (1). ¥4(x). The factor of 1/2x normalizes the
projection by the square of the norm of e .. [Vl = 2. This is consisient with
our standard fnite-dimensional notion of change of basis. a in Fig. 2. A vector J may

be written in the (5, ) or (1. 1) coordinate systems, via projection onto thes orhogonal
bases:
i=4 U“;X R [EXEN)

=g+ 7 @iz
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Figure 22 Cliange of coondinates f a vector in two dimensions.

Example: Fourier Series for a Continuous Hat Function

hat function, defined from 1 (0 7

forx € [-m,7/2)

T+2e/n forx € [-a/2.0)
1-2¢/n forxe(0,7/2)
0 forxefn/2.m),

s = @)

Because his function is even, it may be approximated with cosines alone. The Fourier
seres for f (1) is shown i Fig. 2.3 for a increasing number of osines.
Fi

imation error, for an increasing number of modes. The error decreases monotonically, s
expected. The coefficients by corresponding (o the odd sine functions are not shown, as
they are identically zero since the hat uncton is even.

ot 21 Fourierseiesapproximtion 0. bt function.

X - (-ledxsaxi1)ans

B - lengthix); nquart = floor(n/a);
£ = oux o
£ (Bquart:2enquare) = 4o (Linquartel) /n;

£ Ginquard Singuar) 174 (omnauart 1) /o
Plot(x,f, k', LineNidth,1.5), hold o
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1 —1
—f

0

0 = -

Time

Figur 23 (op) Hat functionand Fourie cosine seies approximation fo » = 7. (middle) Fourier:

and igh frequency

jet (207
2um (£ sbmes (siza (x) ) ) edx;

no/2;

<20
A(K) = sum(. scos (pfakex/L)) sdi; § Inner produ
BUK) - sun(€,ain (piakex/L) sk

TEFS + AlK) ncos (kepiux/L) + B(X)ain (kepien/L) 5

Plot (x, £F5, ', Color’ ,CC (K, 1), ' Linewideh', 1.2

ena

Example: Fourier Series for a Discontinuous Hat Function
We now consider the discontinuous square hat function, defined on [0, L), shown
Fig. 2.5, The function s given by

0 forxe(o.L/)
Fe=1 1 forxelL/a L @
forx € BL/A. L)

around the sharp coners of the siep function. This example highlights the challenge of
applying the Fourierseries o discontinuous functions:
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o 0 = w w0 = w 7w @ %
mode number, &

Foure24
I Fig.23.Then
e
 —
P25
ax - 0.01; 1= 10;
x = 0l
1 - length(x); nquart = floor(n/4);
£« zeros(size(x));
£ (nquart 3snquart) = 1;
R0 = sun(£. sones (size (x)) ) +axs2/L,
£85 = 20/2,
for k-1:100
Ak - sun(£.cos (2epiekex/L)) edxs2/L;
Bk - sum(£. esin (24piskex/L)) sde2/L;
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£F5 - £FS + Akacos (2ukspiex/L) + Bkasin(2ekspiex/L);

plot(x, £,k
Blo(x, €55,

‘Linewidth',2), hold on
JLinewiath’|1.2)

Fourier Transform

the function repeats tself forever. The Fourir transform integral s essentially the limit of
a Fourier series as the length of the domain goes 1o infinity, which allows us to define &
function defned on (—oc, 56) withou repeating, as shown in Fig. 2.6. We wil consider
the Fourier series on a domain x & (L. £), and then let L > 0. On this domain, the
Fourier series i:

245w () crsn ()] S et e

with the cocfficients given by:

e

1 Ry >
s =g [ rweimta @16

alid for (L0
for aencric nonperiodic functons

Fipwe2s
(hotom) The Fourier transfor i al
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=ka/L L > oo, these disrete
i Del /L. Bw = /L, and

take the limit L —> 06, 50 that Aw — 0

o= m 3 52 / F§remitan gy o @m

kTR

When we ke the (V0]
(@) denoted by @) £ F(7(x).Inadliion, the summaon with weight A becomes
a Ricmann integeal, resulinginthe Fllows

R ey s

Fw) =F (s

[ o o

These tw integrals are Known as the Fourier ransform pair. Both integrals converge 85
ong as %, 1/ 0lde < o and [, [F(@)des < o0 ic.. a5 long as both functions
belong 0 the space of Lebesgue inegrabl futions, £, f € L' (—o6, ).

The

Jinearity, and how derivatives of unctions behave in the Fourer tansform domain. These
propertes have been used extensively for data analysis and scientific computing (¢.£. 10
will

Derivatives of Functions The Fousier trsnsform of the derivative of a function i
given by

oo I A
:[ T e as @19
) M A MY
o] s am
=ioF (W) @190
he ansform, a

PDES into ODE, closely reated o the separation of ariabes:
wo=an Lo iy = —cali @200

(#DE) ©DE)

Linearity of Fourier Transforms The Fourier transform is a inear operator, so that

Flaf () + fpto) = aF () + FF(@). @2
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Flaf@ + Bi) =aF ' () + BF (@), @)
[t [ ora
1 s et e o st st L, p 0 3 cosnt. T i

and after the Fourier transform. This property s useful for approximation and truncation,
providing the ability to bound error at a given truncation

Comvolution well Fourier

of two functions /(x) and g(x) as £ + &

eow= [ re-osem e

Ifwe let f = F(f) and § = F(g), then:
(e 0 =5 [ i Qs0
R I L
[ ewiwe o 2250
= [ [ e o) a @0

= [ s
Thus, muliplying functions i the requency domain i the same as convolving functions
i the spatial domain. This will be partculaly useful fo contol sysems and transfer
funcrions with the elated Laplace transform.

wf=fre (@25¢)

Discrete Fourier Transform (DFT) and Fast Fourier Transform
Unil now. we have considered the Fourier series and Fourier ransform for continuous
functions f(x). Howeser. when compuing or working with real-data, it is necessary
o approximte the Fourie transform on discret vectors of data. The resuling disrete
Fourier transform (DFT) s essentally a discretized version of the Fourier series for
hff fu]" obtained by discretizing the function f(x)
ataregular spacing. Ax, s shown in Fig 27,
“The DFT is tremendously useful for numerial approximation and computtion, but it
dost ot e el ey 3 | s e s formlaton o mlplcaton
dense n x n matix, requiring O(r) operations. In 1965, James W. Cooley
o . Tk (Pincrm devloped o o st Pt o (FFT)

Vectors of data
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CErEy e

Fipure 27 Discrete data sampled fo the discete Fourie ransform.

algorithm (137, 136] that scales as O(n log(n). As 1 becomes very large, the log(n)

component grows slowly, and the algorithm approaches a lincar scaling. Their algorithm

s based on a fractal symmetry in the Fourier transform that allows an n dimensional

DFT o be solsed with & number of smaller dimensional DFT computations. Although the

and FF scom like

4l e, o Ollogo) aing s Vit sties he Wi e of e
9],

It s important to note that Cooley and 1m, 4 ook et e ek e FTT, 0
there were decades of prior work devel ! e, although ey povided e
eneral ormulation ety e, A, e FFT lgoithn e formutied
s avr 150 s cair 1805 sproxmate he it f e st ol nd

As the computations were performed by Gauss in his hesd and on paper, he required
a fust algorithm, and developed the FFT. However, Gauss did not view this as  major
appeared laterin 1366 in

Fourier series expansion in 1807, which was laer published in 1822 [186]

Discrete Fourier Transform
Although we will always use the FFT for computations, it
the DFT. The di

ive to begin with the
by

= perieanin @z
=3
and the inverse diserete Fourie ransform (IDFT) s given by:

fom 15 o
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Figure 28 Real part of DFT s for

Thus the DFT s lnear opersor (i... & marin) that maps the data points i f 10 the
frequency domain

Uit fil 2 (e @28

For a given number of points . the DFT represents the data using sine and cosine
functions with ineger multiples of & fundamental frequeney. o, = e~>1/%. The DFT may
be computed by matrix muliplication

I T
oo e i

=1 @ e " g @29
Al L wie .

‘The output vector f contains the Fourier coefficients for the input vector f, and the DFT
auis s uniry Vandermonde it The i F i omple- e, s e vt
Fhas both which

“The real part of the DFT matrix F is shown in Fig. 2.8 for n = 256. Code 2.2 gener-
ates and plot this matix. It can be scen from this image that there i a hicrarchical and

inereasing frequencsy.



22 Discete Fourier Transform (OFT) and Fast Fourier ransform (FFT) 59

Gote 22 Generte discret Fourier transform matix
clear i1, 2
5 ety

for =1
DFT(L,9) = WA U131
ena
ana

(1,9) - meshgrid(1in,1:n) s
T n (1) e (3315
inagesc (real (OFT))

Fast Fourier Transform
As mentioned carler, multiplying by the DFT matrix F involves O0r%) operations. The
fast

MP3 and IPG f satllte

communications, and the celular network, to name only e of the myriad applications.

For example, audio i generally sampled at 44,1 kHz, or 44, 100 samples per second. For

10sesond of e h vetr il havedinnonn =461 x 0. omputin he DFT
2101, 0r 200 bl

Incontras, the FFT 100, of

ver 30, 000. Ths, the FFT has become synonymous with the DFT, and FFT libraries are

FFT, ddecod-
ing of an audio signal. We will see latr that many signals are highly compressibe in the
Fourier transform domain, meaning that mostof the coefTicients of fare small and can be
discarded. This ensbles much more effcient storage and transmission of the compressed
signal, s only the non-zero Fourer coeliients must be transmited. Howener, it is then
pescsiry o rapdysncods anddecods tecomprssed Furir i by compuing e
E e FET GFFT). This s accomplished withthe one-line comman

ssthac = eee(n); st e
36T ikee tnats s ¢ Taverse fase Fou

“The basic idea behind the FFT i that the DFT may be implemented much more eff-
cntly if the number of data points is a power of 2. For example, consider n = 1024 =
219, Inthis cas, the DFT malrix Figa: may be writen s

T Das][Far 0 |[fow o
=t [‘m ,,,m][a rm][fw]’ o
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Where fyen are the even index elements of f, g are the odd index clements of . stz is
the $12 x S12 dentity matsx, and Dy s given by

0o
0
o o @31
00 0 W
s ~ a carel accounting he tems
in @20) a1 G29). ' = 2, is s b, P o b s
P i oo e et o B e B o B e

vector can be padded with zeros until it s a power of 2. The FFT then e el
inteleaving of even and odd indices of sub-vectors of £, and the computation of several
smaller 2 x 2 DFT computations

FFT Example: Noise Filtering
o gain Gty wih b 0 s e the T, we wil egn it  simple

a function of time (1)

i

with frequencies i = 50 and f2 = 120. We then add a arge amount of Gaussian white
noise 10 thi signal,as shown i the top pancl of Fig. 29

Itis possible to compute the fast Fourier tansform of this s signal using the M1t

command. The ruw:r :wclnl density (PSD) is the m\mullud wared magnitude of f,

I In Fig. 2.9 (middle),

sy .\xrul contains two large peaks at S0 Hz and 120 Hz. I is possible

02 fir) + sin2x fa) @)

it clear that the

After imverse transforming the filtered signal, we find the clean and filtered time-serics
‘match quite well (Fi. 2.9, bottom). Code 2.3 performs each siep and plots the resuls

o 23 Fast Fouricetcansfom o denoise signal.

a
H
H

sin2plisoun) + slaGupiniaoy ;s o
= £ 2 ranan(size(t)) 7 e

¥ Conpute che Fast Fourier

hincern/a)

3 gme che ro0 o

4 Fing a1l f;eq; with large power
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s ‘ .

o
0 S0 10 150 20 250 a0 o0 40 450 500
Frequency [Fz)

B
f
5
o 005 01 015 0z 025
Time [s]
g2
botom)

m,ﬂm; 1,1
Blot(r,, x’, 'LineWidtn’,1.2), hold on
plo (el Linawiaen 1115)

Tegena( fosey,  Cle:

mibplor;1.2)

EiE £ Lineniaene 1.9), pola on
vt L Linewidchr,1.2)
Tesend i clesn. Filterears
subploe(3,1,3)
Plot (freq(L} ,PSDIL) , ‘=, 'Linewidch! hold en
Blot (freq(L), paDcTean (L], b’/ LineWideh' ,1.2)

legend(‘Noisy’, Filtered’)

FFT Example: Spectral Derivatives
For the next example, we will demonsirate the use of the FFT for the fast and accurate
computation of derivatives. As we saw in (2.19), the continuous Fourier transform has
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Figuo 210 C.
derivatv,

e ey i 740 = G0, Sty b e dtvve of s et of
the dicrete

Tt st of 1 v f e e o 3tk b drte wivenumr

associated with that component. The accuracy and cfficiency of the spectral derivative

ks i parteully el for sohin it s, s vploed e
To demonstrate this so-called spectral derivtive, we will start with a function f(x)
here we can compute the analytic derivative for comparison

2728 df s _ 2
S Ly e L, e
Fi ly
AV Sasn) — FO)
e -
() o 234

“The error of both differentiation schemes may be reduced by increasing , which i the

ibacroing i difcece ke s taun 1 i, 211 The o e

at, wit (0 O(Ax); however, even
Sncesin theonds of » Bteilrens e i ikt the s scurcy end
as the spectral dervative, which is effectively using information on the whole domain.
Code 2.4 computes and compares the two differentiation schemes.

ot 24 Fast Fouricrtansform to compte deivtives.

ax = 1/m

x = Lf2:dxin/2

T2 okt et 2/ s Funceion
4 = (oin(x) .eexpi-x.2/25) + (2/28)ex.+E); § Derivative
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10°

Figure .11 Benchmark of spectral derivativefor varying dat resoltion,

for kappa=1:length(df)-1
aEED (rappa) = (¢ (kappa+1) - (kappa) ) /dx;

ana
A£FD(ends1) = AEFD(ond) ;

.2
egend( True Derivative: s Finite DIff.’, FFT Derivative’)

1 the derivative of a function i discontinuous, then the spectral derivative will xhibit
Gibbs phenomens, as shown in Fig. 2.12.

Transforming Partial Differential Equations

he Fouri trasform was riginaly formulad n the 1800535 change of coonintes

for dinate system whert

ple. More gencrally, the Fourier ransform is useful for transforming patial differenial
i

equations (PDES) into ordinary diffrential equations (ODES), as n (2.20). Here, we will
PDEs. For an excelent

treatment of spectral for PDES, see Trefethen st

PDEs [282]

Heat Equation

“The Fourier transform basis s ideally suited to solve the heat equation. In one spatial
dimension, the heat equation s given by

= @3
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!
! 05

0

o 1 2 s : s g

'
o
)

E 2 s 0 s g

Fowe212

uitn) time and space, I we ...

space, then F(ur. x)

(1, ). The PDE in (2.35) becomes:

@36)
since the (i) = o
. by taking the Fourier transform, the PDE i (2.35) becomes an ODE for each fixed

™
frequency . The soluton isgiven by
@) = 0,0, @
transform of

It is now clear that higher frequencies, cortesponding to farger values of o, decay more.

out. We may take the inverse Fourier transform using the convolution property in (2.24),
ielding:

e
P e
b O0 e

utt.x) = F @t )

F ) w0

“To simulate this PDE numerically, it is simpler and more accurate 10 irst tansform to
the frequency domain using the FFT. I this case (2.36) becomes

where &
the wavenumbers according (0 the Matlab convention.

ode Figs. 213 and 2.14.
Inthis example, because the PDE s I s
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0
u(t.x)
o

e 213 Solation ofhe 1 et cquation i e fos a il condion given by  square et
funcion. As time evolve:
funcion.

ult,z)

/F/f[//’/f

Figure 14 Exolution ofthe 1D heat equation i e, il
diagram (g

Fall plo 1) and a1

diretly inthe requency domin, wing he vecor fildghven in Coe 26. Fialy. the
lting comads e cn'n Code
Figs. a

13 an s

s v Fig. 2,14 in a waterfll plot (left) and in an -1 diagram (right). In all
of the figures, i bec

Eventually, the lowest w willalsa decay,
unil the tempersture resches a 3 conant sty s aistibetion, which is a soluion of
Laplace’s cquation 1, n solving this PDE using the FFT, we are implicitly

assuming that the solution il periodic, so that the right and left boundaris are
dentificd and the domain forms 4 ring. However, if the domain i large enough, then the
effectof the boundariesis small.
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ot 25 Code 0 simulat the 11D heat equation sin the Fouie ransfom.

a-1; § Thermal a
L - 100; + Length of
N 21000, ¢ Namber of aiscrecizacion points

LN
X = -L/2idx:L/2-a%; ¥ Define x domain

s pein

ey u,

secaniee (cappa) s Re-order £t wavemunbers

0 - ux;
WOU(L/2 - 1/10) fdx: (L/2 + L/10) fax) =

mulate in Fourier frequency domain

le45 (4 (¢, uhat) rhatieat (t, uhat , kappa,a , £, ££¢ (u0))

4 167 co rec

5 to spatial domsin

ot 28 Right hand side for 1D beat equation i Fourir domain, /.

haseac (¢ it kappa, 2

*20 (rappa. ~

function dungs
atat

inear and diagonal

Got 27 Code 0 pl the sl

One-Way Wave Equation

o of the 1D beat equation

figure, waterfall((u(1:10:end,:)));
figure, imagess (flipud(ul);

DE for

ey @40

Any iniial condition (0. x) will simply propagate t the right i time with s

) 0ty i sohaion. Code 2. st this PDE o i conion

5 by e i, ol g i o e For o

domain,as before, using the vector feld given by Code 2.9 However, it is also possible to
in the spatal Iy wing th FET

and then transform back, as in Code 2.10. The solution ut. x)is plotted n Figs. 2.15 and

216, as before

ot 28 Code tosimalstc the 11 waveequation usin the Fourie transform,

20, § Longh of
; § Nunber of discrerization points

L/2iaxn/a-ax ¥

ne x domain

+ pesin
Kappa

(2epi/0) + (6/2:8/2-11 5
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o
e

(X

Figure216 Evalus
diagrar
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o8
ult,z)
04

217 5. evolies,
Jnitilconditon stcpens, orming a shock frnt.

oo 210 Right hand sde for 1D wave equaion in spatal domain

uhat - ££e(0);
duhat = iskappa, suhat;
au < Leee (dunat)

function dudt - rhavavespatial (t,u, kappac)
auar

Burgers' Equation
Forthe final example, we consider the nonlinear Burgers” equation

4y = it @4n

which is 4 simple 1D exampl for the nonlincar consection and diffusion that givs rise
0 shock waves in luids [253]. The nonlinear convection u, essentally gives rise 0 the
behaviorof where portions of 1 wit » more
rapidly,causing a shock front o form.

e 2.1 simulates the Burgers” equation, giving ise o Figs. 2.17 and 2,18, Burgers’
equation is 2

quires
feld
inCole 212 o i xampl, e sp i s Foir o doan o
vap back to the spatial domain to compute the product ;. Figs. 2.17

m Tty o he vt scpein ettt B el shok W ot e

afinite width
oo 211 Code 10 simlate Burgers” equation usng the Fourier anstorm.

chear aii, ciose aii, cic

1000;
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=
.=
ult.x) { =—7
—

re218 time,
diagram (ight.

ax -y

X = -LizidxiL/z-ax; x do

Xappa = (2+p4/L)« [-N/2:8/2-11;
Ppa = fetenict(kappar); ¢ Re-

sechix)

at - 0.025;
© - 0:dt:100

€70l = 6de45 (8t ) sheBurgers (£, u, kappa,mu)  £,10) 5

Gode 212 Righthand side for Burgers”equation in Fourie transform domain

function dutt < Khapurgers (€, . Kappa, )

+ mulda;

Gabor Transform and the Spectrogram

he y

of a given signal, it does not give any information about when in time those frequencies
eharacterize tnuly periodic and staionary

signals, a time is sripped out via the integration in (2.184). For a signal with nonsta-

charactrize the frequency content and ts evolution in time.
i Gabor transform, also known as the. Fourr o ST compucs
4 windowed FFT i moving window (43, 263, 4521, o hown i 219
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219 ustion
Foure ramform.

enables the localization of frequency content in e, resultng in the specirogram, Which

isa plot of frequency versus fime, as demonsrated in Figs. 221 and 2.22.

sivenby

G = fitor = [ fOe a0t = )

where g,.,(7) s defined as

S1al0) = €7 g(x 1)

“The function g(r)is the kernel, nd is often chosen 10 be 2 Gaussian

s=c

The STFT is

)

)

)

and ¢ determines the center of the moving window.
“The inverse STFT s given by:

. e
10267 (fut0) = 5 [ [ oso—oeava @i

Discrete Gabor Transform
Generally, the Gabor transform will be performed on discrete signals,
his case, i is necessary 1o discretize both time and frequency

Jjhe
o =kar

The discretized kernel function becomes;

()

s with the FFT. In

@46)
@

@48
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200 S0 w0 w0 w0 50
Frequency [Hz]

Figura 220 Pover spectaldensity of it chirpsgn

and the discrete Gabor transform is:

fiu= = [ @B @

“This integral can then be approximated using a finite Riemman sum on discretized func-
tions f and £,

Exampl: Quadratic Chirp
As a simple example, we consiruct an oscillting cosine function where the frequency of
oscilltion increases as a quadratc function of ime:

£ = cosnto(0) where w() = an+ (o - Q50)

“The frequency shits from ay at = 010 @y at £ = 1y
Fig.

FET of

i
of the frequency in time. The cade to generat the spectrogram is iven in Code 2,13, and
the resuling spectrogran i plotted in Fig. 2.21, where it can be scen that the frequency
content shifs in time.

Got 213 Spectrogram of quadatic chir, shown in Fig. 221,

1,61, quadratic’) ;
0 4 (£1-£0)+t. 2/ (4E1°2) 1) ¢
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: nuuhnn'“ " mmu"'“

PsD

Time,s

Figure 221
the integrated powe across rows of the spectrogran,

‘Example: Beethoven's Sonata Pathétique
Itis possible to analyze richer signals with the spectrogram, such as Becthoven's Sonata
Puthétique, shown in i dh

recently been leveraged in the Shazam algorithm, which searches for key point markers
the spectrogram of songs to enable rapid classifcation from short clips of recorded
music [545].
Fie. 222 dows he st two brs f Besthoven's Sona Patéique,sog it the
spectrogram.

Code 2.14 Toads the data, computes the spectrogram, and plos the esult.

Goo214 Compute )pmw,mm Becthoven's Sonata Pahétique (Fig. 2221

+ bounioad mpssead £ron hetp: /s machuorks. con/naciabsencral/
L canchangey3655-mptand and-mpiweice
¥, 5, NBITS, 0PTS] = mp3read( basthoven.rps )7

8% Spectzogran using ‘spectrogran’ conand
- a0 ¥ 40 seconds

y¥(LTe78) 5 § First 40 seconds
spectrograniy, 5000, 400,24000, 24000, yaxis’) ;

8 Spectrogran ueing short-tine Fourier transtor “scfe”
sien ='5000; 3 window i

hed G b m -n

e RO

(875, e ate] < stiely, wlem, by FS/4, BS), ¥y axis 04000z
inagesc (1og10(abs(s))); & Plot spectrogram (1og-scaled)
“To invert the spectrogram and generate the original sound:

fr e, ctonest < oeeeis, h To/4, 1))
sound (x_isce, bs)
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Frequency [Hz)

“Time [5]

Figure 222 Fiest o barsof Besthosen's Sonta Pathéaique (No.  n C inar, Op. 13), along with
anmotaed specrog

Artists, such as Aphex Twin, have used the inverse spectrogram of images 1o generate
music. The frequency of a given piano key is also easily computed. For example, the 40th
Key frequency i given by:

£re3 = 0o ((G2°(1/32)) " (2-49)) ea40)
freq(0) © Frequer
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Uncertainty. mncnues
In time-frequency

there is & fundamental uncertainty principle that imits the
abilty to ~|mulunc<m<ly atain high resolution in both the time and frequency domains.

about frequency content, and the Fourier ransform perfectly resolves frequency content,
but provides no information about when in time these

but with lower resoltion in cach d
illustrated in Fig. 2.23. An aliemative approach, based on a muli-esolution analysis, will
be the subject ofthe next sction.

ime-fra
([T vvora) ([ ajwra) = o asn
[ ruewra) ([ enferio) = g
This is true if 1
h function 1 1) =0, Forreal ¥
ond moment, which measures the variance if /(5 i Gaussan fution. I other
cion (1) and s
(a) Time series (b) Fourier transform
(©) Spectogram (d) multi-resolution
3]
H
E
2|
H
£
Aw
a Time
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function f
ndvis v T s o for s Hers sty pocipe (24015
position and momentum wave functions are Fouricr transform

T e frguency s, the ety pincile o mplication or the by

limit. As the frequency content of a signal is resalved more finely, we lose information
dvice versa. Th
between the simultaneously atainable resolutions in the time and frequency domains.
Another implication s that a function  and ts Fourier transform cannot both have finite
. Tocalized, " 1851

Wavelets and Multi-Resolution Analysis

Waselets [359, 145] extend the concepts in Fourir anlysis (o more general orthogonal

bases, and parially overcome the uncertainty principle discussed above by cxploiting &
@.

Fig. 223 (@)
enables different time and frequeney fdeliis in diffren frequency bands, which i par-
ticularly useful for decomposing complex signals that arise from multi-scae processes
such as are found in climatology. neuroscience, cpidemiology, finance, and tarbulence.
Images and audio signals are also amenable 1o waselet analysi, which is curenty the

chapters. Morcover, y
making them books on
wavees 521,01, 3571, i addion o the primary mrm..cemsg 145]

with a function ().
wavelet and generate nimmly of scaled and translted versions of the function

Vanlt @2

“The parameters @ and b are responsible for saling and transating the function Y. res
tively. For example, one can imagine choosing a and b 10 scale and translate a function o
it in each ofthe segments in Fig. 223 (d). I these functions are orthogonal then the basis
may be used for pojection, s i the Fourier trnsform.

“The simplest and carlest example of & wavelet is the Haar wavelet, developed in

1910227}
1 osi<in
v =1 -1 1<l sy
0 otherwise
“The three Haar wavelts, 11,0, ¥1,20. a0d 17272, are shown i Fig. 224, representing

the first two layers of the muli-resolution in Fig. 223 (d). Notice that by choosing each
higher frequency layer s a biscetion of the next layer down, the resuling Haar wavelets
are onthogonal, providing a hierarchical basis fo 4 signal.

e orthogonality property of wavelets deseribed abo al for the development
of the discrete wavelet transform (DWT) below. However, we begin with the continuous
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o 025 05 075 1
f 1
o
4 I
o 025 05 075 T
o 025 05 075 1
t
P22 22300,

wavelt ansform (CWT), whic i iven by
Wyl b) = (. bas) :] SO dr, @5

re . denotes the complex oS  Vs. Th i ol vl for cions )
pin satisly the boundedness property th

P L as

‘The inverse continuous waselet ransform (CWT) i given by:

@s6)

0= [ [ e

New wavelets may also be gencrated by the convolution w * ¢ i is a wavelet and

erable function. v
Resond e Haae wavee, deigned o ave various popercs. Fo cxample he Mecan
hat waselet is given by

@sm)
@57

W= (1=
V@) = Virale ™
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Discrete Wavelet Transform

on data, it is necessary to introduce a discreized version. The discrete wavelet transform
(DWT) i given by

WelNG R =1, W,n:] SOU0d @s8)

e 0 i dicre iy of vl
Sv(=8) )

Again, i this family of wavelets is orthogonal, a inthe case of te discrete Haar wavelets
function £(1

Va0

S0= Y 0N OW0, ey

The explicit computation of 3 DWT is somewhat involsed, and i the subject of several
excellent papers and texis [359, 145, 521, 401, 357 However, the goal here is not to

fom sccomplishes. By seling and trnslating given shape cros  ignl i s possble

radeoff between time and frequency resolution. This general procedure is widely used in
audio and image processing, compression, scientific computing, and machine learing, 0
name a few examples.

2D Transforms and Image Processing
Although we analyzed both the Fourier transform and the wavelet transform on one-
ch

vo-timesional and s dinesionl gnl. Bt e Fuserad vl o
tremendous impact on image processing and compression, which provi

2D Fourier Transform for Images.
e two-dimenson! Pt o of s of s X & R s e by i

Sequential ow-wise and column-wise Fourier transform i shown in Fig. 2.25. Swnd\mg
the order of of

Got 215 Two-dimensions Fourier transform
PP,

ead("../. . /cHo1 sy
rabagray (A); % Conv
Splot (L0, imagese (81

size(®,1)
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FFT all rows. FFT all columns

o &

i then the FFT i tken of

Figure225 Firs, the FET
each column of the resling transformed mati.

SRR ) - srsabie st e, )
)G
subplot (1,3,2), imagesc(Loglabs (Cehift)))

for Jeiisiae(c2); ot
T U

i
Sobplot(1,3,3), imagese(£ttehitt(log(abs (0))))

wore efficient to use £fe2

D= £re2(a); + muc

“The two-dimensional FFT s effective for image compression, as many of the Fourier
Thus, only a few

large Fourier coefficients must be stored and transmitted

ot 216 mage compresion via the FFT.

Be=ezeais) s 1e inage £rom above
Beaort = sort(abs(8t(:))); § Sort by magnicude
ze 412 gnald cooticionts and inverse exa
fox Keepe[.1 .05 01 o0
thcen - m»mmmm Keco) engenstsorc)))
o ons

inat

Atlon
Alow ;ntsufzuu 10w s
£igure, inshow(Alon)
Finally,the FFT is extensively used for denoising and filtring signals, s it i staight-
forward to isolate and manipulate particular frequency bands. Code 2.17 and Fig. 2.27
of a FFT threshold filer o denaise an image with G

ounced in hi

demonstrate the wse

In this example, it is observed that the noise is especially pro
frequency modes, an refore zero out any Fourier coeflicient outside of a given
radius containing low frequencies.
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5.0% of FFT

Full image

1.0% of FFT 0.2% of FFT

e e

Fipure 226 Compressed image using various threshalds o eep 57, 1%, nd 0.2% o thelargest

Fourie cocfcent.

Cote217 g denising via the FFT.
Brotee - B 4 uintd (200srandn(siza())); A
Bt-g£e2 (Broise) ;

= Log (abs (Beahife) 11); & Put FFT on log-scale

subplot(2,2,1), Lmagesc(snoise)
subplot(2,2,2), Lagesc (s}

HS
trx,0y] = size(s)
(6,4 = meshgria(-ny/2+L:ny/2, -mx/2+Limx/2) 1

“20v.%2;
R2<150%2;
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Noisy image

Noisy FFT
Filtered FFT
o221 e big Faurier
radius (bottom rght).

Fiit = dog(ubeBtaniie E
subplot (2,2,4), imagesc (FEILL) 7 ere:
seeile

Beile

subplor (2,2,3), i

gesc (uincs (real (BEL1c)))

2D wavelet Transform for Images
. the discrete wael

d compression. Code 2.18 computes the wavelet transform of an image, and the first
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DWT

Fipur 228 Hlustration ofthree lvel dierse wavlet ransfor,

evels are ilustated in Fig. 2.28. In his figure, the hierarchical nature of the wavelet

thre
is alow-resolution version

decompositon i seen. The upper let comer of the DWT
of the image, and the subsequent features add fin detais o the iy

Gode 218 Example ofa o lvel wavelt decomposiion

151 = wavedeca (3,1,4)

o

Fig. 2.29 shows several versions of the compressed image for various compression
atios, as computed by Code 219, The hierarchical representation of data in the wavelet
h an aggressive truncation, retaining.

transform is deal for image compression. Even w
re retained. Thos,

only 0.55% of the DWT coeffcients, the coarse features of the image
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Figure 220 Compressed image using variows hresholds o keep 5%, 1%, nd 0.5% o the largest

wavelt coeffiiens

{ bandwidih s imited and

truncated, the most mportant features of the data are transferred.

ot 219 Wavelet decompsition for image compresson.
1€,5) = vavedeca (8,4, 1ab1")

Cobrt - mere (aba(eiih) by magni

fox

o= [
chren - L,mmmm keep) s1engen (Caort)))
iza = abs(c)

crite ® Threshold emall

T information is
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Areconeuint8 (waverec2 (CELLE, 5, *dbl’)) ;
conl |

£igure, inagesc (uints (Ar

Suggested Reading
Texts

Iy Iytical theory of heat, by J.-B.J. Fourer, 1978 [185].
() A wavelet tour of signal processing, by S. Malla, 1999 [357).
(3 Spectral methods in MATLAB, by L. N, Trefethen, 2000 [523].

Papers and reviews
" An s o the e soktion
and ). W. Tukey, Mathemarics of Computation, 1965 [137]
@ The wineet tramform e frequency ocuzation and sgnal anaiysi. by 1
Daubechies, IEEE Transactions on Information Theory, 1990 [135],
(@) An industrial strength audio search algorithm, by A Wang et al. lmir,
5).

003 (54

of complex Fourier series, by J. W.
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Sparsity and Compressed Sensing

The inhe the data ads repre-
Inother words
awell-chosen basis, only a few parameters are required o characterize the modes that are
active, and in
i represented more effciently in terms of the sparse vector of coeflicients in  generic
transform basis, such as Fourier or wavelet bases. Recent fundamental advances in math-
ems & tmed this paradige upside down. Instead of collecting  high-dimensional
et and hen PN, L o sl o s conpresd s
ments and solve for the sparsest high-dimensi with the me:
aremens. Tis sl compresed sensin s 3 vauable new persective it e
relevant for complex systems in engineering, with potential 10 revolut
sition and processing. In this chapter, we discuss the fundamental principles of sparsiy
and compression as well a the mathematical theory that enables compressed sensing, all
‘worked out on morivating examples.

ve dats acqui-

impoctot s o optimization ed satisics.Sprsiy i sful prpsive o promoe
have the

miinal e of s s 1 explain the data, This is i 1o s e,
which staes that the simplest expl comst e, Spae pini-
on i ke s o i s wih respect 1 ot ad s dte, which
senraly sk the el f st suires e, soch s e SV Th opics i i
laptrae closely elated o rndomied eae alebrn discused i St 1, and ey

in cmm« il e et Secion 731 idenify interpretable and parsimonious
nonlinear dynamical systems models from data.

Sparsity and Compression

‘Most natural signals, such as images and audio, are highly compressible. This compress-
ibility means that when the signal is writen in an appropriate bass only & few modes are
active, thus reducing the number of values that must be stored for 4n accurate representa-
tion. Said another way, a compressibl signal x & R may be writen as a sparse vector
5 € B (contuining mostly zeros) in a transform basis ¥ & B

s, an
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Specifically, sparse n W if K It
(e b 5 e s 5 e oo o wanele s, thenany he fe et s
original signal X, ired

transmitthe signal.

Images and audio signals are both compressible in Fourier or waxelet bases, s0 that
after taking the Fourier or wavelet transform, most coefficients are small and may be set
exacly equal 10 ro with negligible los of quality. These few active coeficients may be

the original signal in the ambien space (i..,in pixel space for an image), one need orly
take the inverse transform. As discussed in Chapter 2, the fast Fourier transform is the
enabling technology that makes it possble to eficiently reconsiuct

cocfficients i s. Thisis the foundarion of IPEG compressian for images and MP3
compression for audio.

The Fourier modes and wavelets are generic or universal bases,in the sense that nearly
all natural images or audio signals are sparse in these bases. Therefore, once a signal is
‘compressed, one needs only store or transmit the sparse vector s ather than the enire
marix ¥, since the Fourier and wavelet transforms ave already hard-coded on most
machines. In Chapter 1 we found that it is also possible to compress signals using the
SVD, resultng in a failored basis. In fact, thre are two ways that the SVD can be used

press an image: 1) we may take the SVD of the image dircctly and only keep the.
of U and V (Secton 1., o 2)we may represent the image a a lincar
16).

an image x from the

oo

relatively ineficient, as th basis vectors U and V st be sored. However, inthe second
case, a tailored basis U may be computed and stored once, and then used to compress an
entire class of images, such a5 human faces. This talored basis has the added advantage:
that the modes are interpreable as correlation features that may be wseful for leaming.
It is important to note that both the Fourier basis 7 and the SVD basis U are unitary

y e, and video
sppliation, o s ey mplstion o engesring sy, T sluion o i

o, indicain the s of ot st xrm s sps resemton

s ereentation T o prfound mpa on o s compute, e il

Eample: mage Compresion
pression is reltively simple o implement on images, as described in Section 2.6 and
e here sce Fig. 3.1). First, we load an image, conver t grayscale, and plat:

b=
imshon (Abw)

Next, we take the fast

2 (2
o {absecaniee ae)) 4115 § pue £97 o
Inahow (matagray () (1)
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Full Image

Fourier Coefficients

Truncate
(keep 5%)
o

Figure 31 Dlustration of compression with he fust Fouie tranform (FFT) 7.

“To compress the image. we first arange all of the Fourier coefficients in order of mag-

nitude and decide whal percentage 1o keep (in this case §%). This sets the threshold for
tnuncation:

soxt (abs .
Keap = 0.05;
threen = Bt (Floor

m

(1-kzep) +Lengtn(se))) ;
o
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Figure 32 Compressed image (), and viewed a a sufsce (gh).

Finally, we plot the compressed image by tl

og the inverse FFT (IFT)

ormuiate eceatacion)
imshow (A1

» el

o view the

corresponding pixel. This is shown in Fig. 3.2 Here we sce that the surface i relaively
simple, and may be represented as 4 sum of  few spatal Fourier modes.

inresize (b, .2);
£ (double (Rnew) ) 1
Shading flac, view(-168,86)

It important o note tht the compressibilty of images s related 1o the overwhelming

dimensionality of image space. For cven a simple 20 x 20 pixel black and white image.

re 20 disinet possible images, which is larger than the number of nucleons in

the known universe. The number of images is considerably mre siaggering for higher
reloton et it e clr

e s of o sl inages 1000 x 1000, e s e ol

st the space

the

majority of
For simplicity, consider grayscale images, and imagine drawing a random number for the

ook lke noise. i a
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Figure 33
vanisingly smallFaction ofte spce.

entirelfetime and never find an image of a mountan, or a person, or anything physically
nizable'

In other words, natural mages are extremely rare in the vastness of image space, as
illusrated in Fig. 3.3, Because so many images are unsiructured or randon
dimensions used to encode images are only necessary for these random images. These

implication wral -

Compressed Sensing

Despie the considerable success of compression in real-world applications, it sl elies

sensing [150, 112, 111, 113, 115, 109, 39, 114, 0] turn the compression paradigm upside
down: instead of collecting high-dimensional data just to compress and discard most of
the information, i i instead possible to collect surprisingly few compressed of randon:
measurements and then infer what the sparse representation is in the transformed basis

is butuntil
recently finding the sparsest vector consistent with measurements was a non-polynomial
NP) hard problem

a

the framework? that

' Fin 94,

n Borgers oy

* fneretngh ——
e s the ol propericsof gl oo s ek K’ dsycre
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for when it is possible (o reconstruct the full signal with high probabilty using comvex
algorithms.
‘Math

achieve foll signal reconsiruction from surprisingly few measurements. 1f a signal x is K-

3 rectly (1 3
itis possible to collet dramaticall fewer randomly chosen or compressed measurements
and then solve for the nonzero elements of 8 in the (ransformed coordinate system. The
measurements y € R, with K < p < n are given by

Cx 62

s

ip
. The choice of measurement matrix C is of critical importance in compressed sensing.

of the state, in which case the entries of  are Gaussian or Bermoulli distributed random
variables. It s also possible to measure individual entries of x (i, single pixels if is an
image), in which case C consists of random rows ofthe identiy matrix.

" 0.
Ths, the goal of vector with

the measurements y:
y=C¥s=6s. [E5)
The system of
tent solutions . The i b
argmin sy subjectto y = C¥s, aa
hers |l deoes he oo, ivn by the b of o s i i

also referred t as the cardi

“The optimization in (3.4 is non-conves, and in general the solution can only be found
with a brute-force search tha is combinatorial in # and K. In partcular, al possible K-
sparse vectors in R must be checkeds if the exact level of sparsity K is unknown, the
search is even broader. Because this search is combinatoril, solving (3.4) is inractable
for ven moderately large n and K, and the prospect of soving g probems docs ot
e i o v of ol

Iy, und

o optimization in (3.4) 0 convex ¢-minimization [112, 150]

argmmin Is], subject o y = C¥s, @3
where |- s the ¢ norm, given by

[ oo

wewe Cante

Chuper 7
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c

<

y © s y o s

(@) Sparse's (1) (b) Least-squares s (12)

e £y i s o s snsg o, T
Solutions for thisregression st frthr considered in Chapte

The €1 norm is also known as the taxicab or Manhattan norm hecause it epresens the
distance a taxi would take between two points on a rectangular grid. The overview of
compressed sensing is shown schematially in Fig. 3.4, The ¢, minimum-norm solution is
‘while the £ minimum norm solution i not, s shown in Fig. 3.5.

T e v s codions i st b et o e -zt n 09t
eobability to the sparsest Solution in (3.4) 109, 111, 39]. These will
e dconsed i dta i See. 34, ahough ey may e summared s

L The measurement marix € must be incoherent with respect o the sparsifying basis
W, meaning that the rows of C are not corelated with the columns of ¥,
The number of measurements » must be suffciently larg, on the order of

= OK log(n/K)) = ki K log(n/K). an

The constant multiplier k; depends on how incoherent C and ¥ are.
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Measurements, y Sparse Coficents, s Reconstructed Image, x

(]

Fiure 35 Note
I dis ot Typically,compressed

Rougly paking, s o condons s ht e el C¥ st 3 ey
transformation on K sparse ectors s, pres

rving relaive distances be

H

ectors and

abling almost certain signal reconstruction with ¢, convex minimization. This i formu.
lated precisely in terms of the restricted isometry property (RIP)

e e of comprscd e my be counternuuitve at first, especally given clas.
sical results on samplin

in See. 3.4

or exact signal reconstruction. For instance, the

Shannon Nyquis: camping theorem 14864091 st i ot signl

overy requires
i resul onl
provides  sriet bound on the required ummhng ate forsignals with broadband frequency
content. Typicall e been
compressed. Since an uncompressed signal wil generally be sparse i a transform basis.
the Shannon-Nyquist theorem may be relaxed, and the signal may be reconstructed with
considerably fewer H ihough the
oumber o  be decreased, dsensing precise
timing of the measurements, as we will sce. Moreovr, the signal recovery via compressed
sensing is not stictly speaking guaraniced, but is instead possible with high probabilty.
making it foremost a statisical theory. However, the probabiliy of successful recovery
becomes astronomically arge for moderate sized problems.

Disclaimer
A Howener, this schemaic is

a ac since using
o o s important

o note tha for

Howeer,images ore ofen still used to motivate and explain compressed sensing because
of their ease of manipulation and our intuition for ictures. In fact, we are currently guily
of this exact misdire

Upon closer inspection of this image example, we are analyzing an image with 1024 x
768 pixel and approximately §% of the Fourie coeffcients ar required for accura
Compresion. T pt th sparity vl 3 K = 008 x 1024 768 40,000, T,
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aback of witha i

that we need p = 350,

e s ot 45 o mssmens,nfering s conet s e
T

5. nicucs

e mage comprssion i Section 3.1

‘Compressed sensing for images is typicaly only used in special cases where a reduc-
tion of the number of measurements is significant. For example, an carly application of
compressed sensing technology was for infant MRI (magnetic resonance imaging), where
reduction of the time 4 child must be sill could reduce the need for dangerous heavy
sedation,

However, it is easy 10 see that the number of measurements p scales with the sparsity
Tevel K., 50 that if the signal is more sparse, then fewer measurements are required. The

of combinatorially hard £ problems t convex {1 problems may be used much more
broadly than for compressed sensing of images.

Altemative Formulations

3.
algorithms 525, 526, 52 30,243, 529,207, 531, 205, 395,

sparse solution of (3.3) theough an iterative matching pursuit problem. For instanc
compressed sensing maching pursuit (CaSaMP) [398) s computationally efficient, casy
o implement, and frecly available.

e e, th
variants of (3.5) that are more robust:
S argminis], sbject o [C¥s — ey
Arelated convex optimizationis the following:
&= argmin [C¥s — vl + 411 a9

where 1. > 0 s a parameter that weights the importance of sparsity. Egs. (3.8) and (3.9) re
closely rlated [525]

Gompressed Sensing Examples

recovery
he £,

two-tone audio signal with compressed snsing,

£ and Sparse Solutions to an Underdetermined System
To see the sparsity promoting effects of the £, norm, we consider & generic underdeter-
i sy of cntons We bl i sy o sy = 04 vih = 20
Fows (measurements) and n = 1000 columns (unknowns). In general, there are infniely
many solutions s that are consistent with these equations, unless we are very unfortunate
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and the row cquations are lincarly dependent while the measurements are inconsisient in
these rows. In fact, this is an excellent example of the probabilistic thinking used more
encrally in compressed sensing: if we generate a lincar system of equations at random,
that has sufficiently many more unknowns than knowns, then the resulting equations will
have infinitely many solutions with high probabils.
In MATLAB i s sighfoard o sve s undertmined et sy o both
“The minimum €2
obained using the puudn-m\'ene (related t0 the SV from Chapters 1 and 4). The min-
im 4 norm solution is obtained via the evx (ConVeX) optimization package. Fig. 3.7

while the €-minimum soluton is dense, with a bit f energy in each vector coeficint.

Got1 Salutions to underdetermined lnca sysiem y = ©5,

o ¢

Fipure7 Comparison of
underdetermined lnsar system.
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Recovering an Audio Signal from Sparse Measurements
al from

asparse set of andom measurements, we consider a signal consisting of 1 two-tone sudio
signal

(1) = cos2 x 970 + cos(2 x TT70) @10

“This signal is clearly sparse i the frequency domain, as it is defined by a sum of exactly
v o waves T g ey prscet i T, ot the Nyt smpling
rateis 1554 H. He

an sccurely consit he signal wth o sapls il s spced st an R

st compresad g s iplenenisdn Cole 3.2.1n mnexamp\g the ull signal
s generated from 1 = 0 10 it & resolution of n = 4,096 and is then randornly
ampled st 125 ocations in tme. The pase vesor of socficients i the it
osine ransform (DCT) bass s solved for using matching pursui

ot 32 Compressed sensingrecons

cion f two-one cosine sigaa.

@ )
©. @
[~
xo Qo
Time [s] Frequency [Hz]
Fowe2a
0 aosam x 37+ cos5n 77y The ul gl o power st dey e showin

pectivey.

which i from —0ta
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t - linspace(o, 1, n);
xocesiz o Lpl Ll ¢ costa 7 4 bt s 1)
Xt w ££6(x); 3 Fourier transforned

BED - xt.vcond (xt) /n; § Power specezal density

128, don samp.
erm reund{xandlp‘ D e
(perm) ressed measure:

o

Pi'e det (eya(n, M5 build Pai
Theta - ei(perm, 1); & Neasure rows of Pal
o - comamp (Theta,y",10,1.0710,10), §
xracon = idet (a1} + reconseruce fu
0%
" 1. Thos, we h

p

rom these uniform measuremens, the high-frequency signal will be aliased resulting in
ermoneous frequency peaks.

Finally it s also possible o replace the matching pursuit algorithm

& = cosamp(Theta,y’,10,1.6-10,10); & CS via matehing pursu

with an ¢ minimization using the CVX package [218]

—Wininization using CUX

In the compressed sensing matching pursuit (CoSaMP) code, he desired level of sparsity

K must be specified, and this quantity may not be known ahead of time, The ¢
Ithough

convergence to the sparsest solution relis on having suficently many messurements p.
which indirctly depends on

The Geometry of Compression
Compressed sensing can be summarized in a relatively simple statement: A given signal,
Known basis,

be made precise and mathemaically rigorous in an overarching framework that describes
the geometry of sparse vectors, and how these vectors are transformed through random

o-cw an
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e e dianc s prodc st of e s In other words,

l\um:vryhl:ﬂl]) e s divance, and i cond eted 1 s, which ot oy
preserves distance, but also angles between vectors. When © acts a5 a near isometry,
it s possible to solve the following equation for the sparsest vector s using convex (1
‘minimization:

o @12

Cha

are required for © 10 act as @ near isometry map with hlgh iy, The oo
propertes of various norms are shown in Fiz.
Determining how many measurements to take is reltively simple. If the signal is K-
sparse in a basis W, meaning that all bat K coeficients are 7ero, then the number of
rements sales s p ~ O(K log(n/K)) = ki K log(n/K), as in (3.7). The constant
multipler 1, which defines exactly how many measurements are needed, depends on
the quaity of the measurements. Roughly speaking, measurements are good if they are
incoherent with respect 1o the columns of the sparsifying basis, meaning tha the rows
Of € have smal inner product with the columins of W. If the measurements are coherent
with columns of the sparsifying basis, then & measurement will provide lie information
s that basis mode happens to be non-zero in . In contras,incoherent measurements
are excited by nearly any active mode, making it posible o infe the active modes. Delta
functions are incoherent with respect (o Fourier modes, a they excile 4 broadband fre-

AN

ﬁ\

o
L/ A H

Fiue s £y norms. The b

and £, the minimum-norm solution also coresponds o the sparsest sluton, withonly one

coontinaes sctiv.
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of measuements .
“The incoherence of measurements C and the bass ¥ s given by (€. ¥):

W) = Vimaxci ¥ ) @1

whete ¢ is the Ath row of the matix € and ¥ is the jth column of the matrx ¥. The

coherence yu will range between 1 and /.

‘The Resricted Isometry Property (RIP)
i

oW st
(RIP)for spare vectors 5.

(1= 8x)1sl3 = 1C¥sIE = 1+ 50 lsI3,
with restrcted isomety constant 55 [114]. The constant 5 is defned as the smallst
number that stisfcs the above inequalit for all K-sparse vectors 5. When . is smal,

i dircetly; morcover, the measurement matrix C may b chosen 10 be random, so that it
i mor dessbe o doriesastica ropeies about s B n o 3 il of
" rather fora s

the number of measurements will decrease the constant 3. improving the property of
1o act isometrically on sparse vectors. When there are suffciently many incoherent
measurements, as described above, it is possible to accurately determine the K nonzero
elements of the n-length vector s. In this case, there are bounds on the constant 4 that
incoher-

ence and the RIP can be found in [39, 114],

Incoherence and Measurement Matrices

€ that ae suffiiently incoberent with respeet to nearly all ransform bases. Specifiall
Bernauli and Gaussian random measurement matrices satisfy the RIP for a generic basis
v 13 .
tigating incoerence of sparse marices [203],

basis,

ling

broadba
at rndom ot kcation s appesingin ppcions P "
are expensive, such as

- Gausian, Bemoul
' patcalay el asfon b o compee obuined by e §
resultng in  tailored basis in which the data is nmm..m e 16,80, 51,31, o
A truncated SVD basis may result in 2 more clficient signal recovery from fewer mea-
surements. Progress has been made developing a compressed SVD and PCA bascd on the

(PCA)andproper obosons decmposion (POD)
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(a) Random s

le pixel (b) Gaussian random

(¢) Bernoulli random (d) Sparse random

Figure 310 Examples of god random mesurement matices .

Johnson-Lindenstrauss (L) lemima [267. 187, 436, 206 The IL lemma is closly related
o the RIP, indicating when it is possible to embed high-dimensional veetors in a low-
dimensional space while preserving spectral properties.

Bad Measurements
S0 far we have described how (0 ke good compressed measurements. Fig. 3,11 shows a
particululy poor choice of measurem 1o the last p colur

Sparsifying basis ¥. In this case, the product © = C¥ is-a p x p identity matrix padded

€. cortespondi of the

these measurements incur significan information loss for many sparse vectors.

Sparse Regression
The e f e 1 om0 ot sty iy prtas ol s
Infact, many benets o

cater I s section. we ot e 4 mom oy be m o regularize sisical

well-known and oft-used in statstics decades

models i as fow fators as posible. The e o v 1 1 regression is further
detailed in Chapter 4.

Outier Rejection and Robustness

o o g
ression ft may be arbtrarily corrupted by o
s i he s culin are weghied e havily st s regression

However, it is well known that the e

king it poten-
robust to outliers and corrupt data. This procedure is also known as least
absolute deviations (LAD) regression, among other names. A script demonstrating the




Figure 311 Examples ofa bad messarement matix C,

use of least-squares (1) and LAD (¢1) regression for a dataset with an outlier is given

in Code 3.3

ot 23 Use of € norm fo obustsstistica egrssion.
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@ outlier

Ptz
regression i obust 0 oulers (blc),

Feature Selection and LASSO Regression
Interpretability is important n statistical models, a5 these models are often communicated
0 a non-technical audience, including business leaders and policy makers. Generally, 1

regression model s more interpretable I it has fewer terms that bear on the outcorme,
‘motivating yet another perspective on sparsiy
The least
sion technique that balances model complexity with dewnrmve caabilty (513, This
rinciple o

I o descrpons, the simplst comeet model i vmbably the true one. Since its
et by O 196 518, 1 LAS50 s e cesione o s
‘modeling. with many modern varians and relaed techniques (236, 558, 2641, Th
i closely related (0 the earlier nonnegative garrote of Breimen [76], ad is s
o carler work on soft-thresholding by Donoho and Johnstone [153, 154]. LASSO may
e thonghtf s  spity-promotin egresion hai beneis o he iy o e
49) also known as “The elastic net
hafm\uml) s regpesion tchrique tha combines the €, 1 £ penaly eems from
LASSO and rdge regression (573, Sparse regression will be explored in mre detail i

Chapter 4.
G e of obrtons of e preicons s oo of s e, i
s rows of

vt ol o A o o o iy e e Mathematically,

this may be written as:

Ax=h. [
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Least-squares regression wil end o resultin a vector x that has nonzero coeficients for
all enties, indicating tha allcolumns of A must be used to predict b. However, we often
el hthe sl ol ol b sinper, g it ey b s, The

O adds an £ penlty term o regularize the least-squares regression problem; i, 1o
pluznl avrting

argmin |AX — bl + 2 @15

Typically, the parameter . i varied through a range of values and the fitis vlidated
against a test set of holdout data. If there is not enough data o have a sufficiently large:
of taining and 20 % for per-
formance. the selection of & el

This
that has reatively few terms and avoids overfiting.
Many

date predictors. Thus, it is not possible o use standard compressed sensing, as measure-
ment noise wil guarantee that no exact sparse solution exists that minimizes |AX — bl
However, the LASSO regression works well with overdetermined problems, making it 1
gl ersion . Noe il ryvonof e g e in . 3
51996

the ¢y norm ibshira

paper [518].
LASSO regression is frequently used to build statisical models for discase, such as

lifestyle, biometris and genetic information. Thus, LASSO represents a clever version of
the ek s, whrey eyl possble it formation s v
nto the fied and sieved

predictors

n utcome, amnged in  veto b € R Each owcome i i gihen by a conbinston
of exaetly 2 out of
amatrix A & BRI

zanantio0, 1014
(0; 0;
Aex 0 2

“The vector x is sparse by construction, with only two nonzero entries, and we also add
noise tothe observations in b, The least-squares regression i

>x12 = piavia) b

2 - -0.0232
013395
-0l0s25
1270
“oloan
0.0813
-0.0500



Note that all coeflcients are nonzero.

describes the data while avoiding overfiting, we may plot the cross-validated error as &

resultng model is found via Fitlnfo.Index1SE:
0.7037

o
o
o
o

o
o
o

il

P13
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Note that the resulting model i sparse and the correct terms are actve. However, the
egression values for these erms are not accurate, and so it may be necessary o de-bias the
L final dentificd:

ssxL1DeBiased = piav(A(:, el
xtipenizsed

111500140

rse Representation
Implictin
low-dimensional structure, they admit a sparse represeniasion in an sppropriate basis or
dictonzy Inslion 103 igna being spase i an SVD o Fourie basi, t may ssobe
sparse n of el In

UEV®, it may also have  sparse representation in the dictionary X.
it et al. 560] demonsirated the power of sparse representation in a dictionary of
test signals for o cmihcaton o o faces, despic signifcant nose and oclu-

exaions 9,435 191, 3081, )
bisic schemticof SRC is shown in Fig .14, wher  ibrry of mages f faces s
or20

i this example,
e popei e e B e g 00 ol . To s s
sensing. i ¢|-minimization, we nced © 1o be underdetermined. and so we downsample

each image from 192 168 10 12 x 10, 50 that the flatiened iy

vectors.

. A e it imge y consontin o s . spoprialy dovrsanped o

e coamns of © using
be sparse,

s are \Zn{nm’xmm\\

The resuling.

computing the £ reconstruction error using the coeficients in the s vector corresponding
teachof
i chasen for the est image.

ot 34 Load Yale faces datsand buldtining and et st

u,.m 1 msinanrsenie)

um(nfaces (1:k-1))

inds « baseina 4 (ntaces )
cain(s, (c-1) enfrainel kenTrain

(¢, inds (LenTrain)) ¢
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I ﬂ - ) f

' “

Tetimage
(Person 7)

Person 7

Person #k”

Figure 314 Schematic verview ofspare epresetation or classfcation,

£(:, (k-1 anTest sl kenTest) = (;, inds (nPrained snTrais

st build © by

i

rape (Train () s
Conponall = Lnresize (tenp, (13 10], lancaos3’)
Theba(irk) = reshape (compbmail, 126,13

Theta(:,k) - Theta(:,k) /aorm(Theca (s,k))
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Test image Downsampled

Sparse errors

rea1s
mage is comecly identifed s

Person #k

7 person inthe ivary.

Test image

Reconstruction Sparse errors

oceluded by ke mustche.

Person #k
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Test image Downsampled
i
Reconstruction Sparse errors.
Person #k
e with 30%
oceludad el (randornly chosen and uniformly distibuia).
Test image Downsampled
WY FRRY Y

Soarse errors

Person #k

Figwo .1
o image.
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Gote 36 Buid et images and «wmmm toabainy,

X1 Test(:,126)

mustache - dmb)euqbzureyHme.sdyum scache.3pa)) /255)
hape (must. 1) + mistache

loox (3+1engeh (randvec) ) ;
vals30 = uints(255srand(sise(Firstol)) s

30) = vals3o; § 308 occluded
1+ S0vrandn(size(x1)); § random noise

Vs 301, danca
UT0 = rashapa (tenpSnaid, 120,
a

v s
ps = ol
e begin;

variable sL(M); ¥ sparse vector of coe

mininize noraie 1) s

subject &
nora(Thetassl - ¥1,2) < ope;

ev_end;
plot (1)
Tnage e (Trains (s1. /normTheta’ )
Lmamne (reatape b= (eains (51 JnorThetaly) 1m )1
sinerr - seros neeopie, 1)

S
mmm Zorm(xi- (Train(:. 11+ (sL(L) . /nornTheta (L) 1)) morm(

T Gingrn)

Robust Principal Component Analysis (RPCA)

o outiers and corupted ds Aysis (PCA) sulfes from the same
weakness, making it fragile with respect o outlers. To ameliorat this sensitvity, Candes
etal. [110] have developed a robust principal component analysis (RPCA) that seeks
decompose a data matrix X into a structured low-rank matrx L and a sparse matrx §
containing outlers and corrupt dat

X=Lis @16)
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The principal components of L are robust 1o the outliers and corrupt data in S. This
luding

video surveilance (where the background objects appear in L and forcground objects
spae n S s eognn (e e 1.0 shdovs, osions, 6
).

Malhemalmany. the goal is (0 find L and S that satsty the followi

K(L)+ ISl subject 0 L 4§ = X. @

However, neither the rank(L) nor the [Slq terms are convex, and his is not a tractable
optimization problem. Similr 10 the compressed sensing problem, it is posible to solve
for the optimal L. and i a7,

ig L1 + 21811 subjectto L+ =X @1

Here - . which

forrank. Remarkably. the solution o (3.18) converges t th Soluton of (3.17) with high
probability 1/, where n and m are the dimensions of X, given that L

and § saisy the following conditons;

L Lisnotsparse
2 ot low-rank; we assume that the entries are randornly distributed so that they
do ot have low-dimensional column spac.

“The convex problemm in (3.17) is known as principal component pursuit (PCP), and
Ived using the augmented Lagrange muliplier (ALM) algorithm. Specifically.
i ugmened Logrngion ey e contraed

LOSY) = LI+ 38+ (Y. X~ L =8 + SX - L -s13. 3.19)

A general solution would solve for the Ly and S that minimize £, update the Lagrange
multipliers Y1 = Yi+u(X~ Ly —S¢), and iterate unil the solution converges. Howerer,
for this specifc system, the alterating directions method (ADM) [337, 566] provides
simple procedure o find L and §.

s, shrinkage operator (1) = sign(x) max(lx| ~ 7. 0)is constructed (MATLAB,
funcion shrink below
function out = shrink(x,cau)

out = sign(x) . wmax(abs (X) -tay,0) ;

ena

Next, the singular value theshold operator SVT.(X) = US. (E)V" is consiructed (MAT-
LAB function SV below):
function out - SVI(X, tau)
[0,8,] = sv(X, ‘scon’) ;
out = Dashrink (£, tau) V'

I the Netis
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Finally, it s possible 0 use S and SVT operatorsiteatively (0 solv for L and §:
Godo 38 RPCA using altemating dicections method (ADM).
RECA(X)

Alen2/ (4+sun(abs (X(:1))) 1
1/ogee tnax o1
nor(X, ' Fro’) ;

)& (count <1000 )

with

Load allFaces.mat
X - fac

(:,2infaces 1))
11,51 = RECACH) 7

In this example, the original columas of X, along with the low-rank and sparse com-
ponens, are shown in Fig. 3.19. Notice that in this example, RPCA effectvely fll in
accluded regions of the image, corresponding (o shadows. In the low-rank component
L. shad and filled in with the most consistent low-rank features from
he eigenfices. Ths technique can also be used o remove other occlusions such as fake

mustaches, sunglasses, or noise.

Image3 Imaged  Imageld  Imagel7 Image20

Fipure 319 Ouput of RPCA for msges i the Yale B dtabase.

Original X

Jow-rank L

Sparse S
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Sparse Sensor Placement

Undl now, we have investigated signal reconstruction in a generic bas
or wavelets,
Structure is assumed, except that the signal is sparse n a known basis. For example, com-
pressed sensing works equally well for reconsircting an image of a mountain,a face, or
cup of coffee. However,if we know that we will be reconsructing a human face, we can

. such as Fourier

a
optmizing sensors ora particulr feature ibray ¥, = U buil from the SV,

s it i possibe o design taloed scnsos for & prticlar irar, incontst 0 the
previous approach of random sensos in a generc librry. Nesr-optima sensor lcatons
may be obtined wsing ; hat scale wel .

fucoriza follow Manotar

ctal 3661 and B. Brumon et l. 1391, and the reade i encouragd to fnd more detils

her. Similar approsches willbe used for efcent sampling of reduced-order models

i Chapter 12, wher they are termed hyper-educton. Thee s also extension of the
(3651,

formations discussed in Ch
Opimising sevon loation i imprant o sy ll downsteam sk, ncluding

classfication, preds deling, snd control. However,
Iocations involves  brute force search mruugh the combinatorial choicas of p sensors
out of n possible locations in space. Recent greedy and sparse methods are making this

eareh racuable and sl (o e prolems. Reducng the numbr of snsors hrough

faser state estimation for low latency, high bandwidih control.

Sparse Sensor Placement for Reconstruction
‘The goal of optimized sensor placement in a tailored library ¥, € R is to design o
wix C € R s

y=C¥a=oa 320)

is a5 well-conditioned as possible. In other words, we wil design C to minimize the con-
diton number of € iy e e o ety e ik it

fven noisy measuremens y. The condition number of a matrix 0 is the ratio of its
maimum nd i et vales,indicaing how et malipicaion
mvemng a noisy signal. The condition number is 4 measure of the worst-case ertor when
i the singular vector di value
of ligned with vector:

bt

o + O @2
o the s o dstses by e codion e s maping hoogh
Then shown schematicaly in Fig. 320 for p = r.

‘When the number of sensors is equal 1 the rank of the library, ie. p = r. then 0 s &
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itk permission from Manohar et a. (3651

as possible, When p > .
imum singular value, the trace, o the determinant o @ (resp. M). However, cach of these:

configurations. lerative methods exist to solve this problem, such as convex optimization
6], -

ing terative 1 x n matri factorizations. Instead, greedy algorithms are generally used to
approximately optimize the sensor placement. These gappy POD [179] methods orginally
H -

srated by using principled sampling stategies for educed order models (ROMs) (53] in

luid dynamics [355] and ocean modeling 5651, More recently, vriants of the so-called

empirical interpolation method (EIM, DEIM and Q-DEIM) [41, 127, 159] have provided
ear optimal sampling for interpolative reconstruction of nonlinear terms in ROM.

Random sensors. n general, randomly placed sensors may be used 1o estimate mode

cocficients 2. However, when p = r and the number of sensors is equal to the number
of modes, the condiion number is typically very large. In fact, the matrx © s often
number s near 1018, Oversampling, as in Sec. 1.5,

rapidly improves the condition number, and even p = r + 10 usually has much better
reconstruction performance.

R Pistingfospasesesors. The ey mati QR fcarizaion it colam i
otng of W] . explor ed-order
iy simple and st snr opiizaon The QR protg sl i o

. ind provides el lored 10 speciic SVD/POD
bas Iuding Mat-
i LAPACK snd Mo n o G o v 5 o i e ot sl
the i p pivots are obained.
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The reduced marix QR factorzaton with colun ivoting decomposes a it A €
R o nitary matix Q. n upper-riangutar matix R and s column permutation
‘matrix C” such that AC” = QR. The pivoting procedure provides an approximate grecdy
soluton method to minmize the matix volume., which s the absoute vale of the decr-
minant

ivoed colamns by Seecing  new i coumn ih maximal 2 o, h subiracing

“Thus QR factorization with column pivoting yields 7 point sensors (pivot) that best
sample the r basis modes ¥,

wicl —Qr. ey
pivted QR, y
i
orel
W ¥7)CT = or a2y

‘The code for handling both cases s give by

if (puer) b 0B e1ection,

ok iver) qms, x, vector )

slseit (psr) * sensors, pr
(0. Ropivotl = (bei mepaiosr:

= zeros (p,n);
for j-lip

CG.pivot ()41
a

Example: Reconstructing a Face with Sparse Sensors
To demonsirate the concept of signal reconsiruction i a tilored basis, we will design
optimized sparse sensors in the library of cigenfaces from Section L6. Fig. 321 shows
the QR sensor p . along with the random

sensors. We use p = 100 sensors ina r = 100 mode library. This code assumes that

QR Random

Original

Figure321 (It Osginal image and p = 100 QR sensors locations n . = 100 mode librry
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Decision
fine

Figure 22 Schemaic llustraring SVID for festure extraction, ollowed by LDA for the aomaric
§ 1291

the Faces have been loaded and the singular vectors are in a matrix U, Optimized QR
sensorsresult with shout

ertor. In additon, the condition number is orders of m
sensors. Both QR and random sensors may be improved by oversampling. The following

saller than with randor

£ 1002 2 2001 8 ¥ of modes £, # of sensors
irh;

Trmpivotl = gePoi, rvestor1s
- taxos (p,nam ;
for 1o10p

U, pivor (9)

Sparse Classification

For image classification, even fewer sensors may be required than o reconstzuction. For

i selected that information

o characterize two categories of data [89]. Given a library of r SVD modes ¥, i is

often possible (o identify a vector w < " in this subspace that maimally distingoishes
as described Fi

sensors s th map into thi - projecting out al .
are found

@2

argminlsl; subjectio W

“This sparse sensor placement optimization for classification (SSPOC) is shown in
Fig. 323 for an example classifying dogs versus cats. The library ¥, contains the first
7 eigenpets and the vector w identifies the key differences between dogs and cats. Note
ha this vector does not care about the degrees of freedom that characteize the various
features within the dog or cat clusters, but rather only the differences between the two
categories. Optimized sensors are aligned with regions of iterest, such as the eyes, nose,

th, and c
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Sensors

W,w  (sinred)

Figure 323 Sparse sensor plcement aptimizaion for classfcation (SSPOC)illstaed for
Brunton

etal. (89].
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Regression and Model Selection

Allof machine i
selection frameworks that aim o provide parsimonious and interpretable models for
data [266]. Curve fting s the most basic of regression technigues, with polynomial and
exponentia fiting resulding in solutions that come from solving the linear system

Ax=b. @n

‘When the model is not prescribed, then optimization methods are used t0 select the best
model. This changes the underlying mathemaics for function fiting 1o ither an overdeter-
mined a

argmin (JAx bl +7500)  or @

argmin g(x) subject 0 [Ax bl < ¢ @b

where g(x) isa. y
For over and underdetermined linear systems of equations, which result i either 10 solu-
tions o an infinite mumber of solutions of (4.1),a choice of consiaint or penalty, which is
also kaown a5 regula must be made in order (0 produce a solution. For instance,

50 that min g = i [ More generally when consideing teession o nonlincar
models, fom

armmin (A x.b)+hg() or @
argming(x) subjectto f(A.x.b) < ¢ @3b)

which are often solved using gradient descent algorithms. Indeed, this general framework
i also at the center of deep learing algorithms,

i a proposed model has over-fit or under-fit the data. Thus cross-validarion strategies are
critical for evaluating any proposcd madel. Cros-validation wil be discussed in detal in
what follows, but the main concepts can be understood from Fig. 4.1. A given data set
must be paritioned into a training, validation and withhold set. A model is constructed
from the training and validation data and finally tested on the withhold set. For over-
fiing, » .

on the training set while leading t0 increased error on the withhold se. Fig. 4.1(a) shows
the canonical behavior of data over-iting, suggesting that the model complexity and/or

limited n order iting. I i

the crror

"
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Over-fitting Under-ftting
: @ withhold 5 \d
5 &
training
model complexity model complexity
s 41 b

Scence and of pursmount mportance when evsluating  model,

the ability t0 achieve a good model as shown in Fig. 4.1(b). However ot always
clear if you are u ing or i the model can be improved. Cross-validation i of such
paramount importance that it is automatically included in most machine leaming algo-
ithems in MATLAB. Importantly, the following mantra holds: i you don's eross-validae,
You s dumb.

“The next fes chapters wil outline how optimization and cross-validation arie in prac-
tice,a f
and strueture 10 §(3) 50 as 10 achieve interpretable solutions. Indeed, the objective (10s5)
function
e piizion ke O, oy ot ol et i
chosen in order to Such

L i

Classic Curve Fitting
Curve fiing i one of the mst basi nd foundarional toos in dta sience. From our

nomial fiting was advocated for understanding the dominant rends in real dats. Andrien-

arie Legendre used leasi-squares as early as 1805 to it astronomical data [328], with
Gauss more fully developing the theory of least squares as an optimization problem in
a seminal contrbution of 1821 [197]. Curve fitting in such asronomical applications was

by planets and comets. Thos one can argue that data science has long been a cormerstone
of our scientfic efforts. Indeed, it was through Kepler’s access 0 Tycho Brahe’s state-of-
the art astronomical data that he was able, aftr cleven years of rescarch,
foundations for the laws of planetary motion, positing the elliptical nature of planetary
orbits, which were clearly bestft solutions o the aailable data [285].

A broader mathematical viewpoint of curve ftting, which we will advocat throughout
his text,is regression. Like curve fiting, regression atempts (0 estimate the relaionship
among variables using a varity of statistical tools. Specificaly, one can consider the

oduce the
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general relationship between independent varisbles X, dependent variables ¥, and some
unknown parameters B:

V=X ) @

function /() is ypically B are found

par
In what ollows,

curve fitng as & special case of regression. Importantly, regression and curve fiting dis-
cover relationships among variabls by optimization. Broadly speaking, machine learning

based on data. Thus, at its bsolute mathematical core, machine learning and data science
Fevolve around positing an optimization problem. OF course, the suceess of optimization

Least-Squares Fitting Methods
o illustrate the concepts of regression, we wil consider classic least-squarespolynomial
fiting for characteizing wrends in data. The concept is sraightforward and simple: use
a simple function to describe a trend by minimizing the sum-square ermor between the
selected function () and its fit o the data, As we show here, clasical curve fiting is
formulated as  simple soluton of Ax

Consider aset of n data poinis

@, () ) ) @3

Further, assume that we would fike to find  best it line through these points. We can
approximate the line by the function

1)

and o, the vector f of (4.4, e ch

Bxt B @)

(A, B) = B X + . Thus the function gives a linear model which approximates the
data, with the approximation errorat each point given by

Sl =+ B an
he i the e vl of the ot an E s the o o the it rom this e,
500
The choce of extor metrc, o norm, used 1o compute 3 goodags-of-it will be crical in
hischaper
£ s squares), 1. 0, norms, Thee v defined as olows:
Ewh= max 700l Maimum Enor (6 480
Ep =43 1500 -l Mean Absolute Error (£1)  (458b)

S -ur)" Lessumsbror . 0
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Fiwe a2 Eoe, Byt e data has ot

With outliers. 5) showstht th predicions re significantly diferent.

Stuch regression ertor merics have been previously considered in Chaptr 1, but they will

‘norms, one can more broadly consider the ertor based on the €, -norm

E,A/»:(%Z\/(m—u\’) @9

For different values of p, the best fit ine will be diferent, In most cases, the diffrences
are small. However, when there are outliers in the data, the chaice of norm can have
signifcant impact.
‘When fiting a curve t0 & st of dats, the root-mean square (RMS) error (4.8¢) is ofien
chosn 0 e i, i culled e . i 42 depicts s i i
Ex.Ey

Infhecsd b h ne it ot wmch neean b v T £, ot £ o nicely

U5 ot b m ol T e el fo s e e e e somrced

Godo a1 Resression for lincar .

1
1518202322
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patninseazen (L2, (11,0505
Pa-tninsearch (‘€13 1 11, 011,915

polyval (p3, xe) ;

olyval (pi, x); y2epolyval (p2,xE); y3

subplo(2,1,2)
Plot (xf, i, k'), hold on

slot sz v i Linewiacn (21)
Blot(xf, 3, k', anmn 1)
Lot ro! (Amoetdehr, 1511, hold on

For each error metric, the computation of the error metrcs (4.8) must be computed. The
fminsearch command requires that the objective function for minimization be given. For
the three eror metrics considered, this results in the Tollowing set of functions for fmin-
search:

ot 42 Maimum e (.

function
Erman abs 50N axi6 -y M5

Got 43 Sum of sbsolue rrr (.
unc
Broun(ab 50 (1) ekins 1oy 15

Gode 44 Leastsquares eror £

function

Eoum(abs ( %001 axin6 0oy 1.72
Finally for the
the influence ofthe rror metries on producing a linar regression model.

Got 45 Data which includes an cuticr.

x-(12345678510
(0.2 0.5 0.3 0.7 1.0 1.5 1.8 2.0 2.3 2.2)

Least-Squares Line

Srestly.
show this explicily, consider applying the leastsquare fit critria to the data points
123,

gl . To it he
G
o this data,the exvr E i found by mirimizing the sum
mef el Zw.x. +5:
Minimiing s som s dfscntaion Sy, he st o and s e
a

chosen so that & minimum oceurs. Thus we require: a0z = 0.
Note that although a zero derivaive can indicate cither & minimum or maximum, we know

Bxt @10

w? @i

Ex(f)
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this must be & minimum of the rror since there is no maximum error, c. v can always
hoose a line that has a arger erro. The minimization conditon gives:

ks

E ‘Z:;zl/im,+ﬁ1 Yo =0 (@.12a)
Y2+ -0 =0 @120
u 222 syt o
St S “)(m) (E:lnn) o omeen
(S =) (3 iy “
s tear MATLAB
FERR
, P ——
i st of duarquires e i fncion
Fx) = Pix® + fax + s “.14)

where now he tree constants . . and s must b found. These can b soved fo it
e 3 x 3 syvtem rsuling fom inimizingthe eror Ex(Br. B, ) by aking

0 @150)
(@ist)
o @150)

In fact, any polynomial 6t of degree & will yield a (k + 1) x (k + 1) linear system of
equations Ax = b whose solution can be found.

Data Linearization
‘Although a powerl method. the minimization procedure for general iting of arbitrary
functions results in equations which are nontsvial o solve. Specifically, consider fiting
data o the exponential function

1060 = Prexp(ix) @16
“The error o be minimized is

Ex(pr o) = Y rexp(Pu) — 0 @i

‘Applying the minimizing conditions leads 0

ks

0 Y amexpBi) —whnepB0 =0 @180

i
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a8

T =0 LB B <) @1sh)

“This in tum leads 0 the 2 x 2 system.
3w - 3 e wom
23 o0 - 3 mesp(fian) =0 @io)

“This system of equations is nonlinear and cannot be solved in a srsightforward fashion,
Indeed, a solution may not even exist, Or many solution may exist. Section 4.2 describes
bl for solving sy

equations
“To avoid the dificuly of solving this nonlinear system, the exponential fit can be fi
carized by the transformation

Inty) @200
X=x @200
=t @200

“Then the fit function

i explfin) @2

can be linearized by taking the naturallog of both sides so that

Iny = In(B exp(B)) = Inf + InExp(BI)) = By + Bx = ¥ = BIX 455 (42)
By fiting o the natual o ofthe y-data
G = ) = (X0 1) @)

the curve ft for the exponen
bandled. Th
methods can be used to solve the resultin linear system Ax = b,

I function becomes a linear fting problem which is easily
fiting.

Nonlinear Regression and Gradient Descent
Polynomial and exponential curve fiting admit analyticall tractable, bestfitleastsquares
Jutions. Ho thematical
ramenwork is necessary for solving a broader setof problems. For instance, one may wish
1o fta nonlincar function of the form £ (x) = i cos(ax + i) + i 10 dataset. Instead
of solving a linear system of equations, general nonlineas curve fitting leads 10 a system
o e i general theory of assumes that the fiting.
function takes the general form.

S = s p) @2
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where the m < n fiting coeficients § € R are used o minimize the crror. The root-mean
square error s then def

Exp

DU B —w? @25)

respect 0 each parameter

12, m @26

In genera, this gives the nonlinear et of equations

D/m‘w— m—: i @2n

Mostattmpts at solving nonlinear systems are based on teraive schemes which require
a good iniial guesse to converge to the global mi ertor. Regardless, the general
fitting procedure is straightforward and allows for the construction of & best fit urve 1o
‘match the dat, s
be provided for by the user. Otherwise, rapid convergence to the desired root may not be
achieved.

3 shows two example functions to be minimized. The first is & convex function
(Fig. 4.3(a). Convex functions are ideal in that guarantees of convergence exist for many
algorithms, and gradient descent can be tned 1o perform exceptionally well for such
funcions. The second illustrates a nonconvex. function and shows many of the typical

Tocal minima as well as flat egions where gradients are diffcult to actually compute, .
the gradient is near zero. Optimizing this nonconves function requires a good guess for
the nitial conditions of the gradient descent algorithm, although there are many advances

Fiure 43
funcion. Convex

challenging or optimizaton.
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around gradint descent for restarting and ensuring that one i not stuck in a local min-
ima. Recent training aliorithms for deep neural networks have greatly advanced pradient

willbe in Chape
Gradient Descent
For high-dimensional systems, we generalze the concept of a misimurm of maximum, i.
an extremum of function / (x) e gradient must be
zero, so that

Vi =0 @)

Since saddles existin higher-dimensional spaces, one must est i the extremum point is &
minimum or maximum, The idea behind gradient descen, orstecpest descent, i (0 se the

alocal minimu point of £(x).

consider

Flr) =43y

29

which has a single minimum located at the orgin (x, v) = 0. The gradient for this func-

Vi)

K+ 63§ @30

o, ar
s
where & and § are unit vectors in the x and y directions, respectivey.

Fig. 4.4 ilustrates the gradient seepest descent algorithm. AU the iniial guess pain,
the gradient ¥ £ (x) is computed. This gives the dircction of steepest descent towards the

of an algorithm whercby the next point n the iteation i picked by following the steepest
descent so that

X (0) = x =89 0w) @3n

where the parameter 8 dictates how far to move along the gradient descent curve. This
formula represents  generalization of a Newton method where the derivative is used to
‘compute an update in the ieration scheme. In gradient descent, it s crucial (o determine
how much (o step forward according 1o the computed gradient, so that the algorithm is
always is going downhill n an optimal way. This requires the determination of the correct
value of & in the algorith,

To compute the value of 3, consider the consinuction of a new function

Fo)

T8 @)

which must be minimized now as a function of 5. This is accomplished by computing
F /05 = 0. Thus one finds

o
T = V)V )

= @)
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T ?
©

Coptima) soltion.

v
v/ point,
e e s e g o s gl
For the cxample S =2+
asfolows:
vt = =0V = (1= 20 £+ (1 =68y § @
“This expression i used 0 compute
F®) = fooa®) = (1 =292 +31 - 657 @35
Whereby is derivativ with respect 05 gives
F'3) = =401 = 202 = 36(1 - 68)” (@36)
Setting F'(5) = 0 then gives
40y
8= sy @

as the optimal descent step length. Note that the length of 5 is updated as the algorithm
progresses. This gives us al the information necessary to perform the sicepest descent

Search for the minimum of the given function.
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Gote 46 Gradient descentexample
x(1)- -2

E ) 1) 2vaey (1) 2+ Infeias function value
for 3+1:20

G e03)°2 498y 191220/ 2ex )2 ¢ seey ()"
)1 8 pice

1<10%(-6) ¥ ch

42 abs(£(341) €. convergence
break
ena

As is clearly eviden,

descent search algorithm based on deriative information i
similar to Newton's method for root finding both in one-dimension as well as higher-
dimensions. Fig

a5 the bi-conjugate gradient descent method (biegstab) and the generalized method
of residuals (gmres) (220}

M
st sl th srdicscon b compuned i el agorith. e grnent
command can be used to compute local or globl gradients. Fig. 4.5 shows the gradient
terms /4 and 4 /4y for the two functions shown in Fig. 4.3, The code used to produce
these critcalterms for the gradient descent algorithm i given by

I taes, agy

sradient(£,dx,dy)

re
or dirctly from data. The output are matrices conaining the values of 8/ /3x and /3y
over the discretzed domain. The gradient can then be used 1o approximate cither local
or global gradients to excaute the gradient descent. The following code, whose results
are shown in Fig. 4.6, uses the interp2 function (0 extract the values of the function and
gradint of the function in Fig. 4.3(b).
Gode 47 Gradient descent example wing intrpolation
x1)
A
a.

nterpz (X,¥,dFy,x (1) Y (1) ;

for §-1:10
elutninsearch(*delsearch’,0.2, [1,x(end) ,ylend) , dfx, dfy, X, .
®); * opcinal tau

+ update x, y, and £

x(541),y Gea1) 5

afy=interp (X,¥, Py, x (341} 1y (G+1)) ¢

1<10%(-6)

1€ abs(£(341)-
break
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@ affor

Figur 45 Computaton of the gradient for the two functionsillststd i Fig. 4.3 Inthe eft pascls,
and (©) putedfor Fig 4300,

numeically generats the gradien

I this code, the fvinsearch command is used o find the correct value of 3. The function
1 optimize the size of the iteratve step is given by

function mindel=delsearchidel, x,y, aEx,AEy, X, ¥, F)
x0mx-aeledex;

yomy-ae1aasy;

mindel=interp2 (X, Y, F,x0,y0) ;

This " introduction A wide range

Fornow,
ne can see that there are & number of issues for this nonlinear optimization procedure

Alternting Descent
Another commn technique for optimizing noninea functions of sevral varabls s the
b

optimization is done iteraively in one variable 4t a time. For the example just demon-
stated, his would make the computation of the gradient unnecessary. The basic srategy
i simple: optimize along one variable at a time, sccking the minimum while holding all
other variables fixed. After passing through each variable once, the process is repeated

the ieration
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o) o
f[ ;’ 2]

A
BN ~
N Ty

% v

430
(400,10, ~5), (=5,2) . Th s f these (e circles) gets stuck ina local

Fiure 45
areshown: (19,

Inerpolaton of the sradient function of Fig. 4.5 are used 0 update the soluions.

fe.9) o -
77\
2 4 ,“M{/ \\\\H
! W\l
)/

o v
S e,

3,
) The s ofthse redcicls)gets stuckin ol
No

Fiure 87
shown: (xg. o) = 1(4,0). 0.

procedure for the example of Fig. 46. This replaces the gradient computation (0 produce
an terative update.

Cote 48 Alternaing descent lgorthn for updatin soluion

Exeintorp2 (5,7, F,xa (1) ,9); xa(2)=xa (1) [-,ind)min(£x) ; ya(2)ey

fyainterp2 (X,Y,F,%,a(2)); ya(3)=ya(2); [-,indlemin(fy) ; ¥a(3)ex
tind) s

Note that the alternating descent only requires  line search slong one variable at & time,
M the method which

P
s atractive in many applications.
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It
Curve fiting, as shown in the previous o sections, results in 4 optimization problem.
Iy e, th plimizaion canbe ety e soing e
tem of equations Ax = b. Bel uss model selection and the various
opimiraon mehods sl for i o, e o sonsder it any
modern data science, the linear system AX = b is typically massively
ver- or under-determincd. Over-determined systems have more constraints (cquations)
than unknown variables while under-determined systems have more unknowns than con-
staints Thus in the former case, there are generally no solutions satisfying the lincar
" tead Inthe later

Syster

il o 5 nd 1) cpinizaon e w0 e A
ot i o, T St of o o oo e o
opimlsoloton achine
for proceeding further it should b noted that the system Ax = b considered here
s resricted instance of Y = (X, ) n (4.4). Thusthe soltion x contins the oadings
orleverage scores rlating th relaionship between the input daa A and outcome dta b
A simple solution fo this lnear problem uses the Moose-Penrose pseudo insere A from
Sec. 1

x=A'h. @38

“This operator is computed with the pinv(A) command in MATLAB. Howenxer, such &
solution s restictve, and a grester degree of flexibilty is sought for computing solutions.

determined systems using the ¢ and £2 norms.

Over-Determined Systems
i, . there
Ax=b.Thus,
imvolves minimiring the mor, for example he least
appropriste value of &

quares €3 error £, by finding an

argin [Ax — bl @39

“This basic architecture does not explicily enforce any constaints on the loadis
1 ol o bt minimize h e and enfor » s on he saluion. e b
optmization architecture can be modified o the following.

arganin A = b2 + 2 |l + 22lxlz @40)

the parameters 1y and %2 control the penalization of the € and ¢ norms, respec-
tively. This now explicily enforces a consiaint on the solution vector itself, o just the
ertor. The ability to design the penalty by uddmg regularizing constaint is critcal for
understanding model selection in the follow
T th cxmpes e oo,  pticule focs il e gien o e e of e £, or
he ()
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Model terms Loadings Outcomes
A x b
Fore 48 I
nom 3l

o
in MATLAB [218], o compute
our solution to (4.40). The following code considers various values of the £ penaliza-

in producing solutions to an over-determined systems with 500 constraints and 100
it

Got 49 Saltions for a over-determined sysin.
£=500; me100;

rama o))

berand n,

s seviartnien

Lame[0 0.1 0.51;
for 3113

evx begin;

ariable x(m)

mininize( norm(Avx-b,2) + lam(3)enorm(x,1) );
eve_end;
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o @N =00
F®N =01
@k =05
0w W w w o w wm m
@ () ®

panels (40, respectively.
the soluion.

subplot(4,1,3) bar (x)
subplot(4,3,9+5), hist(x,20)
a

e parameter
" i o o e b i it =0 =qu\\'ﬂem o o s xdag
£ norm promtes
 sparse solution where many of the components of the solution vector X are zero. The
histograms of the solution values of % in Fig. 4.9(d)-(§) are particularly revealing as they
show the sparsfiation process for incressing 2
“The regression for over-determined systems can be generalized o mairx systr
s Fig48 I s e, e o command s sl e e e of e
‘matix b and solution matix x. Consider the two Solutions of an over-determined system
enerated from the following code.

ot 410 Solutionsforover-determined mari systen,

300 5 p=20;
Aerand(n,m); borand(n,p);

Lane(0 0.1];
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(@) =00
02
o
02

®) ) = 0.1
02
01
o

1 20 40 60

2

Fig 4. of this matr. ystems
of the added ¢ penalty. Note tha the addition of the £1 norm sparsifes the solution and
produces a matrix which is dominated by zero enires. The (wo examples in Figs. 49 and
410 show the €3 and £ types of
Solutions. In the following sections of this book, these norms will b exploied to produce
parsimonious models from data

Under-Determined Systems
For ndecmined sy et e an it e of possbls luions sising
he gl in s case i 0 impos  adkional o, or et of consins,
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Model terms Loadings Outcomes
A x b

Figure 411 I his case, Ax = ban be
A
system can be stated as
min ], subject 10 Ax= b @an

vher e p dones the o o tevcor .ot simpliy, s comsider e ; 0 0
£ norm promtes

sparsity v sotoion

e g s he comes ot g € 0 comute o ltion 0 (441)
“The following code considers both 3 and ¢ penalization in producing solutions to an
under-determined systems with 20 consraints and 100 unknowas.

Got 11 Soluionsfor an under-detcrmined mati sysems,
20; ne100
Aeranaln,m); berand(n,1);

cvx_begin;

variable xa ()

nininize som(x2,2) )1
subec

Earh

vx_begin;
variable x1
iitnizs  mentat; 1111
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subject to
Rexd o= b;
v_end,

“This code produces two solution vectors X2 and xI which minimize the €3 and ¢ norm
Sl Noe e vy st v allovs o 0 pose consins i e ptzaon
Foutine. Fig. 4. fore,

parsiy p o b o

the 100 unknowns.

AS with the over-determined system, the optimization can be modified to handle more.
‘general under-determined matrix equations as shown in Fig. 4.11. The cvx opiimization
package may be used fo this case s before with over-determined systems. The software
engine can also work with more general p-norms as well as minimize with both ¢, an
£2 penalies simultancously. For instance, 3 common optimization modifies (4.41) (0 the
following

min (111 + 22Nl subject o Ax = b @)

by .JU-J
ity

Figure 12 Solutions  an underdetermined sysem with 20 constraints nd 100 unkowns. Panels
plotof the panel the

norm. Not that the £ pes A
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£(a),o| @

|

‘ Y ©
. .

]

% .

& @] ©

* " " polynomial degree a1 |

e

here the weighting between 1 and 3 can be used to promote a desired sparsificatir
of the solution
furtherin the following.

Optimization as the Cornerstone of Regression
I th s st o s e s g o /0w e o
insance, it may be desirable o produce  ine ft so that ()

“The coeficients
are then found by the reression and optimization methods wmy dscusd. In what
follows, which alow
mode for i d

docs not dictate @ good model selection as the more terms th

l select  good

st are chosen for fiting, the
‘more parameters are availabl for lowering the error, regardless of whether the additional
terms have any meaning or interpretabiliy.
Optimization straegies will play  foundational role n extracting interpretable resuls
d meaningful models from d e interplay of

the €3 and €
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of data generated from noisy measurements of a parzbola

e

4N O.0) @43
where A'(0.0) is & normally distrbuted random variable with mean 7ero and standard
deviation 0. Fig. 4.13(a) shows an example of 100 random measurements of (4.43). The

Indecd,
parabolic fit s trvial o compute using classi least-square fiting methods outlined in the
first scetion of this chapter

™
a prioi inpractce, we d 1ot know whit the foncion i ned o discove . We can
aming
Hlem ¥ = 70X, ) of (4. ssiem Ax= b
[ | s
i o
Ly o
[ |t S0
Where the matrix. A conains poymonial odels up 0 degreep — 1 Wi exch ro rop-

Tesnting 3 mesureme, e . e he coeenefr sseh ool and the s
b contains the outcomes (data) /). In what follows, we will consider a scenario where
100 measurements arc tsken and 20 term (19th order) polynomial is fit. Thus the matrix
system Ax = b reultsin an over-determined system as llustrated in Fig. 4.8,

The

sion via the piny function. For this cas, four realizations are run in order (0 illustrate the
impact that a small amount of noise has on the egression procedure.
ot 12 Least-squares polynomial 0 parbela withnoise.

a-10
11 lvucnm.‘.l\)v

£etx%2) rabola with points
PRl (3= (0D A (3105 + build macrix A

ena

for

Ereix a0 duranan

¥ least-square fit

5 /o
npiot (s, 5,50y ma tam)

Fig. 4.13(0)(¢) shows four typical loadings § computed from the regression procedure.
Jdded. i

e another, Thus cach noise realization produces  very different model 1o explain the

m variabiliy of the regression results are problen
measurement noise can

e for model selection. It suggests
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son st the dying ol vt ol e quantly i vy whie o
m‘mdenng v g prcses o g h v e st s
Ax ighted here are five standard methods: least-square regression (pinv), the

o oo 1. LASSO (ot sbolt ke and selecton peruon) (s,
robus

ey (440, e et el e o e viiow Ax
Specifically, the Moore-Penrose pseudo-inverse (piy) salves (4.40) with 1
e it command () or e emined syens o e sy via a

2 =0

implementation ofridge in MATLAB is a bit more nuanced. The popular clastic et algo-
and ¢ penal
0. Rob

fiting. M
tothe Huber 12601, In
ouirs e imposed o th dta 5 e power of obust . ot propery everaged.

egardies, it s an important echnique one should consider

Fig. 414 shows a series of box plots for 100 realizations of data that illustrate the
differences with the various regression techniques considered. T also highlights critically
important differences with optimization strategies based on the 3 and ¢ norm. From
a model selection point of view, the least-square fiting procedure produces significant
bty n the oding parametrs  asillusratd i Fig. 414, panes 0. (0 nd (0

R

dec
posion spectivly. oy peraly g s v, hen i, 14, il
(@) (@ and (1), show that  more parsimonious model s selected with low variabilty.
This i expcted s e 1 o  sanifs e soion vcor of oding s B ndecd,

s the dominant

The oy

ot 413 Comparison ofreression methods,

larbda=0.1; phizephi(:,2:end) ;
for 19-2200

55 31) snorm (£-5) /o

oot L W L Pyt st Ay et

LU, 33)=a1/82 (5, 13) <2583 (:, 33) <8384 (2, 33) =ad 185 (2, 33) =a886

+ hold on

B1; E2; 83 B4, ES: E6):
(1 B2 B3; B4; B0

“This code also produces the 100 reaizations visu

ed in Fig. 4130,
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g -
@ wf T at ey
%pm sh-b-d-4-dhds
af 1L od D
5 20 Uv ’5 10 *m
Jot © i @
E ol
| 04 ost
b
okl -
of T P ¥
wf T4 a1, @ ®
ohsbh-d--T-0-dhis ot .
o 04 B ——
bty it H
ER T TR
polynomial degree -
s 414 Comparisn hir

equations. The

asso, @)1 g vrsus £ penai st i, and 1) g
reresion

e EASSO 6 e e G of o psc .

Despite the signifcant variahiliy exhibited in Fig. 4.14 for most of the loading values
by the different . the error produced

variability. Moreover,the various methods all produce regressions that have comparable:
ertor Thus despite their differences in optimization frameworks, the error from fiting is
relatively agnostic to the underlying method. This suggests that using the rror alone as &

areliable, low-ertor model. Fig. 4.15(a) shows a box plotof the error produced using the
414, Allof th Tow

oo and o et el i igfeanty v et
As a final note 10 this section and the code provided, we can consider instead the
of the number of In our example
o Fi 14, ool p 0 degrs 20 were cosders. I e, we e hrough
polynomial degrees, then something interesting and important occurs as illustrated in
Fi, 4150001 Specicaly, the sio of he resrsion cllpes 1o 10 aher he
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@ % oo o
To 5
TR E : éégééé%%
ol gg? 18] e : PTITH
G IS craTeew
st deget
R o
R e
st o

st shown i el 0 T i cxptcd s s ool el
of noise. Remarkably, as more polynomial

was a quadratc function with a small amor
et ne aded e emsemble s acully ncees i the regreion el

firs, by e i

ot 414 Mode iting with polynomialsof varying degree.

En=seros (1001 ;
for 35

i

a0 Luzandn ) 0
uv\»pnkaph Jiin; fnalghiian;
e m (£ £na) fnorm(£)

10N
(:)o[ Fip 415+ dta of el ) T ror producd by » \umpk mmimh: s
0.

our model selection ramework of the remining sections

‘The Pareto Front and Lex Parsimoniae

Solution, the model tself should be carefully selected in order to achieve & beter, more
interpretable description of the data. Such considerations on an appropriate model date
back to William of Ocearm (. 1287-1347), who was an English Franciscan fiar, scholastic
philosopher, and theologian. Occam proposed his law of parsimony (in lain lex parsi-
moniae), commonly known 45 Occam’s razor, whereby he stted that among competing
hypotheses,th

you have two



competing theories that make exactly the same prediction, the simpler one is the more

Parsimony also plays a central role in the mathematical work of Vilredo Pareo (.

1848-1923). Pareto was an lalian engincer, sociologist, cconomist, political scientis, and

philosopher. He made several important contributions (o economics, specifcally in the
! choices.

sible for popularizing the use of the term i in social analysis. In more recent times, he

Fi

named aler Him a he Prio prinipe by mansgement comsuan Joseph M. uran n
1941, Stated simply, it is & common principle in business and consulting management
Ut o msance, oscres tht S0% f sl com from 20% of chens. This oneet
was popularized by Richard Koch's book The 80720 Principle [294] (long with several
follow-up books [295, 296, 297]), which illustrated & number of practcal applications of
the Pareto principle in business management and life.

Pt and O ity sdhoatd h same phiosopty: xpln the jrty of

reducing crror, it is about producing o ottt s high degree of inerpretabilty.
generalization and predictive capabiliies. Fig. 4.16 shows the basic concept of the Pareto

Error

o L®
o Pareto Frontier

Paret
Optimal
°
Number of Terms
e, The

remaining parsimonious.
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Frontier fical e numbe

for a given number of terms define the Pareto fronter. Those parsimonious solutions that
opimally balance error and complexity are i the shaded region and represent the Pareto
opina sluons. I gane heon e Pactooptina slation i thougt o sty
that cannot be made o perform beter against one opp 2y without performing.
e wll gt anolhe (i s case cor andcomplenty), I conomic, i deserbes
siuation in which the profit of one party canno be increased without reducing the profit
of another. Our objective s o select, in 4n principled way,the best model from the space
of Pareto optimal solutions. To this end. information criteria, which will be discussed in
subsequent sections, will be used to select from candidate modes in the Pareto optimal
region

Overfiting

cal
‘when building models with man frce parameters, it i ofien the case in machine learning
soplcwions i i mensiond] 3oy B Ve 8 el 1 i I,

illsies i poin. Ths, ulike wat s epced i Fig, 416 s the e goes

may
increase when considering models with a higher number of terms nnd/ﬁrparameun To
determine the correet model, various cross-validation and model selection algorithms are

data, consider the
st section. I this example, we are simply tryin (o find the correct parabolic model mea-
sured with additve noise (4.43). The resuls of Figs. 4.15(b) and 4.15(c) already indicate
that overfiting is occurring for polynomial models beyond second order. The following
MATLAB example will highlight the ffects of overfiting. Consider the following code
that produces a training and test se for the pargbola of (4.43). The training set is on the
region x € [0, 4] whilethe testset (extrapolation region) willbe for x € [4, 8]

Gote 415 Parabolic mode]with tmining and tst daa

3,1,1),
plot(xt, Eirain, 'z ,Linewideh, [21)

This code produces the ideal model on two distint regions: x € [0,4] and x € [4,8)
i

bothan xEl04)
x € [4,8). For
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i e
MATLAB.
o i g

Enis mq.unn )
for 33
2o

Ene-zeras (100, ;

1.2
G210 G ¢ e

ena

for §=1:100
£Ai- (x1.%2¢0. Lerandn(1,n1)) .7 ¢ interpolatior
fnen (x2.%2¢0 1arandn(1,n2)} ./} + extrapolatior
anipinv(phi_Lystnd; fhaiophd iean
BT} 51) momaEeratn Fast) aora (FEatn)

+ use loading
£ne) /noral

s

ena

“This simple example shows some of the most basic and common features assocated
Specifcaly llow for gencralization. Con-

sider the results of Fig. 4,17 generated from the above code. In this example, the least-

square loadings (4.44) for a polynomial are computed using the pseudo-inverse for data

in the range x < [0,4], The interpolation error for these loadings are demonstrated in

Figs. 4.17(b) and (). i

e d ficaly the

of

polynomial. Extrapolation for an overfit model produces significant errors. Figs. 4.17(d)

and (¢) show the error growth as @ function of the least-square fit pth degree polynomial

model. The cror in Fig 417 i on  ogrithic plot s i grows 107, This

demonstrates a clear inability of the overfit model (0 generalize o the range x €

Indeed, only a parsimonious model with a 2nd degree polynomial can casly generalize to
the range x € [4, 8] while keeping the error small.

e o campleshow hat same o of madel lcton o syl dluce

a parsimonious model i criical for producing viable models that can generalize outside

s colltedNoch of e amin s “round () wing i 10

generate predictive models, and (i) cross-validation techniques (o remove the most dele-

e one wil

e 4 nongeneraizable o such ot extibited n i 417,

wil

what follows, we.

Model Selection: Cross-Validation

.
ically, it is easy 1o overft & model to the dat, thus leading to a model that is incapable
of generalizing for extuapolation. This is an especially pernicious issue in training decp
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oo
“or (a)
B

L]

N

ESul,

101
£ @

22

2.

&

polynomial degree 7

Foure 17 (8 Th el mode 1) over the domain €10, Dt s collected i he egion

€10, 31 inon

10,41, the model exror sty h

For extrapoltion. 4,
e . e, e shov o 101 A sl tezmon

nterval x 10, iy
Serve a5 seious warning nd noteof cauton i model fiing.

neural nets. To overcome the consequences of overfitng, various techniques have been
proposed to more appropriately select a parsimonious model with only a few parameters,
thus balancing the emor with a model that can more easily generalize, or extrapolate
“This provides a reinterpretation of the Pareto front in Fig. 4.16. Specificall. the error
increases dramatically with the number of terms due to overfiting, especially when used

for extrapolation.

This section

ting in s

considers the former, while the lter method i considered in the next section. Cross-

validation strategies are perhaps the most common and critical techniques in almost all
Ind

validated, Take your data
‘and build a model. Do tis & times and average the parameter scors (regression oadings)
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olion s and vt whete e ol s sty sy gl This commony i
stratepy

cross-validation, fiting polyno-
mial models to the simple function /() = +* (See Fig. 4.18). The previous sections of

ek sl (s e, LASSO, s, ), wel i bty o
del ” “The following MAT-
imverse, the
ux -based backslash. and the sparsity promoting LASSO) for k-fold cross-vlidation (k
2,20 and 100).Inths case, one can think of the k snapshots of data as trial measuremens.
As one might expect, there would be an advantage a5 more rals are taken and & = 100
models are averaged for  final mode,

[ k=10 k=100
! @ I ©
I m_a MM L
U]
pseudo-inverse
o 10 20 o 10 20 o 10 20
! I I @ @ J ®
L. i
I T
backslash
10 20 [ 10/ 20 o 10/ 20
. @ ' [ o)
H
£
2
| | LASSO |

polynomial degree 1~

Figure 18 Cross-alidation sing k-fold sty with & = 2,200 100 et middle and ight

of pseudorinerse,the QR-based backslash, and the sparsity promting LASSO, Note tha the
Las he

L while the
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Coto 17 K-foldcros-validaion using 100 foldings.

2).; + parabola with 100 data poir

degree

=001 A 8 build macrix A

criate= 10 100);
E

For 331;trials (3)
£2(x. %240 2zandn (1,0
alepinv(phi)+£; €1phival; E1(31)snorm(£-£1) /nora(£) ;
133) snoz(r-£2) nora(£)
bda’0.1); E3sphisad; B3 (39}

ez A3, 391em

ioan (A1) ; Adn-mean(A2.’); A3
1; 2; B3

oan (3. ;
Eox)

subplot(3,3,4), bar(Alm, axis([0 21 -1 1.2])
subplot (3,3,349), bar (A2w), axis([0 21 -1 1.2])
subplot(3,3,643), bar(Aam), axis([0 21 1 1.2])

ena

Fig. 4.18 shows the resulis of the k-fold cross-validation computations. By promoting

i . the L after even a single
k=1l

1 ind QRbased regresion bt e ¢ st umber of lds o
leastsquare regression, even e

“The final model selection process under k-fold cross-validation ofien can involve o

dhresholding of terms that are small in the regression. The above code demonstates the

regression on three regression s ‘Although the LASSO looks almost ideal, it sill
e QR stratcey

e e sqre

Sicients scattered across the palynomials. If one thresholds the loadings, then the LASSO
ikl vl

 quadratic-cubic model. The following code tresholds the loading coefcients nd then
prodaces th il cro-slded e, Thi model con hn b vt st ot
the interpolated and extrapolated data regions as i Fig. 4.19.

ot 418 Comparison of cross-valdatd models.

acor s average icadingo of three n
Acor L e s s

figure(3), bars (ator.1)
figure(1), bars (Atot2. ")
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seudo-inverse m
P ba:kslash

®)

loadings

thresholded

not thresholded

old

The LASSO )

dsh, 3, LASSO, 4,
forrateeiaiey

252
e

for 33=1:6 ¢ compute inter/extra-polation
i=Ator3 (33,1001
Enaiephi_irani;




i

a7

Regression and Model Selection

Bni (39) =norm (£t rain-fnai) fmozm(ferain) ;
Enae-phi_ ceani;
Bne (33) =momm (£t
a

£nae) fnora(£tes

“The results of Fig. 4.19 show that the model slection process, and the regression tech-
nique used, makes a critcal difference in producing a viable model. It further shows that
despite a A-fold cross-validation, the extrapalation ermor, or generalizability, of the model
ansill be poor. A good model is one that keeps errors small and also generalizes wel, as
docs the LASSO in the previous example.

K-fold Cross-Validation

420,
a data set nto a training set and a test set, The test set, or withhold set, is kept separate
from any training procedure for the model. Importanty, the test set s where the model
prdces an xrpoltion sy, which e

par
ok which ar iy randorsy w]:c:dynmlumn[vin data. For nstance, in standrd
0k o o, usin s donly panionsd, i 10 patins
folds). Bach partiton is used to construct a regression model Y = X,

10, One methd Forconsrueing he A el o g e oding viien
(17K 325y B, which are then used for the final, cross-validated regression model
‘= £(X. ). This model is then uscd on the withhold data to test its extrapolation power,
ara the

“There are a varicty
hoosing the best of the k-Told models. As for partitioning the dat, a common strategy is
o break the data nto 70% training data, 20% validation dat, and 109 withheld data, For
very large datasets, the validation and withheld can be reduced provided there is enough
data o accurately asses the model consiructed.

Leave p-out Cross-Validation
Another standard technique for cross-validation involses the so-called feave p-out cross
validation (LpO CV). In this case, p-samples of the rsining data are removed from the.

Kept as the validation set. A model is built on the remaining trining data and
the accuracy of the model s tested on the p withheld samples. This s repeated with a new
selection o The

accuracy of the model luated on the withheld data
the data.
Model Selection: Information Criteria
Indeed, model
1950s. The Kullback-Leibler (KL measures

ruth and a model) and s the core of modern information theory critria for evaluating the
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waining
£ data
a
withhold H
(test) data z
T
=
cross-validated error
Fored20 ol y
] e

overall dta
training data i collcted inorde 1 build a reression model = (X, ). Imporanty each
mode! B At e bos mose!

8

ey

Incither case,

viabilty of a model. The KL diverzence has deep mathematical connections to satistical

thods characterizing entropy as developed by Ludwig E. Boltzmann (c. 1844-1906), as
el v eation o informtion hory developed by Clade Stannon 4861 Model e
tion field with a large body of I

‘Burnham and Anderson {105]. In what foll brief highlighs will

be given to demonstrte some of the standard methods.
“The KL divergence between two models / (X, 8) and ¢(X, ) is defined as

1]
1. X B a9
Vo= [ roxmoe[L5E @as)
here  and j re parameerizsions of e the models ) and () respecively.From an
e quaniy 1(/.) Tost when ¢

i used o represent f. Note thatif | - the log term is zero (1. log(1) = 0) and
1(£.) = 0 50 that there s no information lost. In practce, / will epresent the s, or
measurements of an experiment, while g will be & model proposed to descr

Unlike the regression and cross-validation performed previously, when computing KL
ivergence a model must be specifid. Recall that we used eross-validation previously to
generate & model using different regression sirategies (See Fig. 4.20 for instance). Here
a number of models will be posited and the loss of information, or KL divergence,
of cach model will be computed. The model with the lowest loss of information is
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sl g a bt ol Ths ien M proosed el X ) whes
M, we can compute (/. ) for each model. The correct model, o

mn-d:l o o e e oo o min; 10/, )

dmple cxample, consider Fg. 421 which shows three different models that are
compured to the . To gencrte hi fur, e followin sode o
computation of the KL divergence score is also illstrated. Note that in order (o avoid
division by 710, a constan offst i added to cach probability distribution. The truth data
generated. (1), is a simple nomally distrbuted varisble. The three models shown are
variants of normally and uniformly disributed functions,

£ohist(x1,%)40.01; ¢ generate POFs
glehist (x2,x)+0.01;
2 5,15 gabebtet (xa,x); @

2240, 3492040, 01;

1582

ost hilfon
L(f. 92,
Is(f g5

Figure 21 C. S0 The
sastcally eprescning the o dats.
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3-hiet (x5,x) 40,01

£ut/trapaix, £); % normalize data
i 301 G2ega/ et (/9201 3/ ceupa
%191.%,52,%,d3, Lingwidth , (2])

=traps (x, InC1); T2=traps (x,Inc2); T3=trape(x,Tnci);

Information Critera: AIC and BIC
“This simple example shows the basic ideas behind model selction: compute a distance
between a proposed model output g, (1) and the measured ruth / (x). Inthe early 19705,
Hirotugu Akaike combined Fisher's maximum likelihood computation [153] with the KL

divergence score to produce what is now called the Akaike Information Criterion (AIC) [7)

BIC [430) which provided an information score that was guaranieed (o converge 10 the
odel I

candidate models.

To be more precise, e tum to Aksike's seminal contribution [7]. Akaike was aware
that KL divergence cannot be computed in practice since it requires full knowledge of
the sttistics of the truth model f(x) and of all the parameters i the proposed models
/(0). Thus, Akaike proposed an aliemnative way to estimate KL divergence based on the

was a critcally enabling insight for rigorous methods of model selection. The technical
aspects of Ak’ work cometing o ikehod estinaesand KL desgence 17,105

NIC score
AC = 2K —2log [£Gi] @0

e s e aunber o prantens e i e modl i s of e bt
parameters used (. lowest KL divergence) in g(X. i) computed from a mazimum like-
ihood estinate (MLE), nndxmgnmmndemmmvluu!lhedml o be fit. Thus, instead
of a direet measure of the distance between two models, the AIC provides an estimate
of the relative distance between the approximating model and the true model o data. As
the number of terms gets large in & proposcd model, the AIC score increases with slo
2K, thus providing a penalty for nonparsimonious models. Importantly, due to it reative
measure, it wil always result in an objectve “best” model with the lowest AIC score, but
quite poor the data.
AlCisone of H n
Highlighted here is the modification of AIC by Gideon Schwar 0 construct BIC (480}
BIC i almost identical to AIC aside from the penalization of the information crteria by
the number of terms, Specificall, BIC is defined as
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B

log(n)K — 2log [£Giiv) @
e the mumber of dsa i, o sanpe iz, comidere, T sighty difrent
rson of the iformton i b one iifean comcquence. The seminl cont-
o of Schwarz was o peovetat e comectodelwas ncded long wih a st of

based upon BIC for suffciently large setof data . This s n contrast t0 AIC for which in
certain pathological cases, i can slect the wrong model

Computing AIC and BIC Scores

MATLAB allows s to directly compute the AIC and/or BIC score from the aicbic com-

‘mand. This computational tool is embedded in the economerics toolbos, and it allows

ne to evaluate a set of models against one another. The evaluation is made from the log-
‘models can

be compared.
In the specific example considered here, we consider a ground truth model consructed
from the autoregressive model

o=+ 0200 055,02+ )

0.2) @i
where 1 s the alue of the time seres at ime 1, and A10,2) i a white-nois process
with mesn 7ero and ariance two. We it tree auoregressive ntgrated moving average
(ARIMA) modes to the data. The thice ARIMA models have one, two and thrce time

i model. The following code computes thei log-lkelihood and comespond-

ot 420 Computation of AIC and BIC scors.

- 100, + Sample size
DGP = arimal*Constanc’, 4, "AR', [0.2, 0.5], Variance’,2)
v = similace(06e, ™) ;

Logt = sexos(a.); 3 scate 1o od vee
s Toat (11 n 11,y, ‘print , false) s
(2172031311 - sotinate (BatHalz,y, ‘print- talse)
271109 (3)] = estimate (Eetmals.y, ‘princ | false) ;
late,bic] = aicbicilogh, [3; 4; 51, Trones(3,1))

Note that the best model, the one with both the lowest AIC and BIC score, i the second
todel which has two time delays. This is expected as it coresponds 1o the ground truth
‘model The output i this case s given by the following

35808470

bic -
3635887
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3686625
38737

“The lowest AIC and BIC score s 358.2422 and 368.6629 respecively. Note that although
the correct model was selected, the AIC score provides little distinction between models,
especially the two and three time-delay models,
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() A mathematical theory of communication., by C. Shannon, ACM SIGMOBILE
Mobile Computing and Communications Review, 2001 [450].




Clustering and Classification

Machine learning is based upon optimization techniques for data. The goal is to find both
a lowrank subspace for optimally embedding the dats as well as regression methods
for clusering and classification of different data types. Machine learming thus provides

 mathemarical i
data mining, as well as binning the dats into distinet and meaningfol patterns tha can be
exploied for decision making. Specifically. it learns from and makes predictions based
on dat. i ditis a the

ki b
in i . for processing visual

To be explicit: AL built upon integrated machine leasning algorithms, which in ten are
fandanenlly o noptnizaion
are two broad categories for machine learning: supervised machine learning and
unsperssed macin leing, n h o, h st i rscted it hcled
datasets. The training data, 35 outined in the cross-validation method of the last chap-
e i bolsd by  tcserper. Thus cxamplsof te npt nd oyt of 8 esid
are used 1o find th the
siven \mxoaam,v.wm.mmunnn. ot b used for prediction and classifica-
o i e . Tt S iporn s of v sl i

el a5 g, . o e Ut dte, he skl o s miing. Ao
learning i another common subelass of supervised methods whereby the algorithm can
only obiain training labels for a imited set of instances, based on a badge, and also has
0 optimize ts choice of objects 10 acquire labels for. Inan interactive framework, these:
can be presented 1o the user for labeling. Finally. in reinorcement learning, rewasds of
punishmens are the training labels that help shape the regression architecture in order (o
Incontast,

Thus, they must find patterns in the data in a principled way in order to determine how (o
eluster data and generate Iabels for predicting and classifying new data. In unsupervised
learning, the goal itelf may be (o discover patterns in the data embedded in the low-
rank subspaces so that feanure engineering or feature extraction can be used to build an
appropriste mo

In this chapter, we will consider some of the most commonly used supervised and
unsupervised machine learning methods. As will be scen, our goal is to highlight how
data mining can produce important data features (Feature engincering) for later use in
model building. We will also show that the machine learning methods can be brosadly used
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for W classificaton, as well as models for prediction.
Critical o all of this machine learing architceture is inding low-rank feature spaces that
are informative and interpretable.

Feature Selection and Data Mining

To exploit daa for diagnostics, prediction and control, dominant features of the data must
be extracted. In the opening chapter of this book, SVD and PCA were introduced o
s In

L fo &
of cropped face images were shown. These cigenfaces, which are ordered by thei ability
ity (correlation) across the data base of faces was guaranteed

ive the best st of r features for reconstnucting a given face in an 3 sense with a ranker

0 account for coms ©

Importanily,

one o consider  significa

The goal of duta miing and machine learning is 10 construct and exploit the inrinsic
low-rank feature space of a given data set. The feature space can be found in an unsu-
pervised fashion by an algorithm, or it can be explicitly constructed by expert Knowledge:
andlor correlations among the data. For cigenfaces, the feaures are the PCA modes gen-
erated by the SVD. Thus each PCA mode is high-dimensional, but the only quantity of
importance in festure space is the weight o that partcular mode in represeting a given
face

i
set of  features that can be leveraged for diagnostic
control,

Several examples will be developed that llusirate how 1o generate  feature space,
starting with a standard data setincluded with MATLAB, The Fisher irs data set includes
measurements of 150 rises of three varietis: setosa, versicolor, and virginica. The 50
samples of cach flower include measurements in centimeters of the sepal length, sepal
il el ngh. o e widh, For s st e o !eﬂmresmnlmﬂdydgnwed
i 51 condes oyttt of e T llowin code scceses
Fisher ris data et

prediction, reconsiruction and/or

Got 1 Featresof the Fisher irics

PLOEI(x1(+,1) ,X1(+,2),%1(:,4) 790", hold on
Biots (2 (111) 2 (1121 iz 11y o)
Blot3 (63 (+12) 33 (+12) 33 (+,4) ¥’}

Fig. 5.1 shows that the properties measured can be used as & good set of features for
i n
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S versicolor
o virginica

petal length (cm)

35

3 6
sepal width (cm)
2 sepal length (cm)

seosa, sersicolor, and vrginiea. Each flower includes a measurement of sepl engt, sepal
it ngh and s i Te e of e e s e showing ot s

berween thespecis.

in this feature space. The setosa iis is most distineive in ts feature profile, while the
versicolor and virginica have a small overlap among the samples taken. For this data sel,

quired to generate a How-
s i

visual cues. Rather, decisions about clustering in feature space occur with many more

Variables, thus requirng the ad of computational methods (0 provide good clasificato

schemes,

e consider i Fi Jection from 0
dogs and A specific goal for this d i

I
for cachcut nd dog i he 6464 pic spce of the mage Thus coch mage s 4095

cigenfaces, we will use the SVID to extract the dominant corrclations among the images.

after!

the 160 images (80 dogs and 80 cats)
Gotes2 Features of dogs and s

Toas domata.n

mu(ldog s
T, v1 o R(ED(:)), econ’) 1




Fpuresz . . space

whie dogs

promote s
thei epresenton.

“The original image space, or pixel space, s only one potential set of data to work with,
The data can be transformed into a wavelet representation where edges of the images are
emphasized. The following code loads in the images in their wavelet epresentation and
computes a new low.-rank embedding space.
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s Fis e
e hetore, i
important.

o3 Wascle esturesof dogs and s,

2-mean (€02 (1)) ,"econ)

e quivaletof i 5. in vt spce s show i Fi. 5. Nt ha e wavelt -
it

naking i e ecision. "
lneaion ke o Sonssctiog efsctive achine i lgome

‘Whether using the image space dircetly or a wavclet representation, Figs. 5.3 and 5.4
respectively, the goal s to projeet the data onto the feature space generated by cach. A
o e pice eps i diinguiting st allow o 0 o vty
of tasks that
feature 1o an individual image is given hy e ¥ mari in the SVD. Spectcally. s
olumn of V' determines the loading, or weighting, of each feature onto a specific image.
Histograms of these loadings can then be used to visualize how disinguishable cats and
dogs are from each other by each feature (See Fig. 5.5). The following code produces
histogram of the distrbation of loadings for the dogs and the cats (frst 80 images versus
Second 80 images respectively).

Godesa Feature histograms of dogs and ats,

inspace (-0.25,0.25,20);
1%
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raw images wavelet images
mode 1
1 10
0 0
02 01 0 01 02 02 01 0 01 02
mode 2
1 10
0 0
%2 01 0 o1 02 02 01 0 01 02
mode3
10
01 0 01 o2 01 0 01 o2
mode 4
10 10
0
01 0 01 02 02 01 0 oi o2
rgress

usin the second mode.

subpior(s.2.2003)
pafibieslva e, ) sbin)

)
p;mxm,gm i pats, ‘Lineviath , (2])

Fig
images as well as the wavelet ransformed images. For both the sets of images,the disri-
bution of oadings on the second mode clearly shows a strong separabiliy between dogs
and cat. The waxelt processed images also show  ice separabilty on the fourth mode.

Features that provide srong separability between different types of data (.. dogs and
cats)are typically exploited for machine leaming (asks. This simple example shows that
feature engineering is a process whereby an initial data exploraton is used to help iden-
ity picnial procssing methods. These Fesres an he el the computer iy

o ety A Tl A conu 5 wich e s g dod
pea r thi
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raw images wavelet images

<] 02

0 PCA,

02702

and their the duta

cusily separtes the dat

. As will be scen later, the wavelet transformed images
il

wavelet transformed counterpa
degree of

Supervised versus Unsupervised Learning

As previously stated, the goal of data mining and machine learming is (o construct and
exploit the intrinsic low-rank feature space of a given data set. Good feature engincering
and feature extraction algorithms can then be used to learn classifies and predictors for
the data, Two dominant paradigms exist for learning from data: supervised methods and

sets, the
siven, and regression

o find the best model via optimization forthe given labeled data. This model i then used
Torpredicon and <lascation g new dts. There e mporiant varansof s b
architecture which include semi-supervised learning, active learming and reinforcement
learming. For unsupervised leaing algorithms, no training labels are given so that an
algorithm must find patterns in the data in 4 principled way i order to determine how (o
cluster and classfy new data. In unsupervised learning, the goal itself may be o discover
pattems in the data embedded in the low-rank subspaces so that feature engineering or
feature extraction can be used to build an appropriae model,

p Fig. 5.
“This shows a scater plot of two Gaussian distrbutions. In one case, the data is well

In the second case, the two distibations are brought close together 5o that separating the.
data is 4 challenging task. The goal of unsupervised learming s to discover clusiers in
the data. This is a trivial task by visual inspection, provided the two distributions are
suiieny sepred. Oterise i tecomes vy il o disingih clusers n te
s Supercd her

Jassiy
oo ithr e o magen, Mach ke e unperiacd scitecr, o he s
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unsupervised supervised

Figure 7 lustraion of unsupersised versus supervised larning. In th lft panls 4 and (61

For
Inth

s For

with the data provides  simple way to classify all the unlabeled data points. Supervised

be staed wticaly. L

Dew e
o that D is an open bounded setof dimension n. Further, lt

Dcp 52

s s of clsction i bt s sin D gven s o .

Label  For Sach pint whre = 1151 Label o th dotscan o many
forms, from numeric vlus, including integer abels, o text stings. For simplicity, we will
label the data in a binary way as cither plus or minus one so that ; € (£1).
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For unsupervised leaming, the following inputs and outputs are then associated with
learning a classification task.

Tnput

dua [xj B jezi= (120 m) 630
Output

abels [y, < (1), j € 2) 3w

Ths the mathematical framing of unsupervised learning is focused on producing labels
¥, for all the data. Generally the data x; used for training the classifier is from D', The
classifier s then more broadly applied, i i generalizes, 1 the open bounded domain D.
I only sampl domain, then
it often the case that the clssifer will not generalize well

earming classifcaton tusk can b stated s fllows.
Input
dua [x B jez m) G
abels [y, € (1), je 7 € 7) )
Output
abels [y, € (1), j € 2) 640

In this case, a subset of the data is abeled and the missing labels are provided for the
remaining data. pe

an i w0

D, The clssifer
fthe data used to build a classifir only samples 1 smal porion ofthelarger domain, then
it often the case that the cassifer wil not generalize well

For the data sets considered in our feature selection and data mining section, we can

D and . The Fishr s data of Fig. 5.1 which he:
quantites. We begin with the data collcted

x; = (sepal length, sepal width, petl length, petal width) 535
Thus each iris measurement contains four data fields, or festure, for our analysis. The
bels can be one of the following

¥ = lsetosa, versicolor, virginica) 56
i s the el s g, ndher e e ofhem. N i o ol
tion of [ there were only

were labeled eithes 1. Generally,there can be man labe
Finally, there i the domain of the data. For this case

andthey are often textsrings

D7 € {150 iis samples: 50 setosa, 50 versicolor,and 50 virginica)  (5.7)
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and
D € (the universe of setoss, versicolor and virginica irses). 58

We can similrly assess the dog and cat data s follows:

X, = (6464 image= 4096 pixels] 59

where each dog and cat i labeled a5
¥ = ldog. can) = {1, -1} 510
are text strngs which values, This

formulation of

Finall
€ 1160 image samples: 80 dogs and 80 cats] 1)
and

D & fthe universe of dogs and cats). 12

Supervised and unsupervised learning methods aim to either create algorithms for clas-
sification, clustering, or regression. The discussion above is 4 general srategy for classi-
fston. Thepeioschpt e rgresion s For bt ks U sl
s 10 build & model from data on D that can generalize to D. As already shown
preceding chapter on regression, generalization can be very difficult and Yomidnion
Strategies ar critcal. Deep neural networks, which are state-of-the-art machine learning
algorithms for regression and clasification, ofien have difficulty gencralizing. Creating
strong.

Some of the diffcultcs in generalization can be ilustrated in Fig. 5.8, These data set,

Essentially,the
nonlinear manifold that is often difficul to characterize. Moreover, i the sampling data
D only captures a portion of the manifold, then a classification or regression model will

@
o
s %
10 d o
5 0 5
[
Noreoer ol e

for D.
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D, a
can be in higher dimensional space. Visualization in such cases is essentialy impossible
What
on D that may or may not be labelled. There s quite  diversty of mathematical methods
available for performing such tasks.
53

Unsupervised Learning: k-means Clustering
A

We
will start with one of the most prominent unsupervised algorithms in use today: k-means
clustering. vector valued data

oul

toaclus P cluster This

el pattioning of e dats st e Voronet el
Known, the num-
ber of partitions & is generaly unknown and must also be determined. Alternatively, the
user simply chooses a number of elusters to extract from the data. The A-means algorithm
i iterative, frs. assuming nitial values for the mean of each cluster and then updating
he means il o gt hs comerse. icts the update rule of the k-
‘means agorithm. The algorithm proceeds a follows: 1) given initial values for k distinct

k Label cach

observation as belonging o the nearest mean. (if) Once labeling is compleed, find the
group. P

Fiuess
aiven (black +

ight +. Once abeld, "y
il the means comre.
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sart back at stcp () in the agorithm. This is a heuristic lgorithm that was first proposed
by Stuart Lloyd in 1957 [339], although it was not published until

e kemeans objective can be ssted formally in terms of an optimization proble.
Specificall, the following minimization describes this process

algmmz DI 5.13)
=

here the p; denote the mean of the jih cluster and D, denotes the subdomain of data

associated with that cluster. This minimizes the within-cluster sum of squares. Tn gen-

eral, solving the optimization problem as staed is NP-hard, making it computationally
tractabl «

that they
Cros-validation of the &-means algorithn, as well a any machine lear
is ritcal Without

algorithm,

e

the classificr o different
lection of et g 0 s o, Th llovin portons o code
zen

s and panmm)mg Py o raining and testset.
Gode 5 -means dta generstion.

Rerandnntendi 1) y20.beranta (s i 1) 5

randn (o1 1)
a tcos (theta) —-mnmnav, sin(th ;
SR (L 1) eX3+A (1, ) 335 Y3e(3, 1) oxaeh (3,2) o
stz )
Blot(x(2:hf y (1) 1xo0), bota on
Thortes (om Ty3 hom s omeh)

$ training
x:

Siteate (x5 (n1 1 end) ¥ (nLSisan];
Xatestelx(ni+liend) y(nisliend)];

Fig. 5.

the case. The

wehave gmuml i daia o check e eans lasrin g, n g:mm! pii
i means

© up‘lzm them in

k
‘guess and many modern versions of the algorithm also provide principled strategies for
nitalization.
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Figure 10 Musration ofthe k-means ertion procedure based upon Lioyd's lgorthm [339]. Two.

“The means are

e approximaely fourteratons.

o6 Lioyd algorithn for -means.

=01 05 g2 01y ¢

classi-(classl; [¥(33.1) ¥(33.2)11

Classz[classz; [¥(33,1) ¥(33.2)11;

g1=[nean (clase1(1:end, 1)) mean(classi(1:end,2))];
g2 [nean (c1ase2 (1:end,1)) mean(class2(1:end,2))];

106
data relabeled. a This plic-

how
Jabeling of all of the data. MATLAB has a builtin k-means algorithm that only requires a
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4

Fpure i1 kmeans clusteing o he data using MATLAB's means command. Only the data and

1 would be mislabeled while six of S0 green bll are misabeled.

data matrix and the number of clusers desired. I is simple (0 use and provides a valuable
diagnostic ool for dat. The following code uses the MATLAB command mean and 1lso

Gots7 - means sing MATLAB,

{ind, c] =kneans (¥,2)
Plot{c(1,1) ¢ (1,3). ke, Linewideh', [2])
Plot(e(z/1) e (2,2) | ke' | Linewideh: | (2])

s ) 2

ez
Gzt /e e un
s d)o(l/!lepe]-

e B resin

ope) sxaspeb;

Homety. siploriaa) bola o

plot (xeep, ysep, ' L[2))axis (02 4 -3 21)
£igure(l), subplot(2,2,2)

Plot (x(n1}1send) v (ni+isend), 'xo'), hold o
siot i ni.diend] 3 (113 end) ey

Blot (xeep, ysep, 'k, ‘Linewideh', [2]), axis([-2 4 -3 21)

Fig 5.1 shows the resuls of the k-means algorithm and depics the decision lin sep-

arating the data into two clusters. The green and magenta balls denote the rue labels of

the dat, showing that the £-means fine does not cormectly extract the labels. Indeed,

supervised algorithm is more proficient in extracting the ground truth results, as will be
pler. Regardl

corectly.
e suce

i i :
s afasth Jgorith he ry accurate,
i i fen e on i uperied methods o he ot s fnied Snowiedse
of the data. Cross-validtion effort, such as A-fold cross-validation, can help improve the
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model and make the unsupersised Iearming more accurate, but it wil gencrally be less
accurate than a supervised algorith that has labeled dat.

Unsupervised Hierarchical Clustering: Dendrogram
Another commonly used unsupervised algorithm for clustring data is a dendrogran.
Like k-means clustering, dendrograms are created from a simple hierarchical algorithm,

truth s known. Hierarehical clustring methds are generated ither from a top-down or
botom-up approach. Specifcall,they are one of o types:

Agglomerative: Each data point x; isits own cluster iniially. The data is merged in pairs

edinto s cluster This is the in hierarchical

clusteing.

Divisive: In this case, all the observations x; are intially part of a sngle giant cluster. The

the algorithm stops according o @ user specified objective. The divisive method can split
the data unil cach data point i ts own

In general, the merging and spliting of data s accomplished with a heuristic, grecdy
algorithm which is casy to execute computationally. The results of hierarchical clustering
are usually presented in a dendrogram,

05 ®
0 o
°
2 0 2 4 6
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1@ iteration1 iteration 2

@ iteration 3 @ iteration 4

merged points

In s scion,we il s o

aglomersivs il lsring an the denie-

e dendrogram proceeds from 2 x‘mplz algorithmic structure based on mmpulmg the
oty points. Although we typically use a Fuclidean distance, there

4 mumber o imporant ditance metics one might conider fo et ypes of dats
Some typical distances are given as follows:

Euclidean distance I, ~ xcl 140

‘Squared Euclidean distance [x; — x¢ 3 (5.14b)

Manhattan distance I ~ .l G.140)

Maximum disance [ ~ sl G.140)
P

Mahalanobis distance /x, — 07 €1 (x; —x0) G140)

where €1 i the covariance matrix. As already illusirated in the previous chapter, the

be exploied for clustering and classificaion.
Fi

aclidian
distance). i) the dmc\\ w0 data points e merged into sigle new daa point vmdwmy
i -1
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i

merged into o single data

Fgwos1a

Jevelofhreshold.

“The lgorithm continues unil the data has been hi
point.

from MATLAB.
Fig. 5.12 shows the data under consideration. Visual inspection shows two clear clusers
that are asily discernible. As with k-means, our goal i 0 see how well a dendrogram can
extractthe two clusters.

oo Dendrogram for unsupervised clustering.

mep ey Kaliso, 1
¥2 = paist (13, ' euclidean’)

)
arogran (£, 100, Threshold’, thresh)

Fig. 5.14 shows the dendrogram associated with the data in Fig. 5.12. The structure of
the alzorithm shows shich points are merged as well a the distance between points. The
threshold command is important n labeling where each point belongs in the hierarchical
scheme. By seting the threshold at difrent levels, there can be more or fewer clusers
in the dendrogram. The following code uses the output of the dendrogram 1o show how
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I
80

10

Fipure 15 Clusiering outcome from dendrogram routine. This i summary o Fig .14, showing.
o eac of the points

0

Fig.5.12) shoud
e rouped s that they ar belo the ed horzonta i inth fower et quadrsnt. The scond 50
e Fig 5.1 Jin n the uppr ight

quadant

the data was abeled. Recall that the frst 50 dat
Second 50 data poinis are from the magenta clustr,

points are from the green cluster and the
ot 59 Dedrogram abels for cats and dogs.

(10 1001, 150
£(150.5 50.51,

so1,'x
to 100] 2

Fig. 5,15 shows how the data was clustered in the dendrogram, If perfect clusterng had
been achieved, then the first S0 points would have been below the horizontal dotied red
line while the second 50 points would have been sbove the horizontal doted red lne. The
vertical dotted red lin is the line separating the green dots on the left from the magenta
dots on the right

The following code shows how 3 greater number of clusters are generated by adjusting
the threshold in the dendrogram command. This is equivalent o seting the number of
clusters in ereater than two. Recall th eround ruth
ervised clustering, so tning the threshold becomes

to compare with when doing uns
important

0.250max (2(:.,3)
ran(z, 1 1" thresh) ;
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i Fig.
e s o mare s doven coer e et

. 5.16 shows 4 new dendrogram with a different threshold. Note that in this case,

provide &
‘method whereby data can be parsed automatically ito clusters. This provides a siarting
point forinterpretations and analysis in data mining.

“The third unsupervised method we consider is known s finite mixture models. Often the
models are assumed to be Gaussian distributions in which case this method s known
s Guussian ixure models GMMD, Th busic assumpion in Vs method i ht o

Like k-means and hierarchical clustering. the GMM model we fit o the data requires that

that best it the data, especially useful since the assumpion that each mixture
model has a Gaussian disribution implie that it can be compleely characterized by 1o
parameters: the mean and the variance.
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“The algorithm that cnables the GMM computes the maximum-likelibood using the
amous Expectaton Mosicron (EVD asorm of e, L and Rubi (145

Generally, th the algorithm finds  local which
estimtes the true parameters that cannot be diretly solved for. As with most dats, the
abserved data involves many latent or unmeasured variables and unknown parameters.
Regardi

ble i I guess. The EM

distibutions. The algorithm then recursively updates the weights of the mixtures versus
the parameters of each mixture. One alernates between these two uniil comergence is
achieved.

In any sueh teration scheme, it is mot bvious that the solution will converge, or that
the soluton is good, since it typicaly falls into a local value of the maximum-fkelihood.
But i can be proven that in this contex it does converge, and that the derivativ of the
Hkethod iy cow 10610t it W in o s it e ot

156111 . withno

For example, one of found by EM ina.

mixture model
Cqual 1o an o he i o, Cronv-vadton o e sl some of the common
i gues;

Fx.0) =Y apflx). ©,) (515)

Where () is the measured PDF, £, is the PDF of the mixture f, and  is the totl
number of mixturs. Eachof the PDFs /() is weighted by (a1 + a1 + n

par ),
models more precisely then: Given the observed PDF f(x;. ), estimate the mixture
weights @, and the parameters of the distribution @, Note that © s a vector conaining
all the parameters ©,. Making this task somewhat easier s the fact that we assume the
form of the PDF disuibution /, ().
For GMM, vector ©, S

mean 1, and variance . Moreover,the dissibution f, () is normally distsibated s0 that
(5.15) becomes

1800 = YNy g7 516

“Thus once one assumes a number of mixtures &, then the task is 0 determine cr along
with s and g, for each mixture. I should be noted that there are many other distibu-
tions besides Gaussian that can be imposed, but GMM are common since without prior
Knowledge, an assumpion of Gaussian distribution is typically assumes
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Ancstinat of the elhood
stnate (ILE) o e, The MLE computes s vl of o he s of
aLe)
e ”
Lo s
hers he loglkclibood fncion L i
L©)= Yl 10x/0) 19

and h

when the derivative is zero, produces a local maximizer. This maximizer can be computed

form,

The EM

6. This estimate can be used o estimate

@ folx;. ©,)

.0

‘which s the posteior probabilty of companent membership of x; in the pth distrbution.
In other words, does x; belong o the pth mixture? The E-siep of the EM algorithm uses this
posrior o compute e, For G e ot rcess s fllow: Given
an initil parametization of © and .

0. ©)

s19)

Ny 1l ol
N 07
With an estimated postrio probabilty, he M-step of the algoritm then updats the

paramcters and mixture weights

e 20

D ST 210
oo = St 21y
T
. ,m(,_,,:.,)(x Y
Tian®)

e e s 544 o b omren e oo b e prm,
emated unil comergencs wtkin a spcified toleance, Recall
10 itz e lgorim. the numbr o mintare models k st b spcied snd
initialparametization (guesss)ofth ditibutions gven. This i il 10 the k-
gt whre o b of csters & pesrbed ad n il gues o e s
ceners s spcifid.

T U s ot e i il s Grosion dbotions o . i i
reasonable P e GMM

e ham ot amsapervied i b £ . e clustering are

E- and M.
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ozf (@ ®
PCA, 0.1 ° il on) Loy, 02)
0
s
01
do
02
= 02

FigureS17 GMM it of
image dta.

simply delfined as algorithms. The primary assumption in GMM i the number of clusers
and the form of the distribution ().

model on the second and
e of the dog and cat wavelet image data introduced previously in Figs. 5.4-5.6. Thus
The

fitgmlist command i used to extract the mixture model

ot 10 Gausian mixture model forcas versus dogs.
dogeat=y(:,2:2:4)

Giiodel=£itgndist (dogeat,2)
10 Ghhoded . A1C

aubplot (2,2,

‘.,/“,,Wu,mﬂ *2)paf (iodel, 1 x21)) 5
subplot (2,2,2)

eEmosh (s (i 12) pa (G, 33 52111 1

The resuls of the algorithm can be plotted for visual inspection, and the parameters
fical

along with the mean in each of the two dimensions of the feature space. The following is
isplayed to the screen,

sixing progorcion: 0.355835
oese -0lons

Conponent 2
Mixing proportion: 0.644465
Mean: | 0.0756  0.0076

ic

of mixtures required to describe the data
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rea [, .

PCA,
°
\ cats
N e
-
poor discrimination 7
optimal projection

Figur’.18 lussation oflineas discriminant analysis (LDA). The LDA optimization method
The figure

functions in sn optmal way:

Fig. 5.17 shows the results of the GMM fittng procedure along with the original data
of cats and dogs. The Gaussians produced from the fiting procedure are also illustrated.
“The fitgmdist command can also be used with cluster to label new data from the feature
separation discovered by G

Supervised Learning and Linear Discriminants

‘We now wm our attention to supervised learming methods. One of the earliest supervised
methods fo o isher in taxon-
omy (1821, His finear discriminant analysis (LDA) is il one of the standard technigues
for classfication. It was generalized by C. R. Rao for muldi-class data in 1948 [446)
“The goal of these algorithms i to find a lincar combination of features that character-
izes or separates two or more classes of objects or events in the data. Imporantly, for
this supervised technique we have labeled data which guides the classification algorithm,
Fig. 5.18 illustates the concept of inding an optimal low-dimensional embedding of the

“The LDA algorith

of points. This then makes classification easier because an optimal feature space has been
selected.

“The supervised learning architecture includes 4 trsining and withhold set of data. The
withhold set is never used to train the classifir. However, the training data can be par-




56 Supervised Leaming and Linear Discriminants 177

titioned into A-folds, for instance, to help build a betier classfication model. The last
chpter gt o s aldaion ol b pORSIE . The gl £ 0
train an algorithm that uses featur space to make a deci: tho o clsity o
Fig 5.8 e  caton of e ey e v DA I our example, tn it e
e comded nd e ont i it T 0 e e th pgcrion shows
the data is completely mixed, making it i Separate the data. In the right fizure,
which is the ideal charicature for LDA, the data are wel separated with the means iy
12 being well apart when projected onto the chosen subspace. Thus the goal of LDA
i wo-fold: find  suitable projection that maximises the distance berween the inter-class
data white minimizing the intra-class data
two-class LDA, this esults in the following mathematical formulation. Construct

a projecion w such that
WSiw

PILTLA 520

W TS 62

a and within-class Sy

— a2 - )" 23

S =2 Y ) 620

the data sets s well

52

iner-

igmecions cn be coniucedvih MATLAB
Perfc LD

%5 forJ = 1,2, ,m with cortesponding labels. ;. the algorithm will i an optimal
classification space as shown in Fig. 5.18. New data x; with 2,

Ctdt st duced i he fetre secton of i chipter. Speccaly, e comsidr he
dog and cat images in the wavelet domain and label them so that y, € (1] (y; = 15 &
dog and y; = —1 is a cat). The following code trains o the first 60 images of dogs and

betsieen dogs and cats (See Fig. 5.5).

Gode 11 LDA analysis of dogs vrsus cat.

n(eD())) 5

xtraine(v(1:60,2:2:4); v(81:140,2:2:4) 5
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Labelsy, € {+1}

Wavelet
Images

dog (+1) = cat (1)

Raw
Images

Fgos1o

¥ i+l
20 negativ ones.

vectorof 20 ons followed by

- (ones(60,1) ~Leones (69,1)]
et A R T
lassify (cest, xtrain, label) ;
ones (20,1); ‘Leones (20,11
E100-sunia:Svabs (1 £hi) /404100

clas

Not that the el smand in MATLAB takesin the three matrices of interet: the
raining data, the est data, and the labes for the training data, Wh is produced are the
o Tine for online

el for the tet set. One can also extract from this command the decis

use. Fig. 5

erformed using d fourth PCA modes wh
as shown in Fig. 518, The returned labels are cither 1 depending on whether cat or dog
i labeled. The ground ruth labels for th test data shoul return a +1 (dogs) for the first
20 test sets and a 1 (eats) for the second test set, The accuracy of classification for this
realization i 82.5% (2120 cats are mislabeled while 5120 dogs are mislabeled). Comparing
the wa inthe raw images is
good. 90

420 dogs e i
Of cours, the data i firly Timited and cross-validation should always be performed to
st the s e followingcod s 00 s of the sty commad vhere
selected and tested against the 2 20 images.

« are mislabeled
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Gote 12 Cross alidarion ofthe LDA anslysis.

ndzcex2(61:80) 460

)5 viing2,2:2:4)1;
(indze,2:2:401;

Luones(60,1)]
1ucnes (201115
11} /400100;

Fig 520 shows 100 rials. ariabiliy tha
ecifcal; 1006, but canalso be:

as low as 406, which

line) s around 70°%. Cross-validation, as unm highlighted in the regression o
ertcal for estin

o oo h ol Rl e s o ot +
Clsir e s on optimiation i regesion. 30t lthe s vldaon methds
b prtd o e cluseng and hascaton bl

T o 103 s dicrminant n, 3 qadratic discrininant in ca b ound
o s the das. Indecd,the sasitycommand m MATLAB sllows an o ot o

the following

Average

Accuracy

20 40 80 100
Trials

o a0 Postomane ofthe LD aver 00 il Nt e il bt s e
class

ot of e aldaton o blin s s o
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commands are used 1o produce labels for new data as well as the discrimination line
between the dogs and cats

ot 13 Ploting th linear and quadetic discimination lncs.

subpion(z,2,3)
e

Cowni(Ix y1s) v Ix vl 2)
30.21);

Fig.521 4

them. This 4 hich i returned
with classify. The quadratc line of separation can often offe a lile more flxibility when
e

1o compute, Thus,
of the sciences for clasifcation of data

suunnrt Vecmr Machines (SVM)
One of the most successful data mining methods developed to dte s the support vector
ecind (A, o.  core ot g ol e il 1 ety a8
science, often providing resuls that are beter than competing methods. Along with the

With enough training data, the SVM can now be replaced with deep neural nes. But

02

o1
PCA;
o

9 o1
02

03
01 001 02 01 001 02
PCA; PCa;

Figure:21 Clasification lin for s inear discriminant (LDA) and () quida

dut a given aining
sample.
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otherwise, SVM and random forest are frequently sed algorithms for applications where
the best clasification scores ae r

“The original SVM algorithm by Vapnik and Chervoneriis evolved out of the sttistical
learning lterature in 1963, where hyperplanes e optimized to splitthe data into distinct
clusters. Nearly three decades later, Boser, Guyon and Vaprik created nonlincar classfiers
by applying the Kernel trick to maximum-margin hyperplanes [70]. The current standard
incarmation (soft margin) was proposed by Cortes and Vapnik i the mid-1990s [138],

Linar SUM
“The key idea ofthe linear SVM method i to construct a hyperplane

Woxth (5.26)

» perplane. Fi
tial hyperplanes spliting a set of data. Each has a different value of w and constant b,
“The optimization problem associated with SVM s (o ot only optimize a decision line
which the data, largest margin
between the data, shown in the gray region of Fig. 5.22. The vectors that determine the
boundaries of the margin, ie. the vectors touching the edge of the gray regions, are termed
the support vectors. Given the hyperplane (5.26), a new data point x, can be clasifed by
simply computing the sign of (w +x;-+5). Specificall, for classification lbels y, € (1],

Woxth=0 woxeh=0

(a) @ W XHIZ0 ()
0® °® 00 Se
° @ °
woxh<0® ® ° @ ® o
® °
L4 °
"~
margin L
‘margin
o2 y
in e and
i lesin ) e

< fa ight o
30 3;-+) = sgnw - x;-+5). So nly the s of w x5 s 1o be determined inorder 10
{abelthe da
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the data 10 the Ieft o right of the hyperplane is given by,

Yiovx+h) s2m

magenta bl
gren bal,
“Ths the classifier , is explicity dependent on the position of ;.

Critical 10 the success of the SVM is determining w and b in a principled way. As
with all machine learning methods. an appropriate optimization must be formulated. The
opimization is aimed at both minimizing the number of misclassfid data points as well

as creating the largest margin possible. To constructthe optimiztion objective function,
we define aloss function

e x 0 ity = signtw-x, +6)
o=ty sgnn s = {1V ZSRR N o
Stated mor simply
0 i datais coneetly labeled N
‘o 1 ifda i ncorrectly labeled 62
uniy. ove m dat po
i the sum of the loss functions £(y,.5,).
In addition loss unction, larze
as posible. We canthen frame the lincar SVM optmization problem s
,
armin Y 0(y.5)+ I sbisetio mnl vl =1 (530

Although ths is a concise statemen of the opimization problem, the fact that the loss

optimize.
the solution. A more common formulatian the isgiven by
.
.uﬂm;m,, §0+ I bt min v =1 630
ais thefoss f nd H(E) = max(0, 1 =) s called a Hi

loss function. This is & smooth function that couns the o
and that allows for
employed.

sber of erors in &

Although casily interpretable, finear classifers are of limited value. They are simply too
restrictive for data embedded in & high-dimensional space and which may have the struc-
llustrated in Fig. 5.8

pace. To do this, ply map into
anonlinear, higher-dimensional space

X 00 53
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W can cal the @(x) new obsersables o the data. The SVM algorithm now learms the
hyperplanes that optmaly split the data int distinet clusters in  new space. Thus one
now considers the hyperplane funcion

S0 =W bt b 639

with corresponding labels y; € [<1) or each point f(x;).
Thissimple ide, of nriching feture space by defining new fnctions of the duax.is

» two
=

of the data.

) e G )= oz + ) (534)

“This gives 4 new set of ponm\mmV coordinates in 31 and x; that can be used to embed

the data. This philosapl higher

i much more kel to be separable by hypesplanes. A« simple example,consider e

data illustated in Fig. 5.8(0). A linear clssifer (or hyperplane) in the xi-x2 plane will

clearly not be able to separate the data. However, the embedding (5.34) projects into 3
ree dimensional space which can be casily separated by a hyperplane 18 llusrated in

P23

The abilit of SVM 10 embed in higher-dimensional nonlinear spaces makes it one of
e most successful machine learning algoritims developed. The underlying optimization
algorithm (5.31) remains unchanged, except that the previous labeling function §; =
sign(wx;-+b) is now

5 = signw - 85, +h). 39

“The function #(x) specifis the enriched space of observables. As & general rule, more
features are bettr for classification.

Kernel Methods for SVM

Despite its promise, the SVM method of building nonlinear classifers by enriching in
igher-dimensions leads o a computationally intractable optimization. Specifially, the
large number of additional feaures leads to the curse of dimensionality. Thus computing
the vectors w is prohibiively expensive and may not even be represented explicily in
nemons. e el ales i roblem n i scenao, h w vt i e

as follows

W= ae) 30

where a; are parameters that weight the different nonlinear observable functions (x; ).
“Thus the veetor wis expanded in the observable set of functions. We can then generalize:
(53310 the following

00 = Y0000+ b 6
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o

decision hyperplane

o Ml it ni 5810) using the varables
(1) 3 ) in (5.34), A hyperplanecan now casily separse the

25 = 14 (shaded gray

(7] VTS This cample makes i obvious how  bperplane i

r=ya=

“The kernel funcion (479] i then defined as

K0 = 8(x)) - 00 (538)

‘Wit this e definition of w, the optimization problem (5.31) becomes

PN
METMZHUJ-Y/\+3H2a/.b(ﬂ“1 subjectio minlx; Wl =1 (539)

where i the veetor of  coeficients that must be determined in the minimization
process. There are different conventions for representing the minimization. However, in
this formulation, the minimization is now over @ instcad of .

‘Taylor
a way [479]. The

ver computing the coordinates o the data in tha space, bt raher by simply computing
the inner products betseen all pairs of data i the feature space. For instance, o of the
‘most commnly used kel functions are

Rl b ncions (RBEY K800 (—pli —x1?) (5400
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Palynomial kemel: K (x;,x)=(x; -x+ 1" (5.400)

where N is the degree of polynomials to be considered, which is exceptionally large to

{he ditancehetween diidun dat poins , nd h clasifcaron e, Thes fncions
can be differentiated in order o optimize (5.39).

“This represents the major theorctical underpinning of the SVM method. T alows us
1o coniu ighe-imensioa s usin obserls senrted by kere ntions.

the basic workings of the kemel method on the example of dog and cat classification dat.

as an option.

Gode 14 SVM clasiication.

Load a

1oad dsabatacn m.:

D= (a0 avel ;

Tar21v] o (D meam (00 (1)) 5

features-1:20;

xtraine [v(1:60, features) ; v(81:140, features)]

Labela ones (€0,1); -1xcnes 60,1

Ceat- [v(61:80, features) ; v(141:160, features)] ;
Slonea (25,315 —1eones (20,111

a1 = Eiteamstraing Laber)

test_labels = predict (Nl test) ;

- fiseemistin e, e
redich e fest) )

notion’ ,'REE') ;

Cluesione = ¥ioldions (KAL) 3 conpere lase 1o

Note that in this code e have demonstrated some of the diagnostic features of the SYM
B,

with training. This is  superficial treatment of the SVM. Overall, SVM is one of the most
sophisticated machine learning tools in MATLAB and there are many options tha can be:

Classification Trees and Random Forest

Decision trees are common in business. They establish an algorithmic flow chart for mak-
ing decisions bused on crteria that are deemed important and relaed to & desired out-
come, the workflow
involved in the decision making process. Decision tree learning provides a principled
method based on data for ereating a prediciive model for classification and/or regression.
Along with SVM, classification and regression trees are core machine learning and data
mining algorithms used in industry given their demonstrated success. The work of Leo
Breiman and co-workers [79] established many of the theoretical foundations exploited
today for data mining.
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dendrogram hicrarchical clustering previously demonstrated. I this case, our goal s ot
Lo move from bottom up i the clustering process, bt from top down in order 0 creae the
best splits possible for classifiation. The fact tht it s a supervised algorithm, which uses
Ibeled data,allows us to spit the data accordingly.

are significant advantages in developing decision tres for classification and
reeson: ) hey oflenproduce bl sl hatcan be rpticly diplaycd

making them casy 10 interpret even for nonexperts, (i) they can handle numerical o
caegrcldts squallywel G theycan b sl il o st e il
of the model can be assessed, (v) they perform well with large data sets at seale, and (v)

the algorithms mirror human decision making. again making them more Huﬂvmmble and

the success of
of innovations and algorithms for how to best split the data. The coverage here will be
limited,
Recall that we have the following:

dua [y <R jezi= (12 .m) a1
abels [y, € (1), j €7 € 7) 410)

“The basic decision tre algorithm is firly simpl: () scan through cach component (fea-
) 0 1) ofthe vector x; to idenify the value of ; that gives the best
e

/. The feature giving 1
i)

individual d k
afeaf, on anew branch of the ree. Thi i essentially the inverse of the dendrogram

consider the Fisher 5.1 Forthis data, each
Mower had four features (petal width and length, scpal width and length), and three labels
(setosa,versicolor and virginica). There were flty flowiersof each variety for a total of 150
data points. Thus for this data the vector x; has the four components

sepal width (s42)
sepal length (5420
x5 = petal widih (5420)
petal lengih. (5420

“The decision tre algorithm scans over these four features in order 10 decide how 10 best
split the data. Fig. 524 shows the splitting process in the space of the four variables 11
through x,. Hiustrated are two data planes containing x| versus 13 (panel (b) and 13
ot (anel (). By Vsl iapction, oo can s e (Gl et v

s = 235. No further \plmmg e reined o e s, o it it .
The variable s then Dmvldn the next most promising splitat x; = 1.75. Finally, a third
splitis performed at 5. Only three splits are shown. This process shows that the
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split 1
6
e z [w o setosa
. 25 @ versicolpr
5 5 o virginic}
H b5 4 oal
ER 3 °
3 H
2 g
g T ol
[
o 4 6
4. petal width (cm) 1, sepal width (cm)
[
et Ech v o
e b conetclsaton o e il o he P The bl 1 = 25 rovides
et 5
s o s
i,

versoor vighica

Fgureszs
areconducted,crearing a classfcation ree tht produces a clsseror of 4675

are elear visible. My the xy and
Fig

for Fig. 5.24

The following code fits 4 tree (o the Fisher irs data. Note that the fitctree command
allows for many options, including  cross-validation procedure (used in the code) and
parameter tuning (not used i the code)
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n of Fisher s da,

Gote15 Decision ree clssf

toad piahorict
o (neas, spectes, ‘Haxmunspl

ta,3, Crosaval’, “on’)

tree-titcen
view(tres. mmxm, Mode ,graph’ ) ;
ClassError = kfoldloss (tree)

e resulis of the spliting procedure are demonsiraied in Fig. $.25. The view command
active window showi stucture. The tree can be pruned and
i The class

senerates an

the Fisher irs data is 4.67%,
dogs

P wavelet images. The

ot 16 Decision re classfction of dogs verss s,
ioad dogpace_una

dog wave cat.

ot vimsvaico msen (e 1))

feacure
Lnc 121,80, Features) ; v(81:140, features)1

Eruthe lones (20.1)5 -1+ones (0,1
ctres (xtrain, Label, MaxiunSplits’ 2, ‘Crossval’, 'on’) s
Cla - kfoldLoss wal
vmmm Trained(1}, ‘Hode’ ‘grapn’);

keolaLoss (ual}

vl - e

Fig. 526 shows thetsuling lsifcton s, Not tht the decisio uss eaing alo-
i the 12 and x4

first
w0

P since show them
be more distinguishable than the other PCA components (See Fig. 5.5). For this splittng,
which sevalidated, the class error achieved is approximately 167, which can
be compared with the 30% error of LD,

we consider
ode shows some important uses of the classification and regression tree architectue. T

B. The following

particula, the

Inthis case, Thus,

M

ted, in Fig. 5.27.
of the tre architecture,
ot 17 Decision rc classifcation of census dta.

10a censunions
sdultdacals, [ aser, orkclass:  education mun,

status’,'race’, sex’, 'capital_gai
el o', hours_ par. week: - salizy: D)
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2= 00450372

x4.<00199106 G >- 00199106

Fgwreszn s cat d

spprosimatly 165%

AL = Fitctree(X, salary’,'Pr Selection, curvature’,

Surzogate’, on’)

imp - predictornportance (udl) ;

bar (inp, *Faceco
ticle( bredictor I
ylabel (‘Estimates’) ®
h.XTicklabel = dl.PredictorNanes;
n XTicklabelRotation = 45;

As with the SVM algorithm, there exists a wide variety of tuning parameters for classi-

fication trees, and this s a superfcial treatment. Overall, such trees are one of the most

Sophisticated machine learing tools in MATLAB and there are many options tha can be:
metris.

Random Forest Algorthms.
Before closing this section, it s important to mention Breiman's random fores [77] inno-
Vations for decision leaming tres. Random forests, oF random decision forest, are an

since the decision trees created by splitng are generally not robust 1o different samples
of the data. Thus one can generate two sigaificantly different classification trees with
o subsamples of the data. This presents significant challenges for cross-validation. Tn

The

* habitof
cation.

thus providing a more robust framework for clssi
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59

s
6210

Estimates
o s

Predictors.

P27 Importance of vaiables forpredicton ofslay dat o the US census of 1994, The

ing and bagging. These will not be considered here except to mention that the MATLAB
fgetree exploits many of these techniques through its options. One way to think sbout

ing it taining efforts on hard-to-classiy data insiead of easy-to-clasify data. Random
I

leaming t

Top 10 Algorithms in Data Mining 2008
“This chapter

s il or the s ofdt. Al the it e o sy scsle
g many commercialad opeous: obvare pcages, e Gy s o el
g wbich mthod() shold b e on & g problem. T December 2006, v
e leaming xperts stending h IEEE ncrmaton] Conorene on Dt Minng
(ICDM) identifed the top 10 algorithms for data mining [S62]. The identifid algorithms
where the following: C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN,
Naive Bayes, and CART. These top 10 algorithms were identified at the time as being
among the most influntial data mining algorithms in the research community. In the
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sy s, gt was bty descibed o with i impt o ol

Leuming, ssociton snayi, and ik mining, which sl smons o important
scatch and delopnent. Inrsingly, dsp laming d el
neworks, which are the topic of the next chapter, are not mentioned in the artcle. The
Tondcape of s science el chane nincans in 012 it e ImageNET st
neural networks began to de meaningful metric

for classification and regression accuracy.

Inthis section,
ructureofcach. Many of them have sl been covered i this chaptr This I s not
exhaustive, nor dos it ank them beyond their inclusion in the top 10 st Our objective
is simly o ihlih whs v considerd by thecommnty s the sateoftheart

his
chapter

K-means

i of e wkhs wspend s s sty demointd. e sl
of o k poinis. By

ofthe & o Jgorith iterates 1

e b, To s of e MATLAB comean 5 ollovs
Il riabels, cencers] sknaans (x, )

“The means command takes in data X and the number of prescribed clusters £. It returns
labels for each point labels along with their location centers.

EM (mixture models)

Mixture models are the second workhorse algorithm for unsupervised leaming. The
assumption underlying the mixture models s that the observed data s produced by
ixre of diflnt protailty dirbuton fncions whese weghings s unkow

(m) algorithm. The structure of the MATLAB command is s folows.
Il Mode1-eirgnatot (x, )

where the fitgmaist by defuult fits Gaussian mixtures (0 the data X in & clusters, The
‘Model output i 4 structured variable containing information on the probability distibu-
tions (mean, variance,etc.) along with the goodness-of-i.

Support Vector Machine (SVM)

One of the most powerful and flexible supervised feaming algorithms usd for most of
000, the SVA i an exceptional of-the-shell method fo classfcation and

vegresson. The min ide: projet he daa nto higher dimensions and splitthe data with

hyperplanes Criialto making his work i practice was th keeltic for efficienty

cvaluating inner products of funcions i higher-dimensional space. The siucture of the

MATLAB command is s follow

Il Model - fitcavmixtrain,label);
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Il test_labels = predict (Nodel, test);

Iabel, and
it produces a strctared outpot Mode, The structured output can be used along with the
pradic commind 1 ke et dt e poduce e (eten. Ther et many

methods.

CART (Classification and Regression Tree)
f e last section and " powerful
echnique of a y was ta splt the d led

oceurs along a single varisble a1 a 6
strueture of the MATLAB command i

me to produce branches of the tree structure. The
follows

roo (xtrain, Label) ;

H

i prduces st oupa s, s sy optons nd ting s foc
ttree, of the best off-the-shelf methos.

kenearest Neighbors (N)

“This is perhaps the simplest supervised algorithm to
and easy to execute. Given 4 new data point x; which does not have a label, sin

the k nearest neighbors x; with labels. ;. The label of the new point x; is determined by a
‘majorty vote of the KNN. Given a model for the data, the MATLAB command to execute
the kNN scarch i the following

dersand s gy nerprtl
mply fi

Il label = knnsearch(Mdl, cest)

where the knnsearch uscs the Mal to label the tet data test.

Naive Baye
“The Naive Bayes algorithm provides an n
simple to consruct and does no require any complicated parameter esi

e framework for supervised learning. I is
fon, similar to

Iy m ipon Bayes's th d

onditional probabiliies. Thus one can estimate the label o a new data point based on the
prior probabilty distributions of the labeled data. The MATLAB command structure for
constructing a Naive Bayes model is the ollowing

fitNaiveBayes (xtrain, 1abel)

vher e hcakiveBayescommand s i bl alning dats dencsd by e
todel. The sed with

e pvndxl o 1o e ot

AdaBoost (Ensemble Learing and Boosting)
AdaBoost is an example of an ensemble learning algoritm [188]. Broadly speaking.
AdiBoost is a form of random foret [77] which takes into account an ensemble of
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decision tree models. The way all boostng algorithms work i to first consider an cqual

o how diffcult they are o clasify. Thus the algorithm focuses on harder to classify data.
Thus a family of weak leamers can be trained 10 yield a strong learer by boosting

upon a seminal theoretical contribution by Kearns and Valiant [283]. The structure of the
MATLAB command is as follows

Il ada - fitcensenble (xtrain,label, ‘Method , 'Adaoosthl )

where the ftcensemble command is a general ensemble learer that can do many more
things than AdaBoost, mdudmx robust boosting and gradient boosting. Gradient boosting
s one o the most powerful techniques [159

4.5 (Ensemble Learning of Decision Trees)

1R, Quinlan (44
44]. At core, the alorithm split the data according to an on n entropy score.
Inits latest versions, it supports boosting as well as many other well known functionalites
o improve performance. Broadly, we can think of this as a stong performing version o
highlighted with AdaBoost gives a
i acas

Aorot Agorktan

b A gt he ‘zoal is 1o find frequent itemsets from data. Although i may
sound i very I

provides an effcient algorithm for inding frequent itemsets using a candidate generation
architecture 4], then be used for fast inthe
data

PageRank
“The founding of Google by Sergey Brin and Larry Page revolsed around the PageRank
algorithm [82]. PageRank produces a sati ranking of variables, such as web pages, by
computing an off-lne value for each variable that does ot depend on search queries. The
PageRank i associated with graph theory as it orginally interpreted a hyperfnk from one
page (0 another as a vote. From this, and various modifications of the original algorithm,
ne can then compute an importance score for each variable and provide an ordered rank
list. The nurmber of enbancements for this algorithm is quite large. Producing accurate
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Neural Networks and Deep Learning

Neural networks (NNs) were inspired by the Nobel prize winning work of Hubel and

Wiesel on the primary visual cortex of cats [259], Their seminal experiments showed

that neuronal networks were organized in hicrarchical laers of cells or processing visual

stimulus. The first mathematical model of the NN, termed the Neocognitron in 1980 {193

had many of the characteistic features of today’s decp convolutional NNs (or DCNNs),
i

“The recent success of DCNNs in computer vision has been enabled by two critical com-
ponents: ) te contined st of computona!poer nd ) excptonaly e
a the power of & deep mult-layer axchitecture.
Indec,although he sl inception o N b o s oot sy e
analysis of s and
deep leaming [324]. Prior o this s, e wers s of sl with
approximately tens of thousands of labeled images. ImageNet provided over 15 million
labeled, high-fesolution images with over 22,000 categories. DCNNs, which are only
ot cstegry of NN, v aince anfomed the e of compies v
every meaningful compy

sets which take adv

for elassification and identfication
Ithough ImageNet has been criically enabling for the field, NNs were textbook mate-
il i the early 19905 with a focus typically on 4 small number of layers. Critcal machine
learning tasks such as principal companent analysis (PCA) were shown (o be intimaiely
tantly, there were  num.-
ber of critical innovations which established multlayer feedforward networks as 4 class
of universal approximators [2551. The past five years have seen tremendous advances in
NN architcctures, many designed and tailored for specific application arcas. Innovations
have come from algorithmic modifications tha have led to significant performance ains
in a varety of felds. These innovations include pretraining. dropou, inception modules.
data augmentarion with virtual exampls, batch normalization, andfor residual learning
(See R, [216] for a detailed exposition of NNs). This is only  partial lst of potential
algorithmic innovations, thus highlighting the continuing and rapid pace of progress n the
ek Remurkably, NNswere ot cxen e s of e Lp 10 ot of s i
in 2008 1562]
Aluwl\mxkul. »
of scientiss and engincers.
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As alrcady shown in the last two chapters, all of machine Ieaming revolves fundamen-
tional funci

argmin (fu (Ao . oAz, (A1) )+ ag(A)) 1)

which i often solved using stochastc gradient descent and back propagation algorithms.
Each matrix A
Iayer I is & massivly underdetermined system which i regularized by g(A,). Composi
tion and regulrization are critical for generating expressive representations of the data
and preventing overfiting, respectively. This general optimization framework is at the
center of deep leaming algorithms, and its solution will be considered in this chapter
Importantly, NN have significant potential for overfting of data so that cross-validation
must be carefully considered. Recall that i you don' eross-validate, you is dumb.

Neural Networks: 1-Layer Networks
“The generic architecture of a multi-layer NN is shown in Fig. 6.1 For clasification tasks,
the goal of the NN i to map a st of input data 0 clasification. Specifically, we trin the

NN p the data ¥ As shown in Fig. 6.1, the input

space has the dimension of the raw data x; € R”. The output layer has the dimension of
output layer

the followi

lmn\edmuly, e can s hat here e gt e of desgn quesionseging
NN What the layers? How

hould the outpt yer e d:slgned’ Should one use all--all or :pmmgd connections
layers? How between layers be. mapping
or & nolicar mapping? Much ke e tuning optons on SVM and clasificaton ees.

Initially, we consider the mapping between layers of Fig. 6.1. We denote the various
Iayers between input and output as x4 where  is the layer number. For a inear mapping
between layers,the fllowing relations hold

= A 62

= A ©20)

y=An® 629
he

represented as
At ©3

M
data and the output Iayer for a inear NN i given by
Y= AuAuor A ©

This i generally  highly underdetermined system that requires some constrints on the
Solution in order t0 select a unigue solution. One constrsint is immediatly obvious: The
‘mapping must generate M distinct matrices that give the best mapping. It should be noted
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X X

Input Layer x
Output Layer y

Figure 1 lustration of & earal net archiecture mapping an input ayer x 0 n owtpu ayery. The

] e
A contain the coeficents ha map e variable from ane ayert the e, Although the
N

I “The number of ayersand

frecdom in buiding 4 good classfer.

of functional responses due to the limitations of the linarity.

Nonlinear mappings are also possible, and generally used, in consiructing the NN,

Indeed, nonlinear actvation functions allow for  richer set of functional responses than
Inth i be

*= i ©59)
X = faa ) (©3b)
= fAsx?), ©30)

Not that we have used diferent nonlinear functions () between layers. Ofien a single:

the data between input and output over M layers, the following i derived

Y= S LA AL ) ©6)
which can be compared with (6.1) for the general optmization which constructs the NN.
As a highly underdetermined system, conszaints should be imposed in order 1o extract
4 desired solution type, as in (6.1). For big data spplications such as ImageNET and
computer vision tasks,the opimization associated with this compositional framework is
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expensive given the number of variables that must be determincd. However, for moderate
ed networks

dboth

covered in ate sections.

A One-Layer Network
“To gain insight into how an NN might be constructed, we will consider asingle layer net-

was considered extensively i the previous chapter. Recall that we were given images of
dogs and cats, or a wavclet version of dogs and cats. Fig. 6.2 shows our construction. To
‘make thi as simple as possibe, we consider the simple NN output

¥y

(dog. ca

-1 ©n

which Iabels each data vector with an output y € (1], In this case the output layer is
a single node. As in previous supervised learning algorithms the goal is to determine &
‘mapping so that ach data vector , is labeled corectly by ¥,

“The casiest mapping is 4 lincar mapping between the input images x; € B and the
output layer. This gives a incar system AX = Y of the form

o
AX = [ @ UH][X\ X, ]:H! +1 1-1] (68)
[
Input Layer x Perceptrony ¢ {+1}
+1dog
1cat
A
p— s

ekl A

ouput =
rearession fo the matsx A mapping the images t label space
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where cach column of the matrx X is a dog or cat image and the columns of ¥ are its
corresponding labels. Since the output Tayer is a single node. both A and ¥ reduce to
vectors. I this case, our goal is to determine the maltix (vector) A with comporents a;.
“The simplest solution i t take the pseudo-inverse of the data maix X

A=vx ©9)

Of course, we
could also salve this lincar system in a varity of other ways, including with sparsity-
promoring methods. The following code solves this problem through both least-square
iting (piny) and the LASSO.

Godet Ltaye, incar neural network

1oad catData_v.mat; losd dogData w.mat; CD[dog wave cat
traine [dog_wave (:,1:60) cat_wave(:,1:60)
testaldog_mave (s, 61:80) cat_wave(:,61:80)]

Labels[ones (60,1 ; -1rone (80,111 .

Aelabelupin(crain); test_label
subplot(4,1,1), bar (tast_Tabels)
subplot(;1,2), bar (3]
gure (2) subplot(2,2,1)
2,32)) 1 peolor(a2),

gn(ascest) ;

sigurem), eupiorisi13)
o{train.® label.’, Lanbda’,0.1).";
m, Vabelassign astest] ;

= (Fest_labels)
mpcm 10
()
figure(2), subplor(2,2,2)
32)); poolor(az),

Figs. 6.3 and 6.4 show the results of this inear sngle-layer NN with single node output
layer. Specificaly, the four rows of Fig. 6.3 show the output layer on the withheld test data
for both the pseudo-inverse and LASSO methods along with a bar graph of the 3232
(1024 pixels) weightings of the matix A. Note that all matrx elements are nonzero in
the peudo-inverse solution, while the LASSO ighlights 4 small number of pixels that
can clasify the pictures as well as using all pixels. Fig. 6.4 shows the matrix A for the
o solution srategies reshaped into 32 32 images. Note that for the pscudorinverse, the
weightings of the matrix elements A show many features of the cat and dog face. For
the LASSO method, only a few pixels are required that are clustered near the eyes and
ears. Thus for this single layer network, inerpretable resuls are achieved by looking at the
weights generated in the malrix A.

Multi-Layer Networks and Activation Functions

“The previous section constructed what is perhaps the simplest NN possibl. I was linear,
had a single layer, and a single output layer neuron. The potental generalizations are
endless, but we will focus on two simple extensions of the NN in this section. The fist
extension concerns the assumption of inearity in which we assumed that there s a inear
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(@) cats

(© cats

Fguwess ey

lyerscorey € rsining and
p

Afortne

lements,thus suggesing the NN is highy sparse

Figure i Weightings o h haped The ows h

A computed by LASSO. Both matricesprovidesinilr clssifcation scores on withhel daa. They
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transform from the image space (0 the output layer: Ax = y in (68). We highlight here

y=rax ©10)

where £() opi
“The linear mapping used previously,although simple, does not offer the flexibiliy and
dard by

fo=x — linear 6.11a)
=2 153 - ren o
R oo
~ o
- el D, (G119
s e
s s
oo

ReLU. 70) = ReLUCx).
With a nonlincar activation functon /), or if there are more  hn one um then
standard linear

o Bih dimenionl spce where €ach ety of th mat A neds o b ound rough
optimization.

without using specialy optimization methods. Fortunately: the two dominan optimiza-
tion components for waining NN, sochastic gradient descent and backpropagation, are

Muldple layers can also be considered as shown in (6.4) and (6.50). In his case, the
Iy

P 2 A
in contrast 0 the linear case where only a single matri is determined A& = Ay - AaAy.
“The multiple layer

each mati ementofthe M matics must b deermined. Bven fora ey s,
an optimization

anonlinear transier s
MATLA

s sk oo uch s o n i, b e ige
ind comvenient Inthe
[nlhrwmg . i i N iy benween dogs and e a4 i the prvions
cample. However, in this case, we allow the single layer to have a nonlinear transfer
ancio tha maps he input o e ot e The ot yerFor s xample il be
modified 0 the following.
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Half of the datais esls
The following code buikl a network eing the train command to clssify between our
images.

o2 Neural network with nonlincar tansir uncions

- (dog_wave(:,1 wave(:,1:40)1

as la0g save 1,41:30) cat_wave :,43:80)15

Tabelfones (40,1)  zexos (30,1
Teres(45,1) omenlioi i) e

)
tansig’;

net = patternnet (2, ‘crains
net.layera(1).tranafericn

et = traininot,x,label) ;
view(net)

v ;

Y2= net (x:

bext = perforn(net, labsl,y) s

sscss = vecaind(y) s
1assess

)i

In the code above, the patternnet command builds a classification network with two
oups (12, I o opunizs wih e ot Ay ih 3 sl o
radens bckrpogaon, s seayers o allows s 0 gy e s Gncton.
o i cae byprbolc angen funcions (6114 The v (ae) ommand produc
diagnostic ool shown in Fig. 6.5 that summarizes the optimization and N

he resuls of
are shown in Fig. 6.6, Specifcally,the desired outputs are given by the veetors (6.12). For
boh the training.
raining images (40 cats and 40 dogs) and the 80 withheld images (40 cats and 40 dogs).
“The training set produces a perfect classifie using a one layer network with a hyperbolic

1,

and cats, yielding an accuracy of = §5% on new data.

 diagnostic (ool shown in Fig. 6.5 allows access (0 a number of features critcal
for evaluating the NN. Fig. 67 is & summary of the performance achieved by the NN
training tool. In this figure, the training algorithm automatically breaks the data into &
raining, validation and test set. The backpropagation enabled, sochastc gradient descent
optmizaion o hen s hrough  umber o i pocs il he s
valida

validation. For this case, only a limited amount of data is sed for raining (40 dogs and 40
s, s ki it o shin s perornace Regless, ey s,

e e ol s sl il i i NN st ol of i 63
ih Fig. 6.7 the
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Neural Network
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Figure 65 MATL

Histogram and confsion buttons prodoce Figs. 6.7-6.9 respecticly

Jidation, and “This provide: 1l assessment
of the classifiation quality that can be achieved by the NN training algorithm. Another
view of the performance can be seen in the confusion matrices for he training, valdation,
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dogs

Training

=

g

2

El

=

40
Fiuess vectorsy = [y 1" e
100%

wilheld et

and testdata. This s shown n Fig. 69, Overall, between Figs. 6.7 10 69, high-qualiy diag-
nosic tools are available 1 evaluate how well the NN is able o achieve ts clssification
task. The performance limits are casly seen i these fgures.

The Backpropagation Algorithm
As was shown for the NNs of the last two sections, training da i required o determine
the weights of the network. Specifically,the network weights are determined so a o best
Inthe I-fayer network,
regression and LASSO. This shows that at s core, an optimization routine and objective
function is required o determine the weights. The objective function should minimize
a measure of the misclassiied images. The optimization. hovever, can be modified by
4 0.

In practice, the objective function chosen for optimization is not the true objective func-
aproxy for

entiate
different objective functions for different tasks. Insead, one often considers 4 suitably



63 The Backpropagation Algorithm 205

Best Validation Performance is 0.0041992 at epoch 22

10°
g
g 107
3
£
8
100

5
28 Epochs

Figure 7 Summary of raining of the NN over & number of pochs, The NN arcitecture

maimun of

has only “This e
Fig 66,

chosen loss function 50 as (0 approximate the true objective. Ulimately,
il s il o wiing NN

“The backpropagation algorith (backprop) explois the compositional nature of NNs
o oner 0 e optimization problem for determining the weights of the network.
Specifically,
(See Section 4.2). Backprop relis on a simple mathematical principles the chain rule
for differentiation. Moreover, it can be proven th mputational time required to
evaluate the gradient is within a factor of five of the time required for computing the
actual function itself [44]. This is known as the Baur-Strassen theorem. Fig. 6.10 gives
the simplest example of backprop and how the gradient descent is 1o be performed. The

. one hidden layer network, b

mputational

(f ). b ©13)

b

Ths given a function f() and g() with weighting constants a and b, the output error

©19

!
E=300-
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Error Histogram with 20 Bins

Instances

o812
szt
0783
06439

Figure 8 Summary of the ertor performance of the NN architecture for raining, validation and tes
e Fig 66,

where y i the correct output and y is the NN approximation 1o the output The goal is 0
find a and b to miimize the rror. The minimization reqires

A critial abservation is that the compositional nature of the network along with the chain
rule forces the optimization to backpropagate erro through the network. I particulr, the
Jashow how this backprop occurs. Given functions £ () ind ¢(.),the chain
rule can be explictly computed.

Backprop results i an ierative, gradient descent update rule

(©16)

(©160)

where 3
¢ ! withall trative

optimization, a good inital guess is eritical 0 achieve  good solution in 4 reasonable
amount of computational

Backprop proceeds as follows: (i) A NN is specified along with a abeled rining sel.
i) The initil weights of the network are set o random values. Importanty, one must
o initialize the weights 1o zero, similar to what may be done in other machine learning
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Tolning Contuson Matex Vaigston Contusion s

Targotclass

A Contuson trx

outputciass

Targrciass

Targetclass.

wainine.
inteactve tool o Fig, 66.

algorithms.
neuron will e identical, because the gradients will be idenical. Morcover, NN often get
"

ifferent random values. (i) The training data is run through the network o produce
an output y, whose ideal ground-truth output is yo. The derivatives with respect to cach
15)

16 )

‘Asasimple example, consider he linear activation function

S = gi.a) = at. ©1n

Inthis case we have in Fig. 6.10

©182)
(©185)
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: fa,a) g(z,b) Y
© - © S @
input hidden layer output

y=g(f(x.a).b)

Figure 830 lusrtion ofthe buckpropagation lzorthm on  one-node,one hidden L
network

b

(7 (x,), ). By minimizing the erorbetwcen the cutput v and s desired ouput
it

s of the weights
network

‘We can now explicity compute the gradients such as (6.15). This gives

o= bx (6.199)

d:
i da

Go-Mr=—On-v-ax 619%)

“Thus with the current values of a and b, along with the input-output pair x and y and
targettuth y
perform he update (6.16).

“The backprop for & deeper net follows n a similar ushion. Consider a network with 3
hidden layers labeled 2 10 2, with the frst connection weight a between x and 21, The
‘generalization of Fig. 6,10 and (6.15) s given by

(©20)

“The cascade of derivates induced by the composition and chain rule highlights the back-
propagation of errors that occurs when minimizing the classification erro.

A full generalization of backprop involves multipl layers as well multiple nodes per
fayer. The generl o i ilstatd n Fig. .. The bjecive is 0 dtemine e
of network
o be updted Indeed,
Ns can thus

sl rom thecun fdmersionaly s ach i o one ayer o o s

ot dimenionl

of the matrices A, llustrated n Fig. 6.1, then
Wepr = w4 SVE ©21)

‘where the gradient of the error V E, through the composition and chain rule, produces the
Jgorithm $

‘component-by-component way.
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9E
o ©2)
ny

where this equation holds for the jih component of the vector w. The term 3£/

produces the backpropagation through the chain rule, ic. it produces the sequential set
of functions (0 evaluate 25 i (6.20). Methods for solving this optimization more quickly.

Perhaps the most important method is stochastic eradient descent which is considered in
the next section.

‘The Stochastic Gradient Descent Al

Training neural networks is computationally expensive due to the size of the NN being

trained. Even NNs of modest size can become probibitively expensive f the optimization

Foutines used for training are not well informed. Two algorithms have been especially
backy

Backprop allows for an cffcient computation of the objective function's gradient while

optimization methads for rining NN continue to provide computational improvements,
ofthe

core architcetur for building NN.

for nonlinear regression where the dat it akes the general form

S0 = fiB) ©23)

where  are fitting coeffcients used o minimize the error. In NN, the parameters § are
the network weights, thus we can rewrie this in the form

I

S AL AL A ©29)
where the A, are the connetivity maices from one layer o the next n the NN. Thus Ay
conncesthe st nd econd ayrs, and here e M Hidden layer

T gl of snin the NN 1o s e sror bt henetvork snd e s
“The standrd root-mean square eror forthis case s defined as

g E(As As A = argmin 3 /5 A1 A )<y (625)

which can be minimized by setting the partial derivative with respect 1o cach malrix com-
ponent o zero, e, we require 0F/0(ay); =

where ) is the th ow and i column
ofthe kth matix. (k = 12, M) Recal that the ero derivate is a minimum snce there
Foror

further that
as shown in Section 4., this leads (0 & Newton-Raphson iteration scheme for
finding the minima

X =) =4V x)) ©26)
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4 is a parameter determining how fa  stcp should be taken slong the gradient
diteerion. In NNs, this parameter is called the learning rate. Unlike standard gradient
descent, it can be computationally prokibitiv o compute an optimal leaming rate.

ldhough the optimization formulation i easily constructed, evaluating (6.25) is often
‘computationally intactable for NNs. This due to two reasons: (i) the number of malrix
weighting parameters for each A, s quite large, and (i) the number of data points » is
senerally also large.

“To render the computation (6.25) potentally tractable, SGD does not estimate the gra-
dient in (6.26) using all  data points. Rather, a single, randomly chosen data point, o &
subset for barch gradient descen, s used to approximate the gradient at each siep of U
teration. I this case, we can reformulate the least-square fting of 6.25) so that

EA1 Az A

A ©21)

and

EeAr Az Aw) = (rlse A A Aw) = 30" (628)

where () is now the fitting function for cach data point, and the enties of the marices
A, are determined from the optimization process.

W10 = W)~ 5V i(w)) (©29)
where w; is the veetor of all the network weights from A, (j M) atthe jun
instead

of computing the gradient with all n poiats, only a single data point i randomly selected
and used. At the next iteration, another randomly selected point is used to compute the

data to converge, but cach step is now casy 1o cvaluate versus the expensive computation
of the Jacobian which is required for the gradient. If instead of  single point,  subset o
points s used, then we have the following batch gradient descent algorithm.
Wyt() = W)~ OV [ w)) (©30)
where K € [k, k. k] denotes the p randomly selected data poiats ; used 10 approx-
imate the gradient
“The following code is a modification of the code shown in Section 4.2 for gradient
descnt. The oo s il kg i sbanplin of e it 1
oximate the gradient. Specif h gradient descent is illstrated wilh 3 fxed
eaming e of 5 = TcnWmhnn:uscdwﬂwmxumlclhtgmmcnlolmcﬁmcnnnxl
each step.

o83 Stochastic sradient descent algorithm.

hi6; y--:hss; n-lengthix);
cohgrid(x,y); clear x, clear y

5-exp(-0.14 (34 (X-3) 24 (¥-3) . 2))) ¢
radiont (., )

HH, 5-1.640xp(-0.054 (34 (X+3) .2+ (¥+3) .%2)) ;
51+ (0,

tarx, dry)




5.4 The Stochastic Gradient Descent Algorithm 211

502140 1811 y0-10 5 25 colalrror bt wer) s
for 33i:
danemin); 12 1osert (ali:10))
B oz iasao))

)
ek A4 Ty )5
12 aryliLi2) )y )

enterpa (L4112 (41100 [ary 1112) x40y G
oy

LE Jasl; xlex; yley; f1-£; end
L sk b e el
£31t; end

6.1 shows the convergence of SGD for three initial conditions. As with gradient

¥

descen, the algorithm can ge stuck in local minima. Howeve, the SGD now approxi

matesthe gradint with oy 100 poins nstcad of the full 10" poiats, thus allowin for &
I

gorih
ey

2,

Figure 11 Stochastic gradientdescentappied 10 the function eaured in Fig. 4.3, The
46, Each

sepor
it nstead of the 10° atapoints of the data. Thiee il conditonsar shown:
i) = (640 0,5 5,2 Th st of s i) e sk na s i
‘whie the other o
the gradient functions of Fig. 4.5 are wsed 1 update the soutons.
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dimensional. For this reason, SGD has become & eritcally enabling part of NN training.
Note tha the learning rate, batch size, and data sampling play an importan role in the
convergence of the metl

Deep Convolutional Neural Networks
With the basics of the NN architecture in hand, along with an undersanding of how to

ffcinly (SGD), we e sy o cosn dep comoluion neural nets (DCNN) which
Indeed,

tioners. DONN:
Bt 2 mach a3 we would ke o he & principled approach 1o uding DONN., hee
remains a great deal of artsiry and expert intuition for producing the highest performing
networks. Moreover, DCNNs e especially prone 1o overtraining, thus requiring special

et al. [216] provides a detailed an extensive account of the state-of-the-art in DCNN. It
i especally useful for highlighting many rules-of-thumb and ricks for trining cffctive

CNNs.
Like SVM and random forestslgorithms, the MATLAB package for building NNs has o

s ncruheiming a1 s - As Vi pod ot he bgiin of s s,

How many layers should be used? What should be the dimension of the layers? e
should the output layer be designed? Should one use allto-ll or sparsfied connections
betwween layers? How should the mapping between layers be performed: 4 linear mapping
or a nonlinear mapping?

61 .

I feature spaces, that
can be engincered by the choice of activation functions and/or network parametrizations.
AN of these layers ae ulimately cormbined into the output layer. The number of connec-
tions that require updatng through buckvmv i SGD e be oty g s
even modest networks and training data re signiffant computationsl resources
' pial DONN s comscted of 8 mumber of hyes with DCNNS il g
betuween 7-10 layers. More recent effots have considered the advantages of a trul

network with approximately 100 layers, bot the merits of such architectures are sill not
fully kaown.
‘comprise DCNNs, including convolutional layers, pooling layers, fully-connected layers
and dropout.

Convolutional Layers
Convolutional ‘ourie
Chapter

Fig 6.1 boxes)
ray
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convolution pooling
@ 1) (b) max
= m S m
convolution

convolution

© input

output

Figure 12 Prototypical DONN architeture which ncludes commanly used consoltiosl and
poolin laers. The drk sray boxesshow the convolutions]sampling from ayer o Jayer. Note that
cach. featre spaces.

“The etwork ultimately itegrtesall this nformation nto the ouput ayes.

the data into a new ode through a given actvation function, as shown in Fig. 6.12(2).
feature spaces are thus built from the smaller patches of the data. Convolutional

workers (358, 12]. Note that in Fig. 6,12, the input layer can be used 1o consiruct many

of the convolutional window

Pooling Layers

I
in 4 DONN architecture. s function is 1o progressively reduce the spatial size of the

“This i an effective sirategy 1o (9) help control overfiting and (i) fit the computation in
memry. Pooling. pih slce of
them spatially. Using the max operation, ic. the maximum value for all the nodes in its

of max pooling is & pooling layer with flers of size 22 applied with astride of 2 down-
samples every depth slice in the input by 2 along both widih and height, discarding 75%
e E would 4

numbers An
example max pooling operation is shown in Fig. 6.12(b), where 33 convolutional cell
s ransformed 1o a single number which is the maximum of the 9 numbers.
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Fully-Connected Layers

Occsonally, uly coneced yers s o th DCNN ot it egons

the fuly-conneied nerrestoes b oy, This 1 anoter mmmunl) e
layerin the DCN
pufmmﬂme

Dropout
Inded,

often ful 10 demonstrate good generalizability properties (See Chapter 4 on regression).

the predictions of many diffrent frge neural nets for online implementation. Dropout is
a technique which helps address this problem. The key idea is to randomly drop nodes
i the network (alon wih their connections) from the DCNN during training, ie. during
Dibackprop updates o the network weights. This prevents units from co-adapting too

D “thinned”

netwworks. This ide i simila to the cnsemble methods for building randorm forests. At
st time, it is easy (o approximate the effeet of averaging the predictions of all these
thinned networks by simply using a single unthinned network that has smaller weights

regularizarion methods [499]

There are many other techniques that have been devised for training DCNNs, but the
above methods highlight some of the most commonly used. The most successfol applica-
tions o these technigues tend to be in computer vision tasks where DCNNs offer unpar-
alleled performance in comparison o other machine learning methods. Importantly, the
ImageNET data set is what allowed these DCNN layers to be maximally leveraged for
human level recognition performance.

e use a data set that b a characters A, B, and C.

Fig 6.15.
Gotes Loading alphabetimages.
load lettersTrainset
porn - Tandpern(1500,20) )
for3 = 1:20
plot(4,5,9)
imshow (XTvain :, ¢, + perm(3))) s

i cole s he i i, X, st o 1500 2628 sl g of

ariable TTrain contains the categorical array of the ltter labels, . the i
The following code comms and i  DCNN

Gots Traina DCNN.

layers = livageTnputlayer((26 28 11);
convolutionzdLayer (5, 16)
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AERRAHN
HAREE
HEEBR
EEEER

Figure 13 Represeniaiv imagesofthe alphabet charactes A, B, and C, Thereare a sl of 1500
o eyt g (v of et e i (s

Note the simplicity in how diverse network layers
o ReLuacaionlyer is speifedsong wih he rmiing mehod of sochasic gradien
desn s The trnaetwork command et the ptionsand s sei

now be used on

are casily put together. In addition,

atestdata set.

God6 Test the DONN performance

can probbly casily engineer a network to outperform the ilustrated DCNN. As already
mentioned, artstry and expert intvition are critical for producing the highest performing
networks.
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Neural Networks for Dynamical Systems

feural networks offer an amazingly flexible axchitecture for performing 2 diverse
mathematical tasks. To retun to'S. Mallat: Supervised learning is a high-dimensional
interpolation problem [358]. Thus if sufciently rich data can be acquired., NN offe the

“To this point,
Howener, NNs ca s b usd for Ftte e predictions of dymmical systems (Sec
Chapter 7.

To demonstrate the uscfulness of NNs for applications in dynamical systems, we will
onsider the Lorenz system of differential equations [345]

v-n (®319)
(©310)
®310)

e the st of the ysem i ivn by = [+ e parameters @ = 10, =
= /3, T sy il b comierad o o n e s chapter.

e this e demonstsaton o

o N o v et e ymamicl sy, Specicaly, he 2ol of s

For the presen, we will s

sate space from X, 10 X1, where k denote the sate o the system at time 5. Accurately
in Loren it

nonlinear.
“The train

st required o the NN is constructed from high-accuracy simulations of
the Lorenz \mm The following code generates a diverse set of inital conditions. One.

sampling time s fixed at At = 0.01. Note that the sampling time i not the same as the

chosen o meet the stringent tolerances of accuracy chosen for this example.

o7 Creste rining dotaof Loren trjecoris.

Torens = o(e.0 ([ sig » (x(2) - x(
T ea-x) xm - x@
XX - bk i

RelTol’,le-10 o1, 1e-11)

+1)
Bios o v 37

61, x0")
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(1)

ult) - . w0 ®

P64
conions el o e e =10, 25 10 =3/ s s

e okt s o et o e o1

“The simulation of the Lorenz system produces to key matrces: input and output. The
former is 4 matrix of the system at x;, while the later is the corresponding state of the
system xe 1 advanced A7 =

“The NN must lean the nonlinear mapping rom X, t0 .. Fig. 6.14 shows the various

atractor of the Lorenz system.

into the future for an asbitrary inital condition. Here, a three-layer network is constructed
‘with ten nodes in cach layer and a different actvation unit for cach layer. The choice of
activation types, nodes i the layer and number of layers e arbitary. It s tivil to make
e e nd wides and forc diflrnt atation it T performance of

Loing The N s b withhe Iulhvwlllg fewlines of code.

Gode 68 Buid  newral nework for Lorenz systenn.
et = fesdforvardner (110 10 1015
net.layera(1).transferfon - ' logsig’;
selayers ) exancterzen
net layers(3) transferec:

P Eaintmat, nput. output.’ 7
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[Cp———" nsenz s oveu

Best Vldaton Pctormanc s 507200 1 sp0ch 1000

®)

o s

[rer—

Figos1s 1

or
! Over 1000 epochs of
10 ane produced. The NN is aso

process.

The code produces & function net which can be used with a new set of data to produce

predictions of the future. Specificall, the function net gives the nonlinear mapping from

10 xe41. Fig. 6.15 shows the structure of the nework along with the performance of

the training over 1000 epochs of taining. The results of the cross-validation are also

demonstrsted. The NN converges steadily o a network that produces aceuracies o the
fer of 105,

Once the NN is trained on the trajectory data, the nonlinear model mapping ¥ 10 %¢+1
can be used to predict the foture stte of the sysiem from an inital condition. In the
following code, the trained function net s used (o take an iniial condition and advance.
the soluton Ar

241 into the future. This iterative mapping can produc 4 prediction for the future site
as far into the future as desired. In what follows, the mapping is used 1o predict the
Lorenz solutions cight time units into the future from for a given initial condition. This
can then be compared against the ground trth simulation of the evolution using a 4ih-

the dynamics.
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Fig.6.17.

Code 69 Neurl network for prdicton.

)=y

Plot3 (yan(:, 1) ,yan(:,2) ,ynn(:,3), ", Linewideh  [2])

g 6.16 shows the evolution of two randomly drawn trajectores (solid lines) com-
pared against the NN prediction of the trajectores (dotted lines). The NN prediction is
This

mapping X 10 X,+1. The qualiy of the approximation is more clearly seen in Fig. 6.17
e the time evalution of the il components o x o shown aginst the NN
prictons. Ses Seton 1.5 or e et
i

M "
e algorithm which is approximately equivalent o a 4th-order Runge-Kuta scheme
I

1215) and for decades. Hi des
n made recently in using DNNs to learn Koopman embeddings, resultng in several
oo e 155, 36 35, 560 413, 351 For e the VAMIcs e
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Simulation 1 Simulation 2

20

a(t) z(t)

o 0

20 20
o 2 4 6 8 0 2 4 & 8

50

y() y()
0 oj Ay

50 50
o 2 4 6 8 0 2 4 & 8

50

=(t)

67

Fpures 17
616,
5
e
entire time window,
e (550, 368] uses and a custom
an impressive p In an aliernative formu
ation, varational w-rank models
representations of the Koopman operator o du 541 By consiruction, the resuling
al networks
and the physical nterpretation of Koopman theory. In 4l of these recent studies, DNN
ther

leading methods on challenging problems.

The Diversity of Neural Networks

There are a wide variety of NN architectures, with only  few of the most dominant
architectures considered thus far. This chapter and book does not attempt to give 4 com-
prefensive assessment of the state-of-the-art in neural networks. Rather, our focus is on

NN t0 4 dominant position in modern data sience. For 2 more in-depth review, please
see [216]. However, to conclude this chapter, we would like o highlight some of the
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NN architcctures that ar used in practce for various data science tasks. This overview
i inspired by the neural nework 200 as highlighted by Fiodor Van Veen of the Asimov
Institute (hep:/www.asimovinstitute org).

“The neural network 200 highlights some of the different arehitectural structures around
NNs. Some of the networks highlighted are commonly used across industry, while others
serve niche roles for specific applications. Regardless, it demonstrats tht tremendous
variability and rescarch effort focused on NN as a core data science tool. Fig. 6.18 high-
lights the prototype structures to be discussed in what follows. Note tht the bottom panel

s & ey to the differen type of nodes in the network, including input cells, outpat cels,
and hidden cels. Additionaly,the hidden layer NN cellscan have memory effects, kemnel
structures andior convolution/pooling. For cach NN architecture, o brief description is
eiven along with the original paper proposing the technique.

Perceptron

“The first mathematical model of NNs by Fukushima was termed the Neocogitron in

1980 (193], His model had a single layer with a single output el called the perceptron,
Fig. 6.

tecture to classify between dogs and cats. The perceptron is an algorithm for supervised
earning of binary classfers

Feed Forward
Fed forwand necworkscomnect the npu ayr 0 0upat Iy by formin comestions
between the units so that they do not form a cyci

of this architecture where the information simply propagates from left o right in the
netsork. I is often the workorse of supervised leaming where the weights are trained

and 6.15 for training a classifier for dogs versus cats and predicting time-steps of the
Loren atractor

ply put together o hidden layers,typically
7-10 layers, to form the NN. A second important class of FF s the radial basis network.
‘which uses radial busis functions s the actvation units [87]. Like any FF network, radial
basis function networks have many uses, including function approximaion, time series
prediction, classification, and control

Recurrent Neural Nﬂwmk (RNN)
hsimidin B, 6180 bt o

i havior for
atime Wu..mmu e o e ks, RN ot e

shows that each cell feeds back on itsell. This self-interaction, which is ot part of the
FF ittt s o s vty of onovatons, Syl o o e delays

i Partof two key innovations: ong:shor term memory (LSTMnetworks [248] and
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(B)AE () VAE/DAE  (d)SAE () RBM

& &

(i) DBM

(@) RNN
(LSTM/GRU)

OO0y
REBRBAK
VaVavavave

RARRLR
X0
A

(p) DRN (@ KN () NT™M
Input cell Memory cell
@ Output cell © Convolution/Pooling cell
© Hidden cell ©  Kernel cell

Figure 618 Neural necwork archicetures commorly considerd n he lrature. The NNs are

and thei aronym s explined n he et
gared. [132], LSTM is of pa portance as it revolutionized
I recognition, sttng a varity of

‘model in a variety of spech applications. GRUs are a varition of LSTMs which have
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Auto Encoder (AE)
“The aim of c din Fig. 6.18(b)
ing) for a set of data, typically for the purpose of dimensionality reduction. For AES, the

transform into and out of & new representation, acting
the dat

approximate identity map on

techni s PCA. AEs can potentally produc nonlinear PCA representations of
L dt, o molincr il o e the i houkd b embedded (11 Since ot
data lives in nonlinear subspaces, AES are an important class of NN for data science, with
the standard A ar
commonly used. The variational auto encoder (VAE) [290] (shown in Fig. 6.18(c) is

pop By making strong
latent variables,

eradient descent algorithms 10 provide a good assessments of data in an unsupervised

fashion. The denoising auto encoder (DAE) [41] (shown in Fig. 6.18(c) takes a parially

cormupted input during training 1o recover the original undistoried input. Thus noise is
intentionally added to the input in order 1o learn the nonlincar embedding. Finall, the
sparse auto encoder (SAE) 1432] (shown in Fig. 6.18(d)) imposes sparsity on the hidder
e g rin, whle v st i of i i i s, 0 0 0

der ca ] A e ot . Syt i il impned by
rmaholing ot th o sromges i

Markov Chain (MC)
farkov chain is a stochastic model describing a sequence of possible events in which
the probabilty of cach event depends only on the stae attained in the previous even. So
although not formally a NN, it shares many common features with RNNs. Markov chains
Fig. 6.18(0) shows th

each cll cels

Hopfield Network (HN)

A Hopfield network is 4 form of a RNN which was popularized by John Hopfield in
1982 for understanding human memory [254]. Fig. 6.18(2) shows the basic architecture
of an all-to-all connected network where cach node can act as an input cell The network

nodes. Given an inpu, it s itrated on the network with a guarantce to converge (0 a local
minimum. Sometmes i comverge (0 4 false pattern, or memory (wrong local minimum),
rather than the sored patten (expected local minimum).

g

Boltzmann Machine (BM)
e Bolzmann mocine, sometimes calld  stochasic Hopld networs wit fiden
n ey were one of the

first neural learning int

1246]. g 6.18(h) shows
the structure of the BM. Note that unlike Markov chains (which have no input unit) or
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Hopficld networks (where al cells are inputs). the BM i & hybrid which has & mixture
o it e and idden unit: Bl machies s el appaln due 10 e
Boliz-

‘mann disribution in statistcal mecharics, which is used in thei sampling function

Restricted Boltzmann Machine (RBM)
Introduced under the name Harmoniun by Paul Smolensky in 1986 [493], RBMs have
seen proposed for dimensionality reduction, clasifcation, collsborative filering, feature
leamning, and topic modeling. They can be trained for cither supervised or unsupervised
tasks. G. Hinton helped bring them to prominence by developing fast algorithms for eval-
g e 297 RBMs e st of B whers sticions e nposd n e N

och it sodes e N st form i gagh (S i, 615, This s of
odes from each of the o roups of units (commonly refered 0 s the “Visibe
“hidden”

‘connections between nodes within  group. RBMs can be used in decp learming networks
and deep beliel networks by stacking RBMs and optionally fine-tuning the resulting deep
network with gradient descent and backpropagation.

Deep Boliof Network (DBN)
DBNs are a generative graphical model that are composed of muldple layers of latnt
hidden variables, with connections between the layers but not between units widhin each
Iayer [52]. Fig. 6.18() shows the architecture of the DBN, The training of the DBNs can
done stack by stack from AE o REM layers. Thus each of these layers only has to
Ieam o encode the previous network, which is efectively a greedy training algorithm for
finding locally optimal solutions. Thus DBNs can be viewed as 4 composition of simple,
umsupervised networks such as RBMs and AEs where cach sub-network's hidden layer
Serves as the visible layer for he nex.

Deep Convolutional Neural Network (DCHN)
DCNNs are the workhorse of computer ision and hav already been considered in this
chapter. They are abstracly represented in Fig. 6.15(), and in & more specifc fashion in
Fig. 6.12. Their impact and influence on computer vision cannot be overestimated. They
were originally developed for document recognition [325].

Deconvolutional Network (ON)
Networks, sh

Fig. 6.18(K DCNNs 15671
The mathematical structure of DN permit the unsupervised construction of hierarchical
image representations. These representations can be used for both low-level asks such as
denoising, as well as providing features for abject recognition. Each level of the hierarchy
. itis well suited for computer vision tasks.

larger scale in the image. As with DCNN
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Deep Convolutional Inverse Graphics Network (DCIGN)

“The DCIGN is  form of a VAE that uses DCNNs for the encoding and decoding [313]. As

with the AE/VAE/SAE structures, the output layer shown in Fig. 6.18() is consirained to

match the input ayer. DCIGN combine the power of DCNNs with VAES, which provides
m

Generative Adversarial Network (GAN)

In an innovative modification of NNs, the GAN architeeture of Fig. 6.18(m) trains two
networks simulianeously [217]. The networks, ofien which are a combination of DCNNs
indon . i by on of e necvorks gencraing conen, which e other tmps
0 judge. Speci awork generates candidates and the other evaluates them,
Tyl the generaiv netwrk et 1 map fom et spae 1 & il daa
disribution of iterest, while the discriminative network discriminates between nstances
from the true data distibution and candidates produced by the generstor, The generative

owork's "

“fool” the discriminator network by producing novel synthesized instances tha appear (o
The GAN

Liquid State Machine (LSM)
“The LSM shown in Fig. 6.18(n) is a particular kind of spiking neural network [352], An

external sources (he inputs) as wellas from other nodes, Nodes are randomly connected
0 cach other. The recurrent naure of the connections turns the time varying input into 3
spatio-temporal pattern of activations in the network nodes. The spatio-temporal patterns
of activation are read out by linear discriminant units. This arct

spiking neurons in the brain, thus helping understand how information processing and
discrimination might happen using spiking neurons.

hitecture is motivated by

Extreme Learning Machine (ELW)

With the same underlying architecture of an LSM shown in Fig. 6.18(1)
FF network for clasification, regression, clusering, sparse approximation, compression
nd st kg w3 wk layer o muliple layers of hidden nodes, where the
parameters

e . Thee i

Misa

sodes can be randomly assigned nd never upma o canbe

In most cases, of

idden modes e usually eamed i  single sep, which csentally amounts 1 leaing
T 8]

Echo State Network (ESN)
ESNs are RNNs with a sparsely connected hidden layer (with ypically 1% connectivity).

assigned (See Fig. 6.18(0). Thus like LSMs and ELMs they are not fixed into a well-
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dered
an generate specific temporal pterns [263],

Deep Residual Network (DRN)

DRNs took the deep learning world by storm when Microsoft Rescarch released Dec
Reskat Lesrn for e Rcogaiion (23] Thee netvorks ed o 1 s winning
entris in all five main tracks of the ImageNet and COCO 2015 competitions, which

“The robustness

e en by various visual recognition tasks and by nomvisual
ks voling spcch and nguae DRN are ey de FE networks whee thre s
extra connections that pass from one layer to a layer two to five layers downstream. This
n be 150 layers

deep, which i only abtractly represented in Fig. 6.15(p).

Kohonen Network (KN)

Kohonen networks are also known as self-organizing feature maps [298]. KNs use com.-
petiive learming to classify data without supervision. Input is presented to the KN as
in Fig. 6.18(a). afier which the network assesses which of the neurons closely match
that input. These self-organizing maps diffe from other NNs s they apply competitive
leaming as opposed 1o error-correction leaming (such as backpropagation with gradient
descen

propertcs of the input space. This makes KNs useful for low-dimensional visualzation of
high-dimensional daa.

Neural Turing Machine (NTM)

An N mplemens o NN contlr couled tan s memory e (5

Fig. 6.18(1), which it ineracts with through attentional mechanisms [219]. The memory

interactions are differentable end-to-cnd, making it possible 10 optimize them using

eradient descent. An NTM with a LSTM controller can infer simple algorithms such as
nd It

Suggested Reading
Texts

(1) Decplearning, by 1 Goodfelow, Y. Bengio and A. Courville, 2016 [216]
() Neural networks for pattern recognition, by C. M. Bishop, 1995 [63].
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Data-Driven Dynamical Systems

Dynamical systems provide & mathematical framework to describe the world around s,

it
of il cqatons o rie mapins st desris e cvolution of e e o 3
. Tis formulion s gl nough 0 cncompas 3 sggeig nge o penon-

science, inance, ecology. social systems, neuroscience, epukmmlugy. and
nearly every other system that evolves i fime.

odetn dynamical systems began with the seminal work of Poincaré on the chaotic
mion o p;
of hundreds of years of mathematic:
full history of
est and atention of the greatest minds for centurics, T baving been applied to countless
fields and challenging problems. Dynamical systems provides one of the most complete

ected felds of mathematics, bridging diverse topics from linea algebra and

et spaions. o ool meris s, nd st Dynanic sy
s become centeal in the modeling and analysis of systems in nearly every field of the
cnincrng, hysicl and e scenes,

odsin, begeig wih Nevin 2 L. T

well-c

tions and first principl aiving way
finance, epi-
demiol field: where
h undersanding
Copion feom neural econding. prdicing 4 suppresing the sprad o disce o
y efficient p '
In addiion, the classial geometric and statistical perspeetives on dynamical systems
are being complemented by a third aperator-theoreiic perspectie, based on the evolu-
tion of measurements of the system. This so-called Koopman operator theory is poised

‘o capitalize on the increasing availability of measurement data from complex systems.
Morcoer, Koopman theory provides 4 path (o ideniify intrinsic coondinate systems 1o
represent nonlincar dynamics in  linear framework. Obtaining linear represenations of

29
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sonaly v sy i the el o evolionss ou iy 0 prict nd
control these syse

1 chater resents 3 modem penpeetive o dynamicalsysms in the conest of
current sm ad oen hallnges. Data-divn dynicl sysems is 2 pidy evolving
ield,

current dc\dommnl: In partcular, we will focus on the key challenges of discovering
dynamics from data and finding data-driven representations that make nonlinear systems
amenable o linear analysis

Overview, Motivations, and Challenges

st
and open challenges in dynamical sysiems.
Dynamical Systems
Throughout this chapter, we will consider dynamical systems of the form:
an

where x s thestate of the system and i a vector field that possibly depends on the state
x,tme ¢, nd et of parameters

For example, consider the Lorenz equations [345]
a2
)
@29

th parameters

10,5 = 25,005 = 3. Atmjctony o he Lot systmis shown
in Fig. 7.1 In this case,the state vector s x — [+ v ]' and the parameter vector is
8=l » 4"

at

exhibits chaos, Two
rajectories with nearby iniial conditions wil rapidly diverge in bebavior, and after long
times, only statistial satcments can be made.

Itis simple o simulate dynamical systems, such as the Lorenz system. Fi
ficld fx. 15 8)is defned in the function loren:

fumction dx = lorens(c.x, Beta)

 the vector

nc(;(nu(xm x(1
1)

(Beta 2 ) ) 2t
i) exta @x2)s
in

Next, B nd
Beta = [10; 28; 8/31; ¥ Lorens’s paramsters (chaotic

0: 1 2005 ¢
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options = odeset ('RelTol’, le-12, AbsTol, le-12vones(1,3)) 1

Finally, we simulate the equations with odeds, which implements a fourth-order Runge
Kutta integraton scheme with adaptive time step:

€ x)=0de45 (5 (£, %) 1 ), tspan, x0,0ptions) ;
683 x

a2,

We wil ofien consider the simpler case of an autonomaus system without time depen-
dence or parameters:

@
Zx0 =0, a3

@

In general, X(1) € M is an n-dimensional state tha lives on 4 smooth manifold M, and
szent bundle TM of M s0 that f(x(1) € Ty M. However, we
simpler case where X s 4 vector, M = ", and is a Lipschitz

Fis an element of the a
il ypically consider 1
continuous function, guaranteeing existence and uniqueness of solutions to (7.3). For the
eneral formulation, sce [1],

Discrete-Time Systems
We will also consider the discrete-time dynamical system
i = Fu) s
Also known as a map, the discrete-time dynamics are more general than the continuous.
time formulation in (7.3), encompassing discontinuous and hybrid systems as el
For example, consider the logistic map:

St = Bl — x0), s
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Figure 72 Atacing sets of theIogistic map fo varying parancter .

As the parameter f s increased, the atracting set becomes increasingly comples, shown
in Fig. 7.2. A seres of period-doubling bifurcations oceur unil the atracting set becomes
fractal

Discrete-time dynamics may be induced from continuous-time dynamics, where X, is
obiained by sampling the trajectory in (7.3) discretely i time, so that x; = x(kA1). The
discrete-ime propagator ., is now parameterized by the time step Ar. For an arbitrary
time 1, the flow map F, is defined as

SR S a0

The discret-time perspective s often more matural when considering experimental data
and digital contol,

Linear Dynamics and Spectral Decomposition
possible.

of the form
an
forthe anal i d control of such systems.
“The solution of (7.7) is given by
X0+ = Mxt) as
The
A, given by the spectral decomposition (¢igen-decompasition) of A:
AT=TA a9

When A then A is a dingonal
Ay and T
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AT, and the solution in

with cigenvalues . In this case, i is possible o write A
(7.8) becomes.

Xo 1) = TN T x1). @10

More generally, in the case of repeated eigenvalues, the mateix A wil consist of Jordan
blacks [427], See Section 8.2 for a deailed derivation of the above arguments for control
systems. Note that the continuous-time system gives rise 10 a discrete-time dynamical
system, with F, given by in (7.8).Inths case,
cigenvalues are i i

“The matrix T defines  transformation,
st . whor he dynamics become decoupled

~x,into intrnsic cigenvector coordi-

am
nother words :

an
Thus, it is ighy desirable 1o work with lincar sysems, sinc it is possbl to casily

No such closed-form solution or simple finear change of coordinates exist in general for
. motivating many of

Goals and Challenges in Modern Dynami
s we generally use dynamical systems to model real-world phenomens, there are 4 num-
ber of high-priorty goals associated with the analysis of dynamical systems:

Future state prediction. In many cases, such as meteorology and elimatclogy, we
cek predictions of the future stat of  sysiem. Long-time predictions may il be

Chaenging

2 Design and of We may seck 1o une the parameters of a system for

improved performance or stability, for example through the placement of fins on
arocket,

3 mati L s often possible i sy

through fecdback, the s modify

L b, I i e - o ey et the Fll e o e sy

limited me:

4. Inerpretabily and physéal nderstanding,Prhap  mor ondamentl gl of

» asystenr's

a and solutions to the of

Real-world systems are generally nonlincar and exkhibit mult-scale behavior in both
space and time.
i the specification of parameters, and in the measurements o the system. Some systems
are more sensitive o this ncertainty than others, and probabilistic approaches must be
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used. Inereasingly, i is also the case that the basic equations of motion are not specified
and they migh be intractable o derive from firt principles.

“This chapter will cover
Systems. The majority of this chapter addresses wo primary challenges of modern dynam-
il systems:

I Nonlinearit
il s, hing e cocpe bl i Ve s e -

(i cgeavaes and sigonvectons) of tho maix A, lading o geacal rocedees

for prediction, estimation, and conirol. No such overarching framework exists for
. loping thi I framework

tallng ofthe 21 cntry

onlinear dynamical i
o st ot ncarsatonsaround fxed pos ad prodi orbts, bl
these structures, and more general
ting with Poincar, has transformed

¢ model complex sysiems, and its success can be larzely atsibuted (o theo-
retical results, such as the Hrtman-Grobman theorem, which establish when and

here it is possible to approximate a nonlinear system with inear dynamics. Thus.
it often povitie o ,wxv the et of s s (e i ol
lihougt

ronide vt lcally et modes, sl s e remined gy
qualitative and computationl, limiting the theory of nonlincar prediction, estima-
tion, and control away from fixcd points and period
2 Unknown dymamic. Prhas n cvn s el halngearise rom the bk
of known governing cquations for many modem systems of inerest. Increasingly.
rescarchers are tackling more complex and realstc systems, such as are found in

hese

neuroscience, epld:mmlugy s sy In s B, there i  bsic ok of
Kanown physical fist principles from
cquaionsofmcton. Even n sysics where we do know the governing equaons,

such as turbulence, protein folding, and combustion, we siruggle (o find patierns in

anals fon whic o i i evoes

Traditionally, physical systems were analyzed by making ideal approximations
and then deriving simple differential equation models via Newton's taw:
Dramatic simplifications could often be made by exploiting symmeries and clever
coordinate systems, as highlighted by the success of Lagrangian and Hamilonian
o 12,3691,

subjective, and there is @ growing need for automated model discovery techniques

hat are relevant 1o the dynamics but may go unmeasured. Uncovering these hidden
effects is a major challenge for data-driven methods.
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from data and that cnable

ammm sy Ovrsoming the g of wkown dynumlu and nonlincarity
i

pential benei o ety feldsof sience and engicering
Throdghont s chaper e Wil exploe hee s i ther dcal and descrbe &

number of

systems;

Operator theoretic representations. To address the issue of nonlinearity, operator-
theoretic approaches to dynamical systems are becoming increasingly used. AS we
"

7.athat
s operator that advances.

advances measurement functions, and the Perron-Froben
probability densities and ensembles through the dynaics
2 Data-driven regression and machine learning. As data becomes increasingly
sbandat, nd we contins (0 it sy it s ot b (0 i
principles analysis. regression learning are becoming vital tools o
incovesdymamiea sysems from . m« i e b of many o e i
described in this mm. including the dynamic mode decomposition (DMD) i
Section 7 73

e data-diven Koopman methods i Secion 7.5, s wellas th. e of geneic
programming to identify dynamics from data (68, 477)

I is important 0 note that many of the methods and perspectives described in this
chapter are interrelated, and continuing to strengthen and uncover these relationships is
the subject of ongoing research. It i also worth menioning that a third major challenge
i the high-dimensionality associated with many modern dynamical systems, such as are
found in population dynamics, brain simolations, and high-fdelity numerical discreiza-

subsequent chapters on reduced-order models (ROMS).

Dynamic Mode Decomposition (DMD)

474,472
mporal coherent structures from high-dimensional dat.

communty (o identify spati

dimensionality reduction in high-dimensional systems. In contast 1o SVD/POD, which
aults in a hierarchy of modes based entirely on spatial correlation and energy content,

while ion,
each mode consists of spatially correlated structures that have the same linear behavior in
time (e.g., oscillations a a given frequency with growth or decay). Thus, DMD not only
provides dimensionalty reduction in terms of areduced set of modes, but also provides
ot o o s ol s n e

S00 of the origin 1. Rowley, M
and colliborators ctablahd  mporan onnecton ewn DVD and Koopman e




26

Data-Driven Dynamical Systems.

ory [456] (sce Section 7.4). DMD may be formulated as an algorithm to identify the
bestfit linear dynamical system that advances high-dimensional measurements forward
intime (5351, In this way, DMD approximates the Koopman operator resricted o the sct

interest 17
Wain  shrt oo e, DM s becone 3 wu.mN algorithm for the data-

P
o e d, 5 3. o Do Koz of e sovrning o,
i instead based purely on measurement data. The DMD algorithm may also be seen as
connecting the favorable aspects of the SVD (see Chapter 1) for spatial dimensionaliy
reduction and the FET (see Chapter 2) for temporal frequency identifcation (129, 317]
Thus, cach DMD mode s associated with a particular eigemalue % = a + ib, With &
particular frequency of scilltion b and growth or decay rate .
ere are many variants of DMD and it is connected 1o existing techniques from sys-
tem idenification and modal extraction. DMD has become especially popular i recent
yearsin large part due 1o its simple numerical implementation snd strong conneetions to
nonlinear dynamical systems via Koopman spectral theory. Finally, DMD is an extremely
ly, failitating ated 0
cm\\prcucd sensing, control theory, and multi-resolution techniques. These connections
sions will e discussed a the end of thi sectior

The DMD Algorithm

he
e evcloped by T s (535 Whres el formuton. gd o
sampling o ies i time, the approach presented here works with irregularly
sampled i i ot s o v ot texpermets o il
simulations. Morcover,
definition of Finall
o the efficient and P asisthe
original formulation by o un

DMD s inherently data-driven, and the fist step is 10 collect a number of pairs of

by (0300 X))

where 1] = 4 + A, and the tmestep At is sufficiently small 0
befe

oo
arranged nto two data matice, X and X:

L
x,[w SRR .

[
[\, | \}
X=|xt) xap it} @.130)
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e o fomultons of Shid 472} wd Rowley ot s 1456 s o
sampling in time, s0 that f5 = KAt and 1{ = 1 + Ar = f1. If we assume uniform
sampling i time, we will adopt the notation x; Gea.

'e DMD algorithm seeks the leading spectral decompositon (i.c., cigenvalues and
cigenvectors) of the best-fit linear operator A that relates the two snapshot marices in
time:

~AX 2
The best it operator A then establishes & linear dynamical system that best advances
snapshot measorements forward in time. If we assume uniform sampling in time, this
becomes:

PRE @13

Mathematicall, the best-it operator A is defined as

0]

asgmin |X' ~ AX ¢

where | i the Frobenius norm and * denotes the pseudo-inverse. The optimized DMD
algorithm generalizes the optimization framework of exact DMD 1o perform a regression

and theircigenvalues [20],

opertor i (1551 we chose it e essremens o e, g = »
This connecton was g
has parked considerable nteest in both DMD and Koopman theory. These connecions
il e explored i mor depth o
For a high-dimensional state vector x & R, the matex A has r? clements, and
s s oot lon comptin s st decmposion: ey b il
Instead, the DMD algorithm leverages dimensionality reduction to compute the dominant
igenvalues and cigemvectors of A without requiing any explici computations using A
ieetly. In partculr,the pieudo-inverse X' in (7.16)is computed via the singolar vlue
deompston of s mat X. S i s iy s s colms
< . there e at most m nonzero singular values and
Awill
e compue the projection of A onto these Ieading singula vectors, esuling in & small
arix & of size i most m x . A major contribution of Schmid [472] was a pocedure
0 approximate the high-dimensional DMD modes (egenvectors of A) from th reduced
et e Gt ki X wiion v st o comptsionsn el . To
etal [535)
i

n ingua

1A i er containcondiions. s, he cxes DMD gt f T3 ol
eiven by the following steps:

Step 1. Compute the singular value decomposition of X (see Chaper 1):

@i
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here U & ©, £ € ©,and V & " and r = m denotes cither the cxact or
approximate rank of the data matrix X. In practice, choosing the approximate rank.
i one of the most important and subjectve steps in DMD, and in dimensionality

ish and Donoho (2001 to dterminer from noisy dta (sce Secton 1.7). The olumns
of the marrix  are also known as POD modes, and they satisty U0 = 1. Simitarly.
columns of ¥ are orthonormal and satisfy V'V = 1

Step2. According 10 (7.16) the full matrix A may be obisined by computing the
preudo-inverse o

ViU s

However, we are only interesed in the eading r cigenvalues and cigenvectors of A,
and we may thus project A onto the POD modes in U

A=UAD=U'XVE @9

“The ey observation her tht th reduced i & hasth same nonzer cigen-
alues s the fll matix A. Thus, we nced only compute he reduced A dirctly,

without matix
A defines a inar moe for the dynamics of the vector f POD cocficints &
fonr = A a0
;
Step3. The spectr dec
am

“The enres of the diagonal i A src the DD cigenvalues, wich also cor-
vespond to igemvalues of the full A mati. The columns of W are eigevectors
of &, and provid a cooninae transformaton that diagonalize th mabi. These
columns may b thought o s lncar combinations of POD mode mplitudes that

v linarly withasingl terpora patten given by &

Step .. The high-dimensional DMD modes © are reconsructed using he cigenvee-

Lors W ofthe educed system nd the fme-sifed snapshot mari X' scconding o

®-xVE W, )
R
corresponding (o the eigenvalues in A, as shown in Tu et al. [535)
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e il ppe by S (472, DM, o s <ot i &

cigenvectors of A. Because A is defined as A cigenvectors of A should be i the
column space of X', as i the exact DMD defiition,instead of the column space of X in
the original DMD algorithm. In practce, the column spaces of X and X' will end to be
nearly identical for dynamical systems with low-rank structure, so that the projected and
exact DMD modes often comverge.

"o find . DMD mode conesponding t a zer cignvaue, . = 0. it s ossibe 0 e
the exact formulation
projected mode ¢ = Uw should be used

0. However,if this expression is nul, then the

numnm/l‘tr!pemve
he orgial formula X' wereformed
ot s el s e

<] 2w

4] oam
\

[
x{“ B a2

n
Aand the inital condition x). In additon, the matrix X’ may be related to X through the
shiftoperator as:

X=xs a2
where s defined s
00w
00w
0 0a a2
000 1 an

Thus, the first m — 1 columns of X' are obtained dircctly by shifting the corresponding
columns of X, and the last column is obtaned as o

of X that minimizes the residual. In this way, the DMD algorithm resembles an Amoldi
algorithm used to find the dominant cigenvalues and eigenvectors of  matrix A through
iteraton. The matrix § will share cigenvalues with the high-dimensional A matex. so that
decomposition of § may be used to obiain dynam s and eigenvalues. However,

mbination of the m columns
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Spectral Decomposition and DMD Expansion
One of the most important aspects of the DMD i the ability to expand the system state in
terms of a data-driven spectral decompositons

PSR o
e, .
s of e A o The vectr b
eerly computed s
o'y, (128)

e pricled s st domian nd e odes v b const
ered [129, 270, However, computing the mode amplitudes is generally quite expensive,
even \mng - staightforward definition in (7.28). Instead, it s possible to compute these
amplitudes using POD projected data

@.29)
@290
@.29)
@290
@.296)
@290

[

“The matrices W and A are both size r x . a5 opposed 0 the large @ matrix that s 1 x 1
ay o be
continuous cigenvalues o = log()/Ar

X0 = Y, = Sexp(b. a0
=
where £ s dagonal matix conaining the conimuous e cigemvales o

Example and Code
Abasic DMD code s provided here:

function [Phi, Lanbda, b] = DMD(X,Xprime,x)
(U, 5igna, V] = svd (X, econ’) ; + step 1
Ur'e B 1) s

Signar - signa(lix,1ix);

Vs e 1e)

Uz exprinesvs/Sig
Lambda) - sig(arilde);

o = dorines (re/Signar) % step ¢
alphal = Sigmarsvr(l,
52 Lanbaarnalphais
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Experiment Collect Data DMD.
3 Disgnostics

=

X

b) Future state prediction
Axe

Figure 7:3 Overvien of DMD lustatd on the luid flow pastcinculr cylinder at Reynolds
number 100, Reproduced from [317).

i DMD cols s demonsirtd i i 7. o the i o st i yinde
100, Stokes
cauation st simiated uing e sl boundy prosction mthod TP aer
351,

this data, it

contains flow fields reshaped i
4, Lambda, bl = DMD(X(:,1:end-1),X(:,2:end) ,21);

Extensions, Applications, and Limitations
One ofthe mafor sdvanages of dynanic o decomposion i i s i in
terms of e For
i

and has been widely applied beyond flud dynamics [317], where it originated. Here, we

fun

rescarch.

Methodulogical Etensions
on and randomized linear algebra. DVID was originally designed for
mgu.mm.w data sets in fluid dynamics, such as a lid velocity o vortic-
ity field, which may contain millions of degrees of freedom. However, the fact
that struetre in ta
lies that there may i « rsgies
de

=
0 il sl exinsionsand ctonsof DMD 1 ot o sk
sructure and spars

[ RN R ————
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In 2014, Jovanovie et al. [270] used sparsity promoling optimization to identify

the fewest DMD modes required 1o describe a data set, essentially identifying a

e dominant DMD mode amplitudes in b, The altemative approach, of esting and
DMD mad:

force search.

Another fine of work is based on the fact that DMD modes generally adnit a
sparse represcntation in Fourier or wavelet bases. Morcover, the time dynamics of
each mode are simple pure tone harmonics, which are the definition of sparse in
Fourier basi. This sparsty has faciltated several efficient measurement satgies
that reduce the number of measurements required i time [536] and space [96, 225,
1741, based on compressed sensing. This has the broad potential to cnable high-

Related 0 the use of compressed sensing, randomized linear algebra hs recently
Instead

dimensional structures, andomized methods start with fulldata and then randomly
project nto a lower-dimensional subspace, where computations may be performer
ficiently. B N DMD using
domized singul d Erichson etal. (1
ow ll o the expensive DMD computations may be performed in a projected sub-

pace.
Finally, libraries of DD modes have also been used to identify dynamical
regimes [308], based on the sparse representation for classfication [S60] (see
ection 3.6), which was used earlier to identify dynamical regimes using libraries of
POD modes [80, 95].

the system from  (ofien millions or billions) o r (tens or hundreds) enables fster
and lower-latency prediction and estimation. Lower-latency predictions generally
translate directly into controllers with higher performance and robustaess. Thus,
compact and effcient representations of complex systems such as flid flows have
been long-sough, resultng in the field of reduced order modeling. However, the
crginal DMD ot vas dsged o chstrize sy cvobing sy
it ccounin e effetof o d o

imal Pto v, [434]cxtnded te -
i 1o dsambigute hetveen the naturs) nfoced dynamics and he lfet of
actuation. This essentally amounts t0 a generalized evolution equation

i = A+ Bur, @3n

which resultsin another linea regression problem (see Section 10.1)

“The original motivation for DMD ol (DMDe) was the use of DMD o
characterize cpidemiological systems (e.g., malaria spreading across a continent),
where it i not possible to stop intervention effort, such as vaccinations and bed
nets, i order to characterize the unforced dynamics [433]
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Sine e orignal DMDS sgorit, s comprscd snsing DMD i DMDe
¢ ramework for

praprrt i e—— posibe o collet undersampled
measuremens of an actuated system and identify an accurate and efficient low-
order model, related to DMD and the cigensysiem realization algorithm (ERA; scc.
Section 9.3) [272].

DMDe models, based on linear and nonlinear measurements of the system, have.
recently been used with model predictive control (MPC) for enhanced control of

Kaiseretal. [277],
Surpisingly well even forstrongly nonlinear systems.
Nonlinear

comesion o onlins ynanic i the Koo operor 456, nesd, DM i

s, 0 long as a suffcient amount of data is collected. However,the basic
DMD algorithm uses linear measurements of the system, which are generally not
v cnough o chacsris vl onnrpheomen, s s s, i
tent phenomena, or broadband frequency cross-talk. In Williams et al. 556, DMD
measurements were augmented to include nonlincar measurements of the system,
ing the basis used o represent the Koopman operator. The so-called extended

model Ay

measuremens

200
Yoo~ A a3

For ihimensonl sy, s augmentd s 3 may b inrcaly s,
motivating the use of Kemel methods to spprovimate the evoluion operstor
o 557 Tin krnel DN hssnc b xtded 0 include dctionay eming
techniques [332]
1t has recently been shown that eDMD is equivalent to the variaional approach
of conformation dynamics (VAC) [405, 407, 408], firs derived by Nos and Niske
220130l okl dyamic i brosd o of s
ther connections between eDMD and VAC and between DMD i
independent component analysis (TICA) are explored in  recent rev
K contbation of VAC 3 sarstional score anabing he et st of
Koopman models via cross-validation.
Followin the exended DD, i was shown that s ar rlaively e
A that
he syt 1921, For ol sy with il e s pgrmmc orbits,
and

the state x that is topologically conjugate 10 the nonlinear system. Instead, it is
important (o identify Koopman invariant subspaces, spanned by cigenfunctions of
the ill not be possib

i the span of these eigenveetors, although it may be possible (o idenify X through

Kaiser etal. [276],
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De-noising.
1o experimental and numerical data. When characterzing experimental data with

IMD, the effccts of semsor noise and stochastic disturbances must be accounted for.
The orginal
significant and systemati biases are inroduced t0th cigenvale disribution [164,
26,147,241,

distibution, it does not remove the bias (241
Several approaches 1o correct for the effect of sensor noise and dis-

wrbances. Hemat et al. [241] use the tota leastsquares regression to account for

e oty of sy e ad i e e, eplacn e

original least-squares regression. Dawson et al [147] compute DMD on the data in

forward and backward time and then average the resulting operator, removing the

systematic bias. This work also provides an excellent discussion on the sources of

ol and 3 comparionof viious deoising o

More. Kutz [20] introduced
it vl prelsion mthod ol st s 0 compt n.g

Takeishi tal
poise by computiag an orhogenal pojection of fture snapahots oo the space of
previous snapshots and then constructin a lincar model. Extensions that combine
DMD with Bayesian approaches have also been developed [S12]

Multiresolution. DMD is often applied to complex, high-dimensional dynamical

s the EI These tran
st dymamis s oo cspred sy by DD whih sk it tmpos
modes that s gty s the entire time series of data. To addess

hal introduced [318],
Jating tean

sient Multiesolution
e advanagious fo spars sensor lacement by Manchar e . (367]

. Delay measurements. Although DMD was developed for high-dimensional data
whete i is assumed that one has access (o the fullsate of  system, it s ofien

plete measuremens. As an extreme example, consider a single measurement that
oscillates as @ sinusoid, (1) = sine). Although this would appear 1o be a perfect

i, This paradox was first explored by Tu et al. [535], where it was discovered
that a soluton is (o stack delayed measurements into a larger matrix o augment
the rank of the data matrix and extract phase information. Delay coordinates have
been used effecively 1o extract coherent patiens in neural recordings [90]. The

in Section 7.5
+ Streaming and parallelized codes. Because of the computational burden of com-
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DMD s ofen
used in 4 streaming setting, where a moving window of snapshos are processed
» i

‘Several algorithms existfor streaming DMD, based on the incremental SVD [242]

a streaming method of snapshots SVD [424], and rank-one updates 1o the DMD

matrix [569]. The DMD algorithn is aso readily parallelized, as it i based on the
D,

75.
177,176}

Applications

+ Fluid dynamics. DMD originated in the flid dynamics community (472, and has

since been applied 10 4 wide range of flow geometies (jes, cavity flow, wakes,
chanelflov, bountary g, i), 0 sudy g e, conbsion
¢ phenomena. I the original paper of Schmid [473, 4721, both a cavity
ot et et consdred.nthe rinl ppeof Rowly et (4561, 1t
eross-flow ated. It s no surprise that DMD has subsequently been used
ity i ot vy ows 473 350 481, 43,421 et 473, 49, 483, 475).

554 0wk ot ey o 415, e s v 28, 0t

50 In s, A b o capture the near-field and far- s
s that resultfrom instabilties observed in shear flows [495]. In combustion, DMD

iy ot combtor 256, DVD s s 0 s v
normal growth mechanisms in thermoacousic interactions in 4 Rijke tube. DMD.
s ben ompar with POD fc escing o 1459, DMD s s boen o

o
‘Shock turbulent boundm'y layerinteraction (STBLI) has aso been investigated, and
ID was used to idenify  pulsating scparstion bubble that is accompanicd by

2]

docomps

he o pst s mounid ubs (353, modsingsllow e
1 i

o e e eatiio st liquid shects [163

iology. cently been applied o investigate epidemiological sys-
{ems by Procor and Eckhof 435, This i  partculry interprtabl appiction.
s modal frequencies often correspond to yearly or seasonal fluctuations. Morcover,
the phase of DMD modes gives insight into how disease fronts propagate spatially.

» ly
systems also motivated the DMD with control [434],since i i infeasible 10 stop
vaccintions in order o identify the unforced dynamics

+ Neuroscience. Complex signals from neural recordings are incressingly high-
fidelity and high dimensionl, with advances in hardware pushing the frontiers

o data collction, DD, the ol 1 o th sy of such
neural recordings, as evidenced in a recent study that idenified dynamically
et e ECOG . of seepin patents 90 Sice e, s works
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have applicd DMD to neural recordings o
hardware [3, 85, 5201

sgaested possible implementation in

exacerbated by DMD provids

7ero cigenvalue [223, 174, 424],
Other applications. DMD has been applied 1o an increasingly diverse array of
problems, including robotics [56], finance [363] and plasma physies [S17]. I is
expected that his trend will increase.

Chalenges
“ravlng wive. DMD s baed on o SVD of 8 s e X = UZY” whose

time separation of variables into spatial modes, given n, the columns of U, and time
dynamics, given by the columns of V. As in POD, DMD thus has limitations for
problems that exhibit traveling waves, where separation of variables is known to
fail,

. hasthe
Ho

- Continuous spectrum. Related (o the above, many systems are characterized by
s opposed 10 a few i

“This broadband frequency content i dlso known s  continuons spectrum, Where

very frequency in a continuous range is observed. For example, the simple pendu-

) 4
deflions, i ety continously defos ad sk s ey i sddd

of
ol e houghhe yranic s el genated by the o escions

pprosches v been rcenty propoed t hande sysiems

with continuous spectra. Applying DMD 10 a vector of delayed measurements of
system, the so-called HAVOK analysis in Section 7.5, has been shown 1o approxi
mate the dynamics of chaotic systems, such as the Lorenz sysiem, which exhibi
a continuous spectrum. In additon, Luseh et al. [349] showed that it s posible to

decp learning architecture with an ausiliary network to parameterize i
continuous frequency.

+ Strong nonlinearity and choice of measurements. Although significant progress
has been made connecting DMD to nonlinear systems [557, choosing nonlinear
measurements to augment the DMD regression is stll not an exact science. Ident-
. W subspaces that K

1921 10 cnable
the representation of extremely complex eigenfunctions from data [350, 368, 513,
564,412, 3

49]
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Sparse Identification of Nonlinear Dynamics (SINDy)

Discovering dynamicl systems models from data is & central challenge in mathematical
physics, with a rich history going back at least as far 1s the time of Kepler and Newton
and the discovery of the laws of planetary moion. Historicaly, this process relied on &
combination of high-quality measurements and expert intuition. With vast quantites of

and dynamical systems is & new and exciting scientific paradigm
“Typically, the form of a candidate model is either consrained via prior knowledge of
the governing cquations, as in Galerkin projection (402, 455, 471, 404, 119, 549, 32, 118]
(see Chapter 12), or a handful of heuristic models are tested and parameers are optimized
o fit data. Aliernatively, bestft lincar models may be obtained using DMD or ERA,
Simultancously identifying the nonlinear stucture and parsmeters of a model from data
P sirue-

s,
e s denifesion of i dsaics (SINDy) g 5] by e

intractable wough all possible

that many dynamical systems

)

vy wilh ol 8 few v s i the spoce ofposive riand i
fons:for example,the Lorens equations in (7.2) only have a few linear and quadratic
iteraction terms per equation
hen seck to approximate { by a generalized incar model

% 3t = O, a3

ssible. 1t s then

{erms tha are acive in the dynamics using sparse rgression [S18, 573, 236, 264] that
Firs, i nd formed
=[xt xt xt)]” (135
A similar mati of derivatvesis formed:
=[x %) s (1361

In practic, this may be computed directly from the data in X; for noisy data, the total-

eul 0 provide numerically robust derivatives [1
Al i s pssble o ot the SINDY lgort o it e sy
the DMD algorithm, and avoid derivatives entirly.

x
oM =[l X X X %) ] am

e x"

degro poymonials i the s . I geaca, i oy of canddate fncions s

ol it by on's gt
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(736)and (737) s
X=emz )
Each column & in 2 is a vector of coefficients determining the active terms in the k-th

Fow in (7.33). A parsimonious model will provide an accurate model it in (7.38) with as
= i £y-regularized

spanse regresion:
&, = argming; X — ©COF{ 2 + 418} 1. (139)
fere, X, i the k-h column of X. and 7 s a spasiy-promoting knob, Sparse regression,
such as the LASSO [S18] or the sequential thresholded least-squares (STLS) algorithm
used in SIND 95, improves the numerical robustness of this identification for noisy
averdetermined problems,in conirast 0 carler methods (S45] that sed compressed sens-
ing 1150, 109, 112, 11, 113, 39, 5291, We advocate the STLS (Code 7.1) to selectactive
terms
Gode 7.1 Sequentialy thresholddkast-squares
¥i - spaxsitypmanics (Thet
1 heravaxdt; |+ rmicial sue

era,dxat, Lanbda,

¢ Lanbda is our sparsifics

smallinds = (abs (i) clanbda) ;
Xi (snallinds)
for ind - 1
bisinas

“emailinds ine)

g

Ends. in

+ Regress dy
X (bigts

Ca(? biainder \axdt v+ ind 5

“The sparse vectors £ may be synthesized into a dynamical system:
@40

g

Note that ;. xas
the

7.4 shows
ons from data. Code 7.2 generates data and performs the SIND regression

for the Lorenz system.
ol 72 SINDy regression o denify the Loren system rom da

Beta - 110,

28, 8/31; ¢ Lorenz’s parancters (ch

sdicion

85 271; % micial
o

deset (‘Reltol’, 1e-12, AbeTol
)

_12,0me8(1,m)) 1

‘length(x)
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x
P74
egression i
Brunson et . 951,
@x(i,1) = lorenz(0,x(1,+) Beta)s
a
34 Buitd Library and compuse eparee regreseion
Theta - poolnatata,n 3§ o cird = potync
Lan Sy St ey
32 pareitybimanics (Theta, dx, Janbda
“This code also relies on a function poolData that generates the fibrary ©. In this case,
polynomials up to third order are used. This code is available online.
“The output of the SINDy algorithm s a sparse maix of coeficients =
xdor yaor [eens
1 r o 1 o
x Fao.ooo0)  (zs.0000 | o)
v [10l0000]  [-1i0000] [ o
[ o L o l-2.6567)
[ o L o 1
( o I o] [ 1.0000)
( o [-1.oo0] [ o)
( o 1 o1 o)
« o 1 o 1 o)
[ o 1 o 1 o
[ o 1 o 1 o
r o ot o 1 o1
r o 1 o 1 o1
t o 1 o 1 o)
[ o L o 1 o
[ o L o 1 o
[ o L o 1 o
( o 1 o 1 o)
( o 1 o 1 o)
t o 1 o1 o

The result of the SINDy regression s a parsimonious model that includes only the
ot oot 0 e bt ek e s e
ed
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B 2 Extract Modes and. Sparse dentification
Collet Data Time Series i Nonlinear Dynamics

— =
‘.‘ x - shif e
s

“The altermative approach, which involses regression onto every possible sparse nonlinear
structure, constitutes an intactable brue-force search through the combinatorially many

candidate model forms. SINDy bypasses this combinatoral search with modem convex
f @0 s oy of et trs, s v e th spusy proting e by
seting 3 = 0, the 1472, 456,
535, 3171, If @ least-squres regression s used, a5 in DMD, then even a small amount
of measurement o o numerical round-of will ad 0 every e in e ity beig

ol

benefitaf
the ailiy 1o identify parsimonious models that contain only the required nonlinear erms,
resultng in interpretable models tha avoid overfiti

Applications, Extensions, and Historical Context
e SINDY ot b sy b g 0 iy gl dyanicl
systems, sich as fluid flows, based on i 195, 341, 342] Fig. 7.5 illustrates
the application of SINDy 1o the flow past & L,n.‘w where the generalized mean-ficld
‘model of Noack et al. [402] was discovered from data. SINDY has also been applied o
ey o s i 4971 ol i 41
Dy is formulated i terms of inear regression in 4 nonlinear library it is
mp«\ymmxw “The SINDy framework has been recently generalized by Loiscau and
Brunton (341] 10 incorporate known physical constrsints and symmetries n the s

el gy prescring consans o the quadratc nolineaiis i he Nvie Stoks
equations were imposed (o identify fluid systems (3411, where it is known that these con-

staints promore stabilty (355, 32, 118). This work also showed that polynomial librares
are pasicularly useful for building models of fuid flows in terms of POD coeficients,
yielding interpretable models that are related to classical Galerkin projection (95, 341).
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Loiscau et al. [342] also demonstrated the abiliy of SINDy to identify dynamical sys-
tems models of high-dimensional systems, such as fuid lows, from a few physical sensor
ch Fig. 7.5. For actuated

100],
e Wyl o el prdive contol (71 1 s povie 10 xend e
SINDy i 13611, integral
terms 4691, and based on highly corrupt and incomplete data [$22]. SINDy was 1lso
recently extended 1o incorporate information crteia for objective model selection [362]
and 1o identify models with hidden variables using delay coordinates [91). Finall, the

of partal diffeential equation models [460, 468]. Several of these recent innovations will
e xloredinmore del o

general
467, 414, 353,98, 433, 31, 2, 89, 364, 366], Other tchniues fo dynamical sysim dis.

(288, 503,563, I
nonlinear autoregressive model with exogenous inputs (NARMAX) 1208, 571, 59, »m
142,143) . thes

o, bo el 3 e e, whee methads o s and machne
learning are used to identify dynamical systems from data. Nearly all methods of system

tion between the various techniques is the degree 10 which this regression is constrined.
For canple ey mad copoiton e bt B odel. Recen
nonlin i v prodicsd nlinear i models ik rsevs
it energy. A tomated
nonlinear system domienion e e by Bongard and Lipson (69 and Schmid nd
Lipson [477], where they used genetic programming to identify the structure of nonlinear
dynamics. These methods are highly

of diton, SIND is 1591, which
least squares

procedure.

Discovering Partial Differential Equations.
A major extension of the SINDy modeling framework generalized the library 10 include
partial deriatives, enabling the identification of partial diffeential equations (460, 468
“The resuling algorithm, called the parial ifferential cquation functional identifcation
of nolincar dyamics (PDE.FIND). fas becn deronsired 1o scsesully iy
several canonical PDEs from classical physics, purely from noisy data.
include Navier-Stokes, Kuramoto-Sivashinsky. Schrodinger, reaction diffusion, Hulgels
Korteweg-de Vries, and the iffusion equation for Brownian motion [460)

PDE-FIND is similar to SINDy, in that it is based on sparse regression in a library

inFig. 7.6, PDE-

o higher PDEs. The spatial
i3 snle solu vector T ¢ Co. preing das cllced o e pons
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Figue 6

1460]) 1a. Data
PDE. 1h,

2a. For lrge

e rows.d. Active erms i & are synthesized nlo  PDE.

and n spatal locations. Addional inputs, such as a known potential for the Schridinger
cquaton, or the magnitude of complex dta, is amanged ino & column vector Q € C*”
Next,a library ©(. Q) € C™* of D candidate lncar and nonlinear terms and parcial
derivatives for the PDE "

forclean data, P

Y. Q) which
takes the form;

o Q=1 Y ¥ . Q . T oTr, ] aan

Fach oo © comlinallf thews o il caid ntion sl
‘whichdata s collc s also
colomn vector. Fig
procesing. As an exampl, a column o ©(T. Q) may be i
“The PDE cvoluion can b expresed intis itrary as follows:

—er.Qr )

Each entry in § s a coefiicient corresponding (0 a term in the PDE, and for canonical
PDES,the vector & is sparse, mearing that only a few terms are actve

I the Hibrary © has a suffcienty rich column space that the dynamics are in t's span,
T

as in SINDy. Importantly,the regression problem in (7.42) may be poorly conditioned.
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Algorithm 1 STRUE(® ¥, 7. 0] 1ers)
argming | OF — Y13 + AIEI} % ridge regression
=zl % ks cticns

;mwam-m..nme; b.gmm Titol iters — 1)
% recursive call with fewer coeficients
retum §

Error in computing the derivatives will be magnified by numerical errors when inverting
©. Thus a last squares regression radically changes the qualitative nature of the inferred

dynamics,

In genel we sk hespae vetor § it s (742) it o snallresids

Instead vector siructures,
ed

however, this tends to perform poorly with ighly e dan. e e ridge
regression with hard thresholding, which we call sequential threshold ridge regression
(STRidge in Algorithm 1, eproduced from Rudy et al. [460]). For 4 given tolerance and
threshold . this gives & sparse approximation to €. We itratively refine the tolerance of
Algorithm 1 10 find the bestpredictor based on the selection citria,

§ = argming |O(Y, Q) — Y, 13 + ex(O(Y, QNI N (143)

of the matrix ©,

ill-posed problems. Penalizing
position n 4 Pareto front.
As in the SINDy algorithm, it is important o provide suiciently rich training data to
For example, Fig. 7.7
PDE-FIND the Korteweg-de @ T only a single
traveling wave is analyzed, the method incorrectly identifies the standard linear advection
catmion, i e et quion it dscrer s single g wv, Hovecr,
i wo traveling wave 2d. the KaV.
e, i deerben the st o ud«kp(mkm wave speeds.
The PDE iy PDEs based on L
surements that follow the path of individual prtiles. For example, Fig. 7.8 illustrtes the
identificaton of the diffusion equation describing Brownian mtion of a particle based on
single long time-series messurement of the particle position. In this example, the time
seres is broken up into several short sequences, and the evolution of the distrbution of
these positions is used o identify the diffusion equation.

Extension of SINDy for Rational Function Nonlinearities

Many dynamical systems, such s metabolic and regulatory networks in biology contain

rationsl function nonlincasites in the dy Often, these rational function nonlineari-
e seal

o identify rational functions,since general rational functions are not sparse linear combi-



254

Data-Driven Dynamical Systems.

— —
—

P77
Rudy el [460). (a) An example 2-solion solution o the KV equation. (b) Applying our method

o compltely sparate soutons evest nonlinearty.

Displacement

[ ——

Length of Series

1460). @)
hisograms of the

" — £l
o comectdentification ofth strucureofthe diflusion model, g = i

nations. Instead, a

1
asin Mangan et l. (361],
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We consider dynamicl systems with rational norlinearites:

)
™

i [
where x, i the k-th variable, and f (x) and f(x) represent numerator and denominator
polynomials n the rigble x. For cach index k. it is possibl to muliply both sides
oy e denmintor . eulin e sqon

SN = Sz = 0. 45

57
i terms of the sate x and the derivative i

OX.ix(1) ~[Ox(X) ding(i3(0) ©p(X)] )

“The first term, ©y(X), s the library of numerator moromials in x, 45 in (7.37). The
second term, dmg (248 @p(X). is obiained by multiplying each column of the library

with the vector £ (1) in fashion. For
single arible e his would i te Following

dinglix )0 =[i1(0 Gux® Do -..] aam

In most cases, we will use the same polynomial degree for both the numerator and
denominator ibrary, so that ©(X) = @p(X). Thus, the augmented library in (7.46)
s only twice the sze of the original library in (737,

We may now wrie the dynamics in (7.45) i terms of the augmented library in (7.46)

OX. ix )8 = 0. a4

“The sparse vector of coefficients £, wil have nonzero entries for the actve terms in the
dynamics. However, it is not possible 10 use the same sparse regression procedure as in
SINDy, since the sparsest vector & that satisfies (7.48) is the trivial zro vector.

Instead, the sparsest nonzero vector & that satisfes (7.48) i identified as the sparsest
vector in the null space of ©. This s generally a nonconvex problem, although there are

by Qu etal. (440], based o

(ADM), y »
this

o the data matrix X, and hence t0 ©, the noise floor of the singular value decomposition
‘oes up,increasing the rank of the numerical nul space.

General Formulation for Implicit ODEs
“The optimization procedure above may be generalized 10 include a larger class of implicit

. The ibriry @K, 1) contins st ofthe colomns o the vy ©(X X))
o

the st vecornthe ul space of ©([X ] provides e it n ety
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h -

|

' P
o - .
g -7 g
LN - =

e
_parsimony
.o overit
P SO R =
Nurmber of terms, &

el (3621 i

(e cirle, preventing overfting.

nonlinear equations with mixed terms containing various powers of any combination of
derivatives and states. For example, the system given by

i — =0 @49)

may be represented as a sparse vector in the null space of @([X ~ X]). This formulaio
may be extended (o include higher order dervatives in the library @ fibrary for example
o idenify second-order implict diferential equations

o(x X X)) aso

“The generaliy of this approach enables the identification of many sysiems of inerest,
including those systems with rational function nonlinearitcs.

Information Criteria for Mode Selection

When pefoumin e spa rgresion i e SINDy vt the ity pronoing

parameter 7 is a free variable, In practice, different values of % will reslt in differe

model with various el of st rangin rom h vt model § ~  for very ge
for . = 0. Ths

by
ot Pt fron, g e v complexiy.as in Fig. 7.9, To identiy the most
a

low error s possible to leverage
nformation e for e elecion. s descrited n ingan et (3621 T priulr

16,71
o n

IC. This procedure
i odel

was correctly idenified (362)
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Koopman Operator Theory

systems in terms of the evolution of measurcments ¢(x). In 1931, Bernard O, Koopman
demonstrated that it is possible to represent a nonlinear dynamical system in terms of an
infinite-dimensional lincar operator acting on a Hilbert space of measurement functions
of the state of the system. This so-called Koapman operator is linear, and its spectral
decomposition completely characteizes the behaior of  nonlinear system, analogous
0 (7.7). However, it is also infinite-dimensional, as there are infinitely many degrees of
freedom required to describe the space of all possible measurement functions ¢ of the

enabling globally linear representations of nonlincar dynani
linear dynamics in a linear framework is appealing because of the wealth of optimal esti-

analytically predit the future state of the system. Obiaining  finite-dimensional pproxi-

Mathematical Formulation of Koopman Theory

“The Koopman operator advances measurement functions of the state with the flow of

the dynamics. We consider real-valued measurement functions & + M — R, which are

elements of an infinite-dimensional Hilbert space. The functions g are also commonly

Known as observables, although this may be confused with the unrelated observabiliry

picall.

functions on M other choices of a measure space are also valid.
oopman operator K i an infiite-dimensional linear operator that acts on mea-

surement functions g as:

Kig=g0F, asn

where o is the composition operator. For a discree-time system with timestcp Ar, this
becomes:

Kargtu

(Fa(5)) = g(x51) s

In other words, the Koopman operator defines an infinite-dimensional linear dynamical
the state g

%) = Karg (o) sy
Note that this s true for any observable function g and for any sate x;
“The Koopman operator s linear, a property which is inherited from the lincarity of the
additon operation in function spaces:

K @110 + a2 00)

g1 (B 0) + s (F ) .58
= @k () + @k ), @.540)
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For sufficintly smooth dynamical systems, it is also posible to definc the continuous-
time analogue of the Koopman dynamicl system in (7.53)

ass)

e pertor K i e il secror of the one it iy of s
tions K, [1]. i defined by its action on an observable functio

SN UL

as6)

e s 59 m¢
W (74,

u
e an he i dmensons nvm\lur X will advance ths function Hnwcvrr
the hosen b

hecome ity compes once serued though h dymamics n b word. nding
representation for K'x may not b simple of srzightforward.

Koopman Eigenfunctions and Intrinsic Coordinate
e Koopman opetor i s i s spesioe s i dimersionl, oo
isues stcad of captu
Hilbert space, '\thd

measurement functions that evole inearly with the flow of the dynamics. Eigenfunctions
of the Koopman oo rovide st st o il st e
lineasly in time. In fac fivation 10 adopt the Koopman framework is the
by tosinpiy e s rough e g decompostion o h oper
o

Pxk1) = Karplxn) = Ag(x0). asn
In continuous-time, & Koopman cigenfunction ¢(x) stisfies

Kot = 2pix). sy

Obaining Koopman eigenfunctions from data or from analytic expressions is a central

lobaly linear representations of srongly nonlinear systems

yields

Vo) = Vo) -3, s9)

Combined with (7.58),this results in a partial differential equation (PDE) for he eigen-
function ¢ (x):

Vo) 100 = . @60
‘With this nonlinear PDE, it s possible to approximate the eigenfunciions, either by
Solving for the Laurent series or with data via regression, both of which are explored

i diserete-time dynamics in (7.4) are more general, alihough in many examples the
ontinuous-time dynamics have a simpler representation than the discrete-time map for
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long times. For example, the simple Lorenz system has a simple continuous-tme repre-
sentation, yet is generally e

i key takeaway from (7.57) and (7.58) is that the nonlinear dynamics become com-
pletly linear in eigenfunction coordinates, given by ¢(x). As a simple example, any con-

value A = 0. I
implying that any symmetry in the governing equations gives fise (© 4 new Koopman
cigenunction with eigenvalue % = 0. For example. the Hamiltonian energy function is

Inadditon, the [ -1

for syster

Eigenvalue lattices Interestingly. a set of Koopman eigenfunctions may be used to gen-

erate more eigenfunctions. I discrete time, we find that the product of two cigenfunctions
1(3) and p3(x) i also a eigenfunction

K (010092080) = 9 F ()2 Fi () a1

= kg X200 6ib)

corresponding 10 a new eigemlue (3 given by the product of the two eigenvalues of
@103 and pa(s).
In continuous tme, the relationship becomes:

a
Kipn = 50192 .62

=do+ain a.620)

=hipier + i 620

=01+ 2w @620

[ " -

" d a group, except

that imverses. Thus, system, there.
may be a finie se of generator cigenfunction clemens that may be uscd to consruct
alatice, based on

the product 32 or sum 4 + 3, depending on b the dymamics e i dicrs
time or continuous time. For example, given  lincar
an cigenfunction with cigemvalue . Morcover, ¢ = 1
cigemvalue a for any a.

“The continuous time and discrete time latices are relaed in a simple way. If the

s s n igentuncion with

5 Th

g () (0) = e

100203 sy
another simple demonsiration of the relationship between continuous-lime and
discrete-time eigenvalues, consider the continuous-time defniton in (7.56) applied to an

cigenfunction:
i K00 )

S s
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Koopman Mode Decomposition and Finite Representations
Uniilnow,

However,

spaial systm, such as an evolving fuid o, These measurcrments may then be arranged
ina vector g

20 a6
o).

Each of the individual measurements may be expanded in terms of the cigenfunctions
(), which provide a bass for Hilbert space:

0= Y0 a0
s, the vector ofobsersables, . my be sy expanded
100
oo | &
x0 o an
P

whers ;s he -t Roopman mode ssoiated it the genuncion
b

unitary. Ths,

the e for
Comertine sy, . possle to ompote the Koopman modes v, dircty by
projectior

toj )
(@) 2)

a6
o8

where (-} is the standard inner product of functions in Hilbert space. These modes have

aphysical the case of d 1 x
in which case the modes are coberent spaial modes that behave linearly with the same
temporaldymamics . oxcilaton, pssily vih s gowth o ey

Given the decomposition in (767, e 0 represent the dynamics of the mea-
surements g as follows:

SRR S asw

g0

=Y Koy, aem
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s oaet

[

Ko tUe ™ Y

The
=Y st 0690
10 07 ¥ s he
and was introduced by Mezic in 2005 (3761 The Koopman mode decompositon ws lter
which il
be discussed in Section 7.2
Invariant Eigenspaces and Finite-Dimensional Models
e Jied
st of measurement functions.
A sl
itall funcions g n this subspace.
e ot g, @
the K
Ke=Pior+ haer+--+ Bpep. am

by restricting it to an invariant subspace spanned by a finite number of functions (¢,)/_.
The mat 15 on  vctor space R

values of g, (x. Thi
Any finite se of cigenfunctions of the Koopman operator wil span an invariant sub-
space. Discovering these cigenfunction coordinates s, therefore,  central challenge, as
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ey he d behave lincarly: I practice, it
is more likely that we willidenify an approximately invasiant subspace, given by a set of
functions [¢717_q, where each of the functions g s well approximated by a fnite sum of
eigenfunctions: & ~ Y0y ax

amples of Koopman Embeddings.
Nonlinear System with Single Fixed Point and a Slow Manifold
Here, B 1. given by

a1
@)

Fork < i < 0, the system exhibits a slow attacting manifold v byn=dn
i ponsile o svgment e st X with he ol s
a three.

ecomeinear.

(G-I LG

“The full pace s visualized in Fig. .11

deine
Tl Koopan it stpce T e coic, e dynamics

E

™
corresponding to the slow cigenvalues ¢ and 24 this subspace is visualized by the green
s, Fly e  he ol ympltEly atrcing mfold o e rgin
sysem,

aiways imersctin 2 parkls it i cined a3 45 sl o 0 1) drsction, The

increasingly large. In the frp il Koopmchenvbl spce. he dsmamice
produce a single stable node, with trajectoris rapidly attracting onto the green subspace
and then slowly approaching the fixed point.

Inirinsic coordinates defined by eigenfunctions of the Koopman operator The left
sigmcctonofthe Koopman opctor ik Koopin ignfunction ., gt
ables). The a. and h are:

p=n = it b= i
o E — am

he consant b i g, captres the fact that for a e o /s, the dymamics only

parsbolic retories. Thi i st more Ity by the varioussrfsces n Fig. 7.1
for different ratios /1.

way.a et of determined
ons deined by th s igomecor of e Kooprd operor o  imvaantsuspace
Explicily,

By, where £,K =ak,, @)
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e fll nonlncar
Sy X the 313 plane, Here, = ~0.05and . = 1. Reprdced from Braon e al. 921

man operator, even after coordinatc transformations. As such, they may be regarded as

Example of Intractable Representation
Consider the logistic map. given by:

it = Axdd - ). 76

Let our observable subspace include x and <%

NERD
el B AL e

iy = Bl - =

(-2 +4f) am
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Th 2 Similarly, th
tively, and so on, ad infinit
L L N R
F-p 0 0 0 0 0 0 0 0 x
0 g oap o 0 0 0 0 2
00 g w0 0 0 ©
Sloo0 o gt —apt et —apt 00 x
00 0 0 -5 s 40,%‘ 585 x’

It s interesting to note tha the rows of this equation are elated o the rows of Pascal's
riangle, with the n-h row scaled by r”, and with the omission of the irt 1ow:
[ = 10 .80)

il basis is somewhat

“The above representation of the Koopman operator in a pol
troubling. Not only is there no closure, but the determinant of any finite-rank runcation
i very large for f > 1. This llustraes a pitfll associated with naive represeniation of
the it dmensions Ko pero o 3 il chaoc sy, Tncag he

A D

systen
 noncat mesarement s Secton 1.5 yield por s, with e e s

the representation grows quickly:

| o 0 0
« |1 # 3 2

2 Jo -5

¥ o 0

< o o

oS0 | S s
o o

¥ o 0

@ o o

Analytic Series Expansions for Eigenfunctions.
Given the dynamics in (7.1), i is possible to solve the PDE in (7.60) using standard
tech Tayloror L e
of simple examples are explored below.

Dynamics
Consider the simple linear dynamics

sy
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Assuming a Talorsericsexpansion for (1)
P =co+erx+ e’ Hexx’ +
hen the gradient and dirctonalderatives e given by
Vg = 1 + 201 + 3’ +degx’ +
Voo s
Solving for terms in the Koopmn cigenfuncion PDE (760, we see that o = 0 must
Hold. For any posive inicger  in (7.60), nly one o the cocficints may b nonzeo,
Specically. for 2 = k & 2, then (x) = cx* i an igenfunction forany constan . Fo
nance.if 3 = 1, then p(x)

142008 4 e ey +

Quadratic Nonlinear Dynamics
Consider a nonlinear dynamical system

4 783
dr s
Thee s no Taylor seres that satisfies 7.60), exceptth tivial soluion ¢ = 0 for A = 0,
Instead, we assume a Laurent sercs

P = e e e e
Fertadtod s

“The gradient and directionl derivatives are given by

Vo= = et - 2o - e e 4 20y
+le ot +
Voo fm e = 2e g e e 2t

3t e’ +

Solin o the cosiccts o e Lot st sty 160 we find it o

fnts with positve index are zero, e. c; = 0 for all k = 1. However, the nonpositive
o el e iven by the recursion k1 = ke, for negative k = —1. Thus,the
Laurent seres is

o =14

)=

“This holds for all values of . € C. There are also other Koopman eigenfunctions that can
be identified from the Laurent series

Polynomial Nonlinear Dynamics
For a more general nonlinear dynamical system
@

&

' 84

01 = e s ancgenfunton forall € C.
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‘As mentioned abore, it is also possible to generate new cigenfunctions by taking pow-
ers of these primitive eigenfunctions; the resuling eigenvalues generate a latice in the
complex planc.

History and Recent Developments
The original amalysis of Koopman in 1931 was introduced to describe the evoluton of

dhis theory Koopman
and von Neumann to systems with continuaus cigenvalue spectrum in 1932 [301]. In the
caseof s

family Hilbert space. be familiar by
now, s the discrete (OFT) and
productof
Hamilionian

systems. In the original paper [300], Koopman drew connections between the Koopman
cigemvalue spectrum and conserved quantitcs, intgrability, and ergodicity. Inerestingly,

man's 1931 paper was central in the celebrated proofs of the ergodic theorem by
Birkhoff and von Neumann (62, 399, 61, 389]

Koopman analysis has recently gained renewed interest with the pioncering work of
Mezic and collaborators (379, 376, 102, 104, 103, 377, 3221, The Koopman operator is
also known as the composition operator, which is formally the pull-back operator on the
space of scalar observable functions (1], and it i the dua, or lefi-adjoint, of the Perron-

operator then it is closely relted to Carleman linearization [121, 122, 123], which has
been used extensively i nonlinear control [500, 305, 38, 5091, Koopman analyss i also
1487],

Recenty, it has been shown that the operator theareic framework complements the
raditional geometric and probabilstc perspectives. For example, level sets of Koopman
cigenfunctions form invariant partitions of the state-space of a dynamical system [103];
in particular, eigenfunctions of the Koopman operator may be used to analyze the ergodic
parition 380, 1021, Koopman analyis has ko been rcently shown (0 gencralze the

atraction of a stable or

Fum point or periodic obit [322],
Athe

Systems remains o central unsolved challenge. Significant rescarch efforts are focused on
devlopin datirvn tehniques ( identiy Koopman egenfuncions and use hese for
control, Recently, new work

eigenfunctions from data [550, 368, 513, 564, 412, 349].

Data-Driven Koopman Analysis

el
tionize our ability to predict and control these systems. The linearization of dynamies near
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dynamics (252]. The Koopman operator is appealing because it provides a Nh»lml linear

representation, valid far away from fixed points and periodic orbits. Hows

atemps o obin e imersoal it ot Koopnn apetor e st
472, 456,

Knnpmm\ aperon i et et mode achancin \pmla\ measremants rom one
time to the next, although these linear measurements are not rich enough for many non-
linear systems. Augmenting DMD with nonlinear measurements may enrich the model,
but there is no guarantee that the resuling models will be closed under the Koopman
operator (921, Here,

o
data. These methods decom-
(2761, and the use of

Extended DMD

DMD [535],except
that instead of performing regression on dirct measurements of the stae, regression is
performed on an augmented vector containing nonlincar measurements of the stte. As
10 the variational
s [405, 407, 4081, which was developed in 2013 by Nog and Nuske
Here, we will modify the notation slightly to conform to elated methods. In cDMD, s
augmented sate is constructe:

)

| e )

y=elw= ass
)

© may contain the original state x 15 well as nonlincar measurements, so often p 3 1.
Next, two data matrices are constructed, a i D)

P | |
v [’\' R RS R T

Finally, a bes-fit incar operator Ay is constructed that maps Y into Y';

Ay = aremin [/~ AyY] = Y'Y asn
W

“This regression may be written in terms of the data matrices @(X) and (X )

Av

e 7) - AT (0] -0 ) (0700) 13

K
are often employed to compute this regression [557). In principl, the enriched library ©
provides a larger basis in which to approximate the Koopman operator. It has been shown
recently that in the limit of nfinite snapshors, the extended DMD operator converges (o
the Koopman operator projected onto the subspace spanned by @ [303]. However, if ©
does not
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as all o the cigemvalucs

may be differen. In fact, it was shown that he extended DMD operator il have spurious

cigemvalues and eigenvectors unless it s represented in terms of & Koopman invariant
Therclore,

ensure that eDMD moels are not overfit, a discussed below. For example, it was shown
that eDMD cannot contain the original state X 25 2 measurement and represent a system
that has multiple fixed points, periodic orbit, or other atractors, because these systems
canno be topologically conjugate 0  finit-dimensional linear system [92],

‘Approximating Koopman Eigenfunctions from Data
In discrete-time, a Koopman eigenfunctions(x) evaluated at a number of data points in X
wil satsty:

Bt [ e
iptxe) 0

” w (7189
sot]  Lotuaan.

Itis possible o approximt this igenfunction as an expansion n terms of st of candi
date functions,

o)

[0 200 - 5,00] s
e Koopmancigenfunctionmay be approximted n ths basi as:
P00 DBk = OWE, aon
Witing (7.89) i terms of i expansion yiels he mtrx system:
(:00% - B(X)§ =0 as
DD (557, 5561

formulation:
= O 0%, oy

Note that (7.93) i the transpose of (7.88), 5o that left eigenvectors become right eigen-
vectors. Ths, eigenvectors £ of ©'@/ yield the coeficients of the cigenfunction ¢(x)

functions actually behave linearly on trajectories, by comparing them with the predicied
dynamics pis1 = dgy, because the regression above wil resul in spurious eigenvalues
[

921

Sparse Identification of Eigenfunctions
Iis possible to leverage the SINDy regression [95] to identify Koopman cigenfunctions

©(x) 0 avoid overliting. Given the data matices, X and X from sbove it i possible to
onstruct the library of basis functions @(X) as well as a library o directional deivatives,
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representing the possibl terms in Vep(x) - (x) from (7.60)

)

[Vo0 % Vo % - Vo,00-%] o9

It then possible to construet T from dat:

Vi s V6 Va3
i “ iy s
XX =
V) S Vo) A Vi) o,
For p » in

(000 - X %)

(195

e frmiaton n 199 s impli 0t £ will be in the mllspace of 10(X)—

XX
it g et columns of V) corresponding (0 zero-valued singular
values.

rsest vector in th null-space (4401, as in the implicit-SINDy algorithm [361] described
in Section 7.3, In this formulaton, the cigemvalues . are not known a priori, and must
be leamed with the approximte eigenfunction. Koopman cigenfuntions and eigenvalues
can also be determined as the solution t the eigenvalue problem AvE, = Aok where
Ay = ©'T s obtained via leastsquares regression, as in the continuous-ime version of
€DMD. While many cigenfunctions are spurious, those corresponding (o lighty damped
eigenvalues can be well pproximaed.

daain X

but can be obiained

Such as atin hypercube sampl
Hil
patches of state space.

Example: Duffing System (Kaiser et al [276))
We demonsttate the sparse idenification of Koopman eigenfunctions on the undamped
Duffng oscilltor:
a
@ |52,

where 1 is the position and x is the velocity of a particle in a double well potential
with oy hbm 0.0 ud (1,0, Ths sy i someratve, wih Baihonian % =
e K

241
Ssenunction it c\gcmwhw
or the eigenvalue J. = 0, (7.95) becomes ~T(X. X)§ = 0, and hence a sparse £ is

onght 5 XX A
data, employing polynomials up to fourth order:

o !
0= |50 0 nOmO o
[
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and

%

L | |
[w, S n}
\ \ i \

A sparse vector of coefficients § may be identified, With the few nonzero entries deter-
The identified

tonassociated with 5 =

00 = ~2/3 +2/35 + 173+ 96

Data-Driven Koopman and Delay Coordinates

Instead of abancing insananeuslnear o onliear messements of the e of 3

for m.m... based on time-delayed measurements of the sysiem [506, 91, 18, 144]. This
pensecin e datdoven,sin on e el of oo rom previs mese-
ments to Unlike

may et twapped at fxed points or on perodic orbits,chaotic dynanies are paricully

well-suied 10 this analysis: trajectories evolve (o densely fill an atractor, so more data
roides mos infomaton.Th s of delay connites iy b cpecily mportant o
sysems il long e ey s e the Koopman pprosh s recely
Hvulysn o0l (308 between the
zmmm where
astochastic is defined and a statistical
“The ime-deey measrement schem s show schematcally i Fi. 7,121 s

n th Lrea i o 8 sigle e sres messwerentof e i aabe, 1),
Condionof it
a diffeomorphism between a delay mbedied s v h arcin e original
coordinates. We then obtain eigent-time-delay coordinates from a time-series of a single
‘measurement x(¢) by tking the SV of the Hankel mairix H:

) ) i)
) ) X(im1)

aom
X)Xl 41) )

“The columns of Uand V f
the columns and ro

ety e, i s ok srsimion
byt i coums of U0 V- Not e Haret i 757 5 e i of
eemysem relizon ot 1572 n inar sysem enificion (4 Seeion . o
and analysis (SSA) [8

“The low-rank approximation to (7.97) provides a data-driven measurement system that
Byt
the dynamics map the atractor into itself, making it imvariant o the flow. In other wo
e columns of U form a Kooprman imariat subapce. We e (197 wih the
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liner nstad. vy 1 variables.

rom (011, 1911

Koopman operator € 2 Ky

xw) Kxin) Ky
Kt Kxin) Kmex(n)
a0

o) Kexin) K lxin)

The columnsof 797 are wllspposimted hy the frst  columns of U, The first »
columns of V provide a time seris of 1 e of each of the columns of US in
the data, By p . we obtain for the
Lorens sysem (See Fig. 7.12).

ection betwsen g delay condinesfom (197) e Koopman
perator motivates  linear regression model on the variables in V. Even
imately Koopman-insariant measurement system, there remain cha]lcngcs o identifying

a linear

pprox-

nodel for a chaotic system. A linear model, however detiled, cannot capture
‘mliple fixed points or the unpredictable behavior characterstic of chaos with a positive
Lyapunov exponent [92], Instead of constructing a closed linear model for the fist
variables in V. we build & linear model on the first r — 1 variables and recast the last
Variable, v, a5 forcing term:

o (1.99)




o
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v " veea]” is a vector of the first r — 1 eigen-time-delay coordi-
s Other work s investigated th siiting of dynamics ino deerministc fncr,and
chaotic sochasic dynamics (3761

Il of the examples cxplored n (91, the lincar model o the first  — 1 terms is
s, whil o s ol eprsns . IS v s e frn o e
: The stistics of v, (1) arc

=

o Ganian i
thel

by others [355, 461, 356]. The forced linear system in (7.99) was discovered after apply-
ing the SINDY algorithm [95] to delay coordinates of the Lorenz system. Continuing o
develop Koopman on delay coordinates has significant promise in the context of closed-
loop feedback control, where it may be possible 0 manipulte the behavior of a chaotic
system by treating v, as a disturbance.

”

soggets tht Kopman thery may o be vsed 10 improve spatlly disrbuted sensor

of ﬁymg insects, may use phase delay coordinates o provide nearly optimal enbsting:
o detect and control convective sictures (e.g., stall from  gust, lea
formation and convecion, etc).

HAVOK Code for Lorenz System

model for the same L
in Code 7.2, Here we use Ar 10,30 ¢ = 10, although the results would be.
more accurate for At = 0.001, m, = 100,and r = 15

ot 7:3 HAVOK code for Lorenz datagenersted i Secton 7.1

ummmmx..umf;y Hee,

Hlh, ) ks and-stacknax-1+k,2) 5

[U,5,¥) = sva(, econ’); & Figen delay coordinates

v < leron Glangth () 5,111
for 13 ensth ()~

pany

gy K1 = (1/(12000) 4 (V442,10 484V (£02,1) -B4¥(4-1,3)
REERDH
ana

a
¥ trin first and last two that are lost in derivati
V(3iend-3,1:x) 1

SR

11
Dileaniray
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Neural Networks for Koopman Embeddings
Despite the promise of Koopman embeddings, obis

e tractable sepresentations bas
fems,the

eigenfunctions of the Koopman operator may be arbirarly complex. Deep leaming,

s well-suited for representing arbitrary functions, has recently emerged as @
promising approach for discovering and representing Koopman cigenfunctions. 550,
368, 513, 564, 412, 332, 349, providing a data-driven embedding of strongly nonlincar
s o e e cooniites Tn patcutr, e Koopman perpectve 1t

)

ok addions o b et vt e dysanis s e e on
these latent variables, forcing the functions 9(x) 1o be Koopman eigenfunctions, as
illastrated in Fig. 7.13. The consraint of lincar dynamics i enforced by the loss function
190551) ~ Koxe) . where K is a maiix. In general, inearty is enforced over muliiple

time steps, in addition,

from the latent variables s probabilisic [550, 3681,
For simple systems with a discrete cigenvalue spectrum, a compact representation may
H

fal netswork or Koopman representations. Conlinuous spectrum dynamics are ubiquitous,
fanging from the simple pendulum 1o nonlinear optics and broadband turbulence. For
example, the classical pendulum, given by

—sin(ox) .10

#ipin-n

Fgure 713 The

(0.). Reprouced withpermission from Lusch e al. [$49]



27

Data-Driven Dynamical Systems.

P14

autoncod o

1309,

the pendulum
ascilltion s incressed. Thus, the continuous spectrum confounds a simple description in
terms of 4 fow Koopman eigenfunctions [378]. Indeed. away from the linar regime. an
it Fourirsm s equed o sppoximate e s i reencs.

In arecent work by Lusch et al. [349],an auxiliary network is used (0 parameterize the

sy sarin g, cnblig & sewor st s both oo

i imesreable Tis parsmeteioed ek s deicted shematicaly i, 714 5
illusrated on the simple pendalum in Fig. 7.15. In contrast o other network siruct

whi

asymptotic expansion in terms of harmonics of the natural frequency, the purameterized
network is able o identify a single complex conjugate pair o eigenfunctions with 1 vary-
ing imaginary cigenvalue pai. If this expliit frequency dependence is unaccounted for,
then a high-dimensional network is necessary 1o account for the s
cigemalues.

Itis expected that neural network representations of dynamicl systems, and Koopman
embeddings in partcular, wil remain 4 growing area of iterest in data-driven dynamics.

fing frequency and

has the potential to transform the analysis and contro of complex
systems.
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Linear Control Theory

The focus of e

and dynamical deling. However, an over-
arching goal for many systems is the ability 10 setively manipulate their behavior for &
The study and practice of i

brlyknown s coml ey, and 1 on f e st sl felds a e e
of applied math Control theory

science, as i relies on sensor measurements (data) obtained from a system (0 achieve &
eiven objectve. In fact, control theory deals with living data, as successful application
modifies the dynamics of the system, thus changing the characteristcs of the measure-

15.C

mode spprsimaions s

Control theory has helped shape the modern technofogical and industrial landscpe.
Examies shound. v cre oot o, postion conol i o
tion equipment, fy-by-wire autopilots i aircraf,industrial automation, packe routing in
the inemet, commercial heating ventilation and cooling systems, stabilization of rockets,
and PID temperature and pressure conirol in moder espresso machines, to name only &
few of the many applications. In the future, control will be increasingly applied t high-
d i

inance, epidemiology, autonomous robors, and self drving cars. In these future applica-
tions, data-driven modeling and control wil be vitally important;this s be the subject of
Chapters 7 and 10.

Thischter il roducethe ey conceps fom closcop fsdback contol. The

eoalisto by pr
farety chw\l:ngﬂ Mostof the theory will be developed for incar systcms, where &
sl ofpoert e i 165,492, T tory vl e oot on

. such s (0 develop for an auto
stabilize an inverted pendulum on a moving cart

Types of Control

There are many fady a
approaches are organized schematicaly i Fig. $.1. Passive control does not require input
energy. icity, relibility, and low cost.

For example, sop signs at a traffic intersection regulte the flow of traffc. Active control

whether or not sensors are used to inform the controler. In the fist category, open-loop



81 Closed-Loop Feedback Control 277

1 St e s e o ool Mo o s e i s on
o oo ek

control relies on  pr-rogramied contrl sequence; inth talic example, ignls may
be day. In the second
ey st contol s s o e cool . Dt edfonnd
rol measures exogenous disturbances (o the system and then feeds this into an open-
oapcoml would be
direction of the flow of e ear a stadium when a rge crowd of people are xpected
o leave. Finally,the lat category is closed-loop feedback control, which will b the main
focus of this chapter. uses sensors

then ieing the decired
ol Many moden e systems have smart i ights with  conrollgic formed
by inductive sensors in the roadbed that measure trafic density.

Closed-Loop Feedback Control
The main focus of this chapter is closed-loop feedback contrl, which is the method of
choice for systems with uncertainy, instability, nd/or external disturbances. Fig. 82
depicts the general feedback control framework, where sensor measurements,
m are fed back o a contrller, which then decides on an actuation signal, u, 10
manipulate the dynamics and provide robust performance despite model uncertainty and
v s ol of e el dued i s s, U o of
exogenous distrbances may be decomposed a5 W]
disturbances to the state of the sysem, w, s measurment noie, and w i a eference
trajectory that should be tracked by the closed-loop systr
el th seem d messuremens v il descrbed by  dynamicl

fxouwn) 1)



Cost
W 7
Fiuesz . e hack
o contole,
J

may alo nclude  eference trjecory w tht should b tacked.

Y=, ®.1b)
“The goal i to construct a conirol law

u=ky W) 52
that minimmizes a cos function

72 I, ®3)

“Thus, modern contrl relies heavily on techniques from optimization (74], Tn general, the
controller n (8.2) will be a dynamical system, rather than a satic function of the inputs
For example, the Kalman fler in Section 8.5 dynamically estimates the full stat x from

! .5, w), where

s the full-sate estimate

helpful
to compare with open-loop control. For reference tracking problems, the controller is
designed to sier the output of a system towards a desired reference output value W, thus
minimizing the error ¢ = y — W, Open-loop contrl, shown in Fig. 8.
of the system 10 design an actuation signal u that produces the desired reference output.
However,this pre-planned srategy cannot correet for external disturbances o the system

83, uses & model

from disturbances. Moreover, any model uncertainty willdirctly contribute 0 open-loop.
racking error

In contrast closed-loop feedback contrl, shown in Fig. 8.4 uses sensor measurements
of the system o inform the controler about how the system is actally responding. These
Sensor measurements provide information sbout unmodeled dynamics and disurbances
that would degrade the performance in open-loop control. Further, with fecdback it is
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Fouress 2

) a0 sensor oise (w5 well s unmodeld sysem dynamics and uncet
o o nd g peomanes

Feedback signal

Fawress Ci ck controld

‘whi effctively ejecting disturbances v, snd SETUAng Boise Wy

often d of i
which s ot posible with open-loop control. Thus, closed-loop feedback control s often
able to maintain high-performance operation for systems with unsiable dynamics, model
inty, and external disturbances.

Examples of the Benefits of Feedback Control

To summarize, control has several
+ Itmay be possible o stabilize an unstable system:

+ Itmay be possible to compensate for external isturbances:
. possible to corrct for

These issues are illustrated in the following two simple examples.

Inverted pendulum Consider the unstable inverted pendulum equarions, which will be
derived later n Section 8.2. The linearized equations ae:

afal_[o 1w, [0
- AR [
i e i o e el o s i

aceeleration, L is the length of the pendulum arm, and d is damping. We may
e n gandard fom o

st 2
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Linear Control Theory

I choce consacte ot i sl ey is o = VBT = 1 wdd omm

No apnloop coml ey ca change the dyamics f the sy ghen e
However, = —Kx, the closed
Ioop system becomes

A~ BK)x

46— 46, the

Chaosing K = [4 4], comesponding toa controllaw 1 = 4y — 412 =
el o sy (s B s bl ienales = =1 = =

Determining when it i possible to change the cigenvalues of the closed-loop systcm,
anddercmining e pprorine cotrol I K 10 achie s il b the suject o e

Cruise control
led dynamics and disurbances, we wil conidr  simple mode of cnise contol i an
automabile. Let u be the rate of gas fed into the engine, and let ¥ be the car’s specd.
Neglecting transients,a crude model ! is:

y=u 35

Thus, i we double the gas input, we double he automobile’s

Based on this model, we may design an open-loop cruise controller 0 track a reference
speed v, by simply commanding an input of
model (ie. in actuality ). or extemal disturbances, such as rollng hills (i, if
3=t sin(o), are ot aceounted for i the simple open-loop desi

In contrast, a closed-loap control aw, based on measurements of the spee, is able to
compensate for unmadeled dynamics and disturbances. Consider the closed-loop control
Jaw = K(wr — ), so that gas s increased when the measured velocity s 100 low, and

t00 high. Then i ¥ = 2uinstead of

wil i e peformines of

e closed-Joop ysten can be sigificanty mproved fo arge K.

. However, an incorrect automobile

2%
Y= —y) = (42Ky=2Kw, = y=—m_u. @6
=) (142K E 56

For K = S0 he sl g sy s 1 sy tsking o iy o

‘added disturbance g will be atienuated by & factor of 1/2K
Ao concrte cxampl,conser  eerence mcking vmhlcm with a desired reference
todel i y s

conmlr il = 50 3.3 s Cale 1. Al e cncoap conl e

will se lter

per
ar Adding an
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5
Time

Figure 5 Open-Joop s, close-loop e conrl.

Gode 1 Compare open-oop and clsed-loop cuie contro,

ovones (siza(c));
1005t (piet) ;

a
aodel = 1;

WO = wr/atiodel; + ope: ed on mode:
YOL = aTrueswol + d; %

CL = afTruesk/(1+aTruesk) vur + 4/ (LraTruesk)

Linear Time-Invariant Systems
i sysems 492, 165,22]

Linear

or  periodic arbit However, nstabilty may quickly take a trectory far away from the

) the system
in & small neighborhood of the fixed point where the linear approximation is valid. For
example, in the case of the inverted pendulum, fecdback control may keep the pendulum
stabilized in the vertical posiion where the dynamics behave linearly.

Linearization of Nonlinear Dynamics
Given a nonlinear input-ouput system

7




=
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y=gxw @)

it possible (o linearize the dynamics near fixed point (%, @) where (%, @) = 0. For small
Ax=x—Rand Ay a may

poin (%, )

ar,

ax+

dut ®8)

e snir su =160+ 8

w

Similarly. the output equation g may be expanded as:

wsonon =0+ B ane s 9

Dropping the A and shiftng 1o a coondinate sysiem where %, &, and § are at the origin the
linearzed dynanics may be writen s

Ax+Bu (10

@

y=Cxibu (®.100)

Note that we have neglected the disturbance and noise inputs, w and w, respectively:
these will be added back Kalman s

Unforced LinearSystem
o, s
he dymamical sysem in (3.10) becones
@i
he solion () s givn by
x(1) = eMx(0), (8.12)
Where the mar xponenial s defined by
A A0 AT @13
he solation in (5.12) i detcrmined cirely by he cigevaes and cgemectors of the
mteix A Considr e cigendecomposiion
AT =TA. (®.14)
e il . A i 3 dgsd s of it el 3 i
Forrepeated
e, ey b e ol o i enie e e dgona o g
ity > 2 il genraized

cigenvectors,
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In cither case, it is caser to compute the matrix exponential e” than ¢’ For diagonal
A, the matix exponential is given by

OIS o
0 e o

15
00

In the case of a nonrivial Jordan block in A with entries above the diagonal, simple
(for details,
Rearranging the terms in (8.14), we find that i is simple 1o represent powers of A in
ferms ofthe eigenvectors and cigenvalues:

TAT (.16

(rar) e

A= (TaT ) (1T ) o (AT ' w60
Final,sbsttuing e expesions o (.13 il

I (8.17a)

(8.176)

i

“Thus, we see that it is possibe to compute the matrix exponental effciently in erms of
the eigendecomposition of A. Moreover, the matix of eigenvectors T defines a change of
coordinates that drsmatically simplifis the dynamics:

Te s i=TR=TAN=T AT = i-Az GIS)

In other wors 5. com-
bining (8.12) with (8,17, it s possibl (0 wit the solution x(1) &5

X0 =TeN T 'x0) ®19)

In the fiststep, T maps the nidal conditon in physical coordinates, x(0), ino eigen-
0

update e, Finally, multipl

by T maps 2(1) back to physical coordinates, x(1).
In addition to making it possible to compute the matrix exponential, and hence the
i A

and sability of the system. We sce from (8.19) that the only time-varying portion of the
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solution s €. Ingenera, these cigenaluen = & by b compls s o
e oo g by i — e o) i), Thus, i all of e gl
have negative real part (., Re(:) 0 ten e s i sl stoiom o

decay t0.x = 0251 — . However, if even a sigle cigenvalue has pove real par,
henhe sy s sl and il e o e e pont slong e corespanding
kel
n 7 disurbanees wil
e sysem.
Forced Linear System
i focing, and x0) 100
30 = [N B & VB ©20)

The control input uir) s comvalved wih the kernel eMB. With an ouput y = Cx.
we have () = CeMB « (). This convoluton is llustrated in Fig. 86 for o single.
input, igle-ntpu (SIS0) sy intems o he impulc esponse 1) = CeVB =
Ji CeNI=OB () given a Dirac dlt inputu(r) = 5(0).

Discrete-Time Systems
In many real-world applications, systems are sampled at discrete instances in time. Thus,
digital control systems are typically formulsted in terms of discrete-time dynamical
systems:

Agc+ Byue ®210)
= Coxe+Dyuy, ®210)

where X, = X(EA1). The system matrces in (8221) can be obtained from the continuous-
time system i (8.10) as

A ®220)
B, ®220)
€ #.220)
Dy ®220)

The stability of the discrete-time system in (821 s tll determined by the eigenvalues of
A although now  system is stable if and only i ll discrete-time eigenvalues are inside
the unitcicle in the complex plane. Thus, exp(A 1) defines a conformal mapping on the
complex plane from continuous-time to discrete-time, where cigenvalues in the lefhalf
plane map 10 cigenvalues inside the unitcircle.
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ot —to)

ot
R 0]

Input

Output
Figure 6 Convolution for 3 single-input single-output (SISO) sysien.

Exampl: Inverted Pendulum

Consider the inverted pendulum in Fig. §.8 with a torqu

of motion, derived using the Euler-Lagrange equations?, i
2

ut 1 at the base. The equation

[ 62
,
rtr il cqaion s 3y of s e equions
[ A n 3
R 1 B o o AP

Where £ he i s,




5

Linear Control Theory

Continuous-time Discrete-time

Fpues7 i

Figure 8 Schemmaic ofinverted pendulum sysiem.

“Taking the Jacobian of £, w) yields

ar 0o e
x [ffmm» o}‘ @ [J ®2

Lincarizing at the pendulum up (x) = 1. x2 = 0) and down (x) = 0, x3 = 0) equilibria
sives

1 9 | S A [

I— [erTS———

“Thus, we see that the down positon is a stable center with igenvalues & = i ETT
sponding t oscilltions at a natural frequency of y/£7. The pendulum up position is
an unstable saddle with eigenvalues = +/E7T.
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Controllability and Observability
A

u 1007 iy saw i Section 8.1
. resuling in a new sys A-BK)
when and how
e manipulated through fecdback control. The dual queston, of when it is possible 1o
e x 3
Controlabilty

e ability to design the eigenvalues of the closed-loop system with the choice of K.
relies on the system in (8.10a) being controllable. The contrllabilty of a lincar system
by

C=[B AB A% .. Av'B] )

I the matrix € has n linearly independent columns, so that it spans all of &7, then the
system in (8.104) is controllable. The span of the columns of the controllability matrix
€ forms a Krylov subspace that determines which state vector directions in B” may be

placemen, it also implis that any stte § & B is reachable in a finte time with some
actuation signal u(r).
e following three conditions are cquivalent

Conllabiliry. The span of € is . The matrix € may be generated by
I>> ceeniam)
and the rank may be tested tosee i it s equal 0 1, by

5> rankicerni,2))

2 .
loop system through choice of feedback u = —Kx:
AxtBu= (A~ BK)x 27
the gain K
lo= % = place(a,3,neveigs)
Designing K for he best performance will be discussed in Section 8.4
3

te

R ina finite time with some actuation signal u(r).

Note that reachabilty also applies to open-oop systems. In partcular, i a dirction £ is
o in the span of C, then it is impossible for control (o push in this directon in either
openloap or losed-loop.
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[Examples The notion of controllability is more easily understood by investigating a few
»
L9 e

REERIMERE

dependent ectors and docs ot s . Even hefoe checkin e rak of he sontll
bty matix, it is easy o see that the system won't be controllable since the states ¥, and

A ][t O[] o1 oo
2 R O [o od) e
Ey— e
ol iy e Th oty o b e o et
P
a1 [a], 0
- R
o e e - S,

SRIB AR = e[ e

<t and xz are decoupled,

T

B=[1 1]
We will s in Sccton 8.3 that contollabily s ntimately relted o the alignment of
the columns o I withthe cigemector dirctions o A.

ity
Mathemaically, observability of the system in (8.10) is nearly identical to controllabil-
ity, although the physical interpretation differs somewhat. A system is observable if it is
possible to estimate any stae § & B from a time-history of the measuremens y(1).

gain, the observability of a system is entirely determined by the row space of the
obsersability matix O:

o-| ®32)

car!

In partieular, i the rows of the matrix © span B, then it s posible 10 estimate any ull-
eRr «

Y.
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1> obavin,c)s
The ot o e timaion & elathely g, We e
scen that with full-state feedbach K itis possible t0 modify the bchuvmf ofs

s

sary o a P sy
In Section 8.5, we will see that i is possible to design an observer dynamical system (o
st el rom iy e A i e s of s contlie s,
ifa it s possible to design th i the estimator dynann-
il sy 0 have Sesble crmcteuicn, ch o ot enimaion 1nd afcive nofs
atenu:
i dual of
erterion. In fat,the observability i is the transpose of the controlabilty maix for
)

1> 0 = cexb(ar,c s &

“The PBH Tt for Controlbilty
e many tess to determine whether or not @ system is contollble. One of the
ot sl nd g i = Poyor-Delicr o (DR s, i PBH st
st that he i (A, By i contllbe 3 and oy f the column rank of the matix
BJis ‘..u,v fom for € . Tis s s prily Fining s

the columns of

A
Fist,the PBH tes only neds to be checked at . thit are cigenvalues of A, snce the
rankof A — i1 when n e,
cquation det(A — #1) =
e the matrx A — AT becomes rank deficie, o degenerse
Now, gven that (A — A isonly rank defcint for cigenvalues . it alsofolows thatthe
aull-pace,orkerel, of
paricular cigenvalue. Thus,for[(A — &1) B] 0 have ank , he coumns in B must have
Some component i each of the cigemvector directions ssociaied with A 1o complement
the null-space of A — 11
A s distnct egenvalues,then th sysiem will be controlabl with a single sctu-
ation input, snce the matrix A — 1 will ave at most one cigemector dirction i the
aull-pace. In particular we may choose B a the sum of al of the  lnealy independent
claemecars. ind 1 il b gt 0 v e campone i ach ision. 1
(B wil
e ol wi igh mmmy e i e iy sty ot B il

I

ot s o 5y dsresof Fesdon. 1

s multdimensional, then the actuai
other words,

s [

€ Clorthe syt 1o b o
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H
helpful to have multple actuators in practice for bettr control authority. Such nonnormal

nearly parallel eigenvectors, often with similar eigenvalues

The Cayley-Hamilton Theorem and Reachabilty
“To provide insight into the relationship between the conrollability of the pair (A, B) and
the reachability of any vector § € R via the actuation input u(r), we will leverage the
Coly-Harlon heorem, This g f s lgsh it provdes anclea vy
o represent solutions of X = AX i terms of 4 finie sum of powers of A, rather than the
infiit sumrequied o the i esponenl i iy

matrix A
(eigenvalue) equation, det(A — 1) = 0:
A A = a2 ) da b a #33)
= A AT A Al =0, ®330)
hough t ey simple to stat, it In particul, it is
Arasa powers of A:
A=l aiA - oA - —a A ®34)

her power A" may also be

Itis sraightforward to see that this also implies that any b
pressed as a sum of the matrices {1, A, -+~ , A"}

Al ®35)
Th h TN as
(®36)
AL+ AUDA + 20N + -+ fu (O™ (®360)
arbieary

Vector § € . From (8.20), we see that asate & i reachable ifthre i some () so that
= [ N Buco e ®31)

‘Expanding the exponential i the ight hand side in terms of (8.36b), we have:

[, 1806 = DB + 1 - D ABuCr) +

st~ DAY Buoldr
8 [ ooy am [ outor e+
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1t = Doy de
e — oouce)de
oo | b7

Ty Bocrtt = Dueydr,

Note that the matix o the Ieft s the comrollability matrix €. and we sce thatthe only

;. y
ndependntfneions. I sl he s tht e i ot g st ot )
ke

Gramians and Degrees of Controllability/Observabilty

Sf € e ©) s it or i s, Howers e e degees of oy ad
may be easier to control or

position of the controllablity Gramian:
W= [ ABBA 39
Similurly, the observability Gramianis iven by

Wi [[ e o

atinfinite ~ L we refer
10 We = T oo W) and W, = lim . Wo(0)
“The conrollailty of s s measured by x*Wox, which will b frger for more
Ifthe value of x*Woxis
o e deeton with 3 ot con et The oty o » o s sty
measured by x'W,x. Both Gramians are symmetric and positve semi-definite, having
Th

controllable

iy,
or observable. In this way, the Gramians induce a new inner-product over state-space in
terms of the controllabliy or observability of the sttes.

Gramians may be visualized by ellipsoids in sate-space, With the principal axes given
by dircetions that are hierarchically ordered in terms of controllabiliy or observabilty.
An example of this visualization is shown in Fig. 9.2 in Chapter 9. In fuct, Gramians
may be used to design reduced-order models for high-dimensional systems. Through 3
balancing transformation, u key subspace is identified with the most joindy controllable:

o0d

“This form of balanced model reduc

will be investigated furthr in Section 9.2.
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Gramians are also uscful to determine the minimum-cnergy control u(e) required to
navigate the system 0 x(1) at time £ from x(0) = 0

a0 =B (A1) Wi ) w0
he ol cnerey expended by s contol o is v by

[ weorrar

It can now be seen that if the controllability matrix is nearly singula, then there are direc-
ely. i

W) x 41

"
W are all asge,then the system i easily controlled.

It generally impractical to compute the Gramians direetly using (838) and (8.39)
Instead,

AW+ WA” 4 BB ®42)
while the abservability Gramian s the solution to
AW+ WA CC ®43)

Obtining Gramians by solving a Lyapunov equation is typically quite expensive for
high-dimensional systems (213, 231, 496, 489, 55). Instcad, Gramians are often approx-

el g snapbot dats om e diret and ot e, 21 0l b
discussed in Section 9.2.

%

Stabilizabilty and Detectabilty

I practice, full-state controllability and observability may be too much to expect in high-

to manipulate exery minor fluid vortex; instead control authority over the large, cnergy-
containing coberent sructures is often enoug
Stabilizability refers to the abilit o control al unstable eigenvector directions of A,

So that they are i the span of C. In practice, we might relax this definition (o include

lightly damped eigenvector modes, corresponding (o cigenvalues with 3 small, negative
' itall O, then the

i e

ere may also be states i the model description that are superfluous for control. As

der the control system for & commercial passenger je. The sate of
lude the passenger scat position, although this will surely not be
conteollable by the pilar,

o should it be.

Optimal Full-State Control: Linear Quadratic Regulator (LOR)
‘We have seen i the previous sections tha if (A, B) s conrollabl, the it is possible to
A

i -

of a full-sate feedback contol law w = —Kx. This implicidy assumes that fullstate
nd D at y = ). Alihough fullsate

‘measurements are not always available, especialy for high-dimensional systems, we will

measurements are available (ic.
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s i the et cton A e st i bl i s e 0l 3 st
estimate from the sensor measuren
Give a contllabe sy, and e measarcments of the fllste o a1 obc
bl syt with  fll st il e s any choces of sailing conrol i
o make the closed: (A~ BK) arbi-
Wiy s, lacng e o desed i e bl fhe comple plae. Howevr

Choosing very sta-
ble

Toop system to jiter.
fead to instability if there are small time delays o unmodeled dynamics. Robustness will
be discussed in Section 5.5,

Choosing the best gain matrix K to stabiize the system without expending (oo much
contrl effor i an important gosl in optinal control. A balance must be struck between
the staility of the closed-loop system and the aggressiveness of control. It is important
o take control expenditure into aceount 1) 10 prevent the contoller from over-reacting
o highfrquencyposeanddisurbancs.2) 0t o dos ok cxcosd masimum

' 1d3) s0 that control is not y In partcular, the
i

P R — s

The marices Q

andR
tively. The matrix . an
often diagonal, be tuned to change
of the conrol bjctives

lawa
bl o ich her 3 vl of ol and mumcrl s (14 Toe
linear-quadeatic-regulator (LQR) b= K is designed to minimize J =

iy J(0). LQR is so-named e i ot o e designed for a linear
system, minimizing a quadsatic cost function, that regulates the state of the system (o
i x(1) = 0. Because the cost-function in (8.44) is quadratic, there is an analytical
solution forthe optimal controler gains K., given by

K —RBX, (845)
where X i the solution 0 an algebraic Riccat equation:
AX XA - XBRUBX Q= (s.46)
Sbing e shore Rl e o X, s b o e s mmesically rbus o
Matlb, K, is obizined
lI>> Ke = lar(a,5,0.8);
H ving the 3

makin,
prohibitively expensive for large systems or for online computations for slowly changing



tate fcdbuck. The
= xisgvenby

Fipure 89 Schermaicof the linear quadratic regulator (LK) for optimal fl
Y

“Kxuhere K,
Riceat quation.

sate equations par PV) control.
of reduced-order models

d order model: in Chapter 9,

"The LOR conller s shown ~<hemmmll) in . £, 0w ol psile cotol aws

u=K, - 1

o i Section .. Hover, A may b the v that ezl et s el

sncontolal whie the fl ol syt i (7 is conlale with 3 nonlicar
ol law u = K(x)

Derivation of the Riccati Equation for Optimal Control
Itis worth taking a theoretical detour hee 10 derive the Riccatl equation i (8.46) for the
how o

a template for computing the optimal control solution for nonlinear sysiems. Because of

chanics \
First, we will add a terminal cost 0 our LQR cost function in (8.44), and also introduce
afactor of 172 to simplify computations:

[ 3 wox s wra) ar+ Jxepoman a7
[y T

The goal is function / subject

Ax+Bu s48)
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We may solve this using the caleulus of variations by introducing the following aug-
mented costfunction

Ju

J I TS P

“The variable 1 is a Lagrange multiplier, called the co-siate, that enforces the dynamic
constraints. & may take any value and Jug = J will hold
“Taking the tota varition of L in (8.49) yields:

The partal derivatives* of the Lagrangian are 42/3x = x*Q and 3.£/u = u*R. The last

- [Mwessar

“The term 1*(0)3x(0) i equal 1o zer0,or else the control system would be non-<ausal (..
then future control could change the initial condition of the system).

Cupts s [ o

Final, follows:
o r/
Sy [ (x'Q+l'A+A')axdr+/ (wR + 1°B) sudr
(0@ A ax). @sn
7. Thus, we may brak this up it tree cquatons:

XQENA+I =0 ®52
WREAB=0 @52
xQ) - X)) = 0. ®520

Not that 1 ondiion for

tion for & sarting at . Thus, the dynamics in (8.48) with nital condition x(0
(8.52) with the fina-time condition A(

o and

Qx() form a two-point boundary value
problem. This may be integrated numerically to fnd the optimal control solution, even for
nonlinear systems.
Because the dynamics are linear, it is possibe to posi the form
into (8.52) above. The first equation becomes:

Px, and subsitute

(Px+ P £x'Q AR =0,
Taking the ranspase, and substiting (848) i for ,yields
Pt PO+ BU) + Qx+ ATPY = 0.

From (8.52b), we have
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Finally, combining yiclds

P+ PAX+ A'Px — PBR™B'Px + Qx

®53)
“This equation must be true for ll , and s0 it may also be written as & matri equation,
Dropping the terminal cost and leting time go to infiniy, the P term disappears, and we
recover the algebraic Riceat equation:

PA+ AP~ PBRBP+Q =0,

addition, the d = fix
and asimisrnlna o ot m,m o problem my e formutated it 0%

© uumﬂumlly abiinnonlinear optimal conteolrjectoric

Hamiltonian Formulation Similar o the Lagrangian formulation sbove, it s also possi-
bl Hamilonian

(Qx + uRu) 43" (Ax £ Bu) e

X0 =x

20 = Q)

Again, this is a two-point boundary value problem in x and A. Plugging in the same
expression & = Px will result n the same Riceat equation as sbove.

Optimal Full-Stat ‘The Kalman Filter
“The optimal LQR controller from Section 8.4 rlies on fullstae measurements of the
H .

burden o full- p-
et deays that il it robust performance
Instead of limited

noisy measurements y. In fact, ful-sate estimation is mathematically possible as long as
the pair (&, C) are observable, although the effeciveness of estimation depends on the

. N e 275,
551, 2211 i the most commonly used full-sate estimator, a it optimally balances the
‘competing effects of measurement noise, disturbances, and model uncertainty. As will be
shown in 0

ext section, it is possible 10 use the ullstate estimate from a Kalman fler
in conjunction with the optimal fullstate LQR feedback law.



85 Optimal Full-State Estimation: The Kalman Fiter 257

When deriving the optimal fll-sate estimator, it s necessary to re-ntroduce dis
bances to the sate, Wy, and sensor noise, W,

FH— s
B s
E(wa(0)wa(1)*) = Vbt — 1), (8.57a)

E (W)W, (1)) = Vot 7). (8.57b)

Here E s the expected value and 5(.) is the Dirac delta function. The matrices Vy and
v,

noise biased,
and diswrbance terms [498, 372).
of the full the input u
and output v, via the following estimator dynamical sysiem:
AR+ Bu+ Ky (y— ) (8.580)
+Du (®3585)

“The matices A, B, C. and D are obtained from the system model, and the filtr gain K 7 s
deermined via a similr procedure as in LOR. K i given by

K, =YC'V, 59
where y i the solution o anather algebraic Riccati equation:

VAT AY S YCV, IO £V

(®60)

“This solution is commonly referred to as the Kalman ite, and it is the optimal fullstate
estmator with respect o the following cost function

Jim E (0 - 50)" (x0 - 50)) ®en

“This cost function impliciy includes the effects of disturbance and noise, which are
quired o determine the optimal balance between aggressive estimation and
attenuation. Thus, the K i e o s e evimation (0B,
b s ormlion 14 LQR gzt The s i .61 i compic 2
ensemble average over many realizati
e g Ky may b determined in Mt via

l>> KE = 1ge(A,Va,C,Va,Vn) ; ¥ design Kalman Filter gain

Optimal control b

observability, so the Kalman filter may also be found using LQR:

ll>» KE = (lgria’,c',va,va)); & 1R and LgE are dual

“The Kalman filer s shown schemarically in Fig. 8.10,
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e - - @
da
X = Ax+Butwy
y=Cxtwa n
X =(A-KOx

¥ [ Kalman Filter

4Ky +Bu

c of the Kalman e for fllsae estmarion from

Parstae Schoms sy measurements

D ahongh iy be el

Substituting the output estimate § from (8.38b) into (8.58) yiclds:

A~ K/C)%+ Ky + (B-K/D)u (®620)

A K Q)R+ [, mx,n.]m (62

is expressd n toms o 3 with npus y and

it K Chibiarily
% comergs o the long s the

model the
i sy ynamic. o s i comvergnc,consder he i of e csimtion

i 44
il
v+ Bt ) — (6 KO-+ Ky + B~ K D]
— Ae-bw KGR Ky K Du
et wa I CR K 1€ D w4 Du
—
— A KO twy Ky,
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Therefore, the estimate % will converge to the true full state when A — K ;C has stable
eigenvalues. As with LQR, there s a radeoff between over-stabilization of these eigenval-

driver who may P
and disturbance on the road
There are many variants of the Kalman filler for nonlinear systems [274, 275, 5381,
e
extension that works well for high-dimensional systems, such as in geophysical data

i 4491 Al o hese methods sl s Gavian e proscscn, and the
particle fiter provides a more general, although more computationall intensive, altema-
tive that can handle arbitrary noise distributions 1226, 4511, The unscented Kalman filter

balances the effciency of the Kalman filer and accuracy of the particle filtr

“The full-sate estimate from the Kalman fier is generally used in conjunction with the
full-sate feedback control law from LQR. resulting in optimal sensor-based feedback.
Remarkably, the LQR gain K, and the Kalman filtr gain K may be designed separately.
and the resulting sensor-based feedback will remain optimal and retain the closed-loop
cigenvalues when combined.

in the linear quadraic Gausian (LQG) contole. The LQG conllr s 8 dynamical
system with input y, output u, and inernal state %

e
wom
! . o
hecost funcion rom (.49
0 :(/ [x()°Qx(r) + u(e) Ru(o)] u() ©6h

The controllern = —K, &
averaged over many redlizations of the disturbance and noisc. Applying LQR 1o & reslts
i the following sate dynamics;

¢

@

X~ B 4wy (5650

X~ BK,x 4 BK, (x %) 4 ws (5650
X~ B+ BK € £ Wi, (8:650)

Again € = x - & as before. Finally, the closed-loop system may be written as

£ e N [ A
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System
Ax+Butwy

y=Cx

Fgwosn i

s K
equation. i

Thus, lated by the cigenval-
wes of A~ BK, and A~ K €, which were aptimally chosen by the LQR and Kalman fiter
eain matices, respectively.

‘The LQG framework, shown in Fig. 8.1, relies on an accurate model of the system
and knowledge of the magnitudes of the disturbances and measurement noise, which are
assumed to be Gaussian processes. I real-world systems, cach of these assumpions may
e, el e Sl e sty e sy e s
ofLQG
nceiny motate the soduction of o ontol i Section .5 For txample. 1
sossible o vy LQG gt a procss known 5 o tanse over

LQG control is many systems.
frty among the most common control paradigms.

control and designing faster inner-loop control and slow outer-loop control assuming &
Separation of timescales, LQG is able to handle multiple-input, muliple output (MIMO)
sysems additionsl
‘complexity in the algorithm of implementation.

Case Study: Inverted Pendulum on a Cart
f opiml cocl, we il mp
2. 8.12. The ful. e

siven by

®67)

4 cos(8) sin(®) + mL20nL? sin@)
L3 G L ey

67
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The control
e . Foris anpe, e ssuve e olloing et s e s
=1, (3. o on seecron 1030
Caraamng 6= .

@ 670

(& MymgLsin(®) — mL cos(®)mLar sin6) — 3v) + mLcos(6)u

ot Mymslsing®) — mbeos(0)mka? sin) — )+ mbeos@u

LT+ m(1— cos(®)1))
. v the velocity. @ is the pendulum angle, o is the angular
velocity, m s the pendulum mass, M is the cart mass, L is the pendulum arm, g is the
gravitational aceeleration, 3 is a fiction damping on the dart, and  is 4 control force
applied to the cart.

The following Matlab function, pendeart, may be used 1o simulate the full nonlinear
systemin (8.67)

where x i the cart po

Gode 2 Right handsid function for invericd pendalum oncar.
function ax = pendeart (x,m,N,1,g,d,)
ain(x(3)):

cos (x(3));
+ Otome (1-Cx2) )

ax(1,1) - x(2)

@6(2;1) + (1/D) s (-n*200°20geCrasx + MaL"Za (naTu(4) “2a5% - dex
(20)) + meLaLn (1/0)wu;
ax(3,1) = x(a)

SD) - T0/D] s (noh) smegeLsx - muLacxs(naLax(4)" 2% - dux(a)
1) - meLecxe (1/) 0

There are two fined points, corresponding o either the pendulum down (8 = 0) or
pendulum up (6 = ) configuration; in both cases, v = @ = 0 for the ixed point, and
the cart postion x is a free variabl, as the equations do not depend explicily on x. Itis

ding

the following linearized dynamics:
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W] o 0 ojfu] 0 W]
d | 0 b e & x v
< " N ol for [ =
dt | x3 0 0 IR E n o
w) Lo e | I ) Lo,
Gon

here b = 1 for the pendulum up fixed point, and b = 1 for the pendulum down fixed
point. The system matrices A aod B may be entered in Matlsb using the values for the
constants iven in Fig. 812
o3 Construct system matricesfo inverted pendulum on & car.

clear all, close all, elc

b= 1 % Pendulun ug

A-l01
H —d/v m.qm o

° ,m/m. 1, B e g/ e 01
]

5-10 07 Bt/
hat
o A:
2> lanbda = eig(A)
Lanbas -
o
2.1
Zol2m6
2468

In the following, we will test for controllability and observability, develop full-sate
feedback (LQR), full-state estimation (Kalman filter), and sensor-based feedback (LQG)
Solutions.

Full-state Feedback Control of the Cart-Pendulum
I this section,
uration (0 = ) assuming fullstate measurements, y = x.
it conf it he sy i ey onolale with e ien A v .

Before any conrol design, we

s> rank(cerb (3,5))
“Ths, the pair (A, B) is controllable, since the controlabilty matrix has full rank. It is
then possible o specify given Q and R matices for the cos function and design the LOR
conteller ain matix K:

o4 Design LR controller t sabilze insrted pendulum on  cart.
o Desion

& Se
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5
Time

Fguren1a
contoller.

0001

K= lqria,B,08)

e
10 x+.0 0] and
he car, fromx = 110

will intialize our simulation slightly off equilibrium, at xo

x=1
Gotes Simulteclosed-Joap nverted pendulum on acat sysen.

N + control law
[0,5] = oded5 (6(c,x) pendeart (x,m, U, L,g,d,u(x)) , copan x0)
In this code, the actuation s set (0

“Kx-w). ©69)

wherew, =1 0 7 0] is the reference position. The closed-loop response is shown
inFig. .13

It the cloed-loop
system response is considerbly more inolved than actually deigning the controllr,
which amounts to a single function call in Matlab. It is also helpful to compare the LQR
tesponse to the response. obtined by nonoptimal cigenvalue placement. In particulr,
Fig 8 for 100 randomly
stable cigemvalucs, choscn in the interval [ 3.5, —.51. The LR contollr hs the owest
overallcost, s t s chosen 1o minimize J. The code (0 plo the pendulum-—cart sysem s
provided online.

Noninisphase ssens 1 can b scn o e resgome it n s 0 e
. the system nitally moves in the wrong direction. This behavior
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5
© QR

s

o

o 1z 3 4 5 s 7 8 s w

Time

Foweas poke
Jocaons Bld s represent the LOR soluions.

indicates that the system is non-mininsan phase, which inteoduces challenges for robust
ontrol as we will soon sce. There are many examples of non-minimum phase systems
in control. For 1

mass of the car away from the curb befor it then moves closer, Other examples include
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increasing alitude in an airraft, where the clevators must first move the center of mass
down to increase the angle of attack on the main wings before it increases the altitude.
Adding cold fuel 0 a turbine may also initally drop the temperature before it eventually

Full-State Estimation of the Cart-Pendulum
Now we turn to the fullstate estimation problem based on limited noisy measurements

. For this example, we will develop the Kalman filer for the pendulum-down condition
=0,

the fixed point where the linear model is valid. When we combine the Kalman filer with
LQR in th e, it will be 10 the unsiable
configuration

IIb = -1 % pendutun down

Before designing a Kalman filtr, we must choose 4 sensor and test for observabilty. If
we measure the cart position, ¥ = 11,

llc= 10001, 3 measure care posicion, x

then the observabilty matix has ful rank
5 zank (obav (3, C))

Becun thecart postion 1 docs ot o expily in e i, he sy i
o fully obsersable for any measurement that doesn't include x1. Thus, it is impossible
et o can oo it 5 mesnement o e pendtom snge, Howeves i e
cart positon is ot important for the cost function (5., if we only want (o stbilize the
pendulum, and don't care where the cart s located), then other choices of sensor will be
admissil

fow we design the Kalman fler, specfying disturbance and noise covariances;

1 - meu. eye(ﬂ v desicn Kaina

Tam G VG, al) 15

“The Kalman filte gain matsix i given by

Slane

Finally, ¥ Janan filer, the orginal system
o include disturbance and noise inputs:



o'11; & D'matrix passes notse through

55(,5_aug,C,0_aug); ¥ single-measurens:

e B vt e ) zovos 14, 1r0 3 a0m 311} 5

o reruer
sysTruch =

SYSKE « 58 (AKEaC, [B KE]  oye (4) 00 (B KEI); § Kalman £iltor
‘We now simulate the system with a single output measurement, including additive dis-
Attime

15, we give the system a large positive and negative impulse in the actuation,

£

respectively.

4 aystem in "down® position

5
ax

atraciso;

UBLET - eget(ve) sranda e sbxe(t.2)1 ¢ random disturbance
OIS = sqee () andn i3+ randon
UC/an = 0/at, ¢ positive im
(15/a%) = -20/dc; ¢ negacive in
u_sug - [4; WDIST; WNOISE];
y,t) - lain(eyec, oh
T tijpisin oy sceatat o)1 o
[hat,£] = Lsin(syske, (u; y71,60; & stace

Fig. 8.15 shows the noisy measurement signal used by the Kalman filtr, and Fig. 8.16
shows the full noiseless state, with disturbances, along with the Kalman fir estimate.

“To build intuition, it i recommended tha the reader investigate the performance of the
Kalman filter when the model is an imperfect representation of the simulated dynanics.
‘When combined with fullstate control in the next sction, small time delays and changes
10 the system model may cause fragilty.

‘Sensor-Based Feedback Control of the Cart-Pendulum
To o o o the et pesdln an  cat, o il sl he
full nonlinear st in Simulink. 5 shown in Fi. .17, The nolincar dynamics are
encapulted i he ok ‘cartpend s and the s const ofthe sctuation st
w and disturbance wy. We record the full state for performance analysis, athough only

noisy measurements = Cx -+ wy and the actuation signal u are passed 10 the Kalman

filer.
Q= eyeia); § state o

R = 1000001 + actuation cost

Va - .Odreye(a); ¢ disturbance covariance
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Measurement

0 s w0 5 @ 2 w3 40 & 50
Time

Fouron1s
noiseles signaland the Kalman e esimite.

Fiure 16 Th

The system starts near the vertical equilibriom, at %o = [0 0 314 0], and we
ommand a stp in the cart postion from x = 01t0.x = 1 at 1 = 10. The resultng response:
s shown in Fig. 818, s 820),
the controller is able o effectivly track the reference cart position while stabilizing the
inverted pendulum,
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0

o 15 25 % @ 40 45 80
Time

Figure .18 Ouu esponse using LQG feedback contrl

88 Robust Control and Frequency Domain Techniques
Uil now, we have described contrl systems in terms of stae-space systems of ordinary
differential equations. This perspective readily lends itsel to stability analysis and design
via placement of closed-loop eigenvalues. However, in aseminal papes by John Doyle

1978 (1351, s "
delays, and other model imperfe
Fortunately, a short time after Doyle’s famous 1978 paper, a rigorous mathematical
theory e Indeed, this new theory

5 Tl Gusrateod masio o QG regltos: bt T s e
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Measurement

Fguren 1o
gl and the Kalman fter esimte

Disturbance, o

w
£,
g
s
' ws s s @ @ & w5 8 m5
Tone
P sl

a2
sl and the Kl flter esimte

i i
“To understand and design controllers for robust performance, it wil be helpful to look
iency domain transfer functions of various signals. In partcular, we will consider
the sensitivity, complementary
iative and visual spproaches 10 assess robust performance, and they enable inuitive and
compact representations of controlsystems.

nois Moreover, it may be. onlincarity s
T of e mode ancnsiny, Fsal, e il e known foctors
robust
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Frequency Domain Techniques

i in conteol
helpful
“The Laplace transform allows s (0 g0 between the time-domain (state-space) and fre-
quency domain

o= ro= [~ rwea ©70)

Here,s place varisble. The L may be thought of
‘tconverge

1o 2er0 as t oo, The Laplace transform is partcularly useful because it ransforms

the Laplace transform, we use integration by parts:

c[%un]:[ et

- [/me"']v:; - [ s
= [O7) +sLUf0)].
Thus, for zero initial conditions, L{df /dr) = s (s).
e 5101 it
R wm
360 = €0 4 Dot @
s s sl o x5 i e s cusion.
GT= A =Buls) = x() = (T- A)"'Bus). ®872)
Yo = et - 7'+ ]uce wm
Wedtv s mapping s e e o
G0 =22 _cn ben w0

For inear systems, there are three equivalent representaions: 1) time-domain,in tems
of the npule responss 2 sy domin, i e of te s cton; 3

vy i 21 As e il e, ety bt o vty comtl
systemsin th frequency domain.

Freguency Reurse
e et 1o the frequency
h cal contro measurable
ot To s i, e w\l\wn\vdcraslnglt by nnglc -
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Lincar Time Invariant
1D Systems.

80) = y10) foru = (1)

Eigensysten
Realization
Igorithm (ERA)

Tanonical realization
(not unique)

G5 = C(T- A B D

Figure 821 Three cquivalent represcntatons of linear time nvaian sstems.

property o will give rise
perhaps Awd

phase ¢

) =sinGon) = 30 = AsinGor + ). ®79

“This i true forlong-imes, aftr intal transients dic out, The amplitade 4 and phase

ofthe outputsinusoid depend on the input frequency o These functons A(w) and 6 (w)
per sinusoidal i

i

i
function G(s):
®76)

Gl

Thus, the amplitude and phase angle for input sin(er) may be obtained by evaluating the
transfr function at s = iw (ic., dlong the imaginary axi in the complex plane). These

For a concrete example, consider the spring-mass-damper system, shown in Fig. 822,
“The equations of motion are given by

mi = =8k~ ®77)
'
60 = g 78

Here we are assuming that the output y is @ measurement of the position of the mass,
x. Note that the denominator of the transfer function G is the characteristic equation
Of (8.77), writien in stae-space form. Thus, the poles of the complex function G(s) are
eigenvalues of the state-space system,
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i —

Figure 822 Spring mass damper syt

Bode Diagram

Froquency (radis)

Fiureszs

It now possible o create this system in Matlab and plot the frequency response, as
shown in Fig. §.23. Note that the frequency response is readily interpretable and pro-
vides physical inuition. For example, the zero slope of the magitude a low frequencies
indicates that slow forcing translates directly into motion of the mass, while the roll-off
of the magnitude at high frequencies indicates that fast forcing is atenuated and docs't

i the mass. Moreover, the req seenasa

Create transte function and plot frquency response (Bode) plot.

o) +
ist2 v v 2 b
bode(e) s + Frequency response

Given  stae-space realization,
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s e ol
Sp-o;

it simple 0 obain a frequency domain representation:

5> [num,den] = ss2tE(A,B,C,D); § State space to tran
52 G - b (num, den) e transter tunction
from hough

Similarly, i
his representation is not unique:
> [8.5,C.D) - tf2es(@.oun(1},G.den{1})

-1.0000  -2.0000

[

e ordering
although it still has the correet input-output characteristis.
pency-domain is also useful because impulsive or sicp inpus are partcularly

simple to represent with the Laplace transform. These are also simple in Malab,

impulse response (Fig. 8.24) is given by
II>> smpulse(@); ¢ mpulse response
and the step response (Fig. 8.25) s given by,
Il>> stepta): + Step response
the Loop Transfer
Sensitivity
Consider a slightly modified version of Fig. 8.4, where the disturbance has a model, Py.
i sgram, shown in Fig. §.26, will be used to derive the important transfer func-
tions relevant for assessing robust performance.
¥ = GKOv =y = W)+ Guwy (879)
= (1+GK)y = GKw, — GKw, + Gywi. (®79)
= y=(0+GK) 'GKw, — 14+ GK) 'GKw, + 1+GK) 'Gows.  (879%)
T T s

Here, Sis th T Wen
denote L = GK the loop ransfer function, which i the opent-loop transfer funciion in the
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Impulse Response

b NS

Time (seconds)
Figure 824 Impule esponse of sring-mass-damper sy,

Step Response.

Time (seconds)

Fiure 28 St response of spring-mass-damper sysem.

absence of feedback. Both S and T may be simplified in terms of L
s=a+n!

141

Conveniently, the sensitiv
identiy:

more useful or design:

e + T, — SGywi.

(©800)
(3500

 and complementary sensitvity functions must add up 10 the

+T=
In practic, the transfer function from the exogenous inputs 1o the noiseless error € is

®81)
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Feedback signal +
Fowre 826 C d disurbance, We
hus derving the
Bode Diagram
“©
o
g
)
H
£
2.
&
0
R
)
&
10° o' 10
Frequency (radis)
Foure 827 Loop

e see that the sensitivity and complementary sensitvity functions provide the
maps e o e, datance, s no it e rcking e e e deste
I tacki  then specify § W ideal;

Lin
practice, we will choose the controller K with Knowledge of the model G so that the loop
transfr function has benefical properties in the frequency domain. For example, small
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i at high frequencies will atenuate sensor noise, since this will resul in T being small
‘Similarly. high gain at low frequencies will provide good reference tracking performance,

5§ will be small at low frequencies. However, $ and T cannot both be small everywhere,

singe S + T = 1, from (8.80), and so these desiin objectives may compete.

For petonman nd obusns v wan the maximm sk of 5 s
ible. From (881, it i the absence of nose,

Sk, tobe

effective when T = 1. As explained in [492] (pe. 37),al real systems will have a range of
frequencies where [S] > 1, in which case performance is degraded. Minimizing the pe
M mitigates the amount of degradation experienced with feedback t these frequencies.

In addi L

tothe point —1 in the compl M By th wthe
g this distance, the greater the stability margin of the closed-loop system, improving
robustness. These are the two major reasons o minimize Ms,

“The conroller

Often, g IS firstcrosses -3B.
fom e W vl ey ke the contllr enduidh o b ¢ g3 g
wever, here arc
posed P systems that have time delays or

fundamental bandwidth lmi
right half plane zeros [492].

fons that are

Inverting the Dynamics
ith & model of the form in (8.10) or (8.73), it may be possible (0 design an open-loop
conteol aw 10 achieve some desired specification withou the use of measurement-based

feedback or Forinstance, .
i desired n Fig. 8.3 i
by imertin e st dyamics G Ko ‘m I this case, the tanster function

from reference w,
the reference. However, perfect ol s pmslNc in realoworld system,and this
stategy should be used with caution, since it genecally relies on a number of significant

Fi
precise knowledge of G and well-characterized, predictable disturbances; there is e

Strategy 1o compensate.

pen-oop control using system inversion, G must also be stable. It is impossible
o fundamentally change the dynamics of  lincar system through open-loop control, and
thus an be a
unstable system by invertng the dynamics will typically have disasrous conscquences.
For instance, consider the following unsiable system with a pole at s = 5 and a zero at
5 = —10: G(s) = (5 + 10)/(s — 5). Inverting the dynamics would result in 4 contrller
K = (s = 5)/(s + 10); however,if thereis even the sightest uncertainty n the model, so

-5

GuelK () =
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M the unsiab

mode is now nearly unobservable
In addition o sability. G must ot have any time delays or zros in the right-half plane,
and it must have the same number of poles as zeros. If G has any zeros in the right-hal
plane, then the inverted controller K will be unstable, since it will have right-half plane
poles. These systems are called non-mininum phase, and there have been generalizations
11491, Similarly. ime
delays are notinvertble, and i G has more poles than zeros, then the resultng controller
il ot be realizable and may have extremely large actuation signals b There are also
aplicd with penalty terms added to keep the resulting actuation sgral oot T
regularized openloop controllers are often significantly more effective, with improved
robustress

| when distr-

ily expensive. Otherwise, performance goals must be modest. Open-loop model inversion
is often used in manufacuring and robotics, where systems are well-characterized and
constrained in a sandard operating environment

Robust Control
As discussed previously, LQG controllers are known (0 have arbitrarily poor robustness
margins. ¥
systems, and epidemiology, where the dynamics are wrought with uncertainty and time
delays.
g 82 shows the most general schematic for closed-loop feedback control, encom-
passing both optimal and robust control straegies. In the generalized theory of modern
control,the goal i to minimize the transfer function from exogenous inputs W (reference,
disturbances, noise, etc.) to a multi-objective cost function J (accuracy, actuation cost,
time-domain performance, etc.). Optimal control (¢, LR, LQE, LQG) is optimal with
S the s o  ounded o o Harly s st of s and
ety proper tra
is slmhﬂy ol wih et 10 e 7o, bounded mnmly o, consisin o e
frequencies). The infinity

aorm i defind 2

16l £ maxon Glion) @82

Here, a denotes the maximum singular value. Since the | -l norm s the maximum
Value of the transfer function at any frequeney, it is often called a worst-case scenario
erefo i

inputs. M robust controllers are used when robustness i mportant. There are many
connections between 43 and Ha, control, as they exist within the same framework and

mply optimize different norms. We refer the reader (0 the excellent reference baoks
anting o ths hery (49, 165
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I e et Gy denote the transer function from w (0 J, then the goal of Ha control
i to construct 3 contrller to minimize the infnity norm: min |G . This is typi
tion exists for the optimal controler in
el Howecr, s e el st e methols 0 nd  coneler
hat [Guyllc < y, a5 desribed n (1561 There are mumerous conditions and cavts
thatdescribe ddit
algorithms implemented in both Matlab w Python, and these methods require relatvely
low ovehead from the use.

Selecting the cost function J to meet design specifications is @ ertially important part
of robust control design. Considerations such as disturbance rejection, noise attenuation,
controller banduwidth, and actuation cost may be accounted for by a weighted sum of the

transfer function ure wsed 1o balance the relaive importance of these considerations at
various frequency ranges. For instance, we may weight S by a low-pass filter and KS by
 high-pass fler, 50 that disturbance rejection 4t low frequency is promoted and control
response at high-requency is discouraged. A general cost function may consis of three
weighting filters Fy multplying S, T, and

Fis
BT
ksl

‘Another possible robust control design is called Mo loop-shaping. This procedure may
e more s i A sty sytiess oy problens e -
» o major steps. Firs

is made robust wilh respeet 10 4 large class of model uncertainty. Indeed, the procedure
of s loop shaping allows the user to design an ideal contrller to meet performance
specificaions, such s rise-time, band-width, setling-time, etc. Typically, a loop shape
sboud v e i 5 o ey o garnes e e wocing nd
Slow disturbance rejection, low gain at high freguencies 10 attenuate sensor nose, and
cross-over frequency that ensures desirable bandwidth, The loop transfer function is then
robustified so that there are improved gain and phase margins

1o 5. LQR. LGB 1GG) i b anexrly popua contol
e e o s sinple el o and ity by s

i

s opt

bt e implemenai hmely m.m
forward. In Matlab, mixed sensitivity is accomplished using the mixsyn command in

just contral toolbox. Similarly. loop-shaping is accomplished using the loopsyn com-
‘mand in the robust control toolbos.

Fundamental Limitations on Robust Performance

performance and robustaess. Most notably, ime delays and ri

half plane zeros of the
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lower-bound for peaks of § and T. This contributes to both degrading performance and
decteasing robustness
Jar

er0 by mor hn2 i fied

Jocation it must rise in a another. Thus,there ae limitsto how much one can push down
peaks in S without causing other peaks (0 pop up.
“Time delays are relaively essy 10 understand, since a time delay ¢ will introduce an

phase lag of cquency 0, the p
effectively (i bandwidih). Thus, the bandwidih for a controller with acceptable phase
margins is typically wg < 1/7

Following the discussion in (4921, these fundamental limitations may be understood in
reltion to the limitations of open-loap control based on model nversion. If we consider
high-gain feedback u = Kiw, — ) for a system as in Fig. 8.6 and (881, but without
disturbances or noise, we have

u=Ke =Ksw, 83

We may it this in s of the complementary sensicvity T, by noting that since T =
— 8. )= GKs:

Tw, 84

“Thus, a frequencies where T is nearly the identit 1 and contrl s efective, the actuation
s effectvely inverting G. Even with sensor-based feedback, perfect control s natain-
able. For example, if G has right-half plane zeros, then the actuation signal will become
unbounded if the gain K

when the number of poles of G exceed the b of o s et of operrloop.
model-bused inversion.

As a final illustration of the limitation of right-half plane zcros, we consider the
case of proportional control u = Ky in 4 single-input. single output system with
G(s) = N$)/D(s). Here, roots of the numerator N(s) are 7eros and roots of the
denominator D(s) are poles. The closed-loop transfer function from reference v, (o
sensors s given by:

GK___NK/D
THGK ~ THNK/D D+ MK

©85)

For small control gain K, the term N in the denominator is small, and the poles of the
closed-loop system are nas the poles of G, given by roots of D. As K isincreased, the NK

of N, which are the open-loop zeros of G. Thus,if there are right-hall plane zeros of the
openloop sstem G, thn highgain proporional contol wildrie e system wnstble

theory. In this
way, we see tha right-hlf plane zeros wil dircetly impose limitations on the gain margin
of the conroller
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Balanced Models for Control

Many systems of inerest are exceedingly high dimensional, making them diffcult o char-

acterie. High dimensionality also limits controller robustness due o significant com-

putational time delays. For example, for the governing equations of luid dynamics, the
i i

™

Uik el il o o propes ool decompnion e

11 and 12), which order modes based on energy content in the e wil e

s ofbnced redoed-onde models th emply a it et 0 order

e basd on - utpt snergy. Thus, only modes tht s both gy conolable
king

I this chaper we also describe reated procedures for model reduction and sysiem ideni-
fication, depending on whether or not the user starts ith a igh-idelity model or simply
has acces to measurement data

Model Reduction and System Identification

In many nonlinear systems, it s stll possible 1o use linea control technigues. For example,

150, 94] for example to delay transition from laminar 1o turbulent flow 1nn'<paAl:|lly
developing boundary | friction drag in wall
H wellto
large state spaces, and they may be prohibitively expensive (o enact for real-tme conrol
Th

of the system for use in real-time feedback control,
There are two broad approaches 1o obtain reduced-order models (ROMs): First, it is
possibl to start it a high-dimensionl ystn, sih as he discrtived Navier-Sickes

for
i, ingpropr nbogonldecompniion (FOD; s 11) 157, 351 and Ganin
projection [441, 53]. There are numerous variations to this procedure, including the dis-
M:mp.mu nterpolation methods (DEIM: Sccton 12.5) [127, 419], gappy POD (Sec-
tion 12.1) [179), balanced proper orthogonal decomposition (BPOD; Section 9.2) (534,
4581, and many more. The second approach is (o collect data from a simulation or an
experinent and doify 3ok model sin dat-dvn g Thissprch
typically called system idenification, en preferred for control design because of
the relatve case of implementation. Ex‘\mvlm chue the i mode decomponton
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OMD: Section 72) 472, 456, 555 317, te gyt ralzin lgortm (ERA;
127
22711 NARMAX 1501, e sparse idenification of nonlinear dynamics (SINDy:

Section7.3) [95

After a linear model has been identificd, cither by model reduction or system identifica-

tion, it may then be used for model-based control design. He iere are a number of

issues that may arise in pracice, as linear model-based control might nol work for a large

class of systems. Fist, the system being modeled may be strongly nonlinear, in which
apture a small porion of the dynamic cffect

tochastically driven, so that the linear model will average out

- Finally, when control is applied (o the full system, the atractor

dynamics may change, rendering the lnearized model invalid. Exceptions include the sta-

bilzation of fixed points, where fecdback control rejects nonlinear disturbances and keeps
the system i a neighborhood of the fixed point where the lincarized model is accurate.

There are also methods for system identification and model reduction that are nonlinear,

e stochs and change Howerer, these methods

also may limit hery

Balanced Model Reduction

the model-based contrl strategies described in Chapier § infeasible for real-ime appli-
cations. Morcover, obtining Hz and Ho, optimal controllers may be computationally

sive iterative optimization. As has been demonstated throughout this book, even if the
ambient dimension is large, there may stll be a few dominant coherent strctures that
characterize the system. Reduced-order models provide eficent, low-dimensional rep-

resentations of these most relovant mechanisms. Low-order models may then be use

o i e ooy 0o e sl i s, o g s
the model a

o, 1o 1 1281

i process. I the tem s lineas tme-invariant (LTI input—

it e then hre 1 8 e of machinry il for model reduction. nd

erformance bounds may be quantified. The techniques explored here are

singular value decomposition (SVD; Chapter 1) (212, 106, 211], and the minimal fe

tion theory of Ho and Kalman [247, 388]. The generalidea i (o determine a hierarchical
the system stae that at some model order, only

Keeping the conerent trcturs hat ae mos Hmportan or ontrol

The Goal of Model Reduction
Consider a high-dimensional system, depicted schematicaly i Fig. 9.1,

X+ Bu, o1

Cx+Du ©.1b)
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Fire
funcion from w0y

for example from  spatially diseretzed simulation of a PDE. The primary goal of model
reduction s to find a coordinate transformation x = WX giving ris (o & related system
. C.D) with similar input-output characteristics,

%+ Bu, ©2)

Cx+bu, ©20)
i terms of a stae X & B with reduced dimension, r < n. Note that u and y are the same
in (9.1) and (9.2) even though the system states are different, Obiaining the projection
perator ¥ will e the focus of ths section.

E1 8 | R P

©3b)
In this case, the state xy is barely controllable and barcly observable. Simply choosing
cedo

% = w1 will result in & reduced-order model that fathfully captures the input-output

ymanic, Abogh e chks £ = 1 scms e i i et cas, any e

vedaction (echniues would croncously v th Sl £ = . since it i mor lghtly
¥ i

e proper onhcgona decompsiion (57, 251 from Chapc 11 proides 3 tastorm
marix W, the columns of which are modes that are ordered based on energy conten.!

s been widely used 1o generate ROMS of complex systems, many for contro, and

s guaranteed 15 rovide ok b o e he il sy ox

R may not be relevant for control. Similarly,

in many cases the most controllable and observable state dircctions may have very low

energy: for example, acoustic modes typicaly have very low energy, yetthey mediate the

Gomimnt -t e n sy T sy, Th e o 4 roides 3
e total

important for conirol.

arimce i s tchncally comct,



2

Balanced Models forGontrol

Instead of ordering moxdes based on energy, it is possible to determine a hicrarchy of

information. These moes give rise 1o balanced models, giving cqual weighing 1o 1
conteollabilty and observabilty of astate via a coordinate transformation that makes the
controllabilty and observability Gramians equal and diagonal. These models have been

dremely successful, although computing 4 balanced model using traditional methods
is prohibiively expensive for high-dimensional systems. In this section, we deseribe the
balancing procedure, as well as modem methods for efficient computation of balanced

o, A compuatonaly it s of gt for el ction snd e
idetisionmay be fou

in [50)
e ot shuld fithfully s possible
for a given model order r. It is therefore important 1o introduce an operator norm o
quantify how similarly (9.1) and (9.2) et on a given st of inputs. Typically, we take the
infinity norm of the difference between the transfer functions G(s) and G, (s) obtained
from the fullsystem (9.1) and reduced system (9.2), respectively. This norm isgiven by

161 & maxon (Gl o4

To summarize,

model (9.2) of low arder, < n, 0 the aperator norm G — G s small.

Change of Vriables in Control Systems
“The balanced model reduction problem may be formulated in terms of first finding a
coondinate transformation

™ 09
i
hrtc o B e We il by oot an i vanfomaton
R, and then provid a et to compute ust the st olumns, which will
ot e oo 4 i 03 T & il b i b e oy e i
n cunge
o "
ndcbsryailiny e i chrsceiis of h aynamics.
Subsitting Tz o 0.1) v
EER o
P —_— o
Finally, muliplying (9.60) by T~! yields
4 T-'ATz 4+ T 'Bu ©.7a)
y=cruimn om

“This results inthe following transormed equations:

Az + Bu ©0.83)
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y=CziDu, ©sb)

here A = T-'AT, B = T-'B, and € = CT. Note that when the columns of T are
orthonormal, the change of coordinates becomes:

L AT B ©9)

y=Clz+Du ©9b)

Gramians and Coordinate Transformations
“The controliabiity and observability Gramians each establish an inner product on sate

ce in terms of how controllable or observable & given stat is, respectively. As such,
Gramians depend on the particular choice of coordinate system and will ransform under
o change of coondinates. T the coordina system 2 given by (9.5, the controllabiliy
Gramian beco

[ o
[ e o

([ s e o
TIWT (9.10¢)

()" The observability Gramian trans-

Note that here we introduce T = (1-1)"
forms similrly:

TW,T. ©1
which s an exercis for the reader. Both Gramians transform as ensors (i, in terms of

e transform matrix T and it ranspose, rather than T and it inerse), which is consistent
with them inducing an inner product on state-spac.

Simple Rescaling
Thi cxampl, modied from Moore 1981 (58], dermonsres e il 1o el 3
system through a change of coordinates. Consider the systs

l-[0 SR W
to o] o

In s cxampe, the fint e by conmli, whie the o s i by
abservable. Howener, under the change of coordinates 0~

system becomes balanced:
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©.13)

©.130)

In this example, the coordinate change simply rescales the stae . For instance, it may
be that the first state had units of millimeters while the second state had units of Kilome-
ers. Wriding both sates in meters balances the dynamics; tha s, the controllaility and
observability Gramians are equal and diagonal.

Balancing Transformations
are ready to derive the balancing coordinate transformation T that makes the
contellability and observability Gramians cqual and diagonal:

Wo=W, =% ©.14)
First, consider the product of the Gramians from (9.10) and (911

WoW, = T WW,T. ©.15)

Plugging in the desircd W, X yiclds

TIWWIT=E = W

=

©16)

“The later expression in (9.16) is the equation for the cigendecomposition of W W,, the
product of the Gramians in the original coordinates. Thus, the balancing transformation
T is related 10 the cigendecomposition of W,W,. The expression 9.16 is valid for any
scaling of
Gramians. In other words,there are many such transformations T that make the product
W, = 3 ot et he il i e st sl (or exanpie dgons
Gramians W, = %, and o will satisy 9.16) i 2, %, = 22)
el s e e 2 T4 simpliy notation.

Scaling Eigenvectors for the balancing Transformation_
o fnd the comeet scalin of cigemvectors 0 make We = W, = ., frst comsider the
simplified cas of balncing the frst disgonal clement o . Let £, denote the unscaled
first column of T, and let , denote the unscaled first row of § = T~!. Then
W = o ©17)
Wik, =0 ©.1m)
The fist clement of the diagonalized controlailty Gramian s thus oz, while the irst
clement of the diagonaized observability Gramian i . If we scale the igenvector £,
by a, then the invers cigenvector 1, s scal ransforming v the new scaled
cigemestors , = 0,8, and n, = o, 11 ields:

Wy =00, ©.180)
EWok, = olo,. ©.180)
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“Thus, forthe two Gramians o be cqua,

o, = o (7)‘“ ©19

“To balance every diagonal entry of the controllability and observabilty Gramians, we

first consider the unscaled eigenvector transformation T, from (9.16);the subseript  Sim-

ply denotes unscaled. As an example, we use the standard scaling in most computational
T, have it norm. Then

butare not necessarily equal
W =3 ©200
TW.T, =, (9.200)

=V Thas,

the exact balancing ransformation s given by

T ©21

()7 W 1,3, =zE? o2
(ME)W,(TE) = 5TW,T,E, = 5,55, = 572" ©.22)

=5 W R =8

Manipulations 9.22a and 9.22b rely on the fact that diagonal matrces commute, so that
B, = 5,5 e

Example of the Baluncing Transform and Gramians
with
potin the balacing ansoration, 1 belpfl 1 sonsids an st example.
is asimple

e o
 toyab,g,14,1) = balreal(sys); ¢

In this code, T i the transformation, Ti i the inverse transformation, sysh is the balanced
tem, and

Fins,
forcoch sy, Nex, nd
inFig,

Gotes1 Obuining & balanced eslizaion

-3 sl

svs = ss(a,5,,D)

Vo - gram(eya, o) ¢ Obee
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15
0s
15
2
25 25
Pz
by W for ) = 1
b, . n i
Leysb,a, T4, ] = balreal(sys); ¢ Balance the sy:
BUc = gram(sysb,’c’) § Balanced Gram:

BHo = gram(sysb, o')

“The resulting balanced Gramians are equal, diagonal, and ordered from most control-
Iablefobsersable mode (0 least
1.5439  -0.0000
-olono0  0.3207
»>aho
15435 0.0000
00000 0.3207
To visualize the Gramians in Fig. 9.2, we first recall that the distance the system can g0
in a direction x with a unit actuation inpu is given by x*W,x. Thus, the controllability
Gramian may be visualized by plotting W.'’x for x on a sphere with x| e
bservability Gramian may be similarly visualized.
Inthis example, notbe
A aligned. H t

i the most jointly contrllable and observable. It i then possible to represent the system
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i this one-dimensional subspace, while still capturing a significant porton of the input—

Gramian would be a circle. In this case, there s 1o preferred stte direction, and botl
directionsare equally important for the input-output behavior

Instead of
transformation from WoW,. v
in code available online.

Balanced Truncation

Iaily and oserabilty Grmins s sqal wnd diagonal, Morsoves these e cood
nates may in terms of their
Tomay be rm.mc o runcate these coondinats and keep anly the most controlablelob-

dynamics
Tlxe R, state

ReRa

©23)

in e of the st 7 st contolble s obarable dusctons. 1 ve pariion he
balancing transformation T and inverse transformation § = T~ ino the first r
o be retained and the last n —  modes o be truncated,

v orls [:] 020

then it i possible to ewrite the transformed dynamics in (9.7)as:

4[5 ]_[eAv | eaT,
E[T]’[W’WM* ©250)
setevien [ om

and only the % equations remain

SR AR 8By ©260)
¥=C¥R+Du. ©260)
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Only the firs 7 columns of T and § required to construct ¥ and @, and thos
computin e st banig nomaion T i+ sy Nt i e s &
72 ¥ and

& i T will o e m\owmg sections. A key benefitof balanced trun-
cation s the existence of upper and lower bounds on the erfor o 4 given order truncation:

Upper bound: G Gl =2 Y o1 0210
Lower bound: 16— Gyl > 0141 w2
whers i the Tue

also known as Hankel singular values

Computing Balanced Realizations.

asibility o
‘mation that balances the controllabilty and nhscrwblhly Gramians. However, the com-
putation of this balancing transformation s nonirivial, and signifcant work has gone into
obaining accurate and eficient metl ing with Moore in 1981 (388], and continu-
ot i Lt Marsden, and Gl 3002 331 Wil and 2002 554 and
Rowley in 200 454, For an et and complet rsiment o s rslzsions
‘model reduction,see Antoulas 17

i rctice computng the Gramins W, and W, and the igendecomposiion of e

prdct W n (016) may be oty cxpsmve o g o s
jon may be approimated from impulse-response data,

ilin the il vaue decompontion o €Tt xtacion af the mont leint
subspaces

We will first show that Gramians may be spproximated via 4 snapshot matri from
mpulse-response experiments/simulations. Then, we will show how the balancing trans-
formation may be obtained from this data

Empircal Gramians

with computational complexity ule') Instead, the Gramians may be approximated by
full- and

direct: Xiq1 = Aaxi + Byue, (9.283)
adioint; Nt = A+ Cixe ©280)

« 1
equation. The matrices Ay, By and C, are the discrete-ime system matrice from (8.22)
Note that the adjoint equation is generally nonphysical, and must be simulated: thus the
‘methods here apply to analytical equations and simulations, but ot to experimental data
An allemnative formulation that does not rely on adjointdata, and therefore generalizes 10
experiments, will be provided in Section 9.3
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Computing the impulse-response of the dircct and adjoint systems yields the following
discrete-time snapsho matices:

<

Cakg
©29)

[B ams o a'm] o,

Cany

Note that when

€. s the diserete-time contollability matrix and when
ow

o, «
“These matrices may also be obtained by sampling the continuous-time direct and adjoint
systems at a regular interval Ar

It is now possble to compute empirical Gramizns that approximate the rue Gramians
without solving the Lyspunoy equations in (8.42) and (8.43)

Wo W= Cich ©300
W, = Wy = 0,0, ©300)

the integral
in the continuous-time Gramians, which becomes exact as the time-sep of the discrete-
time system becomes arbitrarily small and the durstion of the impulse response becomes
arbiearily lrge. In practice, the impulse-response snapshots should be collected until the
lightly-damped transients die out. The method of empirical Gramians is quite cffcient,
and i widely used [388, 320, 321, 554, 458]. Note that p adjoint impulse responses are
required, where I
number of outputs (e.2., ull stae measuremens,
net section.

ivating the outpu projection in the

Balanced POD.
Instead of computing the cigendecomposition of W W,, which is an n x n mari, it is
possible ransformation via of

the product of the snapshot marices,
s ©31)

reminiscentof the method of snapshots from Section 1.3 [490]. Tis s the approach taken
by Rowley [458].

Firs, define the generalized Hankel matrix a the product of the adjoint (O and direct
(€ snapshot maries from (9.29), for the discrete-time system:

<
Cas
H=0,0= [Bs Ay a7

w) o

canj!
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CBy CaliBy CoAy By
o cai G,
- oam)
Cany By CaNJBS o G
Net v o H s he SV
_usv 5 01V s
| I M )

For  given desired model order r < n, only the first  columns of U and V ar retained.
along with the first » x r block of E; the remaining contribution from U, Z,V; may be
truncated. This yields a bi-orthogonal set of modes given by

divect modes: W = €V
adjoint modes: & = OU

©34)
©340)

er Sem v
and Rowley [458] showed that they stablish the ciange of coordinate that balance he
truncated empirical Gramians. Thus, ¥ approximates the firstr-columns of the full n x n
balancing transformation, T, and ®° approximates the first r-rows of the n x 1 inverse
el romion, S

fow, s possble to project the orginal system onto these modes, yielding a balanced
el orie mode o

A=oaw, ©350)
B= By, ©9.350)
C=cv. (9.35¢)

It possible to compute the reduced system dynamics in (9.352) without having direct
s o Ay n some cses, Ay may e excesdingly g ad ey, mead it
o an input vector. For
‘modern fluid dynamics codes the matrix A, is not actully represented. but ol
sparse, it s possible o implement eficient routines to muliply this matrix by &
I ot 0t st e el ot 035 b el o i dere
ime, as it is based on discrtc-time emprical snapshot matrices, Howere
i e coteponding comimon e sy

simple 0

2eyaD - ap(Aedide Beilde,Cuilde, D))
2 dac(aye);

In his example, D s the same in continuous time and discrete time, and in the full-order
1 reduced-order models.

that a BPOD model may not exactly stisy the upper bound from balanced trun-
cation (see (9.27) due to errors in the empirical Gramians.

Output Projection
Often

thatp = n
is exceedingly lage. To avoid computing p = n adjoint simulations, it i possble instead
0 solve an output-projected adjoint equation [438]:
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X = A+ Cilly 030

here i a matix containing the st singular ectors of Cy. Thus, we it idenify
ow-dimensional POD subspace U from  diee impalse response,and hen oy perform

More generally, ify ble to

iven by the frs  singular vectors U of
CiCa p y POD directions.
Data Collection and Stacking

< powers i and 1 in F T —

Unless we collect data unil ransients decay. the true Gramians arc only approximacly
balanced. Instead, it is possible 1o collect data unti the Hankel matix s full ank, balance
el and then truncate. Thi s devloped i [533]

the result
and [346].
the

direc d adjoint (9.36) systems. These time-s
‘o form the snapshot matrices

Historical Note

work of Moore in 1981 [388], which provided a data-driven generalization of the mirimal
relization theory of Ho and Kalman (247). Untilthen, minimal realizations were defined
i terms of idealized controllable and observable subspaces, which neglected the sublety
of degrees of controllability and observabilty.

pap
o reality. Firs, he established a connetion between principal component analysis (PCA)
and Gi

may be mined from data via the SVD. Next, Moore showed that a balancing transfor-
mation exists that makes the Gramians equl, diagonal, and hierarchically ordered by

Whereby states may
i

the notion of an empirical Gramian, although he didn’ use ths term He also

realized that computing W,

wlogy.

W and W, dircely is less accurate than computing the SVD.

of the empirical snapshot marices from the disect and adjoint systems, and he avoided
W,

10 2002, Lall, Marsden, and GlavaSki in 2002 [321] generalized this theory to nonlinear
systems.

One drawback of Moore’s approach s that he computed the entite 1 x n balancing
transformation, which is not suitable for exceedingly high-dimensional systems. In 2002,
‘Willcox and Peraire [554] generalized the metho 10 high-dimensional systems, ntroduc-
ing a variant based on the rank-r decompositions of W, and W, obtaincd from the direct
and adjoint snapshot maices. I i then possible 1o compute the eigendecomposition of
W.W,

: without xn
matvices. Howener, this approach has the drawback of requirng as many adjoint impulse-
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epone simlaion s the b ofctpot o, which ey be exc::dmgly large
In 200 ducing the

output projection, discussed ymumly, wmcn i e oo, in simaion 0

cigendecomposition of the product Outs e product O,€, is ofien smaller and these
computations may be more accurate
It P
i entificat
(ERA) (2721, introduced in 1985 by del

“This connection between ERA and BPOD was established by Ma et al. in 2011 [351]

Balanced Model Reduction Example.
In his

POD el on  random s spce sysem wih
outputs. Firs, we generate asystem in Matlab:

wer of inputs

o0 307 ¥ Dis

st wecomput he Hankl gl e, whih e plots i i 9. We e it
10 modes capures over 90% of the input-output energy.

(sysPulll; & Hankel singular value

YT balrea(sysPllo; ¥ Balanced eruncation

“The full-order system, and the balanced truncation and balanced POD maels are com-
pared in Fig. 9.4. The BPOD model is computed using Code 9.2. It can be seen tha the

10°
L
e €
cdoz
Fiuro sular
withn 2. The fs = 10 HSV contain 92.9% ofthe encrzy:
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o l.w.;—s__
: |I‘I“"‘““ T
:
2
w6 e

Fpureas ¥
truncation and blanced POD models with 1 — 10,

when only
10% of the modes are kept

otz Balanced proper onthogonaldecomposition (BPOD).
sysseoD

BPOD(sysFull, sysadi, z)

LPULL b xEul) - depulse(eyaRull 0u1: (re5) 1)
VA0S <0t (ayaruLL A eyaPll.C'ayenill B, ayarudl.r
/A3, 03] = impiles (EysAd). 0cis (£e)4i) s
Scticiat-acse hveTs mpute, but i1
§ Both xadj and xrull are size mx n X
sankalod = (17§ Compute Hamkel matrix -0

el .m(m; 5 Seart ar 2 £o avold tha D matrix

B

u;
= sm2ialsetaran
‘permute (squeaze (xAdj (1, +, 1)), [
P
Erow - [row

m:
otaresqueeze (RULL (3, 1)) 5
MarkovParanter] ;

ena
HankeloC  [HankeloC; Hrow];
na

5101+ evatvankeroo) )

for i=2:alze(xFull,1) ¥ Start ac 2 to avoid the D macrix
d@ata = [xdaca’squeeze (xFull(i,:,1))]7
[¥data squesze (xAd3 (1,5, 1)) 7

ena
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Phi - Xdatasvesig®(-1/2);
* vaacasvisia® (/2

101

93 System Identification
In contrast 10 model reduction, where the system model (A, B, €, D) was known, system
identificaton is purely data-driven. System identification may be thought of as a form of
machine learning, where an input-output map of & sysiem is leamed from training data
a representarion that generalizes to data that was not in the traiming sct. There is &
vast lterature on methods for system identification [271, 3381, and many of the
nthod e s om o of dymaic eesion (a1 ol b o dt, e
" he DD from Section 72 For i sceion. e sonsider e iy e ez
ot ERA) and cbercrKalma i denifcuion (OKID) melhods b of
i connection (0 balanced model reduction [385, 458, 351, 535] and their successful
uw\lmu(m i igh-dimensional systems such as vibration conrol of aerospace siructures

I 11

‘multiple-input, multple-output i) systems, Other methas include the autoregres-
e moving aversge (ARMLA) nd UDgIssie moving Ve Wik exogeus put

model, and the SINDY method from Section 7.3

Eigensystem Realization Algorithm

from sensor measurements of an impulse response experiment, based on the “minimal

tructural models for various spacecraft (272, and i has been shown by Ma e al. [351]
W ERA models are cquivalent o BPOD madels. However, ERA is based enirely on

‘We consider a discrete-time system, s described in Section 8.2:
et = A+ B ©37)
6 = Coxt + Dy ©370)

A discrete-ime delta function input inthe actuation w

w2 wan

k=0
{o it o®

ighdmensionsl e, gien  sufcint vlame of s
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e response inthe sensors -

gives ise 0 a discrete-time iy

©39)

32y _ Dy,

In an experiment or simulation, typically g impulse responses are performe, one for

nput, and at  given Gme-sep ,the cuput vecto n respanse (0 the /4h impulive input
will form the J-th column of . Thus, cah ofthe ! 1 @ p x ¢ matix CAL 1B, Note
i B.C.0) don

section is purely data-driven.
“The Hankel matrix H from (9.32) is formed by stacking shifid me-seris of impulse-
ihe HAVOK 75

o i
I s
n 00
noam
CiAsBs CiAZBy CaAzB,
o
AT B CAAY B CaN] Ry,

measurements ¥, without separatly con-

“The matrix H may be constructed purely fror
Structing O, and Cy. Thus, we do not need access to adjoint quations.

seres dat:

n-vzv ©41

o[V
BINIME
£ are retained. The columns of U and V are eigen-time-delay coordinates.

¥ Thetr
i Toorz
©42m)

St Yniz 7 Vtm,
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CaAila CAZBy CaAy B
CATBs CaAjBy Cany By

_ OurCs. 0z
CaA'Bs Can By Cang By

Based on the matrices H and I¥, we are able to consiruct o reduced-order model as
Tollows:

i ©43)
B ©430)
¢ ©430)

Here T, is the p x p idenity marix, which extracts the first p columns, and I, is the
g x  identity maix, which extracts the first g rows. Thus, we express the input_output
dynamics i terms of  reduced system with a low-dimensional stte & € B

S+ Bu ©44)
©440)

Hand Y are constructed from mpulse response simulationsfexperiments, without
s o oo dires o i st o i e Dleed e edaton
nigues. However,if full-state snapshots are available, for example, by collecting velocity

These

full-state snapshots form C.. and modes can be consiructed by

w=cvit ©45)

from the owe-dimensional model in (9.44) by:
X ©46)

If enough data s col Haskel matrix H, then ERA bal
e ampincal cmllmlmnllly and observability Gramians, ©,0; and C;Cq. However, if
les data s collected, so that lightly damped transients do not have tine o decay, the
ERA will only approximately balance the system,. It i instead possible to collect just

The resultng
ERA model wil ypically have a relatively low order, given by the numerical rank of the

truncation to this smaller model, as is advocated in [533] and [346].
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The code to compute ERA s provided in Code 9.3
Godess Eigensysiem realizaton lgorithm,

eunction [Ax,Br,Cx,Dr,HSVS] = ERA(YY,m,n,nin, ol
for 3=1:min
Br(id) = ¥r(,d,1
Vg0 = Wi 2 ey

assert (length (¥(:,1,1)
assert (length(¥(L, 1,1
Aasort (Lengeh ({11,

Hinoutei-nout+Q,nines -nined) = ¥(Q,P,i+3-1);
B2 (mout e -nout s, nime3 - ineR) = 110.P, 13}
ena
ena
ena
ena
[9.5,11 = svas, econ);
e

signa =

HSVE - aiag(s);

Observer Kalman Fiter denification
OKID was developed to complement the ERA for lightly damped experimental systems
with noise [273]. In practice, performing isolaed impulse response experiments s chal-

ERA.Thi

arbite Typically,
toth ollonin genral proedur
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Fpueos
can b used forsystem identication via ERA.

1. Collect the output in response 0 a pseudo-random input.

impulse response.
3. The impulse response i passed through the ERA 1o obiain a reduced-order state-
space system

“The output ys i response (o a general input signal ws, for 7ero inital condition x = 0,
s given by:

0 = Doy ©473)
¥i = CaBu+ Doy ©470)
2 = CoAB o+ CyByuy +Dyuy ©470)

3= CoAl B+ CA B s g D 0470
Note tat thereis o C term i th expresion for 3o since there s 2ero il conditin
0. i progrssion of st ¢ may b e sl ad xpssd in
of impuise esponse measurements 3}

0w
Doy o wl=[% v W) ©48)
s s 00 w
B
I om0 i s e Mk -
ry %, However, B may cither be un-invertble, or imersion may be il joned

o Sdion, 5 5 Tk fo gy damped e, kg merion mmpulmmnally
expensive. Finally, noise is not optimally fitered by simply inverting B (0 solve for the
Markov parameers.

'e OKID method addresses cach of these ssues. Tnstead of the orginal discrete-time
system, we now introduce an optimal obserer system:

i+ Ky (= 3) o+ Baw (9:49)
=Cufu 4 Dy ©490)

B

which may be re-witien as:
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= cbeokm [ 050

Rl rom it e syt s o, s 0 e e ol
o'hs K e we i Howent epndn on e i o1 e o
et e it of prces e nduncenity oo sl hre e

¥ e may now
solve for  of measured
inputs and outputs according 10 the following algorithm from [273)
1. Choose the number of observer Markoy parameters to identify, |
2. Constructthe data mices here:
» w ] ©s1)
w o w
v= N " ©52)
00 w Yot

where v, = [u] ¥/
. Inthis way,we ar working with  sysiem tht i avgmented o include a Kalma
e, We ar o ety te obener Mkow prametrs of e agnencd
systm, °, wing the cquation S = 5V, It will be possble to identify these
bserver Markoy parameters from the data and then exirct th impulse response
Markov parameters)ofthe oiginal syste.

3 s p s
usin the ight preudovinerse of /(i

4. Recoer sy ko praters, . the bsever Mskoy e, 5

W for 5

(@ Orlerthe oersr Miskov paraeters
si-o. )
s=[E @] k=t 039

where (89" & RO°7, () & RO“0,and v} = 5} = .

() Reconstruct system Markoy parameters:

.

= @G Y@ fork= 1 o)

Ths, idenifies the Markov parametersof a sysm -
, Kalman e

by (9.55). These sysiem \
mpule responseof he s, and iy be seddirtly g st he ERA st
A code to compute OKID s provided in Code 9.4,
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ERAIOKID b b widly sl s 3 g of sy denifaion

numerous extensions of the ERA/OKID methods. For example, there are gzn:ﬂllnmvm

ot 4 Observer Kalman fler identicaton (OKID).
function H = OKID(y,u )
(sampled o

§ Inpuce. input), r (order)

+ Step 0, check shape

b= sizelyll; tp
e size(y.2); fn anple:
- stz fq

$ step 1, choose impulse lengeh 1

1= s,

it G
V2

Vg i) = ula,
ena

x observer Markov params, Vbar

for 1-2:111
£or julimea-
Serp - luls, 91y,
Vit a e L e 0421 = veenps

na
Yoar = yapinv(V,1.-3);

o evaten askor parametors

Ybanu ,1:0,1) = Ybar(:,vle (qep) e (1-1) sq+{qrpbe (i-1) 4q) s
2(21p,2:q,4) = Yoar(:,qiLe(qep) » (L-1) 4q:e (55}

o e e et 0E
ety
YL = ThariCe,s,}) + Yhar2(s, k0D
for'it1ic
K = Y0 e Yar2 (s )oY (ko)

T v
ena
Combining ERA and OKID
B
ERA yicldsthe same BPOD, the reduced hould be.

First, we compute an impulse response of the full system, and use this as an input
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VyFull o - mm xeuysmll o - ms»» v
permite (yrull, [2 3 11); ¢ Reorder co be siz
+ Tetauic 1o m

SyeiRA < 58 (he e, CrDr, 1)

Next, if an impulse response is unavailable, it is possible to excite the system with a
dom Land

s then used by ERA to extract the model.

u,.a,.mmnpm, 0); 8 Random for
Randons 11200158 oo

#)-13/2); ¢ nc -
(5¥8) = RA .o, med, RURTRPULS, TUROUEPULS, )
SYSERAGKID = 88 (At Br, CF,DF, 1) 5

Figure 9.6 shows the input-output data used by OKID (o approximate the impulse
response.

Finall
models closely match the full model and have similar performance to the BPOD.
described previously. Because ERA and BPOD are mathematically equivalent, this
serment s o s, Hovee, e ity of ERAOKID to et » el
order model from the random input dat in Fig. 9.6 s quite remarkable. Morcover, unlike:
BPOD, ey do ot

require nonphysical adjoint equations

Figure 2 Input-oupu dta wscd by OKID.
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Data-Driven Control

As described in Chapter 8, control design often begins with a model of the system
being controlled. Notable. exceptions include model-free adapiive control stategies
and many uses of PID contrl. For mechanical systems of moderate dimension, it
may be possible 1o write down a model (e.z. based on the Newtonian, Lagrangian,
o Heloian o) s i, b By abos 5 it o pioi
orbit. However, for modern systems of nterest, as are found in neuroscience, urbulen
Cdemilopy. e, and e, pically hee s o Smple modehs sble or
Comrol desin, Chaptr  deserbed echiques t oban ontol riened reduced-rder
models for high-dimensional systems from data, but these approaches are limited (o
ey sy Resord syt e sl sl d e comtol o s
hieved via linear tc No

pimizaton problem i igh dimensioal, nonconex cox anction landscpe wih
multiple Tocal miniana. Machine learning is complementary, a it constiutes a growing

+ of techniques that may be broadly described as performing nonlinear optimization
in a high-dimensional space from data. In this chapter we describe emerging tech-
piaues it usc machin i 1 caatcize and convol songly nonlinear bige

E
i

measurement da
rondly speaking, machine earing technigues e pessstto ) e e
for later use with model-based control, or 2) dirce s <o o st
ey st with 4 sy T usted chemaically n Fig. 0.1,
data-driven techniques may be applied to cither the System o Controler bm\« In
actua

@ See
of macin csnin 0 ey oniness put-oupt odes o ool bl o
ol fom Chapies 7 I Secton 102 we wil aplore machine eamin chnigos
ety enly contoln o it ot d. T iy evclopn e,
with many powerful methods, such as reinforcement learing, terative learning control,
and genetic algorithms. Here we provide a high-level overview of these methods and
then explore an example using genetic algorithms. However, it is important o emphasize:
the breadth and deph of this field, and the fact that any one method may be the subject
of an entire book. Finaly, in Section 10.3 we describe the adaptive extremum-sccking
ontrl srategy. which optimizes the control signal based on how the system responds (o
perturbations.
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Actuators Sensors

System

Fpo 101 o
develop a model of the system or 2) o learn  controller

Nonlinear System Identification for Control
“The data-driven modeling and control of complex systems is undergoing 3 revolution,
v by the i of big dat, shanced lgorthns n i eamin and opii
d modern computa Despite the increasing use of equation-free
e conol o, e s 3 Ml of vl il conel
al control (see Chapter 8) and model predictive control
(MPOY 1195, 107 ey, s ol contrl st e ety

s ro
st lone, without Sing on st princpes mdelin. roly qx.kmg e
I n theory going
k. drads 1o e s of Koo, Howere with increasingly powerful data-driven
h as those described in Chapter 7, nonlinear system identification i the
focus of renewed intrest.
“The goal of system identificaion is to identify a low-order model of the input-output
It

the system, then this educes o idenifying the dynamics f tha satisfy:

4

x=fxw, o
“This problem may be formalated in discrete-time. since data is typicaly collcted at dis-
ercte insancesin time and control s are often implemented digitaly. In this case, the
dynamics read:

X = Fose ) 102

‘When the dynamics are approximately linear we may identify a linearsystem

e = Ax £ Buy, 03

‘which s the approach taken in the DMD with control (DMD) algorithm below.
I may also be advantageous o identiy a set of measurements y = g(x), in which the
unforced nonlinear dynami

Yoo = Ay a0
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“This i the approach taken in the Koopman control methad below. In this way, nonlincar

dynamics

the intrinsic coordinatesy [302,
Finally, the nonlinear dynamics in (10.1) or (10.2) may be identified directy using the

SINDY with control algorithm. The resulting models may be used with moel predictive

ontrol fo the controlof fully nonlinear systems [277].

DMD with Control
Proctor et al. [434] extended the DMD algorithm to include the ffect of actation and
contrl,

s, as the effects of internal dynamics are confused with the effects of actuation. DMDe

was orginally motivated by the problem of characteizing and controllng the spread of

disease, where it is unreasonable 10 stop tervention efforts (e.2., vaccinations) jus
ly nstcad, if

14351, T
e

measured,

extended 1o perform DMDe on heavily subsampled or compressed measurements by Bai
etal. (30

DMDe method seeks to identify the best-ft linear operators A and B that approxi-
mately satsty the following dynamics on measurement data:

N~ Ax B 103
I adition t the snapshot mati X = (31 %2+ %] and thetime-shited snap-
Shotmairx X' = [xa %5 -+ 1] from (723), 2 matiofthe sctarion nput hisory

s vemed

[\ | \]
e fuow 06
[ |

“The dynamics in (10.5) may be writen i terms of the data matrices
X'~ AX+BY. 07

As in the DMD algorithm (see Section 7.2),the leading eigemalues and eigenvectors
of the bestftlinear operator A are obtained via dimensionalit reduction and regression.
I the actuation matrx B is known. then it is straightforward to correct for the actuation
and identfy the spectral decomposition of A by replacing X' with X' — BY i the DMD
algorithm

(X'~ BY) = AX. a0s)

n B is unkiown, both A and I must be simultancously identified. In this case, the
dynamics in (10.7) may be recast as:

X~ [a u]m:cn 109
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and the marrix G

A B] is obtsined v eastsquares regresior:

Gxel 010

“The matrix @ = [X* 7] is gencrally a high-dimensional data matr, which may be
approximated using the SVD:

2 ULV (011

matein © must O3l Xand

[0,
. Ul the DMD s, © provides a lcduutd basis for the input space, while U

X =05V 012

[s 5]

by projecting onto his basis

a0y
The resuling projeced mtices A
A (014
B (0140
position AW = WA
a01s)
Ambiguity in Identifying Closed-Loop Syste
o syt ht e b vl conid i e it
oot = Axc+ B 0169
= Axc+ B a1
— A+ BKN 0160

it imposie o dianbit e dyamis s the cstion BK. I s o,
important o ut informatior
These l\ulinmvm ey b white s prosess o ool impuls s provide o
Kick to the system, providing a signal to disambiguate the dynamics from the feedback
signal

Koopman Operator Nonlinear Control

For nonlinear systems, it may be advantageous to idenify data-driven coordinat s
ormatons i make e dynamics apees ncar Thes ot aansfomatons e
it i sl defved by igfunction o the Ksopman opstr e

ol 103364531
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from .
and Korda et al. [302] used model predicive control (MPC) 0 control nonlinear systems
with €DMD models. MPC performance is also surprisingly good for DMD models, as
shown in Kaiser et al. [277]. In addition, Peiz et al. [423] demonsirated the use of MPC
for switching control between a small number of actuation values 1o track 4 reference
value of it in an unsteady fluid flow: for cach constant actuation value, @ separate eDMD
model was 7¢d. Surana [504] and Surana and Banaszuk [S05] have also demon-
St el noline esimatosbsed o Koopman Kaman . However, e div

be advantageous to identfy a handful of relevant Koopman cigenfunctions and perform
ontrol directly in these coordinates [276].

In Section 7.5,
(%), where the dynamics become linear:

a
2y = rpm) 1017)
O = he) 1017

In Kaiser et al. [276] the Koopman eigenfunction equation was extended for contol-affne
nonlinear systems;

0+ Bu. o018

Forthese sysem, it s possile o apply the chain e 10 1), yikding

Vo 1)+ Bu) (10.19)
= 29+ Vol0 B «10.195)
Note that even linear, and

the effect of actuarionis sl additive. However, now the actuation mode Vp(x) - B may be
state dependent. In fict,the actuation wil be state dependent unless the dircctional deriva-
el

generalizations of standard Riccati-based linear control theory (¢, LQR, Kalman filers,
etc) for systems with  sate-dependent Riccati equation.

SINDy with Control
Although it is sppealing to idenify intrinsic coordinates along which nonlincar dynamics
appear Tinear, these coordinates are challenging 1o discover, even for relatively simple
systems. Tnstead, it may be benefcial o directly identify the nonlinear actuated dynam-

ical system in (10.1) or (10.2), for use with standard model-based control. Using the
sparse identification of nonlinear dynamics (SINDY) method (see Section 7.3) esults in
computionaly cfient modls (1t sy be e i el with ot e
nirol (277]. M these models may
@

S0 that they may even be characterized online and in response to sbrupt changes 1o the
system dynamics,
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e SINDyssorit i sty cxindd 1 e the o sctstion 00 27
In addition to collecting

o N el
of x 1]

ofx Yp=[1 X T X x&T ¥ ] (1020)
Here X@ T . evalu-

ated on the data

In SINDy with control (SINDYC), the same sparse regression is used (0 determine the
Asin

i the system i being acivly controled via feedback u = K(x), then i is impossibl to

signal is added o the actuation o provide additional informaton.

Model Predictive Control (MPC) Example
It xample, e il e SINDYe t dentity  mode of the forsd Loren cpstions
from 1 this model using model e, MrC 107,
195, 48, 0. 447, 30, 196, 721 173] has become a comerstone of mox

conteol and s ubiquitous in the industrial landscape. MPC is used to control »mmnly

time delay

bilty. Most industrial applications of MPC use empirical models based on linear system
identification (see Chapter 8), neural networks (see Chaper 6), Voliera sries (86, 73],
and autoregressive models [6] (e£. ARX, ARMA, NARX, and NARMAX). Recently,
decp Ieaming and reinforcement Icaring have been combincd with MPC [330, 570] with
impressive results. However, deep learning requires large volumes of data and may not be
readily interpretable. A complementary line of rescarch secks 1o identify models for MPC
based

fodel predictive control determincs the next immediate control action by solving an
opimal control problem over  receding horizon. In paricula, the open-loop actuation
signal u is optimized on a receding time-horizon f, = me A7 1o mirimize a cost J over
some prediction horizon £, = nt, Ar. The control horizon i typicall less than or equal
o the prediction horizon, and the control is held consiant between 1. and 1. The optimal
control i then applied for one time step, and the procedure is repeated and the receding

time step. law:

Kix) = w6, a02n)

o1 is the fisttime sep of the optimized actuation starting at ;. This is shows
ety Fi. 102, 1  possibl o opmize highy cutomised o acton
subject o nonlinear dynaniics, with consisaints on the actuation and state. Howener, the
‘computational requirements of re-optimizing at cach time-step arc considerable, putting
limits on the complexity of the model and optimization techniques. Fortunaely, rapid
u power are enabling MPC for

contol,
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< Past: Futwe

Prediction horizon,

Control horizog

———

Set point
i
|
|
|

el itely

7+l-’_’ J+me—1

Gmy—

Moving horizon window

Fgure 02

]

MPC to Control the Lorenz Equations with SINDYe
“The following example ilustates how (o identify a model with SINDYe for use in MPC.
“The basic code is the same as SINDy, except that the actuation is included zs 2 variable
when building the library ©.

(10220)
(10.226)
(10220)
Inthis example,
another 20 tme units where we switch the forcing (0 4 perodic signal (1) = S0sin(10r).

The SINDY algorithm does not capture the effect of actuation, while SINDYe correctly
identifies the forced model and predictsthe behavior in fesponse 1o a new
was not used in the training data, as shown in Fig. 103

inally, SINDYe and neural network models of Lorenz are both used (0 design model
redeivecontolle.a Shown i i, 104 Booh mehods enly acere st

wation that
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—Tranng
vaidation
ZZ siov'
Figure 103 SINDY and SINDYe predictions for the contrlld Loz sysem n (10.20), Trining
) =26 - ¥+
Sigmal ur) = $0sin(100). Reprduced with permission from (100
more rapidly. and is more robust to noise than the neural network model. This added
effciency and a@
Inaddi
102 Machine Learning Control

Machine learming is a rapaly developing field that i transforming our ability o describe
Jex systems from observationl data, rather i deling (382, 161,

64,396, Uniilrecent; data, alth
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Pred. horizon

——SINDYc NN

Troining__ Predicion__ Control

Training time

Ty,
Sorege

Pred. horizon

w0 e e

Length of training data Noise magnitude

Fpure 104
SINDy model Reprdiced with permision from Kaiser et al. (277).

offiine learning

Fwe 105
7 vitin

controller.
controllawes. The veetor 2 contans l ofthe iformation that may fcto nt the cost

there
“The use of machine learming to leam control laws (1., to determine an effective map
from sensor outputs o actation inputs), is even more recent [184], As machine leaming
encompasses a broad range of high-dimensional, possibly nonlinear, optimization tech-

Specific machine learning methods for contrl include adapive neural networks, genetic
gorih T 1

control architecture is shown in Fig. 10.5. Many of these machine leaming algorthms
are based on biological principles, such as neural networks, reiforcement learning, and
evolutionary algorithms.
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Itis important o note that model-free control methodologies may be applicd to numer-
ical or experimental systems with litle modification. All of these model-free methods

include:
Fluid dynamics: _In acrodynamic applications, the gosl is often some combiy
o diu rducion, i nese, and e educion while i prammsceuical
Finance: '
1o the v

Epidemiology: The goal may be to effectively suppress a discase with constrsints of
sensing (e, blood samples, clnics, etc.) and actuation (¢, vaceines, bed nets,
etc).

Industry: The goal of increasing productivity must be balanced with several con-
sraints, including Iabor and work safety laws, as well as environmental impact,
which often have significant uncertinty.

Autonamyand ot The gl of seldving cus and atoomous s s 0
achieve atask
erating with human agens.

the examples above,the objectives involve some minimization of maximization of a
given quantiy subject (o some constraints, These constainis may be hard, as in the case
of dsess suppesionon e bl o hey may move 2 comple

radeoft, O at

uli bjctve

of the constain legality.
all o the caics,the optimization must b performed with espet o the undelying

s of the syt Muks e Eoverned by the e Sckes quiton. e 1

‘governed by human behavior and cconomics, and dlwmc spreadis the result of a comples.

interacton of biology. human behavior, and geograph

Thes eaword ool poblems s sl challningfor  mumberof esons

i addition,

of frecdom
it may be exceedingly expensive o infeasible to run diffrent scenarios for system iden-
tification; for example, there are serious ethical issues associated with testing different
Vacination sirategies when human ives are at iz

I i
leveragi

the availabilty of vast and increasing quanties of data. Many of the recent
§

Hower

Note thatthe

powertul

reltive importance of the following methods are not proportionl to the amount of space

dedicated,
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Reinforcement Learning
Reinforcement learming (RL) is an important discipline at the intersection of machine
Isming ad contrl (07, corentlying ud ey by compis st
Google el n
entorcement \clmmg‘ eonl policy i refined over time, oy improved performance
achieved through experience. The most common framevork for RL s the Markov deci-
process, where the dynamics of the system and the control policy are described in &
probabilistic seting, o that stochasticty i buil nto th state dynamics and the actuation
strtegy. In his
nd s, et smin 1kl st 0 apin ool o
may be formulated in & ork.

Reioreemen caing oy b el partially supervised, since i is not always
Known immediately if a control action was effective or nol. In RL, a control policy is
enacted by an agens, and this agent may only receive partial information about he effec-
tiveness of their For example, tac-toe.
or chess, it is not clear f  specifc ntermediate mov is responsible for winning or losing.

p ihe end of
ose
Known as a quality function ©, that describes the value or quality of being in 4 partcular

this © function, improving thei abilty 10 make good decisions.In the example of chess,

i a complex value function over an extremely high-dimensional state space (., the space
of all possible board configurations). Q-learning is & model-free reinforcement learning
strategy. where the value function is learned from experience. Recently, deep learning has
been leveraged o dramatically improve the Q-learming process in situations where data
s readily availuble [336, 385, 386, 384]. For example, the Google DeepMind algorithm
s been able 1o master many classic Atai video games and has recently defeated the best
players inthe world at Go. We leave u more in-depth discussion of reinforcement learning
for other books, but emphasize ts importance in the growing field of machine leaming
izl

Herative Learning Control
erative learning control (ILC) [, 67, 83, 130, 343, 390] i a widely used technique that

line,
of times. In contrast to the feedback control methods from Chapter 8 which adjust the
actuation signal in real-time based on measuremens, ILC refines the entire open-loop
ation sequence afer cach iteration of  prescribed task. The tefinement process may
b s simpe s popostonsl oo tacd o he messrd i, of may o8
Ierative
system equations and has ’v:rﬁvrmxng: guarantees for linear systems. 1LC is therefore &
for h

arobot arm or
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S
Kp K Kp

Fpure 108 PID contl
paramete value a a generc o this cxampl. th

Genetic Algorithms
e gncc lgoritn (GA) s o of he it it g o et

Valles are propagated to fuure generations thiough  set of generc tules. The parameters
a system are gencrally represcnied by a binary sequence, as shown in Fig. 10.6 for
FID cotol sy wilh s e, given by e s conol g Kr. 7. and

ferent parameter

defned task. Succesful individuals with  lower ot have  highe prokabilty of being

Asetnumber of
e advanced diretly o the next gencration.
Replication:  An individual i selcted to advance o the next generation,
rossover:  Two individuals are slected o exchange a portion of thei code and then
advance to the next generation; crossover serves 10 exploit and enhance existing
successful strategics
Mutation:  An individual is selected to have a portion of its code modified with new

eter space
For the replication, erossover, and mutation operations, individuls are randomly selected
0 advance 10 the next generation with the probabilty of slection increasing with fitness
The genetic operations are illustrated for the PID control example in Fig. 10.7. These

the other stopping
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Generaton Generton Operstion
T T

ot probaity

i

e OO0
i — oo
0 =
=2 =
o =
=)
— o
=g Mutation
—0
=0
s 07

power
|
y usd o find ner il .

4 they are capable of exploring and exploting lcal wels n the cost unction. GA pro-
vides s middle ground b " d
altemative o expensive Monte Carlo sampling, which doesnot sal to high-dimensional

P paces. However, Jgorithms will converge to
a globally opimal solution. There arc also & number of hyper-parameters that may alfect
performance, including the size of the populations, number of generations, and reltive
selection rates of the various geneic operations.
Genetie algorithms have been widely used for optimization and control in norlinear
systems 184]. For example, GA was used for parameter tuning in open loop control (394],
192],
and drag reduction [201]. GA has also been employed 10 tune an Ao, controller in 3
combustion experiment [233],

Genetic Programming

Genetie programming (GP) (307, 306] is @ powerful generalization of genctic algorithms

that simultaneously optimizes both the structure and parameters of an input-output map.

Recently, genetic programming has also been used to obtin control aws that map sensor
inFig,

quite flexible, enabling the encoding of complex functions of the sensor signal y through &

recursive tree structue. Each branch is a signal, and the merging points are mathematical

The genetic operations of crossover, mutation, and replication are shown schematically in
Fig. 109, This @ 1
fiters, as discussed in Duriez etal. 167).

urbulence con-
trol experiments, led by Bernd Noack and collaborators [403, 417, 199, 168, 169, 416]
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Control law

Functions
] Actustion

[0]0]

OO0

Sensors and constants

Figure 108 Husation
contrl

“This provides a new paradigm of control for strongly nonlinear systems, where i s now
Taws.

» P i
ol aw, enabling the testing of hundreds or thousands of individuals i 4 short amount of
time. €|

several macroscopic

behaviors, such as drag reduction and mixing enhancemen, in an
armay of flow configuratons. sresine Hlows incude the miing laer (417,16, 165, 1691
199, dary layer [169].

Exampl: Genetic Algorithm to Tune PID Control
Inthis examy

(PID ol Howerr, S b ot i ot il demonstion o
ooty gt nd o e mchinry 1t sommended o e 3 PID
ol e o r o sl s

ot s amon he il st iy sl arietres nnd
il coml st o o e podim s vy ot for i of v

espresso machines, to name only  few of the myriad applications. As its name suggest
PID control additively combines three terms to form the actuation signal, based on the
ertor signal and it integral and derivative in time. A schematic of PID control is shown in
Fig. 1010,

In the cruise control example in Section 5.1, we saw that it was posible (o reduce
reference tracking error by increasing the proportional control gain K p in the control law
= —Kplw, - ). event
e, and it will ot completcy liminae he stady st ki e The addion




u=etflnhn u=mlen )

O]
T O
O]

mam|

u=filmfiten)

Fiwe 109

UR) = 0.1, p(C) = 07, and p(M) = 02, espctively

of an integal control term, K /oy — ) s wsful to climinte stcady-state refrence
tracking e whil llesisting the work required by the proportosl e

s st xpons nd il vcshoot . o s <l e s e
use of a genetic alge PID gains
an LQR costfunction

with @ = 1and R = 0.001 for u step tesponse v, = 1. The system to be controlled will

be given by the ransfer function

G
O
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e
ndusiral contrl,

“The first step is to write & function that evaluates  given PID controler, as in Code 10.1.
The three PID gains are stored in the variable parms.

ot 01 Exalust cost functon for PID contoler,

function 3 = pidtest (G,dt, parns)

a
froel = step (Closedioop,t1 s

CTRLEE = K/ (10KeG)
4= lein(x iy

Next " .
asin Code 10.2 I this example, we run the GA for 10 generations, with a populaton size
of 25 individuals per generation.

Gote 02 Geneicagorithn 1 tune PID conroller:

G = /(s (srsran)) s

eptions = optinoptions (iga, Populationsize’ Popsize.
VarGenerations’ NaKGenSrations, |OuLPUERG. s amyEun) ;
(x,£vall = 2 (0 (K] pidtest (G, a5, ) 3. oye 3), seros (3,1)
T 0 0. U options) 5

Code 103,



102 Machine Learning Control 351

ot 103 Specal ouiput funcion 0 save generatons,

e, opts, optchanged] -nyfun (o

- atate. Population;
tate.score;

atate. population

The evolution of the cost function acros various generations is shown in Fig. 10.11.

As the generations progress, the cost function seadily decreases. The individual gains
o n Fi 1013, wih redder dts comesponding o carly enerations and buee

gencrations corresponding 1o lter generations. As the genetic algorithm progresses, the

Fig. 10,13 shows the output i response t the PID controlles from the first seerion.
1

lsg devistionsin . n o, Fit. 10,14 shows e vt in ssponc 10 PID con-
bt gneraion Ol producing

:(x.\h\c\c!‘
"Th e conrlles from esch genrion s shown in g 10,15, T s po, 4
ol rom aly geeraions e redder,whle e contollers rom e generions

log()

Sorted individual

Generation

Fipure 1011 Cost fonction aross generations,as GA opimizes PID gains.
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10.

m

Fawo 1012

aa

Figure 1013 PID conteller response from et generaion of genctic alorithn.

are bluer. As the GA progresses, the controlle s able o minimizes output oscillations and
achieves st rise time.

Adaptive Extremum-Seeking Control

Although there are many powerful techniques for model-based control design, there are

also a number of drawbacks. First, in many systems,there may not be access 10 a model,
for conrol ic.

‘model may.

beer
by modifying
the atractor, giving rise to new and uncharactrized dynamics. The obvious exception is



103 Adaptive Exremum-Seeking Control 353

1015
and be rjectories cortespond to the st generstion.

F
changes 1o the system that modify the underlying dynamics, and it may be diffcult to
measure and maodel these effects
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“The field of adapive control broadly addresses these challenges, by allowing the con-
trol Taw the leibility to modify its action based on the changing dynamics of a system,
Extremun-sccking control (ESC) (312, 19] is a particularly attractive form of adaptive
control for complex systems because it does not rely on an underlying model and it has
suaranteed consergence and stabilty under a set of well-defined conditions. Extremu-
seeking may be used (0 track local maxima of an objective function, despite disturbances,
varying sy 4 nonl o may be impl for
in-time control or used for sow tuning of parameters in a working controllr.

Extremun-secking control may be thought of as an advanced perurb-and-observe
‘method. whereby a sinusoidal perturbation is additvely injected in the actuation signal
and used t estimate the gradient of an objective function J that should be maximized o
minimized.
the system, alhough it utmately depends on the internal dynamics and the choice of the
input signal. In extremum-seeking. the control variable u may refer ither o the actuation
signal or a set of parameters that describe the control behavior, such as the frequency of
periodic forcing or the gains in a PID controler

“The extremum-secking control architeeture s shown in Fig. 10.16. This schematic
depicts ESC for a scalarinput ,although the methos readily generalize for vector-valued

; 0.

Gie..for y = u). The extremum-secking controler uses an input perturbation o estimate
the gradient of the objective function J and stcer the mean actuation signal towards the
optimizing value

Extremum-secking controller

Fiawo 1016

yand the cost /.

st guess  for the optimizing inpu .
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J
—
Fgwre 017
.
he pesk . > ). Th n
product of aputand output inusodsmoves  owsds '
for
1. slow - extemal disturbances and parameter variation
2 medium - perturbation frequency o
3 fast system dynamics
In many systems, he internal system dynamics evolve on a fast me-scale. For example.
scales. In opica
1 light y fast

compared o he time- ation.
In extremum-secking control, a sinusoidal perturbation s added (0 the estimate of the

inpot that maximizes the objective function, i

=i+ asinn) 1023

This input perturbation passes through the system dynamics and output, resuling in
an objective function J that varies sinusoidally about some mean
Fig. 10.17. The output / is high-pass filtered to remove the mean (DC component).

domain as
(1024

o
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where s s the Laplace variable, and o i the file frequency. The high-pass file is chosen

inputsinusoid, po i &

& =asintor o) a02s)
s il € is sty posive i e it i e o e el v s
it mastly negatve i s t0the right of the optinal vlue sin
i VD17 Tt et gl € . megre . he bt it of the
optimizing value

(10.26)

0 ey e s s e gl gt . Tt s g

Rnughly speakin,thedemodulated i € measires s e nh]eunz func-

more api arger.

This i simple 1 e for concont ,m..m micn where 1 imply & functon of he

input J ) = i+ a (o). Expanding J ) inthe perturbation amplitude a, which is
assumed to be small,yields:

Jw

i+ asinton) 1027)

0] wmenvow o

The leading-order term in the high-pass fltered signal s p = 34/l - asin(or).
Averaging £ = asin(wr — ¢)p over one period yilds:

s % asin(or — )pdr 10280)
N
=2 [T ner - snena 1028

i"’ (10.280)

T for e i of il plan i, he e g g i proptions 0 he
et of the cjective uncton J i st the put

es mmg i input i 0 the outputs  thatact on  faste imescale than he perturbation
. Thus, J may be time-varying, which complicates the simplistic averaging analysis
e The generl case o exremun-eking cotrl of st sysens (sl
by Kestié and Wang in [312], where they develop powerful sabilty guarantees based o
separt

ittt iy pn.w 0 s bt et 029, 0D12) there

s il
component of the Bt »wu & There is also an extension 1o extremun-seeking
called slope-secking, where a specific slope is sought [19] instead of the standard zero
Slope-s e
ot extremum, a5 in the case when control inputs saturate. Extremume-seeking is often
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T2 s a4 s o 7 8 o
2

2
J s

10

s

0

o 1 2z 3 4 5 s 7 & 9 1w

Fipure 1018 Extreman secking contol response fo cost function in (10.29),

an openloop periodic forcing.
Itis important o note that extremum-secking control will only fnd local maxima of the

Ths, Inanumber
of sud
n

191,09).

Simple Example of Extremum-Seeking Control
Here we consider a simple application of extremun-sceking control to find the maximum
of astatic quadratic costfunction,

T =25-G-w’ (1029)

= 5. Strting atu = 0,
sseking conolwith  pertion ey Jrosi i amplitade of a

o194
high-pass fite.
Notice that when the gradien of the cost functon is larger (., closer 1o « = 0), the
oscilltions in J are asger, and the controler clin idly. When the input  gets
5. even though the input perturbation has the same

close to the optimum value at u”
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value and small deviations near the peak.
ot 104 Extremun-seeking contol code,

9 = Bu,€) (25- (5- () "2} 5
Yo = 30,05 uso

§ Extremun Sesk
1042,

¥ sample freque

-2, % amplitud
omega - 10s2epi; + 10

+ igh pass filter (sucterworth filter)

t e (i) et
yvale ()7 0, e) ¢

‘butcerorder
y 06 = e
KPP (k) = HPE (41 5
ena
ve(butterordersl) = yvals(i);
Prnew = 0;
for ko1 :butterordersl
HPPnew - EPEnew + b(k) sy (but erorders2-k) ;
na
Eor ka2 b derel
KPFnew = HPFnew - (k) +HPF (butterorders2-k) ;
ena
HEF (butterorders1) = HEFnew;

ofmevssin(onegare + shase) s
ok

To see the abilit of extremum-seeking control o handle varying system parameters,
consider the tme-dependent cost function given by

Jw

5 — (5 — = sin())” (10.30)

“The varying parameters, which oscillate at 127 Hz, may be consider slow compared
it the peusaion squeny 10 Th esponse o e scking conl for i
Fig. 10,19, n signal is able
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P 1010 .0,

o maintain good performance by oscillating back and forth to approximately track the
ascillting optimal u. which oscilltes between 4 and 6. The output function J remains

halleging xampl of Exemun:-Secking Gorrol
consider an example inspired by a challenging benchmark problem in Section

Tref 119 Ths syt his  ime vayin ot fonction /(1) dymamics wih 3

right-half plane zero, making it difficult o control

In one formulation of extremum-secking [1
designing the contrller f the plant can be split into three blocks that define the input
dynamics, a time-varying objective function with no internal dynamics, and the output
hown in Fig. 10.20. I ti

9], there are additional guidelines for

fiter and integrator blocks.
In this example, the objective function is given by

J0) = 055~ 10) + (0~ 0°0)”
where 3 i the Dirac delta function, and the optmal value 6°(1) i given by

5= 01+ 001



asinfut) asin(wt — o)

Fpue 1020
wealh of design echniques 133, 19

“The optimal objective is given by J* = 055(s — 10). The input and output dynansics are
taken from the example in (19], and are given by

!
Fauls) = —
[T =1

0=

Using the design procedure in [19], one arives a the high-pass fiter 5/(s + ) and an
integrator-like block given by 50(s — 4)/(s — 01). In addition,  perturbation with & = 5

nd.a = 0.05 is used. and the demodulating perturbation is phase-shified by @ = 7955;
this phase s obtained by evaluating the input function Fi at i, The response of this
contrller is shown in Fig. 10.21, along wih the Simulink implementation in Fig. 10.22.
The.

‘Applications of Extremum-Seeking Control

has been widely applied 0 a number of complex systems. Although ESC is generally

applsble o e contlof dyanisl sy, it 5 50 widely s 5 o oo
0 slow

uses. erm.emmn.mkmg contrl, here we. mgnhgm onlya few

in photovoltaics 331, 178, 75, 97, and wind energy conversion [395]. In the case of
ol he voligs o urent e i povs comeri e 1 b vidh mode
ulaton s used for the venur\mmn signal, and in the case of wind, wrbulence is used
i pettion also used a5

ienal o he optmizaton of sirerat conto (309} in i sxanple s nfeadible t0add

ESC has also been used in opics and clectronics o ke shpig (450], uing
high-gain fber lasers [93, 991, and for beam control in  reconfigurable holographic meta-
{60),

2651,




103 Adaptive Extremum-Seeking Control 371

pormson PN

ler used in Fig. 1021

Fipure 1022 Simlink model for exsemun-scking conts

| PID [289] and P1[311]

of ok 413
o been broadly applied in turbulent flow control. Despite

1he ity to sontrl dymamicn e wih ESC. i s aen s s 4 sow fodhack
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» » ofa

conditions. Extremum-sccking has heen used to control an axial flow compressor [547],

duce drag over a bluff-body in an experiment [43, 46] using 4 rotating cylinder on

i airfoil

‘configuration [47] using pressure sensors and pulsed jes on the leading edge of a single-

Sltted flap. There have also been impressive industral-scale uses of extremum-secking

Control. for example t contol themmascounic modes eros  ange of fequencies i 4

W gas turbine combustor (37, 35]. It has also been wilzed for separation control in &
planar diffusor that i fuly turbulent and stalled [36], and 0 contol jet nise [375].

Thre are mumcrous exensions (0 extremun-sceking tha improve peformance. For

instabilities in 4 combustor experiment, reducing pressure fluctuations by nearly 40dB.

sure raio in & high-pressure axial fan using an inected pulsed airsiream [553]. Including
i of ES
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Part IV
Reduced Order Models
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Reduced Order Models (ROMs)

ential equations (PDES). As such, it is one of the most important dimensionality reduction

exemplified by nonlinear intime
and space of the quantites of iterest in a given physical, engincering sndior biological
system. The success of the POD is related 1o the seemingly ubiquitous observation that
in most complex systems, meaningful behaviors are encoded in low-dimensional patterns

dynamic actvity. The POD technique sceks (o take advantage of this fact in order
o produce low-rank dynamical systems capable of accurately modeling the full spatio-
temporal evolution of the governing complex system,. Specificaly, reduced order models

) leverage POD modes for projecti

simulations of the govening PDE model can be more readily evaluated. lmwmm]y‘ the
ok models produc by the ROM allo o sgnifcans impoveens iz

mics to low-rank subspaces where

ol of PDE-

systen \\pmmznmn over parametrized PDE sysiems, andor real-time c
based systems.
sl found s wide vty of sl
yeis (287, 23,222,
(where it is caled mpmm mllvugmm\ Tuncion (0P (16, 1m wind engineeri
omlcuion (494, scousies 151, and neosciene 53, 519, 284] The sueccs of the

2511t
it mechancs and ioraionl aal-

its provide p
tions of data [316, 57, 181, 286, 126,

3),

POD for Partial Differential Equations
“Throughout the engincering, physical and biological sciences, many sysiems are known
o have prescribed relationships between time and space that drive patterns of dynami-
cal acivity. Even simple spatio-temporal relationships can lead to highly complex, yet
oherent, dynamics that motivate the main thrust of analytic and computational studies

ciple laws or through well-reasoned conjectures about existing relationships, thus leading
‘generally 1o an underlying partal differental equation (PDE) that constrains and governs
the complex system. Typically such PDES are beyond our abilty to solve analytically.
s sl o priniry soltion S e puu: coputation or sy
reduction. In the former, the complex system is discretized in space and time o anifi-
il produc an exemcly high-dmendondl sy of sustions which ¢ b saved

a7



Ed

Reduced Ordor Models (ROMS)

10 a desired level of accuracy, with higher accuracy requiring a larger dimension of the

sequence of the underlying numerical solution scheme. In contrast, asymplotc reduction
cks to replace the complex system with  simpler st of equations, preferably that arc

linear so a5 1o be amenable to analysis. Before the 1960 and the rise of computation,

such asymptotc reductions formed the backbone of applied mathematics i filds such

luid dynamics. Indeed, asymplotics form the bass of the carliest effrts of dimensionality
cduct

that enable reduced order models ar.
“To be more mathemarically precise about our study of complex systems, we consider
o p be mod

cled as.
W= N@ ) ary

ndNG)
linear evolution. The parameter B will epresent a bifurcation parameter for our later con-
siderations. Further, associated with (11.1) are a set of inital and boundary conditions

domain x € [~L. L]. Historically, s number of analytc soluton techniques have
been devised (0 study (11.1). Typically the aim of such methods is to reduce the PDE
(111 t0 4 set of ordinary differental equations (ODES). The standard PDE methods of

separation of variables and similarity solusions are consiructed for his express purpose
vce i the form o an ODE, 3 bsder vty of i et can b aplied ong
12521, This again ighlights the

et aoyprics o ey chracnin b

‘Although  number of potential solution srategies have been mentioned, (11.1) does

ot admit a closed form solution in general. Even the simplest nonlineariy or a spatially
H

insights across the physical, engineering and biological sciences. The various computa-
tional techniques devised lead to a spproximate numerical solution of (11.1), which s of

e spatal discretization of (11.1) whereby
the spatal variable s evalusted at 1 3> 1 poinis

e for k=120 a2

with spacing At = 1341 — v = 21/ Using standard fnite-difference formulas, spatial
Seialiescan b cvlutedoin ncghboring st poits o ht, for ane,

..w..:)z;‘uu., n (139
w, & 0 (1.30)

‘Such spatial discretization transforms the governing PDE (11.1) into a set of n ODEs
D N @Dk 0B k=120 (1)

This process of discretzation produces a more manageable system of cquations at the

L 1t shoul -
the system (11
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since Ax = 2L/n. Thus, the dimension of the nderlying computational scheme s arifi-

accuracy of
“The spatial discretizaton of (11.1) illusirates how high-dimensional systems are ren-
red. The artificial production of high-dimensional systems is ubiquitous across com-
putational schemes and T

(111). In particular, we consider the most common technique for analytcally solving
PDEs: separation of variables. In this method. a solution is assumed. whereby space and
time are independent, so that

i),

(0 () as)

1and
the spatal dependence. Separation of variables is only guarantced to work analytically if
Dis

can be derived that separately characterize the spaial and temporal dependences of the
complex system. The differenial equations are related by & constant parameter that is
present in cacl

For the general form of (11.1), separation of variables can be used 10 yield a compu-
tational algorithm capable of producing accurate solutions. Since the spatial solutions are

wpical

¥(0). Inded, such assumptions on basis modes underlis the critcal ideas of the method
Of eigenfunciion expansions. This yields a separation of variables solution ansatz of the

s = Yo e

whers 40 fom asetof 3 | b mode.As e, i xpaionarificaly e
High dimensional system of equations since n modes are required. This separation of
s soio spproimtes te e salton, provied 1 5 e cnongh lncraing
the number of modes n s cquivalent to increasing the spatial diseretization in i

difference scheme.

y propertics of the basis functions (1) cnable us 10 make use of
(116). To illustrate this, consider a scalar version of (11.1) with the associated scalar
separable solution u(r, 1) = 31_ (1) (x). Tnsering this solution into the governing
equations gives

St m

(Lo Yoo Ya@ouvef) 01
p

{wvi) s

here i he Kronecker dela V)i the

(v [ jds o

where * denotes complex conjugation.
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decided on, f
mined by muliplying (1177 by (1) and incgrating from x € [~L, L], Orthogonaliy

mode
day
ot

[N (T Yaie Xathu - xurB) va) k=120 n
(1110)

‘The given form of N(-) determines the mode-coupling that occurs between the various

1 modes. Indeed, the hallmark festure of nonlincary s the production of modal mixing

Nameia wheras b o e Galcn ejcion (11,10 e commony vl 1>
of the full . true solution
e ‘accomplished by both judicious choice of the modl basis elements . 35 well as
the total number of modes . Interestingly,the separation of variables siategy. which s
rooted in finear PDEs. works for nonlincar and nonconstant coeffcient PDES, provided
enough modal basis e nnlina
10). A good choice of

dal asmaller
setofn

specifically
particular dynamics, geometry, and parameters.

Fourier Mode Expansion

“The most prolifi basis used for the Galerkin projection technique is Fourier modes. More

precisely, the fast (FFT) and its
hysical, and biolog

resonsfo this: () Ther s a song ntuion dc\elowﬂ around the meaning of Fourier
modes as it directly s, P

(i the lgorithm necessary to compute the ngm i of (o 1y con e o
O(nlogn) operations. The second fact has made the FFT one of the top ten algorithms of

“The Fourier mode basis clements are given by

L .
= Lop (E) e ka2 L

m
It should be noted that in most software packages,including Matlab, the FFT command
interval is x € [0, 27 scale a domain of length
Lto 2 before using the FFT.
Obviously the Fourier modes (11.11) are complex periodic functions on the interval
10, L], However, they are applicable t0 a much broader class of functions that are not
neccssrly perodic.For ance consder  oalzd Gaussan fncion

o (<o) a
hose Fure o i s  Gausian,n s sich (o vith Furer
s lrg b o modes r hen e sne e funt e ' o
i 1.1 e the Fourit mods repecnation o e G for e il of 7 O

T b of e s fncion.

ut.n)
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5 10 15 20 25 R
# of modes
P 12 s o modes o ersning sl Gausion . )

Fourier modes e used t represent the Gaussian u(x) = exp(—0 1) n the domain < 10, 10]
for =01 6o, = 16k d. = 10 W (T Fourr mde pretaion of b

) with the () L2 ertr from

Tho oo e n mds oo e sl Gain (&
the ru solton for the tre

fast

and widely alurge
required 10 represent simple functions of interest. Thus, solving problemns using the FFT
often reqires high-dimensional representations (i, n > 1) (0 accommodte generic,
localized spatial behaviors. Ulinately, our aim s to move away from artifcially creating
such high-dimensional probler

snsc.al Functions and Sturm-Liouville Theory
005 and carly 19005, mathematical physics developed many of the governing
instance. Many

of
ically

Thus
ne often considered complex systems of the form

= Lt N ) any
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where . i pertor nd < 13 sl e e for perurtion
ations th peror Lisa S L ich

Tosolve =q\mmm of the form in (11.13), special modes are often used that are ideally
suited for th
(L3,

Lo =hat ariy

where i) the operaor alow
foran eigenfuncrion expansion solution whereby ux 1) = 3~ ax (1Y x). This leads 0
the following solution form

L ) e v avis
ke s i i s e cincions oy
modeling the sl vriionspartiulr o he proler dersion. Thus. they
ould st e el o el sutd.mdes for (1113, Th s conrat ot

o symmerics n he geomeiry. For cxampl, the Gaussian xample onsierd can b
potentally represented more eficiently by Gauss-Hermite polynomials. Indeed, the wide
variety of special functons, including the Sturm-Liouville operators of Bessel, Laguerte,
Hermite . e simed

Ultimately,
an ideally suited st of bsis fonctions.

Dimensionality Reduction

tific computing: n degree, systems. P
PDEs with several spatial dimensions, it is not uncommon for discretization or modal
expansion techniques 10 yield systems of differential equations with millions or bilions
of degrees of freedom. Such large systems are extremely demanding for even the latest

Computaiona rchieces, it sceuracies and rn imes i the el of many
comples sy s igh Reynods e i low,

idin e  a setof optimal basis modk 1. as it can
eay e e bt of Al Sqaions geneed My slotion et
involve the solution of  linear system of size n, which gencrically involves O/(r%) opera-
tions. Thos, reducing 1 is of paramount importance. One can already sce that even in the
1505 and caty 19000 h el foncion devlop for virous prolen of mtheat.
il physics were an analytic atlempt 1o generate an ideal set of modes for represening
the dynamics of the complex system. However, for strongly nonlinear, complex systems
ant e we

e
‘seometry in (11.1). Based on the SVD algorithm, the proper orthogonal decomposition
(POD) generates a set of modes that are optimal for representing either simulation or
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required to model the behavior of (11.1) for a given aceuracy [57, 542, 5431,

Optimal Basis Elements: The POD Expansion

1
using the Galerkin expansion in (11.6)is eritcal for eficient scientific computing strate-
gies. Many algorithms for slving PDES rely on choosing basis modes a prior based on
) computational speed, (i) accuracy, and/or i) constaints on boundary conditons. All

However,

ational efficiency via dimensionality reducion. As aleady ighlighted, man algorith
gencrate artfcially large systems of size n. In what follows, we present a data-driven
statepy. Iso k POD modes,

n reno

characteize the dynamics of (11.1),
“Two options exist for exracting the optimal basis modes from a given complex sysiem.
One it ol it St i xS, o s st e comples

e
Uhe syt i imuled o xiract modes, e can g ht o computations wings
are achieved. However, much like the LU decomposition, which has an iniial one-time
computational cost of 0(1") before further 0(12) operations can be applicd, the cosly
modl extraction process is performed only once. The optimal modes can then be used in
a computationaly efficient manner thereafte

“To proceed with the construction of the optimal POD modes, the dynamics of (11.1)
are sampled at some preseribed time interval. In par
samples of the complex system, with subscript k indicating sampling at time
s ) ute )
hodes il e vt o st syl o, eslin i & gh-dmensions
Vector representations these will be denoted by bold symbols. We are generally interesied

X

£

avie

where the columns uy = (1) € € may be measurements from simulations or experi-
ments. X consists of & fme-series of data, with m distinct measuremen instances in time.
Often the state-dimension i very lrge, on the order of millons or billons inthe case of
uid systems. Typically n >, resulting in a rall-skinny matrix, as opposed 0 a short fut
marix wl

Ao i prvusly s singls v ssonposon (SVD) provides 3 e
e decompostion oy comples salued i X ¢ €2

an <

x=uzv anm



E5)

Reduced Ordor Models (ROMS)

vhee € €7 and ¥ €& O o iy s sl © € O s 3 i vith

disgonal. Here * conjugate transpose. !
ol of e phvh singular vectors of X and the colums of V are right singular
vectors. The diagonal elements of  are called singular values and they are ordered from

largest 0 o vl The SV, provides eritical insight into building an optimal basis set

red 10 the specific problem. In partcular, the matsix U is guaranteed to provide the
best set of modes o approximate X in an £ sense. Specifically, the columns of this malrix
‘contain the orthogonal modes necessary (0 form the ideal basis. The matrix V. gives the
time-history of each of the modal lements and the diagonal matrx X is the weighting of

fistand the least dominan last.

pshots
m taken in constructing X (where normally n 3> m). Our objective s to determine the
minimal number of modes necessary to aceurately represent the dynamics of (11.1) with
4 Galerkin projection (11.6). Thus we are interested in a rank-r spproximation (0 the
e dynamics where pically 7 < m. The quantity of interest is then the low-rank
decomposition ofthe SVD given by

K= UV anis

where X — X < ¢ for given smal value of cpsilon. This low-rak truncation alloes
s 0 construc the modes of interest ¥ from the colums.of the truncated marix 0. In
particulr the optimal basis mades are given by

*,} e

where the runcation preserves the r most dominant modes used in (11.6). The truncated 1
modes (¥, ¥y, . ) are then used as the low-rank, orthogonal basis 10 represent the
dynaniics of (11.1),

i above snapshot based method for extracting the low-rank, r-dimensional subspace
of dynamic evolution associated with (11.1) i a data-driven computational architecture.
Indeed, 1) may acwally
be unknown. In the event that the underlying dynamics are unknown, then the extraction
of the low-rank space allows oe 10 build potential models in an r-dimensional subspace
as opposed 10 remaining in a high-dimensional space where n - r. These idess will be
explored further in what follows. Howener, it sufices to highlight at this juncture that an
optimal basis representation does not require an underlying nowledge of the complex
system (11.1).

Galerkin Projection onto POD Modes
It the PDE

() = wac) L0
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ot i) € R i heime-dpendnt cocfint vecor and 7 & . Plgging s ol

B ——— :
DOy, -
“0 a0) + N0, ) aran

By solving this system of much smaler dimension, the solution of & high-dimensional
nonlinear dynamical system can be approximated. OF critical importance is evaluting
the nonlincar terms in an efficient way using the gappy POD or DEIM mathem
architecture in Chaprer 12. Otherwise, the evaluation of the nonfinear terms sill requires
caleulation of functions ¢ products with the original dimensi

such as the quadratic nonlinearty of Navier-Stokes, the nonlinear erms can be computed
ance in ‘manner. However, parametrized systems generally require repeated
evaluation of the nonlincar terms a the POD modes change with .

Example: The Harmonic Oscilator
To ilustrate the POD method for selecting opin
classic problem of mathematical physics: the quantum harmonic oscillror. Altvough the
ideal basis functions (Gauss-Hermite functions) for this problem are already known, we
would ke o infe these special functions n a purely data-driven way. In other words, can
we deduce these special functions from snapshots of the dynamics alone? The standard
harmonic oscillator arises in the study of spring-mass systems. In partcular, one often
he

simal basis clements, we will consider o

Py = ke 122)

where k s the spring constant and x ) represents the displacement of the spring from its

k2,

= Lwithout
loss of generality) and associated potential energy gives rise o the Schridinger cquation
with a parablic potential

[
i+ = =0 e

where the second e pastial diffrential equation represents the Kinetic energy of
vt e while the ot e sl Pt o with e i
restoring force.

“The solution for the quantum harmonic oscillator can be casily computed in terms of
pecial ctions. nparbeui, by vsmin a clion o the o

e = e exp[-itk +1120) a2

forthe eigenmodes of the system

du
ek - Dy 125
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with the boundary conditions i — 0 as x — 00, Normalized solutions to this equa-
tion can be expressed in terms of Hermite polynomials, Hi(x) or the Gaussian-Hermite
functions

n

o= (2v7) e Hm (11.260)
=t (m) P

The Gauss-Hermite functions are l)pma.!ly thought o as the optimal basis functions for
s the

(a1.260)

expl—

Seanlinges squation oith parsbolc poil Indesd, slion o he compln e
(11:23) can be represented as the sum.

-n

utvn =Y a (24y7) et wep[-iG+ 1/ . (12n)
=

Such a solution straegy is ubiquitous in mathematical physics as is evidenced by the
large number of special functions, often of Sturm-Liowsille form, for different geomerics
Tuncions. Legends

polynomials, parablic cylinder functions, spherical harmonics, etc.
A numerical solution PDE (11.23) based on the fast

The full
nitial conditions u(x, 0) = exp(~0.2(x ~ xo)"), which is a Gaussian pulse centered at
x=x n
particular, the initial projection onto the eigenmodes is computed from the orthogonalty
conditions so that

a

(. 00, ¥4 a2
“This inner product projects the inital condition onto cach mode Ve

Got 1.1 Harmonic oscllsor cod.

v 0ae(xe1) 2 3 inicial
ueazee (u) FFT nici
& rutool | odets (pod_narm That Erat, 1 V) 1
fof 3-1:langeh

usol (§, 1) =1£8e (utsol (3, 1))
ena

pod_harm_
the governing equation (11.23) in a three-line MATLAB code:

ot 112 Harmonic osclltor ight-hand side.

=pod_harm_rhs(c,

aummy %, v)

usiee(ue) ;
She- (1/2)4(k.%2) .+t - 0.5aiuf€E(V.au)
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V()/100 V(x)/100
2 2
ul* ul*
o 3 o2
o o
20 20
10t 0
-15.10 . -15.10 .
1050 51015 0 1050 54015 0

10 20

mode.

1 sght panel). The symmetric

exp(-02(x — 0P with 55 = 0 (cft panc) and %o = 1 (right panc). From the
simulation, one can see that there are a total of 101 snapshos (the inital condition
11.16)

per “The singular values of
are suggestive of the undelying dimensionality of the dynamics. For the dynamical
i Fig. 12, the

b gvn et panls. For s symnet ial condiion Gsymncire
S ) e ks dnte 0 s In o, 0 syt
omdiion, i 5 oy modes . reed 1o e he dyramis it

"The igale s dcomposn o ouly gives e dislomtonof caegy witha b
st st of modes. bt
U. T disuition ofsngular vlues  ighly snggeive of o o tuncte with low-
ok subspace o  modes, s slowin us o comtruct the dimensonlly educed spce
(11,19 spproprse for & ClerinPOD exunsion.

The mode of the quanum i ascilto e st n Fi. 113 Secfaly,
e

and (i) the modes of the SVD for the offset (asymmetsic, xo = 1) nital conditions.
“The Gauss-Hermite functions, by construction, are armanged from lowest cigenvalue
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u(n)®

u(x)09
o
o5

7 25 o . 25

P 113 Inthe op panc,te it fve
© ilstaed. The

dynamics ofthe harmonic

(0,222, llustrated i Fig. 112 et pancl. Not that the modes ae all

e he

oscllator with u(x, 0

amonic osiltor was simulsied with the offet Gaussan (r.0) — exp(~0.20x -
othe

deal basis set for the hamonic ociltor,

of the Strm-Liouille problem (11.25). The eigenmodes alierate between symmetric
adsymmeric s, For he symneric about £ = )l coniton sven by
(x.0) = exp(~0.2¢%). the frst five modes are all symmetric as the snapshot based
o incapable of Dmducms asymmetric modes since they are actually not part
of the dynamics, and thus they are not obsersable, or manifested i the evolution. In
contrast, with a slight offst, u(x,0) = exp(~0.2(x — 1)), snapshots of the cxolution
produce asymmetric modes that closely resemble the asymmetric modes of the Gauss-
et cxanion: Incresingly n s cu, he SVD arges the s by he
amount of eneray exhibited in each mode. Thus the first ssymmetric mode (boftom

el e e e i el ot seeond mode of the e e et
polynomials (top panel n green — second mode). The key observation here is that the
napshot based method is capable of generating, or nearly so, the known optimal Gauss-

his system. I i G

generalizes to more complex physies and geometries where the solution is ot known
apriori
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1

&

POD and Soliton Dynamics

o illustrate  full implementation of the Galerki

POD method, we will consider an.
“Thus, we consider the

nonlinear Schridinger (NLS) equation

! 2
i+ i+l 129

with the boundary conditions  —» 0 as x —» 5o, I not for the nonlinear term, this
in closed form, H

oo

hs; Fwncr transform may be leveraged. Rewriting (11.29) in the ot o 1.
transform,

%0+ i [UED)

where the Fourier mode mixing oceurs due 1o the nonlincar mixing in the cubic term.
“This gives the system of differential equations o be solved in order to evaluate the NLS
behavior.

“The following cade formulates the PDE solution as an cigenfunction expansion (11.6)
Of the NLS (11.29). The fist step in the process is (0 define an appropriate spatial and

interest:
ot 113 Nonlnear Schrdinger cquaton slver,
140 1512 a-linapace (-T/2,1/2,001) 5 xex2Ain) s § apacial
ke Bapa /1o 310/ 3 1 mbexs for FFT

Celinapace (0, 2+pL ¢ cine domain colleceion p

Ntsech (x) ; e
u initial data
odeds 1o sol_tha’ Cruts (1380 ¢ integrate B
for 3-1:1ar
st () AEEE(utsoL 4,40 § transforning back
end

“The rght-hand sde function, pod_sol_rhs.m associated with the above code contins
the governing equation (11.29) in a three-line MATLAB code:
ot 114/ NLS rght handside.
£unction rhaapod_sol_rhs (¢, ut, dunay, k)

e
(/204 06.22) aut + Sage( (@b (w).2) u )

It now remains 1o consider a specific spatial configuration for the iniial condition.
For the NLS, there are a set of special intial conditions called soltons where the iniial
conditions are given by

utx,0)

Nsech(x) anan



£

Reduced Ordor Models (ROMS)

Figure 1.4 Exoluion of th (& N = 1 and (5) N = 2 soltons. Here seady-sate (¥ = 1, lf panels

50 and 200 Fourier modes, respecivel,ae required 1o model the beiors.

where N isan nteger. We will consider the soliton dynamics with N = 1and N = 2. Firs,

“The dynamics of the N 2 solitons are demonsisated i Fig. 114 During,
cvoltion e N 1 soliton oy undergoes phive ehinges e s mplade remaine
stationary. In contrast, the N = 2 saliton undergocs periodic oscllations. In both cases,
arge number of Fourier modes, about 50 and 200 respectively, are required o model the
simple behaviors llusrated

“The obvious question o ask in light of our dimensionality reduction thinking s this:
it solton dyamic el 50 o 20 degvaffisdom e i
e POD modes gnered o he SV 1 o e show it e dynmicn 3 e
reduction o 1 0r 2 modes respecively. Indeed, it can easily be shown that the N =
N = 2 solitons are truly
of the evoluions shown n Fig. 11.4,

Fig. 1.5 explicitly nature of the 1ol

expansion. For both of these cases, the dynamics are truly low dimensional with the N
N

quite el with two POD modes. Thus, in performing an eigenfunction expansion, the
‘modes chosen should be the POD modes generated from the simulations themselves. In
the next section, we will derive the dynamics of the miodal interaction [or these (wo cases,
which are low-dimensional and amenable to analysis.
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Figue 115 Prjecton of the N = 1 and N = 2 evolaions oo thee POD mades. he top o,
valves o)

.‘ = land N
low-rank, withthe N = | being  single mode evoluton and the N = 2 being dominated by o

are shown i thebottom w0 pancls (¢) and (0.

Soliton Reduction
To take advantage of the low dimensional strucure, we firs consider the N' = 1 soliton
dynamics. Fig. 1.5 shows tha a single mode in the SVID dominates the dynamics. This is
the U marix 4
e ) = ay ) (e

Plugging this into the NLS equation (11.29) yields the following:

-0 [UE)

! Calor
i+ 50y + laPaly

“The inner product s now taken with respect t0  which gives.

o+ S a0 W
whee

Wur ¥)
o)

1135
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a13s0)

“Thisisthe low-rank approximation achieved by the POD-Galerkin metho.
L

2= a0 (%1 + B w3

‘where a(0) i the iniial condition for a(r). To find the iniial conditon, recall that

(., 0) = sech(x) = a@y (x) i
Taking the inner product with respect 0 Y (1) gives
{seeh(x), y)
o = S [E
“Thus the one mode expansion gives the approximate PDE solution

e = a@exp (11 + A1) o) )

basis possible .. the SVD basis

For the N = 1 solton, the spatial profle remains constant while is phase undergoes
 nonlinear roation. The POD solution (11.39) can be solved exagtly to characterize this
phase rotation.

Soliton Reduction (N = 2)
The N = 2 solton case s bit more complicated and interestng. In this case, two modes
clarly dominate the behavior of the system, as they contain 96% of the energy. These
o modes, Y1 3nd 2, are the frst tvo columns of the matrix U and are now sed o
approximae the dynamics observed in Fig. (11.4) In this case, the to mode expansion
akes the f

e = @ (O¥10) + a2 (1), a0
Insering his approsimation into the governing equation (1.29) gives

!
@ + a3 (@ + @)+ e @] +avs) =0, (1141

Multplying ut th cubic tem gves

'

i anyn +ay) + 3 (@11 + aray)

+ (Pl P + laaPal by + 2lar Paaln Py + 2laPa vy

+afa3yivs +alaivivi) (L

P of . 1(x) and

2 2system
ofnonlinea cquaion:

iy e+ + (Blar + 28l @ as)
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(Pt

P P

o aam

o oo e+ (st + 2o

+ (sl + 26102 o + vsadat + e =0
here
= V0 )12 (1.44a)
=Py, ) 14
o = (i i) (1144)

and the initial values of the two components are given by
(2sechtx). v}

s
Iz
sechio). vl
s st
0= (e

This gives a complete description of the two mode dynamics predicted from the SVD
analysis
H i "

of the full PDE and more accurate integration of the inner products for the coeficients.
Indeed p

a Higher.
orde schemes could certainly help improve the accuracy. Additonally, ncorporating the
it I cither case,
Continuous Formulation of POD
“Thus far, the POD reduction has been consiructed 0 accommodate discrete data measure-

iy by (1116). Tow-rank basis
modes W so that the following least-squares ertor is minimized:

argmin X~ WX - 146

Recall that X € €77 and W € € where r s the rank of the truncatio
In many cases, measurements are performed on a continuous time process over a pre-

uen) 1€(0.7) ve-L. L] aam

St data require & continuous time formulation of the POD reduction. In particular, an
equivalent of (11.46) must be constructed for these continuous time trajectoris. Note that
instad of a spatialy dependent function u(x, 1) e can also consider a vector of trajec-
ores uir) €
spatial variable x is finite dimensional. Wolkwein [542, 543] gives an excellent, technical
averview of the POD method snd it continuous formulation.




3

Reduced Ordor Models (ROMS)

“To define the continuous formulation, we prescribe the inner product
(0. g0 [ S0 (L)

To find the best fit function through the entire temporal rajectory u(x. 1) in (11.47), the
following minimization problem must be solved

L . .
min g [ ) = G0,y v s WP =1 1)
where the normalizaton o the empora ntcgral by 1/7 averagesthe diffrence berween

the data and its ow-rank approximation using the function v over the time 1 0,7,
E 1 ) and

problem can be restated as

LT N
mpck [t on i i 19 o

“The consirained optimization problem in (11.50) can be reformulated as a Lagrangian

functional
T e 8
o= [ 1. v Parea (1= 11F) asn
where i the Lagrange mltiplie that enforces the consiint 117 = 1. This can be
rewiten a5
g
covn=3 [ (f ey [ wwovwn)a
(=) (1= [ vwwwa) . aisy
The L
7 aisy
L sing integals ields
se [T L
a3 [ (e [ wcowa)aspw] 0. ars
(RE0.9) =39 s

vher 6 it 8t pin conclaton s of ¢ mc continuous data u(x, 1) which is
averaged over the time interval where the data

LY p— W
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0 T/2 T

P 118
1 1o sup=

I the spatal divction i diretied, reuling in . high-dmensoms veor
1.0 0020 - (s, ] hen RiE. ) becomes:
1 » 5
R=7 ly u(nu’ (ndr 157,
I pracice, the funcron R s evalated using 3 quadrature rule for inegratio. This will

Quadrature Rules for R: Trapezoidal Rule

via summation
of approximating rectangles. Fig. 1.6 illustrates a version of the trapezoidal rule where
the integral i approximated by  summation over a number of rectangles. This gives the
approximation of the two-point correlaton tensor:

T .
iy

&
A u +w e ] (0159

A1 sy ulu,
S s+ ]

here we have assumed u(x, 1) s discretzed into a vector w; = u(r), and there are m
rectangular bins of width A1 5o tha (m) Ar = . Defining a data matrix

ual s
we canthen reseriethe two-point corelaion tensor s
r=Lxx (1160

which s exactly the definition of the covariance matrix n (1.27), e. € = R. Note that the
roleof 1/T b
giving rise t0  definition consistent with the covariance.
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Higher-order Quadrature Rules.
‘Numerical integration smply calculates the area under
peorming sk am opersio come o he deidonof mgraion

. The basic ideas for

.
[ roa A;m“Z/U,)A: aen

where b — a = (m — 1)Ar. The area under the curve is 4 limiting process of summing up
ressing number of rectangles. This process is known as numerical quadrature.

Speccaly, sy sam cam e eprescted s olows

oifl= Z»,/u,»:ww)w./o,w + Wt f 1) (a162)

where @ “Thus the integral s evaluated as

[ roa=ourven ey
where the term {1 i the eror in approximtin the ntegral by the quadrsture sum
(1162). Typial,theeror ELf1 o g,

nomial i 10 the y-alues (0. Thus e assume the function /10)canbe approximted
bya polynomial

P ="+ it bt +ao areh

where the tmncation eror in his case is proporional o the (1 + 1)* derivative
EIST = AF%D(c) and A is o consant. This process of polynomia fting the data
sives the Newton-Cotes Formulas

e ollowng ) ough he
dta o be gt I s s that

. o= s e

his ivesthe fllowing incgrationalgoritms
pesia e [0 = 3+ 5 %J"m e
simons e |70 = 300+ 47+ 19~ 3 s
simpon's 1 ute [ T El/u+1/\+"\/;+/\lfﬁl"" ansse)
oy R [ 0= 22002412 2452100 -0 1010, (11660

W

ly.hey are O(AF), 0(Ar).
O(arY and (A accurate schemes respecively. The accuracy condiion s determined
the

‘s rule

s 8 rule uses four
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$ arca, while Boole’s paints and

quaric pol 2
“The integration methods (11.66) give values for the integrals over only a small part of
forinstance, onlygi

€ lio. 11l
However, €la. bl
Aseumin onc gin s ut el didod 54 = 0 < 1 < 3 < < 1 — .
e e merva
., o
[ o o =550+ i) e

Writing ou this sum gives

s
e e
“

S+ 26i +2f 4+ 2+ fue) a6

Joand fu-.

Instead, once,

should slways be exploitd if possible

POD Modes from Quadrature Rules
Any of these algorithms could be used to approximate the two-point correlation tensor

shot matrix X. Specificaly,recal that

P | \}
X=|u w i 1169)
[ |

where the columns uc € C* may be measurements from simulations or experiments. The
SVD of this matix produces the modes used 1o produce  o-rank embedding ¥ of the
daa

position. Thus the marix (11.69) would be modificd to

(. ]
[—— avm

Simpson's ul Iy sed in

trapezoidal rule. Producing this matrix simply involves multiplying the data matrix on the
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right by [1 4 24 24 m SO e hen be st consinet s on-
x

i st b undone. To ou Knowledse, ey e work has b done n uanifing
consider the

the merits of Howeer, the

opiimal snapshot sampling stategy developed by Kunisch and Volksein [315].

POD with Symmetries: Rotations and Translations
s well known i the
Jgorithm docs e data in an optimal way.
"he mostcommon marance e fom rton o rotaronal imarinces i the

data. Translatio
kg et for comlatonf b computd e s eatres 1 h s o
longer aligned snapshot to snapshot
Inwha llws, we il s the st o o sl aton snd oo, The ca
" problems of The
i that unless the invariance stucture is accounted for, the POD reduction will give an
artifically inflaed dimension for the underlying dynamics. This challenges our ubility o
se the POD as  diagnostc tool or as the platform for reduced order modes.

Translation: Wave Propagation
To illustate the impact of translation
Gaussian propagating with velocity .

s =ep[-a - 4157] am

on 4 POD analysis, consider  simple translating

‘We consider this solution on the space and time inervals x € [~20,20] and 1 € [0, 10]
Tow-rank repre-

sentation.
Godo 115 Transaing wase for POD analysis.

222007 1220; xeliaspace (L) yox;
a1 1inspace (0, T,mi 1

xp (- (x+15-cot (3)).2) .75 ¥ data sn

for j=iim
X

ena
0,5, V) =sva () ;
Figure 11.7(6) demonsirates the simple evolution to be considered. As is clear from
the figure, the translation of the pulse will clearly affect the corrlation at a iven spatial
location. Naive application of the SVID does ot account for the translating nature of the
data. As a result, the singular values produced by the SVD decay slowly as shown in
Fig. 11.75) and (€). In fact, the first few mades each contain approximately 8% of the
Jow decay of singular values suggests that & low-rank embedding is not casily
onstructed. Moreover,there are interesting issues interpreting the POD modes and their
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W W
‘mode number

Fgwre 117 () -3

(@ o.

o,

®

(),

B O g O K
t

Figure 118 First fourspatial modes (0 (st four olumas of the U matix) and temporal modes (b)
matin) A Fourer mode
sructures i both space and .

time dynamics. Fig. 1.8 shows the fistfour spatial (U) and temporal (V) modes generated
by the SVD. The spatial modes are global in that they span the enire region where the
pulse propagation occurred. Interesingly, they appear (o be Fourier modes over the region

atranslating

The falure of POD i this case is due simply 10 the translational invariance. IF the
imvariance i removed, or factored out [457], before a data reduction is attempied, then
the POD method can once again be used to produce a low-rank approximation. In order



£

Reduced Ordor Models (ROMS)

@ ®) ©

© ) c

g 119 Spirlwaves (), ), () r, )] and 1, ) on he domain < |-
¥ 120,20 The il ar e o spin lockwise with ngular elciy o

o remove the invariance, the invariance must first be identified and an auxilary variable
defined. Thus we consider the dynamics rewriten as

1) = ux =) am
where c(0) corresponds 10 the translational invariance in the system responsible for lim-
iting the POD method. The parameter ¢ can be found by a number of methods. Rowley
and Marsden [457) propose a template based technigue for fatoring out the invariance.
Alternaively, a simple center-of-mass calculation can be used to compute the location o

wave and the variable (1) [316],

Rotation: Spiral Waves
A second invariance commonly observed in simulations and dat i associated with rota-
o Moch ke wsnion. orion e e, ook s n s vy
w0 longer
T o e e o soionl oo+ ot i e o
red
A spiral wane centered at the origincan be defined s follows

B e R

i he mamberof s of the i, nd the £ et the phise gl of the
qanity e+ )

rotation will

ute,

of
Sey

s e [-o01t 4] i
s tioncanbe i vt e o e
PURT—

amh (aqr (X.241.72)) . con(angle (X+14Y) - (0TEE (X "247. 20 )+
3/10)
oo o1 x. 207720

HaTs, 3y oxeshape (ut.n%2,2)
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temporal modes

g r
g % & &) & i
ERCRE
[
© T
1% 10 20 40

30
mode number

Figure 1110 (a)First our temparal modes ofthe i V. To mumercal prcison,al he variance

b I
spiral wave.

[ ettt Coi i Ry
ana

Note that the code produces snapshots which advance the phase of the spial wave by

.
“The rate of spin can be made faster or slower by lowering or raising the value of the
denominator respectively
function ux. ), we will also consid
functions Ju(x, )| and u(x. y)* as shown in Fig. 11.9. Although these three functions
clearly have the same underlying function that roates, the change in functional form s
approximations.

“To begin our analysi, consider the function u(s, ) llustsated in Fig. 11.9(a). The SVD

of this marix can be computed and its low-rank siructure evaluated using the following

Gode 117 SVD decomposition ofspiral wave
1,5,v1=8va (x4, 0);

£1gure(2)
suwsiocis s s
Plot (100d1ag (5) /sunm(diag (8)) ko', ‘Linewideh', [2])
e

emiiogy (105ediag (6) /mm (@ing (). o Linewideh', (21)
subplot 2,
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&=
© &

Figure 111 First four POD modes associted with the rotting spral wave (. ). The fst o

o numerical round-ft. The domain consdered s 1 € (20, 20] and y € 20, 0]

PLOE(V(:,1:4) " Linewidsn', (21)
Figure (3]
E s

subplot(4,4,3)
rode-ceshape ((:,4),n.n) 1
pesicr 1 mede) shading tnterp, caxis ((-0.03 0.031),
Lormap gz

ena

“Two figures are produced. The firs assesses the rank of the observed dynamics and the
temporal behavior of the first four modes in V. Figs. 11,10 (b) and (¢) show the decay
of singula values on a regular and logarithmic scale respectively. Remarkably, the fist
o modes capture all the variance of the data to numerical precision. This is further

" ficaly, th f

Fig. 11.10(a) have a clear oscillatory signature associated with the rotation of modes one
and two of Fig. 11.11. Modes three and four resemble noise in both time and space as
resultof mumerical round off.

“The spiral wave (11.74) allows for a two-mode truncation that i accurate to numerical

the solution a a fxed radius. Simply changing the data from (x. 1) o either [u(x, )| or
ute.
Figs. 1112 (@) and () show the decay of the singular values for these o new functions
and demonsirate the significant difference from the two mode evolution previously con-
sidered. marix V

In the cuse of the absolute value of the function u(x. 1)

I the decay of the singular values

i ko e aprosches nmeial recson. The it nction wgses & ok
capable of producing an approximation to numerical precision. This

Iungghls . fct s vton s complses he POD rduton rocere
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5 @ ©f5,
5@ lo2,
iy O 0 gressesseny
= (b) i
1055 70 2 30 j 40
o
%@ &
3 o
EoL
0%
E
a-(d) N
H N
o
5
romnse
ot

1 5 produces an -
v

functions in (¢ nd (4 espectvly

113 it o POD s st i e ting sl e ) o) nd
e 1) (botom ow). Uniike our previows example, e it foue modes do not captre al the.
The domain

modes
for fulr, )]

modes
for u(z.1)*

considered s x € [~20,20]and y & 20,20

Afteral,
rotating function s they are all rotting Wit the same speed.
To conclude, invariances can severely limit the POD method. Most notably, it can arti
cially Expent
Knowledge of a given system and its potental invariances can help frame mathemacal
Strategies to remove the invariances, i¢.re-aligning the data [316, 457]. But ths strategy
Forinstance,
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i w0 waves of different speeds are observed in the data, then the methods proposed for
removing invariances will fai 0 capture both wave speeds simultaneously. Ultimately,
dealing with invariances remains an open rescarch queston.
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Interpolation for Parametric ROMs

Chap-
ter 11 has already highlighied the POD method for projecting PDE dynamics to low-rank
subspaces where simulations of the governing PDE model can be mre readily cvaluated.
Howener, the complexity of projectng into the low-rank approximation subspace remains

challenging due to the nonlincarity. Interpolation in combination with POD overcomes
this diffculty by providing a computationally effcient method for discretely (sparsely)
sampling and evaluating the nonlinearty. This chapter leverages the ideas of the s

and compressive sampling algorithms of Chapter 3 where a small number of samples
are capable of reconsiructing the low-rank dynamics of PDE. Ul

ensure that the computational complexity of ROMs scale favorably with the rank of the
approximation, even for complex nonlincarites. The primary focus of this chapter i o

wately, these methods.

of the ROMs. In pracice,these techniques dominate the ROM community since they are
ertcally enabling for evaluating parametrically dependent PDE where frequent ROM
model updates are reqired.

Gay
“The suceess of nonlinear model order reduction is largely dependent upon two key inno-
vations: (i the well-known POD-Galerkin method [251, 57, 542, 543], which is used 0
project the nonlincar dynamics onto & sul
principled way, and (i) sparse sampling of the state space for interpolatin the nonlin-
ear terms required for the subspace projection. Thus sparsiy is aready established a
for model as
D and s variants [179, . 120, 159). Indeed, effciently managing the
computation of the nonlincarity was reogized carly on n the ROMs community, and
variety of techniques were proposed to accomplish this task. Perhaps the first innovation
by Exerson and Sirovich
for which the gappy POD moniker was derived [179] I ther spars sampling scherne,
o SIS NSl 0 SpOST t prodits Pniled o of
the interpolation points, through the gappy POD infrastructure [179, 555, 565, 120, 159]
or missing point (best poinis) estimation orD 400, 21], were quickly incorporated
into ROMS (0 improve performance. More recently, the empirical interpolation method
(EIM) [41) and its most successful variant, the POD-tilored discrete empirical inerpo-
lation method (DEIM) [127], have provided a greedy algorithm that allows for nearly
optimal reconstructions of nonlinear terms of the original high-dimensional system. The

s
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'DEIM approach combines projection with interpolation. Specifcally, DEIM uses selected
paion S 1 Iy T rOtn for 2ty o 2
Ispace approximating the nonlincarity.

(. 1) in (12.9) with r measurements of the n-dimensional stte. This viewpoint has
{1791,

In particular, only r < n measurements are required for reconstruction, allowing us (©
define the sparse epresentation variable & € C”

Pu a2y

here the measurement matrix P & B7°" specifies ¢ measurement locations of the full
sate u € €. As an example,the measurement matrix might take the form

1o 0

o 010 0

0 0 o0 a22)
o 001

0 000 1

‘where measurement locatons take on the value of unity and the marix elements are zero
elsewhere. The marix P defines a projection onto an r-imensional space @ that can be
used 0 spproximate solutions of a PDE.

“The insight and observation of (12.1) forms the basis o the gappy POD method iniro-
duced by Everson and Sirovich [179]. In paricular, one can use a small number of mea-
surements, or gappy dats, to reconsiuct the fll state of the system. In doing S0, we can

aluating higher. a

Sparse Measurements and Reconstruction

asurement matrix P allows for an approximation of the state vector u from 7.
‘measurements. The approimation is obizined by using (12.1) with the standard POD
projection

werFan, .
p2

where the coefliients i, minimize the crror in approximation: 1 — Pull The challenge
0w is how o determine the 3y given that taking inner products of (123) can no longer
be performed. Specifically the vector & has dimension r whercas the POD modes have
dimension n, ie. the inner product requires information from the full range of X, the
underlying discretized spatial variabl, which i of ength n. Thus, the modes ¥ (x) are in

18], More preciel y
space. Thus the ollowing two elationsips hold

My = (Vi ¥} = by (1240)
[¥1: ¥,y 70 forallk j 20




121 GappyPOD 405

where My are the eniries of the Hermitian matrix M and dy is the Krocnecker delta
function. The fact that the POD modes are not orthoganal on the support 51 leads us
1o consider alerntives for valuntin the vector &

/M[ ):M,} ax a2s)

where the inner prods ol
al of the same size 7. The minimizing solution to (12.5) requires the residual 0 be.
cbogonal o ode 80t

k'zm,. ',>

In practice, we can projectthe full state vector u onto the support space and determine.
the vector &

Iy K 126)

ol

M=t an
by

S =0 ¥y a28)
Note tha i the messurement spac is sufficenty dense, or f the support space i the
enie space, then M = 1 implying the cgemalues of M approach unity as the mumber

of measurements become dense. Once the vector & is determined, a reconsiuction of the
solution can be performed as

() = Wi 129)
s the st tecome e, ot ony doc the marix M comerge 0 the denit
bt a. Int of the method
dor sopoimation o considering the oo ot o e b (524)

- a210)

Here the 2-norm has been used. 1f x(M) is small then the matrix is said 10 be well-

conditioned. A miimal value of (M) is achieved with the identify matrix M = I Thas,

as the sampling space becomes dense, the condition number also approaches unity. This
L

condition numbers suggest poor reconsiruction while values tending toward unity should
perform wel,

Harmonic Oscilltor Modes
“To demonsirate the gappy sampling method and its reconstruction efficacy, we apply the
technigue 1o the Gauss-Hermite functions defined by (11.25) and (11.26). In the code

o by (11.26). To compute the second
derivative, we use the fact that the Fourier transform  can produce a spectraly accurate

that follows, we compute the firs ten modes as
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approsimation, . g, = 71 (42 Fu]. Forthe sake of producing scurate derivaives,

e o he i1 1,10t vk wih sl oo s
e 4.4

s i e el e i T s s e o

demonstated in Fig. 11.3. Tn the code that follows, we view the first 10 modes with

{op-view color plo n onder highlight the various featres of the modes,

Recall furthr that the Fourier transform assumes a 27-periodic domain.

Gote 121 Harmonic osclltor modes
23 (L) -u-m' 2000« (01072 4 /2 —n‘
yezeexp (x2.2) /. a

i) A4) eteeiye))) s e 5
- 21111 (-0.5)) sye2.aya

J201-80:in/241440) ; 1y ~dexet
narmey (n/2+1-40:0/2+1440, 1) 7
Beotor(£1ipud (yhara(s,105-141) 1))

“The mode consiruction i shown in the top panel o Fig. 12.1. Each colored cell repre-
sents the discrete value of the mode in the interval x € [~4, 4] with Ax = 0.1. Thus there

sampling

o121 s 10 modes.
129 00120, T ol el et e, vt

e, Ther 1.3 20 chance of performing a measurement at a iven patal ocation 3, in the
vl 144 itha pacingof Ax = 0.1

= 1.2and 3. e
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- g T 1
P, Py
log(s(M))
Error
—
@ ) © )

rei22
the est uncton /(1) = exp(—(x 0.

4 3exp(-20x -+ 3/20%) sampled inthe fll sace (eed)
o Fi. 12.1,5p (© P2, and 0) s

number

B Gt vl for ko e ot . O i o e i
ouside of th

the function

+3expl-20x +3/27] a2

expl-—(x 0.

which wil

the har-

the projection ofthe function onto the basis functions . The original function i plotied
Fig.

alow-rank

pling ofthe data i used, ,

basis. Further, it builds the matrix M for the full state measurements and computes its
condito

Gode 122 Test functon and reconstuetion.
frlen(ae0.5) 121 e (2 (x11.9) 20
B et
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) sybarn (430

Results of the low-rank and gappy reconstruction are shown in Fig. 122 The low-
rank reconsiruction is performed using the full measurements projected to the 10 leading
harmonic oscilltor modes. In this case, the inner product of the mezsurement matrix is
siven by (12.43) and is approximately the idenify. The fact that we are working on &
lmited domain x & [~4. 4] with a discretzation step of Ax = 0.1 is what makes M = I
versus being exactly the identify. For the three different sparse measurcment scenarios
P, of B, 21, e oo sk dhovn long wih e s o snd
the logarithm of the condition number logl( also visualize the three marices
M, in Fig. 12.3. The condition number of o et elps determine its
reconstruction aceuracy.

M=1 M

rorza s
st s Mdetinedin (12-4),
odice ol memssemeat, or e bt wth s i o rmcatin o e dmnmmmr
he matrices M, which longe ok disgomsl correspond  the
121 Thut i cear ot he e et crhogonl i . Support space of

rel-44
masices P, in Fig
the messurements.
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Gote 123 Gappy sampling of harmonic osclltor

£or J160p-1
h;mm, subplen 63,30 1oop)
o= (zand(n;1) %b 204 randon measurements
Barimdoubleah) ) axia (4.3 4.3 0 111, axis

figure(2)
zor §=1:10

i
Brsactrape (o0 yhamn(s.3) oxmarmc 350011
2035 whreas W2 33,3 whee

Subpior (2,2 dloope) peoler (101 1,110, (42°)) 5
Colbmmap (hat), cunds{ (0.1 311, sxis
con(3100p) =cond (u2)

for §-1:10 3 reconstruction
100803 Srepr e (- eyham e 0
a

R\feild; 8 compute
E2-yharneatild;

£igure(4) , subplot (2,1,1),plot (x, £2,¢ (§Loop) )
Ber (3 100p+1) snoem{£2-F) 1

Error and Convergence of Gapy

py POD
As was shown in the previous setion, the ability o the gappy sampling srtcgy 10 ccu-

(smorocaions. it the npornce f tis s, we will dscus vty o il

placing
gu.v in s o 10 properties and
(e ey method 12 function o he pecences of g of the 1l ystem Randons
ol ocatom will b

Given our random sampling srategy,the results that folow willbe sats
compuing s e o bkt of sdonly st sanpig e sl

ass for our numerical experiments are again the Gauss-Hermite functions defined by
(125 w1120, senerated by Code 12.1 and shown in the top panel of Fig. 12.1

cal in nature,

Random Sampling and Convergence
Our sty begns with o smplin of e et vl of (0%, 20%, 30 40%,
50% and 100% respectivly. The later cas represents the idealized full sampling of the
e, 3 me ol xpos e o and eomcion s vl s o oo
aretaken. To show the convergence of the gappy sampling, we consider two error metrics:
(i) the £ emor between our randomly subsampled reconsiruction and (i) the condition
number of the mauix M for a given measurement marix P, Reeall that the conditon
i, (1211
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log(E+1)

e

50

log(k(M))

0
0% 20% 0% 40% 50% 100%
Fpwe 124 L square o,
ers logcM) f—
he varianee of the esul
P v

Fig. 124 depits the average over 1000 trials of the logarithm of the leastsquare error,
the log of
Tog(<(M)), as  function of percentage of random measurements. Also depicied is the
vance  wihthe e s denain . et i e v vl The oo and
condition number both perform bette s the nuber of hat the
docs not approach zero since only a 10-made basis expansion is used, thos limiting
the aceuracy of the
“The following code, which is the basis for consiructing Fig. 12.4, draws over 1000
random sensor configurations using 10%, 206, 30%, 40% and 50% sampling. The full
reconstruction (1004 sampling) is acually performed in Code 12.2 and is used to make
the final graphic for Fig. 12.6. Note that as expected. the eror and condition number
trends are similar, thus supportng the hypothesis that the condition number can be used
o evaluate the eficacy of the sparse measurements. Indeed, this clearly shows that the
ondition number provides an evaluation that does not require knowledge of the function
n2,

increases. Note

ot 124 Comvergence of ertor and conditon number

for thresnei:s,
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).

randon,
Pestymamn

log(x(M)) |, @
0
0 number of trials
#events | ®
0
0 log(E+1)
#events [ ©
0
0 (M)
P53 St o 25 o st o i, 24T o ]
e
oR(E 1 <O, aresso
Uit for e 001l The hgw o e el itk vl st rom e
el 205
Tocuion The
et vectos P ar geeraing s s e depicied i P 126
3 -esmarnts 3301

o
En

2.+ (£ oyharm(

1d(3,1) =txap x,

Log (Exz+1))) 5
onl 1) 5

shows

n tials of 20 measurements.

ey esuroments and Pertomarce
0 uial o
features of the 200 random trials. In paticular, as shown in the {op pancl of this

we
more careully at

three key

2 sea, v
se tos (euli
‘continue this satstcal analysis of the gappy reconstruction method by looking.
e 12
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Figur 126 Depiction ofthe 200 random 0% messurement vectors P, considred n Fig. 125, Esch

spaial location o the domain ¢ < |4 4] with Ax = 0.1

there s a large variance in the distibution of the condition number (M) for 20% sam-
i fical

ofthe log eror
panels. The rtor appers o b disribtd i n xponnily desying shion whees
the conditon whose
rrorsand condion numbers e exceponlly igh. sogesing sensor cnnﬁgumlmm w0
be avai

In order to visualize the random, gappy measurements of the 200 samples used in the
satistical analysis of Fig. 12.5, we plot the P; measurement masks in each row of the
matix in Fig. 12.6. The white regions represent regions where no measurements occur.

magnitude
As a final analysi, we can sift through the 200 random measurements of Fig. 126
and pick out both the ten best and ten worst measurement vectors Py Fig. 12.7 shows
the tesuls of this sifing process. The top two panels depict the best and worst measure-
i erestingly. missing
‘measurements near the center of the domin where much of the modal variance oceurs.
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best 10

40 4000
(M)
0
best 10 worst 10

o a7 Dt 10t o 10t o 204 vecors P comsdered

e s i 136 el show ot e et messrement vt sample i

ity scros he domin {4 1 Inconiast, e wort mdorygenied
the domain, leding t03

Inc
measurement locations. The bottom panel shows that the best measuremens (on the lef)

fer an improvement of w0 orders of magitude in the condition number over the poor
performing counterparts (on th right).

Gappy Measurements: Minimize Condition Number
e g ssion s it e plceentof gy s s il
sy essincing lion. Tis e et i vy 1 e

of P
eriginally proposed hy Wilon 555 o ssing th mppy measurement locations. The
i based on minimizing the condition number & (M) in the placement process. As
aleady shown, the condition number s a good proxy for evaluatng the efficacy of the
reconstruction. Moreover, it is a measure that is independent of any specifc function
“The algorithm proposed 555 is computationally costly but it can be performed in an

reconstruction. The algorithm s a follows: :
1. Place sensor & at ach spatial location possible and evaluate the condition number
(M), Only points not already containing  sensor are conside
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iteration 1 |
\||||||||||||||||||||| i

iteration 2

TN
0 40 51

iteration 3
\IIIIIIIIIIIIIIIIIIIII T II|IIIIIIIIIIIIIIIIIIIIIII\
0 40 81
iteration 4
\IIIII|IIIIIIIIIIIIIII T, IIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIII I
81

sensor index k at 7

Condition number (M)

Figure 128 Depiction of ofthe g ocation sgorithn

Willos (555]

functions (1.25)and (11.26) discrsized on the nteval 1 € [, 4] with Ax — 0.1, The op pancl
the 81 discrte values

4. The frst sensor minimies e condiion numiber (shown n ed) 3t x2. A second sasor is now

occurting at
inred). Repearing his process ives 7 and 177 for thethird nd fourh sensorlocations for
teration 3 and 4of Once alocaiion

o longer considered in futre teraions. This i eprescnted by  23p.

2. Determine the spatial location that minimizes the condition number (M), This
spatial locaion is o the kih sensor location,

3. Add sensor £ + 1 and repeat the prvious two sieps.

“The algorithm is not optimal, nor are there guaranieed. However, it works quite well in
Tow condition

Lions with he POD mdes
‘We apply this algorithm to consiruct the gappy measurement matrix P. As before, the
‘modal basis for our numerical experiments are the Gauss-Hermite functions defined by
(11.25) and (11.26). The gappy measurement matsix algorithm for construcing P is shown
in Note that the algorithm outlined above sets down one sensor at 4 time, thus with the.
10 POD mode expansion,the system is underdetermined unil 10 sensors are placed. This
eives condition numbers on the order of 1015 for the frst 9 sensar placements. I also
first 105
the condition number.
“The following code builds upon Code 12.1 which is used to generate the 10-mode.
expansion of functions. ‘number and
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identifies the firs 20 sensor locations. Specficaly,the code provides a principled way of
producing a measurement matrix P that allows for 2ood reconstruction of the POD mode:
expansion with limited measurements

Gode 125 Gappy plcement: Miimize conditon number.

o )
o5 (n,1) ; Pins)-1;
Pinall(31o0p}) -1;

j-1:10
Eor 34e1d % macrix
Erapz (x, 2. (yharn(:,3) eyhazn(:,33)))
M2(3,19) SAxen; M2(33,9) Ares,

i
Breactraps o ps iamn(: ) esharm(= 331))
nn,uu,ea, M2,

§-1:10 + reconstruction using gappy
FEA1A(5, 1) -raps (6, 7.« (€. syharn(s,5))) 5

2(jatnse) - morn(E(: Seense) - S b e
od =

Selda\Ee1ld)  + conpute c
ai:

ena

In addition to deniifying the placement of the firs 20 sensors, the code also reconsiucts
the example function given by (12.11) at each ieration o the routine. Not the use of the
Setdiff command which removes the condition number minimizing sensor location from
consideration i the next teation.

“To evaluate the gappy sensor location algorithm, we track the condition number as a
function of the number of iterations, up 1o 20 sensors. Additionally, at each iteraion,
reconstruction ofthe est function (12.11)is computed and a least-square error evaluated.
Fig. 129 shows the progress of the algorithm as it evaluates the sensor locatons for up to
20 sensors. By construction, the algorithm minimizes the condition number x (M) at each

panel of Fig. 12.9). Note that thre is a signifcant decrease in the condition number once
10 sensors are selected since the sysiem is no longer underdetermined with theoretically

a21 . butthe ror does ot decresse like
the condition number. The least-square error also makes 4 significant improvemen once
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I
Tog (M)

0 [mlmr=?
1 0 teration 2

6
log(E+1)

0 HHHH HHHHTW

iteration 20

20

Iteration

1 40

sensor index k atr, 51

Figure 129 Condiion number and last.squarearor (o

aithns) s  function of the umiber o
“The log of

Togli (V)]
“The log of the

Teastsquare er [ 12
Onee sced, the system is of

the it 20 erations.

fornstance, o .

10 measurements are made. In general, if an r-mode POD expansion i to be considered.
then reasonable resuls using the gappy reconstruction canmot be achicved untl  snsors
are placed.

‘We now consider the placement of the sensors s a function of iteration in the bottom
panel of Fig. 129. Specifically, we depict when sensors are identified in the iteration
The first sensor location is 125 followed by 52, ¥y7 and xy7, respectively. The process
i continued until the frst 20 sensors are ideniified. The patiern of sensors depicied
important o it illustrates a firly uniform sampling of the domain. Alternative schemes
will be considered in the following.

‘As a fnalilusration of the gappy algorithm, we consider the reconstruction of the test
function (12.11) as the number of terations (sensors) increases. As expected, the more
Sensors that are used in the

py framework, the beter the reconsiruction is, especally
if they are placed in a principled way as outlined by Wilcox [535]. Fig. 12.10 shows the.
reconstructed function with increasing iteration number. In the left panel, ieration one

, z po
in the early stages of the iteraion. The right panel highlights the reconstruction from
teration nine to twenty, and on a more limited <-axis scale, where the reconstruction
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“test function

< of the reconsiuction o th test fnction (12.11). T lef pan shows

Jeast-square eror i uite g snce the sysien i 1o ful rank. The ight panel shows  zoom-inof

y Comparison in
both panls can be made tothe e uncion.

61

.
| il

T 61

2
o
|

iteration

40
sensor index k at 2,

Figure 1211 Sum of diagonals minas off-diagonals (op et and least-squareceor (logaritn) as
funcion of “The new proxy
metric for condiion number monotonically ncreases since tis i eing maximized st eac featon
Sep. he log of 1) shows a rend

d, bt convergence s extremely slow in

“The right panel
lack squars) over the fist 60 terstions, The it measurement locaton s, fo nsance, o 53

converges o thetest function. The true test functon is also showwn in order 10 visulize the
i n lgorithm o

comparison. e
the testsolution with a principled placement of sensors.

Proxy Measures to the Condition Number

The
computation of the condition nurmber itself can be computationaly expensive. Morcover,
unilr a - ode puta

However, it clear
algorithm i trying to achieve: make the measurement matrix M as near o the idenify as
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possible. This suggests the following alierative algorithm, which was also developed by
Willeo [555].

of the diagonal entris of the matix M minus the sum of the off-diagonal compo-
11 this (M), Only a

the above quan-
iy, This spatal location i now the kih sensor location.
Add sensor k+ 1 and repeat the previous two steps.

“This algorithm provides a simple modification of the original algorithm which minimizes

the condition number. In particula, the following lines of code provide modifications (o

Code 125. Specifcally, where the condition number is computed, the following fin is

now include:

||| mallsetdiff(nall,ns); ¥ new sensor indeces

Additonally,the sensor locations are now considered at the maximal points so that the

Tollowing line of code is appli

I

“Thus the modification of two lins of code can enact this new metric which circumvents

the computaton of the condition number.

“To evaluae this new gappy sensor location algorithm, we track the new proxy metric
we e trying (o maximize as @ function of the mumber of terations along with the least-
square error of our test function (12.11). In this case, up to 60 sensors are considered

Fig. 12.11

erosin,1); Bns)el;

as it evaluates the sensor locations for up 10 60 sensors. By constructon, the algorithm

waximizes the sum of the diagonals minus the sum of the ofT-diagonals a cach step of

the ieration, thus as sensors are added. this measure steadily increases (top lef pancl

of Fig. 12.11). The least-square error for the reconstruction of the test function (12.11)

decteases, but not monotonically. Further, the convergence is very slow. At least for this
e H

1555, and it is much
to compute,
As before, we also consider the placement of the sensors as a function of iteration in

ind with these modes. turns on sensors in local locations without sampling
uniformiy from the domain.

Gappy Measurements: Maximal Variance

The previous section developed principled ways to determine the location of sensors for

sappy This » -
Indecd,
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fold:
© |myv\zm:m requiring & computation of the condition number for every sensor location
- an exhausiive search. Secondly. the algorithm wasillconditioned unil the
s s chsen o 570D mode expansion. Ths the condition number
107 for

1555 algorith
tooerom he compuational sus ouinec.Spciflly nsind of paing ne snsr
ofthe ieration Thas the mtri generaed i no fonger ill-condiioned with a uuurelm'dly
infinite condition nurber.
“The algorithm by proposes a principled way ’
o el .
which are designed to maximally capture variance in the data. Specifically. the following
algorithm i suggested:

1 Place r sensors iniilly:

Tocations of these first maximum
of each of the POD modes ¥,

3. Add additional sensorsatthe next largest extrema of the POD modes.

The following code determines the maximum of cach mode and constructs a gappy
measurement matrix P from such lcations.

Got 128 Gappy plcement: Maximize variance

o § walk throush the modes
Loy & e e
ne-Tns nil;

Pezerosin,1); Pins)el;

“The performance of this algorithm s not strong for only  measurements, but it at least
produces stable condition number calculations. To improve performance, one could also
se the minimum of each of the modes ¥, Thus the maximal value and minimal value
of variance are considered. For the harmonic oscilltor code, the frst mode produces no
minioum o5 the minima are at x —» =0, Thus 19 sensor locations are chosen in the
ollowing c

Gode 127 Gappy plcement: Max and min vaiance.

Ts2, vz]—mm(ymxm\ A ¢ pick max
nesine
izeros(n 1) Btns) -1
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-1 0 . 4

Fipue 1212 The. he
ot sprsimaton ot PO cxpion e dsrcnion et £ ¢ i il s
spacing of A = 0.1

Note that in this case, the number of sensors is almost double that of the previous case.
Morcover it only searches for the the locations where variabilty is highest, which is ntu-
itively appealing for measurements.

Mo generaly, he Kaidois ot (65 adhoctsrndonlyslctingp -
Sors from M potential extrema, and then modifying the search positions with the goal
o improvin i codiion bt In i cse, e s enty sl the i and

ma of the POD modes in order o make the selection. The harmonic oscilltor modes
and their maxima and in Fig. 12
de,

 algorithm, s s follows:

ot 128 Gappy placement Extrma locations.

mnaxs1; aminel)

)>ynarm(§5-L,3) & ynarm(y

ynarn(33, 5 )syhasm(3ie1
'mmx'[v\mx iy

omaxt ominc]
Paum(nst. )15
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10

Toa(x(M))|

1 50 iteration 100

il

iteration

Figure 1213 Condiion numiber and last-square eror o st fncron (12.11) over 100 ndom s
hat draw 20 sensor locarions rom he possble 53 extrea depicid n Fi. 12.12. The 100 tials
evelof

the last seetion, However,
sl can be significanty ower.

r6- [omas nmin)
rdaanple (Lengeh (ns)  20)
@i

Note that the resultng vector ns all 55 possible extrema. This computation
e h dota B suinty smooh S0l xits ae sy ound by comiderng

ue whereas an
i x4 g0 v g
al

im suggests trying different configurations of the sensors

i il 20 gapp mestoments e desired. h e would

peed o search through vaious coufigraions of e 55 ocsions ueing 20 secsors. Ths

‘combinatorial search is intractable. However, if we simply attempt 100 random tials and
i

number minimizing algorithn. A full execution of this
tion of the condition number and least-square fit crror
following code:

orithm, along with a computa
h (12.11), s generated by the

Got 129 Gappy plcement Random selection

atot-length (ne) ;
for jtriale-1:100
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= (s) ma of each mode 1, (10
B 2 ot o cack e 4y 1 sensors)
R ()20 rancom senvors from extremmu of ¥
(. memmm | N
@ ® (© () (e)
2t [

best performers of 100 realization of ©)
O o e i aton 30 sscors

= i e e Y |
@ ® © « (@

Figure 1214 Performance metrics for placing sensorsbased upon the extrena of the varance o the
POD modes i 1211 and the

s POD modes. (5) the maximum and misimum locations of cach POD mode, and (€ andom
selection o 20 of

nisrandsanple (neot, 20) ;
nerens (ni) ;

Peseros(n,1); P (nsr)

for 33130

Areastraps (x,2. s (yh
23, 33) =

mis.9) evharn (s, 9001
a; M2(33,9)+

631403, 1) =traps (x, P+ (£.syhazmiz, 31))

onav3) 5
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£(2,1,1), bar(log(con_tri), Facecolox, [0 0.71)
bplot (31331, bar (lon (e triva) | Facecoion [0 o)
“The condit ber and for the 100 rals is shown n Fi
configurations perform el compared with random measurements, although some have
excellent performance.
-t comparison of all these methads is shown in Fig. 12.14. Specifically, what is
illustrated are the results from using () the maximun locations of the POD modes, (b)
POD mode, and (¢) a random slection
of 20 of the 55 extremum locations of the POD modes. These are compared against (d)
the best § sensor placement locations of 20 sensors selected from the extremum over 100
candom trials, and (e) the condition number minimiztion algorithm in ed. The maximal
variance algorithm performs approximately as well as the minimum condition number
algorithm. However, he algorithm is fuster and never computes condition numbers on ill-
conditioned matrices. Karniadakis and co-workers [565] also suggest innovations on this
b aly, it is suggested that one consider each sensor, one-by.

reduced, the sensor is moved to that new location and the nex sensor is considered.

POD and the Discrete Empirical Interpolation Method (DEIM
The POD method illustrated thus far aims 1o exploit the underlying Tow-dimensional
dynamics observed in many_high-dimensional computations. POD s often used fo
reduced: which are o growing.
and computing. ROMS reduce the computational complexiy and time needed to solve
arge-scale, complex systems [3, 442, 244, 17]. Specifically, ROMS provide a principled
approach to approsimating high-dimensional spatio-temporal systems [139], typically
zenerated from numerical discretization, by low-dimensional subspaces that produce
nearly idemtical system,
However, despite the significant reduction in dimensionalit with 4 POD. basis, the
complexity of evaluating higher-order nonlinear terms may remain as challenging a5 the
il proble 41, 127, The il nterplation ethod 1), e impiied
discrete empirical interpolation method (DI the proper orthogonal decomposition
(POD) (347, 251, overcome this mtncully by providing @ conptationly el
These methods

et he computatonl complety of ROV e lnwmbly with the rank of the
approximation, even with complex nonlincariies.

EIM s e evloed o the pupns of ey maging he compottionof

the nonlincarity in dimensionality reduction schemes, with DEIM specifically talored
1 with Gtk projcton. ndeed. DEIN approsimaes th noncary by wing
S smal, e sampling of s tha e dermined i an sgorhc vey. The

ensures that the computational cost of evaluaing the nonlncariy scles with he rank of
he reduced POD basis. As an exampl, consider the case of an r-mode POD-Galrkin
wuncaion. A simple cubic nolineariy requies that the POD-Galekin approximation

e cubed, resuling n r* operaions o evaluate the nonlincar erm. DEIM spprovimates
the cubic nonlncarity by using O() discrete sample poins of the nonlineariy, thus
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Table 121
o

DEIM algoritha

Basis Consir

d Ttalization

ot ot gt i
< constructnonlncar snapshot
i v dcemption o
ot e sprorimating b

et e (il
< construe firt messurement i

]
Nt

Tnterpolation Indices and Teration Loop (/ = 2.3, . p)

e PE e
« compute residuat
e o s

reserving 4 low-din

nsional (O(r)) computatio
combines projection with

as desired. The DEIM appro
Specifically. DEIM uses sclected interpolation
indices o specify an interpolation-based projection for 4 nearly 22 optimal subspace
approximating the nonlineariy. EIM/DEIM are not the only methods developed to reduce

» 2

(MPE) [400, 21] or gappy POD [355, 565, 120, 462] methods. However, they have
been successful in 4 large number of i applicaions and models [127]. In any
case, the MPE, gappy POD, and EIM/DEIM use a small selected sct of spatal grid
points 10 avoid evaluation of the expensive inner products required to evaluate nonlinear
terms.

POD and DEIM

Conter  igh-dimenioal syt of o el ctons st o

for cxampl, from the fne diffirence dsretzation of  parl il squation
I adiion 1 comueting  napuhl e (1212 of the soluion of e PDE s 1t

I
[N, \ ] .
ey e e o om0 o ol

nonlinear term of the PDE:

e e DD e s o
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Iteration 1

Decomposition
~ .

pT

‘maximum index

Steps

1. Caleulate c,: PIZ,
2 Compute residual
3 Maxindex of esdua: 11
4 Update measurement matrix

Iteration 2 Ry

Iteration 3

Pl E
D Y

third measirement
second measurement

Figure 1215 Demansrtion ofthe it hree ieations of the DEIM algorithm, For lustcation only.
ke

the it mode £ Afterwars

. The s (1), second
e

Sampling matix P

basis functions where £ <& . As shown in the previous chapter,these optimal basis func-
from a singular
of the complex system,

of  seris of

1251) mod-

DEIM,
iappy POD andior MPE. Consider the nonlincar companen of the low-dimensional
evolution (11.21): W/ N(Wa(0). For a simple
consider s impact

Jinearity such as N(u(x, 1)) = u(x, %,
 on a spatally-discrtized, two-mo pansions u(x.1) =
@ (O¥1() -+ ax(0)a(x). The algorithm for computing the nonlineariy requires the
evaluation:

ute ) = afv] + 3afaryive + 3aadinvd +advid 12.13)
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“The dynamics of a1(1) and ax(r) would then be computed by projecting onto the low-

1 and 2. Thus the number of computations not only doubles, but the inner products
‘must be computed with the -dimensional vectors. Methods such as DEIM overcome this
high-dimensional computation.

DEM

As outlined in the previous section, the shortcomings of the POD-Galerkin method are

senerally due to the evaluation of the nonlincar term N(¥a(r). To avoid this dificolty,
M spponimats NOwat) o pojcionand oo s of el

di e nonlincarty s

smguhr value d:mmpummn

a2

where the matrix  contains the optimal basis for spanning the nonlincariy. Specificaly,
we consider the ranke p basis

LR N} a215)
that approximates the nonlincar function (p << nand p ~ r). The approximation to the
nonlincarity N s given by:

N

Zpe) 216
where c(1) is smilar 0 (1) in (11:20) Since this is a highly overdetermined system, a
suitable vector (1) can b found by selecting p rows o the sysem. The DEIM algorithm
was developed to identify which p rows to cvaluate.
e DEIM lort e by cosderig e vt € R wbich e e
ol o e 1 identity matrx.
= ey ki chosen s L P 2 5 mmutn T e s el
demed o PN 7 e an

N= a,w' PN a2im

“The tremendous adantage of this result for nonlinear model reduction is that the term
P p << nindices. prop
a principled method for choosing the basis vectors €, and indices ;. The DEIM algo-
ithm, which is based on a greedy search, s detaled in [127] and further demonstated in
Table 12.1

FPOD,and DEIV provde & e of s o sonlcar mode ecion of

d way to construct subs

- aracterizing e uyn...m. DEIM augments POD by providing a method o evaluate
b problematic nonlinear terms using an -dimensional subspace , that epresents the
nonlincariy. Thus a small number of points can be sampled to approximate the nonlincar
terms in the ROM,

'DEIM Algorithm Implementation

the NL 11.29)
13and 114,
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olumns sepresent the spatial discretization points. As i the first section of this chapter,

o get the POD modes
Got 1210 Dimensionalty reduction or NLS.

POD modes, the singulr the nonlin-
cartem the DEIM algorithm. representa-

tion of N(u) = P divcly s N

God 1211 Dimensionalty reducion or nonfineariy of NLS,

Nimis (abs (). 2) o5,
(X1, 5L, W] =5va 0, 0)

Once the low-rank structures are computed, the rank of the system s chosen with the

3 50 that both the standard POD modes.
each.

parameter . In what follows, we choose

Got 1212 Rank selction and POD modes.

We now build the inerpolation marix P by exceuting the DEIM algorithm outined
i the last section. The algorithm stars by selecting the first interpolation point from the
maximum of the first most dominant mode o

Got 1213 Fins DEIM poin:
064 _nax, rnax] emax (abs (XI (+,1))) ¢
XI_neXI(,2)

“The algorithm teratively builds P one column o a ime. The next sep of the algorithm
DEIM algorithm. Specifi-

cally. the vector ¢ is computed from P! ¢, = PT£, . where £, ae the olumns of the
nonlincar POD modes matrx 2. The actal interpoltion poin comes from looking for
. v

another column o the sparse interpolation matrix P. The integers nmax give the location
of the interpolaton poins.
ot 1214 DEIM points 2 through

for

(B14XI_m)\ (2 4XE(:3)
10:09) X1_mecs

ena
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@ (b)
. s
ul, .
o
> 5 . 15
t 0 -15 °
third
@
() (

Fguo 1216 e

PDE sysem.

With the intespolation matrix, We are ready (0 consruct the ROM. The first part is
o construct the lincar term W7 LW of (11.21) where the lincar operator for NLS is the
Laplacian. The derivatives are computed using the Fourier ransform,

Gote 1215 Prjection o incarterms

for elir & linear derivative term
Laoe (3, 4) wE€E (k. 2. a6 (Pai 1,1)))
Le(1/2)s (Poir) slis  # projected linear te
e nonlincari Pl

e forma (13 17, Recall ht the nonlnar e i (1121 s il by 9" o
computed i the nterpolated version of the low-rank subspace spanned by .

ot 1216 Projection o nolinear trms

DMLt (K metnv (B XL ) Y e
Eopei-pu ai

s This
i done with a th-order Runge-Kuta routine.
Gode 12:17 Time sepping of ROM

a1 sodeds (zom dein she' 2, 11,2 0,2 Bat L)

Tide
ataztali(n biane (ciider ), mhanta] interp)| colommep) gray

the time stepp »
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ot 1218 Right fand sde of ROM
function rha-ron_dein_rha(tepan, a,dunmy,P_NL,P_Pai,L)
+a Lap_Nn ((abs (1) ."2) .40

A comparison of the full simulation dynamics and rank ROM using the three
DI terpolaton ports s shown i 5. 12,16 Addioaty, he fcatio o he DFIN
points relaive 10 the POD modes is shown. Aside from the first DEIM point, the other
Tocations are not on the minima or maxima of the POD modes. Rather, the algorithns
places them to maximize the residual

QDEIM Algorithm
i
The Jgorithm [159]

leverages the QR decomposition o provide effcient, greedy interpolation locations. This

has been shown (o be a robust mathematical architectue for sensor placement in many
applications [366]. See Section 3.8 for & more general discussion. The QR decomposition
In QDEIM, the QR pivot
locations are the sensor locations. The following code can replace the DEIM algorithm to
produc the interpolation matrix

Got 1219 QR based intrpoltion points
vot] -gr L. )
'

B

1216

More generally, there are estimates that show that the QDEIM may improv
perfomance v sadrd DEIM [159]. The cas of e of he QR algorim mases
this an atractve method for sparse nterpalation.

Machine Learning ROMs.
Inspired by machine learing methods, the various POD bases for a parametrized system
are merged into a master library of POD modes ;. which contains all the low-rark sub-
spaces exhibited by the dynamical system. This leverages the fact that POD provides
principled way o construct an r-dimensional subspace W, characterizing the dynamics
while sparse sampling augments the POD method by pmwdmg amethod 1o evaluate the
P using a p-dimensional X P. Thus o
Sl numberof polts can b sampled o pproximate the nonlinear erms in the ROM
g 12.1
i order to construct an appropriate POD basis .
The method introduced h i

by
libraris associated with the full nonlinear system dynamics as well as the specifc non-
lineasites Interpolation points, as will be shown in what follows, can be used with sparse:
st i ompresin g o ) ey Gynamicl eimes, @) st
U 1ol st of he sy, and 5 provide -t nonlinear model reduction and
POD-Galerkin predicon for e e st
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DDD .

wr

Figure 1217 L '

et Forach il dimenons FOD modes 4 are conped amSD
decomposi

hedin the

 of libray buiding of low-rank fearures from datais well establi
compute sence community. I the reduced-ordes modeling communiy. b ey
become an enabling computational stsategy for parametic systems. Indeed, a variety of
et ot e produced s o ROM el 30,946 10, 154 423 21 420

tively, cluster-based reduced order models use a k-means clustering to build a Markov
ransition model between dynamical sates [278]. These recent innovations e similar (0
the dea " our focus is on determining how a suiably chosen

can e sl e b o FOD ol o o s, O s
e for the nonlincarity
S0 s 10 make it mmpmmmmllv effcient with the DEIM strategy [462]. Before these

St i oo, coud be ssomposd o sl o sl ROMFOD
computed Patera ased on o
iy e whereas Al ef o (9] e 4 et ecintenf e o Soh
methods were closely related to the work of Du and Gunzburger [160] where the data

“The muliple
bases were then recombined into  single basis, o it docsi' lead 0  library, per s
review of these domain paritioning stategies, please see Ref. [11],

POD Mode Selection
‘Although there are a number of techniques for selecting the correet POD library elements
110,134,422, 421, 420], one

(SRC) innovations outlined in Chapter 3 to characterize the nonlinear dynamical sys-
tem [50, 98, 462]. Specificaly, the goal

points) to classiy the dynamical regime of the system from a range of potential POD
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2
. a =

g
g
&

Fous 1218

o Tl u The

 lbrry

(eprodaced from Kut et al. (319])

tandrd ¢ econsiructin o thefull s spce ca be sccomplished withthe slecied
subset of POD modes, nd a POD-Galerkin prediction can be computed for s uture.

In general, we wil have a sparse measurement vector & given by (12.1). The full state
Vector u can be approximated withthe POD library modes (u = ;. 4), threfore

Pua 218

where Wy, is the low-rank matrix whose columns are POD basis vectors concatenated
sctss all  regies an ¢ the et vetor givig th ot ofu nto trese
POD modes. 1f P, d isometry property in

However, under
(Chapter 3) by minimizing the /; norm instead so that

o= agminali. subjectio &= PWa 1219

“The last equation can be saled through standard convex optimization methods. Thus
e 1m0 oy o it ot v oy the sty for clsicaon,

R o
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cccc

R EIC;

Fpue 121 e for
Reynolds number Re = 40, 150, 300 and 100, Collecing snapshoss ofthe dynamics rveals

(bottom lefo). eproduced from Kutz e al. [319])

‘Example: Flow around a Cylinder
To demonsirate the sparse classification and reconsiruction algorithm developed, we
consider the canonical problem of flow around 4 cylinder. This problem is well under-
stood and has already been the subject of studies concering sparse spatial measure-
meats [80, 98, 462, 281, 374, 89, 540]. Specifcall, it i known that for low o moderate
Reynolds numbers, the dynamics are spatally low-dimensional and POD approsches
have. been successful in quanifying the dynamics. The Reynolds number, Re, play

the role of the bifurcation parameter 4 in (11.1), ie. it is @ parametrized dynamical

“The data we consider comes from numerical simulations of the incompressible Navier-
Stokes equation:

i '
o Vut Vp— v = "

VY- V=0 2200

Vou=0 220

here (.. € B2 represents he 2D velociy, and (v, y.1) € B the comesponding
s k. The by conion a3 llos: ) Consntflowof o = 1.0
I8 ey fh hanc, () Consn e o p =0« = 3. e

endo o ch e s =
the channel und the cylinder (centered st ( (0.0) and of radius unity).

Forexch eevan e f th paameter e we perform an SV o ettt i
order to extract POD modes. It s well known that forrelatively low Reynolds number,
st ey of the gl s s bservcd ot ol e POD ol e necdd o

Fig. 12.19 shows
0 15030 1500 Mot ek 3% o o energy (variance) is selected

number R
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1 Soo] Soree

Fiure 1220
ofthe flow ield
algorilms 80,98, 462, 281,374, 89, 40] For aslected agorithm,the semsing matrix P

i 3

the dynamics in the regimes shown. For  threshold of 99,96, more modes are required to
account for the variabiliy.

Clsiaton of the Reynlds mmbor i sxcomplbed by hin e opimiation
problem (12.19) and obtaining the sparse coefficient vector a. Note that each entry in &
Comepent o e g of il POD mode o ot Hrry. For sty we sl
 number of local minima and maxima of the POD modes as sampling locations for the
marix P. The classification of the Reynolds number is done by summing the absolute
value of large
number of coeffcients allocated for the higher Reynolds number (which may be 16 POD
modes for 99.9% varianc at R her than 4 single coefficient for Reynolds
number 40), we divide by the square 100t of the number of POD modes allocated i a for

this process.
Ithough the classification accuracy is high, many of the fale classifications are due

‘o categorizing a Reynolds number from a neighboring flow, i.c. Reynolds 1000 is often
Ken for Reynolds number 00, This i due to the fact that these two Reynolds num.-

bers are suikingly similar and the algorithm has a diffcult time separating their modal

structres. Fig. |

reconstruction ofthe pressure field achieved at Re

1000 with 15 sensors Clasification

sensing matrix P 80, 98, 462, 281, 374, 89, 540). Regardless, this example demonsirate
the usage of spar
s oo i)

Finally,
r.K 1231 shows b e Reyolds s esoncsion o B - e fld

alon
{h he SRC scheme slon ith e supervnd ML Horry provds  efectve e
for characterzing the flow strictly through sparse measurements. For higher Reynolds
numbers, it becomes much more difficult o aceurately classify the flow field with such
@ smal umbr of sevors, Howeer, s ocsno necesaril eopardie he iy o

reconstruct
are faily similar
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Glossary

Adjoint — For a fnite-dimensional inear map (i, matix A),the adjoint A” i given
by the complex conjugate transpose of the mairix. In the infinit-dimensional context, the
adjoint A” of a lincar operator A i defined so that [A . £) = (f. A"g), where (..} is an
inner product.

Akaike information eriterion (AIC) ~ An esimator of the relativ qualty of statstical
‘moels for  given st of data. Given a colection of modes for the data, AIC estimates the
qualit of each mode, relative 0 each of the other model. Thus, AIC provides a means
for model slection

Backpropagation (Backprop) — A method used for computing the gradient descent
required for the raining of neural networks. Based upon the chain rule, backprop explot
the compositional nature of NN in order (o frame an optimization problem for updating
the It

Balanced input-output model ~ A model expressed in a coordinate system where the
states are ordered hicrarchically i terms of thei joint controllability and observabilty.
system.

~ Anestimator of Satistical
‘modes for  given set of data. Given a collction of models for the data, BIC estimates the
ity of each model, reative 0 each of the other models. Thus, BIC provides a means
Tor e seection

Clasification — A general process related 10 categorization, the process in which ideas
dif 4, and understood. Classif

for machine learing algorithms.

Closed-loop control — A control architeeture where the sctuation i informed by sensor
data about the output o the system.

Clustering — A task of grouping a set of objects in such a way that objects in the same

Asp from a systen.

‘Compression - The process of reducing the size of 4 high-dimensional vector or array

by o s o a trunsformed basis. For example, MP3 and PG
Fourier bsis image signals
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Compressed sensing — The process of reconstructing & high-dimensional vector signal
from 3 random under sampling of the data using the fact tha the high-dimensional signal
i sparse i a known transform basis, such as the Fourier bsis.

engincering specification through sensing and actuation

Controllabilty — A system is contrallable if it s possible 0 seer the system (o any sate
with actation,

convex sets
Convolutional neural network (CNN) — A class of decp, fecd-forward neural networks
that is especally amenable 1o snalyzing natural images. The convolution is typically
spatial filter which synthesizes loeal (neighboring) spatial information.

el astais-
tical analysis will generaliz to an independent (withheld) dat set.
Data matrix - A matrix iphot of the state o

they may come

from an ensemble of intial conditions or experiments,
Deep learning ~ A class of machine learming algorithms that typically uses deep CNNs
for feature extaction and transformation. Decp learning can leverage supervised (c.2.
classificaion) and/or unsupervised (e.£., pattern analysis) algorithms, learming multple
levels v

hieratchy of conceps.

the data. These.
e iy b e s h g ance of  £ven DVID e sl 10 he
power spectrum in the FFT.

D e - Byl of e bl DA opeuet A (4 i e
leu'ml)mvmm)mwcvm ing an oscilation frequency and a growth or decay ter

D mode (also dynamic mode) ~ An cigenector of the bes
dynamic
afixed frequency and  growth or decay rac.

DMD operator A (see.

y “The leading cig abestit
linear operator A = XX that propagates the data matrix X into a future data matrix X'
“The cigenvectors of A are DMD modes and the corresponding cigenvalues determine the
time dynamies of these modes.

Dynamical system - A mathematcal model for the dynamic evolution of a system.
Typically. a dynamical system is formulated in terms of ordinary differenial equations
o state-space. The resulting equations may be linear o nonlinear and may also include
the ffect o the state.

Eigensystem realization algorithm (ERA) - A system identifcation technique tha pro-
duces balanced input-output models of a system from impulse response data. ERA has
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been shown to produce quivalent models to balanced proper orthogonal decomposition
and dynamic mode decomposition under some circumstances

Emission - The measurement functions for s hidden Markov model

Feedback control — Closed-loop control where sensors measure the downstream et
of actuators, so that information is fed back to the actuators. Feedback is essential for

feedback.

Fecdforward control - Control where sensors measure the upstream disturbances 10 o

Fast (FFT) - A 1 Fourier
The FFT
tions, signal processing, compression, and data ransmission.

- Achangef
sriesofsines and cosines.

Galerkin prajection — A process by which goverming parial diferential equtions are
reduced into ondinry differenial cquatons interms of the dynamics of the cocficients of

Gramian — The controllabilty (resp. observabilty) Gramian determines the degree (©
i st s onlale ucsp observable) via actuation (resp. via estimation). The
Gramian establishes Juct on the state spact

Hidden Markov model (HMM) — A Markov model where ther is  hidden stae that is

Hilbert space - A generalized vector space with an inner product. When reerred to
it il e ol frs 05 nicdimcnsions ncon s These
framework o

enable caleulus on functions.

vectors of a sparsifying transform. For instance, single pixel measurements Gic., spatial
el fucton) are ncoeret with espct 1 th sptial Foure ransorm bsis sice
Jign with

any single frequency.

Kalman flter - An estimator tht reconsiruts the ull state of a dynamsical system from
measurements of a time-serics of the sensor outputs and actuation inputs. A Kalman filter

the true stae ofthe system. The Kalman iler i optimal forlnear systems with Gaussian

process and measurement noise of & known magnitude.

Koopman eigenfunction — An cigenfunction of the Kooprman operator. Thes cgen-
amical

ordinates. I other words, these intinsic measurerments il evolve lncarly in

e desphe e andrying sy ing nlner
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Koopman operator — An infinitc-dimension linear operator that propagates measure-

L i lne.
squares of the error the data.

Linear quadratic regulator (LQR) ~ An optimal proportionsl feedback contollr for
full-sate feedback,
ing too much control energy. Th proportonal gain mati is etermined by soving an
algebraic Riceati equation.

Linear system A system where superposition of any two inputs resuls n the super-
position of the (o cormesponding outputs. In other words, doubling the nput doubles
the output, Lincar time-imariant dynamical systems are characterized by lincar operators,
which are represented as marices.

Low rank — A property of & matrx where the number of liearly independent rows and
Generally

are sought for arge data matries.

e with the
zoal of clustering, classification and prediction

Markov model - A probabilistc dynamical system where the sate vector contains the
ina given sttes thus,

5 always sum

tounity. The by the Markov .
thatcach row sums to unty.

A »:
impulsive input.

Ma — A data down-sampling strategy whereby an input representation (image.
ey outpt e i e i dimensionlity. this alowin fo ssump:
bo

Model predictive control (MPC) ~ A form of optimal control that opiimizes a control
are ypically

Moore's law ~ The observarion that transistor density, and hence processor speed.

tional power and the associated increase n the scale of problem that will be computation-
ally feasibl.

Multiseale ~ The property of having many scales in space andior time. Many systems,
such as turbulence, exhibit spatial and temporal scales that vary across many orders of
magnitude.

Observability - A system is observable f it s possible o estimate any system state with
a time-history of the available sensors. Degrees of observability are determined by the
observability Gramian.
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Observable function — A function that measures some propery of the state of 4 system.
Obvenvble ancions e pically cements o s ikt pace

Optimization - Generally aset of algorithms that find the “best avalable” values of some
objective function iven a defined domain (or input), including a variety of different types
of objective functions and different types of domains. Mathematically, optimization aims
to maximize

lowed the function. optimization

Overdetermined system = A system Ax = b where there are more equations tha
unknowns. Usually there is no exact solution x 10 an overdetermined system, unless the
vector b s in the column space of A.

Pareto front - The

1o make any one individual or preference erterion bette off without making at least one
individual or preference erierion worse off

~The adjointof
operator is an infinite-dimensionsl operaor that advances probabiliy density furctions
through a dynamical system.

- ourier transform of &
signal. The power connw“ds 10 the amount of cach frequency required to reconstruct a
siven signal.

P

ipal component — A spatially correlted mode in 4 given dat set, offen computed
the data

Principal components analysis (PCA) — A decomposition of 4 data matsx ino 4 hierar-

with the data. PCA is computed by taking the singular value decomposition of the data
afer subtracting the mean. In tis cas, each singular value represents the variance of the
ponding component

of data from a dynam-
el sysem o a Hisaehical st of orthogonal modes the singular value
decomposition. When the dta consists of velacity measurements of  system, such as an
incompressible lid. then the proper orthogonsl decomposition orders modes in terms of
the amount of energy these modes contain in the given dats.

ces, and i often used to compute the least-squares solution o a system of cquations. The
S UEV*. the

prcudorinverse is X' = VE-IU"

Recurrent neural network (RNN) ~ A class of neural networks where connections
betuween unts form a dircted graph slong a sequence. This allows it o exhibit dynamic
temporal behavior for & time sequence.
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Reduced-
dimensionalstate. Typicall.  reduced-order model balances accuracy with computational
cost of the model

Regression - A staistical indicator
variables. Leastsquares regression is a linear regression that finds the line of best fit to
dana;

Nonl I 1
or semaniic regression are used in ay»um dentification, model reduction, and machine.
learning

Resrictediomety property (RIF) - The propory & i st e 3 uniey
malri, o an isometry map, on sparse vectors. In other words, the distance between any
s sectos 1 prvaned e vecor e mapped hough i tht satsicn
the resticted isometry property.

Robust control - A feld of control that penalizes worst case scenario control outcormes.
thus promoring controlers that are robust to uncertaintis, disturbances, and unmodeled
dynamics.

draen from
wide rangs of probailtydistions, specally for disbtions tht st no normal
here ouliers compromise predictive capabilitics.

Singular value decomposition (SVD) - Given a matrix X € €' the SVD is given
USV* where U € ©7%, F € ©7, and V & ©7°". The matrces U and V-
are unitary, S0 that UU V'V = L The matrix 3 has entries
along the diagonal corresponding to the singular values that are ordered from largest to
smallest,
of rank-1 matrices given by the outer product of a column vector (It singular vector)
with 4 row vector (conjugate ranspose of right singular vector). These rank- | matrces are
kel cr matrix
approximation of the original matix i a least-squares sense.

Snapshot ~ A sinle ighdimesional measuremntof 3 sysem a s e A
cd

number o sequence of times may be vectors
ina data matix.
Sparse identification of nonlinear dynamics (SINDy) = A nonlinear system identifi

cation framework used to simultancously identiy the nonlinear structure and parameters
of a dynamical system from data Various sparse optimization techniques may be used to
determine SINDy models.

Sy A vestoris e f st of i i s oy e, Sy e
0 the st sl e W e 5 esors 0 e
ranormed s, s Fourir o POD b

which

Spectrogram — A short-time Fourier transform computed on & mol o
“The spectro-

ng wi

eramis useful for ¢
over time, as in music.
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st space - Ofien D
uch as B, a.mmugh it may also be a smooth manifold M.
ok 1 itallows one
10 approximate the gradient with a single data point instead of all available data. At each

ent — The process by which a model is consiructed for a system from
‘measurement data, possibly aftr perturbing the sysiem.

measurement atthe current ime along with a number of times in the past at fxed intervals
from the curtent time. Time delay coordinates ae often useful in reconsructing attractor
hat do not h

theorem
Total least squares — A least-squares regression algorithm that minimizes the error on
ol the inputs and the outputs. Geometrcall, this corresponds o finding the line that
minimizes the sum of squares of the total distance to all poinis, rather than the sum of
Squares of the vertical distance toall points

Uncertainty quantific 1) - The principled characterization and management of
uncertzinty in engincering systems. Uncertainty quantification ofien involves the applica-
tion of powerful ool from probabilty and statistics to dynamical systems.
Underdetermined system - A syste b where there are fewer equations tha
unknowns. Generally the system has mﬁnllely many solutions x unless b is not in i
column spac
Unitary matrix = A matrix whose complex conjugate transpose is alo its inverse. All
vl of iy mats e on thecomple it il and e acion f 3 iy
of as a change

‘avelet ~ A generalized function, or family of functions, used to generalize the Fourier
transform to approximate more complex and multscale signals.
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