
Neural Computing: An Introduction

R Beale and T Jackson

D e p a r t m e n t of C o m p u t e r S c i e n c e , U n i v e r s i t y of York

Adam Hilger
Bristol, Philadelphia and New York

Copyright © 1990 IOP Publishing Ltd.

0 IOP Publishing Ltd 1990

All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior per-
mission of the publisher. Multiple copying is only permitted under the
terms of the agreement between the Committee of Vice-Chancellors and
Principals and the Copyright Licensing Agency.

Brztzsh Labrary Cataloguzng zn Publzcalaon Data

Beale, R.
Neural computing : an introduction
1. Artificial intelligence
I. Title 11. Jackson, T.
008.3

ISBN 0-85274-262-2

Library of Congress Cataloging-in-Publication Data are auailable

First printed 1990
Reprinted with corrections 1991

Section 3.5 is based on material from Perceptrons by M hlinsky and
S Papert, pp 164-9, 0 1 9 6 9 MIT Press.

Published under the Adam Hilger imprint by IOP Publishing Ltd
Techno House, Redcliffe Way, Bristol BS1 6NX, England
335 East 45th Street, New York, NY 10017-3483, USA
US Editorial Office: 1411 Walnut Street, Suite 200, Philadelphia, PA 19102

Printed in Great Britain by J W Arrowsmith Ltd, Bristol

Copyright © 1990 IOP Publishing Ltd.

To our parents

Copyright © 1990 IOP Publishing Ltd.

Contents

Preface

1 Introduction
1.1 Humans and computers
1.2
1.3 Learning in machines
1.4 The differences

Summary
Further reading

The structure of the brain

Pattern Recognition
2.1 Introduction
2.2 Pattern recognition in perspective
2.3 Pattern recognition-a definition
2.4 Feature vectors and feature space
2.5 Discriminant functions
2.6 Classifica.tion techniques
2.7 Linear classifiers
2.8 Statistical techniques
2.9 Pattern recognition-a summary

Summary
Further reading

3 The Basic Neuron
3.1 Introduction
3.2 Modelling the single neuron
3.3 Learning in simple neurons
3.4
3.5
3.6 Limitations of perceptrons

The perceptron: a vectorial perspective
The perceptron learning rule: proof

1
1
5

10
11
13
14

15
15
15
16
17
18
20
27
32
36
37
37

39
39
39
4 5
50
53
57

vii

Copyright © 1990 IOP Publishing Ltd.

viii CONTENTS

3.7 The end of the line?
Summary
Further reading

4 The Multilayer Perceptron
4.1 Introduction
4.2 Altering the perceptron model
4.3 The new model
4.4 The new learning rule
4.5 The multilayer perceptron algorithm
4.6 The XOR problem revisited
4.7 Visualising network behaviour
4.8 Multilayer perceptrons as classifiers
4.9 Generalisation
4.10 Fault tolerance
4.11 Learning difficulties
4.12 Radial basis functions
4.13 Applications

Summary
Further rea.ding

5 Kohonen Self-Organising Networks
5.1 Introduction
5.2 The Kohonen algorithm
5.3 Weight training
5.4 Neighbourhoods
5.5 Reducing the neighbourhood
5.6 Learning vector quantisation (LVQ)
5.7 The phonetic typewriter

Summary
Further reading

6 Hopfield Networks
6.1 Introduction
6.2 The Hopfield model
6.3 The energy landscape
6.4 The Boltzmann machine
6.5 Constraint satisfaction

Summary
Further reading

59
60
61

63
63
63
67
68
73
74
79
83
89
89
91
94
97

104
104

107
107
110
114
117
119
122
123
130
130

133
133
135
137
145
156
163
163

Copyright © 1990 IOP Publishing Ltd.

CONTENTS ix

7 Adaptive Resonance Memory
7.1 Introduction
7.2 Adaptive resonance theory-ART
7.3 Architecture and operation
7.4 ART algorithm
7.5 Training the ART network
7.6 Classification
7.7 Conclusion
7.8 Summary of ART

Summary
Further reading

8 Associative Memory
8.1 Standard computer memory
8.2 Implementing associative memory
8.3 Implementation in RAMs
8.4 RAMs and n-tupling
8.5 Willshaw’s associative net
8.6 The ADAM system
8.7 Kanerva’s sparse distributed memory
8.8 Bidirectional associative memories

Summary
Further reading

9 Into the Looking Glass
9.1 Overview
9.2 Hardware and software implementations
9.3 Optical comp-uting
9.4 Optical computing and neural networks

165
165
166
167
175
176
185
186
189
189
190

191
191
194
196
202
205
207
212
215
217
217

219
219
219
22 1
223

Copyright © 1990 IOP Publishing Ltd.

Preface

Neural computing is one of the most rapidly expanding areas of
current research, attracting people from a wide variety of disciplines.
These people all bring a different background to the area, and one
of the aims of this book is to provide a common ground from which
new developments can grow. Another aim is to explain the basic
concepts of neural computation to an interested audience, and so
this book is about the whole field of neural networks, covering all
the major approaches and their important results; more especially,
it is an introduction, developing the concepts and ideas from their
simple basics through their formulation into powerful computational
systems.

We have tried to assume as little as possible in the reader, and
have attempted to set the book out in a clear and logical order.
As well as showing the basic concepts behind each of the major
approaches, these have been put in the context of their historical de-
velopment, so that the reasoning behind the model is as apparent as
its basic features. We have explained the ideas in English first, and
have also included the mathematical treatments of the models, for
which we make no apology. The subject is a mathematical one, and
the precise formulations of mathematics demonstrate things that are
difficult to explain in English alone. The important derivations and
proofs are also included since they form a vital part of the develop-
ment of the area as a whole, and indicate points at which apparently
insurmountable problems were reached, and then overcome. As well
as the mathematics, we have included the basic algorithms for the
major approaches. These algorithms are a series of steps that imple-
ment the ideas behind each of the different models, and much can

xi

Copyright © 1990 IOP Publishing Ltd.

xii PREFACE

be gained if they are converted into code for a computer, since fa-
miliarity with the concepts is best gained by “hands-on” experience.
They are also useful to those without access to computers, however,
since they set out the steps required in a straightforward way, and
may clarify some of the comments in the surrounding text.

Various little pictures crop up again and again in the book-these
icons contain information about the content of the section in which
they appear, and are described below.

This represents a section of text that is mathematical in na-
:::::::w:: ture. Not all the mathematical parts of the book are in-

dicated like this, since they are usually important to the overall
understanding; however, sections with this icon at the start can be
skipped over at first reading without losing too much of the flow
of discussion, if you are not familiar with the mathematics. They
do contain material that is useful and interesting, however, and we
would suggest that an effort should be made to look at them on a
second reading.

This represents an algorithm for a particular model, and is
y,. A.: . : :I.;.

they should be looked at when they are encountered in the text, but
again they can be omitted on first reading.

This symbol appears at the end of every chapter, where we
have tried to compress the major concepts into a succinct

summary. These represent the bare bones of the subject, and can
be used to check that you have followed the main features of the
chapter.

The very end of each chapter contains some suggestions for further
reading. We have tried to avoid referencing lots of papers from
many different sources, and instead have directed attention towards
specific books that deal with a particular subject in depth. Detailed
references can then be gleaned from these, if appropriate.

.

:...
designed to help you locate them within the book. Ideally,

:e=::
:iiiii: _-____

What’s Where

Chapter 1: Introduction contains the background to the subject; the
first section takes a light philosophical look at the differences between

Copyright © 1990 IOP Publishing Ltd.

... PREFACE xlll

humans and computers. The second section describes a simplified
model of the real brain. Analogies are drawn between artificial neural
nets and their biological counterparts.

Chapter 2: Pattern Recognition contains a discussion of the basic
concepts and ideas of pattern recognition, necessary since the major-
ity of tasks that are required of neural networks involve recognition.
It gives an overview of the predominant standard approaches to the
area, so that the place and function of neural systems can be under-
stood clearly.

Chapter 3: Basic Neuron develops the basic model of the single-
layer perceptron, its learning rule, operation and features, and its
partitioning of pattern space. It shows the problems associated with
classifying the exclusive-or (XOR) and other non-linear problems.

Chapter 4: Multilayer Perceptrons develops the model from Chap-
ter 3, showing how it can be altered to make it more powerful. It
covers the concepts of back-propagation, including the generalised
delta rule, gradient descent, and the concepts of feature extraction
by hidden units. The energy landscape is evoked to give a visualisa-
tion of energy minimisation and the problems of local minima. The
chapter also contains a section on the applications of the method to
real problems.

Chapter 5: Kohonen Self-Organising Networks looks at a different
paradigm, that of unsupervised learning. It looks at the formation of
self-organising topological maps and contains a detailed description
of one of the most influential applications of neural technology, that
of the phonetic typewriter.

Chapter 6: Hopfield Networks contains the description of the fully
connected Hopfield net, and its probabilistic partner the Boltzmann
machine, as well as a look at some analogies with physical systems,
and optimisation problems.

Chapter 7: ART revolves around an explanation of the more
biologically-inspired approach of Grossberg, highlighting the differ-
ences between the architecture and approach of this system to those
covered earlier.

Chapter 8: Associative Memory expands on the current techniques
for implementing associative memories and associative neural net-

Copyright © 1990 IOP Publishing Ltd.

X i V PREFACE

works, including the RAM nets of Aleksander, the matrix memories
of Willshaw, and the ADAM system. The parallels between associa-
tive memories and other neural networks are explored.

Chapter 9: Into the Looking Glass views the future of neural com-
puting, and gives an insight into some of the exciting recent devel-
opments that point the way forward.

How t o read this book

If the aim of the reader is to properly understand neural networks,
we would suggest that the book is read in order. An alternative
approach for those particularly interested in the more recent devel-
opments in the field, and who have some background knowledge, is
to briefly read Chapter 3 to familiarise yourself with the founda-
tions of the subject, followed by Chapters 4 through to 7 . For those
with an interest in the biological implications, Chapter 1 should be
read first, followed by Chapter 7 , then Chapters 2-6 and 8 will add
context.

Without W h o m .

Most projects involve the collaboration of a number of people, and
writing this book has been no exception. We are greatly indebted
to a number of people who, through their support, comments and
criticism, have kept us enthused, put up with our moanings, and
helped us transform the initial idea into reality. We appreciate their
assistance and effort, especially that of our colleagues at the Uni-
versity of York, and in particular those within our research group,
who have contributed freely to discussions and made us question
our most basic assumptions-these people have made our work that
much more interesting and life that much more fun. In particular,
we would like to thank Dr. Jim Austin for his support throughout,
and for the academic arguments that have aided our understanding
and abetted our enthusiasm. Chris Higgins explained the depths
of IATEX, and wrote the macros-the good bits of the typesetting
are due to him, whilst the bad bits are all our own work. Personal

Copyright © 1990 IOP Publishing Ltd.

PREFACE xv

thanks must extend to Julia, for her encouragement, support and
late-night typing. To Derek Wills, for dragging us into the world of
neural networks in the first place. And to Janet, who has tolerated
preoccupations, shared disappointments, read many drafts, and still
found nice things to say. The book is better because of them all-if
it is bad, the blame lies with us.

Russell Beale and Tom Jackson.

Copyright © 1990 IOP Publishing Ltd.

1

Introduction

1.1 HUMANS AND COMPUTERS

Human beings are more intelligent than computers. Why is that
said? Has it anything to do with the fact that I am human, and I
don’t want to think that a lump of silicon and metal can do all I can
do? Or is it because computers are different from us, in terms of the
operations they perform? For instance, calculating the sum of a few
hundred eight and nine digit numbers is a trivial calculation for a
computer, but it is asking a lot of even the most adept person. Does
that make the computer more intelligent than us? An initial answer
to that may be that it does-so consider crosswords instead. Some
of us are excellent at doing crosswords, others are terrible-but we
all can usually manage a couple of clues in an easy one. This sort of
task is immensely difficult for a computer, however. Solving cross-
word puzzles usually involves working out what an obscurely worded
clue is referring to, and takes what we term leaps of intuition and
guesswork, where we follow lines of enquiry that are not immediately
obvious but are sparked off by some recollection or idea that hap-
pens to come along. Computers can’t do this at all well-perhaps we
would adjust our definition and say that they were logical, and could
only do logical things well. Then we may consider vision; an activity
that would appear perfectly logical to us-look at something, work
out what it was, and give it a name, and possibly do something with
it; if it were a cup of tea, we’d recognise it as such, and drink it-if
the object was a football coming fast towards us, we’d have to de-
cide on some more complex course of action. But again, computers
are very bad at performing simple visual tasks. They have a job to

Copyright © 1990 IOP Publishing Ltd.

2 INTRODUCTION

distinguish simple items, and as for actually controlling an arm to
pick it up or something similar, that requires exceptionally complex
techniques.

Perhaps the problem is, because computers can do some of the
tasks that we do in a fraction of the time, such as add numbers,
or recall names and addresses accurately months after it first knows
about them, we expect them to be like us in many other ways as
well. We are then disappointed when they do not perform as well as
we want them. This problem is really the one that people in artificial
intelligence want to tackle, but their efforts, even after 30 years of
high-quality research, are not sufficient to allow them to make the
claim that they have computer systems that are artificially intelligent
in any general sense that we would recognise. The aim of artificial
intelligence could be summed up as trying to make computers behave
as they do in the movies-there, the computers seem to always work,
and are evidently superior to the humans that run round them; a
far cry from real life and the unpaid wages or huge bill that arise
because the computer has “done something wrong”.

Why then can’t computers do the things that we do? One of the
answers would appear to be in the nature of their design. We would
not unreasonably expect that things that are designed to operate in
similar ways to exhibit similar behaviour. If we look inside a com-
puter, we see a number of chips, containing miniature circuits and
components, plugged into a circuit board with resistors and other
things on. If we look inside the brain, we see nothing like such an
ordered structure: our initial inspection reveals nothing more than a
convoluted mass of homogeneous grey matter. Further investigation
reveals that it too contains components, but these are all arranged in
an immensely complex fashion, each connected to thousands of oth-
ers. Perhaps it is this difference in design that can account for the
difference in performance between the systems. Computers are de-
signed to carry out one instruction after another, extremely rapidly,
whereas our brains work with many more slower units. Whereas
a computer can typically carry out a few million operations every
second, the units in the brain respond about ten times per second.
However, they work on many different things at once, which com-

Copyright © 1990 IOP Publishing Ltd.

HUMANS AND COMPUTERS 3

puters can’t do. The computer is a high-speed, serial machine, and
is used as such, compared to the slow, highly parallel nature of the
brain. Given this, is it so surprising that the computer fails to per-
form in the same way as the brain? It manages tasks which suit
its design very well: counting is an essentially serial activity, as is
adding, with one thing done after another, and so the computer
can beat the brain any time. For vision or speech recognition, the
problem is a highly parallel one, with many different and conflicting
inputs triggering many different and conflicting ideas and memories,
and it is only the combining of all these different factors that allow
us to perform such feats-but then, our brains are able t o operate
in parallel easily and so we leave the computer far behind. Perhaps
the lesson here is that one thing may be good for one purpose but
not necessarily for another: just because my computer can add up
numbers, should I expect it to solve vision problems easily?

The conclusion that we can reach from all of this is that the prob-
lems that we are trying to solve are immensely parallel ones. They
require the processing of lots of different items of information which
all interact to provide a solution. The knowledge required to solve
these problems comes from many different sources, each with its own
contribution to make to the final output. The brain, with its parallel
design, is able to represent and store this knowledge in an accessible
way. It is also able to process this knowledge along with the many
different stimuli that it receives, due again to the parallel nature of
its operation. Speed is not the important factor-parallelism is, and
the brain is ideally suited to the task.

The approach of neural computing is to capture the guiding prin-
ciples that underly the brain’s solution to these problems and apply
them to computer systems. We do not know how the brain represents
high-level information, so cannot mimic that, but we do know that
it uses many slow units that are highly interconnected. In modelling
the brain’s basic systems, we should end up with a solution that is in-
trinsically suited to parallel problems rather than serial ones. These
parallel models should be able to represent knowledge in a paral-
lel fashion, and process it in a similar way. We can simulate these
structures in a serial fashion, though, so we do not need to build new

Copyright © 1990 IOP Publishing Ltd.

4 INTRODUCTION

computers. However, the inherently parallel nature of artificial neu-
ral network systems does make them amenable to implementation
on parallel machines, which may offer advantages in terms of speed
and ultimate reliability; after all, that is how the brain has done it.
To rework an old adage-we want the right architecture for the right
job.

In the following chapters we look at how the study of real neu-
ral systems has allowed us to model the parallelism that exists in
the brain, and has given us artificial neural networks that have be-
haviour that is heading toward what we really want. Whilst we are
copying the parallelism of the brain, it would also seem sensible to
notice other useful features of real neural systems and see if we can
incorporate them into our new networks.

Perhaps one of the most important of the features is that the
brain is able learn things-it can teach itself. Learning from example
is the way in which as children we pick up speech, learn to write,
eat and drink, and develop our own set of standards and morals.
The same is not true of conventional computer systems. In these,
the computer usually has a long and complicated program, which
gives it specific instructions as to what t o do at every stage in its
operation. Each step of the way has to be spelled out, and it is
fairly obvious that we don’t work this way at all, since when we
come to write such programs, it takes us many hours of patient and
careful work to write down exactly what we mean in a form that the
computer can understand. For large programs, these instructions
may be many millions of lines long, and one mistake can cause all
sorts of unexpected things to happen; such mistakes are known as
bugs, and are the blight of a computer scientist’s life. Indeed, these
mistakes are recognised as being immensely difficult t o avoid, and
most large programs have many bugs in them. If you were to buy
a new car, you would not expect it to go wrong, but if you were
to buy a new piece of software, you would be extremely surprised
if it worked without a mistake. Bugs are accepted as a fact of life.
But wouldn’t it be nice if instead of having to develop a program to
do a task, you could simply let the computer observe the task for a
while, so that it could learn by example? And who knows, it may

Copyright © 1990 IOP Publishing Ltd.

THE STRUCTURE OF THE BRAIN 5

find a better way of doing it than you, so that it was more efficient
that a simple program would be. It would probably have bugs in it
initially, so that it occasionally did something wrong-but it would
learn from its mistakes and not repeat the error.

1.2 THE STRUCTURE OF THE BRAIN

The human brain is one of the most complicated things that we have
studied in detail, and is, on the whole, poorly understood. We do
not have satisfactory answers to the most fundamental of questions
such as “what is my mind?” and “how do I think?”. Nevertheless,
we do have a basic understanding of the operation of the brain at
a low level. It contains approximately ten thousand million (10”)
basic units, called neurons. Each of these neurons is connected to
about ten thousand (lo4) others. To put this in perspective, imagine
an Olympic-sized swimming pool, empty. The number of raindrops
that it would take to fill the pool is approximately 10”. You’d also
need at least a dozen full address books if you were to be able to
contact lo4 other people.

The neuron is the basic unit of the brain, and is a stand-alone
analogue logical processing unit. The neurons form two main types,
local processing interneuron cells that have their input and output
connections over about 100 microns, and output cells that connect
different regions of the brain to each other, connect the brain to
muscle, or connect from sensory organs into the brain. The operation
of the neuron is a complicated and not fully understood process on
a microscopic level, although the basic details are relatively clear.
The neuron accepts many inputs, which are all added up in some
fashion. If enough active inputs are received at once, then the neuron
will be activated and “fire”; if not, then the neuron will remain in
its inactive, quiet state. A representation of the basic features of a
neuron is shown in figure 1.1.

The soma is the body of the neuron. Attached to the soma are
long, irregularly shaped filaments, called dendrites. These nerve pro-
cesses are often less than a micron in diameter, and have complex
branching shapes. Their intricate shape resembles that of a tree in

Copyright © 1990 IOP Publishing Ltd.

6 INTRODUCTION

Figure 1.1 The basic features of a biological neuron.

winter, without leaves, whose branches fork and fork again into finer
structure. The dendrites act as the connections through which all
the inputs to the neuron arrive. These cells are able to perform more
complex functions than simple addition on the inputs they receive,
but considering a simple summation is a reasonable approximation.

Another type of nerve process attached to the soma is called an
axon. This is electrically active, unlike the dendrite, and serves as
the output channel of the neuron. Axons always appear on output
cells, but are often absent from interneurons, which have both inputs
and outputs on dendrites. The axon is a non-linear threshold device,
producing a voltage pulse, called an action potential, that lasts about
1 millisecond (10-3s) when the resting potential within the soma rises
above a certain critical threshold. This action potential is in fact a
series of rapid voltage spikes. See figure 1.2 for an illustration of this
“all-or-nothing” principle.

The axon terminates in a specialised contact called a synapse that
couples the axon with the dendrite of another cell. There is no di-
rect linkage across the junction; rather, it is a temporary chemical

Copyright © 1990 IOP Publishing Ltd.

THE STRUCTURE OF THE BRAIN 7

off
I

Figure 1.2 The input to the neuron body must exceed a certain threshold
before the cell will fire.

one. The synapse releases chemicals called neurotransmitters when
its potential is raised sufficiently by the action potential. It may take
the arrival of more than one action potential before the synapse is
triggered. The neurotransmitters that are released by the synapse
diffuse across the gap, and chemically activate gates on the dendrites,
which, when open, allow charged ions to flow. It is this flow of ions
that alters the dendritic potential, and provides a voltage pulse on
the dendrite, which is then conducted along into the next neuron
body. Each dendrite may have many synapses acting on it, allowing
massive interconnectivity to be achieved. At the synaptic junction,
the number of gates opened on the dendrite depends on the number
of neurotransmitters released. It also appears that some synapses
excite the dendrite they affect, whilst others serve to inhibit it. This
corresponds to altering the local potential of the dendrite in a posi-
tive or negative direction. A single neuron will have many synaptic
inputs on its dendrites, and may have many synaptic outputs con-
necting it to other cells.

1.2.1 Learning in Biological Systems

Learning is thought to occur when modifications are made to the ef-
fective coupling between one cell and another, at the synaptic junc-

Copyright © 1990 IOP Publishing Ltd.

8 INTRODUCTION

tion. Figure 1.3 shows the important features of the synapse in more
detail. The mechanism for achieving this seems to be to facilitate

dendrite

Figure 1.3 The synapse. Neurotransmitters released from the synaptic
vesicles diffuse across the synaptic cleft and trigger the receivers on the
dendrite.

the release of more neurotransmitters. This has the effect of opening
more gates on the dendrite on the post-synaptic side of the junction,
and so increasing the coupling effect of the two cells. The adjust-
ment of coupling so as to favourably reinforce good connections is an
important feature of artificial neural net models, as is the effective
coupling, or weighting, that occurs on connections into a neuronal
cell.

1.2.2 The Organisation of the Brain

The brain is organised into different regions, each responsible for
different functions, and in humans this organisation is very marked.
The largest parts of the brain are the cerebral hemispheres, which

Copyright © 1990 IOP Publishing Ltd.

THE STRUCTURE OF THE BRAIN 9

occupy most of the interior of the skull. They are layered structures,
the most complex being the outer layer, known as the cerebral cortex,
where the nerve cells are extremely densely packed to allow great
interconnectivity. Its function is not fully understood, but we can
get some indication of its purpose from studies of animals that have
had it removed. A dog, for example, can still move in a coordinated
manner, will eat and sleep, and even bark if it is disturbed. However,
it also becomes blind and loses its sense of smell-more significantly,
perhaps, it loses all interest in its environment, not responding to
people or to its name, nor t o other dogs, even of the opposite sex. It
also loses all ability t o learn. In effect, it loses the characteristics that
we generally refer to as indicating intelligence-awareness, interest
and interaction with an environment, and an ability to adapt and
learn. Thus the cerebral cortex seems to be the seat of the higher
order functions of the brain, and the core of intelligence.

The cerebral cortex has been the subject of investigation by re-
searchers for many years, and is slowly revealing its secrets. It
demonstrates a localisation of functions, in that different areas of
the cortex fulfill different functions, such as motion control, hearing,
and vision. The visual part of the cortex is especially interesting. In
the visual cortex, electrical stimulation of the cells can produce the
sensation of light, and detailed analysis has shown that specific layers
of neurons are sensitive to particular orientations of input stimuli,
so that one layer responds maximally to horizontal lines, whilst an-
other responds to vertical ones. Although much of this structure
is genetically pre-determined, the orientation-specific layout of the
cells appears to be learnt at an early stage. Animals brought up
in an environment of purely horizontal lines do not develop neuron
structures that respond to vertical orientations, showing that these
structures are developed due to environmental input and not purely
from genetic pre-determination. This se2f-organisation of the visual
cortex, so called since there is no external teacher t o guide the devel-
opment of these structures, is discussed further in Chapter 5 , where
the work of Kohonen has shown that such feature maps can be devel-
oped in artificial neural systems as a consequence of simple learning
rules.

Copyright © 1990 IOP Publishing Ltd.

10 INTRODUCTION

1.3 LEARNING IN MACHINES

The ability to learn is not unique to the biological world, and is
captured within our neural network models. However, the concept
of machine learning goes against many of the commonly held beliefs
about computers: that they can do only what they are programmed
to do, and cannot adapt to their surroundings. Whilst it is true on an
atomic level that the program controls the machine, the behaviour
that results does not have t o be so rigid and deterministic as is
commonly felt. Having a computer learn to respond correctly t o a
given input, or learn t o play a game, is not a simple concept, and
it is often felt that complicated programs and systems are required
to achieve behaviour such as this, that many would class as one of
the requirements for intelligence. The purpose of this section is to
discuss these beliefs with reference to a machine called MENACE,
developed by Donald Michie in the early 1 9 6 0 ’ ~ ~ which learns how
to play the game of noughts and crosses. What is interesting is that
MENACE requires no expensive hardware or clever programming; it
is constructed from matchboxes, each containing a number of beads.

MENACE (Matchbox Educable Noughts And Crosses Engine)
consists of 288 matchboxes, one for every possible distinct board
position that the opening player can encounter. Each matchbox is
then filled with a random selection of coloured beads, each colour
representing a move to a corresponding colour on the board. The
game is played by selecting at random a bead from the matchbox
that corresponds t o the current board position, with the colour se-
lected determining the machine’s move. The first game is played,
with the machine moving completely at random. When the game is
over, the outcome is fed back into the machine so that it can adapt
its behaviour in the light of the outcome; i.e. it can learn to play
better next time. This is achieved by reinforcing all the moves that
were ultimately successful, when the machine won, and by decreas-
ing the chance of it making the same bad moves that led to defeat.
Learning therefore occurs by adding a bead of the same colour to
boxes representing a successful series of moves, or by removing a
bead of the colour that led to defeat. A draw means that the num-
ber of beads remains the same. This slow process of learning from

Copyright © 1990 IOP Publishing Ltd.

THE DIFFERENCES 11

experience continues, until the probability of the machine making a
good move far outweighs the chance of it making a bad one. Once it
has learnt, the machine is then almost invincible, and the best that
can be hoped for is to consistently draw with it.

This simple device demonstrates some important features of ma-
chine learning. It usually takes some time for a machine to achieve
a good probabilistic solution to a problem, which is what MENACE
achieves, but it is possible, given that the reinforcement learning
takes place. This reinforcement learning is analogous to that which
is thought to occur in the brain when the efficacies of the synap-
tic junction are increased in order to promote the recurrence of a
neural event. No external teacher is required to train MENACE
with the tactics of noughts and crosses; it learns the most successful
strategies purely by example, when the final result is used to modify
the machine’s subsequent performance. MENACE also has no spe-
cific location in which the information needed to play successfully
is stored; rather, it is distributed throughout the machine in the
probabilities of coloured beads in each box. It treats the process of
learning to play the game as a series of smaller sub-problems; each
box corresponds to a single situation and a number of possible moves,
not enough on its own to play the game. Learning occurs in each of
these boxes, and each box is unaware of the state of the other boxes
that participate in the game-it only knows the outcome. Successful
learning can occur since the behaviour of the system as a whole is
stochastic, and increasing the chance of good moves from one box
increases the probability of an eventual win.

But perhaps the most surprising feature of MENACE is that a
pile of matchboxes can learn to play a game of noughts and crosses
at all.

1.4 THE DIFFERENCES

We have seen that the brain is excellent at performing many of the
tasks that we would like computers to perform, such as vision, speech
recognition, learning by example and so on. We have also seen that

Copyright © 1990 IOP Publishing Ltd.

12 INTRODUCTION

the brain is structured in such a way as to make the accomplish-
ment of these tasks as easy as possible, which inevitably means that
there are certain things on which it cannot perform so well. The
compromises that have evolved have been dictated by the most im-
portant functions, where the ability to learn and adapt, to see and
interpret sounds has been more important than the ability to add
up a series of numbers accurately. The brain manages to accomplish
these complex tasks with an apparent minimum of effort due to its
highly developed structure, that of a massively parallel system, in
which many simple processing elements share the job of working out
what is going on, rather than trying to make one fast node do all
the work. This division of labour has other advantages as well; since
many neurons are involved at any one time, the contribution made
by a single one is not too important, and so if it happens to go
wrong, it is unlikely to affect the others in a significant way. This
distribution of work, known as distributed processing, therefore has
the advantage that it is tolerant of errors here and there. Indeed,
because the brain can learn, it is able to adjust to the permanent
loss of one of its neurons and can bring in new ones. This abil-
ity to function with only some of the processing elements working
correctly is known in computing circles as fault tolerance, for the
obvious reason that a system, such as the brain, can tolerate faults
within it without producing nonsense as output. This is a vital fea-
ture of the operation of the brain, since every day a few neurons die
as part of the natural course of events. More are lost if the brain gets
bumped about, but it continues working as if nothing had happened.
In cases of continuing damage, parallel distributed systems exhibit
what is known as gmceful degmdation where the performance of the
system slowly falls from a high level to a reduced level, but without
dropping catastrophically to zero. Compare this to the situation of
a single unit working hard to calculate lots of things quickly enough
to reach a correct output-if this element breaks down, then there is
no hope of obtaining a sensible answer, and no hope of coping with
the situation by transferring some of the work elsewhere. There is
nowhere else for it to go; a classic example of putting all your eggs
into one basket!

Copyright © 1990 IOP Publishing Ltd.

THE DIFFERENCES 13

Computers are very different in structure, however. Rather than
being comprised of many millions of relatively slow, highly intercon-
nected processing elements like the brain, they consist of one (or
occasionally, on modern machines, maybe two or a few more) excep-
tionally fast processor, which is capable of many million calculations
per second-this makes it good at performing simple, repetitive ac-
tions like adding numbers, but poorer at the task of processing the
vast quantities of different types of data that a vision system re-
quires. They also suffer from not embracing the distributed approach
in areas apart from speed, in that they are intrinsically intolerant of
faults. If the processor in a computer breaks, that's it: the screen
may go blank; worse, an aircraft may crash, or all the lights go out in
a city-the consequences may be far-reaching and difficult t o correct
or even anticipate.

These problems have led to the current interest in developing com-
puter systems that adopt the principles developed by millions of
years of evolution-that is, keep it simple, keep it joined up, and
have lots of it to share the load.

Summary

Brain is parallel, distributed processing system.
Basic processing unit called the neuron.
Approximately 10'' neurons each connected to lo4 others.
Operation of neuron: fires pulse down axon when sufficient in-
put received from dendrites. Connections via chemical junctions
called synapses.
Learning increases efficacy of synaptic junction.
Machines can learn through positive reinforcement.
Cerebral cortex shows local areas of specialised function.

Copyright © 1990 IOP Publishing Ltd.

14 INTRODUCTION

FURTHER READING

The following references are to books and articles that address the
whole field of neural network research, and they constitute a good
starting point for those readers wishing to follow up references to a
particular aspect of the area.

1. Parallel Distributed Processing, Volumes 1, 2, and 3. J. L. Mc-
Clelland & D. E. Rumelhart. Volume 1 covers the foundations
and many of the current approaches and models, whilst vol-
ume 2 looks at the subject from a more biological viewpoint.
Volume 3 contains a tutorial and software.

2. An Introduction to Computing with Neural Nets. Richard P.
Lippmann. In IEEE A S S P Magazine, April 1987. An excel-
lent, concise overview of the whole area.

3. An Introduction to Neural Computing. Teuvo Kohonen. In
Neural Networks, volume 1, number 1, 1988. A general review.

4. Neurocomputing: Foundations of Research. Edited by Ander-
son and Rosenfeld. MIT Press, 1988. An expensive book, but
excellent for reference, it is a collection of reprints of most of
the major papers in the field.

5. Neural Computing: T h e o y and Practice. Philip D. Wasser-
man. Routledge, Chapman & Hall, 1989. An introductory
text. Well- writ t en.

There are many journals in which papers on neural computing ap-
pear, but the following list should provide a basis for further research.

1. Neural Networks. Published bi-monthly.

2. Network: Computation in Neuml Systems. Published quar-
terly.

3. Neural Information Processing Systems (NIPS). Annual con-
ference proceedings.

4. IJCNN Conference. Annual conference proceedings. Used to
be the IEEE conference.

Copyright © 1990 IOP Publishing Ltd.

2

Pattern Recognition

2.1 INTRODUCTION

Pattern recognition-a strange heading for Chapter 2 of a book on
neural computing. At least it is, until we point out that pattern
recognition (in one form or another) is currently the dominating area
for the application of neural networks. It is a large area of computer
science in itself, and those wishing to pursue neural networks will
not get far before bumping into some of the issues raised by the
task of pattern recognition. The material that we will discuss in this
chapter, namely a definition of pattern recognition and an overview
of current techniques, is essential background reading. Much of the
mathematics overlaps with that of neural networks, and, to a large
extent, the two areas are tackling the same problems. It will only be
the briefest of introductions to pattern recognition techniques, but
we hope to cover all the basic issues that will affect our understanding
of neural networks.

2.2 PATTERN RECOGNITION IN PERSPECTIVE

To appreciate what the pattern recognition problem is all about let us
consider a task that is fairly basic to the majority of people-reading.
A significant proportion of the information that we absorb (i.e. that
is applied to our biological “neural networks”) is presented to us in
the form of patterns. The text that you are reading now is presenting
you with complex and varied patterns in the form of strings ofletters.
Before we even start to consider the far reaching cognitive issues of

15

Copyright © 1990 IOP Publishing Ltd.

16 PATTERN RECOGNITION

language processing, the visual system must first solve the pattern
recognition problem. That is, recognising the neatly aligned ink
stains on this page as alphabetic characters!

The fact that our visual system copes with this task effortlessly
we naturally take for granted. However, if we present this task to a
computer, we soon begin to realise the enormous complexity of the
problem. This “classification” is one of the simpler pattern recogni-
tion tasks. It could be resolved using a template matching technique
where each letter is read into a fixed size frame and the frame com-
pared to a template of all the possible characters. This is the solution
used in simpler applications, for example matching parts on a factory
production line, where we can predict the variety of shapes that are
likely to be encountered. Consider however what would happen if we
encountered a change in the typeface of the text in our reading task.
Unless we had a second template set for the new font the technique
would probably fail miserably at the classification task.

And further consider the case for handwritten text-it would
prove a near impossibility to provide templates to cope with the
widely varying patterns in cursive script (students may well appre-
ciate the problem of attempting to decipher lecturers’ blackboard
notes!). Text processing is just one example of the pattern recog-
nition problem. The difficulties described above are further compli-
cated when we turn our attention to processing images, speech or
even stock market trends.

Later chapters will describe how neural networks provide compu-
tational techniques that are able to deal with these problems. First
though it is necessary to provide a more formal definition of pattern
recognition techniques.

2.3 PATTERN RECOGNITION-A DEFINITION

The fundamental objective for pattern recognition is classification:
given an input of some form can we analyse that input to provide a
meaningful categorisation of its data content?

A pattern recognition system can be considered as a two stage

Copyright © 1990 IOP Publishing Ltd.

FEATURE VECTORS AND FEATURE SPACE 17

device. The first stage is feature extraction. The second is classifi-
cation.

We define a feature as a measurement taken on the input pattern
that is t o be classified. Typically, we are looking for features that
will provide a definite characteristic of that input type. For exam-
ple, thinking about our text processing problem again, if we wish to
distinguish the letter ‘F’ from the letter ‘E’ we would need to com-
pare the number of vertical and horizontal strokes in the character.
Feature extraction is rarely as trivial as the example we have given
and often poses the greater part of the recognition problem.

The classifier is supplied with the list of measured features. Its
task is t o map these input features onto a classification state, that
is, given the input features, the classifier must decide which type of
class category they match most closely. Classifiers typicdy rely on
distance metrics and probability theory to do this. Before we look at
these techniques however, we would first like to provide some useful
definitions.

2.4 FEATURE VECTORS AND FEATURE SPACE

Classification is rarely performed using a single measurement, or
feature, from the input pattern. Usually, several measurements are
required to be able to adequately distinguish inputs that belong to
different categories (or classes, as they are normally called). If we
make n measurements on our input pattern, each of which is a unique
feature, then we can use algebraic notation to create a set of these
features and call it afeature vector. The dimensionality of the vector,
that is, the number of elements in it, creates an n dimensional feature
space.

The simplest way to describe feature space is to consider a simple
two-dimensional e x a m p l e t hat is we will make two measurements
on the pattern to form the feature vector. A rather trivial example
might be distinguishing ballet dancers from rugby players (as if it
isn’t obvious!). Thinking about the problem, we might decide that
two distinctive measurements that categorise each type are height
and weight. If we make a series of height and weight measurements

Copyright © 1990 IOP Publishing Ltd.

18 PATTERN RECOGNITION

on typical examples of each, then we can plot the range of readings in
a two-dimensional Euclidean plane (21, 22) that defines our feature
space, as shown in figure 2.1.

height

+ ' ' + +
I t

weight

e% Ballet dancer

+ rugby player

Figure 2.1 A two-dimensional Euclidean feature space.

This plot of our measurements helps us t o visualise the concept
of our feature space. It does, of course, get a little tricky trying to
visualise anything above a dimension of three.

2.5 DISCRIMINANT FUNCTIONS

Discriminant functions are the basis for the majority of pat-
tern recognition techniques. Let us think again about our two-
dimensional rugby-player/ballet-dancer classification problem shown

Copyright © 1990 IOP Publishing Ltd.

DISCRIMINANT FUNCTIONS 19

in figure 2.1. Looking at the spread of the measured samples we can
see they form two distinct clusters.

The classifier stage is required to assign a class to these clusters,
and also assign a new input example to one of the classes. Looking at
the spread of the data in the clusters, we could intuitively decide that
some line drawn between the two classes could arbitrarily separate
them. If we could define such a dividing boundary for our data,
classification would become a process of deciding on which side of
the boundary any new input falls, as shown in figure 2.2.

decision boundary

height f I

@ Ballet dancer

+ rugby player

Figure 2.2 A linear classification decision boundary.

The mathematical definition of such a decision boundary is a “dis-
criminating function”. It is a function that maps our input features
onto a classification space-in the example above, by defining a plane

Copyright © 1990 IOP Publishing Ltd.

20 PATTERN RECOGNITION

that would separate the two clusters. The above example is an over-
simplification of the problem and rarely would our decision boundary
be so easily defined. Even in this simplistic example however it can
be appreciated that there are an infinite number of boundaries we
could have drawn to separate the two regions. In practice, though, it
is advisable to make the discriminant function as simple as possible
(we have to compute the function at some stage, so the simpler the
better!).

In the case above it is fairly obvious that the simplest function that
would separate the two clusters is a straight line. This represents a
very widely used category of classifiers known as linear classifiers.

2.6 CLASSIFICATION TECHNIQUES

Pattern classification techniques fall into two broad categories-
numeric and non-numeric. Numeric techniques include determin-
istic and statistical measures which can be considered as measures
made on the geometric pattern space. Non-numeric techniques are
those which take us into the domain of symbolic processing that is
dealt with by such methods as fuzzy sets. For the purposes of this
book we shall only consider the numeric techniques as they have
far more bearing on our discussion of neural computing. That is
not to say that people do not use neural networks for symbolic data
manipulation (in the traditional artificial intelligence sense)-many
research groups are in fact putting a great deal of effort into this
concept. However, it is perhaps a little esoteric to be included in
an introductory text, so barring a brief discussion in the final chap-
ter on future trends in neural networks we shall restrict ourselves to
numeric met hods.

We have already touched on deterministic methods in our discus-
sion of discriminant functions. We shall be looking more closely at a
particular implementation of discriminant function analysis known
as “K nearest neighbour” as well as taking a further look at linear
classification. For the statistical approach we shall discuss Bayesian
classification which uses probabilistic estimation of class member-
ship. These choices have been made on the grounds that they are

Copyright © 1990 IOP Publishing Ltd.

CLASSIFICATION TECHNIQUES 21

very widely used classification techniques, so widespread in fact that
many applications of neural networks are ultimately benchmarked
against them for performance. For this reason, if no other, it will be
very useful to familiarise yourself with them.

2.6.1 Nearest Neighbour Classification

Consider the diagram of figure 2.3.

classl ’ t BB

+++’+
++ ++ I

t +

unclassified pattern

dI shortest distance to classl

dz shortest distance to class2

Figure 2.3 Classification by comparison to the “nearest neighbour”.

We have two classes represented in pattern space and we wish
to decide to which of the two the unclassified pattern, X , belongs.
Nearest neighbour techniques, in essence, make a decision based on
the shortest distance to the neighbouring class samples-they assign

Copyright © 1990 IOP Publishing Ltd.

22 PATTERN RECOGNITION

it to whichever class it appears to be closest to (not an unreasonable
assumption). Formally, that defines a discriminant function f (X)
by:

f (X) = closest(class1) - closest(class2)

For class patterns that are well separated in pattern space, as we
have shown in figure 2.1, this technique will work by assigning f (X)
negative to, say, class 1 membership and f (X) positive to class 2
membership. The range of problems that this simple dichotomiser
may be applied to is, however, rather restricted (at least in terms of
useful performance). Consider the case of a rogue pattern, figure 2.4,
that has class membership of one class but does in fact lie closer
to another class-it is not typical of its class type but is included
none the less. In this instance, if our unclassified input is measured
against the rogue sample, it will invariably result in misclassification.
The solution to this fairly basic problem is to take several distance
measures against many class samples such that the effect of any rogue
measurement made is likely to be averaged out. This is “K” nearest
neighbour classification-where “K” is the number of neighbouring
samples against which we decide to measure.

2.6.2 Distance Metrics

Nearest neighbour methods pose the problem of finding a reliable
way of measuring the distance from one class sample to another.
Obviously, we need to specify a distance metric that will allow us to
measure the similarity of pattern samples in the geometric pattern
space. In practice, several methods are used.
0 Hamming distance measure.

its simplicity, is the Hamming distance measure. For two vectors
The most basic measure, and one that is widely used because of

x = (q,22, ...)

y = (Y l , Y 2 , . . .)

the Hamming distance is found by evaluating the difference between
each component of one vector with the corresponding component

Copyright © 1990 IOP Publishing Ltd.

CLASSIFICATION TECHNIQUES 23

Figure 2.4 Measuring to the nearest neighbour can produce errors in
classification if a rogue sample is selected.

Copyright © 1990 IOP Publishing Ltd.

24 PATTERN RECOGNITION

of the other, and summing these differences to provide an absolute
value for the variation between the two vectors. The measure is
defined by:

The Hamming distance is often used to compare binary vectors. It
is perhaps obvious that in this case the Hamming distance provides
a value for the number of bits that are different between two vectors.
In actual fact the Hamming distance measure for binary data can be
performed simply by the exclusive-OR function since

H = C(1.i - Y i l)

Izi - yil is equivalent to siXOR y;

0 Euclidean distance measure.
One of the most common metrics used is the Euclidean Distance

measure. Consider an example in a rectangular coordinate system
where we have two vectors (X and Y) that we wish to find the
distance between them (d(X, Y)).

The shortest distance, shown dotted on figure 2.5, is the Euclidean
distance which is defined by:

where n is the dimensionality of the vector.
For the two-dimensional example we have drawn, this gives us:

There is nothing too strange about that, of course, as it is simply
Pythagoras’s theorem for the sides of a triangle. A special case is
given for binary vectors where the metric is then equivalent to the
square root of the Hamming distance.

The Euclidean metric is widely used mainly because it is simple
to calculate. For binary input vectors the metric reduces to a special
case which is mathematically equivalent to the square root of the
Hamming distance. The metric is used in a neural network learning
algorithm discussed in Chapter 5.

Copyright © 1990 IOP Publishing Ltd.

CLASSIFICATION TECHNIQUES 25

X

Figure 2.5 The Euclidean distance measure.

0 City block distance (Manhattan)
A simplified version of the Euclidean distance measure is the city

block measure. This method performs the Euclidean measure with-
out calculating the squared or square root functions. Thus

The effect of this, apart from the obvious one that it is much faster
to compute than the Euclidean, is that points of equal distance from
a vector lie on a square boundary about the vector, as opposed to a
circular boundary for the Euclidean. This is illustrated in figure 2.6.

The enclosing circle shown is the Euclidean boundary for equidis-
tant points about the vector. For the city block distance, anything
falling on the square boundary will yield the same distance value. As
you no doubt realise, this does introduce some error into the mea-
sure, but this is accepted as a compromise between accuracy and
speed of calculation.

Copyright © 1990 IOP Publishing Ltd.

26 PATTERN RECOGNITION

Points of equal distance
lie on a square

Figure 2.6 City block distance metric.

0 Square distance.
Simplifying the Euclidean distance measure still further-but con-

sequently adding still more error-we have the square distance,
shown in figure 2.7. With this measure the distance between two
vectors is defined as the maximum of the differences between each
element of the two:

This again defines a square boundary for points equidistant from a
vector. It is however a larger square than that of the city block, and
is consequently a coarser measure. As before, however, the error is
tolerated as a compromise between speed and accuracy.

That concludes a brief look at distance metrics; it is by no means
exhaustive but we hope that it it least indicates the possible tech-
niques available for comparing the similarity of two vectors. In the
following section, we focus again on the idea of discriminating func-
tions using decision boundaries rat her than comparison methods.

Copyright © 1990 IOP Publishing Ltd.

LINEAR CLASSIFIERS 27
x2

3.

2.

1.

I
1 1 Q .

Figure 2.7 The square distance metric.

2.7 LINEAR CLASSIFIERS

Linear classification is a pattern recognition technique that is en-
countered time and time again in the field of neural networks. We
shall provide an overview of a linear classifier, describe how it can be
used in pattern recognition, and will endeavour to unravel the mys-
teries of the non-linearly sepumble problem that has plagued neural
network research since the late 1960’s.

In the preceding discussion about partitioning the pattern space
by discriminant functions, we have already paved the way for this
discussion of linear classifiers. Let us think again about the simple
two-dimensional, two-class discrimination problem, illustrated in fig-
ure 2.2. We wish to classify an input into one of two possible classes,
A or B. We have already described how the classes may be sepa-
rated in pattern space by the use of a linear decision boundary, but
how can we implement such a decision boundary in the case of real
pattern data, and how is the position of the separating boundary
chosen?

Copyright © 1990 IOP Publishing Ltd.

28 PATTERN RECOGNITION

In figure 2.8 we show our pat tern space with a new vector added.
This vector we will describe as a weight vector, W , and its orientation
in pattern space will be used to define a linear decision boundary.

boundary

Figure 2.8 Discriminating classes with a linear decision boundary. Note
the inclusion of the weight vector.

T h e decision boundary defines a discriminating function f (X) of
the form:

n

f (X) = wixi
i=l

where

X ; = i - t h component of an input vector

Copyright © 1990 IOP Publishing Ltd.

LINEAR CLASSIFIERS 29

Wi = i - t h component of a weight vector
N = dimensionality of the input vector.

The output of the function for any input will be either a positive
or negative value depending upon the the value of the weight vector
and the input vector. If we let a positive output indicate that the
input vector belongs to, say, class A and a negative output indicate
class B then we have a decision mechanism that simply looks for the
sign of f (X) for any input value.

Class definition:

if f (X) > 0 = class A
if f (X) < 0 = class B

The problem lies in actually finding a suitable weight vector that will
give these results for all inputs from class A and class B. If we expand
the discriminant function using matrix algebra we can visualise the
dependence of the output on the value of the weight vector. We
have:

f(.) = Cwixi - e
This expands to:

where 4 is the angle between the vector X and W .
The cos4 term swings between +/- 1, consequently any value of

4 greater than +/- 90 degrees between the weight vector and the
input will reverse the sign of the output of f (X) . This is clearly a
stmight line decision boundary since the crossover point is at t90
or -90 degrees. We can see that the function does indeed give us
a decision boundary but we are no closer to realising the position
of this boundary or finding the correct components for the weight
vector.

There are two parameters that control.the position of the decision
boundary in the pattern space-these are the slope of the line and
the y-axis intercept (standard geometry of a straight line). The slope
of the line in the function is actually determined by the value of the

Copyright © 1990 IOP Publishing Ltd.

30 PATTERN RECOGNITION

weight vector. We can see this if we consider the crossover point, or
boundary condition, when the output of the classifier is zero.

We have:

x ~ x w ~ + x ~ x W ~ - o = 0

Rearranging this gives us:

Comparing this to the equation of a straight line (y = mz t c)
we can see that the slope of the line is controlled by the ratio of the
weight values W1 and W2 and the intercept is controlled by the bias
value, 0.

Thus far we have proved that if we have the correct value for the
weight vector we can indeed perform the discriminating process and
set the position of the decision boundary. What we have not shown
yet is the critical part-namely finding the weight vector. This,
unfortunately, is a not a trivial problem! It is most usually found
by iterative trial and error methods that modify the weight values
according to some error function. The error function typically com-
pares the output of the classifier with a desired response and gives
an indication of the difference between the two. If we considered
a general logic implementation of the discriminant function we can
start to appreciate the scale of the problem. For an n-bit binary
input there will be 2n possible input patterns. Classifying these us-
ing t/- dichotomy means that there are 22n possible logic functions
that would map the n inputs t o the correct output value. The linear
classifier, however, can only perform a small number of these pos-
sible mappings-t hose that are in fact defined as linearly separable.
Linear separability is a subject that has strong links with the potted
history of neural network research, and it will be discussed in length
in Chapter 3. For now, we shall define linear separable problems as
those that can be satisfied using a single hyperplane decision surface.

The examples we have discussed so far only show linear classifiers
discriminating between two possible classes. However, linear classi-
fiers can also be used to separate more than two classes, by arranging

Copyright © 1990 IOP Publishing Ltd.

LINEAR CLASSIFIERS 31

many decision boundaries and performing several tests to satisfy the
conditions for each class. As an example, in a four-class problem (A,
B, C, D), the decision boundaries can be selected to test between A
or BCD, if the result is not A then test for B or CD, if not B then
test for C or D. Similarly for difficult class boundary conditions the
decision surface can be split up in a piecewise fashion, as shown in
figure 2.9.

Classl

d2 *

classification

Classl

Class2 I : - I
+ I

Figure 2.0 Piecewise linear classification for a non-linearly separable
pattern,

In non-linearly separable problems it is also possible to introduce
the required non-linearity into the decision surface by applying a
non-linear transformation to the data before it is passed to the clas-
sifier stage. This technique is described as a @ machine and such

Copyright © 1990 IOP Publishing Ltd.

32 PATTERN RECOGNITION

preprocessing of pattern data before passing it to a pattern classifier
is common practice. A transform is found that will map the patterns
into a new coding that is capable of being classified using a linear
classifier. The major drawback of this approach is that it can be
slow.

2.7.1 Conclusion

This concludes our look at deterministic methods for pattern classi-
fication. It is far from complete, but hopefully it will provide enough
background information to put the forthcoming discussions of neural
computing techniques into perspective.

2.8 STATISTICAL TECHNIQUES

Statistical techniques play a major part in pattern classification.
Without launching into a deep statistical treatment (you will. be
glad to hear) we wish to discuss the concept of Bayesian classifica-
tion. It is an important analytical technique, and is very powerful
and widely used. Using techniques of this kind also has the added
advantage of forcing us to think harder about the statistical nature
of the data that we are dealing with in pattern recognition problems.
Any method that makes us think long and hard about the nature of
the problem with which we are dealing-particularly about the char-
acteristics of the data-cannot be too highly valued. We will make
the point early in the book that applying any of the techniques de-
scribed in this book, with any degree of success, relies heavily on
one understanding the nature of the problem in the first place. That
may seem like a fairly obvious statement t o make but in the light
of recent claims for the “magical” problem solving abilities of neural
networks we feel it is perhaps a necessary one. Addressing our prob-
lem statistically we can gain a very useful insight into the nature of
the pattern data that we are dealing with-as well as perhaps a more
intuitive feel for what makes pattern recognition problems often so
difficult to solve.

Copyright © 1990 IOP Publishing Ltd.

STATISTICAL TECHNIQUES 33

Bayesian classification relies on the basic statistical theory of prob-
abilities and conditional probabilities. For pattern classification we
are using measurements taken from patterns (i.e. the components of
our feature vector) to make an estimate of the likelihood, or proba-
bility, of a pattern belonging to a particular class. Let us give some
basic definitions; if we let G;, i = 1 , 2 , . . . , n be our list of possible
groups or classes then we can define the probability of a pattern
belonging to a class as P(Gi) (where 0 5 P(Gj) 5 1). Using condi-
tional probabilities d o w s us to include knowledge we already have
about the pattern to to improve our estimate of class membership.
For example, if we try to predict the possibility of an ace being dealt
from a pack of cards after, say, ten cards have been dealt out-then
it is easier to make that prediction if we know which ten cards have
already been dealt. If they are dealt face up, and we have already
seen four aces dealt from the pack, then we could state-without
too much reason for doubt-that the eleventh card dealt will not be
an ace. A trivial example, perhaps, but it illustrates that including
prior knowledge into our estimates will have a considerable influence
on their reliability.

Given two events, X and Y , we can define conditional probabil-
ity as the probability of event X given the occurrence of event Y .
This is written as P(X1Y) . For pattern recognition, the prior knowl-
edge that we are combining with the estimate of class membership
comprises the data measurements taken from the pat t ern-t hat is
our feature vector X = (z1,52,53,. . . , z,). Our classification prob-
lem can now be stated as: given a set of measurements, X, what
is the likelihood, or probability, of it belonging to a class Gj- i.e.
P(GiIX) .

This is where Bayes’s rule enters-it is a formalisation of the state-
ment that we have already made. If we make measurements on a
pattern to give us a feature vector, X , on a pattern that we know
must come from one class of GI, Ga, . . . , G, then Bayes’s rule assigns
it to a class on the following basis.
Decide z belongs to class i for

P(G;IX) > P(Gj1-X) for i = 1 , 2 , . . . , n i # j
Put simply, it says that we assign a pattern to the class that has

Copyright © 1990 IOP Publishing Ltd.

34 PATTERN RECOGNITION

the highest conditional probability of the vector X belonging t o it.
It may come as something of a surprise t o find that it can be proven
that this will provide us with the best estimate that we could hope
for-if we measure our performance in terms of smallest average
error rate.

In practice, however, it’s not quite so simple (it sounded too good
to be true, didn’t it?). The difficulties arise in actually defining the
conditional probabilities required for Bayes’s rule. More often than
not they are in fact not known and must be estimated by some means.
Obviously the accuracy of the estimates will ultimately determine
the performance of the classifier in these circumstances. How then,
are they estimated? Typically, this involves making assumptions
about the pattern data and describing unknown distributions in the
data with “models”. The problem can be simplified if we rearrange
the constraints of the conditional probability and ask the question,
given that we know the pattern must belong to one of n groups,
what is the probability of obtaining that pattern vector in each of the
possible groups. We denote this P(X1G;). Although we do not know
the absolute value of this probability, we can in fact approximate it
by using a model probability distribution and assuming that it will
follow the same trend. We may not seem to have gained a great
deal by this step, but there is in fact a simple relationship between
P(G;IX) and P(XIG;), that is known as Bayes’s law:

We defined P(G;) earlier as the probability of a pattern belonging
to the class Gi-this can be found without too much difficulty. In
most practical situations P(XIGi) is estimated by assuming that
it follows the “normal” distribution. Although it may appear that
this is a somewhat arbitrary decision this model does in fact have
many useful properties that make it a particularly apt choice. The
most obvious is the fact that it is a distribution that does occur in
many situations-or at least a close approximation of it. It is also a
good approximation t o many other distributions. Its most endearing
quality is the fact that it is easy to work with-its distribution has

Copyright © 1990 IOP Publishing Ltd.

STATISTICAL TECHNIQUES 35

been well researched and there is a large pool of knowledge from
which to draw when using it.

By adopting models for the conditional probability P(X1G;) based
on a standard distribution-t he normal curve-and applying Bayes’s
law, we can define a relatively straightforward statistical classifier.
The performance will depend on how close the pattern data does
actually fit the model selected, but generally Bayesian classifiers can
be optimised to perform extremely well.

Bayesian classifiers also have further merits that justify their
widespread use. They can, in fact, be made to look like a linear clas-
sifier by making some simple assumptions about the pattern data.
What is more, this can be done in such a way that we finish with a
deterministic process that apparently makes no reference to statis-
tics at all. The simplifications or assumptions that we have to make
about the pattern data relate to the spread of the normal distribu-
tions of the classes.

If we revert to a view of the distributions in two-dimensional co-
ordinates for a two class problem, it can be shown that the pattern
space is most effectively partitioned by a quadratic decision surface.
Whilst being relatively easy to use it can in fact be modified to the
simplest case of a linear classifier. This is achieved by making the
assumption that both the class distributions have equal covariance
matrices. This amounts to saying that the distributions both have
the same overall shape and spread. The consequence of this is that
the most accurate partition of the pattern space is in fact achieved by
a linear surface. This is demonstrated in figure 2.10 with a straight
line separating a simple two-class case.

The proof that Bayes’s law does in fact reduce to a linear clas-
sifier can be performed analytically by solving Bayes’s law for the
boundary conditions of the two classes. The solution reduces to a
function that is of the form y = mz + c , that is, that of a straight
line. Those who are sufficiently versed in statistical theory may wish
to pursue this proof in the pattern recognition texts referenced in the
bibliography, but we shall do no more here than quote the result.

Copyright © 1990 IOP Publishing Ltd.

36 PATTERN RECOGNITION
linear decision boundary

Figure 2.10 Bayesian classification reduces to linear classification under
certain conditions.

2.9 PATTERN RECOGNITION-A SUMMARY

This chapter has been written expressly for those who are coming to
neural networks with no background knowledge of pattern recogni-
tion. The methods we have discussed will at least provide the bare
essentials that will be drawn upon in the following chapters on neural
computing. Neural computing is a subject that spans many diverse
fields of sciencenone of which is more fundamental t o a solid grasp
of the area than an appreciation of the classification methods used
in pattern recognition. The methods that we have described in this
chapter are the ones that will be most often referred to in neural
networks. We hope that they will leave you adequately “armed” to
appreciate the strengths and weaknesses of neural computing that

Copyright © 1990 IOP Publishing Ltd.

PATTERN RECOGNITION-A SUMMARY 37

are discussed in the rest of the book.

Summary

Pattern recognition-feature extraction and classification.
Features are pattern measurements used for comparison.
Discriminant functions partition up feature space.
A number of different distance metrics are used.
Linear classification occurs when classes can be separated by a
single linear decision boundary. Classes that cannot be separated
this way are termed non-linearly separable.

FURTHER READING

1. Pattern Recognition. M. James. BSP Professional Books (Ox-
ford), 1987. A good basic introduction to computer based pat-
tern recognition techniques.

2. Adaptive, Learning and Pattern Recognition Systems. J. M.
Mendel, K. S. Fu. Academic Press (New York and London),
1970. An old book but a very complete treatment of classical
pattern recognition theory and adaptive systems.

3. Self Organisation and Associative Memory, third edition. T.
Koh.onen. Springer-Verlag, 1990. Chapter 2; A tutorial dis-
cussion of pattern mathematics-a brief but useful revision of
matrix algebra techniques.

4. Adaptive Pattern Recognition & Neural Networks. Y. H. P a a
Addison Wesley, 1989. A good discussion of pattern recogni-
tion concepts in a neural network context.

Copyright © 1990 IOP Publishing Ltd.

3

The Basic Neuron

3.1 INTRODUCTION

In Chapter 1, we have examined the structure of the brain, and
found it t o be a highly developed mechanism that is relatively poorly
understood, but capable of immensely impressive tasks. We have
seen that many of the things that we would like computers to be
able to do, the brain manages exceptionally well, and the idea behind
neural computing is that by modelling the major features of the brain
and its operation, we can produce computers that exhibit many of
the useful properties of the brain.

We have noted the complexity of the structure of the brain; how-
ever, it can be viewed as a highly interconnected network of relatively
simple processing elements. We need a model that can capture the
important features of real neural systems in order that it will ex-
hibit similar behaviour. However, the model must deliberately ig-
nore many small effects, if it is to be simple enough to implement
and understand. This extraction of a few features deemed important
and disregard of all others is a general characteristic of modelling;
the aim of a model is to produce a simplified version of a system
which retains the same general behaviour, so that the system can be
more easily understood.

3.2 MODELLING THE SINGLE NEURON

We will firstly consider the features of a single neuron and how we
can model it. The basic function of a biological neuron is to add

Copyright © 1990 IOP Publishing Ltd.

40 THE BASIC NEURON

up its inputs, and to produce an output if this sum is greater than
some value, known as the threshold value. The inputs to the neuron
arrive along the dendrites, which are connected to the outputs from
other neurons by specialised junctions called synapses. These junc-
tions alter the effectiveness with which the signal is transmitted;
some synapses are good junctions, and pass a large signal across,
whilst others are very poor, and allow very little through. The cell
body receives all these inputs, and fires if the total input exceeds the
threshold value. This simple biological neuron is shown in figure 3.1.

Figure 3.1 The basic features of a biological neuron.

Our model of the neuron must capture these important features.
We can summarise them as follows:
0 The output from a neuron is either on or off.
0 The output depends only on the inputs. A certain number must

be on at any one time in order to make the neuron fire.
The efficiency of the synapses at coupling the incoming signal into

the cell body can be modelled by having a multiplicative factor on
each of the inputs to the neuron. A more efficient synapse, which
transmits more of the signal, has a correspondingly larger weight,
whilst a weak synapse has a small weight.

Copyright © 1990 IOP Publishing Ltd.

MODELLING THE SINGLE NEURON 41

input
multiplicative body - adds

it’s inputs,
then thresholds

input /

Figure 3.2 Outline of the basic model.

So now we have our basic model of the neuron, shown in figure 3.2.
It performs a weighted sum of its inputs, compares this t o some
internal threshold level, and turns on only if this level is exceeded.
If not, it stays off. Because the inputs are passed through the model
neuron to produce the output, the system is known as a feedfomard
one.

We need t o formulate this mathematically. If there are n inputs,
then there are n associated weights on the input lines. The model
neuron calculates the weighted sum of its inputs; it takes the first
input, multiplies it by the weight on that input line, then does the
same for the next input, and so on, adding them all up at the end.
This can be written as

total input = weight on line 1 x input on 1 -+
weight on line 2 x input on 2 t - t
weight on line n x input on n

201x1 t 202x2 t w3x3 t 204x4 t * * t w,x, =

i=l

This sum then has t o be compared to a certain value in the neuron,
the threshold value. This thresholding process is accomplished by
comparison; if the sum is greater than the threshold value, then

Copyright © 1990 IOP Publishing Ltd.

42 THE BASIC NEURON

output a 1, if less, output a 0. This can be seen graphically in
figure 3.3 where the x-axis represents the input, and the y-axis the
output.

?be thresholdhg function is altematively
known as the “step” function. or the
“Heanside” function

h a h o l d function,
threaholding at 8.

0’ e

Figure 3.3 The thresholding function.

Equivalently, the threshold value can be subtractec from the
weighted sum, and the resulting value compared to zero; if the result
is positive, then output a 1, else output a 0. This is also shown in
figure 3.3; notice that the shape of the function is the same, but now
the jump occurs at zero. The threshold effectively adds an offset to
the weighted sum. An alternative way of achieving the same effect is
to take the threshold out of the body of the model neuron and con-
nect it t o an extra input value that is fixed to be “on” all the time.
In this case, rather than subtracting the threshold value from the
weighted sum, the extra input of +1 is multiplied by a weight equal
to minus the threshold value, - 8 , and added in as well as all the

Copyright © 1990 IOP Publishing Ltd.

MODELLING THE SINGLE NEURON 43

other inputs-this is known as biasing the neuron. The value of -8
is therefore known as the neuron’s bias or ofSset. Both approaches
are equivalent, and either is acceptable.

Calling the output y, we can write

where f h is a step function (actually known as the Heaviside func-
tion) and

f h (x) = 1 x > o

f h (X) = 0 X 5 0

so that it does what we want. Note that the function produces only
a 1 or a 0, so that the neuron is either on or off.

If we use the approach of biasing the neuron, we can define an
extrainput, input 0, which is always set to be on, with a weight that
represents the bias applied to the neuron. The equation describing
the output can then be written as

Notice that the lower limit of the summation has changed from 1 to
0, and that the value of the input xo is always set t o 1.

This model of the neuron, shown in figure 3.4, was proposed in
1943 by McCulloch and Pitts. Their model came about in much
the same way as we have developed ours, and stemmed from their
research into the behaviour of the neurons in the brain. It is impor-
tant to look at the features of this McCulloch-Pitts neuron. It is a
simple enough unit, thresholding a weighted sum of its inputs to get
an output. It specifically does not take any account of the complex
patterns and timings of actual nervous activity in real neural sys-
tems, nor does it have any of the complicated features found in the
body of biological neurons. This ensures its status as a model, and
not a copy, of a real neuron, and makes it possible to implement on
a digital computer. This is the strength of the model-now we need

Copyright © 1990 IOP Publishing Ltd.

44 THE BASIC NEURON

Figure 3.4 Details of the basic model.

t o investigate what can be achieved using this simple design. The
arrangement of the connections between the neurons is important,
but, continuing our trend of choosing simple models to get an idea of
what is happening in a complicated red-world situation, we shall for
the time being consider only one layer of neurons, where we study
the outputs of the neurons under a known set of inputs.

The model neurons, connected up in a simple fashion, were given
the name “perceptrons” by Frank Rosenblatt in 1962. He pioneered
the simulation of neural networks on digital computers, as well as
their formal analysis. In his book “Principles of Neurodynamics ”, he
describes these perceptrons as simplified networks in which certain
properties of r ed nervous systems axe exaggerated whilst others are
ignored. He stated that they are not intended to serve as detailed
copies of any real nervous system; in other words, he realised at this
early stage that he was dealing with a basic model. This fact is of-
ten lost in the popular press as the idea of computer “brains”, based
on these techniques, grabs the imagination. We are not attempting
to build computer brains, nor are we trying to mimic parts of r ed
brains-rather we are aiming to discover the properties of models
that take their behaviour from extremely simplified versions of nat-
ural neural systems, usually on a massively reduced scale as well.
Whereas the brain has at least 10” neurons, each connected to lo4

Copyright © 1990 IOP Publishing Ltd.

LEARNING IN SIMPLE NEURONS 45

others, we are concerned here with maybe a few hundred neurons at
most, connected to a few thousand input lines.

3.3 LEARNING IN SIMPLE NEURONS

We need a mechanism for achieving learning in our model neuron.
Connecting these neurons together may well produce networks that
can do something, but we need to be able to train them in order
for them to do anything useful. As we have seen before, it is the
ability of these networks to learn that makes them especially useful.
We also want to find the simplest learning rule that we can, in order
to keep our model understandable. As is often the case in neural
computing, inspiration comes from looking at real neural systems.

Young children are praised for doing well in a maths test. They
are scolded for rushing across the road without looking. Dogs are
given titbits to encourage them to come when called. In general,
good behaviour is reinforced, whilst bad behaviour is reprimanded.
We can transfer this idea to our network. We must try to reinforce
behaviour that we want repeated and discourage things that we do
not. If we have two groups of objects, for example one group of
several differently written A’s, and the other of B’s, we may want
our neuron to tell the A’s from the B’s, as in figure 3.5. We want it
to output a 1 when an A is presented and a 0 when it sees a B.

We need to think about our model neuron, and examine its be-
haviour, t o see how we can include the concept of learning within
our simple design. The guiding principle is to allow the neuron to
learn from its mistakes. If it produces an incorrect output, we want
to reduce the chances of that happening again; if it comes up with
correct output, then we need do nothing. If we set up the neuron
with random weights on its input lines, corresponding to a starting
state in which it knows nothing, we can present an A. The neuron
will perform the weighted sum of the inputs, and compare this to
the threshold. If it exceeds the threshold, it will output a 1, whilst
if it doesn’t, it will output a 0. The likelihood that it will get it
correct are 50:50 at first, since the inputs t o the neuron have only
a random chance of exceeding the threshold. Let us assume it does

Copyright © 1990 IOP Publishing Ltd.

46 THE BASIC NEURON

Figure 3.5 Can we tell the A’s from the B’s?

get the correct answer, then we do not need to do anything, since
the model has been successful. But if the neuron produces a 0 when
we show it an A, we want to increase the weighted sum so that next
time it will exceed the threshold and so produces the correct output,
a 1. We would do this by increasing the weights. So, to reinforce the
chances of getting a 1, we want t o increase the weights.

For inputs that are B’s, we want the neuron to produce 0’s. This
means that we want the weighted sum of the inputs to be less than
the threshold, and so each time we present a B we want t o decrease
the weights, t o try and force the neuron to produce a zero next time.

This means that for the network to learn, we want t o increase the
weights on the active inputs when we want the output t o be active,
and t o decrease them when we want the output to be inactive. We
can achieve this by adding the input values to the weights when we
want the output to be on, and subtracting the input values from the
weights when we want the output to be off. This defines our learning
rule. Notice that only those inputs which are active at the time will
be affected; this is sensible since the inactive ones do not contribute

Copyright © 1990 IOP Publishing Ltd.

LEARNING IN SIMPLE NEURONS 47

to the weighted sum, and so changing them will not affect the result
for the particular input in question, but may well upset what has
already been learnt.

This learning rule is a variant on that proposed in 1949 by Don-
ald Hebb, and is therefore called Hebbian learning. Hebb postulated
his rule, that of reinforcing active connections only, from his studies
of real neuronal systems. The slightly modified version that we use
retains the notion of only affecting active connections, but we have
allowed them to be strengthened or weakened. We can do this be-
cause we can see which way to alter the weights as we know what the
result should be. Since the learning is guided by knowing what we
want to achieve, it is known as supervised learning. We have devel-
oped these ideas of learning from the point of view of the model and
common sense, and have derived a learning rule that is not unlike
the one postulated for biological systems. It is the dominant method
used today in learning models.

This simple idea for learning actually remained untested until
1951, when Marvin Minsky and Dean Edmonds built a “neural
network”-it was quite a machine! This large-scale device used 300
tubes, lots of motors and clutches, and a gyropilot from a World War
I1 bomber to move its 40 control knobs. The position of these knobs
represented the memory of the machine, and Minsky and Edmonds
spent a long time watching the machine at play, as it adjusted the
knobs and moved several things all at once. The huge amount of
wiring connecting it up was full of poorly soldered joints and incor-
rect connections, but the random nature of the whole system allowed
it to continue working even when some of the tube “neurons” broke
down as well. This mechanical contraption was probably the first
realisation of a learning network.

Our learning paradigm can be summarised as follows:

0 set the weights and thresholds randomly
0 present an input
0 calculate the actual out put by taking the t hresholded value of the

weighted sum of the inputs
0 alter the weights to reinforce correct decisions and discourage in-

correct decisions-i.e. reduce the error

Copyright © 1990 IOP Publishing Ltd.

48 THE BASIC NEURON

0 present the next input etc.

3.3.1 The perceptron learn-ag algorithm

The learning procedure that we have described can be written
.,.:::: ... :.:. as the following algorithm, which can be used to implement

a perceptron network on a computer by coding the steps in any
programming language.

2; :

Perceptron Learning Algorithm

1. Initialise weights and threshold
Define w;(t) , (0 5 i 5 n), t o be the weight from input i at t ime t , and
6 t o be the threshold value in the output node. Set W O t o be -9 , the
bias, and 50 t o be always 1.

Set w;(O) t o small random values, thus initialising all the weights and
the threshold.
2. Present input and desired output
Present input 20, q , z 2 , . . . ,z, and desired output d (t)
3. Calculate actual output

r n 1

Li=o J

4. Adapt weights

if correct w;(t + 1) = w;(t)
if output 0, should be 1 (class A) w;(t + 1) = w;(t) -t z ; (t)

if output 1, should be 0 (class B) w;(t + 1) = wi(t) - z ; (t)

Note that weights are unchanged if the net makes the correct decision.
Also, weights are not adjusted on input lines which do not contribute
t o the incorrect response, since each weight is adjusted by the value of
the input on that line, xi, which would be zero.

Copyright © 1990 IOP Publishing Ltd.

LEARNING IN SIMPLE NEURONS 49

This is the basic perceptron algorithm. However, various modi-
fications have been suggested to this basic algorithm. The first is
to introduce a multiplicative factor of less than one into the weight
adaption term. This has the effect of slowing down the change in
the weights, making the network take smaller steps towards the so-
lution. This alteration to the algorithm entails replacing step 4 with
the following:

4. Adapt weights-modified version

if correct wi(t t 1) = w;(t)
if output 0, should be 1 (class A) w;(t t 1) = wi(t) t qz; (t)
if output 1, should be 0 (class B) wi(t t 1) = wi(t) - qz;(t)

where 0 5 q 5 1, a positive gain term that controls the adaption rate.

Another algorithm of a similar nature was suggested by Widrow
and Hoff. They realised that it would be best to change the weights
by a lot when the weighted sum is a long way from the desired
value, whilst altering them only slightly when the weighted sum is
close to that required to give the correct solution. They proposed a
learning rule known as the Widrow-Hoff delta rule, which calculates
the difference between the weighted sum and the required output,
and calls that the error. Weight adjustment is then carried out
in proportion to that error. This means that during the learning
process, the output from the unit is not passed through the step
function-however, actual classification is effected by using the step
function to produce the t1 or 0 indication as before.

The error term A can be written

A = d (t) - y (t)

where d (t) is the desired response of the system, and y(t) is the
actual response, This takes care of the addition or subtraction, since
if the desired output is 1 and the actual output is 0, A = t1 and

Copyright © 1990 IOP Publishing Ltd.

50 THE BASIC NEURON

so the weights are increased. Conversely, if the desired output is 0
and the actual output is t 1 , A = -1 and so the weights will be
decreased. Note that weights are unchanged if the net makes the
correct decision, since d (t) - y (t) = 0.

The learning algorithm is basically the same as for the basic per-
ceptron, except this time step 4 is replaced by

4. Adapt weights-Widrow-Hoff delta rule

A = d (t) - y (t)
wi(t t 1) = w i (t) t +;(t)

t 1 , if input from class A
0, if input f rom class B

d (t) =

where 0 5 77 5 1, a positive gain function that controls the adaption
rate

Neuron units using this learning algorithm were called ADALINEs
(adaptive linear neurons) by Widrow, who also connected many of
them together into a many-ADALINE structure, or MADALINE.

Another alternative proposed is to use inputs that are not 0 or
1 (binary), but are instead -1 or t1, known as bipo2ar. Using bi-
nary inputs means that input lines with 0’s on them are not trained,
whereas bipolar values allow all the inputs to be trained each time.
This simple alteration helps to speed up the convergence process,
but often leads to confusion in the literature as some authors discuss
binary inputs and others bipolar ones. Effectively, they are equiva-
lent, and the use of one or the other is usually a matter of personal
preference.

3.4 THE PERCEPTRON: A VECTORIAL PERSPEC-
TIVE

If we write the inputs to a perceptron as a vector X = (Z O , ~ , . . . ,x,)
we can think about the algorithm in a vectorial fashion. This vector
X has n elements, and so is called n-dimensional. We can only

Copyright © 1990 IOP Publishing Ltd.

THE PERCEPTRON: A VECTORIAL PERSPECTIVE 51

really imagine at most three dimensions, but it is still possible to get
a feel for what is going on. If we write the weights as another vector
W = (WO, w1,. . , , wn) then we can replace the weighted sum with
the identical vector dot product, ie.

The learning algorithm for the perceptron ensures that the weights
are adapted to reduce the error each time. We can understand how
the perceptron learning procedure works on an intuitive level by ex-
amining the behaviour of the weight vector as the perceptron learns
patterns. If we continue our example consisting of patterns of A’s
and B’s, we can see that they can be represented in pattern space as
shown in figure 3.6.

this line partitions the
pattem space into class

Figure 3.6 Two distinct sets of patterns drawn in 2-d pattern space.

Copyright © 1990 IOP Publishing Ltd.

52 THE BASIC NEURON

The solution to classifying these patterns is to produce a dividing
line between them, such as the line W in the diagram. Points above
the line can be regarded as representing patterns from class A, whilst
those below the line are from class B. This line is what we want our
perceptron to discover for itself. A line such as this, which separates
two classes in pattern space, is said to partition the space into two
classes.

The perceptron generates this line by adjusting the values of the
elements of the weight vector, as prescribed by the learning proce-
dure, so that inputs from the top side of the line produce a 1 as
output, and inputs from below the line produce a 0. The percep-
tron starts with a random weight vector (see step 1 of the learning
procedure) that points anywhere in the pattern space. A pattern
is presented, and the learning procedure ensures that if the out-
put is incorrect, the weight vector is altered to reduce the error.
This is achieved by moving the vector a finite amount towards the
ideal weight vector. Eventually, the weight vector becomes the ideal
weight vector, and gives no error for inputs from either class, thus
partitioning the pattern space successfully. The perceptron has then
“learnt” to distinguish between A’s and B’s. The behaviour of the
weight vector can be visualised with the help of figure 3.7. The effect

Figure 3.7 Behaviour of the weight vector in pattern space.

Copyright © 1990 IOP Publishing Ltd.

THE PERCEPTRON LEARNING RULE: PROOF 53

of the learning process on the line that partitions the pattern space
is shown in figure 3.8. As learning progresses, the partitioning of the
classes evolves from the initial random state into a correct one.

Figure 3.8 Evolution of the classification line from an initial, random
orientation into one that successfully classifies the two classes.

3.5 THE PERCEPTRON LEARNING RULE: PROOF

We have seen, intuitively, how the perceptron learning rule
produces a solution; in this section we prove this fact. This

proof was first proposed by Rosenblatt. His influential result stated
that, given it is possible t o classify a series of inputs, then a percep-
tron network will find that classification. In other words, he proved
that the perceptron weight vector would eventually align itself with
the ideal weight vector, and would not oscillate around it for ever.
The proof relies on vector notation, and contains some mathematics.
It follows the approach taken by Minsky and Papert in their book

Copyright © 1990 IOP Publishing Ltd.

54 THE BASIC NEURON

Perceptrons; it can be skipped on first reading, but none of the con-
cepts are too difficult, and the mathematics describes what is going
on in a succinct and elegant way.

Definitions :
The input patterns are assumed to come from a space which has

two classes, Ff and F-. We want the perceptron to respond with
+1 if the input comes from Ff and -1 if it comes from F-.

Consider the set of input values 5; as a vector in i-dimensional
space, called X, and the set of weights wi as another vector in the
same space, denoted by W. To make things simple, let us assume
that the vectors X are of unit length-it makes no difference t o the
final result, except clarifying the maths a bit.

Increasing the weights is performed by adding X to W vectorially,
and decreasing them means subtracting X from W.

Replacing w;s;(t) by the vector notation Wax produces the
following algorithm.

START

Choose any value for W

Choose an X from Ft U F-
TEST :

If X E Ff and W .X > 0 goto TEST.

If X E Ff and W - X 5 0 goto A D D .

If X E F- and W - X < 0 goto TEST.

If X E F- and W .X 2 0 goto S U B T R A C T .

A D D :
Replace W by W+ X
Goto TEST.

Replace W by W- X
Goto TEST.

S U B T R A C T :

Notice that we go to SUBTRACT when X is from class F- , and if we

Copyright © 1990 IOP Publishing Ltd.

THE PERCEPTRON LEARNING RULE: PROOF 55

consider that going to SUBTRACT is the same as going to ADD but with
X replaced by -X, then we can rewrite the procedure as follows.

START

Choose any value for W

Choose a X from Ft U F-
TEST

If X E F - change the sign of X
If w ' X > 0 goto TEST

otherwise goto A D D .

ADD :
Replace W by W+ X
Goto TEST.

We can simplify the algorithm still further, if we define F to be

F+ U -F- i.e., Ft and the negatives of F-, we can say

START :
Choose any value for W

Choose any X from F
TEST :

If w 'X > 0 goto TEST

otherwise goto A D D .

ADD :
Replace W by W+ X
Goto T E S T ,

The convergence theorem then states that the program will only
go to ADD a finite number of times. This is what we have to prove.

Copyright © 1990 IOP Publishing Ltd.

56 THE BASIC NEURON

Proof Assume there is a unit vector W*, which partitions up the
space, and a small positive fixed number S such that

W * * X > S V X E F
Define w**w

I WI
G(W) =

and note that G (W) is the cosine of the angle between W and W*.
Since IW*l = 1, we can say that

G (W) 5 1. (3.1)

Consider the behaviour of G(W) through A D D .

Firstly, we can see how the numerator behaves:

W*.Wt+1 = W * . (W t t X)
= W * . W t + W * . X
> W * - W t + S

since W* X > S.
Hence, after the nth. application of ADD we have

W*.W, >nS (3 4

Now we can consider the denominator, and since W* - X must be
negative, else the program would not go through ADD , we can say

IWt+1I2 = Wttl

= (W, t X) *(W, t X)
(W,I2 + 2Wt * x + 1x12 =

However, we know that W . X must b e negative, otherwise we would
not be going through ADD , and we also know that 1x1 = 1, so we can
write

2 IWt+ll < IWtI2 + 1

Copyright © 1990 IOP Publishing Ltd.

LIMITATIONS OF PERCEPTRONS 57

(notice the = has become a <) and after the nth application of ADD ,

Combining equations (3.2) and (3.3) gives us

n6 > - f i
but we already know that G(W) 5 1, so we can write

i.e.

n 5 1/S2

(3.3)

(3.4)

Equation (3.4) is our proof let us consider what it says. In the
perceptron algorithm, we only go to TEST if W . X > 0. We have
chosen a small fixed number 6, such that S > 0 and W X > 6.
Equation (3.4) then says that we can make S as small as we like,
but the number of times, n, that we go to ADD will still be finite,
and will be 5 1/S2. In other words, eventually the perceptron will
learn a weight vector W that partitions the space successfully, so
that patterns from F+ are responded to with a positive output and
patterns from F- produce a negative output.

3.6 LIMITATIONS OF PERCEPTRONS

There are limitations to the capabilities of perceptrons, however.
We have said before that they will learn the solution, if there is a
solution to be found. To examine this in more detail, notice that the
perceptron is trying to find the straight line that separates classes.
It can separate classes that lie on either side of a straight line easily
enough, but there are many situations where the division between

Copyright © 1990 IOP Publishing Ltd.

58 THE BASIC NEURON

Table 3.1 The exclusive-or function table.

X Y Z
0 0 0
0 1 1
1 0 1
1 1 0

classes is much more complex. Consider the case of the exclusive-or
(XOR) problem. The XOR logic function has two inputs and one
output, shown in figure 3.9. It produces an output only if either one
or the other of the inputs is on, but not if both are off or both are
on. Representing on by 1, and off by 0, we can write this in a table
as shown in table 3.1.

Figure 3.9 The exclusive-or logic symbol.

We can consider this as a problem that we want the perceptron
to learn to solve: output a 1 if the X is on and Y is off, or is Y is on
and X is off, otherwise output a 0. It appears t o be a simple enough
problem.

We can draw it in pattern space as shown in figure 3.10. The x-
axis represents the value of X, the y-axis the value of Y. The heavily
shaded circles represent the inputs that produce an output of 1,
whilst the lighter circles show the inputs that produce an output of
0. Considering the heavily shaded circles and lightly shaded circles
as separate classes, we find we cannot draw a straight line to separate
the two classes (find a ruler, and try it!). Such patterns, as we have
seen before in Chapter 2, are known as linearly inseparable since no
straight line can divide them up successfully. Since we cannot divide

Copyright © 1990 IOP Publishing Ltd.

THE END OF THE LINE? 59

Coordinate Output
X Y representation Z Y

Figure 3.10 The XOR problem in pattern space.

them with a single straight line, the perceptron will not be able to
find any such line either, and so cannot solve such a problem. In fact,
a single-layer perceptron cannot solve any problem that is linearly
inseparable.

3.7 THE END O F T H E LINE?

The failure of the perceptron to successfully solve apparently simple
problems such as the XOR one was first demonstrated by Minsky and
Papert in their influential book Perceptrons. This book contained a
detailed analysis of the capabilities and limitations of perceptrons;
however, the demonstration that perceptrons could only do linearly
separable problems was regarded as a mortal blow to the area, and
the majority of the scientific community resolutely walked away.

Copyright © 1990 IOP Publishing Ltd.

60 THE BASIC NEURON

3.7.1 Conclusions

The single-layer perceptron has shown great success for such a simple
model. It has exhibited the features of learning that we wanted to
realise in a system, and has shown that it is able to distinguish
between different classes of objects if they are linearly separable in
pattern space. What we need is a way to overcome the restraint
of linear separability, whilst still retaining the basic features of the
model and its overall simplicity. The improvement necessary first
caught large-scale scientific attention in 1986 when Rumelhart and
McClelland proposed their improved version, called the multilayer
percept ron.

3.7.2 A Pause in History

One of the advantages in a book is that time is an illusion-one
page turn can take you forward twenty years. In a neural network
book, this is an advantage. Not much happened in the area after
Minsky and Papert published their book in 1969, until Rumelhart
and McClelland produced an improvement in 1986 which fused the
perceptron idea with some modern adaptations and caused an ex-
plosion of interest in the field. If the McCulloch-Pitts neuron was
the father of modern neural computing, then Rumelhart’s multilayer
perceptron is its child prodigy.

Summary

0 Perceptron-artificial neuron.
0 Takes weighted sum of inputs, outputs t1 if greater than thresh-

old else outputs 0.

Copyright © 1990 IOP Publishing Ltd.

THE END OF THE LINE? 61

Hebbian learning (increasing effectiveness of active junctions) is
predominant approach.
Learning corresponds to adjusting the values of the weights.
Feedforward supervised networks.
Can use +1, -1 instead of 0 , l values.
Can only solve problems that are linearly separable-therefore
fails on XOR.

FURTHER READING

1. Parallel Distributed Processing, Volume 1. J. L. McClelland
& D. E. Rumelhart. MIT Bradford Press, 1986. An excellent,
broad-ranging book that covers many areas of neural networks.
It was the book that signalled the resurgence of interest in
neural systems.

2. Organization of Behaviour. Donald Hebb. 1949. Contains
Hebb’s original ideas regarding learning by reinforcement of
active neurons.

3. Perceptrons. M. Minsky & S. Papert. MIT Press 1969. The
criticisms of single-layer perceptrons are laid out in this book.
A very interesting read, if a Little too mathematical in places
for some tastes.

Copyright © 1990 IOP Publishing Ltd.

4

The Multilayer Perceptron

4.1 INTRODUCTION

This chapter explores aspects of the multilayer perceptron, describ-
ing the modifications that need to be made to the basic model neuron
in order to be able to solve more complex problems. The derivation
of the learning rule is given and explained in full, and examples and
applications of the network demonstrate its capabilities and poten-
tial.

4.2 ALTERING THE PERCEPTRON MODEL

4.2.1 The Problem

How are we to overcome the problem of being unable to solve lin-
early inseparable problems with our perceptron? An initial approach
would be to use more than one perceptron, each set up to identify
small, linearly separable sections of the inputs, then combining their
outputs into another perceptron, which would produce a final indi-
cation of the class to which the input belongs. This approach to the
XOR problem is shown in figure 4.1.

This seems fine on first examination, but a moment’s thought will
show that this arrangement of perceptrons in layers will be unable
to learn. Each neuron in the structure still takes the weighted sum
of its inputs, thresholds it, and outputs either a one or a zero. For
the perceptrons in the first layer, the inputs come from the actual
inputs to the network, while the perceptrons in the second layer
take as their inputs the outputs from the first layer. This means

63

Copyright © 1990 IOP Publishing Ltd.

64 THE MULTILAYER PERCEPTRON

-\

Figure 4.1 Combining perceptrons can solve the XOR problem: percep
tron 1 detects when the pattern corresponding to (0, l) is present, and the
other detects when (1,O) is there. Combined, these two facts allow percep
tron 3 to classify the input correctly. They have to be set up correctly in
the first place, however; they cannot learn to produce this classification.

Copyright © 1990 IOP Publishing Ltd.

ALTERING THE PERCEPTRON MODEL 65

that the perceptrons in the second layer do not know which of the
real inputs were on or not; they are only aware of input from the first
layer. Since learning corresponds to strengthening the connections
between active inputs and active units (refer to section 3.3)) it is
impossible to strengthen the correct parts of the network, since the
actual inputs are effectively masked off from the output units by the
intermediate layer. The two-state neuron, being “on” or “off”, gives
us no indication of the scale by which we need to adjust the weights,
and so we cannot make a reasonable adjustment. Weighted inputs
that only just turn a neuron on should not be altered to the same
extent as those in which the neuron is definitely turned on, but we
have no way of finding out what the situation is. In other words, the
hard-limiting threshold function (figure 3.3) removes the information
that is needed if the network is to successfully learn. This difficulty
is known as the credit assignment problem, since it means that the
network is unable to determine which of the input weights should be
increased and which should not, and so is unable to work out what
changes should be made to produce a better solution next time.

4.2.2 The Solution

The way around the difficulty imposed by using the step function
as the thresholding process is to adjust it slightly, and use a slightly
different non-linearity. If we smooth it out, so that it more or less
turns on or off, as before, but has a sloping region in the middle that
will give us some information on the inputs, we will be able to de-
termine when we need to strengthen or weaken the relevant weights.
This means that the network will be able to learn, as required. A
couple of possibilities for the new thresholding function are shown
in figure 4.2.

In both cases, the value of the output will be practically one if
the weighted sum exceeds the threshold by a lot, and conversely, it
will be practically zero if the weighted sum is much less than the
threshold value. However, in the case when the threshold and the
weighted sum are almost the same, the output from the neuron will
have a value somewhere between the two extremes. This means that

Copyright © 1990 IOP Publishing Ltd.

66 THE MULTILAYER PERCEPTRON

A. B.

Linear threshold
between limits -
otherwise, 0 or 1.

Sigmoidal threshold

Figure 4.2 Two possible thresholding functions.

the output from the neuron is able to be related to its inputs in a
more useful and informative way.

Notice that we have altered our model to try and overcome a
particular difficulty by tracing the root of the problem, the hard-
limiting thresholding that masks the inputs from the outputs, and
then adjusting the model so that this can be solved. We have kept
many of the essential features the same; each neuron still calculates
the weighted sum, and thresholds it. However the input is now not
simply on or off, but lies within a range, although the thresholding
function that we are using approximates to the step function in many
ways, especially at the extremes of its range. The solution that we
have adopted is therefore one tailored to our particular problem, and
it would be foolish of us to say that real biological neurons also work
in this way. We are looking at an interesting construction of model
neurons, and not at a small version of a real brain. This may appear
obvious to the reader, but it is surprising how many false claims are
made about models that have their roots in biological systems, and
a timely reminder can do no harm.

We have to use a non-linear thresholding function, since layers of
perceptron units using linear functions are no more powerful than
a suitably chosen single layer. This is because each layer would be
performing a purely linear operation on its inputs, which could be

Copyright © 1990 IOP Publishing Ltd.

THE NEW MODEL 67

condensed into one operation. This is easiest to see with a simple
example. Changing scale is a linear operation, since all things are
affected by an equal amount. If a network scaled the input by 5
times in the first layer, and by 2 times in the second, that is exactly
equivalent to one layer scaling the whole thing by 10 times.

4.3 THE NEW MODEL

The adapted perceptron units are arranged in layers, and so the new
model is naturally enough termed the multilayer pexeptron. The
basic details are shown in figure 4.3.

Figure 4.3 The multilayer perceptron: our new model.

Our new model has three layers; an input layer, an output layer,
and a layer in between, not connected directly to the input or the
output, and so called the hidden layer. Each unit in the hidden
layer and the output layer is like a perceptron unit, except that the
thresholding function is the one shown in figure 4.2, the sigmoid
function B and not the step function as before. The units in the

Copyright © 1990 IOP Publishing Ltd.

68 THE MULTILAYER PERCEPTRON

input layer serve to distribute the values they receive to the next
layer, and so do not perform a weighted sum or threshold. Because
we have modified the single-layer perceptron by changing the non-
linearity from a step function to a sigmoid function, and added a
hidden layer, we are forced t o alter our learning rule as well. We
now have a network that should be able to learn to recognise more
complex things; let us examine the new learning rule in more detail.

4.4 THE NEW LEARNING RULE

The learning rule for multilayer perceptrons is called the “gener-
alised delta rule”, or the “backpropagation rule”, and was suggested
in 1986 by Rumelhart, McClelland, and Williams. It signalled the
renaissance of the whole subject. It was later found that Parker had
published similar results in 1982, and then Werbos was shown to
have done the work in 1974. Such is the nature of science, however;
groups working in diverse fields cannot keep up with all the advances
in other areas, and so there is often duplication of effort. However,
Rumelhart and McClelland are credited with reviving the perceptron
since they not only developed the rule independently t o the earlier
claims, but used it t o produce multilayer networks that they investi-
gated and characterised. Their book, Parallel Distributed Processing
is still one of the most important books in the field.

The operation of the network is similar t o that of the single-layer
perceptron, in that we show the net a pattern and calculate its re-
sponse. Comparison with the desired response enables the weights t o
be altered so that the network can produce a more accurate output
next time. The learning rule provides the method for adjusting the
weights in the network, and, as we saw earlier in the chapter, the
simple rule used in the single-layer perceptron will not work for mul-
tilayer networks. However, the use of the sigmoid function means
that enough information about the output is available t o units in
earlier layers, so that these units can have their weights adjusted so
as t o decrease the error next time.

The learning rule is a little more complex than the previous one,
however, and we can best understand it by considering how the net

Copyright © 1990 IOP Publishing Ltd.

THE NEW LEARNING RULE 69

behaves as patterns are taught to it. When we show the untrained
network an input pattern, it will produce any random output. We
need to define an error function that represents the difference be-
tween the network’s current output and the correct output that we
want it to produce. Because we need to know the “correct” pat-
tern, this type of learning is known as “supervised learning”. In
order to learn successfully we want to make the output of the net
approach the desired output, that is, we want to continually reduce
the value of this error function. This is achieved by adjusting the
weights on the links between the units, and the generalised delta
rule does this by calculating the value of the error function for that
particular input, and then back-propagating (hence the name!) the
error from one layer to the previous one. Each unit in the net has
its weights adjusted so that it reduces the value of the error func-
tion; for units actually on the output, their output and the desired
output is known, so adjusting the weights is relatively simple, but
for units in the middle layer, the adjustment is not so obvious. Intu-
itively, we might guess that the hidden units that are connected to
outputs with a large error should have their weights adjusted a lot,
while units that feed almost correct outputs should not be altered
much. In fact, the mathematics shows that the weights for a partic-
ular node should be adjusted in direct proportion to the error in the
units to which it is connected: that is why back-propagating these
errors through the net allows the weights between all the layers to
be correctly adjusted. In this way the error function is reduced and
the network learns.

4.4.1 The Mathematics

Firstly, the notation used is as follows:
Ep is the error function for pattern p , t,j represents the target

output for pattern p on node j, whilst opj represents the actual
output at that node. w;j is the weight from node i to node j.

Let us define the error function to be proportional to the square
of the difference between the actual and desired output, for all the
patterns to be learnt.

Copyright © 1990 IOP Publishing Ltd.

70 THE MULTILAYER PERCEPTRON

i

The

The activation of each unit j , for pattern p , can be written as

makes the maths a bit simpler, and brings this specific error
function into line with other similar measures.

i.e. simply the weighted sum, as in the single-layer perceptron.
The output from each unit j is the threshold function f j acting

on the weighted sum. In the perceptron, this was the step function;
in the multilayer perceptron, it is usually the sigmoid function, al-
though any continuously differentiable monotonic function can be
used.

opj = fj (net p j 1 (4.3)

We can write

(4.4)
aE, aEp dnetpj -= --
dwij dnetpj dwij

by the chain rule.
Looking a t the second term in (4.4), and substituting in (4.2),

dnetpj a - - - -Cwkjopk
awij awij

awjk 7 G O P k
- -

(4.5) - - Opi

dwkj since - = 0 except when k = i when it equals 1.
dwij

We can define the change in error as a function of the change in
the net inputs to a unit as

Copyright © 1990 IOP Publishing Ltd.

THE NEW LEARNING RULE 71

and so (4.4) becomes

Decreasing the value of E, therefore means making the weight
changes proportional to Spjopi, i.e.

APwij = q S , j o ~ (4.8)

We now need to know what S,j is for each of the units-if we know
this, then we can decrease E . Using (4.6) and the chain rule, we can
write

aEP - aEp bopj S P j = -- - ---
dnet,j dopj dnet,j

Consider the second term, and from (4.3),

(4.9)

(4.10)

Consider now the first term in (4.9). From (4.1), we can differentiate
E, with respect to opj, giving

(4.11)

Thus

d p j = fjl(netpj)(tpj - opj> (4.12)

This is useful for the output units, since the target and output are
both available, but not for the hidden units, since their targets are
not known.

So, if unit j is not an output unit, we can write, by the chain rule
again, that

aEP - BE, dnet,k - -
a o p j k

(4.13)

= - ~ ~ p k w j k (4.14)
k

Copyright © 1990 IOP Publishing Ltd.

72 THE MULTILAYER PERCEPTRON

using (4.2) and (4.6), and noticing that the sum drops out since the
partial differential is non-zero for only one value, just as in (4.5).
Substituting (4.14) in (4.9), we get finally

6 p j = fj(netpj) 6 p k w j k (4.15)

This equation represents the change in the error function, with
respect to the weights in the network. This provides a method for
changing the error function so as to be sure of reducing it. The
function is proportional to the errors Spk in subsequent units, so the
error has to be calculated in the output units first (given by (4.12))
and then passed back through the net to the earlier units to allow
them t o alter their connection weights. It is the passing back of
this error value that leads to the networks being referred to as back-
propagation networks. Equations (4.12) and (4.15) together define
how we can train our multilayer networks.

One advantage of using the sigmoid function as the non-linear
threshold function is that it is quite like the step function, and so
should demonstrate behaviour of a similar nature. The sigmoid func-
tion is defined as

f (ne t) = 1 / (1 + e-k ne t)

and has the range 0 < f (n e t) < 1. k is a positive constant that
controls the “spread” of the function-large values of k squash the
function until as k ---$ co,f(net) ---f Heaviside function. It also acts
as an automatic gain control, since for small input signals the slope is
quite steep and so the function is changing quite rapidly, producing
a large gain. For large inputs, the slope and thus the gain is much
less. This means that the network can accept large inputs and still
remain sensitive to small changes.

A major reason for its use is that it has a simple derivative, how-
ever, and this makes the implementation of the back-propagation
system much easier. Given that the output of a unit, opj is given by

k

opj = f (n e t) = 1/(1+ e-k net)

the derivative with respect to that unit, f’(net) , is given by

Copyright © 1990 IOP Publishing Ltd.

THE MULTILAYER PERCEPTRON ALGORITHM 73

= k f(net)(1 - f (ne t))
= k oPj(l - oPj)

The derivative is therefore a simple function of the outputs.

4.5 THE MULTILAYER PERCEPTRON ALGORITHM

:... . .,...: The algorithm for the multilayer perceptron that implements
:. ..:.: the back-propagation training rule is shown below. It re-

quires the units to have thresholding non-linear functions that are
continuously differentiable, i.e. smooth everywhere. We have as-
sumed the use of the sigmoid function, f (net) = 1/(1 + e-' ne t)

since it has a simple derivative.

.j:.. , :.::

Multilayer Perceptron Learning Algorithm

1. Initialise weights and thresholds
Set all weights and thresholds to small random values.
2. Present input and desired output
Present input X p = X O , X ~ , X ~ , . . . ,zn-l and target output Tp =
to, t l , . . . ,tm-l where n is the number of input nodes and m is the
number o f output nodes. Set W O to be -9, the bias, and xo t o be al-
ways l. For pattern association, X p and Tp represent the patterns to be
associated. For classification, Tp is set to zero except for one element
set to 1 that corresponds to the class that X p is in.
3. Calculate actual output
Each layer calculates

and passes that as input t o the next layer. The final layer outputs values

O P j .
4. Adapt weights

Copyright © 1990 IOP Publishing Ltd.

74 THE MULTILAYER PERCEPTRON

01
10
11

Start from the output layer, and work backwards.

1
1
0

w&) represents the weights from node i to node j at time t , q is a
gain term, and 6,j is an error term for pattern p on node j .

For output units

For hidden units

where the sum is over the IC nodes in the layer above node j .

4.6 THE XOR PROBLEM REVISITED

In the previous chapter, we saw how the single-layer perceptron was
unable to solve the exclusive-or problem. Since this problem showed
the limitations of single-layer perceptrons, it has become the yard-
stick by which the performance of many new neural systems are
judged, and many features of the behaviour of multilayer percep-
trons are revealed by it.

To quickly review it, the problem is to classify the following cor-
rectly:

Input Output +
Copyright © 1990 IOP Publishing Ltd.

THE XOR PROBLEM REVISITED 75

The first test of the multilayer perceptron is to see if we can produce
a network that can solve this problem; the two-layer net shown in
figure 4.4 is able to produce the correct output. I t has a three-layer
structure, with two input units (as we might expect since there are
two variables in the problem), one unit in the hidden layer, and one
output unit. The connection weights are shown on the links, and the
threshold of each unit is shown inside the unit. As far as the output
unit is concerned, the hidden unit is no different from either of the
input units, and simply provides another input.

t

hidden unit

I input I

Figure 4.4 A solution to the XOR problem.

Notice that the hidden unit’s threshold of 1.5 means that it is off
unless turned on by both inputs being on. This is an important point
to note. It is interesting to look a t the behaviour of the network as it
solves the XOR problem. When both inputs are off (00), the hidden
unit is also off, and there is no net input t o the output uni t , which
therefore remains off. When the right input only is o n (O l) , the
hidden unit does not receive enough net input t o turn it on, so it
remains off. The output unit sees a net input of $1, which exceeds
its threshold, and so turns it on. The same happens when the left

Copyright © 1990 IOP Publishing Ltd.

76 THE MULTILAYER PERCEPTRON

unit only (10) is on. When both input units are on (11) t.he hidden
unit receives a net input of $2, which exceeds its threshold value,
and so it turns on. The output unit now sees a net input of t 1 from
each of the input units, making +2, and -2 from the hidden unit,
making 0 in all. This is less than the threshold, and so the unit is
off. This can be summarised in the table below.

11

Considering the hidden unit, we can see that it is detecting when
both the inputs are on, since this is the only condition under which
it turns on. Since each of the input units detect when their inputs
are on, the output unit is fed with three items of information: if the
left input is on, if the right input is on, and if both the left and the
right inputs are on. Since the output unit treats the hidden unit as
another input unit, the apparent input patterns it receives are now
dissimilar enough for the classification to be learnt.

The hidden unit acts as a feature detector, detecting when both
the inputs are on. It can be viewed as recoding the basic inputs so
that the network can learn the required mapping of input patterns
to output ones. This recoding, or internal representation, is critical
t o the functioning of the network. Given enough hidden units, it is
possible t o form internal representations of any input pattern such
that the output units are able to produce the correct response for a
specific input.

The generalised delta rule provides a method for teaching mul-
tilayer perceptron networks, producing the necessary internal rep-
resentations on the hidden nodes. It is unlikely that the weights
produced by a taught network would be as simple as those shown
above, but the same principles hold. Figure 4.5 shows another solu-
tion t o the XOR problem.

Multilayer perceptrons can appear in all shapes and sizes, with
the same learning rule for them all. This means that it is possible to

Copyright © 1990 IOP Publishing Ltd.

THE XOR PROBLEM REVISITED 77

t

unit

I input I

Figure 4.5 Weights and thresholds of a network that has learnt to solve
the XOR problem.

produce different network topologies to solve the same problem. One
of the more interesting cases is when there is no direct connection
from the input to the output. This and the corresponding XOR
solution are shown in figure 4.6. The right-hand hidden unit detects
when both inputs are on, and ensures that the output unit gets a
net input of zero. When only one of the inputs is on, the left-hand
hidden unit is on, turning on the output unit. When both inputs are
off, the hidden units are inactive and so the output unit is off.

The learning rule is not guaranteed to produce convergence, how-
ever, and it is possible for the network to fall into a situation in
which it is unable to learn the correct output.

The network shown in figure 4.7 will correctly respond to the input
patterns 00 and 10, but fails to produce the correct output for the
patterns 01 or 11. The right-hand input turns on both hidden units.
These produce a net input of 0.8 at the output unit, exactly the
same as the threshold value. Since the thresholding function is the
sigmoid, this gives an output value of 0.5. This situation is stable

Copyright © 1990 IOP Publishing Ltd.

78 THE MULTILAYER PERCEPTRON

Figure 4.6 An XOR-solving network with no direct input-output con-
nections.

input

Figure 4.7 A stable solution that does not work.

Copyright © 1990 IOP Publishing Ltd.

VISUALISING NETWORK BEHAVIOUR 79

and does not alter with further training. This local minimum occurs
infrequently-about 1% of the time in the XOR problem.

Another minor problem can occur in training networks with the
generalised delta rule. Since the weight changes are proportional to
the weights themselves, if the system starts off with equal weights
then non-equal weights can never be developed, and so the net cannot
settle into the non-symmetric solution that may be required.

4.7 VISUALISING NETWORK BEHAVIOUR

Having looked at the generalised delta rule informally, and math-
ematically, and having examined the multilayer perceptron solving
the XOR problem, we need a method of visualising what is going
on in the network. The mathematical analysis of the networks does
provide a convenient and useful approach t o the visualisation of their
behaviour. As we have seen, the network computes an error or en-
ergy function, E, = 3 C(tpj - opj)2 which represents the amount by
which the output of the net differs from the required output. Large
differences correspond to large energies, whilst small differences cor-
respond to small energies. Since the output of the net is related t o
the weights between the units and the input applied, the energy is
therefore a function of the weights and inputs t o the network. We
can d.raw a graph of the energy function showing how varying the
weights affects the energy, for a fixed input pattern. Considering this
for a moment, this means that if we imagine a very odd network in
which we can only vary one weight, we can plot a graph of the energy
function for a particular pattern versus the weight, which may look
something like figure 4.8.

If we extend our thinking so that we can vary two weights, we
will then have two axes for the weights, and the graph of the energy
function would appear, for example, like figure 4.9.

We obtain a three-dimensional graph with two weight axes and
one energy axis; if we allowed another weight t o vary, then we would
have another axis t o add, which would be difficult! In general, we
can adjust all the weights in a network, and there may be very many
of them, giving a multidimensional energy function, which we cannot

Copyright © 1990 IOP Publishing Ltd.

80 THE MULTILAYER PERCEPTRON

Energy j

X

Figure 4.8 The energy function in one dimension, as we vary one weight,
for a fixed pattern.

draw. However, it is useful to consider it as best we can, as a surface
in 3-d, and just keep reminding ourselves that it is in fact multi-
dimensional. Our understanding of the higher dimensioned case is
helped greatly by the analogies that we can visualise easily in the
3-d situation. This energy surface is a rippling landscape of hills
and valleys, wells and mountains, with points of minimum energy
corresponding to the wells and maximum energy found on the peaks.
The generalised delta rule aims to minimise the error function E by
adjusting the weights in the network so that they correspond to
those at which the energy surface is lowest. It does this by a method
known as gradient descent, where the energy function is calculated,
and changes are made in the steepest downward direction. This is
guaranteed to find a solution in cases where the energy landscape is
simple. Each possible solution is represented as a hollow, or a basin,
in the landscape. These basins of attraction, as they are known,
represent the solutions to the values of the weights that produce the
correct output from a given input. Remember that these basins are

Copyright © 1990 IOP Publishing Ltd.

VISUALISING NETWORK BEHAVIOUR 81

W E U.0
TI.0- 84.0
n o - 77.0
a . 0 - n o
1.0. 63.0
49.0. 1.0
42.0- 49.0
3 5 0 - 42.0
8.0. 35.0
216- 21.0
W O . 21.0

EELON 14.0

Figure 4.9 The energy function in two dimensions. Notice the ravine on
the right: starting in the middle near the front and going downhill may
take you either straight down to the ravine floor, or around the sharp peak
back right, depending on how often you work out which way is down, and
where you start from. Notice also that the valley on the left has lots of
small hollows in its floor. These local minima can trap the solution and
prevent it reaching the deeper point which occurs about halfway along.

Copyright © 1990 IOP Publishing Ltd.

82 THE MULTILAYER PERCEPTRON

actually many-dimensional, but we can only draw them in 3-d.
It is easiest to visualise this energy surface as a large, stretchy,

rubber sheet that is initially flat. The basins of attraction are formed
by placing heavy balls on the sheet; the sheet deforms downwards
creating a well. The bottom of the well represents the low energy
solution that the network has learnt.

We can also imagine a many-dimensioned space in which each axis
represented one particular weight-in this case one point in the space
would represent one unique combination of possible weight values
that the network could have. This space is known, sensibly enough,
as the weight sfxlce. Our example of energy space described how we
could visualise the energy changing as we varied the weights for a
particular pattern-however, we could have just as easily imagined
how the energy would change as we varied the input patterns for
a particular fixed set of weights. Each point in the weight space
therefore defines a different energy landscape, where the variables
are the patterns and their corresponding energies. This behaviour is
shown in figure 4.10.

*
adjusting weight in direction that favoun, the storage of pattern A

Figure 4.10 Diagram showing how changing the weights in a network
alters the energy landscape. In this case, the weight change from left to
right favours pattern A since it lowers the energy of that pattern at the
expense of pattern B.

Copyright © 1990 IOP Publishing Ltd.

MULTILAYER PERCEPTRONS AS CLASSIFIERS 83

Many of the features associated with multilayer perceptrons are
easiest to understand if they are considered in terms of the energy
landscape.

4.8 MULTILAYER PERCEPTRONS AS CLASSIFIERS

We have already considered how the multilayer perceptron copes
with the complicated, linearly inseparable XOR problem; now we
consider the more general case. The single-layer perceptron is lim-
ited to calculating a single plane of separation between classes, which
is why it fails on problems such as the XOR which are more com-
plicated. We discussed earlier how a two-layer device could, in prin-
ciple, solve the XOR problem. Consider a net of three perceptron
devices as shown in figure 4.11.

Figure 4.11 Two perceptron units can be combined to produce input for
a third.

If the unit in the second layer has its threshold set so that it turns
on only when both of the first-layer units are on, it is performing a
logical AND operation. Since each of the units in the first layer de-
fines a line in pattern space, the second unit produces a classification
based on a combination of these lines. If one unit is set to respond
with a 1 if the input is above its decision line, and the other responds
with a 1 if the same input is below its decision line, then the second
layer produces a solution as shown in figure 4.12, producing a 1 if it
is above line 1 and below line 2.

Copyright © 1990 IOP Publishing Ltd.

84 THE MULTILAYER PERCEPTRON

line 1

Figure 4.12 3 perceptrons: the decision region produced by combining
2 perceptrons with another.

More than two units can be used in the first layer, which produces
pattern space partitioning that is a combination of more than 2 lines.
All regions produced in this way are known as conwez regions or
conwez hulls. A convex hull is a region in which any point can be
connected to any other by a straight line that does not cross the
boundary of the region. Regions can be closed or open; a closed
region has a boundary all around it, as in shapes such as a triangle
or a circle, whilst an open region does not, as between two parallel
lines. Examples of closed and open convex regions are shown in
figure 4.13.

The addition of more perceptron units in the first layer allows
us to define more and more edges-from the points we have made
above, it is obvious that the total number of sides that we can have
in our regions will be at most equal t o the number of units in the
first layer, and that the regions defined will still be convex.

However, if we add another layer of perceptrons, the units in this
layer will receive as inputs, not lines, but convex hulls, and the com-
binations of these are not necessarily convex, as shown in figure 4.14.
The combinations of these convex regions may intersect, overlap, or
be separate from each other, producing arbitrary shapes.

Copyright © 1990 IOP Publishing Ltd.

MULTILAYER PERCEPTRONS AS CLASSIFIERS 85

opc" cloaed \

closed closed

Figure 4.13 Examples of closed and open convex hulls.

Figure 4.14 Examples of arbitrary regions formed by the combination
of various convex regions.

Copyright © 1990 IOP Publishing Ltd.

86 THE MULTILAYER PERCEPTRON

Three layers of perceptron units can therefore form arbitrarily
complex shapes, and are capable of separating any classes. The
complexity of the shapes is limited by the number of nodes in the
network, since these define the number of edges that we can have.
The arbitrary complexity of shapes that we can create, means that
we never need more than three layers in a network, a statement that
is referred to as the KoZmogorov theorem. This can be proved, with a
bit of complex maths, but it will suffice to state it here. A summary
of the perceptron’s classification abilities is shown in figure 4.15.

The neural network literature is inconsistent when describing net-
works, since some authors refer to the number of layers of variable
weights, whilst others describe the number of layers of nodes. This
causes confusion since the nodes in the first layer, the input layer,
merely distribute the inputs t o subsequent layers, and do not per-
form any summation or thresholding themselves. To confuse matters
further, some authors miss out these input nodes altogether when
drawing diagrams! To try t o clarify the situation: a multilayer net-
work receives a number of inputs. These are distributed by a layer of
input nodes that do not perform any summation or thresholding-
these input nodes have only one input each, so it is clear which they
are, and obviously pointless for them to sum their only input. These
inputs are then passed along the first layer of adaptive weights t o
a layer of perceptron-like units, which do sum and threshold their
inputs. This layer is able to produce classification lines in pattern
space. The output from this layer is then passed t o another layer of
perceptron-like units via adaptable weights, and it is the output of
this layer that forms convex hulls in pattern space. A further layer of
perceptron-like units is reached by another set of adaptive weights,
and the output of this layer is able to define any arbitrary shape in
pattern space. Counting the number of active weight layers, or the
number of active perceptron layers, this is ii three-layer network. If
the inactive set of input units is included, it can be c d e d a four-
layer network. The general trend is t o use the former, since it is
more descriptive. This is summarised in figure 4.16.

It has been known for a long time that layers of perceptrons would
be able t o do more than single ones, but until the generalised delta

Copyright © 1990 IOP Publishing Ltd.

MULTILAYER PERCEPTRONS AS CLASSIFIERS 87

Perceptron structure XOR problem

(after Uppwul. IEEE ASSP Apil 1987)

Meshed classes General region

Figure 4.15 Neural networks and their corresponding decision regions.

Copyright © 1990 IOP Publishing Ltd.

88 THE MULTILAYER PERCEPTRON
the units Qlly 1 -layer net
dishibutc the (prceptron)
input.
t

2-layer net j 3-tayer net i

number I of inputs
d e f m number of
lines in final mlution

I active units

Figure 4.16 Summary of the boundaries formed by different numbers of
perceptron layers.

rule was formulated there was no learning algorithm for such layered
networks. The use of the sigmoidal non-linearity in the multilayer
perceptron units transforms the straight line decision surface of the
perceptron into a smooth curve, and so the regions formed are now
also bounded by smooth curves, but the overall complexity of the
shapes of the regions for two- and three-layer networks remains the
same.

We can consider classifying patterns in another way. Any given
input pattern must belong to one of the classes that we are con-
sidering, and so there is a mapping from the input to the required
class. This mapping can be viewed as a function that transforms
the input pattern into the correct output class, and we can consider
that a network has learnt t o perform correctly, if it can carry out
this mapping. In fact, any function, no matter how complex, can be
represented by a multilayer perceptron of no more than three layers;
the inputs are fed through an input layer, a middle hidden layer,
and an output layer. As we have already mentioned, this is known
as the Kolmogorov represent at ion theorem; it is an import ant result
in that it proves that whatever is done in four or more layers could
also be done in three. It therefore limits the number of layers that
are necessary to represent an arbitrary function, but unfortunately it

Copyright © 1990 IOP Publishing Ltd.

GENERALIS AT10 N 89

gives no indication as to how many units the network requires, how
they should be connected, or how the weights between them should
be set.

4.9 GENERALISATION

One of the major features of neural networks is their ability t o gen-
eralise, that is, to successfully classify patterns that have not been
previously presented. Multilayer perceptrons generalise by detecting
features of the input pattern that have been learnt to be significant,
and so coded into the internal units. Thus an unknown pattern is
classified with others that share the same distinguishing features.
This means that learning by example is a feasible proposition, since
only a representative set of patterns have to be taught t o the net-
work, and the generalisation properties will allow similar inputs to
be classified as well. It also means that noisy inputs will be classified,
by virtue of their similarity with the pure input. It is this general-
isation ability that allows multilayer perceptrons to perform more
successfully on real-world problems than other pattern recognition
or expert system methods.

In general, neural networks are good at interpolation, but not so
good at extrapolation. They are able to detect the patterns that
exist in the inputs they are given, and allow for intermediate states
that have not been seen. However, inputs that are extensions of the
range of patterns are less well classified, since there is little with
which to compare them. Put another way, given an unseen pattern
that is an intermediate mixture of two previously taught patterns,
the net will classify it as an example of the predominant pattern. If
the pattern does not correspond to anything similar t o what the net
has seen before, then classification will be much poorer.

4.10 FAULT TOLERANCE

Multilayer perceptron networks are intrinsically fault-tolerant, since
they are distributed parallel processing elements, with each node con-
tributing to the final output response. If a node or its weights are lost

Copyright © 1990 IOP Publishing Ltd.

90 THE MULTILAYER PERCEPTRON

or damaged, r e c d is impaired in quality, but the distributed nature
of the information means that damage has to be extensive before a
network’s response degrades badly. The net work therefore demon-
strates graceful degradation in performance rather than catastrophic
failure.

They are also tolerant to noise due to their intrinsic ability to
generalise from taught examples to corrupted versions of the original
patterns.

Damage to a network, whether it takes the form of the loss of
a few nodes or the incorporation of noise into the training data,
can often be recovered from by relearning, and in these cases the
recovery of the network is often very quick. This can be understood
by examining figure 4.17. Convergence to the original solution was

original convergence to
solutim along ravine
floa - alow

, : . < , \

.-.

\

\
\

Figure 4.17 Diagram showing how recovery from damage can be achieved
quickly.

along a valley floor, and so was slow. The damage done upsets the
network, but it is quite likely to move it into a state that has a
large gradient towards the correct solution, and so when relearning

Copyright © 1990 IOP Publishing Ltd.

LEARNING DIFFICULTIES 91

occurs, the net moves along this steep gradient and quickly recovers
the original solution.

4.11 LEARNING DIFFICULTIES

The XOR problem demonstrates some of the difficulties associated
with learning in multilayer perceptrons. Occasionally the network
settles into a stable solution that does not provide the correct output.
In these cases, the energy function is in a local minimum. This means
that in every direction in which the network could move in the energy
landscape, the energy is higher than at the current position. It may
be that there is only a slight “lip” to cross before reaching an actual
deeper minimum, but the network has no way of knowing this, since
learning is accomplished by following the energy function down in
the steepest direction, until it reaches the bottom of a well, at which
point there is no direction to move in order t o reduce the energy.

There are alternative approaches to minimising these occurrences,
which are outlined below.
0 Lowering the gain term

If the rate at which the weights are altered is progres-
sively decreased, then the gradient descent algorithm is
able to achieve a better solution. If the gain term 77 is
made large to begin with, large steps are taken across
the weight and energy space towards the solution. As
the gain is decreased, the network weights settle into
a minimum energy configuration without overshooting
the stable position, as the gradient descent takes smaller
downhill steps. This approach enables the network to
bypass local minima at first, then hopefully locate, and
settle in, some deeper minima without oscillating wildly.
However, the reduction in the gain term will mean that
the network will take longer to converge.

0 Addition of internal nodes
Local minima can be considered to occur when two or
more disjoint classes are categorised as the same. This

Copyright © 1990 IOP Publishing Ltd.

92 THE MULTILAYER PERCEPTRON

amounts t o a poor internal representation within the
hidden units, and so adding more units t o this layer
will allow a better recoding of the inputs and lessen the
occurrence of these minima.

0 Momentum term
The weight changes can be given some “momentum” by
introducing an extra term into the weight adaptation
equation that will produce a large change in the weight
if the changes are currently large, and will decrease as
the changes become less. This means that the network
is less likely to get stuck in local minima early on, since
the momentum term will push the changes over local
increases in the energy function, following the overall
downward trend. Momentum is of great assistance in
speeding up convergence along shallow gradients, al-
lowing the path the network takes towards the solu-
tion t o pick up speed in the downhill direction. The
energy landscape may consist of long gradually slop-
ing ravines which finish at minima. Convergence along
these ravines is slow, since the direction that has to
be followed has only a slight gradient, and usually the
algorithm oscillates across the ravine valley as it mean-
ders towards a solution, as shown in figure 4.18. This
is difficult t o speed up without increasing the chance of
overshooting the minima, but the addition of the mo-
mentum term is fairly successful.
This momentum term can be written as follows:

S p ~ j i (t t 1) = ~ j i (i) t 7 6 p j O p i t a (wji(t) - ~ j i (t - 1))

where a is the momentum factor, 0 < a < 1.
0 Addition of noise

If random noise is added, this perturbs the gradient
descent algorithm from the line of steepest descent, and
often this noise is enough to knock the system out of a
local minimum. This approach has the advantage that

Copyright © 1990 IOP Publishing Ltd.

LEARNING DIFFICULTIES 93

Figure 4.18 The addition of a momentum term can speed up conver-
gence, especially along a ravine.

it takes very little extra computation time, and so is
not noticeably slower than the direct gradient descent
algorithm.

4.11.1 Other Learning Problems

One of the major criticisms of the multilayer perceptron is that it
requires many presentations of the set of input patterns, and the
repetition of the corresponding calculation and back-propagation of
the errors for each pattern, before the network is able to settle into a
stable solution. The method of gradient descent is intrinsically slow
to converge in a complex landscape, due to the complexity of the
energy surface. The addition of the momentum term, as discussed
in the previous section, often speeds convergence, whilst another
method is t o alter the gain term 7. Another alternative solution,
which also helps to avoid spurious local minima, is to take account

Copyright © 1990 IOP Publishing Ltd.

94 THE MULTILAYER PERCEPTRON

of second order effects in the gradient descent algorithm. However,
the increased accuracy of the line of descent offered by this solution
is offset by the additional computational complexity involved.

4.12 RADIAL BASIS FUNCTIONS

An enhancement to the standard multilayer perceptron tech-
niques uses what are known as radial basis functions. These

are a set of generally non-linear functions that are built up into one
function that can partition the pattern space successfully. The usual
multilayer perceptron builds its classifications from hyperplanes, de-
fined by the weighted sums Cjw;jz; which are arguments to non-
linear functions, whereas the radial basis approach uses hyperellip-
soids to partition the pattern space. These are defined by functions
of the form q5(IIz - yII) where 1 1 . . . [I denotes some distance mea-
sure. We can intuitively see that this expression describes some sort
of multi-dimensional ellipse, since it represents a function whose ar-
gument is related to a distance from a centre, y. The function s
in &dimensional space, which partitions the space, has elements S k

given by
m

sk = Xjkd'(llz - y j l l)
j=1

In other words, it is a linear combination of these basis functions.
The advantage of using the radial basis approach is that once the

radial basis functions have been chosen, all that is left to determine
are the coefficients X j for each, to allow them to partition the space
correctly. Since these coefficients are added in a linear fashion, the
problem is an exact one and has a guaranteed solution since there are
no nasty local minima situations in which to fall. In effect, the radial
basis functions have expanded the inputs into a higher-dimensional
space where they are now linearly separable.

This approach is guaranteed to produce a function that fits all
the da ta points, as long as there is a basis function for each input
to be classified. Having one basis function for each input does mean
that noisy or anomalous data points will also be classified, however,

Copyright © 1990 IOP Publishing Ltd.

RADIAL BASIS FUNCTIONS 95

and these will tend to cause distortion. This noise distortion causes
problems with generalisation; since the classification surface is not
necessarily smooth, very similar inputs may find themselves assigned
to very different classes. The solution to this is to reduce the num-
ber of basis functions to a level at which an acceptable fit to the
data is still achieved. This means that the previously exact problem
becomes one of linear optimisation, but this is not a complex tech-
nique, and the classification surface will be smooth between the data
points.

The choice of which radial basis functions to use is usually made in
one of two ways. In the absence of any knowledge about the data, the
basis functions are chosen so that they fit points evenly distributed
through the set of possible inputs. If we have some knowledge as
to the overall structure of the inputs, then it is better to try and
mirror that structure in the choice of functions. This is most easily
achieved by choosing a subset of the input points, which should have
a similar distribution to the overall input, as the points to be fitted.

The function is usually chosen to be a Gaussian function, i.e.

whilst the distance measure 1 1 . . . I [is taken to be Euclidean:

i

where y represents the centre of the hyperellipse.
This can be represented in a network as shown in figure 4.19.
The y j k terms in the first layer are fixed, and the input to the

nodes on the hidden layer is given, in the case of the Euclidean
distance measure, as

This hidden layer is fully connected to the output layer by con-
nections of strengths x j k and it is these that have to be linearly
optimised.

The use of radial basis functions is becoming more popular, since
they need only linear optimisation techniques, which provide a guar-
anteed, globally optimal solution. The difficulty in using them is in

Copyright © 1990 IOP Publishing Ltd.

96 THE MULTILAYER PERCEPTRON

Figure 4.19 A feedforward network showing how i t represents radial
basis functions.

Copyright © 1990 IOP Publishing Ltd.

APPLICATIONS 97

deciding on the set of basis functions to be used, in order t o get an
acceptable fit to the data. This is one of a number of techniques
that essentially preprocess the data and transform it into a higher-
dimensional space in which the classes are linearly separable.

4.13 APPLICATIONS

4.13.1 NETtalk

One of the most famous and influential network applications is called
NETtalk, a multilayer perceptron that learns to pronounce English
text, and was developed by Sejnowski and Rosenberg in 1987. It
consists of 203 input units, 80 hidden units, and 26 output units,
one for each phoneme-a phoneme is a basic sound in the language,
from which all words are composed. This is shown in figure 4.20. A
window seven letters wide is moved over the text, and the net learns
to pronounce the middle letter. The windowing of the text before
and after the pronounced character provides context sensitivity, since
the sound of letters within a word is dependent on the word itself-
for example, the “a” in “mean” is virtually silent, in “lamb” it is a
short, sharp ‘a’, whilst in “class” it is an ‘am’ sound.

The appealing feature of the network is that it appears to mimic
the speech patterns of young children, producing an incoherent bab-
ble at first since the weights are random, then picking out the major
features of the English language, namely the “eeoo-ee-oo-ee” pat-
terns that words make. (Listen to the overall sounds made when
someone speaks. As they talk, their voice rises and falls in the
same manner as the “ee-oo-ee-oo-ee” phrase-try saying it to get
the full effect!) Repeated training produces more and more intel-
ligible speech. The network achieves about 90% correct phoneme
pronunciation, and its generalisation has also been investigated by
training it on words from a dictionary, then testing on an unseen set.
Again, about 90% correct pronunciation of phonemes was reported
for the training set, with between 80% and 87% on the unseen set,
increasing as the size of the training set was increased. The net was
also resistant to damage in the form of random noise added to the
weights, and showed a graceful degradation in performance.

Copyright © 1990 IOP Publishing Ltd.

98 THE MULTILAYER PERCEPTRON

TEACHER

V
M

000000000000 26 output units

0000 0000 0000 0000 0000 0000 0000 7~29inputunits

- a - C a t -
text

(&er €C” 1989)

Figure 4.20 The layout of the NETtalk network.

Copyright © 1990 IOP Publishing Ltd.

APPLICATIONS 99

4.13.2 Airline Marketing Tactician

Have you ever flown on holiday, and found the plane has had half
a dozen empty seats? Worse for you, have you ever arrived at an
airport to check in, only to find that your seat has been double-
booked and you have to wait for the next flight? The difficulty this
causes is one of the dilemmas facing airlines as they struggle to fill
all the places on their planes, since empty seats are lost revenue.
Knowing that a number of people will book and not show up, they
overbook the seats, trusting that it will all work out in the end.
The problem they have is that of accurately predicting demand for
seats and the proportion of passengers that will not turn up (known
as no-show passengers), so that they can set the overbooking limits
to allow for these. This tactical marketing aims to maximise the
profitability of the airline, who have many conflicting factors to take
into account in their strategy. They want to sell as many seats at
as high a price as possible, but realise that it is better to sell the
seats cheaply than not at all. The loss of money from an empty seat
means that they have to slightly overbook to compensate, but the
cost of a denied boarding for an unlucky customer is much larger
than the cost of flying with an empty seat.

The Airline Marketing Tactician (AMT) is a two-stage procedure
that assists the airline; the first stage consists of a multilayer percep-
tron that produces forecasts of seat demand, and the second stage
allocates airline resources to meet these projected demands using
standard optimisation techniques. This two-stage system is prefer-
able to the direct allocation of resources by the network in a single-
stage process, since the forecasts that the network produces can be
checked against the actual demand, and these provide the justifica-
tion for the allocation decisions. The two-stage process is therefore
much easier for humans to follow and analyse. Two networks are
involved-ne predicts demand for the seats, up to approximately
six months ahead, and takes as input such factors as the day of the
week, the time of the flight, and the price of the tickets. The other
predicts the no-show rate for each class. There is an interdependency
between the classes, since if tickets are available at a large discount
there will be correspondingly less demand for the higher-priced seats.

Copyright © 1990 IOP Publishing Ltd.

100 THE MULTILAYER PERCEPTRON

The networks are trained from the airline’s historical data, and their
output represents the magnitude of each forecast. One of the prob-
lems facing the system is that there is no fixed ideal solution, since
the optimal marketing and allocation changes as the world changes
and different factors come into play. This means that any prediction
system must continually adapt to the changing input, a task that is
natural for the network but problematical in non-learning systems.
This gives the network a distinct advantage and means that it is
currently in successful commercial use.

4.13.3 ECG Noise Filtering

An electro-cardiograph (ECG) shows the heartbeat of a patient.
However, this heartbeat is not always regular, and the monitor-
ing equipment delivers a signal t o a screen that contains so much
noise that it can be difficult to see exactly what is going on. The
Hecht-Neilsen Neurocomputer Company in America has developed
a network that filters out the noise and provides a clean signal. The
net has 50 input units, 12 hidden units, and one output unit, and
takes as its input 50 time samples of the noisy signal. The magni-
tude of the output represents the noise-free value at the centre of
the time-frame. The net uses the inputs before and after the central
value to give contextual information and so assist it in producing
the correct output, just as in the NETtalk application. The use of
this “past” and “future” information means that the network is al-
ways running slightly behind the actual signal being received. For
training, 5120 windows on an ECG were digitised from the recorded
values of a horse, sampling the input 200 times a second. This set of
data was collected carefully so that it was noise-free; noise was then
digitally added and the net trained to produce the original version
from the noisy one. To give an indication of the success of the ap-
proach, the net was tested after 20 passes through the training set
on the same input data but with much more noise added. The net
produced results that were consistently better than the best adap-
tive linear filters, and it produced good results even when the noise
level was up to 50% of the input signal level.

Copyright © 1990 IOP Publishing Ltd.

APPLICATIONS 101

Another system, developed by Nestor, is able to classify heart-
beats, monitoring them when they are normal, and providing an
alert if abnormal or potentially dangerous beats occur.

4.13.4 Financial Applications

One of the questions frequently asked of new technology is “can it
predict the stock market?”, and there have been attempts to ap-
ply neural networks to this sort of problem. The most successful
approaches are still likely to be locked away as company secrets,
however, and the assumption underlying the question is that it is
possible to predict the stock market, an assumption that may not
be true.

Networks have been developed that have discovered significant
patterns in the movement of the markets; notable among these was
a program that showed a small set of patterns that frequently occur
in the fluctuation of the Japanese yen compared to the U.S. dol-
lar. Other systems have been developed to assist in bond trading,
which seem to offer slight improvements over the more conventional
computer systems that are already in use; a feature of the finan-
cial domain is that a slight improvement in predictive success can
be worth a great deal of money. In one comparison, a converitional
system predicted the correct move 55% of the time, and was wrong
45% of the time. The network, working on the same inputs as the
other system, was undecided 25% of the time. For the remainder,
it scored 72% correct, which is an improvement. Equities trading,
futures and exchanges are all areas in which networks have been
applied, often linking in with other computer prediction systems to
provide as accurate a result as possible. One financial system, known
as the trader’s “assistant”, uses a network to extract the significant
features from past examples. It then passes them to another system
which builds rules around those features. The network is allowed to
adapt to the distortion and evolution of the market over a period
of months, and so always provides a current set of critical features,
which means that the rule base is never out of date.

Copyright © 1990 IOP Publishing Ltd.

102 THE MULTILAYER PERCEPTRON

Another area of financial application is loan scoring; this is the
process of deciding t o whom it is worth lending money, and how
much it is worth lending to them. Delinquency risk assessment, on
the other hand, is all about gauging how likely a person is t o default
on their repayments. Both have seen the successful use of multilayer
perceptron networks. The advantage of using neural systems is that.
they can learn from the many thousands of examples in the com-
pany’s records, extracting and encoding the relevant features that
indicate what is likely to happen. They can not only free human ex-
perts from the more mundane jobs to concentrate on more difficult
cases, but can also discover important factors that have previously
been unnoticed. One particular network system used the information
contained in 270,000 previous applications as its training informa-
tion, using such factors as the applicant’s occupation, whether they
owned or rented their accommodation, the number of bank accounts
they had, and so on. Trained on two passes through the data set, the
net was tested on the loan applications for the first half of 1985 since
the results of these, in terms of repayment status and profitability,
were known. Compared to the company’s own approach of using
discriminant analysis, the network produced results that would have
increased profitability by 7%. In a delinquency risk assessment ap-
plication, a network of 6,561 nodes was trained on 5 passes over 5000
files, which took about 7 hours-its response to new input took less
than one second per file, however. Other companies use networks in
the fields of insurance and mortgage underwriting.

4.13.5 Pattern Recognition

Whilst there are many applications of neural networks in diverse
fields, the underlying principle upon which they operate is one of
pattern recognition, as we have demonstrated earlier. Consequently
there are a number of systems that apply themselves directly to the
problems of machine vision and object recognition. The Siemens
group use networks for industrial scene analysis, as well as being
involved in the CMOS design and manufacture of neural chips. Net-
works have been applied to the problem of aircraft identification, and

Copyright © 1990 IOP Publishing Ltd.

APPLICATIONS 103

also to terrain matching for automatic navigation systems. Target
identification from sonar traces has also been developed, with some
remarkable results. Attempting to distinguish hostile contacts from
non-hostile ones, and given only a day of training the network on ex-
amples, the net produced 100% correct identification of the target,
compared to 93% scored by a Bayesian classifier.

British Rail are currently developing a vision system using a neu-
ral network that they hope will assist them to monitor level cross-
ings. The network is designed to produce a high output value if it
sees that people are on the crossing, and so act as a safety warning
device. There are many difficulties to overcome, though, since the
net must produce a consistently high output whenever people are
around, whether there is one person or many, whether they are run-
ning or walking, adult or child. However, such a network has also to
be insensitive to many other things that may appear in its field of
view, such as falling leaves, small animals, branches and so on. What
is more, it also has to cope with a large variety of lighting conditions
from daytime to night, spring to winter, and so the system remains
under development.

British Telecom are working, as are many other communications
companies, on projects that involve the application of perceptrons,
and much of their effort is involved in speech processing, recognition
and synthesis. Many firms believe that voice-activated control is
much more realistic using neural networks than any other method,
and are making great attempts to improve this area of the human-
machine interface.

There are many commercial applications of networks in character
recognition, ranging from devices that accept handwritten text as in-
put to experimental systems for interpreting hand-drawn diagrams,
maps or plans. One of the more widely adopted systems performs
signature verification on cheques for the major banks. Due to the
high cost in terms of skill and man-hours involved in signature ver-
ification, it is usually only done on cheques for large amounts; the
majority are simply checked by the cashier glancing at them. Hu-
man experts obtain a 50-60% accuracy, a value that is very much
dependent on the style of the signature, with flamboyant ones being

Copyright © 1990 IOP Publishing Ltd.

104 THE MULTILAYER PERCEPTRON

easier to forge. Given a training set containing 75 examples of the
signature, the network achieves an accuracy of between 92 and 98%,
in a fraction of the time usually taken. Wider use of the system
will soon mean that cheques for smaller and smaller amounts can
be automatically verified, saving the bank and its customers a lot of
money.

Summary

e

e
e

e

e

e

e

e

e

e
e

e

Multilayer percept ron-layers of percept ron-like units.
Feedforward, supervised learning.
Uses continuously differentiable thresholding function (usually
sigmoid).
Back-propagation algorithm (generalised delta rule) trains net-
work by passing errors back down the net.
Three layers of active units can represent any pattern classifica-
tion.
Net develops internal representations of the input’s structure.
Repeated presentations of training data required for learning.
Described by energy landscape.
Learning process will not always converge.
Variety of approaches to overcome learning difficulties.
Radial basis functions separate classes using hyperspheroids and
can guarantee convergence.
Applications varied.

FURTHER READING

1. Parallel Distributed Processing, Volume 1. J. L. McClelland &
D. E. Rumelhart. MIT Bradford Press, 1986. Referenced in

Copyright © 1990 IOP Publishing Ltd.

APPLICATIONS 105

the previous chapter, it deserves a place here as well since it
contains the description of the multilayer perceptron as well as
background material.

2. Multi-Variable Functional Interpolation and Adaptive Net-
works. D. S. Broomhead & D. Lowe. HMSO. RSRE report,
April 1988. A paper that shows the mathematics and use of
radial basis functions.

3. Parallel networks that learn to pronounce English text. T.
J. Sejnowski & C. R. Rosenberg. In Complex Systems, 1987,
pages 145-168. All about NETtalk.

Copyright © 1990 IOP Publishing Ltd.

5

Kohonen Self- Organising Networks

5.1 INTRODUCTION

So far we have looked at algorithms that rely on supervised learning
techniques. In this chapter we will explore unsupervised learning
methods, and in particular Kohonen’s self-organising maps. As we
have seen with back propagation techniques, supervised learning re-
lies on an external training response (the desired response of the
network) being available for each input from the training class. This
technique is very useful, and in some ways relates to the human
learning process. However in many applications, it would be more
beneficial if we could ask the network to form its own classifications
of the training data. To do this we have to make two basic assump-
tions about the network; the first is that class membership is broadly
defined as input patterns that share common features, the other is
that the network will be able to identify common features across the
range of input patterns. Kohonen’s self-organising map is one such
network that works upon these assumptions, and uses unsupervised
learning to modify the internal state of the network to model the fea-
tures found in the training data. We shall explore this idea fully by
looking closely at Kohonen’s learning algorithm (and the Grossberg
ART network in Chapter 7).

5.1.1 The Self-Organisation Concept

Kohonen-a Professor of the Faculty of Information Sciences, Uni-
versity of Helsinki-has worked steadily in the area of neural net-
works for many years, long before the current surge of interest

107

Copyright © 1990 IOP Publishing Ltd.

108 KOHONEN SELF-ORGANISING NETWORKS

erupted in the mid 1980’s. He has worked extensively with con-
cepts of associative memory and models for neurobiological activity.
His work is characterised by a drive to model the self-organising and
adaptive learning features of the brain.

Neurobiologists have long since established that localised areas of
the brain, particularly across the cerebral cortex, perform specific
functions. Examples might be speech, vision or motion control, each
of which can be identified as regions of intense local activity in the
brain. More recently, evidence has also been found that suggests even
the localised regions may contain further structures which represent
the internal mappings of response from sensory organs. A good
example is found in the auditory cortex region.

In the auditory cortex it is possible t o distinguish a spatial order-
ing of the neurons which reflects the frequency response of the au-
ditory system. The ordering of the cells within the auditory cortex
region trace an almost logarithmic scale of frequency. Low frequen-
cies will generate responses at one end of the cortex region, high
frequencies at the opposite extreme. There are arguments for and
against the idea of internal neuron mappings of this kind. Those
who oppose it argue the case for the so called “Grandmother cell”.
This idea suggests that individual neurons in the brain are coded
to represent a specific concept, for example a specific cell could be
responsible for the task of identifying Grandmother. This argument
would appear to have little biological justification however-cells in
the brain die off at a rather alarming rate for those of us who have
passed the first score of our “three score and ten” (typical estimates
put the figure at 25000 cells a day). Having an encoding scheme that
maps concepts t o unique cells cannot be expected to remain reliable
with the typical rates of decay of neurons.

The ideas of self-organisation were proposed as early as 1973 by
von der Malsburg and followed up in the mid 70’s with computer
models for self-organisation, by Willshaw and von der Malsburg.
Their work was particularly biologically motivated-based on the
development of selectively sensitive neurons (i.e. to light intensity
and edge orientation) in the visual cortex region. As we discussed
earlier in the book, biological learning or adaptation is a chemical

Copyright © 1990 IOP Publishing Ltd.

INTRODUCTION 109

process that modifies the effectiveness of the synaptic connections at
the input t o the neuron cell. There is little doubt that much of the
high-level structure is genetically placed and fixed from birth, but
this does not account for our continued experience of learning. There
is no simple answer to this question-the biological and physiological
issues raised are complex. We recently heard the quote “If the brain
was simple enough to be understood-we would be too simple to
understand it!”. Minsky in his book Society of Mind elaborates on
this complexity and draws the conclusions that the human brain has
over 400 specialised architectures, and is equivalent in capacity to
about 200 Connection Machines (Model CM-2). (The book is well
worth a read if the neurobiological area of this subject interests you.)
The outcome of Kohonen’s investigations has been the derivation of
a neural network learning algorithm based on these concepts of self-
organisation, with very plausible extensions to the biological realm.

5.1.2 An Overview

It has been postulated that the brain uses spatial mapping to model
complex data structures internally. Kohonen uses this idea to good
advantage in his network because it allows him to perform data com-
pression on the vectors to be stored in the network, using a technique
known as vector quantisation. It also allows the network to store data
in such a way that spatial or topological relationships in the training
data are maintained and represented in a meaningful way.

Data compression means that multi-dimensional data can be rep-
resented in a much lower dimensional space. Much of the cerebral
cortex is arranged as a two-dimensional plane of interconnected neu-
rons but it is able to deal with concepts in much higher dimensions.
The implement ations of Kohonen’s algorithm are also predominantly
two dimensional. A typical network is shown in figure 5.1. The net-
work shown is a one-layer two-dimensional Kohonen network. The
most obvious point to note is that the neurons are not arranged in
layers as in the multilayer perceptron (input, hidden, output) but
rather on a flat grid. All inputs connect to every node in the net-
work. Feedback is restricted to lateral interconnections to immedi-

Copyright © 1990 IOP Publishing Ltd.

110 KOHONEN SELF-ORGANISING NETWORKS

f
U

input nodes

Figure 5.1 A Kohonen feature map. Note that there is only one layer of
neurons and all inputs are connected to all nodes.

ate neighbouring nodes. Note too that there is no separate output
layer-each of the nodes in the grid is itself an output node.

5.2 THE KOHONEN ALGORITHM

... : The learning algorithm organises the nodes in the grid into

.. :.:. local neighbourhoods that act as feature classifiers on the
input data. The topographic map is autonomously organised by a
cyclic process of comparing input patterns to vectors “stored” at
each node. No training response is specified for any training input.
Where inputs match the node vectors, that area of the map is selec-
tively optimised to represent an average of the training data for that
class. From a randomly organised set of nodes the grid settles into a
feature map that has local representation and is self-organised. The
algorithm itself is notionally very simple.

3: ... , :.:

Copyright © 1990 IOP Publishing Ltd.

THE KOHONEN ALGORITHM 111

Kohonen Network Algorithm

1. Initialise network
Define wij(t) (0 5 i 5 n - 1) to be the weight from input i t o node j
at t ime t. Initialise weights from the n inputs to the nodes t o small
random values. Set the initial radius of the neighbourhood around node
j , Nj(O), t o be large.
2. Present input
Present input zo(t) , q (t) , z 2 (t) , . . . , zn- l (t) , where z i (t) is the input
t o node i at t ime t .
3. Calculate distances
Compute the distance d j between the input and each output node j ,
given by

n-7

i=O

4. Select minimum distance
Designate the output node with minimum dj to be j * .
5. Update weights
Update weights for node j * and i ts neighbours, defined by the neigh-
bourhood size Nj*(t) . New weights are

" i j (t t 1) = W i j (t) t V (t) (Z i (t) - W&))

For j in Nj*(t) ,
The term ~ (t) is a gain term (0 < ~ (t) < 1) that decreases in time,
so slowing the weight adaption. Notice that the neighbourhood Nj*(t)
decreases in size as t ime goes on, thus localising the area o f maximum
activity.
6. Repeat by going t o 2.

0 5 i 5 n - 1

In summary:
0 Find the closest matching unit to a training input
0 Increase the similarity of this unit, and those in the neighbouring

proximity, t o the input.

Copyright © 1990 IOP Publishing Ltd.

112 KOHONEN SELF-ORGANISING NETWORKS

5.2.1 Biological Justification

Is there any biological justification for such a learning rule? As we
have seen already, Kohonen has based most of his work on close
studies of the topology of the brain’s cortex region, and indeed there
would appear to be a good deal of biological evidence to support this
idea.

We have seen in previous chapters that activation in a nervous
cell is propagated to other cells via axon links (which may have an
inhibitory or excitatory effect at the input of another cell). However,
we have not considered the question of how the axon links are af-
fected by lateral distance from the propagating neuron. A simplified
yet plausible model of the effect is illustrated by the Mexican hat
function shown in figure 5.2.

Figure 5.2 The Mexican hat function describes the effect of lateral in-
terconnection.

We can see that cells physically close to the active cell have the
strongest links. Those at a certain distance actually switch to in-
hibitory links. It is this phenomenon to which Kohonen attributes
to the development (at least in part) of localised topological mapping
in the brain. As we shall see, he has modelled this effect by using
only locally interconnected networks and restricting the adaption of
weight values to localised “neighbourhoods”.

Copyright © 1990 IOP Publishing Ltd.

T H E KOHONEN ALGORITHM 113

Much of the popularity of this paradigm could be attributed to
the fact that it has a very accessible and “natural” feel to it, as we
shall hopefully see when we expand the algorithm. Reading through
the algorithm, we can see that the learning rule is not complicated.
There are no troublesome derivatives to be calculated, as in gradient
descent methods. Initially all the connections from the inputs to
the nodes are assigned small random weight values. Each node will
thus have a unique weight vector, the dimensionality of which is
defined by the number of components in the input vector. During
the learning cycle, a set of training patterns (a representative subset
of the full data set) is shown t o the network. The action of the
network under the stimuli of these training inputs can be compared
to a “winner-take-all” function. A comparison is made between each
input pattern, as it is presented, and the weight vectors-the node
with the weight vector closest to the input pattern is selected as the
“winner”. The winning node “claims” the input vector and modifies
its own weight vector to align it with the input. The node has now
become sensitive to this particular training input and will provide
a maximum response from the network if it is applied again after
training is completed.

We can see from the algorithm that the nodes in the neighbour-
hood N , of the winning node are also modified. The reason for this
is that the network is trying to create regions that will respond to a
spread of values around the training input. The nodes around the
winning node are given a similar alignment, and over the course of
the training cycle this settles to an “average” representation of that
class pattern. As a consequence, vectors that are close spatially to
the training values will still be classified correctly even though the
network has not seen them before. This demonstrates the generali-
sation properties of the network.

The two most central issues to adaptive self-organising learning in
a Kohonen network are the weight adaption process and the concept
of topological neighbourhoods of nodes. Both of these ideas are very
different from the neural networks we have discussed so far, so our
description of the workings of the Kohonen network will be based
around these key themes.

Copyright © 1990 IOP Publishing Ltd.

114 KOHONEN SELF-ORGANISING NETWORKS

5.3 WEIGHT TRAINING

As we have already mentioned, there is no derivative process involved
in adapting the weights for the Kohonen network. Referring to the
algorithm again, we can see that the change in the weight value
is proportional to the difference between the input vector and the
weight vector:

where wij is the ith component of weight vector to node j , for j in
the neighbourhood N j * (t)

The unit of proportionality is q(t) , the learning rate coefficient,
where 0 < q(t) < 1. This term decreases the adaption rate with time
(where by “time” we mean the number of passes through the training
set). We can visualise the training cycle as having two stages. The
first stage is creating some form of topological ordering on the map of
randomly orientated nodes. The training process attempts to cluster
the nodes on the topological map to reflect the range of class types
found in the training data. This will be a coarse mapping, where the
network is discovering how many classes the map must eventually
identify, and where they should lie in relation to each other on the
map. These are large scale changes to the orientation of the nodes
on the map, so the adaption rate is kept high (q > 0.5) to allow
large weight modifications and hopefully settle into an approximate
mapping as quickly as possible. Once a stable coarse representation
is found, the nodes within the localised regions of the map are fine-
tuned to the input training vectors. To achieve this fine-tuning much
smaller changes must be made to the weight vectors at each node,
so the adaption rate is reduced as training progresses. Typically the
fine-tuning stage will take between 100 and 1000 times as many steps
as finding the coarse representation, if a low value of q is used.

Each time a new training input is applied to the network the
winning node must first be located; this identifies the region of the
feature map that will have its weight values updated. The winning
node is categorised as the node that has the closest matching weight
vector to the input vector, and the metric that is used to measure

(0 5 i 5 n - 1).

Copyright © 1990 IOP Publishing Ltd.

WEIGHT TRAINING 115

the similarity of the vectors is the Euclidean distance measure. We
discussed this metric earlier in Chapter 2. There are, however, a
few subtleties to note in implementing the technique in the Kohonen
network. The Euclidean norm of a vector is a measure of its magni-
tude. However, we are not so much interested in the magnitude of
the vectors as in finding out how they are orientated spatially. In
other words, we will describe two vectors as being similar if they are
pointing in the same direction, regardless of their magnitude. The
only way that we can ensure that we are comparing the orientation
of two vectors, using the Euclidean measure, is t o first make sure
that all the weight vectors are normalised. Normalising a vector
reduces it t o a unity Zength vector by dividing it by its magnitude-
for a set of vectors in Euclidean space this means that each vector
will retain its orientation but will be of a fixed length, regardless of
its previous magnitude. The comparison of the weight vectors and
the input vector will now be concerned only with the orientation,
as required. Another useful advantage of normalising the vectors is
that it reduces the training time for the network, because it removes
one degree of variability in the weight space. Effectively that means
that the weight vectors start in an orientation that is closer t o the
desired state, thus reducing some of the reorientation time during
the training cycle.

5.3.1 Initialising the Weights

A note of caution may be inserted at this point concerning the ini-
tialisation of the weight vectors. So far we have suggested that on
start-up, the network weights should be set t o small, normalised
random values. However, this is an over-simplification because if the
weight vectors are truly randomly spread, the network may suffer
non-convergent or very slow training cycles. The reason for this can
be explained fairly intuitively. Typically the input training vectors
will fall into clusters over a limited region of the pattern space, cor-
responding to their class (at least it is hoped that they will, else
training will be a difficult process). If the weight vectors, stored
at the nodes in the network, are randomly spread then the situa-

Copyright © 1990 IOP Publishing Ltd.

116 KOHONEN SELF-ORGANISING NETWORKS

tion could quite easily arise where many of the weight vectors are
in a very different orientation t o the majority of the training in-
puts. These nodes will not win any of the best-match comparisons
and will remain unused in forming the topological map. The conse-
quence of this is that the neighbourhoods on the feature map will be
very sparsely populated with trainable nodes, so much so that there
may not be enough usable nodes to adequately separate the classes.
This will result in very poor classification performance due t o the
inability of the feature map t o distinguish between the inputs.

The optimum distribution for the initial weights is one that gives
the network starting clues as to the number of classes in the train-
ing data and the likely orientation that each one will be found, but
considering that this is oft en the very information that we are expect-
ing the network to find for us it is a rather impractical proposition.
There are, however, methods to approximat#e such a distribution.

One method is t o initialise all the weights so that they are nor-
mal and coincident (i.e. with the same value). The training data is
modified so that, in the early stages of the training cycle, the vectors
are all lumped together in a similar orientation to the start-up state
of the nodes. This gives all the nodes in the feature map the same
likelihood of being close t o the input vectors, and consequently being
included in the coarse representation of the map. As training pro-
gresses the inputs are slowly returned to their original orientation,
but because the coarse mapping is already defined by this stage, the
nodes in the feature map will simply follow the modifications made
to the input values. A similar technique adds random noise to the
inputs in the early stages of training in an attempt to distribute the
vectors over a larger pattern space, and thus utilise more nodes.

It is also possible t o attach a threshold value to each node, which
“monitors” the degree of success or failure that a node has in being
selected as best-match. If a node is regularly being selected, it will
temporarily have its threshold raised. This reduces its chance of
being voted best-match and allows redundant nodes to be used in
forming the features of the map.

The most often used technique, however, and the one quoted by
Kohonen, is one that we have already mentioned in passing-that of

Copyright © 1990 IOP Publishing Ltd.

NEIGHBOURHOODS 117

local neighbourhoods around each node. We will now explain how
this maximises the use of all the nodes in the network and promotes
topological grouping of nodes.

5.4 NEIGHBOURHOODS

In order to model the Mexican hat function for the lateral spread of
activation in interconnected nodes, Kohonen introduces the idea of
topological neighbourhoods. This is a dynamically changing bound-
ary that defines how many nodes surrounding the winning node will
be affected with weight modifications during the training process.
Initially each node in the network will be assigned a large neighbour-
hood (where “large” can imply every node in the network). When
a node is selected as the closest match to an input it will have its
weights adapted to tune it to the input signal. However, all the nodes
in the neighbourhood will also be adapted by a similar amount. As
training progresses the size of the neighbourhood is slowly decreased
to a predefined limit. To appreciate how this can force clusters of
nodes that are topologically related, consider the sequence of dia-
grams shown in figure 5.3 that represents the topological forming of
the feature clusters during a training session. For clarity, we shall
show the formation of just one cluster which is centred about the
highlighted node.

In A, the network is shown in its initialised state, with random
weight vectors and large neighbourhoods around each node. The
arrows within each node can be thought of as a spatial representation
of the orientation of each node’s weight vector. Training commences
as previously described; for each training input the best-match node
is found, the weight change is calculated and all the nodes in the
neighbourhood are adjusted.

In B we can see the network after many passes through the train-
ing set. The highlighted region of the map is beginning to form
a specific class orientation based around the highlighted node. The
neighbourhood size has also shrunk so that weight modifications now
have a smaller field of influence.

Copyright © 1990 IOP Publishing Ltd.

118 KOHONEN SELF-ORGANISING NETWORKS

A B

01
10 0 0 0 0 o/

000000
000000

The effect of shrinking the neighbour-
hood is to localise areas of similar
activity. All the units with the shaded
area in A are initially affected, and
realign themselves slightly towards the
winning node’s weight vector. As time
passes, the neighbourhood is reduced
and only the nodes in the neighbour-
hood of the winning node are altered.
These align themselves more and
more, until the area around the winner
consists of similar weight vectors. In
the resulting network, an input close to
the one that triggered the original node
will elicit a response from a node that
is topologically close.

Figure 5.3 Training a localised neighbourhood.

Copyright © 1990 IOP Publishing Ltd.

REDUCING THE NEIGHBOURHOOD 119

The fully trained network is shown in C. The neighbourhoods have
shrunk to a predefined limit of four nodes, and the nodes within the
region have all been adapted to represent an average spread of values
about the training data for that class.

The training algorithm will produce clusters for all the class types
found in the training data. The ordering of the clusters on the map,
and the convergence times for training are dependent on the way
the training data is presented to the network. Once the network has
self-organised the internal representation the clusters on the feature
map can be labelled to indicate their class so that the network can
be used to classify unknown inputs. Note that the network forms the
internal features without supervision, but the classification labelling
must be done by hand, once the network has been fully trained.

5.5 REDUCING THE NEIGHBOURHOOD

We have already stressed that the neighbourhood size is reduced
with time during the training sequence. But how quickly do we
reduce it and to what final size? Unfortunately there are no hard
and fast rules for adaptive training algorithms of this nature and
some experiment ation will be required in individual applications.
However Kohonen does stress that his method is not one that is
brittle-that is, small changes in system parameters do not reflect
gross divergence of training results-and also suggests some rules of
thumb as a starting point for intuitive tweaking!

We have explained that the adaption rate must be reduced during
the training cycle so that weight changes are made more and more
gradual as the map develops. This ensures that clusters form accu-
rate internal representations of the training data as well as causing
the network to converge to a solution within a predefined time limit.
In typical applications Kohonen suggests that the adaption rate be
a linearly decreasing function with the number of passes through the
training set.

Training is effected not only by the adaption rate and the rate at
which the neighbourhood is reduced, but also by the shape of the
neighbourhood boundary. The example we used earlier, in figure 5.3,

Copyright © 1990 IOP Publishing Ltd.

120 KOHONEN SELF-ORGANISING NETWORKS

only discussed the possibility of using a square neighbourhood-
however, that is not to say that we cannot define a circular or even
a hexagonal region, and these may provide optimal results in some
cases. As with the adaptation rate, however, it is preferable to start
with neighbourhoods fairly wide initially and allow them to decrease
slowly with the number of training passes.

5.5.1 Point Density Functions

For those who prefer a more mathematical definition of what
is happening during the training cycle we can explain the

clustering phenomenon using probability density functions. A prob-
ability density function is a statistical measure that describes the
data distribution in the pattern space. For any given point in the
pattern space, the probability density function will define a value
for the likelihood of finding a vector at that point. Given a pattern
space with a known probability density function (i.e. we know how
the patterns are spread across the pattern space) it can be shown
that the map will order itself such that the point density of the nodes
in the feature map will tend to approximate the probability density
function of the pattern space (if a representative subset of the data
is chosen to train the network). To visualise what this means in
practice, consider figure 5.4.

The network is being trained on data from a uniformly distributed
pattern space within the two-dimensional outer frame-in other
words, the patterns are evenly distributed across the rectangular
region. A training set is selected from by choosing independent and
random points in the pattern space-the randomness will ensure
that a good representation of the total pattern space is provided.
The sequence of diagrams represents the state of the weight vectors
for various stages of the training cycle. The weight vectors are two
dimensional ((X , , X z)) , and the value of the weight vector defines
a point in the weight space. The diagrams are plotted by draw-
ing lines between the points defined by the weights of neighbouring
nodes. These plots, then, depict the spatial relationship of the nodes
in the weight space (two dimensional in this case). The final state

Copyright © 1990 IOP Publishing Ltd.

REDUCING THE NEIGHBOURHOOD 121

-
fig 5.4a 14

1400 fig 5.k

t=25 fig 5.4b

t=10 000 fig 5.4d

Figure 5.4 Representation of the development of the spatial ordering of
the weight vectors.

Copyright © 1990 IOP Publishing Ltd.

122 KOHONEN SELF-ORGANISING NETWORKS

of the network shown in figure 5.4 shows how the weight vectors
have ordered themselves to represent the distribution of the pattern
space. The nodes have been optimally ordered to span the pattern
space as accurately as possible, given the constraint that there is a
limited number of nodes t o map the much larger space.

5.6 LEARNING VECTOR QUANTISATION (LVQ)

Despite the fact that the Kohonen network is an unsupervised self-
organising learning paradigm, Kohonen does in fact make use of a
supervised learning technique. This he describes as learning vec-
tor quantisation. This is worth mentioning because it amounts to
a method for fine-tuning a trained feature map to optimise its per-
formance in altering circumstances. A typical situation may be that
we wish to add new training vectors to improve the performance of
individual neighbourhoods within the map.

The way this is achieved is by selecting training vectors (x) with
known classification, and presenting them t o the network to exam-
ine cases of misclassification. Again, a best-match comparison is
performed at each node and the winner is noted (n,). The weight
vector of the winning node is then modified according to the follow-
ing criteria.
For a correctly classified input:

For an incorrect classification:

The term ~ (t) controls the rate of adaptation, and performs the same
function as it did in the learning cycle. The application study that
follows shows how this method may be used t o add new users t o a
speech recognition system by optimising the phoneme classifiers on
a feature map.

Copyright © 1990 IOP Publishing Ltd.

THE PHONETIC TYPEWRITER 123

5.7 THE PHONETIC TYPEWRITER

Perhaps one of the best ways of demonstrating the value of an idea
is by its successful application. Kohonen has applied his feature map
algorithm to the time honoured problem of speech recognition. This
is perhaps an ideal application for feature map techniques. The prob-
lem is one of classifying phonemes in real time. Why is it so ideally
suited to the Kohonen method? The phonemes form a small clas-
sification set with class samples showing subtle variations between
them. This implies that only a small number of feature detectors
need to be formed in the topological map, each of which has many
nodes in its neighbourhood tuned over a limited range. That is not
to say that phoneme classification is a trivial problem-far from it!
Speech recognition is a complex pattern recognition task. Our own
human recognition of speech works at several levels of perception.
Apart from the fundamental interpret ation of the speech waveform,
much of the recognition is done at levels applying context, Inference,
extrapolation, parsing and syntactic rules. We even perform these
functions reliably in considerably noisy environments. If you don’t
believe that statement, think about the cocktail party scenario. We
are capable of understanding and holding a conversation in the midst
of the general buzz of discussion. We are able to ignore the noise of
conversation around us, and yet, if our name is mentioned in conver-
sation elsewhere in the room we are very likely to pick it out (and
be worried by it!),

From a signal processing perspective the speech waveform is also
ill-defined and complex. Speech phonemes vary in signal strength
and shape from speaker to speaker. Even in an individual speaker,
phonemes vary in the context of the words that they are formed in,
and invariably the spectral signals of the different phonemes overlap
for much of their waveform. A great deal of effort has been expended
over a sustained period to try to create accurate phoneme classifiers
using conventional techniques. The simplicity of the solution we are
about to describe serves to show the particular merit of Kohonen’s
technique.

The driving goal of Kohonen’s work was to build a phonetic type-
writer-that is a typewriter that could type from dictation. This is

Copyright © 1990 IOP Publishing Ltd.

124 KOHONEN SELF-ORGANISING NETWORKS

perhaps easier in his native tongue of Finnish than it would be in
other languages (Finnish being a phonetic language), but it was still
quite a complex task. Kohonen has approached the problem apply-
ing a mixture of the best of many techniques-he is quick to point
out that neural networks are not a universal panacea for all aspects
of a data processing problem. The system that he devised is shown
schematically in the following figure, figure 5.5.

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

rule base

word processor

Figure 5.5 A schematic circuit of Kohonen’s neural based phonetic type-
writer.

The neural network is only dealing with one part of the total
task. The system is not totally “neural”-in fact the neural network

Copyright © 1990 IOP Publishing Ltd.

THE PHONETIC TYPEWRITER 125

is only being used in the critical stage of classifying the phonemes.
This amounts to vector quantisation of the spectral speech signal.
Kohonen was striving for a real-time commercial system-this meant
that where conventional computing techniques provide optimal so-
lutions, they were adopted within the system. This is most clearly
seen in the front-end signal processing stage.

5.7.1 Front-end Preprocessing

The front-end processing is an essential element to any neural net-
work technique. This point cannot be over-stressed. Any neural
network paradigm will perform poorly if given non-representative
or inadequate training data. Neural networks do provide a novel
method of abstracting feature information into a distributed encod-
ing. They do not, however, by-pass the critical stage in any pattern
recognition task of adequately defining the salient and characteristic
features of the data. Kohonen’s system relies on standard digital sig-
nal processing techniques to extract the phoneme spectral data from
the voice input. From a microphone input the speech waveform is
fed into a 5.3 kHz low pass filter driving a 12-bit A/D converter (at
a sampling rate of 13.03 kHz). A 256 point Fast Fourier Transform
(FFT) is computed on the digital data from the A/D at 9.83 ms inter-
vals to capture the spectral content of the phonemes. Kohonen uses
the FFT technique because it shows the clustering properties of the
spectral component better than more conventional coding methods,
and thus provides a more useful representation on which the classi-
fier can train. It is also a fast, reliable and well supported technique.
The output of the FFT is filtered and made logarithmic before the
information is grouped into a fifteen component continuous pattern
vector. The information represented in this vector is the instanta-
neous power in one of fifteen frequency bands ranging from 200 Hz
to 5 kHz. Before being applied to the network as input the compo-
nents have the signal average removed and are then normalised to a
constant length. Kohonen also uses a sixteenth vector component to
represent other information about the signal. He chose to use this
to represent the rms value of the speech signal.

Copyright © 1990 IOP Publishing Ltd.

126 KOHONEN SELF-ORGANISING NETWORKS

In the preprocessing stage Kohonen has quantised the voice input
to a 16-bit feature vector. The feature vector is a short time slice of
the speech waveform. These features were used t o train the network.
It is important to note that the network was not trained on phoneme
data, but only the time-sliced speech waveforms. The nodes in the
network, however, become sensitised t o the phoneme data because
the network inputs are centred around phonemes. The network is
able to find these phonemes in the training data without them be-
ing explicitly defined. The clusters that are formed during training
must then be labelled afterwards by hand. This involves present-
ing isolated phoneme samples to the network and finding the region
of maximum response on the topographical map. In Kohonen’s ex-
periments 50 samples of each test phoneme were used t o label the
network after it was trained on voice data. A typical topological fea-
ture map is shown in figure 5.6. It shows the trained network with
the labelling attached-Kohonen describes it as a phonotopic map.

Figure 5.6 A phoneme feature map. Kohonen calls this a “phonotopic
map”.

The map classifies the more readily defined phonemes-that is,
those with relatively stable and predictable speech waveforms. In

Copyright © 1990 IOP Publishing Ltd.

THE PHONETIC TYPEWRITER 127

practice most phonemes have a much longer duration than the Sam-
pling rate used of 9.38 ms. The true duration is typically in the order
of 40-400 ms. Consequently the classification of a phoneme is made
on the basis of several consecutive inputs. Kohonen classifies the
phonemes over a number of inputs using simple heuristic rules. One
of these relies on the fact that many phonemes have spectra with
a unique stationary state by which they can be identified. Alter-
natively, a sequence of inputs may be monitored-if the phonotopic
map’s response is constant for a number of consecutive inputs then
those inputs correspond to a single phoneme.

It is also possible to visualise the speech waveform as a dynamic
trace across the phonotopic map. This is shown in figure 5.7. The
steps represent input samples at 9.38 ms intervals. The trace shows
the stationary states of the spoken phonemes converging at localised
points on the map. Kohonen does not perform classification using
these traces, but he does suggest that they provide a new way of
visualising phonetic strings, that may be of use in applications such
as teaching aids for the deaf.

Figure 5.7 The map shows the phonetic trace of the Finnish word
“humpilla” across the map.

Copyright © 1990 IOP Publishing Ltd.

128 KOHONEN SELF-ORGANISING NETWORKS

5.7.2 Auxiliary Maps

The “plosive” phonemes (e.g. b/ t /g) have very transient spectra
characterised by a high burst of initial energy followed by a period
of comparative silence. Kohonen found that the standard phonotopic
map did not perform very well at classifying this type of phoneme.
His solution was to use auxiliary maps (called transient maps) to
classify just the plosive type phonemes. The auxiliary maps were
trained on the spectra of the plosive phonemes. The results of such
a simple modification to the map was an overall improvement in the
recognition accuracy of six to seven per cent.

5.7.3 Post Processing

The last stage of the phonetic typewriter is the translation from the
phonetic transcription t o orthographic. It is here that the errors
from the classification stage must be corrected. The majority of er-
rors are caused by an effect known as coarticulation. Coarticulation
is the variation in the pronunciation of a phoneme that is caused
by the context of the neighbouring phonemes. To deal with this ef-
fect, Kohonen has adopted a rule based system that constructs the
correct grammar from the phonetic translation. The rule base is
large-typically 15000-20000 rules and deals primarily with context
sensitivity of phonemes. It would be impractical t o attempt to de-
fine rules t o account for coarticulation without considering context.
The rule base would be prohibitively large if it were to deal with all
permutations and it could not cope with the contradictory cases so
often found in a language. Kohonen’s rule base has been developed
from actual example speech data and its correct phonetic transcrip-
tion. Much like the neural network stage the rules have been derived
from example rather than explicitly.

The grammar rule base has been implemented efficiently using
hash coding (a software technique for content addressable memory)
and operates in near real time-even for a large rule base. The out-
put of the rule base is contextually corrected phonetic strings that

Copyright © 1990 IOP Publishing Ltd.

THE PHONETIC TYPEWRITER 129

can produce orthographic text t o drive a word processor environ-
ment.

5.7.4 Hardware Implementation

The system has been designed with standard digital hardware. The
host computer is an IBM PC/AT with two auxiliary DSP coproces-
sor boards. Both coprocessors are based on the TMS32010 Digital
Signal Processor. One board is responsible for the preprocessing of
the speech signal, the other is performing the feature map classifi-
cation. Post processing is done by the host PC. Even using such
standard hardware (much faster DSP’s are now available) the recog-
nition system performs at an almost true rate of speech; only a slight
pause is required between words.

5.7.5 Performance

The performance figures that follow are quoted by Kohonen from
his experiments with the system. Performance figures are always
difficult to analyse without understanding the full context of the
tests. However, it is worth quoting those for the system as they are
fairly indicative of the usefulness of adopting a neural based solution
in this type of application.

Correct classification of phonemes from the phonotopic map stage
varies between 80 and 90 per cent depending upon speaker and the
text. The system accuracy after correction by the grammar rule base
increases to between 92 and 97 per cent. This figure is measured by
letter accuracy on the orthographic output and is for an unlimited
vocabulary.

A performance issue that must also be considered is the flexibility
of the system in adapting to new users. Kohonen’s system is par-
ticularly amenable to the addition of new speakers. They are added
using the supervised learning technique, learning vector quantisa-
tion, that was described earlier in the chapter. Fine-tuning a map
to a new speaker typically requires 100 words and can be completed,
according to Kohonen, in ten minutes.

Copyright © 1990 IOP Publishing Ltd.

130 KOHONEN SELF-ORGANISING NETWORKS

5.7.6 Conclusion

Hopefully, working through this application example has brought two
main issues forward. The first is an indication of how self-organising
networks may be used in practice. The second is an appreciation of
how neural networks may be embedded at the system level. There
has been much hysteria concerning the application of neural net-
work techniques and many exaggerated claims for their performance.
Neural networks are far from being a universal panacea for all com-
puting situations, but Kohonen’s system level approach shows how
the strengths of neural techniques (parallelism, generalisation, noise
tolerance) may be used in conjunction with conventional techniques
t o create very powerful computing tools.

Summary

Kohonen nets are self-organising, with similar inputs mapped t o
nearby nodes.
All the nodes are in one two-dimensional layer.
“Mexican hat” function of lateral excitation and inhibition.
Neighbourhood of interactions decreases with time.
Successfully implemented t o produce a phonetic typewriter.

FURTHER READING

1. Self Organisation and Associative Memory, third edition. T.
Kohonen. Springer-Verlag, 1990. A tutorial introduction to
concepts of associative memory and neural networks, with a
discussion of self-organisat ion principles.

Copyright © 1990 IOP Publishing Ltd.

THE PHONETIC TYPEWRITER 131

2. Parallel Models of Associative Memory, second edition. G.
E. Hinton & J. A. Anderson. Lawrence Erlbaum Associates,
1989. Collected writings on models of memory and parallel
processing-a useful discussion of cognitive and connectionist
issues.

3. Self-organisation of Orientation Sensitive Cells in the Striate
Cortex. C. von der Malsburg. In Kybernetik, 14, pages 85-
100, 1973. An original paper proposing the concept of self-
organisation.

4. How patterned neural connections can be set up by self-
organisation. D. J. Willshaw & C. von der Malsburg. In Proc.
R. Soc. London, B. 194, pages 431-445, 1976. Models for the
development of self-organised biological networks.

5 . Competition and Cooperation in Neural Nets. S. Amari & M.
A. Arbib. In Lecture Notes in Biomath., Vol. 45 , Springer-
Verlag (Berlin), 1982.

Copyright © 1990 IOP Publishing Ltd.

6

Hopfield Networks

6.1 INTRODUCTION

One of the major contributions to the area of neural networks was
made in the early 1980’s by John Hopfield, who studied an autoas-
sociative network that has some similarities with the perceptrons
studied in earlier chapters, but also some important differences. Hop-
field’s contribution was not simply the suggestion of a suitable model,
but his extensive analysis and study, which has led to his name be-
ing associated with the network. He developed the use of an energy
function, and related the networks t o other physical systems. The
Hopfield net consists of a number of nodes, each connected to every
other node: it is afubly-connectednetwork, and is shown in figure 6.1.
An alternative view of the Hopfield net is shown in figure 6.2.

It is also a symmetricully-weighted network, since the weights on
the link from one node to another are the same in both directions.
Each node has, like the single-layer perceptron, a threshold and a
step-function, and the nodes calculate the weighted sum of their in-
puts minus the threshold value, passing that through the step func-
tion to determine their output state. The net takes only 2-state
inputs-these can be binary (0 , l) or bipolar (-l,+l). However,
the bipolar values make the mathematics a little clearer, so we will
take the easiest route. What really distinguishes the Hopfield net
from the networks discussed earlier is the way in which it produces
a solution.

Looking at figure 6.1, or figure 6.2, which show what a fully-
connected net is like, there are no obvious input or output
connections-each node is the same as any other! This is the major

133

Copyright © 1990 IOP Publishing Ltd.

134 HOPFIELD NETWORKS

Figure 6.1 The Hopfield network.

Figure 6.2 The Hopfield network-alternative view.

Copyright © 1990 IOP Publishing Ltd.

THE HOPFIELD MODEL 135

feature of the Hopfield network, and this difference in architecture
means that the network operates in a different way. Inputs to the
network are applied to all nodes at once, and consist of a set of
starting values, +1 or -1. The network is then left alone, and it
proceeds to cycle through a succession of states, until it converges
on a stable solution, which happens when the values of the nodes no
longer alter. The output of the network is taken to be the value of
all the nodes when the network has reached a stable, steady state.
The reasons behind this behaviour will be outlined in the following
sections, but a simple way of visualising the system is to consider
that since each node is connected to every other, the value that is on
one node affects the value of them all. The initial state represents a
lot of different values each trying to affect each other. This is likely
to be unstable, since one value may be trying to turn other nodes on,
while another is trying to turn them off. As the net moves through
a succession of states, it is trying to reach a compromise between all
the values in the network, and the final steady state represents the
“best compromise” solution that the network can find. In this state,
there are as many inputs trying to make a unit turn on as there are
trying to make it turn off, so it remains in its stable state.

The operation of the network is radically different from that of a
perceptron system, in which inputs are applied and the net produces
an output which represents the solution. In the Hopfield net, this
first output is taken as the new input, which produces a new output,
and so on; the solution occurs when there is no change from cycle
to cycle. It is therefore pertinent to ask if the learning procedure is
also different. Is there a sensible way to store a set of patterns in a
Hopfield net? If so, what is it, and why does it work? In the rest of
this chapter, we provide answers to these questions.

6.2 THE HOPFIELD MODEL

The algorithm governing the operation of the Hopfield net is
shown on the following page.

Copyright © 1990 IOP Publishing Ltd.

136 HOPFIELD NETWORKS

Hop field Net work Algorithm

1. Assign connection weights

where w;j is the connection weight between node i and node j , and xi"
is element i of the exemplar pattern for class s, and is either t1 or -1.
There are M patterns, from 0 t o M - 1, in total. The thresholds of the
units are zero.

2. Initialise with unknown pattern

where p;(t) is the output of node i at t ime t .

3. Iterate until convergence

The function fh is the hard-limiting non-linearity, the step function, as
in figure 3.3. Repeat the iteration until the outputs from the nodes
rem ai n u nc ha nged .

The weights between the neurons are set using the equation given
in the algorithm, from exemplar patterns for all classes. This is the
teaching stage of the algorithm, and associates each pattern with
itself. The recognition stage occurs when the output of the net is
forced to match that of an imposed unknown pattern at time zero.
The net is then allowed to iterate freely in discrete time steps, until
it reaches a stable situation when the output remains unchanged; the

Copyright © 1990 IOP Publishing Ltd.

THE ENERGY LANDSCAPE 137

net thus converges on the solution. The autoassociation of patterns
should mean that the presentation of a corrupt input pattern will
result in the reproduction of the perfect pattern as the output-
the network therefore acts as a content-addressable memory. (Refer
to Chapter 8 for further details on associative memories and their
general properties.)

0 initialise the network
0 input unknown pattern
0 iterate to convergence.

The operation of the Hopfield network can be summarised as

6.3 THE ENERGY LANDSCAPE

The Hopfield net can best be understood in terms of the now ubiqui-
tous energy landscape. We have seen how successful it is in describ-
ing the behaviour of perceptrons, since it provides a visual analogy
that allows us to form an intuitive view of what is happening. The
same is true for a Hopfield network. The energy landscape has hol-
lows that represent the patterns stored in the network. An unknown
input pattern represents a particular point in the energy landscape,
and as the network iterates its way to a solution, the point moves
through the landscape towards one of the hollows. These basins of
attraction represent the stable states of the network. The solution
from the net occurs when the point moves into the lowest region of
the basin; from there, everywhere else in the close vicinity is uphill,
and so it will stay where it is. This is directly analogous to the three-
dimensional case where a ball placed on a landscape of vdeys and
hillsides will move down towards the nearest hollow, settling into a
stable state that doesn’t alter with time when it reaches the bottom.

We can express this in more detail if we look at it mathematically.
The energy function for the perceptron was E = iC(tpj - o ;) ~ ,
but this depends on knowledge of the required output as well as the
actual output of the net. For the Hopfield net, which steps its way
towards a solution, the required intermediate steps aren’t known, and
we therefore need something more applicable to this architecture.
However, it would be sensible to retain some of the features of the

Copyright © 1990 IOP Publishing Ltd.

138 HOPFIELD NETWORKS

perceptron energy funct,ion: it should be large for large errors, and
small for small errors. The weight values in the network must affect
the energy, as must the actual patterns presented, so the energy
function must reflect these requirements.

We can identify a suitable energy funct.ion for the Hopfield net as

i j f i i

where w;j represents the weight between node i and node j of the
network, and xi represents the output from node i. The threshold
value of node i is represented as Ti. As the output is fed back into
the net, the outputs at any one time represent the next set of inputs,
and so both the weights and the inputs are explicitly represented as
required. The weights in the network contain the pattern informa-
tion, and so all the patterns are included in this energy function.
Kodes are not connected directly to themselves, and so the terms
wii are zero. Since the connections are symmetric, wij = wj;.

Having defined our error function we can now answer the questions
posed earlier about storing and recalling patterns. If we make our
patterns occupy the low points in the energy landscape, then we can
perform gradient descent on the energy function in order t o end up
in one of these minima, which will represent our solution.

6.3.1 Storing Patterns

111=2 In order t o store a pattern, we need t o minimise the value
of the energy function for that particular pattern so that it

occupies a minimum point in the energy landscape. However, we
also want t o leave any previously stored patterns in their hollows, so
that adding new patterns doesn’t destroy all the previous informa-
tion. The weight matrix contains the information about the stored
patterns, so we want t o try to find an expression for the weight values
that will produce a minimum in the energy function.

Considering this in terms of the energy function, we want t o min-
imise

@

Copyright © 1990 IOP Publishing Ltd.

THE ENERGY LANDSCAPE 139

for a particular pattern s that has a set of input elements

We want each term to be negative, and so we require Cix;T; t o
be negative. This can be achieved by setting T; to the opposite sign
of x; for a particular pattern. However, a different pattern will have
different values of x; and then the threshold term may well increase
the value of E . In order to avoid this, the best that we can do is
to set the threshold to zero, which will not decrease or increase the
value of the energy function for any of the patterns.

We write x: to mean element i of input pattern s, which can be
either +1 or -1. Now, wij is the weight between nodes i and j
as before, and contains the pattern information from all the taught
patterns. This means that we can split the weight matrix into two
parts, one which represents the effects of all the patterns except the
s th one, denoted by wij, and a second which is the contribution
made by the s th pattern alone, shown as w : ~ . This means that we
can rewrite the energy function in t.wo parts

(20, $1, * ’ , 2,-1).

where we have separated the contribution made t o the energy func-
tion from the s t h pattern. This can be thought of as viewing the
energy as a “signal” plus a “noise” term; the “signal” is the energy
due t o the pattern s, whilst the “noise” is due to the contributions
from all the other patterns.

Storing this pattern corresponds to making the energy function
as small as possible. The first term corresponds to the “noise”, and
we cannot do much t o alter this, but we can reduce the contribution
made by the second, “signal” term. In other words, t o store pattern
s, we want t o minimise the contribution t o the energy function from

Copyright © 1990 IOP Publishing Ltd.

140 HOPFIELD NETWORKS

the s th energy term, and so make

as small as possible.
This corresponds to making

i j # i

as large as possible, due to the minus sign in (6.3).
Now, the elements in xi are either t1 or -1; however, xi2 is a lways

positive, so if we make the energy term dependent on xi2x.3 it will
always be positive, and so the sum will be as large as possible.

We can do this most simply by equating

C WfjX’iXj = XTXj”
i j#i i j#i

and noticing that all we have to do is t o make the weight term

w?. = 2.2.
23 a 3

This means that we have our result; setting the values of the
weights w$ = xixj minimises the energy function for pattern s. In
order t o calculate the weight values for all the patterns, we sum this
equation over all patterns t o get an expression for the total weight
set between nodes as

3 S

Comparing this t o step 1 of the algorithm, we see that they are
identical, and we now know that step 1 really does store all the initial
patterns in the network.

Referring to equation (6.3), altering the wi j each time will alter
the value of E d except3 somewhat, so adding patterns does disrupt
the previous storage t o some extent, but this is unavoidable.

The Hopfield net has no iterative learning algorithm as such; pat-
terns are simply stored by lowering their energies. The network has
no hidden units, and so is unable to encode the data.

Copyright © 1990 IOP Publishing Ltd.

THE ENERGY LANDSCAPE 141

6.3.2 Recall

Having stored our patterns in the net, we now need to be
able to recall them. This can be accomplished if we perform

gradient descent on our energy function, so we need a method to
do this. Considering our energy function in (6.1), we need to cal-
culate the contribution that a particular node’s value makes to the
energy, and then we can cycle around the net, reducing each node’s
contribiition until the energy value is at a minimum.

We can express the energy function in two parts, splitting off the
contribution made by the kth node.

The lcth neuron changes output state from 5 k l to 2 k 2 . The difference
in energy AE = E 2 -El caused by the state change A x k = x k 2 - X k l

is given by evaluating equation (6.4) for X k 2 and X k l , then subtract-
ing, and can be written as

The first two terms in (6.4) are unaffected by the alteration of neu-
ron l c , and so remain unchanged and cancel out. Since the matrix
w i j is symmetric, we can interchange the indices and simplify the
expression to

Cj X j W k j is the weighted sum of the inputs to node k , and T k is
the threshold of unit I C . Now, the threshold of every node was set
to zero in the storage phase, in order t o ensure that the patterns
occupied the minima in the energy function. Remembering that the

Copyright © 1990 IOP Publishing Ltd.

142 HOPFIELD NETWORKS

node’s output is either a $1 or a -1, decreasing AEk will mean
outputting a $1 if the weighted sum is greater than zero, and -1 if
it is less than zero, since this will always serve to reduce the value
of AEk. If we compare this t o the update function for nodes in a
Hopfield network, given by

> o x ; - -+$ l
= o

i f k < o x ; + - l
remain in previous state

we can see that the update function performs this operation, and
so implements gradient descent in E . This allows us to recall our
patterns from the net by cycling through a succession of states, each
of which has a lower energy (or, if the weighted sum is equal t o the
threshold, an equal energy) than the previous one. This relaxation
into lower energy states continues until a steady state of low energy
is reached, when the net has found its way into a minimum and so
produced the pattern.

There are two subtly different methods of actually performing the
update, which produce slightly different behaviour in the network.
The update can be carried out on all nodes simultaneously, where
the values in the network are temporarily frozen and all the nodes
then compute their next state. This new state represents one update
across the entire network, and the following state is then computed.
This operation is known as synchronous updating. The alternative
approach, called asynchronous updating, occurs when a node is cho-
sen at random and updates its output according to the input it is
receiving. This process is then repeated. The main difference be-
tween the methods is that in the case of asynchronous updating, the
change in output of one node affects the state of the system and can
therefore affect the next node’s change. This means that the order
in which the nodes are updated affects the behaviour of the network
to some extent. The effects are evident in the r e c d stage, since
the random nature of the choice of the next node t o be updated
alters the sequence of patterns that the network evolves through.
With synchronous updating, all nodes are updated together and so
the intermediate patterns do not alter. The asynchronous updating

Copyright © 1990 IOP Publishing Ltd.

THE ENERGY LANDSCAPE 143

therefore adds some uncertainty, or non-determinism into the path
that will be taken from the input to the final steady state. However,
both methods share the same general characteristics of the network,
and the use of synchronous or asynchronous updating is rarely an
import ant fact or.

The assumptions made in the Hopfield network of a symmetric,
zero-diagonal weight matrix are central to its operation. Even slight
deviations from this symmetry can give rise to networks that are
unstable and do not settle into any final state. One of the current
research areas is the investigation of different connectivities and the
effects that these have on the behaviour of the network. Hopfield
himself has extended the model in a different direction, showing that
a smooth function like the sigmoid can be used, with similar results
to that of the step function.

6.3.3 An Example

Figure 6.3 shows a set of patterns that were used to train a Hopfield
network. Figure 6.4 shows how the network operates. It is presented

0 123
4 5 6 7

Figure 6.3 The training set for the Hopfield network.

with a corrupted pattern as input, and proceeds to cycle through a
series of intermediate states, slowly recovering the correct solution as

Copyright © 1990 IOP Publishing Ltd.

144 HOPFIELD NETWORKS

shown. Each pattern in the sequence has a lower energy than the one
before it, and these patterns keep evolving until the network reaches
a minimum in the energy function, at which stage the outputs a.re
unaltered from cycle to cycle and the net has produced its solution.

Figure 6.4 The network is presented with a corrupt input pa.tt.ern, and
the sequence shows how it net cycles through successive states unt,il it, has
recovered a stable result.

Experimentally, the overlap between stored patterns, as we men-
tioned above, causes interference effects and errors occur in the re-
covery of patterns if more than about 0.15N patterns are stored,
where N is the number of nodes in the network. This means that for
a network with 100 nodes, errors are likely to occur if the number
of patterns stored exceeds 15. These error states are stable outputs
from the network that do not correspud to any taught patterns-in
terms of the energy landscape, there has been sufficient interference
between patterns to form intermediate local minima states that were
not taught to the network, but which the network thinks are perfectly
acceptable solutions. Such states are known as nzetnstable shtes .

Copyright © 1990 IOP Publishing Ltd.

THE BOLTZMANN MACHINE 145

6.4 THE BOLTZMANN MACHINE

The Hopfield net converges to local minima which may not give the
optimal solution. We need a method that allows us to escape from
these local hollows and move into some deeper well that represents
a better result. If the solution to the inputs is represented as a small
ball on the energy landscape, it is easy to imagine that giving this
ball some intrinsic energy (thermal energy) will allow it t o randomly
move about in the potential wells and probably escape from local
minima. This “shaking” of the nominally stable situation needs to
be done carefully however, as violent shaking is as likely to move the
solution away from a stable point as towards it. The best method is
to provide a lot of energy at first, and slowly reduce the amount as
the network works its way towards a global solution.

This idea is similar to that in metallurgy, where the low energy
state of a metal is produced by melting it, then slowly reducing its
temperature. This annealing of a metal ensures that it reaches a
st able, low energy configuration.

Thermal noise is added to the network; to begin with, high tem-
peratures are simulated resulting in a lot of thermal noise, then “tem-
perature” is slowly lowered so that the amount of thermal noise de-

,creases. This is achieved by using a similar structure and learning - algorithm to the Hopfield net, coupled with a probabilistic update
rule. This network is called a Boltzmann machine. Each node in the
network calculates which state it should switch into to reduce the
energy, as before, but instead of just switching, it changes to that
state depending on the value of the probability function. This means
that sometimes the network doesn’t switch into a lower energy state,
but allows jumps to be made into higher energy states, and it is this
feature that allows local minima to be escaped. The probability
function is chosen so that if the unit will achieve a great reduction
in the overall energy by changing its state, then it will probably be
allowed to change, but if there isn’t a great deal to be gained either
way, the likelihood of it changing is much more uncertain. It also
has a parameter to vary its “temperature”-at high temperatures,
jumps to higher energy states are much more likely to occur than at
lower temperatures. As the temperature is lowered, the probability

Copyright © 1990 IOP Publishing Ltd.

146 H OPFI EL D NETWORKS

of assuming the correct low energy state approaches one, and the
network is said to have reached t h e m a l equilibrium.

We can express this mathematically as follows. Each unit in the
network computes an energy gap, given by

and switches into the state that is of lower energy according t o the
probabilistic update rule, i.e. with probability

The network can settle into one of a large number of global energy
states, the distribution of which is given by the Boltzmann distribu-
tion. If we let P, be the probability of the network settling into some
global energy state of energy E,, then the Boltzmann distribution
has the form

pa = keWEafT

i.e. it is dependent on the energy of the state and the temperature
of the system. Calling Pp be the probability of a state with energy
Ep, we can write

The network is allowed to settle into thermal equilibrium, when the
probabilities of states no longer alter, and are dependent on their
energy. If E, is a lower energy state than Ep, then we can see that

Ea < E p
e - (E a - E d / T > 1

therefore P,/Pp > 1
so P, > Pa

Copyright © 1990 IOP Publishing Ltd.

T H E BOLTZMANN MACHINE 147

This means that as the network approaches thermal equilibrium,
lower energy states are more probable, dependent only on their rel-
ative energy.

At high temperatures, the net reaches equilibrium quickly, but
good global energy states are not much more likely to occur than
poor ones. Reducing the temperature while the network is run-
ning is called simulated annealing, and allows the system to reach
low temperature equilibrium in the quickest way possible. The high
temperatures allow local minima states to be escaped via higher en-
ergy states, but also allow transitions from lower minima to higher
ones with almost equal probability. As the temperature is lowered
however, the probability of escaping from a higher energy minima
to a lower one falls, but the probability of travelling in the reverse
direction falls even faster, and so more low energy states are reached.
Eventually the system settles down at low temperature in thermal
equilibrium. This means that it is the output probabilities of the
states that become constant, not the values of the states themselves.
The effect of the temperature on the probabilistic function that gov-
erns the chance of an unit changing state is shown in figure 6.5.
Notice that in high temperature situations, the probability of chang-
ing into a higher energy state for any particular input value is greater
than for lower temperature situations.

This description of simulated annealing is an oversimplification;
since the energy landscape is a highly dimensional space, the energy
barrier between states is usually massively degenerate. This means
that there are many ways of passing from one state to another, which
increase exponentially with the amount of thermal noise added to the
system. With such a large number of paths along which to escape, it
is even more likely that the system will move into the lower energy
state.

The temperature alteration is achieved by adjusting the steepness
of the sigmoid function, which effectively determines the probability
that a unit will actually go into its natural, or non-noisy, state. If
the unit exceeds the threshold by a large amount then it will always
attain value 1, whilst if it is far enough below the threshold, then
it will always have value 0. Just above threshold, the probability

Copyright © 1990 IOP Publishing Ltd.

148 HOPFIELD NETWORKS

0 10 20 -20 -10

Figure 6.5 The effect of temperature on the transition probability func-
tion 1/[1 + exp(-AEk/T)]. The probability of a transition to a higher
energy state is greater at higher temperatures than it is at lower ones.

of becoming 1 is greater than l /2 , and just below threshold, the
probability of turning off is greater than l / 2 . Decreasing the tem-
perature decreases the probability that a unit will have its natural
state altered. The function described above follows the Boltzmann
distribution, just as in statistical mechanics.

The rate at which the temperature is decreased is important, since
this affects the opportunities that the network has t o develop a glob-
ally optimal solution. If the temperature is lowered too quickly, the
net does not have enough opportunity t o escape from local minima
and so a good solution is not reached. Conversely, if the temperature
is lowered very slowly, the network can escape from local minima but
will take a long while t o converge to a final solution. Examination
of the behaviour of the network can help to alleviate this problem to
some extent however. At high temperatures, the net moves into high
energy states easily, and the overall energy of the system is high. At
the other extreme, low temperatures mean that transitions to higher
energy states are extremely rare, and the net will tend t o stay in
its current state of relatively low energy. However, the transition
between these two states is not a gentle one, since there is a period

Copyright © 1990 IOP Publishing Ltd.

THE BOLTZMANN MACHINE 149

during the lowering of the temperature when the transitions from
higher t o lower energy minima occur much more often than transi-
tions in the opposite direction, from low energy minima t o high. It
is during this period that the overall energy of the network decreases
most rapidly, and so the time spent in this transition period should
be as long as possible.

<E

Phase transition

IOW temperature llgn

Figure 6.6 Graph of average energy of the network (y-axis) plotted
against temperature (z-axis). The phase transition is clearly shown, where
the mean energy of the system falls very quickly for a small reduction in
temp er at we.

This behaviour is akin to the phase transitions encountered in
substances as they cool and change from one state to another-
there is a critical temperature (the melting or boiling point!) a t
which the state of the system suddenly changes from a high overall
energy t o a much lower one. The phase transition for a Boltzmann
machine is sketched in figure 6.6. Fastest convergence to a good
global minimum will occur if the temperature is decreased in such a
way as t o spend most of the time in the phase transition part of the
graph. However, actually determining the phase transition point in
practice is difficult.

Copyright © 1990 IOP Publishing Ltd.

150 HOPFIELD NETWORKS

6.4.1 Learning in Boltzmann Machines

Learning occurs in two phases in Boltzmann machines. The network
is fully connected, but an arbitrary choice is made as to which units
are to be input units and which are t o be output units. In the
first phase, the input and output units are clamped t o their correct
values. The net is then allowed to cycle through its states, with the
temperature being gradually lowered until the hidden units reach
thermal equilibrium. Weights that connect two units that are both
on are then incremented. In the second phase, only the inputs are
clamped to their correct values, with the hidden and output units
left free. The net runs as before until it reaches thermal equilibrium,
and then weights between any two units that are on are decremented.
The first phase reinforces connections that lead from the input t o the
output, whilst the second “unlearns” poor associations.

In a Boltzmann machine, the deepest global minima are usually
reached since the system can escape from local minima by allowing
jumps to intermediate higher energy states, and the probability that
the system settles into these minima is dependent only on the en-
ergy of the state, as shown by equation (6.9). In other words, the
system is most likely t o occupy the best minimum. This fact allows
us to observe that this is a recall procedure if all our patterns oc-
cupy global minima; therefore, if we can find a way to store the pat-
terns in the global minimum states then we have a ready-made recall
method. Alternatively, since there is a direct relationship between
the probability of a state occurring and its global energy, we can
store probability distributions in our network, by making the energy
of a particular state proportional t o the probability of it occurring.
This gives us a direct representation of probability in a system. The
learning procedure for Boltzmann machines which achieves this is
given below.

First, we choose arbitrary units in the network to be input units
and output units, with the remainder assuming the role of “hidden”
units, as in figure 6.7.

The distinction between layers is not as clear as in multilayer per-
ceptrons; the Boltzmann net is fully interconnected with the output
units connected back up to the input units and the hidden units.

Copyright © 1990 IOP Publishing Ltd.

T H E BOLTZMANN MACHINE 151

Figure 6.7 Visualisation of the division of the fully-connected net into
‘‘layers’’ For clarity, not all the connections between units have been
shown.

As we have stated, the learning procedure is in two phases,
an incremental stage and a decremental stage. ::::, , ;.::::,, ./..

~~~ 

Bo1 tzmann Machine Learning Algorithm 

Phase 1-incremental 
1. Clamp the input and output units to their correct values. 
2. Let the net cycle through its states. Calculate the energy of a state 

A& = X W k i S i  - 8 k  0 5 i 5 N -  1 
i 

then switch t o  lower energy state with probability pk where 

1 

pk = 1 + e-AEk/T 

Reduce T until output is stable. 

Copyright © 1990 IOP Publishing Ltd.



152 HOPFIELD NETWORKS 

3. Increment the weight between two units if they are both on 

Phase 2-decremental 
1. Clamp the input only, leave the output and hidden units free. 
2. Let the net reach thermal equilibrium again-run as in Phase 1. 
3. Decrement the weights between units if they are both on. 

Continue this until the weights are stable. 

6.4.2 Why does this work? 

We can see how this algorithm achieves learning by considering the 
behaviour of the weights in the system as they are altered. With 
a forced output, the weights between “on” units are incremented in 
phase 1. Notice that this is Hebbian learning-incrementing weights 
between active units. If the net produces the same output in phase 
2, showing it has learnt the correct response, then the same weights 
will be decremented, and the two phases will cancel each other out. 
However, if the output is not matched, then some of these weights 
will be left on, whilst others will be turned off. After a period of time, 
only the weights between units that produce the correct output will 
have been left on. 

6.4.3 Mean Field Theory 

One of the problems with the simulated annealing process is that the 
probability of switching into a state is calculated by summing the 
weighted outputs minus the threshold (equations (6.7) and (6.8)) 
of all the other units in the network. Because these units are also 
changing their output over time, we ought to calculate the probabil- 
ity based on the average output of the other units, and this takes 
time to compute. We can simplify the problem by replacing the 
binary state of a unit by a real ;umber which represents the prob- 
ability of that unit being in the on state, and use this to estimate 
its average effect on the unit in question. This is similar to “mean 

Copyright © 1990 IOP Publishing Ltd.



THE BOLTZMANN MACHINE 153 

field theory” in physics, where the average effect of different fields 
acting on a particle is approximated by the effect of the average of 
the different fields (figure 6.8). 

Figure 6.8 The mean field approximation: each unit feels the effects of 
the average of the other units. 

Expressed mat hematically, and using 

G(s)  = 1/(1 t e-2) 

and (x) t o  represent the mean value of 2, our correct expression can 
be written 

(6.10) 

where s j  are stochastic states; this equation represents the average 
effect of the varying states. 

The approximation is written as 

where 

(6.11) 

(6.12) 

Copyright © 1990 IOP Publishing Ltd.



154 HOPFIELD NETWORKS 

This represents the effect of the average states. 
In using the mean field approximation we introduce errors into the 

system, since we cannot represent the average of the s j  states accu- 
rately. However, we avoid the sampling error at  equilibrium since we 
have represented the units’ output probabilities directly. These er- 
rors mean that the Boltzmann learning procedure is no longer strictly 
correct, but the system still works, and it does so much faster. In 
summary, the mean field net therefore approximates the Bolt zmann 
machine but operates much more quickly. 

6.4.4 Spin Glasses 

, , , . . . , . . 
1+1 Hopfield made a great breakthrough in the understanding of 

:::’::::,;:;.’:( . . . . . . . . the behaviour of Hopfield and Boltzmann nets by demon- 
strating that their behaviour could be expressed in terms of the 
energy function, and that the energy function itself was similar t o  
the energy function encountered in the world of spin glass theory in 
physics. 

Spin glasses are disordered, frustrated magnets. That is, they are 
materials comprised of particles that each have a particular “spin”, 
which makes them want t o  be aligned in a common direction. How- 
ever, there are usually additional forces trying t o  align the particles 
differently, such as the presence of an external field or localised effects 
due to  surrounding particles; these competing ordering instructions 
are what is meant by “frustrated”. The “disordered” refers t o  the 
fact that there are quenched random constraints on the particles, 
due perhaps to  the lattice in which they find themselves. 

The behaviour of these systems has been studied in detail by physi- 
cists, and the form of the energy function, the structure of the energy 
space, and the stable states of the system are known. 

We can see how the two systems are analogous by considering the 
form of their energy functions. Although we will go no further than 
to  demonstrate the mapping between the two, this is important since 
it shows that the techniques of statistical mechanics can be applied 
in the analysis of highly-connected networks. 

Copyright © 1990 IOP Publishing Ltd.



T H E  BOLTZMANN MACHINE 155 

The two states of the model neuron, “on7’ and “off”, can be repre- 
sented by the states xi  = +1 or - 1 which we can interpret as “spin 
up” or “spin down” states. The behaviour of the system is described 
by the energy function given before (equation (6.1)), quoted again 
for convenience 

1 E = - - w i j x i ~ j  -t XiT; 
i jjrii i 

The weights wij can be positive or negative, and the total input to 
a neuron is given, like before, as 

(6.13) 
.I 

The output of the neuron is given by a probability function depen- 
dent on the sum of weighted inputs minus some threshold, passed 
through a non-linear function as usual: 

pi = @( ui - Ti) 

We can consider the idealised case where 0 is the Heaviside function, 
and the probability that the state is simply equal to the value of that 
function is 1, as in the Hopfield net. Therefore the output at the next 
time interval ( t  t 1) is given by 

(6.14) 

Stability requires that the outputs be equal to the inputs, and so 
%(ti-1) = x i ( t )  = constant. Noting equation (6.13), (6.14) can be 
written as 

(6.15) 

If the output from the network is stable, then this equation will hold. 
Compare this to the situation in spin glass theory, where the par- 

ticles’ behaviour is governed by an energy function of the form 

H = - w ; ~ u ; u ~  - his; (6.16) 
. .  
$.I i 

Copyright © 1990 IOP Publishing Ltd.



156 HOPFIELD NETWORKS 

The first term corresponds t o  the interactions between pairs of par- 
ticles, and the second t o  locally pervasive effects on single particles. 
The matrix w;j is symmetric, so wij  = wji. The condition for stabil- 
ity against single spin flips from a; i -oi, which will increase the 
energy of the system, is 

~i = sign w ; j ~ j  - hi (6.17) 
[ j  I 

Comparison of equations (6.1) and (6.16) show that a similar en- 
ergy function governs the operation of the two systems, and what 
is more, the conditions for stability are comparable as well. Equa- 
tions (6.17) and (6.15) are identical for symmetric weights and an 
appropriate choice of h; t o  match w;j and Ti. 

The use of spin glass theory in the analysis of Hopfield networks 
has been very successful, and some of the more important results 
are outlined below. There are expected to be two classes of spurious 
states for finite values of the storage density a = P / N ,  where P 
is the number of stored patterns and N is the number of nodes. 
These are metastable states other than the stored pattern states, and 
mixture states which overlap with several of the stored prototypes. 
In addition, there are “spin glass” states, which bear little relation 
to  the stored states and can therefore be considered as spurious for 
memory retrieval. Pattern retrieval is possible up to  about a = 
0.15 with little error, whilst above this there is a sharp collapse 
in the retrieval ability of the network. The effect of temperature 
on the system acts like noise, and for low values can smooth the 
energy surface and eliminate metastable states, but for high values 
no retrieval solutions, only spin glass ones, are found. 

6.5 CONSTRAINT SATISFACTION 

The Boltzmann machine produces solutions that are equivalent to 
minima in the energy function. We can use the Boltzmann machine, 
like the Hopfield net, as a content-addressable memory, by ensuring 
that we make the patterns stored occupy the minima in this energy 

Copyright © 1990 IOP Publishing Ltd.



CONSTRAINT SATISFACTION 157 

function. This corresponds t o  finding an optimal output for the 
given energy function, since the network converges to  some minimum 
value. It is therefore possible that the same network design can 
optimise other problems. If we can express the constraints that we 
want to  satisfy in terms of a suitable energy function, the network 
will produce a solution to that function that minimises the energy. 
This means that we have to  construct our energy function so that it 
represents the constraints that we wish to minimise. For example, if 
we wish to minimise the cost of transporting goods, and the cost is 
proportional to the distance the goods have to  be moved, the energy 
function will have to be large when the distances involved are large, 
and small when the journeys are short. Minimising this will then 
correspond to  minimising the transport costs. 

6.5.1 The Travelling Salesman Problem 

The Boltzmann machine can be used for much more complex con- 
straint satisfaction involving a number of possibly conflicting require- 
ments. One of the most interesting problems of this nature is known 
as the “travelling salesman problem” (TSP), and has been studied 
by many different people using different techniques. It is widely used 
as a test problem, and is to constraint satisfaction problems what 
the XOR problem is to pattern classifiers. The TSP problem is this: 
imagine you are a travelling salesman for a company. You have to  
visit all the cities in your area, returning home when finished, but 
you don’t want to  visit any city more than once. The cities are 
different distances apart, and the problem you face is to  decide the 
shortest route for you to  take. 

The best solution to  a TSP is very difficult to find, and the time 
taken to  solve it grows exponentially as the number of cities in the 
tour increases. For this reason, any ((good” solution will do. It is 
a constraint satisfaction problem, the constraints being that each 
city must be visited once and only once, and that the distance trav- 
elled between cities must be as short as possible. If such an energy 
function is constructed, then minimising that function corresponds 
to producing a solution that optimises the constraints. In order to  

Copyright © 1990 IOP Publishing Ltd.



158 HOPFIEL D NETWORKS 

solve the TSP problem, it has to  be cast into a form which the net- 
work can represent. Since the solution is a list of cities to  be visited 
in a particular order, we need an approach which allows us to  specify 
both the city and the position in which it is visited. If there are n 
cities, each can occur in one of n positions. If we assume that the 
city t o  be visited is represented by a neuron with an on state, then, 
as we want to visit only one city at a time, all the neurons repre- 
senting the other cities must be off. For n cities, we need n neurons 
to  represent this. As an example, in a 4 city problem, if city A is to  
be visited first, then we want the first neuron t o  have its output set 
to  1, with all the others at 0 

1 0 0 0  

Since we need n neurons to represent the position in the tour of one 
city, it follows that we need n neurons t o  represent the positions of 
the n cities. Therefore, the representation that we can use for the 
TSP problem is a square matrix of n by n nodes, in which the cities 
are represented along one side, and the possible positions along the 
other. An example of this for a 4 city tour is shown below. 

0 0 0 1  
0 1 0 0  

In this example, city A is visited first, then D,  B and lastly C. We 
need t o  construct our energy function so that minimum states corre- 
spond to  good solutions. It needs to produce short paths, but must 
also represent valid tours. A valid tour occurs when each city is vis- 
ited only once, which corresponds to there being only one term set 
t o  1 in the rows of the matrix, and that each city is visited, which 
means that there must be one, but only one, term set to  1 in the 
matrix columns. Another constraint which helps t o  promote valid 
tours is that  there should be no more than n 1’s in the matrix as a 
whole. If we write Vx; to  represent the network’s outputs, then the 
X subscript represents a city name and the i subscript the position 

Copyright © 1990 IOP Publishing Ltd.



CONSTRAINT SATISFACTION 159 

it appears in the tour. We can write an energy function for these 
conditions as 

The first term is zero if and only if each city row X contains only one 
1. The second term is zero if and only if each position in the tour 
column contains only one entry set to  one, whilst the third term is 
zero if and only if there are n entries in the matrix as a whole. These 
terms therefore favour states that correspond to  valid tours for the 
TS P. 

We need to  add another term to this energy function in order to 
make it favour short paths. We can express this as another term to 
be added to the first three, of the form 

where dxy represents the distance between the two cities X and Y .  
The part after the dxy  term is non-zero only if the cities X and 
Y occur next to each other on the tour route, and in this case the 
term for the summation is equal to  the distance between those cities. 
Thus the whole summation is equal to  the length of the path for that 
tour. 

When added together, and with the constants A, B and C suffi- 
ciently large, the really low energy states of the energy function will 
have the form of a valid tour. The energy of the state represents the 
length of the tour-the very lowest energy state will represent the 
optimal, shortest tour. Since the energy function contains all the 
information needed to  solve the problem, we must provide inputs to  
the system that are not biased towards any one tour, so we use small 
random values and let the net calculate the optimal result. The in- 
puts are not unimportant; a different starting state may well lead to  
a different tour, but both will be good solutions to  the problem. 

The results obtained from the Hopfield net are shown in figure 6.9. 
The most difficult problem is finding a suitable set of constants that 
guarantee a valid tour and allow the network to  converge within a 
reasonably short time. 

Copyright © 1990 IOP Publishing Ltd.



160 HOPFIELD NETWORKS 

.................................................................... 1 

................. 62 ......... 6:5 ........ ~ . . ~  ........ ........ 
0 

c ...................................... .j ........................... j 

.... ~ ........ ..‘a2.. ... ...a .4.. ..... UB.. ....... o a  ........ . 1  

B .................................................................. ‘ 

............... 

,o,* ..~.6 ........... a,.z ......... (Is ........ ~~ ....... :. . ........ 

(after Hopfield and Tank, Biological Cybernetics 1985) 

Figure 6.9 Results obtained in a typical travelling salesman problem, for 
10 cities. ‘A’ shows a random route, whilst ‘B’ and ‘C’ are results obtained 
by the network. ‘B’ is also the optimal route. The histogram in ‘D’ shows 
the number of walks of a particular length that exist: the values below 3.0 
have been magnified 100 times for clarity. The arrow below the horizontal 
axis shows the results obtained by the network. 

Copyright © 1990 IOP Publishing Ltd.



CONSTRAINT SATISFACTION 161 

6.5.2 The Elastic Net 

There have been other approaches to  optimisation tasks as exempli- 
fied by the travelling salesman problem. One of the more successful 
approaches is the eEastic net of Durbin and Willshaw. The elastic 
net can be thought of as a number of beads connected by elastic into 
a ring. For the travelling salesman problem, the ring is expanded so 
that it satisfies two constraints: 

1. Each city should eventually have a bead at its location, thus en- 
suring the route passes through all the cities. This is achieved 
by having cities pull nearby beads towards them. 

2. The elastic should be as short as possible, thus minimising the 
distance travelled. 

The cities therefore pull the beads towards them, with a force that 
falls off with distance like a Gaussian function, and beads pull neigh- 
bouring beads towards them. As time passes, constraint 1 is made 
more important than constraint 2. This is achieved by making the 
variance, or spread, of the Gaussian function smaller, thus pulling 
the bead closer and closer to  the city’s location. This is shown in 
figure 6.10. 

These constraints can be expressed as terms in an energy function. 
The first is dependent on the distance from the city to  a bead, and is 
the argument to a function that decreases with increasing distance. 
It is this function that is chosen to be the gaussian. The second 
constraint is satisfied by making nearby beads as close together as 
possible. These can be combined to  give an expression for the change 
in position of a bead, written as Ayj, as 

AYj = C W i j ( S 2  - Yj) t Pk(Yj+l - 2Yj t Yj-1) 
i 

where the 5; represent the positions of the cities. The w;j term 
decreases with distance, and the second term represents the elastic 
tension in the net that pulls neighbouring beads together. The so- 
lutions obtained by the elastic net are generally better than those 
obtained with the Hopfield net, and it has the advantage that it 

Copyright © 1990 IOP Publishing Ltd.



162 HOPFIEL D NETWORKS 

............... ..... ......... ......... 
0 0:8"""'- 

..~,.~... 6:8' 

C 

~ , . ~ .  ............................................................... 

~ , 6  .................................................. i o  0 ... .... 

e &........... .......... ..e. .................................... 
0 

0 ...... a.; ............................. ..................... 1 :  b 

.... 6' ........... ~,~ ....... [.(J..4 ........ o'6 ......... o a  ....... 

................... D:* ....... i'D:4 ........ ........ ** ......... i o  j 

Figure 6.10 The elastic net shown as it evolves towards a solution to the 
travelling salesman problem 

Copyright © 1990 IOP Publishing Ltd.



CONSTRAINT SATISFACTION 163 

scales up to  very large numbers of cities relatively well, unlike the 
Hopfield net. 

0 Hopfield net-symmetric, fully connected. 
0 Iterates to  solution. 
0 Acts as autoassociative memory. 
0 Boltzmann machineHopfield net with probabilistic update rule. 
0 Uses simulated annealing (high temperature falling to  low) to as- 

sist convergence to global minima. 
0 Can solve constraint satisfaction problems. 

FURTHER READING 

1. 

2. 

Neural Networks and Physical Systems with Emergent Collec- 
tive Computational Abilities. J. J. Hopfield. In P w .  Nail. 
Acud. Sci. USA., volume 81, pages 3088-3092, 1984. Hop- 
field’s original paper containing the Hopfield network. 

A Learning Algorithm for Boltzmann Machines. G. E. Hinton, 
T. J. Sejnowski, & D. H. Ackley. Technical Report CMU-CS- 
84-119, May 1984. 

Copyright © 1990 IOP Publishing Ltd.



Adaptive Resonance Theory 

7.1 INTRODUCTION 

Whatever their merits or failings there is little doubt that neural 
networks remain a controversial area within the world of computer 
science. Within the body of research itself, however, nobody’s work 
is viewed more controversially than that of Dr. Stephen Grossberg. 
Over the last twenty years Grossberg has contributed a vast range 
of theory to  the field covering most areas of human psychology and 
neurobiology. With a background in mat hematics and neurobiology 
his work is characterised by rigorous attention to  mathematical detail 
and accuracy. His long term research goal is to develop a unified 
body of theory and mathematical methodology to bring together the 
many diverse areas encompassed within the study of neurobiological 
systems. His belief is that progress in the area will be hindered until 
a solid underlying body of mathematics has been evolved to  describe 
the complex dynamics of neurobiological systems. 

Grossberg’s work has not been restricted to analysing the dynam- 
ics of individual neural cells, but has been directed towards find- 
ing solutions to  many of the neurobiological “mysteries)’, at what 
might be described as the “systems” level. More specifically, he has 
addressed the question of how complex systems can be developed 
using locally interactive and highly interconnected regions of cells. 
A quick scan through his published material will show that being 
controversial has certainly not hindered his progress-he has papers 
proposing models for such diverse concepts as cognition, motor con- 
trol (limb movement), vision, perception and self-organisation. They 
are complex models, usually fully described by non-linear differen- 

165 

Copyright © 1990 IOP Publishing Ltd.



166 ADAPTIVE RESONANCE THEORY 

tial equations, based on behavioural data, and in most cases they are 
able t o  replicate many of the subtle dynamics displayed in natural 
biological systems. 

One of Grossberg’s major concerns was establishing stability in a 
self-organising system. Such a complex network as the brain, with 
its massive interconnectivity and “modular” architecture, must have 
a means of maintaining stability at all levels. The network we are 
about t o  discuss was developed from studies into stable neural archi- 
tectures. Most neural network paradigms are plagued by a problem 
known as the stability-plasticity dilemma. This is a rather grand def- 
inition for the basic problem that networks have of not being able to 
learn new information on top of old. In a multilayer perceptron net- 
work, for example, trying to  add a new training vector to  an already 
trained network may have the catastrophic side-effect of destroying 
all the previous learning by interfering with the weight values. With 
training times for large networks requiring considerable amounts of 
computer time (hours, even days) this is a serious limitation. 

Grossberg’s best known work in the neural computing world is 
his adaptive resonance theory. It is a self-organising network that 
has been able t o  solve the stability-plasticity dilemma. This partially 
explains the network’s high profile, although Grossberg’s application 
of the model to  pattern recognition problems has also raised interest. 

7.2 ADAPTIVE RESONANCE THEORY-ART 

The adaptive resonance theory (hereafter referred to  as ART) was 
developed t o  model a massively parallel architecture for a self- 
organising neural pattern recognition network, based on biological 
and behavioural data. The major feature of ART, proposed by 
Grossberg and Gail Carpenter, is the ability t o  switch modes be- 
tween plastic (the learning state where the internal parameters of 
the network can be modified) and stable ( a  fixed classification set), 
without detriment to  any previous learning. The network also dis- 
plays many behavioural type properties, such as sensitivity t o  con- 
text, that  enables the network to  discriminate irrelevant information 
or information that is repeatedly shown t o  the network. 

Copyright © 1990 IOP Publishing Ltd.



ARCHITECTURE AND OPERATION 167 

The following discussion of the ART paradigm will be fairljl “ m e  
chanical”, in that we have curtailed much of the descriptive detail 
relating to  psychological or cognitive effects. We have included what- 
ever we feel adds to a fuller understanding of the workings of the net- 
work, but we have, by and large, reduced the description to  a fairly 
basic level. We must also mention that the ART network is imple- 
mented in three versions (ART-1, ART-2, ART-3) and the following 
discussion will only cover ART-1 in depth. 

7.3 ARCHITECTURE AND OPERATION 

The ART network relies on details of architecture far more than 
most other neural network paradigms. The layers of the network 
have different functions-unlike the fairly homogeneous layers of the 
multilayer perceptron or Kohonen networks-and there are external 
parts to  the layers that control the data flow through the network. 
Because of this, it is probably worth explaining the way that the ar- 
chitecture is implemented, before going on to describe the operation 
of the network during learning and classification. 

7.3.1 The ART architecture 

The ART network is shown schematically in figure 7.1. 
It has two layers; the first is the input/comparison layer and the 

second is the output/recognition layer. We shall use the terms 
comparison for input and recognition for output interchangeably 
throughout the discussion (with apparently reckless abandon) be- 
cause the functionality of the layers changes during the various cy- 
cles. These layers are connected together, again unlike most other 
networks, with extensive use of feedback-from the output layer to 
the input layer and also between the nodes of the output layer as 
lateral inhibition. Some of these weights are shown in figure 7.2. 

This means that the ART network has feedforward weight vectors 
from the input layer t o  the output layer and feedback weight vectors 
from the output to  the input layer. We will designate these feedfor- 
ward and feedback paths W and T respectively, to avoid confusion. 

Copyright © 1990 IOP Publishing Ltd.



168 ADAPTIVE RESONANCE THEORY 

output layer 

control-2 
t 

control-1 

t layer 

input 

Figure 7.1 The ART architecture. 

Copyright © 1990 IOP Publishing Ltd.



ARCHITECTURE AND OPERATION 169 

o+ut layer 

input layer 
,“I ,‘ ‘, 

‘7 1.). 
1....1 

input 

Figure 7.2 The weights within the ART architecture. 

For each layer there are also logic control signals that control the 
data flow through the layers at each stage of the operating cycle- 
these we will designate control-1 and control-2. The respective inputs 
are common to each node in the input and output layers. Between 
the input and output layers there is also a reset circuit. This plays a 
vital role in the network; it performs more than simply a reset func- 
tion for the output nodes-it is actually responsible for comparing 
the inputs to a vigilance threshold that determines whether a new 
class pattern should be created for an input pattern. 

This is the basic architecture of the ART network; the points to  
note are the extensive feedback connections, the separate functions 
of each layer, and the external control signals-all of these will now 
be explained in operation. 

Copyright © 1990 IOP Publishing Ltd.



170 ADAPTIVE RESONANCE THEORY 

7.3.2 ART-1 Operation 

There are several phases to  learning or classification in an ART 
network. The most obvious difference from most other network 
paradigms is that the continually modified input vector is passed 
forwards and backwards (resonated) between the layers in a cyclic 
process. We shall describe the action of the network in terms of the 
activity at the separate layers for each phase. These phases can be 
broadly divided into an initialisation phase, a recognition phase, a 
comparison phase and a search phase. 

7.3.3 The Initialisation Phase 

The initialisation of an ART network requires more work than is the 
case for most other neural networks, which is perhaps not surprising 
because it has more features to  it than most others. The two control 
signals, control-1 and control-2, direct the data flow through the 
network during the various learning or classification phases. Control- 
1 determines the course of data flow for the input layer-its binary 
value toggles the first layer of nodes between its two modes; input 
and comparison. The state of control-1 is one whenever a valid input 
(i.e. non-zero) is presented t o  the network but is forced to  zero if 
any node in the recognition layer is active. Control-2 is the simpler 
of the two-its binary value enables or disables the nodes in the 
recognition layer. It is one for any valid input pattern but zero after 
a failed vigilance test (this disables the recognition layer nodes and 
resets their activation levels to  zero). 

The weight vectors, W and T ,  must also be initialised. The feed- 
back links are simple; they are all set to  binary one, inferring that 
every node in the output is initially connected to  every node in the 
input via a feedback link. The feedforward links are set to  a constant 
r e d  value determined by: 

where n is the number of input nodes. 

Copyright © 1990 IOP Publishing Ltd.



ARCHITECTURE AND OPERATION 171 

The vigilance threshold is also set in the range 0 < p < 1. The 
significance of this will become apparent during the discussion of the 
operating cycle. 

7.3.4 The Recognition Phase 

In the recognition phase the input vector is passed through the net- 
work from the input layer and its value is matched against the clas- 
sifications represented at each node in the output layer. We shall 
discuss how the recognition layer nodes adopt these classifications 
during the training cycle. 

The nodes in the input layer each have three inputs: a component 
of the input vector z;, the feedback signal from the output layer, and 
the control-1 signal. Data flow through the input layer is controlled 
by the “two-thirds” rule suggested by Grossberg and Carpenter-if 
any two inputs to a node are active then a one is output from the 
node, otherwise the node is held at zero output. 

The recognition phase has parallels with the Kohonen network 
discussed in Chapter 5 .  Each weight vector W at each recognition 
node can be thought of as a “stored template”, or exemplar class 
pattern. The input vector is compared to the exemplar at each 
node and the best-match is found. The best-match comparison is 
done by computing the dot product of the input vector and a node’s 
weight vector-the node with the closest weight vector t o  the input 
will yield the largest result. Several nodes in the recognition layer 
may in fact respond with a high level of activation due to  the input 
vector, but the lateral inhibition between the nodes now comes into 
play, turning off each node except the maximum response node. This 
node will inflict the largest inhibitory effect on the other nodes, so 
that although all the nodes are actually trying to  turn each other 
off, it will be the maximum response node that dominates the effect. 
Each node also has positive feedback to  itself to reinforce its own 
output value. The combined effects of reinforcement and lateral 
inhibition will ensure that only one node remains significantly active 
in the layer. 

Copyright © 1990 IOP Publishing Ltd.



172 ADAPTIVE RESONANCE THEORY 

The winning node is now required to  pass its stored class pattern 
(T-the class exemplar) back to  the comparison layer. If we recall 
that  the exemplar is actually stored as a binary weight vector in 
the feedback links to  the input layer, we can see that the exemplar 
can actually be passed to  the comparison layer by simply mapping 
the winning node's activation (which is forced to  one by the action 
of the positive reinforcement) through the feedback weights t o  the 
input layer. If this is difficult t o  visualise then consider the diagram 
of figure 7.3 that  shows just the feedback links from the winning 
node in the recognition layer to the input layer. 

wlnnlng node 

' vector. T. 

x, x2 x3 

Figure 7.3 It is the feedback vector that stores the exemplar vector. 

7.3.5 The Comparison Phase 

Two vectors are present at the input layer for the comparison 
phase-remember that each node in the input layer has three in- 
puts. On one input of each node the input vector is clamped and 
on the second input the exemplar vector from the recognition layer 

Copyright © 1990 IOP Publishing Ltd.



ARCHITECTURE AND OPERATION 173 

is clamped. The third input is the control-1 signal which is zero for 
the duration of this phase because the recognition layer has a fully 
active node. The situation is depicted in figure 7.4. 

Figure 7.4 The input layer with all three inputs applied. 

The two-thirds rule applies for calculating the output of each node. 
The exemplar vector and the input vector are thus ANDed together 
(control-1 is zero and so has no effect on the output) t o  produce a 
new vector on the output of the comparison layer. This we will call 
the comparison vector and designate 2. The comparison vector is 
passed to  the reset circuit along with the current input vector. 

7.3.6 Vigilance Threshold 

The reset circuit is responsible for testing the similarity of the input 
vector and the comparison vector against the vigilance threshold. 
The test is a ratio count of the number of ones in both the in- 
put vector and the comparison vector. It is not a difficult ratio to 
evaluate-the dot product of the comparison vector and the input 
vector will yield a count of the matching ones in each pattern. This 
is divided by the bit count of the one bits in the input vector to 

Copyright © 1990 IOP Publishing Ltd.



174 ADAPTIVE RESONANCE THEORY 

provide a ratio, S, which is subsequently compared to  the vigilance 
value. 

test: Is S > p 

If S is greater than the vigilance threshold, p, then the classification 
is complete and the class membership is indicated by the active node 
in the output layer. If the ratio is below the threshold then this 
implies that we have not found the correct best-match exemplar, 
and the network enters the search phase. 

7.3.7 The Search Phase 

During the search phase the network is attempting to  find a new 
matching vector in the recognition layer for the current input vec- 
tor. First the present active output node is disabled and its out- 
put zeroed. This has a twofold effect: the node is prevented from 
entering any further best-match comparisons for the current input 
pattern, and the control-1 signal is forced t o  zero, since the outputs 
of the recognition layer are again all zero. The input vector is now 
reapplied to  the recognition layer and the best-match comparison is 
recalculated as described above. The network enters the comparison 
phase again, which ends with the new recognition layer exemplar be- 
ing tested against the vigilance threshold. This process is repeated, 
consecutively disabling nodes in the output layer, until a node is 
found in the recognition layer that  matches the input to within the 
limits of the vigilance threshold. If no such node is found then the 
network makes the decision to  declare the input vector an unknown 
class and allocate it t o  a previously unassigned node in the output 
layer. 

This completes the working description of the various st ages of the 
ART network and explains how data is dynamically routed around 
the network in a “resonant” fashion. The term r a m a n t  is most ap- 
propriate, because of the way in which the input vector is “bounced” 

Copyright © 1990 IOP Publishing Ltd.



ART ALGORITHM 175 

back and forth between the input and output layers before it finds a 
stable state. As you can see, there is a good deal more complexity in 
the ART network than in the majority of other neural network algo- 
rithms. The algorithm itself, however, is neither notionally difficult 
nor computationally complex. It can be implemented, as suggested 
by Lippmann, in the following fashion. 

7.4 ART ALGORITHM 

... ... The ART algorithm is given below. 
:.: " '  
::A ..... :.:. 

..:.: 

The ART1 Algorithm 

1. Initialise 

t i j ( 0 )  = 1 
1 

1 + N  
W i j ( 0 )  = - 

0 i i S N - l  O < j < M - 1  

Set p,  where 0 5 p < 1 
where t i j ( t )  i s  the top-down and wij( t )  is the bottom-up connection 
weight between node i and node j at t ime t .  It is these weights that 
define the exemplar specified by output node j .  p is the vigilance thresh- 
old which determines how close an input has t o  be to  correctly match 
a stored exemplar. There are M output nodes and N input nodes. 
2. Apply new input 
3. Compute matching 

i=O 
0 < j  < M - 1  

Copyright © 1990 IOP Publishing Ltd.



176 ADAPTIVE RESONANCE THEORY 

pj is the output of node j and xi is element i of the input which can 
be either 0 or 1. 
4. Select best matching exemplar 

5. Test 

YES go to 7 
NO go to 6 

6. Disable best match 
Set output of best match node to 0. Go to 3. 
7. Adapt best match 

8. Repeat 
Enable any disabled nodes, then go to 2. 

7.5 TRAINING THE ART NETWORK 

The training cycle for the ART network has a different learning phi- 
losophy to  other neural network paradigms. The learning algorithm 
is optimised to  enable the network to  re-enter the training mode at 
any time, to  incorporate new training data. As we discussed earlier, 
this is a practical solution to  the stability-plasticity problem, and 

Copyright © 1990 IOP Publishing Ltd.



TRAINING THE ART NETWORK 177 

the ART network is possibly one of the only neural networks that 
can cope with learning in a continually varying environment. The 
following discussion will describe the factors that affect the learning 
performance of the network. 

There are, in fact, two training schemes for ART, which are de- 
scribed as fast learning and slow learning. Fast learning is so called 
because the weights in the feedforward path are set to  their optimum 
values in very few learning cycles-in fact, in most implementations, 
they are learnt in a single pass of the training data. Conversely, slow 
learning forces the weights to adapt slowly over many training cycles. 
The advantage of this technique is that the weights are trained to 
represent the statistical average of the input data for any particular 
class. This means that more attention will be given to finding the 
salient features of the input patterns that determine the classifica- 
tions. Generally it seems that fast learning is the method most often 
adopted-although this may be for no other reason than that it is 
simpler to  implement. 

ART is very sensitive to variations in its network parameters dur- 
ing the training cycle. Undoubtedly the most critical parameter 
is the vigilance threshold, which can dramatically alter the perfor- 
mance of the network. Also important is the initialisation of the 
feedforward weight vectors-they must all be set to  low values at the 
start of training. If any vector is not initialised to  a small value it 
will dominate the training process, because it will invariably win the 
best-match comparison at the recognition phase. This means that 
all the input vectors will be assigned to just one output node-by 
any stretch of the imagination that is a broad categorisation pro- 
cess! Consequently, the algorithm forces all the weights to small, 
equal values during initialisation. 

The vigilance parameter controls the resolution of the classifica- 
tion process. A low choice of threshold (< 0.4) will produce a low 
resolution classification process, creating fewer class types. Con- 
versely, a high vigilance threshold (tending to  1) will produce a very 
fine resolution classification, meaning that even slight variations be- 
tween input patterns will force a new class exemplar to  be made. In 
many cases, a high value will make the network too sensitive to dis- 

Copyright © 1990 IOP Publishing Ltd.



178 ADAPTIVE RESONANCE THEORY 

similarities between inputs of the same class, and will quickly assign 
all the available output nodes to  new classes. A major criticism of 
the ART network is that  it performs poorly in noisy input conditions 
because of this vigilance problem. However, it must be noted that 
this is not an oversight on Grossberg’s part, rather it is an attempt 
t o  make the network’s performance sensitive to  its environment. By 
this we mean that context is taken into account; depending upon 
the circumstances, a discrimination problem can demand coarse or 
fine categorisation. We know from our own experience that in some 
circumstances we are quite willing t o  accept a very broad generalisa- 
tion of a concept, whereas in other circumstances it would be highly 
undesirable to  have anything less than a very accurate delineation. 
As an example, consider the vast multitude of shapes and sizes that 
we include under the category of table. We don’t learn the specific 
features of every table we see, in order t o  be able t o  recognise a table. 
Conversely, learning telephone numbers would be  of little use to  us 
if we simply remembered that they need six digits and (sometimes) 
a code number. 

Ultimately, whether the network’s sensitivity t o  the vigilance pa- 
rameter is an advantage or a failing depends upon the perspective in 
which the role of ART is seen. As a model of contextual sensitivity 
to  training data, it performs in a very plausible manner when com- 
pared to behavioural data; as an engineering tool t o  perform pattern 
recognition, it has severe drawbacks. 

To illustrate the sensitivity of the network t o  changes in the vig- 
ilance parameter we include the following examples modelled after 
Grossberg’s experimental results, figure 7.5. 

With a low vigilance threshold ( p  = 0.2) the number of bits in the 
vertical stroke of the input pattern is enough to  warrant each of the 
input vectors t o  be assigned to  the same node at  the output layer 
and consequently the same class. With a high vigilance threshold 
( p  = 0.8), the features of the input patterns are examined much 
more carefully and they are considered to be sufficiently different for 
a unique class t o  be assigned to  each. 

The optimal solution may be to vary the vigilance value dynami- 
cally during the training process. A low initial value would quickly 

Copyright © 1990 IOP Publishing Ltd.



input 
patterns 

TRAINING THE ART NETWORK 179 

stored 
exemplars 

+ 
p = 0.8 

...I -... .... .... 

Figure 7.5 The classification performance of the network is controlled by 
the vigilance parameter, p. Two examples of training, with different values 
of p,  are shown. 

Copyright © 1990 IOP Publishing Ltd.



180 ADAPTIVE RESONANCE THEORY 

assign the coarse clustering of the input patterns and increasing this 
later in the training cycle may optimise the classification. In keeping 
with his drive to  model real cognitive processes, Grossberg describes 
the possibility of modifying the vigilance value during training as a 
“punishment event”. By that Grossberg means that if the network 
makes an erroneous classification, then the network should be “pun- 
ished” for it. Punishment takes the form of negative reinforcement 
which amplifies the activity passed t o  the reset circuit and subse- 
quently modifies the value of the vigilance parameter. The punish- 
ment must be administered by an external circuit that monitors the 
response of the network; this implies that the network is now using 
reinforced learning rat her than unsupervised. 

7.5.1 Scaling the Feedforward Weights 

The ART model includes a process in the learning algorithm that 
incorporates what Grossberg describes as “self-scaling” of the feed- 
forward real valued weight vector, W .  The effect of this process is 
as critical to the classification performance of the network as the 
vigilance parameter, since it makes a step towards distinguishing 
noise from the signal in an input vector. We can explain the scaling 
process by looking at  the equation for adapting the weights in the 
feedforward Dath: 

The term Z k  in the denominator is equal to the number of active 
bits in the comparison vector (because the vector is binary). Con- 
sequently, we can see that all the weight components, Zij, are “nor- 
malised” by the active bit count of ones in the comparison vector. 
This causes the comparison vectors with a high number of bits set 
t o  one t o  produce smaller weight values than those with a compar- 
atively low active bit count. The effect this has on the classification 
process is best explained by the following example. Consider two 
input patterns, representing different classes: 

2 1  = 1 0 0 0 0 0  
22 = 1 0 0 1 1 1  

Copyright © 1990 IOP Publishing Ltd.



TRAINING THE ART NETWORK 181 

If scaling was not used during the learning stage then the feedforward 
weights would be set t o  the same values as the feedback weights, 
where no scaling is used: 

w1=21 = 1 0 0 0 0 0  
w 2 = 2 2  = 1 0 0 1 1 1  

If 21 is applied to  the network again after training, the response 
of nodes one and two in the recognition layer will in fact be the 
same (the dot product of 21 with w1 or w2 is the same in either 
case). Either node is, therefore, equally likely to  win the best-match 
comparison. If node 2 wins then the network is in trouble! Apart 
from the input being erroneously classified, the exemplar for node 
two will in fact be corrupted since it will be modified to follow the 
form of the input vector 21-thus undoing its previous training. 

However, using scaling during training will in fact create the fol- 
lowing feedforward weight values: 

Let L=2; 
w ~ = 1 0 0 0 0 0  
w2 = .4 0 0 .4 .4 .4 

Reapplying input vector 21 will now produce a different dot product 
value for each weight vector and, in this case, 21 will only activate 
node one, to  produce the correct classification. 

Summing up these results we can see that scaling prevents any 
vector that is a subset of another being classified in the same cat- 
egory. The consequence of this is that two vectors that share com- 
mon features, but are in different classes, can still be distinguished. 
Grossberg describes the action of the self-scaling technique as the 
discovery of critical features in a context sensitive manner. 

7.5.2 The Training Cycle 

For completeness we will work through a training cycle, describing 
how the input vector is passed through the stages of the network 
before finally being assigned to  an output node. We will assume 
that the network has three input nodes, an arbitrary number of, 

Copyright © 1990 IOP Publishing Ltd.



182 ADAPTIVE RESONANCE THEORY 

Input 
1 
1 
0 

Table 7.1 The twethirds rule. 

Recognition layer Control-1 Result by 2/3 rule 
1 1 1 
1 0 1 
1 0 0 

say, twenty output nodes and is initialised: control-1 and control-2 
are both zero, the output layer is all zero and the weight vectors 
are in their starting states; feedforward weights are set to  a value 
determined by: 

where N = dimensionality of the input vector. 1 
W” = ’’ (It N )  

and the exemplar patterns, stored in the feedback weights, are all set 
to binary one. The input vector, XI, can now be applied to the input 
layer. The “two-thirds” rule determines the response of the layer to 
the input pattern; at this point we have only two active inputs on the 
input layer; the input signal and the control-1 signal which is binary 
one (signifying that there is a valid input to  the network). This has 
the effect of ANDing the input vector with the control-1 signal which 
means that the input vector is passed unchanged through to  the next 
layer. 

This layer is of course the recognition layer, where the input vector 
is matched against the feedforward vectors at each node by calcu- 
lating the dot product of the input and weight vectors. However, 
because all the feedforward weights are initialised to the same start- 
ing value, it will be an arbitrary choice as to which is selected as the 
best-match. The node selected as the winner in the recognition layer 
passes its stored exemplar back to the input layer, and the control-1 
signal is forced back to  zero. The input layer now has three inputs- 
the input vector, the exemplar vector and the control-1 signal. The 
output of the layer by the two thirds rule is shown in table 7.1. 

The comparison vector (1,1,0) and the input vector (1,1,0) are 
now both passed to the reset circuit for the vigilance test. The 

Copyright © 1990 IOP Publishing Ltd.



TRAINING THE ART NETWORK 183 

similarity ratio for the two vectors is evaluated-which in this case 
is quite simply 1 : 1 because the vectors are identical-and the result 
is compared to  the vigilance threshold. The vigilance is 0.8 so the 
similarity ratio is above the threshold value and the input vector is 
assumed to  be correctly classified. Once the vigilance test is passed, 
the winning node weight vector is updated to incorporate the features 
of the input vector. This is done by ANDing the old exemplar vector 
with the current input: 

where A is the logical AND operator. 

ified to: 
Thus, for our input, the winning node will have its exemplar mod- 

The input vector, X I ,  is now stored as a class type at the node in 
the recognition layer. 

If we now apply another training input to the network, X2 = 
(1,0,  l), and recalculate the matching scores at the recognition layer, 
we will find that the node assigned to  the X1 input will be the 
winning node. This is because its feedforward weight values are much 
larger than those of the other, as yet, unassigned nodes. As a result 
the exemplar for class 1 (input X I ) ,  will be passed, erroneously, 
to  the comparison layer with the input XI. However, if we trace 
the exemplar thrcjugh to  the reset circuit as before, we obtain the 
following result: 

S = 1/2 = 0.5 

Now S < p so the network decides that, although node one was 
chosen as the best-match, it is actually a wrong classification and 
the network enters the reset phase. This means that node one will 

Copyright © 1990 IOP Publishing Ltd.



184 ADAPTIVE RESONANCE THEORY 

be disabled (for the duration of the present input), the recognition 
layer reset t o  all zero and the vector reapplied to  the recognition 
phase without node one. In this case the classification will proceed 
as for the first input and X2 will be assigned t o  a unused output 
no de. 

One important feature to note is that the learning time for the 
network is much faster than the iterative convergence procedures 
proposed for most other neural networks. When learning a new 
pattern the slowest part of the process is actually performing the 
search in the recognition layer. However, even this process is not slow 
in comparison to  other neural learning paradigms because the search 
process is actually performed in parallel. The best-match comparison 
is computed simultaneously for each node in the recognition layer 
rather than sequentially. The most important feature is that none 
of the weight values are modified at all until the search process has 
halted and one node has been selected. Usingfust learning the weight 
values are modified t o  update the classification to  a perfect match 
in just one presentation of the input. Any subsequent learning will 
refine these classifications (still in one pass) by incorporating more 
features found in the class training examples. We must once again 
stress, however, that the performance issues are still heavily dictated 
by the choice of vigilance threshold, which has almost total control 
of the network’s generalisation and classification properties. 

We made the point earlier in the chapter that it is somewhat am- 
biguous t o  call this process a learning cycle since the learning mech- 
anisms that we have described stay intact throughout the operation 
of the network. This implies that whenever a new input is presented 
to  the network during the classification process if no suitable match- 
ing classification is found then one is added to  the recognition layer. 
The only limit to  this process is the number of nodes that remain un- 
committed in the layer-the search and learning process will always 
terminate on an unassigned node. If no nodes are available then the 
input will remain unclassified. In practice, the learning process does 
in fact settle to a steady state, as a significant number of classifica- 
tions are formed at the recognition layer, since the likelihood of a 
new input matching one of the known classes will increase. 

Copyright © 1990 IOP Publishing Ltd.



CLASSIFICATION 185 

7.6 CLASSIFICATION 

The ART network exploits to the full one of the inhereQt advantages 
of neural computing techniques; namely parallel processing. It mod- 
els the mechanisms that allow the human brain to  perform recogni- 
tion rapidly despite the apparently prohibitive size of the knowledge 
base that has to be searched. Furthermore, despite the vast number 
of internal representations in the brain, encoding abstract knowledge 
concepts, there is no evident conflict in the recognition or recall of 
familiar objects. This would appear to  indicate that there is lit- 
tle plausible evidence for the brain using such methods as semantic 
nets or sequential tree structures to represent data internally. This 
conjecture-controversial as it may be in some quarters-is upheld 
by Grossberg and others, and stresses the need for parallel search 
methods. In this respect Grossberg and Carpenter make two claims 
for the performance of the ART network. The first of these is that, 
despite the size and complexity of the encodings in the recognition 
layer, familiar input patterns (which implies those classes of input 
used to  train the network) will have direct access to  the classifica- 
tion nodes in the output layer. The second claim is that the network 
uses a self-adjusting memory search that will optimally search the 
recognition layer, in parallel, to classify an unfamiliar input. We 
have broached these points already in our discussion of the search 
and recognition phases. The classification of any input is done in an 
inherently parallel fashion since the input vector is presented to each 
of the nodes in the recognition layer simultaneously. This has the 
obvious implication that the technique can be made parallel at the 
implementation stage; however, this was not the primary concern of 
Grossberg. He has attempted to  show how mechanisms to  allow a 
parallel search may be implemented at the neuron level. Similarly 
for the idea of direct access to recognition nodes. Any unfamiliar 
input pattern will still activate a node in the recognition layer if it 
shares enough salient features to patterns learned previously. As we 
have already described, how close the features have to be is deter- 
mined by the level of the vigilance threshold (which can be likened 
to a control parameter that moderates sensitivity to context in the 
training data). 

Copyright © 1990 IOP Publishing Ltd.



186 ADAPTIVE RESONANCE THEORY 

The most important point to  note about the network in the clas- 
sification stage is that it remains open to  adaption in the event of 
new information being applied to  the network. If an unknown input 
is applied t o  the network ART will always attempt t o  assign a new 
class in the recognition layer by assigning the unknown input to a 
node. The prohibitive limit t o  this process is the number of nodes 
available in the recognition layer. As we discussed earlier it is the 
ability of the network to  switch between stable and plastic states 
without detriment to  the performance of previously learned data or 
t o  the speed of classification that makes it a unique example of a 
neural network. It can again be considered a natural embodiment 
of the human learning process which cannot be described as hav- 
ing a learning cycle (unless we make it three score and ten!) and is 
perfectly adapted to merging new experience with old. 

7.7 CONCLUSION 

That completes an operational overview of the ART network. 
Through it we have attempted to  remove some of the “mystique” 
and confusion surrounding the implement ation of adaptive resonance 
theory, by providing a “nuts and bolts” description of how the net- 
work operates. We did mention earlier, that there are three models 
of adaptive resonance theory, called, not surprisingly, ART-1, ART- 
2 and ART-3, and this discussion has only covered ART-1. ART-1 
and ART-2 are actually very similar, the major difference being that 
ART-2 is a “real valued” implementation of ART-1. By that,  we 
mean the input layer takes real valued vectors as inputs, as opposed 
to  binary vectors in ART-1. A typical example of a real valued in- 
put might be a grey scale pattern obtained from an image processing 
system, where the elements of the vector are usually discrete values 
in the range 0-255. 

The architecture for ART-1 and ART-2 are basically the same, 
but there are subtle differences in the implementation of the input 
layer to  deal with the use of real valued vectors. The input layer has 
also been split into several functional layers so that much more com- 
plex matching of recognition layer and comparison layer data can 

Copyright © 1990 IOP Publishing Ltd.



CONCLUSION 187 

be achieved. This incorporates such effects as feature enhancement, 
noise suppression, sparse coding and expectation from the recogni- 
tion layer. Positive feedback is also used between the buffers of the 
input layer. The performance of the ART network is vastly improved 
and it has been applied to  applications such as pattern recognition, 
speech perception and radar classification. 

ART-3 uses the same network topology as ART-2, but it uses 
equations that model the dynamics of chemical neurotransmitters. 
Grossberg and Carpenter have turned their attention to  mapping the 
functionality of the ART model onto a representation of a biological 
neural architecture. In doing so they have also countered a major 
criticism of ART-1 and ART-2: that the network did not use a dis- 
tributed representation for the internal coding of the categories. It 
also means that the input and output layers of the network are sim- 
ilar because they use the same node model. The significance of this 
is that the network can now be modularised, such that the output 
layer of one network feeds directly into the input layer of another, 
enabling hierarchies of networks to be built. ART-3 also accepts real- 
time constantly varying inputs, the input is continually monitored 
and when the signal changes significantly a reset phase is triggered 
that searches the recognition/learning cycle. This is probably the 
closest a network has come to modelling both the architecture and 
the dynamics of a biological neural network. 

7.7.1 Terminology 

It is worth mentioning before we close this chapter that we have not 
used Grossberg’s terminology during our discussion of ART. The 
main reason for this is that Grossberg’s description of parts of the 
network are couched in “psychological” phraseology, and we thought 
it would be of more benefit to avoid this extra confusion. We shall 
endeavour to  put the record straight now though, and explain Gross- 
berg’s terminology, primarily for the benefit of those who wish to 
read further into his work, and still relate back to  the description we 
have given here. 

Copyright © 1990 IOP Publishing Ltd.



188 ADAPTIVE RESONANCE THEORY 

The most significant difference is Grossberg’s definition of the 
weight vectors. For simplicity, we have labelled them as the feed- 
forward and feedback weight vectors, which we hope is fairly self- 
explanatory. Grossberg, however, prefers t o  describe the weights 
as memory traces. The stored exemplar vector, T ,  and the feed- 
forward weights W ,  he describes as long term memory traces-the 
analogy is quite clearly drawn from his interest in biological systems. 
The exemplar vector is “locked” into memory as a consequence of 
learning-barring minor updates t o  this data as new information 
comes along, we require this information to be stored long term 
and in a stable state. The short term memory traces correspond to  
transient states of the network, in other words, the activity at the 
recognition and comparison layers. These states are not stored, they 
are continually modified during the learning process as the memory 
is searched for matching information. Once a stable output state 
has been found, these short term memory traces are reset, ready for 
new information t o  be presented. One other minor point about the 
weights is that Grossberg describes the feedforward connections as 
a bottom-up adaptive filter. This is simply another way of thinking 
about the transform of the input vector through the weight matrix, 
and because the ART model is based on cognitive effects, it is per- 
haps more useful, in some circumstances, t o  think about the weights 
“filtering” the information that is passed through them. 

The comparison layer and the recognition layer are described as 
a feature representation field , F1, and a category representation 
f i e l d ,  F2, respectively. These are intuitive labels that  describe the 
functionality of the layers during the learning/classification cycle. 

The control signals, that  we have called control-1 and control-2, 
are labelled as attentional gain control channels by Grossberg. The 
reason for this is that  Grossberg chooses to  describe the function of 
these signals in terms of subtle cognitive effects, such as subliminal 
activity and attention priming. These effects are modelled on cogni- 
tive or behavioural data, and although interesting in themselves, we 
did not feel that  they were within the scope of this text. 

Copyright © 1990 IOP Publishing Ltd.



SUMMARY OF ART 189 

7.8 SUMMARY OF ART 

The ART network has many significant differences from other neural 
paradigms. The most notable achievement of the ART model is the 
ability to  deal with the stability-plasticity dilemma of learning in 
a changing environment. The network will continue to  add new 
information, until it utilises all of the available memory, and will 
continually refine the knowledge stored within it as new information 
is presented. The network has been rigorously proven to be stable 
and does not suffer from any convergence problems such as local 
minima. The learning algorithm is unsupervised and requires only 
one pass through the training set to learn the internal representations 
(if fast-learning is used). ART can also deal with both binary or real 
valued inputs under the ART-1 or ART-2 guises. 

The criticisms of ART (ART-1-later models have significantly 
improved the performance and plausibilty of the network) are aimed 
at the poor results in noisy input conditions, the use of non- 
distributed coding of data (i.e. ART uses the “Grandmother)’ cell ap- 
proach), and the implausible “neural” architecture of the network- 
despite it being based on biological studies. 

Summary 

ART is an unsupervised, vector-clustering, competitive learning 
algorithm. 
ART has provided a solution to  the stability-plasticity learning 
dilemma. 
ART is fully described mat hematically by non-linear differential 
equations. 
ART is based on cognitive and behavioural models. 
ART uses extensive feedback between input and output layers. 

Copyright © 1990 IOP Publishing Ltd.



190 ADAPTIVE RESONANCE THEORY 

0 ART is implemented for both real and binary inputs. 

Further Reading 

1. Neural Networks and Natural Intelligence. S. Grossberg. MIT 
Bradford Press, 1988. The definitive collection of papers from 
Grossberg’s group. 

2. The ART of Adaptive Pattern Recognition. G. A. Carpenter 
& S. Grossberg. In IEEE Computer, volume 21, number 3, 
March 1988. An introductory paper to  ART. Useful discussion 
and a good source of further references. 

Copyright © 1990 IOP Publishing Ltd.



Associative Memory 

Associations are common within our everyday experience. We are 
easily able to put names to  faces, to  recall that someone looks famil- 
iar because they work with us, and so on. We form links between 
people, events and places, between shapes and objects and concepts, 
and this ability allows us to  build our own representation of the 
world as we see it. Inputs to our senses usually trigger off a cas- 
cade of associations and recollections, each one prompting the next; 
a piece of music may evoke memories of warm summer evenings and 
images of a particular person, or a barking dog may make us smile 
at some childhood incident. It is clear that human memory works 
in an associative fashion, but, in more general terms, we can de- 
scribe associative memory as a memory system such that an input 
specifically evokes the associated response. 

Computational models of associative memory have been studied 
for many years, and much of the work in neural networks draws 
on the ideas developed in this field. The distinction between an 
“associative memory” and a “neural network” is imprecise, and is 
often a matter of personal preference since many networks operate as 
associative memories (for example, the Hopfield network associates 
patterns with themselves), whilst some associative memories perform 
the same processing as a network. 

8.1 STANDARD COMPUTER MEMORY 

Associative memory appears familiar to us since it corresponds to 
the way in which our own memories operate. However, the memory 

191 

Copyright © 1990 IOP Publishing Ltd.



192 ASSOCIATIVE MEMORY 

of a conventional computer does not work in the same way. In a stan- 
dard computer memory, each piece of distinct information is stored 
in its own seFtion of memory, and is accessed by knowing the value of 
its location, i.e. its address. This local storage of information needs 
some form of address decoder in order to designate or retrieve the 
information. It is like wanting t o  send a friend a letter; you may well 
know their name, but to  get the letter t o  them you have t o  search 
through your address book to find their address, send the letter to  
that address, and then they will receive it. Unfortunately if we only 
know their name, but have no address, we cannot send them the let- 
ter. We can extend the analogy further-just as your friend lives in 
a house at one address, so another completely different person lives 
next door, at a different address. Likewise in a computer memory, 
one piece of information is stored after another, each at  a different 
address. Each piece of information is quite likely to  be unrelated to  
the information on either side of it, just as people in adjacent houses 
often have nothing in common. This type of memory, where the in- 
formation is stored sequentially, is called a listing memory, since the 
information is stored as a list. When recalled, the same information 
is reproduced*in the same sequential fashion as you pass down the 
list. A simple example of a listing memory is a tape recorder. 

Associative memory, however, requires us to  associate some re 
sponse to  a particular input, so that when we present that input, we 
get the required output. It would be possible to  produce a long list 
that  contained all the inputs and their corresponding outputs, and 
then scan it looking for the correct input match and so the corre- 
sponding output, but this seems excessively complicated. Not only 
do we have t o  record al l  the questions as well as the associated an- 
swers, but we dso have to  move down the list each time. Instead, 
if we consider both the input and the output t o  be a patterned sig- 
nal, we can envisage associating the two patterns by transforming 
the first into the second. The memory would only have to hold the 
required transformations, and not an explicit list of input-output 
pairs. In other words, we consider the input and output as vectors, 
and associate them by producing a matrix that transforms the in- 
put vector into the output vector. This matrix holds a mapping 

Copyright © 1990 IOP Publishing Ltd.



STANDARD COMPUTER MEMORY 193 

from one specific stimulus onto the associated response, and so is 
known as a mapping memory. The important point is that the input 
and response can each be represented by a patterned signal, and the 
mapping transforms one pattern into the other; there is no direct 
correspondence between individual elements of the patterns, only 
between the patterns as a whole. 

In associative memories, the aim is for the presentation of one 
set of input signals to elicit the recall of another set of signals from 
the memory. This implies that the input signal contains all the 
necessary information to  access the stored pattern, without the need 
for any decoding. The idea of accessing the memory on the basis 
of the structure of the input pattern gives rise to  the term content- 
addressable memory (CAM). 

With standard memory access, knowing part of address of the ob- 
ject t o  be retrieved is useless. Content-addressable memory, on the 
other hand, is able to recall the complete description of an object de- 
spite only having part of the input available. This tolerance to input 
noise makes these types of memories useful for pattern completion 
tasks, and for closest match recognition of unseen inputs. 

Since there is no direct correspondence between the input and the 
response, there is no one memory location that specifically defines 
the out put; the whole of the matrix is involved. A memory with this 
non-localised representation is known as a distributed memory. In 
a distributed memory, each memory element holds traces of many 
stored items, and it is only when viewed collectively that these indi- 
vidual elements form a coherent whole. There are many advantages 
to distributed memories since the same properties that are in neural 
nets are applicable. Due to  the non-localised storage of the mapping, 
no single part is of critical importance to the overall transformation, 
and so the matrix is resistant t o  damage. This is untrue in a con- 
ventional memory. Distributed memories are also tolerant of faults, 
either in the memory matrix itself or in the input patterns. Again, 
this is due to  the fact that it is the overall pattern that is important 
and a few isolated errors are negligible. However, it is important to 
remember that recall is only possible if the memory can produce a 
selective response to  the input. Since the memory contains many 

Copyright © 1990 IOP Publishing Ltd.



194 ASSOCIATIVE MEMORY 

mappings from one pattern t o  another, it must be able t o  separate 
the required output from the corrupting overlap of the other pat- 
terns. 

So far, we have discussed the association between the “input” and 
the “output” without reference t o  any particular type of input or 
output, but in fact there are two types of association depending on 
the nature of the two patterns t o  be associated. We have already seen 
that we can tolerate errors in the input since the overall effect will 
still be sufficient to  allow recall. With this in mind we can associate 
a pattern with itself by making the input and response patterns the 
same, whereupon presentation of an incomplete pattern on the input 
will result in the recall of the complete pattern. Recall of this nature 
is called autoassociative. If the input pattern is taught in association 
with a different output pattern, then the presentation of this input 
will cause the corresponding pattern to  appear on the output; such 
a memory is termed heterassociative. This is shown in figure 8.1. 

8.2 IMPLEMENTING ASSOCIATIVE MEMORY 

The question is, given that associative memory appears superior to  
conventional memory, can we actually implement such a system on 
a computer? 

Let us first consider the implementation of content-addressable 
memory, and then examine whether this is in fact associative mem- 
ory. A simple form of content-addressable memory can be imple- 
mented in standard computer memory using a technique known as 
hash coding. In hash coding, the address for storage is made a func- 
tion of the item to be stored, and is determined by some mapping 
algorithm. For example, suppose we want to  store pairs of words 
like 

0 shopping list 
0 tea time 

We can choose t o  hash code these pairs on the first two letters of the 
first word to  produce the address, making it equal t o  the sum of the 

Copyright © 1990 IOP Publishing Ltd.



IMPLEMENTING ASSOCIATIVE MEMORY 195 

autoassociative 

memory 

heteroassociative 

recall from 

incomplete input 

1 1 I I I 

Figure 8.1 The different types of association: autoassociation and het- 
eroassociation. The use of an autoassociative system for pattern completion 
is shown in the bottom figure. 

Copyright © 1990 IOP Publishing Ltd.



196 ASSOCIATIVE MEMORY 

alphabet positions of the letters. Given that ‘s’ is the 19th letter in 
the alphabet, and ‘h’ the 8th, the word pair “shopping list” would 
be stored at location 19 -t 8 = 27, whilst t=20, e=5 means that “tea 
time” would be stored at location 25. 

For recall, the same algorithm is applied t o  the input in order to 
recover the location. The data is scattered throughout the memory 
area, its position dependent only on its contents and not in any 
regular order. However, there are problems with hash coding. The 
item that is used as the hash code is known as the key; this key has 
to  be unique since only one address can be computed from each key. 
Different associations with the same key would cause a clash since 
they would both try t o  occupy the same storage location, and only 
one item can be held at  any one address. Collisions can also occur 
when the computed address of two different keys happens t o  be the 
same. Returning t o  our example, we would not be able t o  store the 
extra item 
e shoe polish 
since the ‘sh’ address will be the same as for “shopping list”. Like- 
wise, 
e pink tablecloth 
causes problems, since with p=16, i=9, it collides with “tea time” 
at address location 25. 

So, does this implement true associative memory? Hash coding 
does provide content-addressable memory, decoding the input t o  pro- 
vide the response, but it requires the key word t o  be known exactly. 
Our ideal associative memory should provide recall on the basis of 
incomplete, noisy and distorted input cues, so we need to consider 
whether there is a better way. 

8.3 IMPLEMENTATION IN RAMS 

Associative memories can be implemented in random access mem- 
ories (RAMS), an approach which has been pioneered by Professor 
Igor Aleksander. The elements of a random access memory are shown 
in figure 8.2. 

Copyright © 1990 IOP Publishing Ltd.



IMPLEMENTATION IN 

2” bits of storage 

/ 

n address 
lines 

RAMS 197 

out 

write enable data in 

Figure 8.2 The elements of a basic random access memory. 

There are n address lines, each taking a binary value of 1 or 0, so 
there are 2n distinct address patterns a t  the input, each accessing 
one address. Each address can store one bit of information which 
would appear on the data-out line when accessed. This is known as 
the “read” mode, and is different to  the “write” or “teach” mode. 
The teach mode is entered by activating the write-enable terminal, 
which, as its name implies, allows data to  be written into the RAM. 
In this mode, the contents of the addressed location can be changed 
to  the logical value determined by the data-in terminal, i.e. $1 or 
0. This RAM can act as a simple pattern recogniser; if the pattern 
is applied at the n binary inputs, it can be taught by energising 
the write-enable input and setting the data-in line t o  one. These n 
inputs together produce a unique address, which is used t o  store the 
data-in value of t1. In the recognition stage, when the RAM is in 
the read mode, the RAM will output this 1 if the same addressing 
pattern occurs on its inputs. However, the RAM will only respond t o  
those patterns on which it has been taught and will not extend the 
recognition to  other similar patterns. Also, it requires a complete 

Copyright © 1990 IOP Publishing Ltd.



198 ASSOCIATIVE MEMORY 

pattern on its input. This appears to  be no better than using hash 
coding, but networks of RAMS are able to  act in a more complex 
way, as shown by the following example. 

Figure 8.3 shows an arrangement where a 3 by 3 matrix is con- 
nected to  three RAMs. 

01 1 
output 

common teach A 

Figure 8.3 Matrix connected to three RAM units. 

The training set shown in figure 8.4 is presented. The RAMS 
are taught to  respond with a 1 for those patterns that are in the 
training set. Since the results of the RAMs are passed through the 
“and” gate, only those patterns causing all three RAMS t o  respond 
positively would be classified in the same way as the training set. 

Looking at the training set, we can see that the three RAMs look 
at one row of the pattern each, and, during training, each RAM sees 
only two different addressing sub-patterns. Each ram will output a 
1 when its sub-pattern occurs, so the net will recognise any possible 
combination of these three rows. This means that the net will recog- 

Copyright © 1990 IOP Publishing Ltd.



IMPLEMENTATION IN RAMS 199 

Figure 8.4 Training set for three-RAM net. 

nise all of the patterns shown in figure 8.5 since these are all made 
up of combinations of the training set sub-patterns. 

Since there are 3 x 3 = 9 locations in the grid, each of which can 
be in one of two states, either 1 or 0, there are 2’ = 512 different 
possible patterns that can be represented on the grid. Three of these 
were presented in training, and we get recognition of these three, plus 
the five additional ones shown in figure 8.5. They are similar, since 
they have at most one bit set differently from one of the training 
patterns. The net generalises from the taught patterns to include 
these other similar patterns, which are therefore collectively known 
as the generalisation set. 

The ability of the recogniser to  generalise is an important feature 
of such a system, and the size of the generalisation set is controlled 
by the diversity of patterns in the training set. If the number of 
subpatterns seen is greater, so will be the size of the generalisation 
set, since there are more possible combinations of the sub-patterns. 
The gate used to  combine the RAMs output for the output decision 
is also crucial, since all RAMs have to see a known sub-pattern for 
classification to occur with an AND gate, whilst only one has to  
respond for classification to occur if an OR gate is used. These 
combinations of RAMs are known as single-layer RAM nets. Their 
generalisation properties are summarised in figure 8.6. 

This simple architecture divides the set of all possible patterns 

Copyright © 1990 IOP Publishing Ltd.



200 ASSOCIATIVE MEMORY 

Figure 8.5 The generalisation set: extra patterns that the network recog- 
nises. 

into those that are in the generalisation set, and those that are not. 
Most pattern recognition problems require more categories than this, 
and so many RAM nets are used in conjunction, each net trained to 
respond to one class of pattern. These nets are modified so that 
instead of having a gate to combine the RAMS output, the decision 
is left to a maximum response detector. This is shown in figure 8.7. 

These modified RAM nets are known as discriminators, and the 
maximum response detector assigns classification to the discrimina- 
tor that shows the highest response to  the input pattern. A pattern 
is classed as “unknown” if there are equal responses from two or 
more discriminators, since this implies that the pattern is a member 
of more than one class. The type of generalisation that this ar- 
rangement demonstrates is dependent on the training data used and 
the pattern of connectivity of the RAM units, since this determines 
the sub-patterns that are encountered by each discriminator. The 
generalisation can also be controlled by setting a certain minimum 
difference between the responses of the two maximum discrimina- 
tory units, such that this difference has to  be exceeded before the 
pattern is classed as “unknown”. In this way, patterns that evoke 

Copyright © 1990 IOP Publishing Ltd.



IMPLEMENTATION IN RAMS 201 

uaining sets 
0 

RAM re mes combined 
using anYb gate. 

generalisation seu 

universal set of all patterm 

1 $e to* larger generalisation 

Usin an OR gate to combine 
FL4hf responqcs produces a 
larger generallsatlon set - 
less patterns classified 89 
unknown. 

Figure 8.6 Summary of the generalisation properties. 

Copyright © 1990 IOP Publishing Ltd.



202 ASSOCIATIVE MEMORY 

U 

discriminators 

Figure 8.7 Matrix connected to three RAM units, feeding a maximum 
response detector. 

nearly equal responses from two classes will be classified as unknown 
as well, therefore reducing the size of the generalisation set. 

8.4 RAMS AND N-TUPLING 

The RAM network was developed from a recognition process first 
described by Bledsoe and Browning in 1959. Known as the n-tuple 
process, it is a general form of the RAM implementation. The term 
“n-tuple” derives from the fact that  each unit accepts n inputs as a 
group, or tuple. Rather than these n inputs addressing a memory lo- 
cation, the tuple produces an output that is dependent on the inputs, 
usually one bit set t o  1 in 2n possible outputs. More complicated 
examples are allowed in which more than one bit is set, but these 
are not discussed here, since their behaviour is a simple extension 
from the usual case. 

Copyright © 1990 IOP Publishing Ltd.



RAMS AND N-TUPLING 203 

As we can see, the tupling function outputs a unique value de- 
pending on the values of its inputs, and this output has a constant 
number of bits set to 1, i.e. in this case, one. This is true for tu- 
ples with a larger number of inputs, as long as there are 2n possible 
output lines. This constant number of bits set to 1 is useful since it 
forms a sparse coding of the input. In a tuple with four input lines, 
for example, there may be any number of bits set to one from none 
to  four. However, the output from the tupling function will only ever 
have one bit in sixteen set to 1, with the rest zero. 

The n-tuple units sample parts of an input image, as shown in 
figure 8.8. 

Figure 8.8 The tuples sample the image randomly. 

The mapping of image bits onto the tuples is usually random, but 
specific mappings can be used if required. Each tuple unit “sees” 
a small portion of the image, and responds according to  the input 
it receives, independently of the responses of the other tuples. If a 
tuple responds to a certain input pattern, this means that any input 
that has the same pattern of bits on the tuple input will provoke the 
same response from the tuple. This is shown in figure 8.9. 

The bits that are not sampled by the tuple are free to  take on 

Copyright © 1990 IOP Publishing Ltd.



204 ASSOCIATIVE MEMORY 

either value without affecting the output of the tuple and therefore 
its recognition. However, these free bits are not usually ignored since 
another tuple may have them as its input. 

W 

/+ 
If this pattern produces a 
specific output from the 
tu le, then so will all of the 
otRer ones below. 

... . . . . . .. . . . . . . . . . . . . . 

Figure 8.9 More than one local pattern can produce the same output 
from one tuple. 

This ability to  respond to  patterns that have not been seen before 
is an essential feature of the system, and is known as generalisation. 

The random mapping of the tupling, with its non-linear binary 
logic, means that patterns that are not linearly separable can  be 
successfully classified, as long as the fuple sampling overlaps the pat- 
tern boundaries and so gets a different input for each of the different 
pat terns. 

Copyright © 1990 IOP Publishing Ltd.



WILLSHAW’S ASSOCIATIVE NET 205 

8.5 WILLSHAW’S ASSOCIATIVE NET 

A true associative memory is known as Willshaw’s associative net. 
It is a distributed mapping memory, with binary inputs, “evoking” 
an association between the input pattern and the required output 
pattern. It can be visualised as a matrix of initially unlinked wires, 
one horizontal wire for each of the bits in the input, and a number 
of vertical wires, one for each bit in the output. In the teaching 
phase, each input example is presented along with the bit pattern 
with which it is to  be associated. This pattern appears on the verti- 
cal wires, whilst the input appears on the horizontal wires. A “link”, 
i.e. a weight of t 1 ,  is set in the memory matrix wherever an active 
vertical wire crosses an active horizontal wire. This process is re- 
peated for the whole example set. This simple learning rule uses 
only binary links, so that once formed a link remains in place; if 
a new pattern requires a link in an empty position, one is formed, 
but if the position already has a link, then nothing is altered. The 
learning of patterns therefore happens in one pass through the ma- 
trix, without the need for the iterative processes that other methods 
require. The Willshaw net is shown in figure 8.10. 

In recall, the input pattern is presented as before, and the output 
pattern is calculated by summing the number of links in each col- 
umn that are activated by the input. These integer totals are then 
t hresholded to  recover the original binary pattern. 

We can express this mathematically as’follows. Let the mem- H ::::::;::,;:;:,;:: ory matrix = M;j,  the input vector = Ai,  output vector Bj. 

. . . . . . . . . 

la .& 

Then teaching can be expressed by 

1 A i , B j  = 1 
0 otherwise Mij = 

The recalled vector Rj is given by 
n 

Rj = Mpj.A,  (8.2) 
p = o  

This vector R is then thresholded to recover the estimate of the 
associated pattern B’. 

Copyright © 1990 IOP Publishing Ltd.



206 ASSOCIATIVE MEMORY 

-1- 
I 

Figure 8.10 The Willshaw net: nodes in black represent weights of $1, 
whilst nodes in white represent zero weight or no connection. 

8.5.1 Problems 

There are some problems with the Willshaw net when trying to  recall 
patterns. Whenever the output should be a 1, the net will always 
produce a 1, since the correct links will have been set. However, if 
the output should be 0, there may have been enough links set by the 
storage of other patterns to  give a false positive output, and the net 
may respond with a 1 when the 0 is required. Knowing at what level 
to set the threshold is problematical too; if it is set too low then too 
many bits are set in the output pattern, but if it is too high, not 
enough bits are recovered. What is usually done is to choose a level 
that is equal to  the number of bits set to  one in the input pattern. 
For example, an input pattern with 3 bits set to one would have a 
threshold level of 3 as well. 

Since links are set in the matrix whenever there is a 1 in the 
input pattern, patterns with a high proportion of 1’s soon cause the 
net to have the vast majority of the links set and so recall becomes 

Copyright © 1990 IOP Publishing Ltd.



THE ADAM SYSTEM 207 

impossible. Such a situation is known as satumtion, and has to be 
avoided in systems that strive for accurate responses. 

8.6 THE ADAM SYSTEM 

An improvement on the Willshaw net has been suggested by Dr. Jim 
Austin, and is known as the ADAM (advanced distributed associa- 
tive memory) net. This incorporates the n-tupling discussed earlier 
as a pre-processor which samples the input and feeds the memory 
matrix. This matrix is in many respects the same as the Willshaw 
net, but is split into two parts, as shown in figure 8.11. The reason 
for splitting the memory into the two sections is t o  allow the intro- 
duction of an intermediate “class” pattern, C, which has a known 
number of bits set to 1. Instead of the memory storing the associa- 
tion A + B, it stores A + C in the first matrix, and C --+ B in the 
second. Overall, the memory has still associated A with B, but via 
an intermediary stage. This seems at first sight simply a little more 
complicated, but the introduction of the class pattern allows much 
more accurate recall, since the characteristics of the class pattern 
can be precisely determined. 

The thresholding of the matrix response is done using a technique 
known as n-point thresholding rather than the standard form of set- 
ting to  one all the values above or equal to  a certain level, and setting 
the rest to zero. N-point thresholding selects the n highest values 
and sets those to  one, returning all the remaining values to  zero. 
This effectively gives a dynamic threshold level that is adjusted un- 
til a fixed number n of bits is recovered. This is much more successful 
in recalling the associated pattern than the standard static threshold 
method, especially as the class pattern that is being recalled has a 
known number of bits set to  one, and so the value of n is determined. 
This is easiest to see with an example. 

The matrix is taught with the first pattern and its associated 
class pattern. The second diagram shows the matrix after many 
other patterns have also been taught. On presentation of the first 
pattern, the response is shown, calculated by summing all the links 
that intersect with an active horizontal wire in each vertical column. 

Copyright © 1990 IOP Publishing Ltd.



208 ASSOCIATIVE MEMORY 

1 

0 

1 

1 

0 

0 

The input and its 
arsociated ckss panem 

1 

The memory after being 
taught on otksr panem 

0 

1 

1 

0 

0 

1 

1 0 1 o s m  .... . .. . ... .... ... . ..... . ... . . . . . ..... . ..... 
-_-- 

Figure 8.11 The ADAM matrix showing its appearance after teaching 
and the equivalence of the n-point thresholding at  high response levels. 

Copyright © 1990 IOP Publishing Ltd.



THE ADAM SYSTEM 209 

If a Willshaw threshold of 4 were used, then the response would 
be as shown in the second row, i.e. 10001010. Notice that this 
has recovered the class pattern required. If the n-point threshold is 
used, there were 3 bits set t o  one in the original class pattern, so 
we select the three highest values in the response, and this produces 
the correct output as well, i.e. 10001010. For response levels that 

. .... . . .... . ..... ....... ... ......... ............I.. ........ ... . . . . . . . . ........ .. ... ........ .................... * 

11 0 0 0 1 0 1 0 r-poinfthmhokfing I 

Figure 8.12 The ADAM matrix: n-point thresholding at low levels is 
much more successful than the fixed value approach. 

are lower, however, the n-point technique is much more effective. 
Consider figure 8.12. The inputs t o  the system have two errors, 
resulting in a response from the matrix that is very low. Using a 
fixed level for thresholding does not recover any pattern at all, but 
the n-point technique manages to  correctly produce the associated 
class pattern. 

The ADAM system then enters a second stage, where the class 
pattern recalled from the matrix is passed into a second matrix, 
which associates this class pattern with a final output pattern. This 
two-stage association has a number of advantages. The class pat- 
tern acts as an intermediate stage with a known number of set bits, 
allowing the n-point thresholding technique to be used on noisy, in- 

Copyright © 1990 IOP Publishing Ltd.



210 ASSOCIATIVE MEMORY 

complete, o r  otherwise corrupted input. This would be impossible to  
do if the input were associated directly with the output since there 
would not then be a known number of bits set to one, and so the n- 
point technique is inoperable. The class pattern entering the second 
memory is a hopefully noise-free vector that allows accurate recall 
in the second matrix of the final output pattern. The use of the 
class pattern is also storage-efficient, saving on the size of memory 
required. If an m by n pixel image is to  be associated with an 5 by 
y output image, then m -  n 2. y bits of storage are required to  make 
the matrix. If an intermediate class pattern of a bits is used, then 
the storage requirements become ( m  n U )  t ( a .  z y) = a( mn t xy) .  
Since mnay is much larger than mn + ay, space is saved. For ex- 
ample, if we associate a 512x512 image with itself, then m, n,  x and 
y are all 512. Basic storage requires 5124 = 68719476736 bits (8589 
Mbytes), but the use of a class pattern of, say, 64 bits needs storage 
of 64 a 2 5122 = 33554432 bits (4.19 Mbytes), which represents a 
large saving on memory space. 

The use of the n-tuple preprocessing has two major advantages; 
it copes with non-linearly separable patterns, as we have seen, and 
so allows the ADAM system to resolve such problems as the XOR 
one. To put this in more mathematical terms, the non-linear logic in 
the tupling function provides a mapping that transforms any input 
into one that is linearly separable, given the right sampling by the 
tuples. It also ensures that the inputs to the memory matrix are 
sparsely coded, so that there are not many active lines in any input, 
and this helps prevent the memory matrix from becoming saturated. 
The whole system architecture can be seen in figure 8.13. 

8.6.1 Applications 

The ADAM memory was originally developed for scene analysis, al- 
though it is also used as a fast-learning network for a variety of 
classification problems. It has the advantage that it learns new ex- 
amples with one pass through the matrix and so does not require 
the back-propagation of errors, or repeated iterations. However, i t  
has no adaptive internal representation, and so cannot code higher- 

Copyright © 1990 IOP Publishing Ltd.



T H E  ADAM SYSTEM 211 

class pattern 

tupling 

victor 1-1 memory response 

stage 2 

output image 

Figure 8.13 The ADAM system architecture. 

Copyright © 1990 IOP Publishing Ltd.



212 ASSOCIATIVE MEMORY 

order features of the input, unlike the multilayer perceptron. This 
limits its generalisation abilities, which come mainly from the tupling 
function. Sampling the input, the pertinent features that allow clas- 
sification are not discovered explicitly but left to probability that 
some of them fall in regions sampled by different tuples. Since the 
tuple sampling is random, it is likely that important features are de- 
tected by at least some of the tuples, and generalisation occurs from 
these. 

8.7 KANERVA'S SPARSE DISTRIBUTED MEMORY 

A different implementation of associative memory was proposed by 
Kanerva in 1984, and can function as an autoassociative memory, 
a heteroassociative memory, or a sequential sequence memory. A 
sequential sequence memory is one in which the presentation of one 
pattern elicits the recall of a different pattern, which itself causes the 
recall of another, and so on. In a conventional memory, we have seen 
that data is stored by writing it into one of a number of locations 
each specified by a unique address, and is recalled by reading out the 
contents of the specified location. The addresses are represented by 
binary vectors, and the number of possible addresses is dependent 
on the length of this vector. If the length of the address vector is n, 
then there are 2" unique addresses that can be accessed, and these 2n 
addresses make up what is known as the address spce .  If n is large, 
then 2" is very large indeed-for n = 1000, 2n exceeds the number of 
atoms in the universe. If we wanted to consider using memories with 
large n, the number of physical locations quickly becomes impossibly 
huge and there is no way of actually implementing this amount of 
storage. 

A method of actually implementing a memory system that was 
able to use large addresses was proposed by Kanerva. His approach 
is to  randomly choose a small set of m addresses, where m is typi- 
cally between a million and a billion, that are to be identified with 
actual storage locations. Since the value of m will be very much less 
than the 2" possible addresses, these will be sparsely distributed over 

Copyright © 1990 IOP Publishing Ltd.



K A N E RVA ’ S SPA RS E DI ST RIB U TED M EM 0 RY 213 

the address space, which is why the memory is called a “sparse dis- 
tributed memory” (SDM). In order to write into this memory, both 
the address and the data are required, just as for a conventional 
memory, but the address is a bit pattern that is allowed to  be any 
one of the 2n possibilities. There will be a few of the m locations in 
memory that have their addresses close to the actual input address, 
and the data is written into these locations. In this context, “close” 
means all those addresses that lie within a Hamming distance h of 
the original address. In other words, if the n-bit address patterns 
are considered to lie in an n-dimensional space, then all the selected 
patterns will correspond to  all those physical locations that have ad- 
dresses within a hypersphere of radius h centred on the actual input 
address. This is shown in figure 8.14. 

m selected addresses, 
sparsely distributed 
throughout address 
space \ ’  

(hyperiphere of radius h - 
data written to locations contained 
within this space 

Figure 8.14 Diagrammatic form of the SDM, demonstrating the Ham- 
ming hypersphere containing the selected addresses. 

Copyright © 1990 IOP Publishing Ltd.



214 ASSOCIATIVE MEMORY 

Instead of overwriting the contents of the previous value stored 
in any selected location, the data is added in, since there may be 
occasions when we have to  write two or more sets of data into the 
same location. This will occur if the hyperspheres chosen by different 
input addresses are sufficiently close toget her to overlap, causing 
the selection of the same address by different inputs. This means 
that each location of the SDM consists of a set of n counters. For 
the system to be effective, the vectors are considered to  consist of 
bipolar ( t l ,  -1) values rather than binary ( 1 , O )  values, since the 0’s 
in binary vectors are ignored when added, but the -1’s in bipolar 
vectors are not: 1 t 0 = 1, whereas 1 t (-1) = 0. For recall in the 
SDM, all the selected locations that lie within the Hamming distance 
of the input address are read, and the values in each of the n counters 
are added in parallel t o  yield n sums. Each of these sums is then 
thresholded at zero, with a +1 output if the sum is greater than 
zero, -1 if it is less than zero, and the value remaining unchanged 
if it happens to  equal zero. This threshold process is usually able 
to  separate out the required pattern from the corrupting overlap of 
other similar patterns, if not too many patterns have been stored. 

The advantage of such a system is that it enables large address 
patterns t o  be associated with physical storage locations, and so 
complex inputs that are represented as large bit patterns can act 
as the address for storage. This means that the SDM acts as a 
content-addressable memory. What is more, since the actual storage 
locatioiis that are accessed lie within a certain Hamming distance 
of the address provided, most of the locations accessed will be the 
same if an input address has a small number of incorrect bits. This 
ensures that recall is still possible even if the addressing pattern 
contains a few errors, and so the SDM can act as a true associative 
system. In other words, a slightly corrupted input pattern should 
still lie within the hypersphere of the actual address centre, and so 
the data recovered will be what was originally stored. The memory 
functions as a heteroassociative one if the data vector stored is of a 
different size t o  the accessing data address, and as an autoassociative 
memory when the data stored is actually the address. The principles 
for autoassociative recall hold for the sequential sequence case, only 

Copyright © 1990 IOP Publishing Ltd.



BIDIRECTIONAL ASSOCIATIVE MEMORIES 215 

the recovered output is taken as the new input t o  generate the next 
pattern. 

8.8 BIDIRECTIONAL ASSOCIATIVE MEMORIES 

Bidirectional associative memories (BAMs) were proposed in 1988 
by Kosko, and they can be seen as a two-layer non-linear feedback 
network, as shown in figure 8.15. Patterns sweep from one neuron 
layer to the next, and then back again, slowly relaxing into a stable 
state that represents the network’s association of the two patterns. 

Figure 8.15 The BAM seen as a two-layer network. 

The weights in the forward pass can be represented as a connec- 
tion matrix M ,  whilst those in the backward pass are given by the 
transpose of this matrix, denoted M T .  The use of the connection ma- 
trix’s transpose makes the BAM interesting, since this distinguishes 
it from other systems which use a different matrix of connections for 
the backward pass. 

The BAM stores pairs of patterns A;,  B;, and is autoassociative if 
B; = A; and heteroassociative if B; is different from A;.  In a stan- 
dard heteroassociative memory such as the Willshaw net discussed 
earlier, A is presented to M ,  then thresholded to  produce output B 

Copyright © 1990 IOP Publishing Ltd.



216 ASSOCIATIVE MEMORY 

that is hopefully closer t o  the stored pattern B; than to  all the other 
patterns Bj, if A was closer to A;. However, we have seen that this 
assumption is not always valid, and we would like a procedure that 
would allow us to increase the accuracy of the final recall. The BAM 
achieves this by passing the output B back through the system to 
produce a new value, A’, which should be closer t o  the stored pat- 
tern A; than was the original pattern A .  This new value is passed 
forwards again, producing a better estimate B‘, and the process re 
peats until it settles down t o  a steady resonance between the stored 
patterns A; and B;. The advantage of using the transpose of the 
matrix M T  is that  it requires no additional information, and this 
information is locally available to  each node. Kosko has proved that 
the BAM converges to  a fixed pair of stored patterns by extend- 
ing Hopfield’s argument , and demonstrates that the Hopfield case 
of autoassociation is simply a specialised case of the BAM, when 
B = A .  In other words, the sequence A --$ M + B,  followed by 
B -+ M T  + A’, which continues, producing a series of approxima- 
tions ( A ,  B ) ,  (A’ ,  B’), (A”,  B”), . . . will converge t o  a steady resonant 
state that  reverberates between the fixed pairs ( A f ,  Bj) .  Having 
proved that any matrix M is bidirectionally stable in this way, he 
goes on to  show that patterns cannot only be recalled from a fixed 
matrix M ,  as in the Hopfield net, but that if small changes are made 
to  M in accordance with a Hebbian learning rule, it will learn to 
associate two patterns. In this case, as the patterns oscillate back 
and forth, pattern information is allowed to  seep into the weights, 
resulting in the learning of an association between the two patterns. 

8.9 CONCLUSION 

We have discussed the main principles of associative memory, as well 
as focussing on the major approaches currently in use. The distinc- 
tion between these forms of memories and neural networks is a hazy 
one, since each can play the role of the other. The approaches to 
associative memory tend t o  offer advantages in the speed of storage 
of patterns, but are unable to  perform the complex data represen- 
tation tasks in the same way that multilayer perceptrons can. This 

Copyright © 1990 IOP Publishing Ltd.



CONCLUSION 217 

means that practical decisions as to the suitability of one method 
over another have to be carefully considered. 

Summary 

e 

e 

e 

e 

e 

e 

e 

e 

e 

e 

Two stored patterns are autoassociative if they are the same, and 
heteroassociative if they are different. 
Sequential access memories retrieve one pattern after another via 
autoassociation. 
Content-addressable memory (CAM) is accessed via knowledge of 
its contents, not its address. 
Hash coding implements CAM. 
Random access memories used to implement associative memory. 
n-tupling takes many small samples from an image. Produces 
sparsely coded output. 
Willshaw net provides associative memory. Matrix of binary con- 
nections set to 1 whenever both active. Requires thresholding to  
recover pattern. 
ADAM provides more effective thresholding and storage than 
Willshaw net by using n-tuple preprocessing and n-point thresh- 
olding to  recover intermediate pattern with known number of bits. 
Sparse distributed memory implemented by selecting a few phys- 
ical locations to  represent many similar addresses. 
Bidirectional associative memory resonates two patterns via a ma- 
trix and its transpose. 

FURTHER READING 

1. Self Organisation and Associative Memory, third edition. T. 
Kohonen. Springer- Verlag , 1990. 

Copyright © 1990 IOP Publishing Ltd.



218 ASSOCIATIVE MEMORY 

2. Guide to  pattern recognition using random-access memories. 
I. Aleksander & T. J. Stonham. In Computers and Digital 
Techniques. Volume 2, number 1, 1979. A review of RAM 
pattern recognition systems. 

3. ADAM: A Distributed Associative Memory for Scene Analysis. 
J. Austin. In Proc. First Int. Conf. on Neuml Networks, 
IEEE. Eds. M. Caudhill & C. Butler. Volume 4, 1987. 

4. Sparse Distributed Memory. Pentti Kanerva. MIT Bradford 
Press, 1988. Kanerva’s own book on his sparse memory system. 

5. Bidirectional Associative Memories. Bart Kosko. In IEEE 
Tmnsactions on Systems, Man, and Cybernetics. Volume 18, 
number 1. January/February 1988. An interesting paper, it 
produces the BAM and gives a neural network interpretation 
of it. 

Copyright © 1990 IOP Publishing Ltd.



9 

Into the Looking Glass 

9.1 OVERVIEW 

The purpose of this chapter to  to look ahead to  the future of neu- 
ral computing. There are two major areas of implementation that 
are developing rapidly: the hardware neural network chips, and the 
optical computing field. The mathematical techniques used in the 
analysis of networks are also becoming more diverse, and improve- 
ments in understanding can be expected from developments in the 
theoretical areas of the subject. The interchange of ideas across the 
boundaries of scientific disciplines means that it is practically im- 
possible to  predict what the future has in store, but the two areas of 
hardware realisation both have great potential. It is not the purpose 
of this chapter to be comprehensive in scope and description, but to  
paint the broad outlines of future developments. 

9.2 HARDWARE AND SOFTWARE IMPLEMENTA- 
TIONS 

The majority of the networks that we have discussed exist as software 
simulations only, barring the optical Hopfield and RAM associative 
memory networks. By this we mean it is not possible to buy inte- 
grated circuits that contain an artificial neural network. The results 
and applications that have been quoted in this book all stem from 
software simulations on standard computer hardware from IBM-PCs 
to  high-performance parallel machines. The reason that we have in- 
cluded the algorithms in each chapter is primarily so that the inter- 
ested reader can actually code them into programs. We recommend 

219 

Copyright © 1990 IOP Publishing Ltd.



220 INTO THE LOOKING GLASS 

that you consider doing this because it provides a very useful insight 
into the workings of the learning methods for these algorithms. 

If, however, you are not in a position to code the algorithms your- 
self, then you may wish t o  consider one of the numerous software 
packages available that simulate most of the major neural paradigms. 
These are available from such companies as Nestor, Hecht-Nielson, 
Science Application International Corporation (SAIC) and Neural- 
ware, t o  name but a few. New software products are regularly ar- 
riving on the market, with prices ranging from anywhere between 
twenty and ten thousand pounds. It might be worth adding a note 
of caution about the computing resources that are required t o  run 
typical software simulations of neural networks. One common fea- 
ture that all the various algorithms share is a significant amount 
of “number-crunching”-any network of practical dimensions will 
place heavy demands on the processing power required during train- 
ing. The main mathematical processing is the multiply and add for 
the weights of each node in the network. For methods such as back- 
propagation, there is also the error derivative for gradient descent 
learning. Any computer that is t o  run simulations of neural net- 
works ideally requires a large amount of storage memory ( to  deal 
with the large vector matrices) and a fast microprocessor. Typically, 
software simulation of neural networks is performed using computers 
with add-on accelerator boards (or co-processor boards) that  have 
high-performance processors on them, capable of very fast multiply 
and add operations. On slow computers, without these boards, it is 
not unreasonable to  expect training times of several hours or even 
days for some applications. 

This leads us on to  think about hardware for neural networks. Al- 
though we have already said that there are no commercially available 
neural network integrated circuits, there are actually several large 
electronic device companies about t o  release such products. There 
are many practical difficulties in implementing a neural network a t  
chip level-the most obvious of which is that neural networks, by na- 
ture, are complex adaptive systems. It is very difficult t o  implement 
adaptive weights in integrated circuit technology. Three approaches 
are currently taken: analogue, digital and fixed weight. Analogue 

Copyright © 1990 IOP Publishing Ltd.



OPTICAL COMPUTING 221 

techniques for creating modifiable weight connections include vari- 
able resistors, FET gate voltage control and capacitive storage meth- 
ods. However, the major drawback of most of these methods is that 
they require large amounts of silicon space, resulting in only a very 
low density of neural nodes available on a chip. Digital techniques 
use addressable registers to store and modify the weights. This tech- 
nique is useful but is again limited by the space required for multiply 
and add units on the silicon. The third alternative avoids the prob- 
lem of modifying weight values by only allowing the value of the 
weights to be set once. The idea behind this is to learn the correct 
weight matrix, in a simulation environment, and then load this into 
the chip permanently. 

All the methods also suffer from the other drawback of neural net- 
works, namely high interconnectivity. It is both costly and difficult 
to  design integrated circuits wth complex data pathways between the 
layers of nodes, and even when it is achieved it invariably means that 
the topology of the neural network is fixed. These restrictions mean 
that in many application environments integrated circuit technology 
is just not suitable. VLSI technology is advancing at a remarkable 
rate, however, and these implementation difficulties will not hin- 
der progress of neural network chips for too long. One technology 
that may provide some answers, particularly to  the interconnectivity 
problem, is optical computing. 

9.3 OPTICAL COMPUTING 

9.3.1 Introduction 

The purpose of this section is to give a very brief overview of the 
developments taking place in optical computing, with particular ref- 
erence to  the effects these may have on the artificial neural systems 
of the future. A comprehensive review is outside the scope of this 
book; this is simply meant to  sketch the broadest of outlines. 

Copyright © 1990 IOP Publishing Ltd.



222 INTO THE LOOKING GLASS 

9.3.2 What is Optical Computing? 

In order t o  compute we need to  transport data from place to place, 
connect components together, store data, and be able to switch on 
and off. The electronic equivalents of these functions are wires or 
conducting pathways on silicon, electrical junctions, memory, and 
the transistor. 

Optical computing uses light to  transport information instead of 
electrical signals. This approach holds two major advantages for 
computation in general and artificial neural networks in particular. 
The first is in the inherently high speeds achievable-data can flow 
at the speed of light, and optical switches can go much faster than 
electronic ones. However, for neural computing in particular, the 
more important reason is due to  the fact that one beam of light can 
cross another and emerge completely unaffected by its encounter, 
whereas two electrical wires cannot. This opens up the potential for 
massive interconnectivity within a small space. 

A simple lens can be thought of as a powerful interconnection 
device. The image that it forms is a collection of rays of light reflected 
from the object, and the lens effectively connects millions of these 
rays from the object to  the image, as shown in figure 9.1. These light 

object lens image 

Figure 9.1 A lens offers immense interconnectivity. 

Copyright © 1990 IOP Publishing Ltd.



OPTICAL COMPUTING AND NEURAL NETWORKS 223 

rays can come close together and cross without affecting the data 
carried in either one, which is why the image can be formed. Such 
huge connection densities are impossible to  achieve with electrical 
circuits even if they are routed on silicon, since each path must be a 
certain distance from its neighbours to  avoid interference. 

Storage in optical systems is accomplished using holograms. The 
physical principles underlying the hologram are not relevant t o  this 
book-suffice to  say that holograms are a sort of three-dimensional 
photograph, containing enough information to  reconstruct an image 
of a solid object. Holograms can also be used as switches by directing 
light that falls on to them in different directions dependent on the 
initial angle of approach of the beam. The amount of information 
that can be stored in a hologram is huge, since a single one can hold 
many images. 

Optical switches can also be made. One approach is to  affect a 
crystal structure with an electric or magnetic field, which alters. its 
optical properties, and so affects incoming light differently. These 
work at speeds of around lo-'' seconds, compared to  the best tran- 
sistor switching times of down to seconds. Other switching 
devices use non-linear crystals that alter the amount of light that 
they transmit depending on the intensity of the incoming beam. The 
best optical switches are currently switching at speeds up to  
seconds, which gives them the speed edge over electronic ones. 

9.4 OPTICAL COMPUTING AND NEURAL NET- 
WORKS 

Optical influences on neural networks fall into one of two areas, either 
in implementing parallel matrix multipliers or in holographic pattern 
recognisers. 

9.4.1 Matrix Multiplication 

Many of the operations in networks require the evaluation of a set 
of inputs multiplied by some weight matrix, and this process can be 

Copyright © 1990 IOP Publishing Ltd.



224 INTO THE LOOKING GLASS 

implemented in an optical system. If the weight matrix is W;j, then 
the weighted sum of the inputs Xi to a unit j is given by 

We can see that the i-th input is only of interest to the elements in 
the i-th row in determining the result. The inputs are represented 
by a beam of light and are spread out to span the rows of the grid. 
Each element of the grid contains a piece of photographic film whose 
transmittance is proportional to  the value of the weight in the matrix. 
A photodetector receives its input from a lens that gathers all the 
light that emerges from one column of the grid, and the intensity of 
the light it receives is a sum of values that depend on the product 
of the intensity of the input signal and the transmittance of the 
“weight” through which it has passed. This is shown in figure 9.2. 

inwts 
&lied 
to rows 

’r sources . 

outputs collected 
from columns 

9 

photodetectors 

B 

weight matrix 
with different 
transmissivities 

Figure 9.2 An optical matrix multiplier. 

The summing operation can occur in parallel, and the speed of 
the system is independent of the size of the weight array, and so 
can be scaled up without becoming any slower. This opens the way 

Copyright © 1990 IOP Publishing Ltd.



OPTICAL COMPUTING AND NEURAL NETWORKS 225 

for very large networks with correspondingly large weight matrices. 
Currently the weight matrix has to be altered by substituting a dif- 
ferent mask, so automatic learning is not possible, but research is 
in progress to  investigate the use of liquid crystal cells which could 
have a variable density. 

9.4.2 Holographic Pattern Recognition 

Holographic pattern recognisers are essentially resonant systems; a 
typical example, due to  Abu-Mostafa and Psaltis, (Scientific Amer- 
ican, March 1987), is shown in figure 9.3. 

The key to  the operation of the system is the threshold device. 
This is a non-linear reflector, which reflects most strongly from its 
front surface the pattern that appears brightest on its back. The 
input is passed to a beam splitter which sends one copy of the input 
on the front of the threshold device, and passes another to  a holo- 
gram. This hologram contains several stored images that represent 
the patterns that the system is to recognise. The input pattern is 
passed through this hologram, which correlates these pat terns and 
the input. The correlations are a measure of the similarity between 
the patterns, and the pattern that is the most similar is the bright- 
est. This is passed through a pinhole which separates the images, 
and via a mirror and lens through another hologram like the first. 
This correlates the new images, and passes the results to the rear 
of the threshold device. The back of the threshold device therefore 
receives a set of images corresponding to the stored images in the 
system. The brightest one of these will be the one that the original 
image was most similar to, and this means that this pattern will 
be most strongly reflected from the front of the device. This new 
enhanced pattern will then pass round the loop for further enhance- 
ment, and the system will quickly settle into a state in which the 
pattern most like the input pattern goes round and round the loop 
until stopped. The speed that the system relaxes into this steady 
state is impressive, and it is capable of recovering an image when 
only a very small proportion of the original is presented. 

Copyright © 1990 IOP Publishing Ltd.



226 INTO THE LOOKING GLASS 

m 

output image 

input image 

Figure 9.3 A holographic pattern recognition system. 

Copyright © 1990 IOP Publishing Ltd.



OPTICAL COMPUTING AND NEURAL NETWORKS 227 

9.4.3 Conclusion 

The question arises as to  why all neural networks are not currently 
built optically; the answer is that the current technology is unable 
to provide images of a reasonable quality. The holographic recogni- 
tion system is bulky and difficult t o  align correctly, but is likely to  
improve its performance as further research is done. Such systems 
are pushing the barriers of technology to the limits; however, ad- 
vances will be made given time and money. Another difficulty arises 
if the optical system is to be part of a larger electronic one, since 
there is then the need for an optical-electronic interface between the 
two. Whilst it is difficult t o  provide a good interface between the 
two types of systems, Demetri Psaltis and his co-workers have pre- 
pared holographic memories using an electronically-addressed array 
of lights as the input. Optical systems offer intrinsic parallelism, the 
potential for massive interconnectivity within a small volume, and 
computation speeds substantially faster than electronic approaches. 
The time will come when such esoteric systems will become much 
more commonplace. 

Copyright © 1990 IOP Publishing Ltd.


	Neural Computing: An Introduction
	Contents
	Preface
	Chapter 1: Introduction
	1.1 HUMANS AND COMPUTERS
	1.2 THE STRUCTURE OF THE BRAIN
	1.2.1 Learning in Biological Systems
	1.2.2 The Organisation of the Brain

	1.3 LEARNING IN MACHINES
	1.4 THE DIFFERENCES
	Summary
	FURTHER READING

	Chapter 2: Pattern Recognition
	2.1 INTRODUCTION
	2.2 PATTERN RECOGNITION IN PERSPECTIVE
	2.3 PATTERN RECOGNITION-A DEFINITION
	2.4 FEATURE VECTORS AND FEATURE SPACE
	2.5 DISCRIMINANT FUNCTIONS
	2.6 CLASSIFICATION TECHNIQUES
	2.6.1 Nearest Neighbour Classification
	2.6.2 Distance Metrics

	2.7 LINEAR CLASSIFIERS
	2.7.1 Conclusion

	2.8 STATISTICAL TECHNIQUES
	2.9 PATTERN RECOGNITION-A SUMMARY
	Summary
	FURTHER READING

	Chapter 3: The Basic Neuron
	3.1 INTRODUCTION
	3.2 MODELLING THE SINGLE NEURON
	3.3 LEARNING IN SIMPLE NEURONS
	3.3.1 The perceptron learning algorithm

	3.4 THE PERCEPTRON: A VECTORIAL PERSPECTIVE
	3.5 THE PERCEPTRON LEARNING RULE: PROOF
	3.6 LIMITATIONS OF PERCEPTRONS
	3.7 THE END OF THE LINE?
	3.7.1 Conclusions
	3.7.2 A Pause in History

	Summary
	FURTHER READING

	Chapter 4: The Multilayer Perceptron
	4.1 INTRODUCTION
	4.2 ALTERING THE PERCEPTRON MODEL
	4.2.1 The Problem
	4.2.2 The Solution

	4.3 THE NEW MODEL
	4.4 THE NEW LEARNING RULE
	4.4.1 The Mathematics

	4.5 THE MULTILAYER PERCEPTRON ALGORITHM
	4.6 THE XOR PROBLEM REVISITED
	4.7 VISUALISING NETWORK BEHAVIOUR
	4.8 MULTILAYER PERCEPTRONS AS CLASSIFIERS
	4.9 GENERALISATION
	4.10 FAULT TOLERANCE
	4.11 LEARNING DIFFICULTIES
	4.11.1 Other Learning Problems

	4.12 RADIAL BASIS FUNCTIONS
	4.13 APPLICATIONS
	4.13.1 NETtalk
	4.13.2 Airline Marketing Tactician
	4.13.3 ECG Noise Filtering
	4.13.4 Financial Applications
	4.13.5 Pattern Recognition

	Summary
	FURTHER READING

	Chapter 5: Kohonen Self-Organising Networks
	5.1 INTRODUCTION
	5.1.1 The Self-Organisation Concept
	5.1.2 An Overview

	5.2 THE KOHONEN ALGORITHM
	5.2.1 Biological Justification

	5.3 WEIGHT TRAINING
	5.3.1 Initialising the Weights

	5.4 NEIGHBOURHOODS
	5.5 REDUCING THE NEIGHBOURHOOD
	5.5.1 Point Density Functions

	5.6 LEARNING VECTOR QUANTISATION (LVQ)
	5.7 THE PHONETIC TYPEWRITER
	5.7.1 Front-end Preprocessing
	5.7.2 Auxiliary Maps
	5.7.3 Post Processing
	5.7.4 Hardware Implementation
	5.7.5 Performance
	5.7.6 Conclusion

	Summary
	FURTHER READING

	Chapter 6: Hopfield Networks
	6.1 INTRODUCTION
	6.2 THE HOPFIELD MODEL
	6.3 THE ENERGY LANDSCAPE
	6.3.1 Storing Patterns
	6.3.2 Recall
	6.3.3 An Example

	6.4 THE BOLTZMANN MACHINE
	6.4.1 Learning in Boltzmann Machines
	6.4.2 Why does this work?
	6.4.3 Mean Field Theory
	6.4.4 Spin Glasses

	6.5 CONSTRAINT SATISFACTION
	6.5.1 The Travelling Salesman Problem
	6.5.2 The Elastic Net

	Summary
	FURTHER READING

	Chapter 7: Adaptive Resonance Theory
	7.1 INTRODUCTION
	7.2 ADAPTIVE RESONANCE THEORY-ART
	7.3 ARCHITECTURE AND OPERATION
	7.3.1 The ART architecture
	7.3.2 ART-1 Operation
	7.3.3 The Initialisation Phase
	7.3.4 The Recognition Phase
	7.3.5 The Comparison Phase
	7.3.6 Vigilance Threshold
	7.3.7 The Search Phase

	7.4 ART ALGORITHM
	7.5 TRAINING THE ART NETWORK
	7.5.1 Scaling the Feedforward Weights
	7.5.2 The Training Cycle

	7.6 CLASSIFICATION
	7.7 CONCLUSION
	7.7.1 Terminology

	7.8 SUMMARY OF ART
	Summary
	Further Reading

	Chapter 8: Associative Memory
	8.1 STANDARD COMPUTER MEMORY
	8.2 IMPLEMENTING ASSOCIATIVE MEMORY
	8.3 IMPLEMENTATION IN RAMS
	8.4 RAMS AND N-TUPLING
	8.5 WILLSHAW’S ASSOCIATIVE NET
	8.5.1 Problems

	8.6 THE ADAM SYSTEM
	8.6.1 Applications

	8.7 KANERVA'S SPARSE DISTRIBUTED MEMORY
	8.8 BIDIRECTIONAL ASSOCIATIVE MEMORIES
	8.9 CONCLUSION
	Summary
	FURTHER READING

	Chapter 9: Into the Looking Glass
	9.1 OVERVIEW
	9.2 HARDWARE AND SOFTWARE IMPLEMENTATIONS
	9.3 OPTICAL COMPUTING
	9.3.1 Introduction
	9.3.2 What is Optical Computing?

	9.4 OPTICAL COMPUTING AND NEURAL NETWORKS
	9.4.1 Matrix Multiplication
	9.4.2 Holographic Pattern Recognition
	9.4.3 Conclusion






