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Preface 

Over the past f i h n  years, a view has emerged that computing based 
on models inspired by our understanding of the structure and function 
of the biological neural networks may hold the key to the success of 
solving intelligent tasks by machines. The new field is called Artificial 
Neural Networks, although it is more apt to describe it as parallel 
and distributed processing. This introductory book is aimed a t  giving 
the basic principles of computing with models of artificial neural 
networks, without giving any judgment on their capabilities in solving 
intelligent tasks. 

This text is an outgrowth of the author's teaching and research 
experience for the past 25 years in the areas of speech and image 
processing, artificial intelligence and neural networks. The principles 
of neural networks are closely related to such areas as pattern 
recognition, signal processing and artificial intelligence. Over the past 
10 years many excellent books have been published in the area of 
artificial neural networks and many more are being published. Thus 
one more book like this may seem redundant. However, there seems 
to be still a need for a book that could be used as a text book a t  an 
introductory level. This text is designed to meet such a demand. It 
must be pointed out that most of the ideas presented here have been 
taken from the available references and mainly from the recently 
published books in this area. The distinguishing feature of this book 
is the manner in which the various concepts are linked to provide 
a unified view of the subject. 

The book is a self-contained, covering the fundamental principles 
of artificial neural networks. It  can be adopted as a text book for a 
graduate level course. Students with basic engineering or physics or 
mathematics background can easily follow the topics discussed. No 
advanced concepts from any field are assumed. It  can also be used 
by scientists and engineers who have an aptitude to explore new ideas 
in computing. 

'l'he book starts mth tracing the developments in computmg m 
general, and the trends in artificial intelligence, in particular. The 
prevailing notions of intelligence and intelligent tasks are discussed 
in the context of handling these tasks by machines. The primary 
reasons for the performance gaps in the current systems can be traced 
to the differences in the perceptions of a given input by machine 



Preface 

and by human beings. The introductory chapter discusses the 
distinction between data and pattern, and between recognition and 
understanding, to highlight the differences in machine and human 
perceptions of input to a system. The chapter also deals with several 
pattern recognition tasks which human beings are able to perform 
naturally and effortlessly, whereas there are no good algorithms to 
implement these tasks on a machine. A brief discussion on existing 
models and methods of solving pattern recognition tasks is given, 
followed by an analysis of the need for new models of computing to 
deal with such tasks. 

The basics of artificial neural networks are introduced in 
Chapter 1. The terminology is introduced with reference to a single 
computing element (or artificial neuron) and some simple connection 
topologies of the computing elements. Basic learning laws are also 
discussed in this chapter. 

In an artificial neural network the changes of activation values 
of units and the connection weights (synapses) between units are 
governed by the equations describing the activation and synaptic 
dynamics, respectively. Models for activation and synaptic dynamics 
are introduced in Chapter 2. Stability and convergence issues of these 
models are discussed, as these will determine the ability of an 
artificial neural network to accomplish a given pattern recognition 
task. 

Chapter 3 introduces some basic structures of artificial neural 
networks and the pattern recognition tasks that these structures 
can perform. The structures are organized into feedforward, feedback 
and competitive layer networks. The corresponding broad pattern 
recognition tasks are pattern association, pattern storage and pattern 
clustering, respectively. Chapters 4-6, the kernel of the book, provide 
a detailed analysis of the three basic structures of artificial neural 
networks and discuss the different pattern recognition tasks that 
these structures address. Chapter 4 deals with feedforward networks, 
where the pattern association, classification and mapping tasks are 
analyzed. Perceptron learning and its limitations for adjusting the 
weights of a multilayer feedforward network are covered. The 
generalized delta rule or the backpropagation learning is presented 
for training a multilayer feedforward neural network. In Chapter 5 
feedback networks and the associated pattern storage and pattern 
environment storage tasks are analyzed. Here, the Hopfield energy 
analysis of feedback networks is presented in detail, and the need 
for stochastic neural networks is clearly brought out, besides 
introducing the Boltzmann machine to accomplish the task of pattern 
environment storage. Finally, the chapter concludes with a detailed 
discussion on the Boltzmann learning law for stochastic neural 
networks. Competitive learning networks are analyzed in Chapter 6 
which presents the details on how pattern clustering and feature 
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mapping are accomplished through the competitive learning networks. 
The chapter also discusses the principles of self-organization and the 
self-organization learning for feature map. 

Chapter 7 deals with artificial neural network architectures for 
complex pattern recognition tasks such as associative memory, pattern 
mapping, stability-plasticity dilemma, temporal patterns and pattern 
variability. In each case, a brief description of the task and a suitable 
architecture for the task is given. Applications of artificial neural 
network models are covered in Chapter 8. Some direct applications 
considered are: pattern classification, associative memories, 
optimization, vector quantization and control. Some of the application 
areas discussed are: speech and image processing and decision 
making. In each case a simplified version of the problem to suit an 
existing neural network architecture is considered for illustration. 
The chapter also analyzes issues in the development of neural 
network models for practical problems. It  concludes with a discussion 
on several unresolved issues that- severely limit the application of 
models based on artificial neural networks. 

The book provides examples and illustrations a t  appropriate 
places. I t  also gives algorithms are given for important learning laws 
to enable the reader to implement them. Finally, review questions 
and problems are given a t  the end of each chapter. A solution manual 
for all the problems is available and can be obtained either from the 
publisher or at the website http:/ /  speech.iitm.ernet.in/Main/faculty/ 
yegm/Biodata/solutionmanual.tar.gz. 
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The current search for new models of computing based on artificial 
neural networks is motivated by our quest to solve natural 
(intelligent) tasks by exploiting the developments in computer 
technology [Marcus and Dam, 1991; IEEE Computer, Oct. 19961. The 
developments in Artificial Intelligence (AI) appear promising, but 
when applied to real world intelligent tasks such as in speech, vision 
and natural language processing, the AI techniques show their 
inadequacies and 'brittleness' in the sense that they become highly 
task specific [DreyfUs, 1992; Rich and Knight, 1991; Holland, 1986; 
Pearl, 19841. Like in the algorithmic methods for problem solving, 
even the A1 techniques need clear specification and mapping of the 
given problem into a form suitable for the techniques to be applicable. 
For example, in order to apply heuristic search methods, one needs 
to map the problem as a search problem. Likewise, to solve a problem 
using a rule-based approach, it is necessary to explicitly state the 
rules. It is here scientists are hoping that computing models inspired 
by biological neural networks may provide new directions to solve 
problems arising in natural tasks. In particular, it is hoped that 
neural networks would extract the relevant features from the input 
data and perform a pattern recognition task by learning from 
examples without explicitly stating the rules for performing the task. 
The purpose of this book is to discuss the issues in pattern recognition 
tasks and some of the current approaches used to address these issues 
based on Artificial Neural Networks (ANN). We discuss the notion of 
intelligence and intelligent tasks, and then we briefly trace the 
developments in AI, in particular, and computer technology, in 
general. We show that computing in intelligent tasks requires a 
distinction between pattern and data. To give a better appreciation 
of the nature of intelligent tasks, we elaborate the distinction between 
pattern and data with illustrations. We also discuss the nature of 
patterns and various types of pattern recognition tasks which we 
encounter in our daily life. We present briefly different methods 
available for dealing with various pattern recognition tasks, and make 
a case for new models of computing based on ANNs to address these 
tasks. To appreciate the ANN models, some basics of ANN, including 
the terminology, are introduced. We provide a detailed discussion on 
the operation of ANNs through models of activation and synaptic 
dynamics of ANNs. Some ANNs are identified as basic functional 
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units which form building blocks for more complex networks. The 
pattern recognition tasks that these functional units can handle are 
discussed, and a detailed analysis of the performance of these units 
is given. Specific architectures are needed to address complex pattern 
recognition tasks. Each of these architectures is typically tailored to, 
deal with some critical issues of the pattern recognition tasks. 
Principles and architectures of ANNs are currently limited to trivial 
applications, where the problems are modified to suit the 
architectures. Some of these direct applications are discussed in 
detail. The more challenging task is to solve real world problems. 
Limitations of the existing ANNs and issues that need to be addressed 
to deal with the real world problems are discussed in the final sections 
of this book. In the end we notice that our current understanding of 
problems and the existing models of ANNs still fall too short of our 
needs and expectations. 

Trends in Computing 

In this section we trace the background for the development of neural 
network models from the viewpoint of computing. First we shall 
consider the prevailing notion of intelligence and intelligent tasks. 
Then we shall trace the developments in computing and computer 
technology that led to the belief that intelligent tasks can be realized 
by a machine. In particular, we shall discuss the trends in AI and 
the gaps in performance of the current AI systems. The primary 
reason for the performance gaps can be traced to the differences in 
the perception of an input by machines and by human beings. These 
differences will be discussed in the following sections. 

The current usage of the terms like AI systems, intelligent 
systems, knowledge-based systems, expert systems, etc., are intended 
to convey that it  is possible to build machines that can demonstrate 
intelligence similar to human beings in performing some simple tasks. 
In these tasks we look for the final result of the performance of the 
machine for comparison with the performance of a human being. We 
attribute intelligence to the machine if the performance of the 
machine and human being are the same. But the ways the tasks are 
performed by the machine and a human being are basically different. 
The machine performs a task in a step-by-step sequential manner 
dictated by an algorithm, which may be modified by some known 
heuristics. Therefore the algorithm.and the heuristics have to be 
derived for a given task. Once derived, they remain fixed. Typically, 
implementation of a task requires large number of operations 
(arithmetic and logical) and a large amount of memory. The trends 
in computing along several dimensions clearly point out the ability 
of a machine to handle large number of operations. 

Table I shows the developments in device technology, software, 
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Table I Trends in Computing 
. - 

1. Techn01ogy 
Mechanical devices 
Vacuum tubes 
Transistors 
Medium scale integration 
Large scale integration 
Very large scale integration 
Optical devices 

2. Sof'tware 
Machine language 
Assembly language 
High level languages 
LISP, PROLOG 
4th generation languages 
Object-oriented languages 
Distributed 1anguagedAVA 
Natural language 

3. Architecture 
Uniprocessors 
Array processors 
Special purpose chips 
Supercomputers 
Parallel computers 
VLSI array processors 
Parallel distributed processing models 
Optical computers 

4. AI Concepts 
Numerical processing 
Symbolic processing 

General problem solving 
Logic 
Heuristic search 

Computational linguistics 
Natural language processing 
Knowledge representation 
Expert systems 
Hidden markov models 
Artificial neural networks 

architecture and artificial intelligence concepts [IEEE Computer, Oct. 
19961. In device technology, the trend is to make each device more 
and more powerful andlor to pack more and more devices in a single 
chip, thus increasing the packing density. The trend in software is 
to bring the computer more and more closer to the user by providing 
multimodal communication and natural input and output facilities. 
In particular, the goal is to achieve communication through the natural 
language of the user, instead of using artificial computer languages. 

Significant developments are taking place in the evolution of 
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computer architectures. It is realized that single or multiple pro- 
cessors using Von Neumann model have severe limitations of speed. 
Parallel computers and optical computers are also limited in scope 
due to their mismatch with the problems [Partridge, 19971. The trend 
is to explore architectures based on Parallel and Distributed 
Processing (PDP) models motivated by our understanding of the 
structure and function of the biological neural network [Rumelhart 
and McClelland, 1986; McClelland and Rumelhart, 19861. The driving 
force for these developments is the desire to make machines more 
and more intelligent. Finally, it is in the applications and in the 
simulation of applications, the real test of the technology develop 
ments can be seen. 

The notion of intelligence and intelligent systems is changing con- 
tinuously as can be seen from the evolution of A1 concepts (Table I). 
Originally computing was meant only for numerical calculations. 
When it was realized that symbols like text also can be manipulated 
using step-by-step algorithmic approach, it was felt that logical 
inference could be implemented on a computer. Through logic it was 
possible to incorporate heuristics in reducing the search in the 
solution of an A1 problem. Therefore it was felt that all A1 problems 
including problems of speech and image understanding could be 
solved by using clever search methods [Reddy, 1988; Reddy, 19961. 
But it was soon realized that mapping a problem onto a problem of 
heuristic search was possible only for tasks where representation was 
obvious as in some games and puzzles. To overcome the representa- 
tional problems, rule-based approaches were suggested, where the 
rules for the solution of a problem could be explicitly obtained from 
a human expert. The set of rules constituting the knowledge, together 
with an inferencing mechanism for the application of the rules, 
resulted in proliferation of expert systems or knowledge-based 
systems for various tasks [Feigenbaum et al, 19881. It did not take 
much time to realize that explicit statement of rules by a human 
expert does not constitute all the knowledge he uses for a given 
problem [Holland, 1986; Drefis, 19891. Moreover, the issues of 
common sense knowledge and learning, which are so natural to any 
human being, could not easily be captured in a machine [Dreyfus, 
1972; Dreyfus, 19921. 

Pattern and Data 
Speech, vision and natural language processing problems dominated 
the attention of designers of intelligent systems [Reddy, 19961. The 
most difficult issues in these cases are to derive the description of 
the pattern in data in terms of symbols and to derive a set of rules 
representing the knowledge of the problem domain. Even if we can 
implement highly complex and compute intensive algorithms with the 
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current technology, it is now realized that we cannot derive the 
pattern description and knowledge completely for a given problem. 
Thus the mere ability of a machine to perform large amount of 
symbolic processing and logical inferencing (as is being done in AI) 
does not result in an intelligent behaviour. 

The main difference between human and machine intelligence 
comes from the fact that humans perceive everything as a pattern, 
whereas for a machine everything is data [Greenberger, 19621. Even 
in routine data consisting of integer numbers (like telephone 
numbers, bank account numbers, car numbers), humans tend to 
perceive a pattern. Recalling the data is also normally from a stored 
pattern. If there is no pattern, then it is very difficult for a human 
being to remember and reproduce the data later. Thus storage and 
recall operations in human beings and machines are performed by 
different mechanisms. The pattern nature in storage and recall 
automatically gives robustness and fault tolerance for the human 
system. Moreover, typically far fewer patterns than the estimated 
capacity of human memory system are stored. Functionally also 
human beings and machines differ in the sense that human beings 
understand patterns, whereas machines can be said to recognise 
patterns in data. In other words, human beings can get the whole 
object in the data even though there is no clear identification of 
subpatterns in the data. For example, consider the name of a person 
written in a handwritten cursive script. Even though the individual 
patterns for each letter may not be evident, the name is understood 
due to the visual hints provided in the written script. Likewise, speech 
is understood even though the patterns corresponding to the 
individual sounds may be distorted, sometimes to unrecognizable 
extents [Cooper, 19801. Another major characteristic of a human being 
is the ability to continuously learn from examples, which is not 
understood well enough to implement it in an algorithmic fashion in 
a machine. Human beings are capable of making mental patterns 
in their biological neural network from an input data given in the 
form of numbers, text, picture, sounds, etc., using their sensory 
mechanisms of vision, sound, touch, smell and taste. These mental 
patterns are formed even when the data is noisy or deformed due to 
variations such as translation, rotation and scaling. The patterns are 
also formed from a temporal sequence of data as in the case of speech 
and pictures. Human beings have the ability to recall the stored 
patterns even when the input information is noisy or partial 
(incomplete) or mixed with information pertaining to other patterns. 
Although patterns and data are different, these terms are used 
interchangeably in the literature. While we also use these terms 
interchangeably throughout the book, the distinction between these 
must be kept in mind to appreciate the limitations of a machine over 
human beings for performing pattern recognition tasks. 
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Pattern Recognition Tasks 

The inherent differences in information handling by human beings 
and machines in the form of patterns and data, respectively, and in 
their functions in the form of understanding and recognition, 
respectively, have led us to identify and discuss several pattern 
recognition tasks which human beings are able to perform very 
naturally and effortlessly, whereas no simple algorithms exist to 
implement these tasks on a machine. The identification of these tasks 
below was somewhat influenced by the organization of the artificial 
neural network models described in this book [Yegnanarayana, 1994; 
Duda and Hart, 19731. 

Pattern Association 

Pattern association problem involves storing a set of patterns or a 
set of input-output pattern pairs in such a way that when a test 
pattern is presented, the stored pattern or pattern pair corresponding 
to the test pattern is recalled. This is purely a memory function to 
be performed for patterns or pattern pairs. Typically, it is desirable 
to recall the correct pattern even though the test pattern is noisy or 
incomplete. The problem of storage and recall of patterns is called 
the autoassociation task. Since this is a content addressable memory 
function, the system should display accretive behaviour, i.e., should 
recall the stored pattern closest to the given input. The problem of 
storage and recall of pattern pairs is called a heteroassociation task. 
It is also necessary to store as many patterns or pattern pairs as 
possible in a given system. Printed characters or any set of fixed 
symbols could be considered as examples of patterns for these tasks. 
Note that in this case the test patterns are the same as the training 
patterns, but with some noise added or some portions missing. In 
other words, the test patterns are generated from the same source 
in an identical manner as the training patterns. 

Pattern Classification 

In pattern classification, given a set of patterns and the corresponding 
class label, the objective is to capture the implicit relation among the 
patterns of the same class, so that when a test pattern is given, the 
corresponding output class label is retrieved. Note that the individual 
patterns of each class are not memorized or stored. Typically, in this 
case the test patterns belonging to a class are not the same as the 
patterns used in the training, although they may originate from the 
same source. Speech spectra of steady vowels generated by a person, 
or hand-printed characters, could be considered as examples of 
patterns for pattern classification problems. Pattern classification 
problems display accretive behaviour. Pattern classification problems 
are said to belong to the category of supervised learning. 
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Pattern Mapping 

In pattern mapping, given a set of input patterns and the 
corresponding output patterns, the objective is to capture the implicit 
relationship between the input and output patterns, so that when a 
test input pattern is given, the pattern corresponding to the output 
of the generating system is retrieved. Note that the system should 
perform some kind of generalization as opposed to memorizing the 
information. Typically, in this case the test patterns are not the same 
as the training patterns, although they may originate h m  the same 
source. Speech spectra of vowels in continuous speech could be 
considered as examples of patterns for pattern mapping problem. 
Pattern mapping generally displays interpolative behaviour. 

Pattern Grouping 

In this case, given a set of patterns, the problem is to identify the 
subset of patterns possessing similar distinctive features, and group 
them together. Since the number of groups and the features of each 
group are not explicitly stated, this problem belongs to the category 
of unsupervised learning. Note that, this is possible only when the 
features are unambiguous as in the case of hand-printed characters 
or steady vowels. In the pattern classification problem the patterm 
for each group are given separately. In pattern grouping, on the other 
hand, patterns belonging to several groups are given, and the system 
has to resolve them into different groups. Pattern grouping is also 
called pattern clustering task. 

Examples of the patterns for this task could be printed characters 
or hand-printed characters. In the former case the grouping can be 
performed based on the data itself. Moreover, in that case, the test 
data is also generated from an identical source as for the training 
data. For hand-printed characters or steady vowel patterns, features 
of the patterns in the data are used for grouping. In this case the 
test data is generated from a similar source as for the training data, 
such that only the pattern features are preserved. The actual training 
data values are not necessarily reproduced in the test patterns. 

Feature Mapping 

In several patterns the features are not unambiguous. In fact the 
features vary over a continuum, and hence it is difficult to form 
groups of patterns having some distinct features. In such cases, it is 
desirable to display directly the feature variations in the patterns. 
This again belongs to the unsupervised learning category. In this case 
what is learnt is the feature map of a pattern and not the group or 
the class to which the pattern belongs. This occurs, for example, in the 
speech spectra for vowels in continuous speech. Due to changes in 
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the vocal tract shape for the same vowel occurring in different 
contexts, the features (formants or resonances of the vocal tract in 
this case) vary over overlapping regions for different vowels. 

Pattern Variablllty 

There are many situations when the features in a pattern undergo 
unspecified distortions each time the pattern is generated by the 
system. This can be easily seen in the characters in normal 
handwritten cursive script. Human beings are able to recognise them 
due to some implicit interrelations among the features, which are not 
known precisely. Classification of such patterns falls into the category 
of pattern variability task. 

Temporal Patterns 

All the tasks discussed so far refer to the features present in a given 
static pattern. Human beings are able to capture effortlessly the 
dynamic features present in a sequence of patterns. This is true, for 
example, in speech where the changes in the resonance characteristics 
of the vocal tract system (e.g., formant contours) capture the 
significant information about the speech message. This is also true 
in any dynamic scene situation as in a movie on a television. All such 
situations require handling multiple static patterns simultaneously, 
looking for changes in the features in the subpatterns in adjacent 
pattern pairs. 

Stabiiity-piasticity Dilemma 

In any pattern recognition task the input patterns keep changing. 
Therefore it is difficult to freeze the categorization task based on a 
set of patterns used in the training set. If it is frozen, then the systkm 
cannot learn the category that a new pattern may suggest. In other 
words, the system lacks its plasticity. On the other hand, if the system 
is allowed to change its categorization continuously, based on new 
input patterns, it cannot be used for any application such as pattern 
classification or grouping, as it is not stable: This is called 
stability-plasticity dilemma in pattern recognition. 

Methods for Pattern Recognition Tasks 

Methods for solving pattern recognition tasks generally assume a 
sequential model for the pattern recognition process, consisting of 
pattern environment, sensors to collect data from the environment, 
feature extraction from the data and associatiodstorage/classi- 
ficatiodgrouping using the features [Kanal, 1974; Mantas, 19871. 
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The simplest solution to a pattern recognition problem is to use 
a template matching, where the data of the test pattern is matched 
point by point with the corresponding data in the reference pattern. 
Obviously, this can work only for very simple and highly restricted 
pattern recognition tasks. At the next level of complexity, one can 
assume a deterministic model for the pattem generation process, and 
derive the parameters of the model from a given pattern in order to 
represent the information in the pattern.-Matching the test and 
reference patterns is done at the parametri'c level. This works well 
when the model of the generation process is known with reasonable 
accuracy. One could also assume a stochastic model for the pattern 
generation process, and derive the parameters of the model from a 
large set of training patterns. Matching the test and reference 
patterns can be performed by several statistical methods such as 
likelihood ratio, variance weighted distance, Bayesian classification, 
etc. Other approaches for pattern recognition tasks depend on 
extracting features from parameters or data. These features may be 
specific for the task. A pattern is described in terms of features, and 
pattern matching is done using descriptions in terms 'of the features. 
Another method based on descriptions is called syntactic pattern 
recognition in which a pattern is expressed in terms of primitives 
suitable for the classes of patterns under study. Pattern matching is 
performed by matching the descriptions of the patterns in terms of 
the primitives. More recently, methods based on the knowledge of the 
sources generating the patterns are being explored for pattern 
recognition tasks. These knowledge-based systems express the know- 
ledge in the form of rules for generating and perceiving patterns. 

The main difficulty in each of the pattern recognition techniques 
alluded to above is that of choosing an appropriate model for the 
pattern generating process and estimating the parameters of the 
model in the case of a model-based approach, or extraction of features 
from the datalparameters in the case of feature-based methods, or 
selecting appropriate primitives in the case of syntactic pattern 
recognition, or deriving rules in the case of a knowledge-based 
approach. It is all the more difficult when the test patterns are noisy 
or distorted versions of the patterns used in the training process. The 
ultimate goal is to impart to a machine the pattern recognition 
capabilities comparable to those of human beings. This goal is difficult 
to achieve using many of the conventional methods, because, as 
mentioned earlier, these methods assume a sequential model for the 
pattern recognition process Devijver and Kittler, 1982; Schalkolff, 
1992; Bezdek, 19961. On the other hand, the human pattern 
recognition process is an integrated process involving the use of 
biological neural processing even from the stage of sensing the 
environment. Thus the neural processing takes place directly on the 
data for feature extraction and pattern matching. Moreover, the large 
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size (in terms of number of neurons and interconnections) of the 
biological neural network and the inherently different mechanism of 
processing may be contributing to our abilities of pattern recognition 
in spite of variability and noise, and also to our abilities to deal with 
the temporal patterns as well as with the so called stability-plasticity 
dilemma. It is for these reasons attempts are being made to explore 
new models of computing. Such models for computing are based on 
artificial neural networks, the basics of which are introduced in the 
next chapter. 

Organization of the Topics 

It is possible to view the topics of interest in artificial neural networks 
at various levels as follows (Table 11): 

Table II Organization of Topics in Artificial Neural Networks a t  Different 
Levels 

(i) Problem level 
Issues: 

Understanding human problem solving as a pattern recognition process 
Understanding biological neural networks 

Topics discussed: (Introduction) 
Distinction between pattern and data 
Distinction between information processing by human beings and by 
machines 
Pattern recognition tasks 
Methods and models for pattern recognition tasks 

(ii) Basics level 
Issues: 

Models of neurons 
Models of interconnections 
Models of activation dynamics 
Models of synaptic dynamics 
Global pattern formation by models 
Stability and convergence 

Topics discussed: (Chapters 1 and 2) 
Basic principles of biological neural networks 
Three basic models of artificial neurons: MP neuron, Percephn and 
Adaline 
Topology: Basic structures of ANN 
Basic learning laws 
Activation dynamics models: Additive and shunting 
Synaptic dynamics models: Requirements for learning and categories of 
models of learning process 
Stability theorems 
Neural network recall 
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Table II (Cont.) 

(iii) Functional level 
Issues: 

Identification of basic functional units which can be analyeed 
Analysis of pattern recognition t a s b  by the functional units 
Functional units as basic building blocb for complex architectures of 
ANN 

Topics discussed: (Chapters 3 to 6) 
Three types of functional units namely, FF, FB and CL networks 
Analysis of FF networks: Pattern association, perceptron, multilayer 
perceptron, gradient descent methods, backpropagation algorithm 
Analysis of FB networks: Pattern storage, Hopfield network, Boltzmann 
machine, simulated annealing 
Analysis of CL networks: Pattern clustering, self-organization, feature 
mapping 

(iv) Architectural level 
Issues: 

Identification of pattern recognition t a s b  and issues 
Development of architectures for complex pattern recognition t a s b  
Architectures specific to problems 

Topics discussed: (Chapter 7 )  
Associative memory: BAM 
Pattern mapping: RBF and CPN 
Stability-plasticity dilemma: Adaptive k o n a n c e  Theory (ART) 
Temporal patterns: Avalanche, Time Delay NN (TDNN) 
Pattern variability: Neocognitron 

(v) Applications level 
Issues: 

Potential for direct application 
Mapping of the given application onto a neural network model 

Topics discussed: (Chapter 8) 
Direct applications: Associative memory, data compression, optimization, 
vector quantization and control 
Application areas: Problems in speech, image and decision making 

(i) Problem level: This involves mapping the real world problems as 
pattern processors. This may require good understanding of human 
information processing both from the psychological and biological 
angles. This topic is not within the scope of this book, although in 
the introductory chapter we have discussed briefly the issues in 
problem solving by humans and by machines. 

(ii) Basics level: Advances in technology and understanding of 
human information processing system enable us to evolve better 
models of neurons as processing units, their interconnections and 
dynamics (activation and synaptic), learning laws and recall 
procedures. These models in turn will enable us to build sophisticated 
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artificial neural networks for solving complex pattern recognition 
tasks. Chapters 1 and 2 deal with some issues at the basics level. In 
particular, in Chapter 1, we present basic models of artificial neurons 
and some basic structures obtained by interconnecting these neuron 
models. The chapter also includes some basic learning laws commonly 
used in artificial neural networks. In Chapter 2, models of activation 
and synaptic dynamics are described. The chapter also deals with 
issues of stability and convergence, pertaining to activation and 
synaptic dynamics models, respectively. 

(iii) Functional level: It is necessary to understand the pattern 
recognition tasks that can be performed by some of the basic 
structures of artificial neural networks. These basic structures then 
will form building blocks for development of new architectures for 
complex pattern recognition tasks. We have identified three categories 
of functional units, namely, feedforward, feedbackward and com- 
petitive learning networks. Chapters 3 to 6 deal with detailed analysis 
of the pattern recognition tasks that these functional units can 
perform. Chapter 3 deals with a description of the functional units 
and the corresponding pattern recognition tasks. Chapter 4 gives a 
detailed analysis of feedforward networks, illustrating at each stage 
the limitations of the networks to solve a given pattern recognition 
task. The chapter concludes with a discussion on the capabilities and 
limitations of multilayer feedforward neural networks and the 
associated backpropagation learning law. Chapter 5 i s  devoted to 
analysis of feedback networks. The significance of the nonlinear 
output function of a processing unit in feedback networks for pattern 
storage task is discussed. Hopfield energy analysis of a feedback 
network is used to demonstrate the capability and also limitations of 
such networks. Stochastic network models are introduced to overcome 
some of the limitations of the Hopfield model due to local minima 
problems. Finally, the Boltzmann machine is presented to address 
the issue of pattern environment storage. The chapter concludes with 
a discussion on Boltzmann learning law and its implementation using 
simulated annealing. Chapter 6 deals with a detailed analysis of 
competitive learning networks. In particular, simple networks for 
pattern clustering are considered. Self-organizing neural networks are 
presented as an extension of the idea of competitive learning. The 
feature mapping capability of the self-organizing networks is 
illustrated with examples. 

(iv) Architectural level: For complex pattern recognition tasks new 
architectures need to be evolved from the known principles, 
components and structures at the basics and functional levels. 
Chapter 7 discusses development of architectures which address some 
complex issues in pattern recognition tasks. We present an extended 
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discussion on some specific architectures for associative memory and 
pattern mapping tasks. In addition, we discuss Counter Propagation 
Networks (CPN) for data compression, Adaptive Resonance Theory 
(ART) architecture for stability-plasticity dilemma, neocognitron for 
pattern variability, and avalanche architecture and time delay neural 
networks for temporal patterns. These architectures are meant for 
specific tasks and hence are severely limited in their use. However, 
understanding the development process of these architectures helps 
us to evolve new architectures tailored to specific issues. 

(v) Appllcatlons level: Cumently most of the neural network models 
are severely limited in their abilities to solve real world problems. 
At the application level, one can consider two different categories. 
In one case it may be possible to map the given application onto a 
neural network model or architecture. We call such situations as 
direct applications. Simple associative memories, data compression, 
optimization, vector quantization and pattern mapping fall into the 
category of direct application. But in case of problems such as in 
speech recognition, image processing, natural language processing 
and decision making, it is not normally possible to see a direct 
mapping of the given problem onto a neural network model. These 
are natural tasks which human beings are good at, but we still do 
not understand how we do them. Hence it is a challenging task to 
find suitable neural network models to address these problems 
[Barnden, 1995; Cowan and Sharp, 19881. 

Review Questions 
1. Give examples for which heuristic search methods of artificial 

intelligence are applicable. 

2. Discuss the developments in artificial intelligence that led to the 
interest in exploring new models for computing. 

3. What is a rule-based expert system? Why do we say such systems 
are 'brittle'? Discuss your answer with an illustration. 

4. What are the differences in the manner of solving problems by 
human beings and by machines? lllustrate with examples. 

5. Explain the distinction between pattern and data. 

6. What are the features of pattern processing by human beings? 

7. Explain, with examples, differences between the following 
pattern recognition tasks: 
(a) Association vs classification 
(b) Classification vs mapping 
(c) Classification vs clustering 
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8. Explain the following pattern recognition issues with illustrations: 

(a) Pattern variability 
(b) Temporal patterns 
(c) Stability-plasticity dilemma 

9. What are different methods for solving pattern recognition tasks? 

10. What is the difficulty with the existing methods for solving 
natural pattern recognition problems? 

11. Identifj. some difficult pattern recognition problems in the 
following areas: 

(a) Speech 
(b) Vision 
(c) Natural language processing 

12. What are the issues at the architectural level of artificial neural 
networks? 

13. What are the situations for direct applications of artificial neural 
networks? 

14. What is the difficulty in solving a real world problem like speech 
recognition even by an artificial neural network model? 



Chapter 1 

Basics of Artificial Neural 
Networks 

New models of computing to perform pattern recognition tasks are inspired 
by the structure and performance of our biological neural network. But 
these models are not expected to reach anywhere near the performance 
of the biological network for several reasons. Firstly, we do not fully 
understand the operation of a biological neuron and the neural 
interconnections. Moreover, it is nearly impossible to simulate: (i) the 
number of neurons and their interconnections as it exists in a biological 
network, and (ii) their operations in the natural asynchronous mode. 

However, a network consisting of basic computing units can 
display some of the features of the biological network. In this chapter, 
the features of neural networks that motivate the study of neural 
computing are discussed. A simplified description of the biological 
neural network is given in Section 1.1. The differences in processing 
by the brain and a computer are then presented. In Section 1.2 a 
brief history of neurocomputing is presented, indicating some of the 
significant developments that have led to the current interest in the 
field. In Section 1.3 the terminology of artificial neural networks is 
introduced by considering the structure and operation of a basic 
computing unit, i.e., the artificial neuron. Three classical models of 
artificial neurons are described in Section 1.4. It is necessary to arrange 
the units in a suitable manner to handle pattern recognition tasks. In 
Section 1.5 we discuss a few basic structures which form the building 
blocks for more complex architectures. The basic training or learning 
laws for determining the connection weights of a network to represent 
a given problem are then discussed in Section 1.6. The concluding section 
gives a summary of the issues discussed in this chapter. 

1.1 Characteristics of Neural Networks 

1.1.1 Features of Biologlcal Neural Networks 

Some attractive features of the biological neural network that make 
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it superior to even the most sophisticated A1 computer system for 
pattern recognition tasks are the following: 

(a) Robustness and fault tolerance: The decay of nerve cells does 
not seem to affect the performance significantly. 

(b) Flexibility: The network automatically adjusts to a new 
environment without using any preprogrammed instructions. 

(c) Ability to deal with a variety of data situations: The network 
can deal with information that is fuzzy, probabilistic, noisy and 
inconsistent. 

(dl Collective computation: The network performs routinely many 
operations in parallel and also a given task in a distributed manner. 

1.1.2 Biological Neural Networks 

The features of the biological neural network are attributed to its 
structure and function. The description of the biological neural 
network in this section is adapted from [Muller and Reinhardt, 199:CI. 
The fundamental unit of the network is called a neuron or a nerve 
cell. Figure 1.1 shows a schematic of the structure of a neuron. It 

From other \ 

I 

Cell body Nucleue 

NEURON 1 

NEURON 2 

Figure 1.1 Schematic diagram of a typical neuron or nerve cell. 

consists of a cell body or soma where the cell nucleus is located. Tree- 
like nerve fibres called dendrites are associated with the cell body. 
These dendrites receive signals from other neurons. Extending from 
the cell body is a single long fibre called the axon, which eventually 
branches into strands and substrands connecting to many other 
neurons at the synaptic junctions, or synapses. The receiving ends of 
these junctions on other cells can be found both on the dendrites and 
on the cell bodies themselves. The axon of a typical neuron leads to 
a few thousand synapses associated with other neurons. 
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The transmission of a signal from one cell to another at a synapse 
is a complex chemical process in which specific transmitter sub- 
stances are released from the sending side of the junction. The effect 
is to raise or lower the electrical potential inside the body of the 
receiving cell. If this potential reaches a threshold, an electrical 
activity in the form of short pulses is generated. When this happens, 
the cell is said to have fired. These electrical signals of fixed strength 
and duration are sent down the axon. Generally the electrical activity 
is confined to the interior of a neuron, whereas the chemical 
mechanism operates a t  the synapses. 

The dendrites serve as receptors for signals from other neurons, 
whereas the purpose of an axon is transmission of the generated 
neural activity to other nerve cells (inter-neuron) or to muscle fibres 
(motor neuron). A third type of neuron, which receives information 
from muscles or sensory organs, such as the eye or ear, is called a 
receptor neuron. 

The size of the cell body of a typical neuron is approximately in 
the range 10-80 micrometers (pm) and the dendrites and axons have 
diameters of the order of a few pm. The gap at the synaptic junction 
is about 200 nanometers (nm) wide. The total length of a neuron 
varies from 0.01 mm for internal neurons in the human brain up to 
1 m for neurons in the limbs. 

In the state of inactivity the interior of the neuron, the 
protoplasm, is negatively charged against the surrounding neural 
liquid containing positive Sodium (Na+) ions.. The resulting resting 
potential of about - 70 mV is supported by the action of the cell 
membrane, which is impenetrable for the positive Sodium ions. This 
causes a deficiency of positive ions in the protoplasm. Signals arriving 
from the synaptic connections may result in a temporary 
depolarization of the resting potential. When the potential is 
increased to a level above - 60 mV, the membrane suddenly loses its 
impermeability against Na+ ions, which enter into the protoplasm 
and reduce the potential difference. This sudden change in the 
membrane potential causes the neuron to discharge. Then the neuron 
is said to have fired. The membrane then gradually recovers its 
original properties and regenerates the resting potential over a period 
of several milliseconds. During this recovery period, the neuron 
remains incapable of further excitation. The discharge, which initially 
occurs in the cell body, propagates as a signal along the axon to the 
synapses. The intensity of the signal is encoded in the frequency of 
the sequence of pulses of activity, which can range fiom about 1 to 
100 per second. 

The speed of propagation of the discharge signal in the cells of 
the human brain is about 0.5-2 mls. The discharge signal travelling 
along the axon stops at the synapses, because there exists no conduc- 
ting link to the next neuron. Transmission of the signal across the 
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synaptic gap is mostly effected by chemical activity. When the signal 
arrives at the presynaptic nerve terminal, special substances called 
neurotransmitters are produced in tiny amounts. The neurotrans- 
mitter molecules travel across the synaptic junction reaching the 
postsynaptic neuron within about 0.5 ms. These substances modify 
the conductance of the postsynaptic membrane for certain ions, 
causing a polarization or depolarization of the postsynaptic potential. 
If the induced polarization potential is positive, the synapse is termed 
excitatory, because the influence of the synapse tends to activate the 
postsynaptic neuron. If the polarization potential is negative, the 
synapse is called inhibitory, since it counteracts excitation of the 
neuron. All the synaptic endings of an axon are either of an excitatory 
or an inhibitory nature. 

The cell body of a neuron acts as a kind of summing device due 
to the net depolarizing effect of its input signals. This net effect 
decays with a time constant of 5-10 ms. But if several signals arrive 
within such a period, their excitatory effects accumulate. When the 
total magnitude of the depolarization potential in the cell body 
exceeds the critical threshold (about 10 mV), the neuron fires. 

The activity of a given synapse depends on the rate of the arriving 
signals. An active synapse, which repeatedly triggers the activation 
of its postsynaptic neuron, will grow in strength, while others will 
gradually weaken. Thus the strength of a synaptic connection gets 
modified continuously. This mechanism of synaptic plasticity in the 
structure of neural connectivity, known as Hebb's rule, appears to 
play a dominant role in the complex process of learning. 

Although all neurons operate on the same basic principles as 
described above, there exist several different types of neurons, 
distinguished by the size and degree of branching of their dendritic 
trees, the length of their axons, and other structural details. The 
complexity of the human central nervous system is due to the vast 
number of the neurons and their mutual connections. Connectivity is 
characterised by the complementary properties of convergence and 
divergence. In the human cortex every neuron is estimated to receive 
a converging input on an average from about lo4 synapses. On the 
other hand, each cell feeds its output into many hundreds of other 
neurons. The total number of neurons in the human cortex is 
estimated to be in the vicinity of lo1', which are distributed in layers 
over a full depth of the cortical tissue at a constant density of about 
15 x lo4 neurons per mm2. Combined with the average number of 
synapses per neuron, this yields a total of about 1015 synaptic 
connections in the human brain, the majority of which develop during 
the first few months after birth. The study of the properties of 
complex systems built of simple, identical units may lead to an 
understanding of the mode of operation of the brain in its various 
functions, although we are still very far from such an understanding. 
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1.1.3 Performance Comparison of Computer and Biological 
Neural Networks 

A set of processing units when assembled in a closely interconnected 
network, offers a surprisingly rich structure exhibiting some features 
of the biological neural network. Such a structure is called an 
artificial neural network (ANN). Since ANNs are implemented on 
computers, it is worth comparing the processing capabilities of a 
computer with those of the brain [Simpson, 19901. 

4 

Speed: Neural networke are slow in processing information. For the 
most advanced computers the cycle time corresponding to execution 
of one step of a program in the central processing unit is in the range 
of few nanoseconds. The cycle time corresponding to a neural event 
prompted by an external stimulus occurs in milliseconds range. Thus 
the computer processes information nearly a million times faster. 

Processing: Neural networks can perform massively parallel 
operations. Most programs have large number of instructions, and 
they operate in a sequential mode one instruction &er another on a 
conventional computer. On the other hand, the brain operates with 
massively parallel operations, each of them having comparatively 
fewer steps. This explains the superior performance of human 
information processing for certain tasks, despite being several orders 
of magnitude slower compared to computer processing of information. 

Size and complexity: Neural networks have large number of 
computing elements, and the computing is not restricted to within 
neurons. The number of neurons in a brain is estimated to be about 
1011 and the total number of interconnections to be around 1015. It 
is this size and complexity of connections that may be giving the 
brain the power of performing complex pattern recognition tasks 
which we are unable to realize on a computer. The complexity of 
brain is further compounded by the fact that computing takes place 
not only inside the cell body, or soma, but also outside in the dendrites 
and synapses. 

Storage: Neural networks store information in the strengths of the 
interconnections. In a computer, information is stored in the memory 
which is addressed by its location. Any new information in the same 
location destroys the old information. In contrast, in a neural network 
new information is added by adjusting the interconnection strengths, 
without destroying the old information. Thus information in the brain 
is adaptable, whereas in the computer it is strictly replaceable. 

Fault tolerance: Neural networks exhibit fault tolerance since the 
information is distributed in the connections throughout the network. 
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Even if a few connections are snapped or a few neurons are not 
functioning, the information is still preserved due to the distributed 
nature of the encoded information. In contrast, computers are 
inherently not fault tolerant, in the sense that information corrupted 
in the memory cannot be retrieved. 

Control mechanism: There is no central control for processing 
information in the brain. In a computer there is a control unit which 
monitors all the activities of computing. In a neural network each 

C 
neuron a d s  based on the information locally available, and transmits 
its output to the neurons connected to it. Thus there is no specific 
control mechanism external to the computing task. 

While the superiority of human information processing system 
over the conventional computer for pattern recognition tasks is 
evident from the basic structure and operation of the biological neural 
network, it is possible to realize some of its features using an  artificial 
network consisting of basic computing units. It is possible to show that 
such a network exhibits parallel and distributed processing capability. 
In addition, information can be stored in a distributed manner in the 
connection weights so as to achieve some fault tolerance. These 
features are illustrated through several parallel and distributed 
processing models for cognitive tasks in [Rumelhart and McClelland, 
1986; McClelland and Rumelhart, 1986; McClelland and Rumelhart, 
19881. Two of these models are described briefly in Appendix A. 

The motivation to explore new computing models based on ANNs 
is to solve pattern recognition tasks that may sometimes involve 
complex optical and acoustical patterns also. It is impossible to derive 
logical rules for such problems for applying the well known A1 
methods. It is also difficult to divide a pattern recognition task into 
subtasks, so that each of them could be handled on a separate 
processor. Thus the inadequacies of the logic-based artificial 
intelligence and the limitations of the sequential computing have led 
to the concept of parallel and distributed processing through ANN. 
It may be possible to realize a large number of simple computing 
units on a single chip or on a few chips, and assemble them into a 
neural computer with the present day technology. However, it is 
difficult to implement the large number of synaptic connections, and 
it is even more difficult to determine the strategies for synaptic 
strength adjustment (learning). 

Even with these limitations, ANNs can be developed for several 
pattern recognition tasks for which it is difficult to derive the logical 
rules explicitly. The network connection weights can be adjusted to 
learn from example patterns. The architecture of the network can be 
evolved to deal with the problem of generalization in pattern 
classification tasks. ANNs can also be designed to implement selective 
attention feature required for some pattern recognition tasks. While 
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the adjustment of weights may take a long time, the execution of 
pattern classification or pattern recall will be much faster, provided 
the computing units work in parallel as in a dedicated hardware. 

Since information is stored in the connections and it is distributed 
throughout, the network can function as a memory. This memory is 
content addressable, in the sense that the information may be recalled 
by providing partial or even erroneous input pattern. The information 
is stored by association with other stored data like in the brain. Thus 
ANNs can perform the task of associative memory. This memory can 
work even in the presence of certain level of internal noise, or with 
a certain degree of forgetfulness. Thus the short-term memory 
function of the brain can be realized to some extent. Since information 
is stored throughout in an associative manner, ANNs are somewhat 
fault tolerant in the sense that the information is not lost even if 
some connections are snapped or some units are not hctioning. 
Because of the inherent redundancy in information storage, the 
networks can also recover the complete information from partial or noisy 
input pattern. Another way of looking at it is that an ANN is a reliable 
system built h m  intrinsically unreliable units. Any degradation in 
performance is 'graceful' rather than abrupt as in the conventional 
computers. A remarkable feature of ANNs is that it can deal with data 
that are not only noisy, but also fuzzy, inconsistent and probabilistic, 
just as human beings do. All this is due to the associative and dktributed 
nature of the stored information and the redundancy in the information 
storage due to large size of the network. Typically, the stored information 
is much less than the capacity of the network. 

1.2 Historical Development of Neural Network Principles 

The key developments in neural network principles are outlined in 
this section. Table 1.1 gives a list of some significant contributions 
in this field that have put the field on a strong theoretical and 
conceptual foundation, as it exists today. 

In 1943 Warren McCulloch and Walter Pitts proposed a model of 
computing element, called McCulloch-Pitts neuron, which performs a 
weighted sum of the inputs to the element followed by a threshold 
logic operation [McCulloch and Pitts, 19431. Combinations of these 
computing elements were used to realize several logical computations. 
The main drawback of this model of computation is that the weights 
are fixed and hence the model could not learn fiom examples. 

In 1949 Donald Hebb proposed a learning scheme for adjusting 
a connection weight based on pre- and post-synaptic values of the 
variables [Hebb, 19491. Hebb's law became a fundamental learning 
rule in neural networks literature. 

In 1954 a learning machine was developed by Marvin Minsky, 
in which the connection strengths could be adapted automatically 
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Table 1.1 Historical Development of Neural Network Principles 

Key developments Other significant contributions 

McCulloch and Pitts (1943) 

Model of neuron 

Logic operations 

Lack of learning 

Hebb (1949) 

Synaptic modifications 

Hebb's learning law 

Minsky (1954) 

Learning machines 

Rosenblatt (1958) 

Perceptmn learning and 
convergence 

Pattern classification 

Linear separability 
constraint 

Widrow and Hoff (1960) 

Adaline-LMS learning 

Adaptive signal 
processing 

Minsky and Papert (1969) 

Perceptron-Multilayer 
perceptron (MLP) 

Hard problems 

No learning for MLP 

Werbos (1974) 

Error backpropagation 

Hopfield (1982) 

Energy analysis 

Ackley, Hinton a d  
Sejnowski (1985) 

Boltzmann machine 

Rumelhart, Hinton and 
Williams (1986) 

Generalised delta rule 

von Neumann ( 1 9 4 6 ) a n e r a l  purpose 
electronic computer 

Norbert Weiner (1948Mybernetics 
Shannon (1948tInformation theory 
Ashby (1952tDesign for a Brain 
Gabor (1954)-Nonlinear adaptive filter 
Uttley (1956)-Theoretical machine 
Caianiello (1961)-Statistical theory and 

learning 
Minsk (1961)-Artificial intelligence 
Steinbuch (1961)-Learnmatrix 
Minsk and Selfiidge (196ltCredit 

assignment problem 
Nilsson (1965tLeamhg machine 
Amari (1967)-Mathematical solution to 

credit assignment 
Kohonen (1971)-Associative memories 
Willshaw (1971)-Self-organization and 

generalization 
Malsburg (1973jSelf-organization 
Tikhonw (1973)-Regularization theory 
Little (1974)-Ising model and neural 

network 
Grossberg (1976bAdaptive resonance 

theory 
Anderson (1977)-Brain state-in-box model 
Little and Shaw (1978)-Stochastic law for 

NN, spin glasses 
Fukushima (1980)-Neocognitmn 
Kohonen (1982)-Feature mapping 
Barto, Sutton and Anderson (1983)- 

Reinforcement learning 
Kirkpatrick (1983Himulated annealing 
Peretto (1984Htochastic units 
Mead (1985)-Analog VLSI 
Arnit (1985)43tatistical machines and 

stochastic networks 
Mopf (1986)-Drive-reinforcement leamhg 
Hecht-Nielsen (1987)-Counterpropagation 
Linsker (1988Helf-organization based on 

information preservation 
Kosko (1988)-BAM, Fuzzy logic in ANN 
Broomhead (1988)-Radial basis functions 

(RBF) 
Poggio and Girosi (1990bRBF and 

regularization theory 
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[Minsky, 19541. But it was in 1958 that Rosenblatt proposed the 
perceptron model, which has weights adjustable by the perceptron 
learning law [Rosenblatt, 19581. The learning law was shown to 
converge for pattern classification problems, which are linearly 
separable in the feature space. While a single layer of perceptrons 
could handle only linearly separable classes, it was shown that a 
multilayer perceptron could be used to perform any pattern 
classification task. But there was no systematic learning algorithm 
to adjust the weights to realize the classification task. In 1969 Minsky 
and Papert demonstrated the limitations of the perceptron model 
through several illustrative examples [Minsky and Papert, 19691. 
Lack of suitable learning law for a multilayer perceptron network 
had put brakes on the development of neural network models for 
pattern recognition tasks for nearly 15 years till 1984. 

In 1960s Widrow and his group proposed an Adaline model for a 
eomputing element and an LMS learning algorithm to adjust the 
weights of an Adaline model Widrow and Hoff, 19601. The 
convergence of the LMS algorithm was proved. The algorithm was 
successfully used for adaptive signal processing situations. 

The resurgence of interest in artificial neural networks is due to 
two key developments in early 1980s. The first one is the energy 
analysis of feedback neural networks by John Hopfield, published in 
1982 and 1984 [Hopfield, 1982; Hopfield, 19841. The analysis has 
shown the existence of stable equilibrium states in a feedback 
network, provided that the network has symmetric weights, and that 
the state update is made asynchronously. Also, in 1986, Rumelhart 
et al have shown that it is possible to adjust the weights of a 
multilayer feedforward neural network in a systematic way to learn 
the implicit mapping in a set of input-output pattern pairs 
[Rumelhart et al, 1986al. The learning law is called generalized delta 
rule or error backpropagation learning law. 

About the same time Ackley, Hinton and Sejnowski proposed the 
Boltzmann machine which is a feedback neural network with 
stochastic neuron units [Ackley et al, 19851. A stochastic neuron has 
an output function yrhich is implemented using a probabilistic update 
rule instead of a deterministic update rule as in the Hopfield model. 
Moreover, , the Boltzmann machine has several additional neuron 
units, called hidden units, which are used to make a given pattern 
storage problem representable in a feedback network. 

Besides these key developments, there are many other significant 
contributions made in this field during the past thirty years. Notable 
among them are the concepts of competitive learning, self- 
organization and simulated annealing. Self-organization led to the 
realization of feature mapping. Simulated annealing has been very 
useful in implementing the learning law for the Boltzmann machine. 
Several new learning laws were also developed, the prominent among 
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them being the reinforcement learning or learning with critic. Several 
architectures were developed to address specific issues in pattern 
recognition. Some of these architectures are: adaptive resonance 
theory (ART), neocognitron and counterpropagation networks. 
Currently, fuzzy logic concepts are being used t o  enhance the 
capability of the neural networks to deal with real world problems 
such as in speech, image processing, natural language processing and 
decision making [Lin and Lee, 19961. 

1.3 Artificial Neural Networks: Terminology 

Processing unit: We can consider an artificial neural network 
(ANN) as a highly simplified model of the structure of the biological 
neural network. An ANN consists of interconnected processing units. 
The general model of a processing unit consists of a summing part 
followed by. .an output part. The summing part receives N input 
values, weights each value, and computes a weighted sum. Th_e 
weighted sum is called the activation value. The output part produces 
a signal from the activation value. The sign of the weight for each 
input determines whether the input is excitatory (positive weight) or 
inhibitory (negative weight). The inputs could be discrete or 
continuous data values, and likewise the outputs also could be 
discrete or continuous. The input and output could also be 
deterministic or stochastic or fuzzy. 

Interconnections: In an artificial neural network several processing 
units are interconnected according to some topology to accomplish a 
pattern recognition task. Therefore the inputs to a processing unit 
may come from the outputs of other processing units, and/or from 
external sources. The output of each unit may be given to several 
units including itself. The amount of the output of one unit received 
by another unit depends on the strength of the connection between 
the units, and it is reflected in the weight value associated with the 
connecting link. If there are N units in a given ANN, then at any 
instant of time each unit will have a unique activation value and a 
unique output value. The set of the N activation values of the network 
defines the activation state of the network at that instant. Likewise, 
the set of the N output values of the network defines the output state 
of the network at that instant. Depending on the discrete or 
continuous nature of the activation and output values, the state of 
the network can be described by a discrete or continuous point in an 
N-dimensional space. 

Operations: In operation, each unit of an ANN receives inputs from 
other connected units and/or from an external source. A weighted 
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sum of the inputs is computed at a given instant of time. The 
activation value determines the actual output from the output 
function unit, i.e., the output state of the unit. The output values and. 
other external inputs in turn determine the activation and output 
states of the other units. Activation dynamics determines the 
activation values of all the units, i.e., the activation state of the 
network as a function of time. The activation dynamics also 
determines the dynamics of the output state of the network. The 
set of all activation states defines the activation state space of the 
network. The set of all output states defines the output state space 
of the network. Activation dynamics determines the trajectory of 
the path of the states in the state space of the network. For a 
given network, defined by the units and their interconnections with 
appropriate weights, the activation states determine the short term 
memory function of the network. 

Generally, given an external input, the activation dynamics is 
followed to recall a pattern stored in a network. In order to store a 
pattern in a network, it is necessary to adjust the weights of the 
connections in the network. The set of all weights on all connections 
in a network form a weight vector. The set of all possible weight 
vectors define the weight space. When the weights are changing, then 
the synaptic dynamics of the network determines the weight vector 
as a function of time. Synaptic dynamics is followed to adjust the 
weights in order to store the given patterns in the network. The 
process of adjusting the weights is referred to as learning. Once the 
learning process is completed, the final set of weight values 
corresponds to the long term memory function of the network. The 
procedure to incrementally update each of the weights is called a 
learning law or learning algorithm. 

Update: In implementation, there are several options available for 
both activation and synaptic dynamics. In particular, the updating of 
the output states of all the units could be performed synch~onously. 
In this case, the activation values of all the units are computed at 
the same time, assuming a given output state throughout. From the 
activation values, the new output state of the network is derived. In 
an asynchronous update, on the other hand, each unit is updated 
sequentially, taking the current output state of the network into 
account each time. For each unit, the output state can be determined 
from the activation value either deterministically or stochastically. 

In practice, the activation dynamics, including the update, is 
much more complex in a biological neural network than the simple 
models mentioned above. The ANN models along with the equations 
governing the activation and synaptic dynamics are designed 
according to the pattern recognition task to be handled. 
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1.4 Models of Neuron 

In this section we will consider three classical models for an artificial 
neuron or processing unit. 

1.4.1 McCulloch-Pitts Model 

In McCulloch-Pitts (MP) model (Figure 1.2) the activation (x) is given 
by a weighted sum of its M input values (ai) and a bias term (8). The 

Weights 
Input (Eured) Activation Output 

value signal 
a1 

W l  - - - 
w2 M '-0 s = f  (x) . W i  ai - 9 m 

W M  i = l  
afd - 

Summing part Output 
function f (.) 

Figure 1.2 McCulloch-Pith model of a neuron. 

output signal (s) is typically a nonlinear function flx) of the activation 
value x. The following equations describe the operation of an MP model: 

M 

Activation: x = x w i a i - 8  
i = l  

Output signal: s = f (XI 
Three commaply used nonlinear functions (binary, ramp and 

sigrnoid) are shown in Figure 1.3, although only the binary function 

(b) Ramp (c) Sigmoid 

Figure 1.3 Some nonlinear functions. 
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was used in the original MP model. Networks consisting of MP 
neurons with binary (on-off) output signals can be configured to 
perform several logical functions FlcCulloch and Pitts, 1943; Zurada, 
19921. Figure 1.4 shows some examples of logic circuits realized using 

(a) NOR gate 

(b) NAND gate -1 
a1 

(c) Memory cell 
assuming unit 
delay for neuron. Excitatory 1 
An initial excitatory input 
input 1 sustains the 
output 1 and an initial 

5jjlL.. 
inhibitory input +1 Inhibitory 
sustains the output 0 input 

Figure 1.4 Illustration of some elementary logic networks using MP neurons. 

the MP model. In this model a binary output function is used with 
the following logic: 

f(x) = 1, X > O  

A single input and a single output MP neuron with proper weight 
and threshold gives an output a unit time later. This unit delay property 
of the MP neuron can be used to build sequential digital circuits. With 
feedback, it is also possible to have a memory cell (Figure 1 .4~)  which 
can retain the output indefinitely in the absence of any input. 

In the MP model the weights are fixed. Hence a network using this 
model does not have the capability of learning. Moreover, the original 
model allows only binary output states, operating at discrete time steps 

1.4.2 Perceptron 

The Rosenblatt's perceptron model (Figure 1.5) for an artificial neuron 
consists of outputs from sensory units to a fixed set of association 
units, the outputs of which are fed to an MP neuron [Rosenblatt, 
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Weights 
(adjustable) 

Input 

Activation Output 
signal 

(binary) 

Sensory Association 
units units unit unit 

Figure 1.5 Rosenblatt's perceptron model of a neuron. 

19581. The association units perform predetermined manipulations on 
their inputs. The main deviation from the M P  model is that learning 
(i.e., adjustment of weights) is incorporated in the operation of the 
imit. The desired or target output (b) is compared with the actual 
binary output (s), and the error (6) is used to adjust the weights. The 
following equations describe the operation of the perceptron model of 
a neuron: 

Activation: 

Output signal: s = fix) 

Error: 6 = b- s  

Weight change: Aw, = 76 ai 

where 7 is the learning rate parameter. 
There is a perceptron learning law which gives a step-by-step 

procedure for adjusting the weights. Whether the weight adjustment 
converges or not depends on the nature of the desired input-output 
pairs to be represented by the model. The perceptron convergence 
theorem enables us to determine whether the given pattern pairs are 
representable or not. If the weight values converge, then the corres- 
ponding problem is said to be represented by the perceptron network. 

1.4.3 Adaline 

ADAptive LINear Element (ADALINE) is a computing model 
proposed by Widrow and is shown in Figure 1.6 [Widrow, 19621. The 
main distinction between the Rosenblatt's perceptron model and the 
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Figure 1.6 Widmw'~ Adaline model of a new&. 

value 
W l  +- 

signal 

Widrow's Adaline model is that, in the Adaline the analog activation 
value (x) is compared with the target output (b). In other words, the 
output is a linear fundion of the activation value (x). The equations 
that describe the operation of an Adaline are as follows: 

a1 

a, Wa 

: w, 
a, --C 

Activation: 

Output signal: s =  fix) = x 

output 
Summing part function f (.) 

M 
w i a i - 0  

i = l  

Error: 6 = b- s  = b-x 

10 s=f(x)=x 
w 

Weight change: Awi = q6 ai 

where q is the learning rate parameter. This weight update rule 
minimises the mean squared error a2, averaged over all inputs. Hence 
it is called Least Mean Squared (LMS) error learning law. This law 
is derived using the negative gradient of the error surface in the 
weight space. Hence it is also known as a gradient descent algorithm. 

1.5 Topology 
Artificial neural networks are useful only when the processing units 
are organised in a suitable manner to accomplish a given pattern 
recognition task. This section presents a few basic structures which 
will assist in evolving new architectures. The arrangement of the 
processing units, connections, and pattern inputloutput is referred to 
as topology [Simpson, 19901. 

Artificial neural networks are normally organized into layers of 
processing units. The units of a layer are.similar in the sense that 
they all have the same activation dynamics and output function. 
Connections can be made either from the units of one layer to the 
units of another layer (interlayer connections) or among the units 
within the layer (intralayer connections) or both interlayer and 
intralayer connections. Further, the connections across the layers and 
among the units within a layer can be organised either in a 
feedforward manner or in a feedback manner. In a feedback network 
the same processing unit may be visited more than once. 

We will discuss a few basic structures which form building bk&s 
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for more complex neural network architectures. Let us consider two 
layers F1 and F2 with M and N processing units, respectively. By 
providing connections to theJth unit in the F, layer from all the units 
in the F ,  layer, as shown in Figures 1.7a and 1.7b, we get two network 
structures instar and outstar, which have fan-in and fan-out 
geometries, respectively [Grossberg, 19821. During learning, the 
normalised weight vector wj = (w,,, wj2, ..., wjMIT in instar approaches 
the nomalized input vector, when an Input vector a = (a,, a2, ..., aMIT 

M 
is presented at the F, layer. Thus the activation w;a = Z w.. a .  of i = l  J t  8 

the jth unit in the F2 layer will approach maximum value during 
learning. Whenever the input is given to F,, then the Jth unit of F, 

(a) Instar (b) Outstar 

(c) Group of instars (d) Group of outstars 

(e) Bidirectional associative memory (f) Autoassociative memory 

Figure 1.7 Some basic structures of artificial neural networks. 



Basic Learning Laws 31 

will be activated to the maximum extent. Thus the operation of an 
instar can be viewed as content addressing the memory. In the case 
of an outstar, during learning, the weight vedor for the connections 
from the jth unit in F2 approaches the activity pattern in F,, when 
an input vector a is presented at F1. During recall, whenever the unit 
j is activated, the signal pattern (sjwL, s,wy, ..., s,w .) will be 
transmitted to Fl, where sj is the output of the jth umt. %us signal 
pattern then produces the original activity pattern corresponding to 
the input vector a, although the input is absent. Thus the operation 
of an outstar can be viewed as memory addressing the contents. 

When all the connections from the units in F1 to F2 are made as 
in Figure 1.7c, we obtain a heteroassociation network. This network 
can be viewed as a group of instars, if the flow is from Fl to F2. On 
the other hand, if the flow is from F2 to F1, then the network can be 
viewed as a group of outstars (Figure 1.7d). 

When the flow is bidirectional, we get a bidirectional associative 
memory (Figure 1.7e), where either of the layers can be used as 
input'output. 

If the two layers Fl and F2 coincide and the weights are 
symmetric, i.e., wj, = w", i ;t j, then we obtain an autoassociative 
memory in which each unit is connected to every other unit and to 
itself (Figure 1.70. 

1.6 Basic Learning Laws 

The operation of a neural network is governed by neuronal dynamics. 
Neuronal dynamics consists of two parts: one corresponding to the 
dynamics of the activation state and the other corresponding to the 
dynamics of the synaptic weights. The Short Term Memory (STM) in 
neural networks is modelled by the activation state of the network. 
The Long Term Memory (LTM) corresponds to the encoded pattern 
information in the synaptic weights due to learning. We will discuss 
models of neuronal dynamics in Chapter 2. In this section we discuss 
some basic learning laws [Zurada, 1992, Sec. 2.5; Hassoun, 1995, 
Ch. 31. Learning laws are merely implementation models of synaptic 
dynamics. Typically, a model of synaptic dynamics is described in 
terms of expressions for the first derivative of the weights. They are 
called learning equations. 

Learning laws describe the weight vector for the ith processing 
unit at time instant (t + 1) in terms of the weight vector at time 
instant (t) as follows: 

wi(t + 1) = wi(t) + Awi(t) (1.1) 

where Awi(t) is the change in the weight vector. 
There are different methods for implementing the learning 

feature of a neural network, leading to several learning laws. Some 
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basic learning laws are discussed below. All these learning laws use 
only local information for adjusting the weight of the connection 
between two units. 

1.6.1 Hebb's Law 

Here the change in the weight vector is given by 

Therefore, the jth component of Awi is given by 
T Aw.. = q flw, a)aj V 

= q s i a j ,  for j = 1 , 2  ,..., M (1.3) 

where si is the output signal of the ith unit. The law states that the 
weight increment is proportional to the product of the input data and 
the resulting output signal of the unit. This law requires weight 
initialization to small random values around w, = 0 prior to learning. 
This law represents an unsupervised learning. 

1.6.2 Perceptron Learning Law 

Here the change in the weight vector is given by 

where sgn(x) is sign of x. Therefore, we have 

A w, = q [bi - sgn(wTa)l aj 

= q (b, - s,) aj , for j = 1, 2, ..., M (1.5) 

This law is applicable only for bipolar output functions fl.). This 
is also called discrete perceptron learning law. The expression for 
Aw, shows that the weights are adjusted only if the actual output 
si is incorrect, since the term in the square brackets is zero for the 
correct output. This is a supervised learning law, as the law requires 
a desired output for each input. In implementation, the weights can 
be initialized to any random initial values, as they are not critical. The 
weights converge to the final values eventually by repeated use of the 
input-output pattern pairs, provided the pattern pairs are representable 
by the system. These issues will be discussed in Chapter 4. 

1.6.3 Delta Learning Law 

Here the change in the weight vector is given by 

AW, = q [b, - AwTa)] fiwTa) a 
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where fix) is the derivative with respect to x. Hence, 

This law is valid only for a differentiable output function, as it 
depends on the derivative of the output function fi.). I t  is a supervised 
learning law since the change in the weight is based on the error 
between the desired and the actual output values for a given input. 
Delta learning law can also be viewed as a continuous perceptron 
learning law. 

In.implementation, the weights can be initialized to any random 
values as the values are not very critical. The weights converge to 
the final values eventually by repeated use of the input-output 
pattern pairs. The convergence can be more or less guaranteed by 
using more layers of processing units in between the input and output 
layers. The delta learning law can be generalized to the case of multiple 
layers of a feedforward network. We will discuss the generalized delta 
rule or the error backpropagation learning law in Chapter 4. 

1.6.4 Wldrow and Hoff LMS Learning Law 

Here the change in the weight vector is given by 

Awi = q [b, - wTa] a (1.8) 
Hence 

T AwU=q[b i -wia la j ,  f o r j = 1 , 2  ,..., M (1.9) 

This is a supervised learning law and is a special case of the delta 
learning law, where the output function is assumed linear, i.e., 
f(xi) =xi. In this case the change in the weight is made proportional 
to the negative gradient of the error between the desired output and 
the continuous activation value, which is also the continuous output 
signal due to linearity of the output function. Hence, this is also called 
the Least Mean Squared (LMS) error learning law. This is same as 
the learning law used in the Adaline model of neuron. In 
implementation, the weights may be initialized to any values. The 
input-output pattern pairs data is applied several times to achieve 
convergence of the weights for a given set of training data. The 
convergence is not guar-d for any arbitrary training data set. 

1.6.5 Correlation Learning Law 

Here the change in the weight vector is given by 
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Therefore 
Aw, = qb,aj, f o r j =  1 ,2 ,  ..., M (1.11) 

This is a special case of the Hebbian learning with the output signal 
(si) being replaced by the desired signal (bi). But the Hebbian learning 
is an unsupervised learning, whereas the correlation learning is a 
supervised learning, since it uses the desired output value to adjust 
the weights. In the implementation of the learning law, the weights 
are initialised to small random values close to zero, i.e., wii = 0. 

1.6.6 lnstar (Winner-take-all) Learning Law 

This is relevant for a collection of neurons, organized in a layer as 
shown in Figure 1.8. All the inputs are connected to each of the units 

Figure 1.8 Arrangement of units for 'instar learning', where the adjusted 
weights are highlighted. 

in the output layer in a feedfonvard manner. For a given input vector 
a, the output from each unit i is computed using the weighted sum 
wTa. The unit k that gives maximum output is identified. That is 

T T wk a = max (wi a) (1.12) 
i 

Then the weight vector leading to the kth unit is adjusted as follows: 

Awk = 7 (a - wk) (1.13) 
Therefore, 

h = (a  - w ) ,  for j = 1 ,2 ,  ..., M (1.14) 

The final weight vector tends to represent a group of input vectors 
within a small neighbourhood. This is a case of unsupervised 
learning. In implementation, the values of the weight vectors are 
initialized to random values prior to learning, and the vector lengths 
are normalized during learning. 

1.6.7 Outstar Learning Law 

The outstar learning law is also related to a group of units arranged 
in a layer as shown in Figure 1.9. In this law the weights are adjusted 
so as to capture the desired output pattern characteristics. The 
adjustment of the weights is given by 

Aw. ~k = q(bj-wjk), f o r j =  1, 2, ..., M (1.15) 
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Figure 1.9 Arrangement of units for 'outstar learning', where the adjusted 
weights are highlighted. 

where the kth unit is the only active unit in the input layer. The 
vector b = (bl, b2, ..., bMIT is the desired response from the layer of 
M units. The outstar learning is a supervised learning law, and it is 
used with a network of instars to capture the characteristics of the 
input and output patterns for data compression. In ,implementation, 
the weight vectors are initialized to zero prior to  blaming. 

1.6.8 Discussion on Basic Learning Laws 

Table 1.2 gives a summary of the basic learning laws described so 

Table 1.2 Summary of Basic Learning Laws (Adapted from [Zurada, 19921) 

Learning Weight adjustment Initial Learning 
law hU, weights 

T Hebbian h.. = q flwi a) a, Near zero Unsupervised 
tJ 

= q sia,, 
for j = 1, 2, ..., M 

Perce~tron Aw, = q [bi - sgn(wTa)] a, Random Supervised 
= q (bi - si) aj, 

for j = 1,2, ..., M 

Delta Aw, = q [bi - f($a)] fiwTa) aj Random Supervised 

= q [bi -si] fixi) a,, 
for j = 1,2, ..., M 

Widrow- AW, = q [bi - wya] a,, Random Supervised 
Hoff for j = 1, 2, ..., M 
Correlation Aw, = qb,a,, Near zero Supervised 

for j = 1, 2, ..., M 

Winner- Awy=q(a,-wy), Random but Unsupervised 
take-all k is the winning unit, n~rmalised 

for j = 1, 2, ..., M 

Outstar Awjk = q (b, - wjk), Zero Supervised 
for j = 1,2, ..., M 
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far. It  shows the type of learning (supervised/unsupervised) and the 
nature of the output function (sgn for discrete1 f l .)  for continuous) 
for which each law is applicable. The most important issue in the 
application of these laws is the convergence of the weights to some 
final limit values as desired. The convergence and the limit values 
of the weights depend on the initial setting of the weights prior to 
learning, and on the learning rate parameter. 

The Hebb's law and the correlation law lead to the sum of the 
correlations between input and output (for Hebb's law) components 
and between input and desired output (for correlation law) 
components, respectively. But in order to achieve this, the starting 
initial weight values should be small random values near zero. The 
learning rate parameter q should be close to one. Typically, the set 
of patterns are applied only once in the training process. In some 
variations of these (as in the principal component learning to be 
discussed in Chapter 61, the learning rate parameter is set to a small 
value (< 1) and the training patterns are applied several times to 
achieve convergence. 

The perceptron, delta and LMS learning laws lead to h a 1  steady 
state values (provided they converge), only when the weight 
adjustments are small. Since the correction depends on the error 
between the desired output and the actual output, only a small 
portion of the error is used for adjustment of the weights each time. 
Thus the learning rate parameter q << 1. The initial weights could 
be set to random values. The set of training patterns need to be 
applied several times to achieve convergence, if it exists. The 
convergence will naturally be faster if the starting weights are close 
to the final steady values. 

The weights indhe instar and outstar learning laws converge to 
the mean values of a set of input and desired output patterns, 
respectively. In these cases the learning rate parameter is typically 
set to a value less than one (q < 1). The weights in the case of instar 
can be initialized to any random values, and in the case of outstar 
to small random values near zero. The set of training patterns are 
applied several times to achieve convergence. 

Besides these basic learning laws there are many other learning 
laws evolved primarily for application in different situations 
[:Aassoun, 1995, Ch. 31. Some of them will be discussed at appropriate 
places in the later chapters. 

1.7 Summary 
In this chapter we have seen the motivation and background for the 
current interest in the study of problems based on models using 
artificial neural networks. We have reviewed the features of the 
biological neural network and discussed the feasibility of realizing 
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some of these features through parallel and distributed processing 
(PDP) models (Appendix A). In particular, the associative memory, 
fault tolerance and concept learning features could be demonstrated 
through these PDP models. Some key developments in artificial 
neural networks were presented to show how the field has evolved 
to the present state of understanding. 

An artificial neural network is built using a few basic building 
blocks. The building blocks were introduced starting with the models 
of artificial neurons and the topology of a few basic structures. While 
developing artificial neural networks for specific applications, the 
weights are adjusted in a systematic manner using learning laws. 
We have discussed some basic learning laws and their characteristics. 
But the full potential of a neural network can be exploited if we can 
incorporate in its operation the neuronal activation and synaptic 
dynamics of a biological neural network. Some features of these 
dynamics are discussed in the next chapter. 

Review Questions 
1. Describe some attractive features of the biological neural 

network that make it superior to the most sophisticated Artificial 
Intelligence computer system for pattern recognition tasks. 

2. Explain briefly the terms cell body, axon, synapse, dendrite and 
neuron with reference to a biological neural network. 

3. Explain briefly the operation of a biological neural network. 

4. Compare the performance of a computer and that of a biological 
neural network in terms of speed of processing, size and 
complexity, storage, fault tolerance and control mechanism. 

5. Give two examples of pattern recognition tasks to illustrate the 
superiority of the biological neural network over a conventional 
computer system. 

6. What are the main differences among the three models of artificial 
neuron, namely, McCulloch-Pitts, perceptron and adaline? 

7. What is meant by topology of artificial neural networks? Give a 
few basic topological structures of artificial neural networks. 

8. What is the distinction between learning equation and learning 
law? 

9. What are the basic learning laws? 

10. Explain the significance of the initial values of weights and the 
learning rate parameter in the seven basic learning laws. 

11. Identify supervised and unsupervised basic learning laws. 

12. Compare LMS, perceptron and delta learning laws. 
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Problems 

1. Explain the logic functions (using truth tables) performed by the 
following networks with MP neurons given in Figure P1.l. 

Figure P1.l Three networks using MP neurons. 

2. Design networks using M-P neurons to realize the following logic 
functions using f 1 for the weights. 

(a) s(a,, a2, a, ) = alas +a+, +zla3 

(b) s(al, a,, a,) = a1a2a3 
(c) s(al, a2, a , )  = zla27E3 

3. Give the output of the network in Figure P1.2 for the input 
[l l l lT. 

Figure P1.2 A feedforward network with MP neurons. 

4. Determine the weights of the network in Figure P1.3a after one 
iteration using Hebb's law for the following set of input vectors 
for two different types of output fundions shown in Figures P1.3b 
and P1.3~. Use suitable values for the initial weights and learning 
rate parameter. Input: [llOOIT, [lOO1lT, [OO1llTand [OllOIT. Choose 
f (x )  = 141 + e-X) for Figure P1.3~. 
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Output 

Input vedor a, a4 

Figure P1.3 (a) A neuron with four inputs and one output, (b) Hard-limiting 
output function and (c) Sigmoid output function. 

5. Determine the weights of a network with 4 input and 2 output 
units using (a) Perceptron learning law and (b) Delta learning 
law with f l x )  = ll(1 +e-*) for the following inputroutput pairs: 

Input: [1100IT [1001IT [0011IT [0ll0IT 

Output: [11IT [10IT [01IT [00IT 

Discuss your results for different choices of the learning rate 
parameters. Use suitable values for the initial weights. 
(Hint: Write a program to implement the learning laws.) 

6. Using the Instar learning law, group all the sixteen possible 
binary vectors of length 4 into four different groups. Use suitable 
values for the initial weights and for the learning rate parameter. 
Use a 4-unit input and 4-unit output network. Select random 
initial weights in the range [O, 11. 
(Hint: Write a program to implement the learning law.) 
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Activation and Synaptic 
Dynamics 

2.1 Introduction 

An artificial neural network consists of several processing units (or 
artificial neurons) interconnected in a predetermined manner to 
accomplish a desired pattern recognition task. In the previous chapter 
we have seen some models of neurons and some basic topologies, 
using which it is possible to build complex structures. However, the 
structure of an artificial neural network is not useful, unless the rules 
governing the changes of the activation values and connection weight 
values are also specified. These rules are implied or specified in the 
activation and synaptic dynamics equations governing the behaviour 
of the network structure to accomplish the desired task. 

In a neural network with N processing units, the set of activation 
values of the units at any given instant defines the activation state of 
the network. Typically, a problem is specified by a point in the 
activation state space. The trajectory of the activation states, leading 
to a solution state, reflects the dynamics of the network. The 
trajectory depends upon the activation dynamics built into the 
network. The activation dynamics is prescribed by a set of equations, 
which can be used to determine the activation state of the network 
at the next instant, given the activation state at the current instant. 

For a given input data, the weights of the connecting links in a 
network are adjusted to enable the network to learn the pattern in 
the given input data. The set of weight values of all the links in a 
network at any given instant defines the weight state, which can be 
viewed as a point in the weight space. The trajectory of the weight 
states in the weight space is determined by the synaptic dynamics of 
the network. 

A network is led to  one of its steady activation states by the 
activation dynamics and the input pattern. Since the steady activation 
state depends on the input pattern, it is referred to as short term 
memory. The state will change if the input pattern changes. On the 
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other hand, the steady weight state of a network is determined by 
the synaptic dynamics for a given set of training inputs, and it does 
not change. Hence this steady weight state is referred to as long term 
memory. 

Activation dynamics relates to the fluctuations a t  the neuronal 
level in a biological neural network. Typically, these fluctuations take 
place in average intervals of the order of a few milliseconds. Thus 
the neuronal level dynamics is signific&tly fastef than the dynamics 
at the synaptic level, where significant changes in the synaptic 
weights take place at intervals of the order of a few seconds. 
Therefore, it can be assumed that during activation dynamics the 
synaptic weights do not change significantly, i.e., the weights can be 
assumed to be constants of the network. 

The objective of this chapter is to discuss models for activation 
and synaptic dynamics. We must distinguish two situations here. 
Models of neural networks normally refer to the mathematical 
representation of our understanding and observed behaviour of the 
biological neural network. The purpose in this case is to capture the 
knowledge by the model. The model is not intended for detailed 
analysis of the network. Therefore a model of the neural network 
could be very complex, involving first and higher order derivatives of 
activations and weights, as well as several nonlinear interactions. In 
contrast, the purpose of neural network models is to provide a 
representation for the dynamics of an artificial network, incorporating 
features inspired by our understanding of the operation of the 
biological neural network. In other words, the neural network model 
is a mathematical model for analysis of gross characteristics of an 
artificial network. Typically, these models are described by an 
expression for the first order time derivative of the activation state 
for activation dynamics and an expression for the first order time 
derivative of the weight state for synaptic dynamics. These 
expressions are usually simple enough (although nonlinear) to enable 
us to predict the global characteristics of the network. An expression 
for the first derivative may contain time parameter explicitly, in 
which case such systems become nonautonomous dynamical systems. 
If the expression does not contain the time parameter explicitly, then 
the systems become autonomous dynamical systems, which are 
relatively easier to analyze. Throughout this chapter we use the terms 
models of neural networks and neural network models inter- 
changeably, although they refer to the autonomous dynarnical system 
models represented by an expression for the first derivative of the 
activation value of each unit in the network. 

We discuss activation dynamics and synaptic dynamics, 
separately. The discussion on the activation and synaptic dynamics 
is adapted from [Kosko, 19921. In Section 2.2 on the activation 
dynamics models we consider . the additive, shunting (or 
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multiplicative) and stochastic models. We also discuss the equilibrium 
states of the networks with a specified activation dynamics. Since 
synaptic dynamics models lead to learning laws, in Section 2.3 we 
first consider the requirements of the learning laws for effective 
implementation. In this section we also discuss the distinction 
between the activation and synaptic dynamics models. In Section 2.4 
several categories of learning are discussed, which include Hebbian, 
competitive, error correcting and stochastic learning. A brief 
discussion is included on the equilibrium of synaptic dynamics. In 
Section 2.5 we discuss the issues of stability and convergence in 
activation and synaptic dynamics, respectively. We shall review the 
general stability theorems and discuss briefly the issues of global and 
structural stability in neural networks. In Section 2.6 we discuss 
methods for neural network recall for both feedforward and feedback 
networks. In the final section we provide a brief summary of the 
issues discussed in this chapter. 

2.2 Activation Dynamics Models 

2.2.1 Issues in the Development of Activation Dynamics Models 

Activation dynamics is described by the first derivative of the 
activation value of a neuron [Kosko, 19921. For the ith neuron, it is 
expressed as 

where h(.) is a function of the activation state and synaptic weights 
of the network. Let us consider a network of N interconnected 
processing units, where the variables and constants of each unit are 
shown in Figure 2.1. The activation value is generally associated with 

Input Weights ~ctivation Output 
value signal 

Summing Output 
part function 

Figure 2.1 A typical processing unit i with associated parameters. 

the cell membrane potential. The output function fl.) determines the 
output signal generated at the axon hillock due to a given membrane 
potential. This function bounds the output signal, and it is normally 
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a nondecreasing function of the activation value. Thus the output is 
bounded as shown in Figure 2.2a for a typical output function. 
Although the activation value is shown to have a large range, in 
practice the membrane potential has to be bounded due to limitation 
of the current carrying capacity of a membrane. Thus there is a limit 
to the operating range of a processing unit, which corresponds to the 
difference between the maximum and minimum activation values. 

The input values to a processing unit coming from external 
sources, especially through sensory inputs, may have a large dynamic 
range, as for example, the reflections &om an object in a dim light 
and the same in a bright light. Thus the dynamic range of the 
external input values could be vely large, and usually not in our 
control. If the neuron is made sensitive to smaller values of inputs, 
as in Figure 2.2b, its output signal will saturate for large input 
values, i.e., for x > x,  in the figure. Moreover, even a noisy input 
could produce some output signal, which is not desirable. On the 
other hand, if the neuron is made sensitive to large values of the 
input by making the threshold 8 large, as in Figure 2.2c, its activation 
value becomes insensitive to small values of the input. This is the 
familiar noise-saturation dilemma [Grossberg, 19821. The problem is 
how a neuron with limited operating range for the activation values 
can be made sensitive to nearly unlimited range of the input values. 

Figure 2.2 Output functions for three different bias values (8). 
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The input to a processing unit may come from the outputs of the 
other neurons connected to it through synaptic weights, or from an 
external source such as a sensory input. Both of these types of inputs 
may have excitatory components which tend to increase the activation 
of the unit, or inhibitory components which tend to decrease the 
activation of the unit. The input, the activation value and the output 
could fall into one or more of the following categories of data 
depending on the nature of the external input and the nature of the 
output function: deterministic or stochastic, crisp or fuzzy and discrete 
or continuous. 

In developing models for activation dynamics, i t  is necessary to 
take into account the known behaviour from the studies on biological 
neuronal dynamics, but a t  the same time, the models must be 
tractable for analysis to examine the global behaviour of a network 
consisting of a large number of interconnecting processing units. In 
particular, the model should be such that it should be possible to 
study the behaviour of the equilibrium states of the network to 
determine whether the network is globally and structurally stable. 
Structural stability refers to the state equilibrium situation where 
small perturbations of the state around the equilibrium brings the 
network back to the equilibrium state. This depends on the behaviour 
of the network in the neighbourhood of the equilibrium state, which 
in turn depends on the activation dynamics and the connection 
weights of the network. The model also should be able to learn (adjust 
the weights) while satisfymg the requirements of storage capacity 
and stability characteristics. Global stability refers to the state equili- 
brium condition when both the synaptic and activation dynamics are 
simultaneously used. In the following discussion we will assume that 
the weights do not change while examining the activation dynamics. 

We discuss models for activation dynamics starting from simple 
additive models and then moving to more general shunting or 
multiplicative models. Initially, we consider only the deterministic 
models and then extend the models to stochastic versions. We also 
provide a discussion on the equilibrium behaviour for different models 
of the network. It  should be noted that each model takes into account 
a few features of the neuronal dynamics, which may be relevant for 
a particularllimited application. 

2.2.2 Additive Activation Models 

As mentioned before, the activation value xi of the ith neuron can be 
interpreted as the cell membrane potential, and i t  is a function of 
time, i.e., xi = xi(t). The activation models are described by an 
expression for the first derivative of the activation value of a neuron. 
Thus xi(t) gives the rate of change of the activation value of the ith 
neuron of a neural network. 
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For the simplest case of a passive decay situation, 

where Ai ( > 0) is a constant for the membrane and can be interpreted 
as the passive decay rate. The solution of this equation is given by 

In electrical circuit analogy, Ai can be interpreted as membrane 
conductance, which is inverse of the membrane resistance (Ri). The 
initial value of xi is xi(0). The steady state value of xi is given by 
xi(-) = 0, which is also called the resting potential. 

The passive decay time constant is altered by the membrane 
capacitance C, which can also be viewed as a time scaling parameter. 
With Ci, the passive decay model is given by 

and the solution is given by 

Without loss of generality, we can assume Ci = 1 throughout the 
following discussion. If we assume a nonzero resting potential, then 
the activation model can be expressed by adding a constant Pi to the 
passive decay term as 

xi(t) = - Ai xi(t) + Pi, (2.6) 

whose solution is given by 

The steady state activation value is given by xi(-) = PjAi, the resting 
potential. 

Assuming the resting potential to be zero (Pi = 0), if there is a 
constant external excitatory input Ii, then the additive activation 
model is given by 

Xi(t) = - A, xi(t) + Bi Ii, (2.8) 

where Bi ( > 0) is the weight given to Ii. The solution of this equation 
is given by 

Bi Ii 
xi@) = xi@) e-Af + --- (1 - e-Af) 

4 (2.9) 

The steady state activation value is given by xi(-) = B,Ii/Ai, which 
shows that the activation value directly depends on the external 
input, and thus it is unbounded. 
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In addition to the external input, if there is an input from the 
outputs of the units, then the model becomes an additive ' 

autoassociative model, and is given by 

j= 1 

where 64.) is the output function of the jth unit. For inhibitory 
feedback connections or for inhibitory external input, the equations 
will be similar to the above except for the signs of the second and 
third terms in the above equation. The classical neural circuit 
described by Perkel is a special case of the additive autoassociative 
model, and is given by [Perkel et al, 19811 

where R, is the resistance between the neurons i and j, and 

Perkel's model assumes a linear output function f(z) = x, thus 
resulting in a signal which is unbounded. If the output function 
f(z) is strictly an increasing but bounded function, as in Figure 2.2, 
and the connection weights are symmetric, i.e., wii = wji, then the 
resulting model is called Hopfield model [Hopfield, 19821. The 
Hopfield model belongs to the class of feedback neural network 
models,' called autoassociative memory, that are globally stable. We 
will discuss further on this point in a later section. 

A network consisting of two layers of processing units, where each 
unit in one layer (say layer 1) is connected to every unit in the other 
layer (say layer 2) and vice versa, is called a heteroassociative 
network. The additive activation model for a heteroassociative 
network is given by 

N 
ii(t) = - A, xi(t) + C fj(yj(t)) vii + I, , i = 1, 2, ,,,, M 

j=l  

where Ii and 4 are the net external inputs to the units i and j, 
respectively. Note that Ai and A(.) could be different for each unit and 
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for each layer. In the above equations V = [vii] is the matrix of 
weights from the units in the layer 2 to the units in the layer 1, and 
W = [wjil is the matrix of weights from the units in the layer 1 to 
the units in the layer 2. These are coupled first order differential 
equations. Under special conditions, such as the weights in both the 
directions being identical, i.e., W = p, and the output function being 
bounded, the resulting hetroassociative model reduces to a 
bidirectional associative memory [Kosko, 19881. Analogous to the 
Hopfield autoassociative memory, the bidirectional associative 
memory can also be proved to be globally stable. Table 2.1 gives a 
summary of the development of activation dynamics models discussed 
in this section. 

Table 2.1 Summary of Development of Additive Activation Dynamics 
Models 

General form: 
xi(t) = h(.), i = 1 , 2  ,..., N 

Passive decay term: 
Ci xi(t) = -Ai xi(t), 

where Ai is the membrane conductance and Ci is the  membrane 
capacitance 
Nonzero resting potential (PiIAi): 

With external input (BJi): 

where Bi is a positive constant 
Additive autoassociative model: 

j = 1  

Perkel's model: 

Hetroassociative model: 

Bidirectional associative memory: 
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2.2.3 Shunting Activation Models 

Grossberg has proposed a shunting activation model to restrict the 
range of the activation values to a specified operating range irrespec- 
tive of the dynamic range of the external inputs [Grossberg, 1982; 
Grossberg, 19881. We will first consider the saturation model, where 
the activation value is bounded to an upper limit. For an excitatory 
external input Ii, the shunting activation model is given by 

xi(t) = - Ai xi(t) + [Bi - xi(t)] Ii (2.14) 

The steady state activation value is obtained by setting xi(t) = 0, and 
solving for xi. The result is 

As the input Ii + m, then xi(=) + Bi. That is, the steady state value 
of xi saturates at Bi. In other words, if the initial value xi(0) I Bi, 
then xi(t) I Bi for all t. If the input value refers to an intensity of 
reflected light Ii = pJ, where I is the background intensity value, 
and p, is the fraction of the background intensity that is input to the 
ith unit, then the above saturation model is insensitive to pi for large 
background intensities. 

In order to make the steady state activation value sensitive to 
reflectance, irrespective of the background intensity, Grossberg 
suggested an on-centre off-surround shunting activation model by 
providing inhibitory inputs from other input elements to the ith unit 
along with the excitatory input from the ith input element to ith unit 
as shown in Figure 2.3. Throughout the following discussion we 

Processing units 

11 1 3  Ii 1 Input intensities 
Figure 2.3 An on-center and off-surround configuration for shunting 

activation model. 
assume a hard-limiting threshold function for the output function. 
That is, fix) = 0, for x I 0 and, fix) = 1, for x > 0. Assuming 
N 
X Ii = I and Ii = piI, for convenience, the shunting activation model 

i = l  

with on-centre off-surround configuration is given by 
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The steady state activation value is obtained by setting xi(t) = 0, and 
is given by 

From this we can see that, even if Ii + =, as I + =, the steady 
state activation value xi(=) does not saturate. Instead, xi(-) will still 
be sensitive to pi, the input reflection. It can be seen that, since 
pi < 1, the steady activation value is always less than Bi, the 
saturation limit, i.e., xi(t) < Bi for all t. 

In order to make a unit insensitive to small positive inputs, may 
be due to noise, the shunting activation model can be modified to 
incorporate a lower limit (< 0) to the activation value. The following 
is the resulting model: 

The steady state activation value is obtained by setting xi(t) = 0, and 
is given by 

Note that xi(=) + pi (Bi + Ei) - Ei as I + =. This steady state 
activation value is negative as long as the input reflectance value to 
the ith unit, pi < EiI(Bi + Ei). In that case the output signal of the 
unit will be zero, since we assume that fix) = 0, for x 5 0. That is, 
the ith processing unit will be sensitive to the input only if its input 
reflectance value is above a threshold. Thus it is possible to make 
the unit insensitive to random noise input within a specified threshold 
limit value. The above shunting activation model has therefore an 
operating range of [ - Ei, Bi] for the activation value, since the lowest 
value for xi(-) = - Ei, which occurs when pi = 0. 

A shunting activation model with excitatory feedback from the 
same unit and inhibitory feedback from other units is given by 

where Ji is the inhibitory component of the external input. Note that, 
on the right hand side of Eq. (2.20) xi(t) is replaced by xi for 
convenience. The inhibitory sign is taken out of the weights wy, and 
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hence wu > 0. The shunting model of (2.20) is a special case of 
Hodgkin-Huxley membrane equations [Hodgkin and Huxley, 19521. 

Equation (2.20) can be written in the most general form as 

xi@) = - A, xi + (B, - Ci x,) [I, +f;.(~,)] 

where all the constants are positive. The first term' oh the right hand 
side corresponds to the passive decay tenh, the second term 
corresponds to the excitatory term and the third term corresponds to 
the inhibitory term. If we consider the excitatory term 
(B, - C, x,) [Iz + f,(x,)l, it shows the contribution of the excitatory 
(external and feedback) input in increasing the activation value 
(x,(t)) of the input. If C, = 0, then the contribution of this input 
reduces to an additive effect, as in the additive activation model. 'If 
C, > 0, then the contribution of the excitatory input reduces to zero 
when the activation x,(t) = B,IC,. This can be viewed as shunting 
effect in an equivalent electrical circuit, and hence the name shunting 
activation model. If the initial value x,(O) 5 B/C,, then the model 
ensures that x,(t) I BjC,, for all t > 0, thus showing the boundedness 
of the activation value within an upper limit. This can be proved by 
the following argument: If x,(t) > BjC,, then the second term becomes 
negative, since we assume that f(x) = 1, for all x > 0 and I, > 0. 
Since the contribution due to the inhibitory third term is negative, if 
the excitatory second term is also negative, then the steady activation 
value, obtained by setting x,(t) = 0, will be negative. Thus there is a 
contradiction, since we started with the assumption that 
x,(t) > B,IC,, which is positive. Hence x,(t) < B/C, for all t. 

Likewise, the inhibitory term (E, + D, xi) [ J, +jzi fi(x,) W B ]  shows 

the contribution of the inhibitory (external and feedback) input in 
decreasing the activation value xi(t) of the unit. In this case, if 
Di = 0, then the contribution of this input reduces to an additive effect, 
as in the additive activation model. If Di > 0, then the contribution 
of the inhibitory input reduces to zero when the activation 
xi(t) = - EilDi . This can be viewed as a shunting effect in an 
equivalent electrical circuit. If the initial value xi(0) 2 - E{Di , then 
the model ensures that xi(t) 2 - EjDi , for all t > 0. This can be proved 
by the following argument: For xi(t) < - EilDi, the contribution of the 
inhibitory third term will be positive, since fix) > 0, for all x. Since 
the excitatory second term is always positive, the steady state 
activation value obtained by setting xi (t) = 0 is always positive. But 
we assumed that xi(t) < - EjDi, which is negative. Thus there is a 
contradiction. Hence xi(t) 2 - E{Di. Table 2.2 gives a summary of 
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the development of shunting activation models discussed in this 
section. 

Table 2.2 Summary of Development of Shunting Activation Dynamics 
Models 

Goal: To keep the operating range of activation value to a specified range 
General form: 

Saturation model: To restrict to an upper limit 

On-centre off-surround configuration: To make it sensitive to changes in 
the external input 

i i ( t )  = -Ai xi(t) + [B, - x,(t)l Zi - xi(t) x I j  
j # i  

Setting noise limit: 

i i ( t )  = -Ai x,(t) + [Bi - xi(t)l Ii - [Ei + xi(t)l x Zj 
j t i  

With excitatory feedback from the same unit and inhibitory feedback 
from other units: 

i i ( t )  = -A,  xi + (B, - xi) [I, + fi(xi)l - (Ei +xi)  J, + fj(xj) wij I j * i  I 
2.2.4 Stochastic Models 

The activation models considered so far are deterministic models. In 
practice, the inputloutput patterns and the activation values may be 
considered as sample functions of random processes. The output 
signal of each processing unit may be a random function of the unit's 
activation value. In such cases the network activation state and 
output signal state can be viewed as vector stochastic processes. Each 
unit in turn behaves as a scalar stochastic process. 

Stochastic activation models are represented in a simplified 
fashion by adding an additional noise component to the right side of 
the expression for xi(t) for each of the deterministic activation models. 
The probability distribution of the noise component is assumed for 
analyzing the vector stochastic processes of the activation states. In 
particular, in stochastic equilibrium, the activation state vector 
hovers in a random fashion about a fixed (deterministic) equilibrium 
state, representing the average. 

2.2.5 Discussion on Equilibrium 

Normally the term equilibrium is used to denote the state of a 
network at which the network settles when small perturbations are 
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made to the state. In the deterministic models, the equilibrium states 
are also steady states. Hence these states satisfy the equations 
xi(t) = 0, for i = 1,2, ..., N. Note that xi(t) = 0 is a necessary 
condition for a state to be an equilibrium state, but not a sufficient 
condition. In stochastic models, the equilibrium states are defined by 
the equations xi(t) = ni(t), for i = 1, 2, ..., N, where ni(t) is the 
additive noise process. Note that in both the deterministic and 
stochastic models the transient due to the passive decay term is 
absent in the equilibrium state. 

Equilibrium of a network depends on several other factors also 
besides the activation models. The most important among these is 
the update of the state change at each stage. The update could be 
synchronous, which means that the update of all the units is done 
at the same time. On the other hand, in an asynchronous update the 
change of state of any one unit changes the overall state of the 
network. Another factor is that the state update could be 
deterministic or stochastic. The equilibrium behaviour also depends 
on whether we are adopting a continuous time update or a discrete 
time update. A major issue in the study of equilibrium behaviour of 
a network is the speed at which the feedback signals from other units 
are received by the current unit. 

2.3 Synaptic Dynamics Models 

2.3.1 Learning 

Synaptic dynamics is attributed to learning in a biological neural 
network. The synaptic weights are adjusted to learn the pattern 
information in the input samples. Typically, learning is a slow 
process, and the samples containing a pattern may have to be 
presented to the network several times before the pattern information 
is captured by the weights of the network. A large number of samples 
are normally needed for the network to learn the pattern implicit in 
the samples. Pattern information is distributed across all the weights, 
and it is difficult to relate the weights directly to the training samples. 
The only way to demonstrate the evidence of learning pattern 
information is that, given another sample from the same pattern 
source, the network would classify the new sample into the pattern 
class of the earlier trained samples. Another interesting feature of 
learning is that the pattern information is slowly acquired by the 
network from the training samples, and the training samples 
themselves are never stored in the network. That is why we say that 
we learn from examples, not store the examples themselves. 

The adjustment of the synaptic weights is represented by a set 
of learning equations, which describe the synaptic dynamics of the 
network. The learning equation describing a synaptic dynamics model 
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is given as an expression for the first derivative of the synaptic weight 
wi,. connecting the unit j to the unit i. The set of equations for all the 
weights in the network determine the trajectory of the weight states 
in the weight space from a given initial weight state. 

Learning laws refer to the specific manners in which the learning 
equations are implemented. Depending on the synaptic dynamics 
model and the manner of implementation, several learning laws have 
been proposed in the literature. The following are some of the 
requirements of the learning laws for effective implementation: 

Requirements of learning laws: 

(a) The learning law should lead to convergence of weights. 

(b) The learning or training time for capturing the pattern 
information fiom samples should be as small as possible. 

(c) An on-line learning is preferable to an off-line learning. That 
is, the weights should be adjusted on presentation of each sample 
containing the pattern information. 

(d) Learning should use only the local information as far as 
possible. That is, the change in the weight on a connecting link 
between two units should depend on the states of these two units 
only. In such a case, it is possible to implement the learning law in 
parallel for all the weights, thus speeding up the learning process. 

(el Learning should be able to capture complex nonlinear 
mapping between input-output pattern pairs, as well as between 
adjacent patterns in a temporal sequence of patterns. 

(0 Learning should be able to capture as many patterns as 
possible into the network. That is, the pattern information storage 
capacity should be as large as possible for a given network. 

Categories of learning: Learning can be viewed as searching 
through the weight space in a systematic manner to determine the 
weight vector that leads to an optimum (minimum or maximum) 
value of an objective function. The search depends on the criterion 
used for learning. There are several criteria which include minimiza- 
tion of mean squared error, relative entropy, maximum likelihood, 
gradient descent, etc. [Hassoun, 19951. There are several learning 
laws in use, and new laws are being proposed to suit a given applica- 
tion and architecture. Some of these will be discussed at appropriate 
places throughout the book, but there are some general categories 
that these laws fall into, based on the characteristics they are 
expected to possess. In the first place, the learning or weight 
adjustment could be supervised or unsupervised. In supervised 
learning the weight adjustment is determined based on the deviation 
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of the desired output from the actual output. Supervised learning 
may be used for structural learning or for temporal learning. 
Structural learning is concerned with capturing in the weights the 
relationship between the given input-output pattern pairs. Temporal 
learning is concerned with capturing in the weights the relationship 
between neighbouring patterns in a sequence of patterns. 

Unsupervised learning discovers features in a given set of 
patterns, and organizes the patterns accordingly. There is no exter- 
nally specified desired output in this case. Unsupervised learning uses 
mostly local information to update the weights. The local information 
consists of signal or activation values of the units at either end of 
the connection for which the weight update is being made. 

Learning methods may be off-line or on-line. In an off-line 
learning all the given patterns are used together to determine the 
weights. On the other hand, in an on-line learning the information 
in each new pattern is incorporated into the network by incrementally 
adjusting the weights. Thus an on-line learning allows the neural 
network to update the information continuously. However, an off-line 
learning provides solutions better than an on-line learning since the 
information is extracted using all the training samples in the case of 
off-line learning. 

In practice, the training patterns can be considered as samples 
of random processes. Accordingly, the activation and output states 
could also be considered as samples of random processes. Randomness 
in the output state could also result if the output function is 
implemented in a probabilistic manner rather than in a deterministic 
manner. These input, activation and output variables may also be 
viewed as fuzzy quantities instead of crisp quantities. Thus we can 
view the learning process as deterministic or stochastic or fuzzy or a 
combination of these characteristics. 

Finally, in the implementation of the learning methods the 
variables may be discrete or continuous. Likewise the update of 
weight values may be in discrete steps or in continuous time. All 
these factors influence not only the convergence of weights, but also 
the ability of the network to learn from the training samples. 

2.3.2 Distinction between Activation and Synaptic Dynamics 
Models 

In order to appreciate the issues in evolving and implementing 
learning, it is necessary to clearly understand the distinction between 
the functions of the activation and synaptic dynamics models. This 
is discussed in this section. Both activation dynamics and synaptic 
dynamics models are expressed in terms of expressions for the first 
derivatives of the activation value of each unit and the strength of 
the connection between the ith unit and the jth unit, respectively. 
However, the purpose of invoking activation dynamics model is to 
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determine the equilibrium state that the network would reach for a 
given input. In this case, the input to the network is fixed throughout 
the dynamics. The dynamics model may have terms corresponding to 
passive decay, excitatory input (external and feedback) and inhibitory 
input (external and feedback). The passive decay term contributes to 
transients, which may eventually die, leaving only the steady state 
part. The transient part is due to the components representing the 
capacitance and resistance of the cell membrane. The steady 
state activation equations can be obtained by setting xi(t) = 0, 
i = 1,2, ..., N. This results in a set of N coupled nonlinear equations, 
the solution of which will give the steady activation state as a function 
of time. This assumes that the transients decay faster than the 
signals coming from feedback, and the feedback signals do not 
produce any transients. I t  is in the movement of the steady activation 
state that we would be interested in the study of activation dynamics. 
Note that even a single unit network without feedback may have 
transient and steady parts, and the steady part in  this case describes 
the stable state also. But in a network with feedback fiom other units, 
the steady activation states may eventually reach an equilibrium or 
a stable state, provided the conditions for the existence of stable 
states are satisfied by the parameters (especially the weights) in the 
activation dynamics model. Thus, in these cases we are not interested 
in the transient part of the solutions. We are only interested in the 
equilibrium stable states reached by the steady state activation values 
for a given input. The equilibrium states (x) correspond to the 
locations of the minima of the Lyapunov energy function V(x), and 
are given by dV(x(t))ldt = 0, whereas the steady states are given by 
x(t) = 0, where x(t) is the activation vector with components x,(t), 
i = 1,2, ..., N. The equilibrium behaviour of the activation state of a 
neural network will be discussed in detail in Section 2.5. 

The case of synaptic dynamics model is different from the activa- 
tion dynamics model. The objective in synaptic dynamics is to capture 
the pattern information in the examples by incrementally adjusting 
the weights. Here the weights change due to input. If there is no 
input, the weights also do not change. Note that providing the same 
input at  another instant again causes the weights to change, as it 
can be viewed as a sample given for further reinforcement of the 
weights. If the model contains a passive decay term in addition to 
the terms due to the varying external input, the network not only 
learns continuously, but also forgets what it had learnt initially. In 
discrete implementation, i.e., determining the weight change a t  each 
discrete time step, suitable assumptions are made regarding the 
contribution of the initial weight state and also the contributions due 
to the samples given in the past. As an example, let us consider the 
following synaptic dynamics model, consisting of a passive decay term 
and a correlation term: 
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wii(t) = - wii(t) + f;.(xi(t)) f;(3CJ(t)) (2.22) 

The solution to the equation is given by 
t 

wV(t) = ~ ~ ( 0 )  e f  + it I f;.(xi(r)) t;(x,(r)) eT dr ,  (2.23) 
0 

where wy(0)  is a constant initial value of the weight. The above 
solution shows that the weight accumulates the correlation of the 
output signals, i.e., fi(xi(t))fi(xj(t)). Note that the activation values 
xi(t) and xj(t) depend on the external input given in the form of 
samples, continuous in time in this case. This is because the 
activation dynamics depends on the external input besides the 
network parameters like membrane capacitance and the connection 
topology like feedback. The activation values considered here are 
steady and stable, since it is assumed that the transients due to 
membrane parameters like capacitances have decayed down, and the 
steady activation state of the network has reached the stable state. 
This assumption is reasonable, since the adjustment of synaptic 
weights takes place at a much slower rate compared to  the changes 
in the activation states. 

The initial weight wii(0) can be viewed as a priori knowledge. The 
term wy(0) e" can be considered as a forgetting term. As t + m, the 
contribution due to this term to the weight will be zero, i.e., the 
system would not remember the knowledge in the network at 
t = 0 .  The second term reflects recency effect. It shows the 
accumulation of the correlation term with time. There is an 
exponential weightage to this accumulation, which shows that recent 
correlation value is given more weight than the correlation values in 
the past. As mentioned above, these correlations depend on the input 
samples. The weights are expected to capture the patterns in the 
input samples as determined by the synaptic dynamics model. 

Most of the time the learning laws ignore the passive decay term. 
Then the initial weight w..(O) receives importance as can be seen 
below fmm the solution ot the equation without the passive decay 
term. Let 

wG(t) = f;.(xi(t)> fi(xj(t)) (2.24) 

The solution is given by 
t 

ws(t) = ~ ~ ( 0 )  + j- ff(xi(7)) fi(x,(~)) d7 (2.25) 
0 

Note that the recency effect also disappears, once the passive decay 
term is absent. That is, there is no exponential weighting on the 
accumulation of the correlation term. 

In discrete-time implementation, the integral is replaced by 
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summation of the correlation terms, where each term is due to the 
application of one sample input pattern. That is 

t 

ub(t) = ~ ~ ( 0 ) '  + C fi(xi(7)) 6(xj(7)) (2.26) 
.r= 1 

The initial weight at time t = 0 also influences the weight at any 
instant t .  It does not decay with time. The change in the weight due 
to an input pattern at the time instant t is given by 

In summary, the distinction between the activation dynamics and 
synaptic dynamics models is highlighted by the following statements: 
For activation dynamics our interest is in the equilibrium states ( x )  
given by V(x(t))  = 0, which in turn uses the solution of equations for 
the steady activation states given by x(t)  = 0, i.e., xi(t) = 0, for 
i = 1,2, ..., N. For synaptic dynamics, on the other hand, learning 
takes place when wii(t) + 0. 

2.4 Learning Methods 
There are several methods of learning. For the purpose of discussion, 
the learning methods are organized into different groups. Table 2.3 
gives a summary of the learning methods discussed in this section. 
The table also lists the categories of learning discussed in Section 2.3.1. 

Table 2.3 Summaly of Learning Methods 
- 

1. Categories of learning 

Supervised, reinforcement and unsupervised 
Off-line and on-line 
Deterministic, stochastic and fuzzy 
Discrete and continuous 

' Criteria for learning 

2. Hebbian learning 

Basic Hebbian learning 
Differential Hebbian learning 
Stochastic versions 

3. Competitive learning-leaniing without a teacher 

Linear competitive learning 
Differential competitive learning 
Linear differential competitive learning 
Stochastic versions 
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Table 2.3 Summary of Learning Methods (Cont.) 

4. Error correction learning-learning with a teacher 
Perceptron learning 
Delta learning 
LMS learning 

5. Reinforcement learning-learning with a critic 
Fixed credit assignment 
Probabilistic credit assignment 
Temporal credit assignment 

6. Stochastic learning 
In multilayer perceptron 
In Roltzmann machine 

7. Other learning methods 
Sparse coding 
Min-max learning 
Principal component learning 
Drive-reinforcement learning 

Details of implementation of some learning methods will be discussed 
at  appropriate contexts in the later chapters. 

2.4.1 Hebbian Learning 

The basis for the class of Hebbian learning is that the changes in 
the synaptic strength is proportional to the correlation between the 
firing of the post- and pre-synaptic neurons [Hebb, 19491. Figure 2.4 

Figure 2.4 Topology for Hebbian learning, where i and j represent processing 
units. 

shows the topology for Hebbian learning [Simpson, 19901. The 
synaptic dynamics equation is given by a decay term (- wii(t)) and a 
correlation term (si sj) as 

w Y . .(t) = - wy(t) + sisj (2.28) 

where sisj is the product of the post-synaptic and pre-synaptic 
neuronal variables for the ith unit. These variables could be activation 
values (sisj = xi(t) x,(t)), or an activation value and an external input 
(sisj = xi ( t )  a, ( t)) ,  or an output signal and an external input (sisj = 
f i  (xi ( t ) )  a, ( t ) ) ,  or output signals from two units (sisj = f i  (xi ( t ) )  
fi (x, ( t ) ) ) ,  or some other parameters related to the post-synaptic and 
pre-synaptic activity. If si and sj represent variables which are 
deviations from their respective mean values (Zi, Zj) ,  then the resulting 
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correlation term (si - ifi) (sj - Sj) is called covariance correlation term. 
Throught our discussion we will assume that si = si(t) = fi(xi(t)) and 
sj = sJ{t) = 6{xj(t)), unless otherwise specified. 

The solution of Eq. (2.28) is given by 

where wb{O) is the initial value of the weight at time t = .O. The,first 
term shows that the past knowledge will decay exponentially to zero, 
which is equivalent to forgetting. The second term corresponds to 
correlation encoding with fading memory due to the exponential 
weight factor in the integral term. The Hebbian learning thus 
accumulates the correlation terms, giving more weightage to the 
recent terms. 

Some variations of the Hebbian learning are as follows [Simpson, 
19901: 

- - 
w,(t) = - w&t) + (si - si) (sj - sj) [Sejnowski, 19771 (2.30) 

w,(t) = - w,(t) + (si - Si) sj [Sutton and Barto, 19811 (2.31) 

w,(t) = - w,(t) + w,(t) sisj [Cheung and Omidvar, 19881 (2.32) 

The stochastic version of the Hebbian learning given in Eq. (2.28) 
is approximated to the following stochastic differential equation: 

where {nb{t)) is assumed to be a zero-mean Gaussian white noise 
process [Papoulis, 19911, independent of the signal process - wdt) 
+ sisj. 

Synaptic equilibrium in the deterministic case is given by the 
steady state condition: 

That is, there is no further change of weights. In the stochastic case, 
the weights reach stochastic equilibrium when the weight changes 
are only due to the noise component. That is 

In these cases the synaptic processes fluctuate randomly at stochastic 
equilibrium as the weights approach the asymptotic values. Note that 
the stochastic equilibrium corresponds to the deterministic equilib- 
rium on the average. That is the average or expectation 
E[w,(t)l = 0, for all t aRer wii reaches equilibrium. 
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2.4.2 Differential Hebbian Learning 

The deterministic differential Hebbian learning is described by 

wy(t) = - wy(t) + sisj + 8.8. I J (2.36) 

or in a simpler classical version, it is given by [Klopf, 19861 
. . 

w,(t) = - wy(t) + sisj (2.37) 

That is, the differential equation consists of a passive decay term 
- wy(t) and a correlation term si sj, which is a result of the changes 
in the post- and pre-synaptic neuronal activations. 

The stochastic versions of these laws are approximated by adding 
a noise term to the right hand side of these differential Hebbian 
learning equations. 

2.4.3 Competftive Learning 

Learning laws which modulate the difference between the output 
signal and the synaptic weight belong to the category of competitive 
learning. The general form of competitive learning is given by the 
following expression for the synaptic dynamics [Grossberg, 19691: 

where, si = fi(xi(t)) is the output signal of the unit i, and sj = 
fi{xj(t)) is the output signal of the unit j. This is also called the 
deterministic competitive learning law. It can be written as 

w . .(t) = - si wy(t) ,+ sip, v (2.39) 

The above expression is similar to the deterministic Hebbian learning 
(see Eq. (2.28)), except that the forgetting term (-si wii(t)), is 
nonlinear in this case, whereas it was linear in the Hebbian case. 
Here learning or adjustment of weights takes place only when there 
is a nonzero post-synaptic signal (si). If si = 0, then the synaptic 
weights do not change. It is also interesting to note that, unlike in 
the Hebbian case, in the competitive learning case the system does 
not forget the past learning when the post-synaptic signal is zero. In 
the Hebbian case, for si = 0, wy(t) = - wij(t), which results in 
forgetting the knowledge already acquired. 

The competitive learning works in a situation where an external 
input is presented to an input layer of units and these units feed 
signals to each of the units in the output layer. The signals from the 
units in the output layer compete with each other, leaving eventually 
one of the units (say i) as the winner. The weights leading to this 
unit are adjusted according to the learning law. This is also called 
the 'winner take-all' situation, since only one unit in the output layer 
will have a nonzero output eventually. The corresponding weights wy 
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from all the input units ( j )  are adjusted to match the input vector. 
While the Hebbian learning is generally distributed, i.e., all the 
weights are adjusted for every input pattern, the competitive learning 
is not distributed. In fact the input vectors leading to the same winning 
unit in the competitive layer will produce a weight vector for that unit 
which is an ave age of all the corresponding input vedom. 

If the inputkyer units are linear, i.e., s, = x,, then the resulting 
learning is called linear competitive learning, and is given by 

The stochastic versions of the competitive learning are approximated 
to the following stochastic differential equations [Kosko, 19921: 

Random competitive learning 

w,(t) = si [s, - wii(t)1 + no@) 

Random linear competitive learning 

w,(t) = si [xi - w"(t)I + n"(t) 

where In&)) is assumed to be a zero-mean Gaussian white noise 
process, independent of the signal process. 

If the input space is partitioned into K different nonoverlapping 
subspaces, Dl, Dz, ..., DK, i.e., 

Di n D, = 0, for i # j, (2.43) 

then a reinforcement function for an input pattern a is defmed as 

a = 1, if a E D, (2.44) 

Using this reinforcement function, the following supervised learning 
laws are defined: 

Random supervised competitive learning 

w v . .(t) = ri(a) s, [s, - wo(t)l + nii(t) (2.46) 

Random supervised linear competitive learning 

wU(t) = r,(a) si [xj - wii(t)] + n"(t) (2.47) 

2.4.4 Differentla1 Competitive Learning 

Differential competition means that learning takes place only if there 
is a change in the post-synaptic neuronal activation. The 
deterministic differential competitive learning is described by 

wJt) = 8, [sj - wij(t)] (2.48) 
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This combines the competitive learning and differential Hebbian 
learning. 

Linear differential competitive learning law is described by 

w,(t) = si [x, - wir(t)] (2.49) 

The stochastic versions of the above learning equations are obtained 
by adding a noise term to the right hand side of these differential 
competitive leaning equations. 

Random differential competitive learning 

Random linear differential competitive learning 

2.4.5 Error Correction Learning 

Error correction learning uses the error between the desired output 
and the actual output for a given input pattern to  adjust the weights. 
These are supervised learning laws, as they depend on the availability 
of the desired output for a given input. Let (a, b) be a sample of the 
input-output pair of vectors for which a network has to be designed 
by adjusting its weights so as to obtain minimum error between the 
desired and actual outputs. Let E be the error function and E(E) be 
the expected value of the error function for all the training data 
consisting of several input-output pairs. Since the joint probability 
density function of the pairs of random input-output vectors is not 
known, it is not possible to obtain the desired expectation &[El. 
Stochastic approximation estimates the expectation using the 
obsemed random input-output pairs of vectors (a, b). These estimates 
are used in a discrete approximation algorithm like a stochastic 
gradient descent algorithm to adjust the weights of the network. This 
type of adjustment may not always result in the optimum set of 
weights, in the sense of minimizing &[El. It may result in some local 
minima of the expected error function. Stochastic gradient descent 
algorithms are discussed in detail in Chapter 4. 

Most error correction learning methods use the instantaneous 
error (b - b3 to adjust the weights, where b' is the actual output 
vector of the network for the input vector a. 

Rosenblatt's perceptron learning uses the instantaneous mis- 
classification error to adjust the weights. It is given by 

where bi is the desired output from the ith output unit for an input 
pattern a = (al, a2, ..., aM), a, is the jth component of the input 
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pattern to the ith unit, and q is a small positive learning constant. 
Here si is the actual output of the ith unit given by 
si = sgn ( f: w" aj). Perceptron learning for a bipolar (* 1) output unit 
produces an error value bi - si = f 2. Note that bi - si = 0 when there 
is no error. Thus the discrete perceptron learning adjusts weights 
only when there is misclassiiication. 

The continuous perceptron learning uses a monotonically 
increasing nonlinear output function f l . )  for each unit. The weights 
are adjusted so as to minimize the squared error between the desired 
and actual output at every instant. The corresponding learning 
equation is given by 

M 
where si = f;:(xi) and xi = , gl we ai. Continuous perceptron learning 

is also called delta learning, and it can be generalized for a network 
consisting of several layers of feedforward units. The resulting 
learning method is called the generalized delta rule. 

Widrow's least mean squared error (LMS) algorithm uses the 
instantaneous squared error between the desired and the actual 
output of a unit, assuming a linear output function for each unit, i.e., 
flx) = x. The corresponding learning equation is given by 

w&t) = q (bi -x i )  a, (2.54) 

Note that in all of the above error correction learning methods, we 
have assumed that the passive decay term to be zero. These methods 
require that the learning constant (q )  is made as small as possible, 
and that the training samples are applied several times to the 
network until the weights lead to a minimum error. As stated earlier, 
the resulting weights may not correspond to a global minimum of the 
expected error function. 

2.4.6 Reinforcement Learning 

In error correction learning the desired output for a given input is 
known, and therefore the learning is based on the error between the 
desired output and the actual output. This supervised learning is 
called learning with teacher. On the other hand, there are many 
situations where the desired output for a given input is not known. 
Only the binary result that the output is right or wrong may be 
available. This output is called reinforcement signal. This signal only 
evaluates the output. The learning based on this evaluative signal is 
called reinforcement learning [Sutton, 19921. Since this is evaluative 
and not instructive, it is also called learning with critic as opposed 
to learning with teacher in the supervised learning. 
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The reinforcement learning can be viewed as a credit assignment 
problem [Sutton, 19841. Depending on the reinforcement signal, the 
credit or blame for the overall outcome is assigned to different units 
or weights of the network. This is called structural credit assignment, 
since it assigns credit to the internal structures of the system, whose 
actions generated the outcome. On the other hand, if the credit is 
assigned to the outcomes of series of actions based on the reinforce- 
ment signal received for the overall outcome, it is called temporal 
credit assignment. This happens for example in a game like chess, 
where the reinforcement signal (win or lose) is received only after a 
sequence of moves. The assignment of credit or blame in this case is 
to each of the moves in the sequence that led to the final outcome. 
The combined temporal and structural credit assignment problem is 
also relevant in situations involving temporally extended distributed 
learning systems [Williams, 1988; Williams, 19921. 

The reinforcement signal can also be viewed as a feedback from 
the environment which provides input to the network and observes 
the output of the network. There are three types of reinforcement 
learning depending on the nature of the environment. If the 
reinforcement signal from the environment is the same for a given 
input-output pair, and if it does not change with time, it is called a 
fixed credit assignment problem. This is like supervised learning in 
classification problems. On the other hand, if the given input-output 
pair determines only the probability of positive reinforcement, then 
the network can be viewed as operating in a stochastic environment. 
In such a case it is called probabilistic credit assignment. Here the 
probabilities are assumed stationary. In both the fixed and 
probabilistic credit assignments the input patterns are chosen 
randomly and independently by the environment. That is, the input 
pattern does not depend on the past inputs or outputs. But in the 
general case where the environment itself is changing, then both the 
reinforcement signals and the input patterns may depend on the past 
history of the network outputs. In such cases temporal credit 
assignment is more appropriate. 

The associative reward-penalty reinforcement learning by Barto 
and Anandan is applicable for a processing unit with probabilistic 
update (see Chapter 5), and is given by [Barto and Anandan, 19851 

where (si) is the expected value of the output si for the ith unit, 71' 
is the learning rate parameter for positive reinforcement (reward) 
and 71- is the learning rate parameter for negative reinforcement 
(penalty). Typically 71' >> 71- > 0. The term (1 - ( s ~ ) ~ )  is a derivative 
term, which can be ignored without affecting the general behaviour 
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of this learning rule [Hassoun, 1995, p. 891. The above learning rule 
is apfilicable for units in a single layer only. In a multilayer network 
with hidden layer units, the error from the output layer units is 
propagated back to adjust the weights leading to the hidden layer 
units (see Chapter 4). 

2.4.7 Stochastic Learning 

Stochastic learning involves adjustment of weights of a neural 
network in a probabilistic manner [Ackley et al, 19851. The 
adjustment uses a probability law, which in turn depends on the 
error. The error for a network is a positive scalar defined in terms 
of the external input, desired output and the weights connecting the 
units. In the learning process, a random weight change is made and 
the resulting change in the error is determined. If the resulting error 
is lower, then accept the random weight change. If the resulting error 
is not lower, then accept the random weight change with a predecided 
probability distribution. The acceptance of random change of weights 
despite increase in the error from the network allows the network to 
escape local minima in the search for the global minimum of the error 
surface. 

Boltzmann learning uses stochastic learning along with simulated 
annealing to determine the weights of a feedback network to store a 
given set of patterns [Ackley et al, 1985; Szu, 19861. Stochastic 
learning is also used in determining the optimum weights of a 
multilayer feedforward neural network to amve at a set of weight 
values corresponding to the global minimum of the error surface, 
since stochastic learning helps to overcome the local minima problem 
Wasserman, 19881. However, all stochastic learning methods are 
slow in convergence and hence are time consuming. 

2.4.8 Other Learning Methods 

Sparse encoding: If (a,, b,), I = 0, 1, 2, ..., L - 1 are the given set 
of input-output binary vector pairs, then the sparse encoding learning 
is given by the following logical OR and AND operations: 

wU(I + 1) = (ay AND bli) OR w,(l) (2.56) 

with ~ " ( 0 )  = 0. This type of learning is used to store information in 
an associative memory [Steinbuch and Piske, 1963; Simpson, 19921. 

Min-Max learning: This learning is used in the special case of 
providing connections to each processing unit from an input unit, one 
connection weight (vy) corresponds to the minimum of 'the inputs and 
the other connection weight ( w ~ )  corresponds to the maximum of the 
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inputs. The weight adjustments are made as follows [Simpson, 19911: 

vii(l + 1) = min (aG, ~ ~ ( 1 ) )  (2.57) 
and 

wC(l + 1) = max (ao, ~ ~ ( 1 ) )  (2.58) 

with ~ ~ ( 0 )  = wii(0) = 0, where a~ is the jth component of the input 
vector al. The minimum and maximum values are treated as bounds 
for a given membership function, providing a mechanism to adjust and 
analyze classes being formed in a neural network [Simpson, 19921. 

Principal component learning: Principal components of a set of 
input vectors are a minimal set of orthogonal vectors that span the 
space of the covariance matrix of the input data. Once these basis 
vectors are found, it is possible to express any vector as a linear 
combination of these basis vectors. Oja's principal component learning 
is given by [Oja, 19821: 

where ami is the ith component of the given input vector, y(m) is the 
actual output for the mth input vector. This learning extracts only 
the first principal component, and the output function of the unit is 
assumed to be linear. Note that the index m is used to indicate that 
a given input vector can be presented several times, even though 
there may be only a fixed number of vectors for training. The details 
of principal component learning are discusssed in Chapter 6. 

Drlve-reinforcement learning: This law is given by 

where a (t - 2) is a decreasing function of time and A f indicates the 
change in the output values of the units from the previous instant. 
The change in the weight uses a weighted sum of the changes in the 
past input values, multiplied by the current change in the output. 
The pre-synaptic changes 4,(xj(t - 2)), 2 = 1,2, ..., t are referred to as 
drives, and the post-synaptic change qi(xi(t)) as the reinforcement, 
and hence the name drive-reinforcement learning. This learning law 
was proposed for control applications due to its ability to optimize 
temporal actions [Klopf, 19861. 

2.4.9 Learning Functions 

Learning laws are merely implementation methods for synaptic 
dynamics models. Typically, a synaptic dynamics model is described 
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in terms of expressions for the first derivative of the weights. They 
are called learning equations. One general way of expressing the 
learning feature in neural network studies is the following: 

The change in the weight is proportional to the product of the 
input a(t) and a learning function g(:), and it is given by [Zurada, 
19921 

wj(t) = V &wi(t), a(t), bi(t)) a(t) (2.61) 
where, 

q is the learning rate parameter 
wi = (wil, wi2, ..., wiMIT is the weight vector for the ith unit with 

components wii 

wii is the weight on the link connecting the jth input unit to 
the ith processing unit 

a = (a,, a2, ..., aMIT is the input vector with components aj , 
j = 1, 2, ..., M 

b = (bl, b,, ..., bN)T is the desired output vector with components 
bi,i  = 1 ,2  ,..., N 

Input units are assumed linear. Hence a = x (activation) = s 
(output). Output units are in general nonlinear. Hence si = f(wTa). 

The function g(.) may be viewed as a learning function that 
depends on the type of learning. The increment in the weight vector 
in unit time interval is given by (see Eq. (2.27)) 

so that the weight at the time instant (t + 1) in terms of the weight 
at the time instant t is given by 

wi(t + 1) = w,(t) + Awi(t) (2.63) 

There are different methods for implementing the learning feature of a 
neural network, leading to several learning laws. The different basic 
learning laws described in Section 1.6 differ in the expression for the 
learning function. All these learning laws use only local information for 
adjusting the weight of the connection between two units. The expression 
for the learning function for each of the basic learning laws is given 
below. The corresponding expression for the learning law is also given. 

The learning function for Hebb's law is given by 

where A.) is the output function. Therefore the change in the weight 
is given by 

Awi = ~$8) a = q si a (2.65) 

where si is the output signal of the ith unit. 
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In perceptron learning the learning function assumes the form 
T g(.) = bi - si = bi - sgn(wi a) (2.66) 

which is the difference between the desired output and the actual 
output at the ith unit. The change in the weight is given by 

Aw, = q [b, - sgn(w,'a)l a (2.67) 

The learning function in delta learning law is given by 

Therefore the resulting weight change is given by 

Awi = q [b, - f(wTa)l f(wTa) a (2.69) 

The learning function in Widrow and Hoff learning law is given by 

T g(.)  = [b, - wi a] = [b, -xi] (2.70) 

Therefore the change in the weight is given by 

Aw, = q [b, - wTa1 a 

In correlation learning the learning function is given by 

g(.) = bi (2.72) 

and the weight change is given by 

Aw, = q bi a (2.73) 

2.5 Stability and Convergence 

Stability refers to the equilibrium behaviour of the activation state 
of a neural network, whereas convergence refers to the adjustment 
behaviour of the weights during learning, which will eventually lead 
to minimization of error between the desired and actual outputs. Thus 
convergence is typically associated with supervised learning, although 
it is relevant in all cases of learning, both supervised and unsuper- 
vised. The objective of any learning law is that it should eventually 
lead to a set of weights which will capture the pattern information 
in the training set data. 

In this section we will discuss the global behaviour of artificial 
neural networks whose activation dynamics is described by the 
following set of equations [Cohen and Grossberg, 19831: 

where xi = xi(t) and the coefficients [cik] form a symmetric matrix. 
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These equations represent a class of N-dimensional competitive 
dynamical systems. All the previous activation models including the 
general shunting activation model form special cases of this system. 
In general, the activation state of the network starts from an initial 
state and follows a trajectory dictated by the dynamics of the 
equations. A network will be useful only if a trajectory leads 
eventually to an equilibrium state at which point there is no further 
change in the state. Such a state is also called a stable state, when 
a small perturbation of the state settles to the same state. Different 
initial states may follow different trajectories, all of which should 
terminate at some equilibrium states. There may be several 
trajectories that may terminate at the same equilibrium state. 

The existence of such equilibrium states enables global pattern 
formation possible in a network. That is, an input pattern 
corresponding to a starting state will eventually lead to one of the 
global patterns, which can be interpreted as storage of the input 
pattern in long term memory. The global pattern thus formed will 
only change if there is a different external input. In some cases the 
network parameters such as weights may slowly change due to 
learning or self-organization. If the global pattern formation still 
occurs for any choice of these parameters, then the resulting pattern 
is said to be absolutely stable or globally stable. 

Under certain conditions, which will be discussed later, the set 
of equations (2.74) describing activation dynamics do exhibit stable 
states which are also called h d  point equilibrium states. Such a 
network then can form global patterns at those states, and hence can 
be used for pattern storage. One of the conditions is that the weights 
{cik) should be symmetric (cik = cki). If the weights are not exactly 
symmetric, then the network may exhibit periodic oscillations of 
states in certain regions of the state space. These oscillatory regions 
are also stable, and hence can be used for pattern storage. Oscillatory 
stable states may also arise when there is some delay in the feedback 
of the outputs from other processing units to the current unit, even 
though the weights are exactly symmetric. 

For some other conditions, the network may display chaotic 
changes of states in the regions of equilibrium, also called basins of 
attraction. Such a network is said to exhibit chaotic stability. Thus 
pattern storage is possible in any network that exhibits either fixed 
point stability or oscillatory stability or chaotic stability. However, it 
is difEcult to analyze and design a network suitable for the oscillatory 
and chaotic types of stabilities [Cohen and Grossberg, 1983; Hertz, 19951. 

A general network is more likely to exhibit random chaotic 
changes of states throughout due to nonlinearly coupled set of 
equations with delayed feedback. One has to carefully choose the 
parameters of the activation dynamics models for ensuring stable 
points. In general, it is difficult to know whether a network will have 
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stable points, and if so, how many. It is even more difficult to 
determine the behaviour of the network near the stable points to 
examine the nature of stability. However, in a few cases it is possible 
to predict the global pattern behaviour, if it is possible to show the 
existence of an energy function called Lyapunov function [Arnari, 
19771. It is a scalar function of the parameters of the network, 
denoted by V(x), where x is the activation state vector of the network. 
V(x) is said to be a Lyapunov function if V(x) I 0 for all x. It is 
sufficient if we can find a Lyapunov function for a network in order 
to demonstrate the existence of stable equilibrium states. It is not a 
necessary condition, as the network may still have stable points, even 
though a Lyapunov function could not be found. The existence of 
Lyapunov function makes it easy to analyze the stability of the 
network. 

If the Lyapunov function is interpreted as an energy function, 
then the condition that V(x) I 0 means that any change in the energy 
due to change in the state of the network results in lowering the total 
energy. In other words, any change of the state of the network results 
in the trajectory of the state sliding along the energy surface in the 
state space towards lower energy. Eventually the trajectory leads to 
a state from where there is no further decrease in the energy due to 
changes in the state. Such a state corresponds to the energy 
minimum, at which V(x) = 0. Normally there will be many states at 
which V(x) = 0. All such states correspond to equilibrium points or 
stable states. All trajectories in the state space will eventually lead 
to one of these stable states. 

In the following, three general theorems are given that describe 
the stability of a set of nonlinear dynamical systems. The first 
theorem, the Cohen-Grossberg theorem, is useful to show the stability 
of fixed weight autoassociative networks. The second theorem, the 
Cohen-Grossberg-Kosko theorem, is useful to show the stability of 
adaptive autoassociative networks. The third theorem, the adaptive 
bidirectional-associative memory theorem, is useful to show the 
stability of adaptive heteroassociative networks. 

Cohen-Grossberg theorem: For a system of equations given by 

a global Lyapunov function is given by 
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Since 

i =  1 L k =  1 J 
we have 

v S 0, (2.81) 

if ai(xi) 2 0, (i.e., ai(xi) is nonnegative), di(xi) 1 0 (i.e., di(xi) is mono- 
tonically nondecreasing function), cn are constant and do not change 
with time, and En] is symmetric. This last property was used to 
obtain the simplified expression for the derivative of the second tern 
of V(x) in Eq. (2.78). 

Note that the function bi(xi) could be arbitrary, except that it should 
ensure the integrability of the fimt tern in V(x). Thus V(x) is a global 
Lyapunov function, provided these conditions are satisfied. 

Cohen-Grossberg-Kosko theorem: For a dynarnical system where 
both the activation state and the synaptic weights are changing 
simultaneously, the equations describing the dynamics may be 
expressed as follows [Kosko, 19881: 

where [cu] is assumed to be a symmetric matrix. For such a system 
the following V(x) is a Lyapunov function. 

Adaptive bldirectlonal associatlve memory theorem: The system of 
equations describing the activation and synaptic dynamics of a neural 
network consisting of two layers of processing units, a unit in each 
layer feeding its output to all the units in the other layer, is given 
as follows [Kosko, 19881: 
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The following is a Lyapunov function for the above system: 

2.6 Recall in Neural Networks 

During learning, the weights are adjusted to store the information in 
a given pattern or a pattein pair. However, during performance, the 
weight changes are suppressed, and the input to the network 
determines the output activation xi or the signal value si. This 
operation is called recall of the stored information. The recall 
techniques are different for feedforward and feedback networks. 

The simplest feedforward network uses the following equation to 
compute the output signal from the input data vector a. 

where A(.) is the output function of the ith unit. 
A recall equation for a network with feedback connections is given 

by the following additive model for activation dynamics: 
N 

xi(t + 1) = - (1 - a) xi(t) + p x wii fi{x,(t)) + ai  (2.90) 
j =  1 

where xi(t + 1) is the activation of the ith unit in a single layer 
feedback network at time (t -t 1). The function c(.) is the nonlinear 
output function of the jth unit, a (< 1) is a positive constant that 
regulates the amount of decay the unit has during the update 
interval, p is a positive constant that regulates the amount of 
feedback the other units provide to the ith unit, and ai is the external 
input to the ith unit. This equation is same as the Eq. (2.10) except 
for a change of a few symbols. In general, stability is the main issue 
in feedback networks. If the network reaches a stable state in a finite 
number of iterations, then the resulting output signal vector 
represents the nearest neighbour stored pattern of the system for the 
approximate input pattern a. 
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Cohen and Grossberg (1983) have shown that for a wide class of 
neural networks with certain constraints, the network with fixed weights 
reaches a stable state in a finite period of time from any initial condition. 
Later Kosko showed that a neural network could learn and recall at 
the same time, and yet remains stable Kosko, 19881. 

The response of a network due to recall could be the nearest neighbour 
or interpolative. In the nearest neighbour case, the stored pattern closest 
to the input pattern is recalled. This typically happens in the feedfornard 
pattern chsifiation or in the feedback pattern rndching netwbrks. In 
the interpolative case, the recalled pattern is a combination of the outputs 
corresponding to the input training patterns nearest to the given input 
test pattern. This happens in the feedfornard pattern mapping networks, 

2.7 Summary 
In this chapter we have considered the issues in developing activation 
and synaptic dynamics models for artificial neural networks. The 
activation models of both additive and multiplication types are 
discussed in detail. The multiplicative or shunting type models are 
developed to limit the operating range of the activation value of a 
neuron. The synaptic dynamics model equationi form the basis for 
learning in neural networks. Several learning methods are presented 
to indicate the variety of methods developed for different applications. 
The activation and synaptic dynamics models are useful only if global 
pattern formation is possible with these models. The global pattern 
formation is linked with stability and convergence of these models. 
The conditions to be met by a dynamical system for stability and 
convergence are discussed through stability theorems. Finally the 
issues in the recall of stored information are discussed briefly. 

Having understood the basics of artificial neural networks, the next 
task is to determine what kind of problems these structures and models 
can solve. The next four chapters deal with pattern recognition tasks 
that can be solved by some basic structures of artificial neural networks. 

Review Questions 
1. Explain the following: 

(a) Activation and synaptic dynamics 

(b) Models of neural networks vs neural network models 
(c) Autonomous and nonautonomous dynamical systems 
(dl Additive and shunting models of activation models 
(el Stochastic models vs stochastic versions of models 
(0 Stability and convergence 
(g) Structural vs global stability 
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2. What is meant by each of the following: 
(a) Transient state 
(b) Steady state 
(c) Equilibrium state 
(d) Stable states 

3. What is the noise-saturation dilemma in activation dynamics? 

4. Explain the differences among the three different types of 
stability in neural networks: fixed-point, oscillatory and chaotic. 

5. What is meant by global pattern formation in neural networks? 

6. What are the requirements of learning laws for effective 
implementation? 

7. What are forgetting and recency effects in learning? 

8. What are the different categories of learning? 

9. Explain the difference between short-term memory and long- 
terms memory with reference to dynamics models. 

10. What is meant by operating range of a neuron? 

11. What are the different types of Hebbian learning? 

12. What are the different types of competitive learning? 

13. What is reinforcement learning? In what way it is different from 
supervised learning? 

14. Explain some criteria used for neural network learning. 

15. Explain the distinction between stability and convergence. 

16. What is meant by global stability? 

17. Distinguish between an equilibrium state and a stable state. 

18. What is the significance of Lyapunov function in neural networks? 

19. Explain the significance of each of the following theorems: 
(a) Cohen-Grossberg theorem 
(b) Cohen-Grossberg-Kosko theorem 
(c) Adaptive bidirectional associative memory theorem 

20. What are the two general methods of recall of information in 
neural networks? 

21. Explain with an example the distinction between nearest 
neighbour and interpolative recall of information. 

Problems 

1. Show that the Perkel's model given in Eq. (2.11) is a special case 
of the additive autoassociative model given by Eq. (2.10). 
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2. Show from Eq. (2.16) that if xi(0) 5 B,, then xi(t) 5 B, for all 
t > 0. 

3. Show from Eq. (2.21) that if x,(O) 5 B, I C,, then xi(t) I Bi I C, 
for all t > 0. 

4. Show from Eq. (2.21) that if x,(O) > - Ei I Di, then xi(t) 2 - E, I Di 
for all t > 0. 

5. Explain the meaning of 'shunting' with reference to the shunting 
model of Eq. (2.21). 

6. Explain the significance of the following: 
(a) xi = 0, for all i 
(b) ~ ( x )  I 0 
(c) V(X) = 0 
(d) W~ # 0, for all i, j. 

7. Give the expressions for the general functions ai(xi), bi(xi) and 
di(xi) in Eq. (2.74) with reference to specific activation models 
given in Eqs. (2.10) and (2.21). 

8. Show that the Lyapunov function represents some form of energy 
of an electrical circuit. 

9. Show that ~ ( x )  2 0 for Eq. (2.84). 

10. Show that V(X, y) I 0 for Eq. (2.88). 

11. Consider a stochastic unit with a bipolar I-1, 11 output function. 
The probability distribution for the unit is given by 

P(s = 1 Jx) = l/(1+ exp (-2 hx)) 

If the learning of the stochastic unit is based on gradient descent 
on the error between the desired and the average output, show 
that the resulting learning law is the same as the learning law 
obtained using delta learning for a deterministic unit with 
hyperbolic tangent as the output function. 

12. Determine the weights and the threshold of a stochastic unit 
with bipolar (-1, 11 output function to classify the following 
2-class problem using reinforcement learning equation given in 
Eq. (2.55). Assume P(s = 1 I x) = U(1+ exp(- 2 x)) and q+ = 0.1 and 
q- = 0.01. Start with suitable values of initial weights and 
threshold. Use positive reinforcement when the classification is 
correct and negative reinforcement when the classification is 
wrong. Show the final decision surface. (Hint: Write a program 
to implement the learning.) 

Class c,: [O 0lT, [I o]', [O i lT,  and l l T  
Class C,: [- 1 - l l T  , [- 1 - 21T, [- 2 - l lT,  and [-2 -21T 



Chapter 3 

Functional Units of ANN for 
Pattern Recognition Tasks 

So far we have considered issues in pattern recognition, and 
introduced the basics of artificial neural networks. In this chapter we 
discuss some functional units of artificial neural networks that can 
solve simple pattern recognition tasks. These functional units form 
building blocks for developing neural architectures to solve complex 
pattern recognition problems. 

The pattern recognition problem to be addressed by a system is 
discussed in Section 3.1. Three fundamental functional units are 
identified to deal with the basic pattern association problem and some 
variations of this problem. These units are described in Section 3.2. 
The specific pattern recognition tasks that the various functional 
units can solve are discussed in Section 3.3. Table 3.1 gives the 
organization of the networks and the pattern recognition tasks to be 
discussed in this chapter. 

Table 3.1 Basic Artificial Neural Network Models for Pattern Recognition 
Problems 

1. Feedforward ANN 
(a) Pattern association 
(b) Pattern classification 
(c) Pattern mapping/classification 

2. Feedback ANN 

(a) Autoassociation 
(b) Pattern storage (LTM) 
(c) Pattern environment storage (LTM) 

3. Feedforward and Feedback (Competitive Learning) ANN 

(a) Pattern storage (STM) 
(b) Pattern clustering 
(c) Feature mapping 



Pattern Recognition Problem 

3.1 Pattern Recognition Problem 

In any pattern recognition task we have a set of input patterns and 
the corresponding output patterns. Depending on the nature of the 
output patterns and the nature of the task environment, the problem 
could be identified as one of association or classification or mapping. 
The given set of input-output pattern pairs form only a few samples 
of an unknown system. From these samples the pattern recognition 
model should capture the characteristics of the system. Without 
looking into the details of the system, let us assume that the 
input-output patterns are available or given to us. Without loss of 
generality, let us also assume that the patterns could be represented 
as vectors in multidimensional spaces. We first state the most 
straightforward pattern recognition problem, namely, the pattern 
association problem, and discuss its characteristics. 

Pattern Association Problem: Given a set of input-output pattern 
pairs (a,, bl), (a,, b,), ..., (al, bl), ..., (aL, bL) where al = (al1, alz, ..., 
alM) and bl = (bll, biz, ..., bw) are M and N dimensional vectors, 
respectively, design a neural network to associate each input pattern 
with the corresponding output pattern. 

If al and bl are distinct, then the problem is called heteroassocia- 
tion. On the other hand, if bl = al, then the problem is called 
autoassociation. In the latter case the input and the corresponding 
output patterns refer to the same point in an N-dimensional space, 
s i n c e M = N a n d a l ,  = bl,, i = 1, 2, ..., N, 1 = 1, 2, ..., L. 

The problem of storing the association of the input-output pattern 
pairs (al, bl), I = 1,2, ..., L, involves determining the weights of a 
network to accomplish the task. This is the training part. Once stored, 
the problem of recall involves determining the output pattern for a 
given input pattern by applying the operations of the network on the 
input pattern. 

The recalled output pattern depends on the nature of the input 
and the design of the network. If the input pattern is the same as 
one of those used in the training, then the recalled output pattern is 
the same as the associated pattern in the training. If the input 
pattern is a noisy version of the trained input pattern, then the 
pattern may not be identical to any of the patterns used in training 
the network. Let the input pattern is 4 = al + E, where E is a (small 
amplitude) noise vector. Let us assume that 4 is closer (according to 
some distance measure) to al than any other ak, k # I. If the output of 
the network for this input & is still bl, then the network is designed 
to exhibit an accretive behaviour. On the other hand, if the network 
produces an output 6 = bl + 6, such that 1 6 1 + 0 as 1 E I 0, then 
the network is designed to exhibit an interpolative behaviour. 

Depending on the interpretation of the problem, several pattern 
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recognition tasks can be viewed as variants of the pattern association 
problem. We will describe these tasks in Section 3.3. First we will 
consider three basic functional units of neural networks which 
perform the pattern association and related pattern recognition tasks. 

3.2 Basic Functional Units 

There are three types of artificial neural networks. They are: (i) feed- 
forward, (ii) feedback and (iii) a combination of both. The simplest 
networks of each of these types form the basic functional units. They 
are functional because they can perform by themselves some simple 
pattern recognition tasks. They are basic because they form building 
blocks for developing neural network architectures for complex , 

pattern recognition tasks to be described later in Chapter 7. 
The simplest feedforward network (Figure 3.1) is a two layer 

network with M input units and N output units. Each input unit is 

Output vector = b f  b ' 
A' 

b' 
A' AN 

Output units 

Input units 
(Fan-out units) 

Input vector a = a1 4 

Figure 3.1 Basic feedforward neural network. 

connected to each of the output units, and each connection is 
associated with a weight or strength of the connection. The input 
units are all linear, and they merely perform the task of fan-out, i.e, 
each unit is providing N outputs, one to each output unit. The output 
units are either linear or nonlinear depending on the task that the 
network should perform. Typically, feedforward networks are used 
for pattern association or pattern classification or pattern mapping. 

The simplest feedback network, shown in Figure 3.2, consists of 
a set of N processing units, each connected to all other units. The 
connection strengths or weights are assumed to be symmetric, i.e., 
wii = wji, for i * j. Depending on the task, the units of the network 
could be linear or nonlinear. Typically feedback networks are used 
for autoassociation or pattern storage. 
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Output vector b' = b: 

Input vector a = a, 

Figure 3.2 Basic feedback neural network. 

The simplest combination network is called a competitive learning 
network, shown in Figure 3.3. It consists of an input layer of units 

Output vector 

Output units 

Input units 
(Fan-out units) 

Input vector a =  a, a, a, 

Figure 3.3 Basic competitive learning network. 

feeding to the units in the output layer in a feedforward manner, and 
a feedback connection among the units in the output layer, including 
self-feedback. Usually the connection strengths or weights of the 
feedforward path are adjustable by training the network for a given 
pattern recognition task. The feedback connection strengths or 
weights in the output layer are usually fixed to specific values 
depending on the problem. The input units are all linear, and they 
merely perform the task of fan-out, i.e., each unit providing N outputs, 
one to each output unit. The output units are either linear or 
nonlinear depending on the task the network should perform. 
Typically the competitive learning network is used for pattern 
grouping/clus tering. 

3.3 Pattern Recognition Tasks by the Functional Units 

Table 3.1 gives a summary of the pattern recognition tasks that can 
be performed by the three functional units described in the previous 
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section. All the pattern recognition tasks listed are simple, and can 
be viewed as variants of the pattern association problem. Each of 
these tasks can be described in terms of mapping of points from one 
multidimensional space onto another multidimensional space. In this 
section the geometrical interpretations of the pattern recognition 
tasks are given to obtain a clear understanding of the problems. 

The input pattern space is an M-dimensional space, and the 
input patterns are points in this space. Likewise the output pattern 
space $ is an N-dimensional space, and the output patterns are 
points in this space. The pattern spaces are shown as circles in the 
figures used to illustrate the pattern recognition tasks. 

3.3.1 Pattern Recognltlon Tasks by Feedforward Neural Networks 

In this section we will discuss three pattern recognition tasks that 
can be performed by the basic feedforward neural network. 

Pattern association problem: The pattern association problem is 
illustrated in Figure 3.4. The input patterns are shown as a,, a,, a3 

Input pattern space Output pattern space 

Association 

Figure 3.4 Illustration of pattern association task. 

and the corresponding output patterns as b,, b,, b3. The objective of 
designing a neural network is to capture the association between 
input-output pattern pairs in the given set of training data, so that 
when any of the inputs al is given, the corresponding output bl is 
retrieved. Suppose an input pattern ai not used in the training set 
is given. If the training input pattern al is the closest to ai, then the 
pattern association network should retrieve the output pattern b, for 
the input pattern ai. Thus the network should display accretive 
behaviour. The pattern ai can be viewed as a noisy version of the 
pattern a,. That is ai = a, + E, where E is a noise vector.' If the 
amplitude of the noise added to a, is so large that the noisy input 
pattern is closer to some pattern (say ak) other than the correct one 
(a,), then the network produces an incorrect output pattern 
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bk, k ;f I .  Thus an incorrect output pattern would be retrieved for 
the given noisy input. 

An example of a pattern association problem is associating a 
unique binary code to a printed alphabet character, say [OOOOOIT for 
A, [OOOO1lT for B, etc. (See Figure 3.5). The input patterns A, B, etc., 

Figure 3.6 An example of pattern association problem. 

could be represented as black and white pixels in a grid of size, say 
16 x 16 points. Then the input pattern space is a binary 
256-dimensiollal space, and the output pattern space is a binary 
5-dimensional space. Noisy versions of the input patterns are obtained 
when some of the pixels in the grid containing a character are 
transformed from black to white or vice versa. 

Note that the performance of a network for the pattern association 
problem is mainly dictated by the distribution of the training patterns 
in the input space. This point will be discussed in detail in Chapter 4. 

Pattern classification problem: In the pattern association problem 
if a group of input patterns correspond to the same output pattern, 
then typically there will be far fewer output patterns compared to 
the number of input patterns. In other words, if some of the output 
patterns in the pattern association problem are identicd, then the 
number of distinct output patterns can be viewed as class labels, and 
the input patterns corresponding to each class can be viewed as 
samples of that class. The problem then becomes a pattern 
classification problem as illustrated in Figure 3.6. 

In this case whenever a pattern belonging to a class is given as 
input, the network identifies the class label. During training, only a 
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Input pattern space Output pattern space 

Classification 

Figure 3.6 Illustration of pattern classification task. 

few samples of patterns for each class are given. In testing, the input 
pattern is usually different from the patterns used in the training set 
for the class. The network displays an accretive behaviour in this case. 

An example of pattern classification problem could be labelling 
hand printed characters within a specified grid into the corresponding 
printed character. Note that the printed character patterns are 
unique and fixed in number, and serve as class labels. These labels 
could be a unique 5-bit code as shown in Figure 3.7. For a given 

Figure 3.7 An example of pattern classification problem. 

character, the samples of hand-printed versions of the character are 
not identical. In fact the dimensionality of the input pattern space 
will have to be very large in order to represent the hand-printed 
characters accurately. An input pattern not belonging to any class 
may be forced into one of the predetermined class labels by the 
network. 

Note that the performance of a network for the pattern 
classification problem depends on the characteristics of the samples 
associated with each class. Thus grouping of the input patterns by 
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the class label dictates the performance. This point will be discussed 
in detail in Chapters 4 and 7. 

Pattern mapplng: Given a set of input-output pattern pairs as in 
the pattern association problem, if the objective is to capture the 
implied mapping, instead of association, then the problem becomes a 
pattern mapping problem (Figure 3.8). In a pattern mapping problem 

Input pattern apace Output pattern space 

Figure~ 3.8 Illustration of pattern mapping task. 

both the input and the output patterns are only samples from the 
mapping system. Once the system behaviour is captured by the 
network, the network would produce a possible output pattern for a 
new input pattern, not used in the training set. The possible output 
pattern would be appro&ately an interpolated version of the output 
patterns corresponding to the input training patterns close to the 
given test input pattern. Thus the network displays an interpolative 
behaviour. Typically the input and output pattern spaces are 
continuous in this case, and the mapping function must be smooth 
for the interpolation to work satisfactorily. 

An example of the data for a pattern mapping problem could be 
the input data given to a complex physical system and the 
corresponding output data from the system for a number of trials. 
The objective is to capture the unknown system behaviour from the 
samples of the input-output pair data. 

A pattern mapping problem is the most general case, from which 
the pattern classification and pattern association problems can be 
derived as special cases. The network for pattern mapping is expected 
to perform generalization. The details of how well a given network 
can do generalization will be discussed in Chapter 7. 

3.3.2 Pattern Recognition Tasks by Feedback Neural Networks 

In this section we will discuss three pattern recognition tasks that 
can be performed by the basic feedback neural networks. 

Autoassoclatlon problem: If each of the output patterns bl in a 
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pattern association problem is identical to the corresponding input 
patterns al , then the output pattern space is identical to the input 
pattern space (Figure 3.9). In such a case the problem becomes an 

Input pattern space Output pattern space 
(same as input and the 
points are also same) 

Figure 3.9 Illustration of autoassociation task. 

autoassociation problem. This is a trivial case where the network 
merely stores the given set of input patterns. When a noisy input 
pattern is given, the network retrieves the same noisy pattern. Thus 
there is an absence of accretive behaviour. 

A detailed analysis of the autoassociation problem is given in 
Chapter 5. Note that the special case of bl = al , 1 = 1, 2,  ..., L in the 
pattern association task is considered as a problem of heteroassociation 
task to be addressed by a feedforward network The term autoassociation 
task is thus used exclusively in the context of feedback networks. 

Pattern storage problem: In the autoassociation problem, if a given 
input pattern is stored in a network for later recall by an approximate 
input pattern, then the problem becomes a pattern storage problem 
(Figure 3.10). Any input vector close to a stored input pattern will 

Input pattern space 
Output pattern space 

(same as input but the points 
could be different from the 
input patterns to be stored) 

Figure 3.10 Illustration of pattern storage task. 

recall that input pattern exactly from the network, and thus the 
network displays accretive behaviour. The stored patterns could be 
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the same as the input patterns given during training. In such a case 
the input pattern space is a continuous one, and the output space 
consists of a fixed finite set of (stored) patterns corresponding to some 
of the points in the input pattern space. The stored patterns could 
also be some transformed versions of the input patterns, but of the 
same dimension as the input space. In such a case the stored patterns 
may correspond to different points in the input space. 

Due to its accretive behaviour, the pattern storage network is 
very useful in practice. A detailed analysis of this network is given 
in Chapter 5. 

Pattern environment storage probiem: If a set of patterns together 
with their probabilities of occurrence are specified, then the resulting 
specification is called pattern environment. The design of a network , 
to store a given pattern environment aims at recall of the stored 
patterns with the lowest probability of error. This is called a pattern 
environment storage problem. A detailed analysis of this problem 
together with the network design is given in Chapter 5. 

3.3.3 Pattern Recognition Tasks by Competitive Learning Neural 
Networks 

In this section we will discuss three pattern recognition tasks that 
can be performed by a combination neural network consisting of 
feedforward and feedback parts. The network is also called the 
competitive learning network. 

Temporary pattern storage: If a given input pattern is stored in a 
network, even in a transformed form, in such a way that the pattern 
remains only until a new pattern input is given, then the problem 
becomes that of a short term memory or temporary storage problem. 
This is only of academic interest. However, a detailed analysis of this 
problem is given in Chapter 6. 

Pattern clustering problem: Given a set of patterns, if they are 
grouped according to similarity of the patterns, then the resulting 
problem is called pattern clustering. It is illustrated in Figure 3.11. 
There are two types of problems here. In one case the network 
displays an accretive behaviour (Figure 3.11a). That is, if an input 
pattern not belonging to any group is presented, then the network 
will force it into one of the groups. The input pattern space is typically 
a continuous space. The test input patterns could be the same as the 
ones used in the training or could be different. The output pattern 
space consists of a set of cluster centres or labels. 

The second type of problem displays interpolative behaviour as 
shown in Figure 3.11b. In this case, a test input pattern not belonging 
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Input pattern apace Output pattern apace 

(b) Interpolative 
Figure 3.11 Illustration of two types of pattern clustering tasks. 

to any group produces an output which is some form of interpolation 
of the output patterns or cluster centers, depending on the proximity 
of the test input pattern to the input pattern groups formed during 
training. 

Pattern clustering also leads to the problem of vector quantiza- 
tion. A detailed analysis of these problems is given in Chapter 6. 

Feature mapplng problem: In the pattern clustering problem a 
group of approximately similar input patterns are identified with a 
fixed output pattern or a group label. On the other hand, if 
similarities of the features of the input patterns have to be retained 
in the output, the problem becomes one of feature mapping. In this, 
a given set of input patterns are mapped onto output patterns in such 
a way that the proximity of the output patterns reflect the similarity 
of the features of the corresponding input patterns. When a test input 
pattern is given, it will generate an output which is in the 
neighbourhood of the outputs for similar patterns. Note that typically 
the number of output patterns are fixed, but they are much larger 
than in the pattern clustering case, and they are organized physically 
in the network in such a way that the neighbourhood pattern labels 
reflect closeness of features. A detailed analysis of the feature 
mapping problem is given in Chapter 6. 

In summary, this chapter dealt with some basic functional units 
of neural networks and a description of the pattern recognition tasks 
that these units can perform. In particular, we have identified three 
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basic networks: feedforward, feedback and competitive learning 
networks. We have defined the pattern association problem as a basic 
problem, and we have seen how several other pattern recognition 
tasks could be interpreted as varianta of this problem. We have 
discussed each of the pattern recognition tasks in the form of a 
mapping problem. What we have not discussed is how the basic 
functional units perform the corresponding pattern recognition tasks 
mentioned in this chapter. The next three chapters deal with a 
detailed analysis of these tasks by the networks. 

Revlew Questions 
1. What are the three functional units? Why are they called 

functional units? 

2. Explain the meaning of (a) accretive behaviour and (b) inter- 
polative behaviour. 

3. Distinguish between pattern association, pattern classification 
and pattern mapping tasks. 

4. Give a real life example of a pattern mapping problem. 

5. Explain the difference between autoassociation problem and 
heteroassociation problem. 

6. What is meant by a pattern environment storage problem? Give 
a real life example to illustrate the problem. 

7. Explain the difference between the accretive and interpolative 
type of clustering problems. 

8. Explain what is meant by feature mapping? Explain the problem 
with a real life example from speech production. 

9. Explain how recognition of handwritten digit8 is closer to a 
classification type problem, whereas recognition of vowel sounds 
in continuous speech is closer to a feature mapping type of problem. 



Chapter 4 

Feedforward Neural Networks 

4.1 Introduction 

This chapter presents a detailed analysis of the pattern recognition 
tasks that can be performed by a feedforward artificial neural net- 
work. As mentioned earlier, a feedforward artificial neural network 
consists of layers of processing units, each layer feeding input to the 
next layer in a feedforward manner through a set of connection 
strengths or weights. The simplest such network is a two layer network. 

By a suitable choice of architecture for a feedforward network, it 
is possible to perform several pattern recognition tasks. The simplest 
task is a pattern association task, which can be realized by a two 
layer feedforward network with linear processing units. A detailed 
analysis of the linear association network shows that the network is 
limited in its capabilities. In particular, the number of input-output 
pattern pairs to be associated are limited to the dimensionality of the 
input pattern, and also the set of input patterns must be linearly 
independent. The constraint on the number of input patterns is 
overcome by using a two layer feedforward network with nonlinear 
processing units in the output layer. This modification automatically 
leads to the consideration of pattern classification problems. While 
this modification overcomes the constraints of number and linear 
independence on the input patterns, it introduces the limitations of 
linear separability of the functional relation between input and output 
patterns. Classification problems which are not linearly separable are 
called hard problems. In order to overcome the constraint of linear 
separability for pattern classification problems, a multilayer 
feedforward network with nonlinear processing units in all the 
intermediate hidden layers and in the output layer is proposed. While 
a multilayer feedforward architecture could solve representation of 
the hard problems in a network, it introduces the problem of hard 
learning, i.e., the difficulty in adjusting the weights of the network 
to capture the implied functional relationship between the given 
input-output pattern pairs. The hard learning problem is solved by 
using thc backpropagation learning algorithm. The resulting network 
provides a solution to the pattern mapping problems. The generaliza- 



Introduction 89 

tion (ability to learn a mapping function) feature of a multilayer 
feedforward network with the backpropagation learning law depends 
on several factors such as the architectural details of the network, 
the learning rate parameter of the training process and the training 
samples themselves. 

Table 4.1 shows the summary of the topics to be discussed in this 
chapter. The pattern association problem is discussed in Section 4.2. 

Table 4.1 Pattern Recognition Tasks by Feedfoward Neural Networks 

Pattern association 
Architecture: Two layers, linear processing units, single set of weights 
Learning: Hebb's (orthogonal) rule, Delta (linearly independent) 

rule 
Recall: Direct 
Limitation: Linear independence, number of patterns restricted to 

input dimensionality 
To overcome: Nonlinear processing units, leads to a pattern 

classification problem 

Pattern classification 
Architecture: Two layers, nonlinear processing units, -geometrical 

interpretation 
Learning: Perceptron learning 
Recall: Direct 
Limitation: Linearly separable functions, cannot handle hard 

problems 
To overcome: More layers, leads to a hard learning problem 

Pattern mapping or classification 
Archztecture: Multilayer (hidden), nonlinear processing units, geometri- 

cal interpretation 
Learning: Generalized delta rule (backpropagation) 
Recall: Direct 
Limitation: Slow learning, does not guarantee convergence 
To overcome: More complex architecture 

This section gives a detailed analysis of a linear associative network, 
and shows the limitations of the network for pattern association 
problems. Section 4.3 describes the pattern classification problem. An 
analysis of a two layer feedforward network with nonlinear processing 
units in the output layer brings out the limitations of the network 
for pattern classification task. The section also discusses the problems 
of classification, representation, learning and convergence in the 
context of perceptron networks. In Section 4.4 the problem of pattern 
mapping by a multilayer neural network is discussed. The chapter 
concludes with a discussion on the backpropagation learning law and 
its implications for generalization in a pattern mapping problem. 
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4.2 Analysis of Pattern Association Networks 

4.2.1 Linear Associative Network 

The objective in pattern association is to design a network that can 
represent the association in the pairs of vectors (q, b[), 1 = 1, 2,  ..., 
L, through a set of weights to be determined by a learning law. The 
given set of input-output pattern pairs is called training data. The 
input patterns are typically generated synthetically, like machine 
printed characters. The input patterns used for recall may be 
corrupted by external noise. 

The following vector and matrix notations are used for the 
analysis of a linear associative network: 

Input vector T a1 = [all, a12, ...,a,M] 
Activation vector of input 
layer x = [xl, x2, ..., xMIT 
Activation vector of 
output layer Y = bl , yz ,  ... ,YN]  T 

Output vector b1 = [bll, biz, ..., bwl T 

Input matrix A = [ala2 ... aJ is an M x L  matrix 

Output matrix B = b1bz ... bL] is an N x L  matrix 
Weight matrix W = [ ~ ~ ~ ~ . . . ~ ~ ] ~ i s a n ~ x ~ m a t r i x  
Weight vector for jth 
unit of output layer w. = [wjl, wJ2, ..., w .  1 T 

I JM 

The network consists of a set of weights connecting two layers of 
processing units as shown in Figure 4.1. The output function of each 

Output vector 

Activation vector 
of output layer 

Activation vector 
of input layer 

Input vector QI = 41 Cr, 

Figum 4.1 Linear associative network. 
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unit in these layers is linear. Each output unit receivesinputs from 
the M input units corresponding to the M-dimensional input vectors. 
The number (N) of output units corresponds to the dimensionality of 
the output vectors. Due to linearity of the output function, the 
activation values (xi) and the signal values of the units in the input 
layer are the same as the input data values ali. The activation value 
of the jth unit in the output layer is given by 

M 
T 

yj = x wji ali = wj ail j = 1,2, ..., N. (4.1) 
i = l  

The output (bl;.) of the jth unit is the same as its activation value 
yj, since the output function of the unit is linear, i.e., bl;. = yj. The 
network is called linear since the output of the network is simply a 
linear weighted sum of the component values of the input pattern. 

The objective is to determine a set of weights Iwji) in such a way 
that the actual output bS, is equal to the desired output blj for all the 
given L pattern pairs. The weights are determined by using the 
criterion that the total mean squared error between the desired 
output and the actual output is to be minimized. The weights can be 
determined either by computing them from the training data set or 
by learning. Computation of weights makes use of all the training 
set data together. On the other hand, in learning, the weights are 
updated after presentation of each of the input-output pattern pairs 
in the training set. 

4.2.2 Determination of Weights by Computation 

For a linear associative network Mecht-Nielsen, 19901, 

xi = ali ,  i = 1 , 2  ,..., M (4.2) 

Actual output vector 
b; = y = Wx = Wal 

Error in the output is given by the distance between the desired 
output vector and the actual output vector. The total error E(W) over 
all the L input-output pattern pairs is given by 
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We can write 

where the square norm 

Using the definition that the trace of a square matrix S is the 
sum of the main diagonal entries of S, it is easy to see that 

where the matrix S is given by 

and tr(S) is the trace of the matrix.S. 
Using the definition for pseudoinverse of a matrix [Penrose, 19551, 

i.e., A+ = AT(AAT)-l, we get the matrix identities A+AAT = AT and 
AAT(A+lT = A. Using these matrix identities we get 

It can be seen that the trace of the first term in Eq. (4.11) is always 
nonnegative, as it is in a quadratic form of the real symmetric matrix 
AAT. It becomes zero for W = BA+. The trace of the second term is a 
constant, independent of W. Since the trace of sum of matrices is the 
sum of traces of the individual matrices, the error E(W) is minimum 
when W = BA+. The minimum error is obtained by substituting W = 
BA+ in Eq. (4.7), and is given by 

where Z is an L x L identity matrix. The above simplification is 
obtained by using the following matrix identities: (A+A)~ = AT(A+lT 
and A A ~ ( A + ) ~  = A. 

The following singular value decomposition (SVD) of an M x L 
matrix A is used to compute the pseudoinverse and to evaluate the 
minimum error. Assuming L I M, the SVD of a matrix A is given by 
[Strang, 19801 
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where = hipi, ATAqi = hiqi, and the sets (ply p2, ..., pM) and 
{q,, q2, ..., q,) are each orthogonal. The eigenvalues hi of the matrices 
AA ' and A ~ A  will be real and nonnegative, since the matrices are 
symmetric. The eigenvalues are ordered, i.e., I, 2 hi+ 1. Note that the 
pi's are M-dimensional vectors and q/s are L-dimensional vectors. 

The pseudoinverse A+ of A is given by 

where r is the rank (maximum number of linearly independent 
columns) of A. Also r turns out to be the number of nonzero 
eigenvalues I,. Note that if r = L, then all the L column vectors are 
linearly independent. 

Using the SVD, it can be shown that A+A = ILxL, if L is the 
number of linearly independent columns of A. In such a case 
I-A'A = 0 (null vector), and hence Em, = 0 (See Eq. (4.12)). 
Therefore, for a linearly independent set of input pattern vectors, the 
error in the recall of the associated output pattern vector is zero, if 
the optimum choice of W = BA' is used. 

If the rank r of the matrix A is less than L, then the input vectors 
are linearly dependent. In this case also the choice of the weight 
matrix as W = BA+ still results in the least error E-. But this least 
error is not zero in this case. The value of the error depends on the 
rank r of the matrix. The matrix A'A will have a sub-matrix I,,,, 
and all the other four sub-matrices will be zero. That is 

The expression for minimum error is given from Eq. (4.12) as 

The next issue is how to achieve the minimum error retrieval 
from the linear associative network, when there is noise nl added to 
the input vectors. The noisy input vectors are 

It is assumed that each component of the noise vector nl is 
uncorrelated with the other components and also with the components 
of the pattern vectors, and has the same standard deviation o. Let 
C be an M x L matrix of the noisy input vectors. The objective is to 
find a W that minimizes 
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Murakami has shown that, if W = BA', then the expression for 
error E(W) is given by [Murakami and Aibara, 19871 

The first term in the square brackets can be attributed to the linear 
dependency part of the column vectors of A. If the rank of the matrix 
A is L, then r = L, and the first term will be zero. Therefore, the 
error is determined by the noise power 2. If in addition, there is no 
noise, i.e., o = 0, then the error E(W) = 0. In that case error-free 
recall is possible. 

To minimize E(WAin the presence of noise in the input pattern 
vectors, choose W = B A+, where 

The value of s is determined in such a way that 

That is, the noise power 2 will decide how many terms should be 
considered in the SVD expression for the pseudoinverse. If the 
eigenvalue A, is so small that the noise power dominates, then that 
eigenvector could as well be included in the first term of the 
expression in Eq. (4.19) for the error corresponding to the linear 
dependence. This will reduce the error. 

Note that this analysis is valid only if the legal inputs are 
corrupted by noise. It is not valid if the input consists of only noise. 
The expression for the error E(W) is applicable for the closed set of 
the column vectors in A Murakami and Aibara, 19871. 

4.23 Determination of Weights by Learning 

It is desirable to determine the weights of a network in an 
incremental manner, as and when a new training input-output 
pattern pair is available. This is called learning. Each update of the 
weights with a new input data can be interpreted as network 
learning. Computationally also learning is preferable because it does 
not require information of all the training set data at the same time. 
As will be seen later in this section, it is also preferable to have 
learning confined to a local operation. That is, the update of a weight 
connecting two processing units depends only on the connection 
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weight and the activations of the units on either side of the 
connection. Two learning laws and their variations, as applicable to 
a linear associative network, are discussed in this section. 

Hebb's law: Let the input pattern vector al and the corresponding 
desired output pattern vector bl be applied to the linear associative 
network. According to the Hebb's law, the updated weight value of a 
connection depends only on the activations of the processing units on 
either side of the connecting link. That is 

Note that the computation of the increment xi yj = aliblj is purely 
local for the processor unit and the input-output pattern pair. The 
updated weight matrix for the application of the lth pair (al, bl) is 
given by 

W(1) = W(1- 1) + b,a:, (4.23) 

where W(1- 1) refers to the weight matrix after presentation of the 
first (1 - 1) pattern pairs, and W(1) refers to the weight matrix after 
presentation of the first 1 pattern pairs. Note that blar is the outer 
product of the two vectors, which results in an N x M matrix. Each 
element of this matrix is an increment of the corresponding element 
in the weight matrix. 

If the initial values of the elements of the weight matrix are 
assumed to be zero, then the weight matrix resulting after application 
of the L input-output pattern vector pairs (al, bl), 1 = 1, 2, ..., L, is 
given by 

L 
W = bla; = BAT, 

1-1 

where the element wji of W is given by 

To verify whether the network has learnt the association of the 
given set of input-output pattern vector pairs, apply the input pattern 
ak and determine the actual output vector b; . 
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It is obvious from the above equation that the actual output b; 
is not the same as the desired output bk. Only if some restrictions 
are imposed on the set of input pattern vectors {al, %, ..., aLl, we 
can get the recall of the correct output pattern bk for the input pattern 
ak. The restriction is that the set of input vectors must be ortho- 
normal. That is 

In such a case the first term in the expression for b; in Eq. (4.26) 
becomes bk, and the second term becomes zero, as each of the 
products aTak is zero for I # k. The restriction of orthogonality limits 
the total number (L)  of the input patterns in the set A to M, i.e., the 
dimensionality of the input vectors, as there can be only M or less 
than M mutually orthogonal vectors in an M-dimensional space. 

If the restriction of orthogonality on the set of input vectors is 
relaxed to mere linear independence, then the expression in Eq. (4.26) 
for recall reduces to 

where it is assumed that the vectors are of unit magnitude, so that 
aiak = 1. This leaves an error. term e indicating that the recall is 
not perfect, if the weight matrix is derived using the Hebb's law. 

However, it was shown in the previous Section 4.2.2 that, for 
linearly independent set of input vectors, exact recall can be achieved 
if the weight matrix W is chosen as W = BA', where A+ is the 
pseudoinverse of the matrix A. If the set of input vectors are not 
linearly independent, then still the best choice of W is BA+, as this 
yields, on the average, the least squared error in the recall of the 
associated pattern. The error is defined as the difference between the 
desired and the actual output patterns from the associative network. 
If th%re is noiseAin the input, the best choice of the weight matrix W 
is BA', whereA+ includes fewer (s) terms in the singular value 
decomposition expansion of A than the rank (r) of the matrix, the 
choice of s being dictated by the level of the noise (See Eq. (4.21)). 

For all these best choices of W, the weight values have to be 
computed from the knowledge of the complete input pattern matrix 
A, since all of them need the SVD of A to compute the pseudoinverse 
A+. However, it is possible, at least in some cases, to develop learning 
algorithms which can approach the best choices for the weight 
matrices. The purpose of these learning algorithms is to provide a 
procedure for incremental update of the weight matrix when an 
input-output pattern pair is presented to the network. Most of these 
learning algorithms are based on gradient descent along an error 
surface (See Appendix C ) .  The most basic among them is Widrow and 
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Hoffs least mean square (LMS) algorithm [Widrow and Hoff, 19601. 
The gradient descent algorithms are discussed in detail later in the 
section on pattern mapping tasks. 

Widrow's law: A form of Widrow learning can be used to obtain W = 
BA+ recursively. Let W(l - 1) be the weight matrix after presentation 
of (1 - 1) samples. Then W(1- 1) = B(1- 1)A+(I - I), where the matrices 
B(1 - 1) and A(1 - 1) are composed of the first (1 - 1) vectors of bk 
and the first (1 - 1) vectors of ah, respectively. When the pair (al, bl) 
is given to the network, then the updated matrix is given by (See 
[Hecht-Nielsen, 19901) 

W(Z) = W(Z- 1) + (bl - WQ- l)al)pr (4.29) 
where 

[I - A(1 - l)A+(l- I)] al 
Pl = if the denominator is # 0 I [I - A(1- 1)A+(E - l)lal 1 ' 

- - ~ ~ ( 1 -  l)A+(l - l)al 
otherwise 

1 + IA+(l- l)al 1 ' 

By starting with zero initial values for all the weights, and 
successively adding the pairs (al, bl), (a2, b2), ..., (aL, bL), we can 
obtain the final pseudoinverse-based weight matrix W = BA+. The 
problem with this approach is that the recursive procedure cannot be 
implemented locally because of the need to calculate pl in Eq. (4.29). 

The same eventual effect can be approximately realized using the 
following variation of the above learning law, 

where q is a small positive constant called the learning rate 
parameter. This Widrow's learning law can be implemented locally 
by means of the following equation, 

where wj(l - 1) is the weight vector associated with the jth processing 
unit in the output layer of the linear associative network at 
the (1 - 1)th iteration. With this scheme, it is often necessary to apply 
the pairs (al, bl) of the training set data several times, with each 
pair chosen at random. 

The convergence of the Widrow's learning law in Eq. (4.32) 
depends on the choice of the learning rate parameter q. For 
sufficiently low values of q, a linear associative network can 
adaptively form only an approximation to the desired weight matrix 
W = BA+. There is no known method for adaptively learning the best 
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choice of the weight matrix W = BA+. Note also that no method is 
known to adaptively learn even an approximation to the best choice 
of the weight matrix W = B& in the case of additive noise in the 
input pattern vectors. Therefore, in the case of noisy patterns, t$e 
best weight matrix has to be computed using the expressions for A+ 
in terms of the components of the singular value decomposition of A, 
depending on the estimated noise level in the input patterns. This is 
obvious from the fact that noise effects can be reduced only when its 
statistics are observed over several patterns. 

4.2.4 Discussion on Pattern Association Problem 

Table 4.2 gives a summary of the results of linear associative networks. 

Table 4.2 Summary of Results of Linear Associative Networks 

Pat te rn  association problem 

Given a set {(a!, b,)) of L  pattern pairs, the objective is to determine the 
weights of a linear associative network so as to minimize the error between 
the desired and actual outputs. If A = [al a2 ... aL], B = (bl b2 ... bL] and Ware 
the input, output and weight matrices, respectively, then the optimum weights 
are given by 

(a) W = B A ~  for orthogonal set of input vectors 

(b) W = BA-' for linearly independent set of input vectors (full rank 
square matrix: r  = L  = M )  

(c) W = BA' for linearly independent set of input vectors (full rank 
matrix: r  = L  < M) 

(d) W = BA' for linearly dependent set of input vectors (reduced rank: 
r < L l M  

(e) W = BA+ for noisy input vectors 

For the cases (a), (b) and (c), the minimum error is zero. For the case (d) 
the minimum error is determined by the rank of the input matrix. For the 
case (e) the minimum error is determined by both the rank of the input 
matrix and the noise power. 

Determination of weights by learning 

(a) For orthogonal input vectors the optimum weights W = B A ~  can be 
obtained using Hebb's learning law. 

(b) For linearly independent or dependent input vectors an approximation 
to the optimum weights W = BA+ can be learnt using a form of Widrow's 
learning law. 

(c) For noisy input vectors there is no known learning law that can provide 
even an approximation to the optimum weights W = BA +. 
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It is often useful to allow the processing units in the output layer of 
the network to have a bias input. In such a case the input matrix A 
to this layer is augmented with an additional column vector, whose 
values are always -1. Addition of this bias term results in a weight 
matrix W that performs an afine transformation. With the affine 
transformation, any arbitrary rotation, scaling and translation 
operation on patterns can be handled, whereas linear transformations 
of the previous associative network can carry out only arbitrary rotation 
and scaling operations on the input patterns [HechbNielsen, 19901. 

In many applications the linkage between the dimensionality (M) 
of the input data and the number (L) of data items that can be 
associated and recalled is an unacceptable restriction. By means of 
coding schemes, the dimeriionality of the input data can sometimes 
be increased artificially, thus allowing more (L > M) pairs of items 
to be associated Pao, 19891. 

But, as we will see in the next section, the dependence of the 
number of input patterns on the dimensionality of the pattern vector 
can be removed completely by using nonlinear processing units in the 
output layer. Thus the artificial neural networks can capture the 
association among the pairs (al, bl), 1 = 1, 2, ..., L, even when the 
number of input patterns is greater than the dimensionality of the 
input vectors, i.e., L > M. While the constraint of dimensionality on 
the number of input patterns is removed in the artificial neural 
networks, some other restrictions will be placed which involve the 
functional relation between an input and the corresponding output. 
In particular, the implied mapping between the input and output 
pattern pairs can be captured by a two layer artificial neural network, 
provided the mapping function belongs to a linearly separable class. 
But the number of linearly separable functions decrease rapidly as 
the dimensionality of the input and output pattern vectors increases. 
These issues will be discussed in the following section. 

4.3 Analysis of Pattern Classification Networks 

In an M-dimensional space if a set of points could be considered as 
input patterns, and if an output pattern, not necessarily distinct from 
one another, is assigned to each of the input patterns, then the 
number of distinct output patterns can be viewed as distinct classes 
or class labels for the input patterns. There is no restriction on the 
number of input patterns. The input-output pattern vector pairs 
(al, bl), 1 = 1, 2, ..., L, in this case can be considered as a training 
set for a pattern classification problem. Typically, for pattern 
classification problems, the output patterns are points in a discrete 
(normally binary) N-dimensional space. The input patterns are 
usually from natural sources like speech and hand-printed characters. 
The input patterns may be corrupted by external noise. Even a noisy 
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input will be mapped onto one of the distinct pattern classes, and 
hence the recall displays an accretive behaviour. 

4.3.1 Pattern Classification Network: Perceptron 

A two layer feedforward network with nonlinear (hard-limiting) output 
functions for the units in the output layer can be used to perform the 
task of pattern classification. The number of units in the input layer 
corresponds to the dimensionality of the input pattern vectors. The units 
in the input layer are all linear, as the input layer merely contributes 
to fan out the input to each of the output units. The number of output 
units depends on the number of distinct classes in the pattern 
classification task. We assume for this discussion that the output units 
are binary. Each output unit is connected to all the input units, and a 
weight is associated with each connection. Since the output function of 
a unit is a hard-limiting threshold function, for a given set of 
input-output patterns, the weighted sum of the input values is compared 
with the threshold for the unit to determine whether the sum is greater 
or less than the threshold. Thus in this case a set of inequalities are 
generated with the given data. Thus there is no unique solution for the 
weights in this case, as in the case of linear associative network. It is 
necessary to determine a set of weights to satisfy all the inequalities. 
Determination of such weights is usually. accompanied by means of 
incremental adjustment of the weights using a learning law. 

A detailed analysis of pattern classification networks is presented 
here assuming M input units and a single binary output unit. The 
output unit uses a hard-limiting threshold function to decide whether 
the output signal should be 1 or 0. Typically, if the weighted sum of 
the input values to the output unit exceeds the threshold, the output 
signal is labelled as 1, otherwise as 0. Extension of the analysis for 
a network consisting of multiple binary units in the output layer is 
trivial [Zurada, 19921. Multiple binary output units are needed if the 
number of pattern classes exceeds 2. 

Pattern classification problem: If a subset of the input patterns 
belong to one class (say class A,) and the remaining subset of the 
input patterns to another class (say class A,), then the objective in 
a pattern classification problem is to determine a set of weights 
wl, w,, ..., WM such that if the weighted sum 

M x wiai > 8, then a = (al, a,, ..., aM)T belongs to class A, (4.33) 
i = l  

and if 

M x wiai I 8, then a = (al, a,, ..., aM)T belongs to class A, (4.34) 
i =  1 
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Note that the dividing surface between the two classes is given by 

This equation represents a linear hyperplane in the M-dimensional 
space. The hyperplane becomes a point if M = 1, a straight line if M = 2, 
and a plane if M = 3. 

Since the solution of the classification problem involves 
determining the weights and the threshold value, the classification 
network can be depicted as shown in Figure 4.2, where the input a. 

Figure 4.2 A single unit pattern classification network (perceptron). 

to the connection involving the threshold value w,, = 8 is always 
-1. Defining the augmented input and weight vectors as 
a = (-1, a,, ..., aMIT and w = (wo, w,, ..., wMIT, respectively, the per- 
ceptron classification problem can be stated as follows: 

If wTa > 0, then a belongs to class A,, and 
if wTa I 0, then a belongs to class A,. 

The equation for the dividing linear hyperplane is wTa = 0. 

Perceptron learning law: In the above perceptron classification 
problem, the input space is an M-dimensional space and the number 
of output patterns are two, corresponding to the two classes. Note 
that we use the (M + 1)-dimensional vector to denote a point in the 
M-dimensional space, as the a. component of the vector is always -1. 
Suppose the subsets A, and Ap of points in the M-dimensional space 
contain the sample patterns belonging to the classes A, and A,, 
respectively. The objective in the perceptron learning is to 
systematically adjust the weights for each presentation of an input 
vector belonging to A, or A, along with its class identification. The 
perceptron learning law for the two-class problem may be stated as 
follows: 

w(m + 1) = w(m) + q a, if a E Al and wT(m)a S O  

= w(m) - q a, if a E Aq and wT(m)a > 0 (4.36) 
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where the index m is used to denote the learning process at the mth 
step. The vectors a and w(m) are the input and weight vectors, 
respectively, at the mth step, and 17 is a positive learning rate 
parameter. can be varying at each learning step, although it is 
assumed as constant in the perceptron learning. Note that no 
adjustment of weights is made when the input vector is correctly 
classified. That is, 

w(m + 1) = w(m), if a E Al and wT(m)a > 0 

= w(m), if a E A2 and wT(m)a I 0 (4.37) 

The initial value of the weight vector w(0) could be random. 
Figure 4.3 shows an example of the decision boundaries at different 

Figure 4.3 Illustration of decision boundaries formed during implementation 
of perceptron learning for linearly separable classes. 

times for a 2-dimensional input vector. The equation of the straight 
line is given by 

wlal + w2a2 = 8 (4.38) 

For different values of the weights during learning, the position 
of the line changes. Note that in this example the two classes can be 
separated by a straight line, and hence they are called linearly 
separable classes. On the other hand consider the example of the 
pattern classification problem in Figure 4.4. In this case the straight 
line wanders in the plane during learning, and the weights do not 
converge to a final stable value, as the two classes cannot be 
separated by a single straight line. 

Perceptron convergence theorem: This theorem states that the 
perceptron learning law converges to a final set of weight values in 
a finite number of steps, if the classes are linearly separable. The 
proof of this theorem is as follows: 
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Figure 4.4 Illustration of decision boundaries formed during implementation 
of perceptron learning for linearly inseparable classes. 

Let a and w be the augmented input and weight vectors, 
respectively. Assuming that there exists a solution w* for the 
classification problem, we have to show that w* can be approached 
in a finite number of steps, starting from some initial random weight 
values. We know that the solution w* satisfies the following 
inequality as per the Eq. (4.37): 

> a > 0, for each a E Al (4.39) 
where 

a = min ( ~ * ~ a \  
a €  Al 

The weight vector is updated if wT(m)a I 0, for a E Al. That is, 

w ( m  + 1) = w ( m )  +r\  a(m), for a(m) = a E Al, (4.40) 

where a(m) is used to denote the input vector a t  step m. If we start 
with w ( 0 )  = 0 ,  where 0 is an all zero column vector, then 

r n - 1  

w ( m )  = 11 z a(i> (4.41) 
i = O  

Multiplying both sides of Eq. (4.41) by w * ~ ,  we get 

rn-1 
w * ~ w ( ~ )  = q z ~ * ~ a ( i )  > qma (4.42) 

r = O  

since ~ * ~ a ( i )  > a according to Eq. (4.39). Using the Cauchy-Schwartz 
inequality 

*T 2 11 w 11 . 1 1  w ( m )  1 1 2  2 [ ~ * ~ w ( m ) l ~  (4.43) 

we get from Eq. (4.42) 
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We also have from Eq. (4.40) 

since for learning wT(m)a(m)  SO when a ( m )  E A,. Therefore, starting 
from w ( 0 )  = 0, we get from Eq. (4.45) 

where p = max I1 a( i )  /I2. Combining Eqs. (4.44) and (4.46), we obtain 
a(i) E A1 

the optimum value of m by solving 

Since p is positive, Eq. (4.48) shows that the optimum weight value 
can be approached in a finite number of steps using the perceptron 
learning law. 

Alternate proof of the convergence theorem: Assume that a 
solution vector w* exists. Then using the following perceptron behaviour 

> cx > 0 for a E Al 
and 

< - a < 0 for a E A2 

we can show that the magnitude of the cosine of the angle i$ between 
the weight vectors w* and w ( m )  is given by 

where 

and 

a = min I weTal 
a 

p = max 1 1  a 112 
a 

Using the perceptron learning law in Eq. (4.36), and Eqs. (4.49) 
and (4.52), we get the following: 
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wbTw(m + 1) = wbT(w(m) + q N m ) )  

> wbTw(m) + qa ,  for wT(m)a(m) 5 0 (4.54) 

Starting &om w ( 0 )  = 0, we get 

wbTw(m) > mqa, for wT(m)a(m) SO, and a(m)  E Al (4.55) 

Likewise, using the perceptron learning law in Eq. (4.36), and Eqs. 
(4.50) and (4.52), we get 

< w*Tw(m) - q a ,  for #(m)a(m) > 0 

Starting from w(0)  = 0, we get 

w * ~ w ( ~ )  < - mqa,  for d ( m ) a ( m )  > 0,  and a(m)  E A2 (4.56) 

That is 

( ~ * ~ w ( m )  ( > mqa,  for wT(m)a(m) > 0 ,  and a(m)  E A2 (4.57) 

Therefore from Eqs. (4.55) and (4.5'71, we get 

I wbTw(m) ( > mqa,  for all a (4.58) 

Similarly, using Eq. (4.36), we get 

< I I  w(m) 1 1 2  + 2 q &(m)a(m) + 112 P 
< 11 w ( m )  1 1 2  + q 2  P,  for #(m)a(m) SO (4.59) 

and 

< 11 w(m) 112 + q2 P, for &(m)a(m) > 0 (4.60) 

Starting from w ( 0 )  = 0, we get for both (4.59) and (4.60) 

II w(m> ti2 < mq2P (4.61) 

Therefore, from Eqs. (4.51), (4.58) and (4.61), we get 
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Discussion on the convergence theorem: The number of iterations 
for convergence depends on the relation between w(0)  and w*. Normally 
the initial value w(0)  is set to 0. The initial setting of the weight 
values does not affect the proof of the perceptron convergence theorem. 

The working of the perceptron learning can be viewed as follows: 
At the (m + 1)th iteration we have 

w ( m  + 1) = w(m)  + q a(m), for wT(m)a(m) S O  

and a(m) E Al 
From this we get 

Notice that if wT(m)a(m) < 0, then wT(m + l )a(m) > 0, provided 7 is 
chosen as the smallest positive real number (< 1) such that 

Thus the given pattern a(m) is classified correctly if it is presented 
to the perceptron with the new weight vector w(m + 1). The weight 
vector is adjusted to enable the pattern to be classified correctly. 

The perceptron convergence theorem for the two class problem is 
applicable for both binary (0, 1) and bipolar (-1, + I )  input and output 
data. By considering a two-class problem each time, the perceptron 
convergence theorem can be proved for a multiclass problem as well. 
The perceptron learning law and its proof of convergence are 
applicable for a single layer of nonlinear processing units, also called 
a single layer perceptron. Note that convergence takes place provided 
an optimal solution w* exists. Such a solution exists for a single layer 
perceptron, only if the given classification problem is linearly 
separable. In other words, the perceptron learning law converges to 
a solution only if the class boundaries are separable by linear 
hyperplanes in the M-dimensional input pattern space. 

Perceptron learning as gradient descent: The perceptron learning 
law in Eq. (4.36) can also be written as 

where b(m) is the desired output, which for the binary case is given by 

b(m) = 1, for a ( m ) € A l ,  (4.69) 

= 0, for a(m) E A2 i4.70) 

and s(m) is the actual output for the input vector a(m) to the 
perceptron. The actual output is given by 

s(m) = 1, if wT(m)a(m) > 0 (4.71) 

= 0, if wT(m)a(m) 2 0  (4.72) 
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From Eq. (4.68) we note that if s(m) = b(m), then w(m+l) = w(m), 
i.e., no correction takes place. On the other hand, if there is an error, 
s(m) # b(m), then the update rule given by (4.68) is same as the 
update rule given in Eq. (4.36). 

Note that Eq. (4.68) is also valid for a bipolar output function, 
i.e., when s(m) = flwT(m)a(m)) = k 1. Therefore Eq. (4.68) can be 
written as 

where e(m) = b(m) - s(m) is the error signal. If we use the 
instantaneous correlation (product) between the output error e(m) and 
the activation value r(m) = wT(m)a(m) as a measure of performance 
E(m), then 

The negative derivative of E(m) with respect to the weight vector 
w(m) can be defined as the negative gradient of E(m) and is given by 

Thus the weight update q e(m) a(m) in the perceptron learning irA 
Eq. (4.73) is proportional to the negative gradient of the performance 
measure E(m). 

Perceptron representatlon problem: Convergence in the perceptron 
learning takes place only if the pattern classes are linearly separable 
in the pattern space. Linear separability requires that the convex 
hulls of the pattern sets of the classes are disjoint. A convex hull of 
a pattern set A. is the smallest convex set in that contains Ao. A 
convex set is a set of points in the M-dimensional space such that a 
line joining any two points in the set lies entirely in the region 
enclosed by the set. For linearly separable classes, the perceptron 
convergence theorem ensures that the final set of weights will be 
reached in a finite number of steps. These weights define a linear 
hyperplane separating the two classes. But in practice the number 
of linearly separable functions will decrease rapidly as the dimension 
of the input pattern space is increased [Cameron, 1960; Muroga, 
19711. Table 4.3 shows the number of linearly separable functions for 
a two-class problem with binary input patterns for different 
dimensions of the input pattern space. For binary pattern classifica- 
tion problems (M = 2), there are 14 functions which are linearly 
separable. The problem in Figure 4.5a is one of the linearly separable 
functions. There are two functions which are linearly inseparable, one 
of which is shown in Figure 4.5b. These linearly inseparable problems 
do not lead to convergence of weights through the perceptron learning 
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law, indicating that these problems are not representable by a single 
layer of perceptron discussed so far. 

Table 4.3 . Number of Linearly Separable Functions for a Two-class Problem 

Dimension of input Number of possible Number of linearly 
data M functions 22M separable functions 

1 4 4 
2 16 14 
3 256 104 
4 65536 1882 
5 - 4.3 lo9 94572 
6 - 1.8 x lo1' 15028134 

Figure 4.5 Examples of (a) linearly separable and (b) linearly inseparable 
classification problems. The classes are indicated by 'x' and '0'. 

4.3.2 Linear Inseparability: Hard Problems 

A two-layer feedforward network with hard-limiting threshold units 
in the output layer can solve linearly separable pattern classification 
problems. This is also called a single layer perceptron, as there is 
only one layer of nonlinear units. There are many problems which 
are not linearly separable, and hence are not representable by a single 
layer perceptron. These unrepresentable problems are called hard 
problems. Some of these problems are illustrated using the perceptron 
model consisting of sensory units, association units and the output 
layer as shown in Figure 4.6. The output unit of the perceptron 
computes a logical predicate, based on the information fed to it by 
the association units connected to it. The association units form a 
family of local predicates, computing a set of local properties or 
features. The family of local predicates are looking a t  a 'retina', which 
consists of points on a plane, which in the figure corresponds to the 
sensory input. In the simple 'linear' perceptron the output unit looks 
at  the local predicates from the association units, takes their weighted 
sum, compares with a threshold, and then responds with a value for 
the overall logical predicate, which is either true or false. If it were 
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Figure 4.6 Rosenblatt's perceptron model of a neuron. 

possible for the local predicates to look at every point in the entire 
retina, any possible logical predicate could be computed. This would 
be impractical, since the number of possible patterns on the retina 
grows exponentially with the size of the retina [Minsky and Papert, 
19901. Two important limitations on the local predicates are: 
order-limited, where only a certain maximum order of retinal points 
could be connected to the local decision unit computing the local 
predicate, and diameter-limited, where only a geometrically restricted 
region of retina could be connected to the local predicate. The 
order-limited perceptron cannot compute the parity problem examples 
shown in Figure 4.7, where images with an even number of distinct 

Figure 4.7 A parity problem illustrating the order-limited perceptron: (a) 
Even parity and (b) Odd parity. 
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unconnected patterns (Figure 4.7a) should produce an output 1, 
otherwise the output for the odd number of patterns in Figure 4.7b 
should be 0. Likewise the diameter-limited perceptron cannot handle 
the connectedness problem examples shown in Figure 4.8, where to 
detect connectedness the output of the perceptron should be 1 if there 
is only one conneded pattern as in Figure 4.8a, otherwise it should be 
0 for patterns shown in F'igure 4.8b [Aleksander and Morton, 19901. 

@) 
Figure4.8 A connectedness problem illustrating the diameter-limited 

perceptron: (a) Connected class and (b) Disconnected class. 

4.3.3 Geometrical Interpretation of Hard Problems: 
Multllayer Perceptron 

In this section the problem of pattern classification and the 
performance of feedforward neural networks are discussed in 
geometric terms. A pattern classification problem can be viewed as 
determining the l~ypersurfaces separating the multidimensional 
patterns belonging to different classes. For convenience throughout 
this section we consider a Bdimensional pattern space. If the pattern 
classes are linearly separable then the hypersurfaces reduce to 
straight lines as shown in Figure 4.9. A two-layer network consisting 
of two input units and N output units can produce N distinct lines 
in the pattern space. These lines can be used to separate different 
classes, provided the regions formed by the pattern classification 
problem are linearly separable. As mentioned earlier (See Table 4.3), 
linearly separable problems are in general far fewer among all 
possible problems, especially as the dimensionality of the input space 
increases. If the outputs of the second layer are combined by a set 
of units forming another layer, then it can be shown that any convex 
region can be formed by the separating surfaces [Lippmann, 1987; 
Wasseman, 19891. A convex region is one in which a line joining any 
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(hard-limiting unite) 

Input layer 
(hear units) 

Figure 4.9 An example of linearly separable classes: (a) Network and (b) 
Linearly separable classes. 

two points is entirely confined to the region itself. Figure 4.10b 
illustrates the regions that can be created by a three layer network. 
In this case the number of units in the second layer determines the 
shape of the dividing surface. The number of units in the third layer 
decides the number of classes. It can be seen that the three-layer 
network (Fig. 4.10b) is not general enough, as it is not guaranteed 
that the class regions in the pattern space form convex regions in all 
cases. In fad one could have a situation as shown for the classes with 
meshed regions, where the desired classes are enclosed by complicated 
nonconvex regions. Note that intersection of linear hyperplanes in the 
three layer network can only produce convex surfaces. 

However, intersection of the convex regions may produce any 
nonconvex region also. Thus adding one more layer of units to 
combine the outputs of the third layer can yield surfaces which can 
separate even the nonconvex regions of the type shown in Figure 
4.10~. In fad  it can be shown that a four-layer network with the 
input layer consisting of linear units, and the other three layers 
consisting of hard-limiting nonlinear units, can perform any complex 
pattern classification tasks. Thus all the hard problems mentioned 
earlier can be handled by a multilayer feedforward neural network, 
with nonlinear units. Such a network is also called a multilayer 
perceptron. Note that the two-layer network in Figure 4.10a is a 
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single-layer perceptron, and the three-layer and four-layer networks 
in the Figures 4.10b and 4.10~ are two-layer and three-layer 
perceptrons, respectively. 

Figure 4.10 Geometrical interpretation of pattern classification. The figure 
shows decision regions for different layers of perceptron 
networks. [Adapted from Lippmann, 19871. 

The above discussion is focussed primarily on a multilayer 
perceptron network with units having hard-limiting nonlinear output 
functions. Similar behaviour is expected from a multilayer feed- 
forward neural network when the output functions of the units are 
continuous nonlinear functions, such as sigmoid functions. In these 
cases the decision regions are typically bounded by smooth surfaces 
instead of linear hyperplanes, and hence geometrical visualization 
and interpretation is difficult. 

Table 4.4 gives a summary of the discussion on the perceptron 
network. The main difficulty with a multilayer perceptron network 
is that it is not straightforward to adjust the weights leading to the 
units in the intermediate layers, since the desired output values of 
the units in these layers are not known. The perceptron learning uses 
the knowledge of the error between the desired output and the actual 
output to adjust the weights. From the given data only the desired 
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Table 4.4 Summary of Issues in Perceptron Learning 

1. Perceptron network 
Weighted sum of the input to a unit with hard-limiting output function 

2. Perceptron classification problem 
For a two class (A, and A,) problem, determine the weights (w) and 
threshold (8) such that 

&a-9>0 ,  for a € A l  and w Ta- 850 ,  for ~ E A , .  

3. Perceptron learning law 
The weights are determined in an iterative manner using the following 
learning law at the (m + l)& iteration: 

w(m + 1) = w(m) + q a(m), for wT(m)a(m) 5 8 and a(m) E Al 

= w(m) -q a(m), for wT(m)a(m) > 8 and a(m) E A, 
where T( is a (positive) learning rate parameter. 

4. Perceptron learning as gradient descent 
The perceptron learning law can be rewritten as  a single equation: 

w(m + 1) = w(m) + q e(m) a(m), where e(m) = b(m) - s(m). 
Denoting 

Aw(m) = e(m) a h ) ,  
we have 

- aE(m) 
Aw(m) = rl- 

aw(m) 
where E(m) = - e(m) wT(m)a(m: 

5. Perceptron convergence theorem 
The perceptron learning law converges in a finite number of steps, 
provided that the given classification problem is representable. 

6. Perceptron representation problem 
A classification problem is representable by a single layer perceptron if 
the classes are linearly separable, i.e., separable by linear hyperplanes in 
the input feature space. Classification problems that are not linearly 
separable are called hard problems. 

7. Multilayer perceptron 
Any pattern classification prohlem, including the hard problems, can be 
represented by a multilayer perceptron network. 

output values of the units in the final output layer are known. Thus, 
although a multilayer perceptron network can handle hard problems, 
the problem of learning or training such a network, called hard 
learning problem, remains. This problem is discussed in detail in the 
following section. 

4.4 Analysis of Pattern Mapping Networks 

4.4.1 Pattern Mapping Problem 

If a set of input-output pattern pairs is given corresponding to an 
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arbitrary function transforming a point in the M-dimensional input 
pattern space to a point in the N-dimensional output pattern space, 
then the problem of capturing the implied functional relationship is 
called a mapping problem. The network that accomplishes this task 
is cdled a mapping network. Since no restriction such as linear 
separability is placed on the set of input-output pattern pairs, the 
pattern mapping problem is a more general case of pattern 
classification problem. 

Note that the objective in the pattern mapping problem is to 
capture the implied function, i.e., the generalization implied in the 
given input-output pattern pairs. This can also be viewed as an 
approximation of the function from a given data. For a complex 
system with multiple ( M )  inputs and multiple 0 outputs,' if several 
input-output pattern pairs are collected during experimentation, then 
the objective in the pattern mapping problem is to capture the system 
characteristics from the observed data. For a new input, the captured 
system is expected to produce an output close to the one that would 
have been obtained by the real system. In terms of function 
approximation, the approximate mapping system should give an 
output which is close to the values of the real function for inputs 
close to the current input used during learning. Note that the 
approximate system does not produce strictly an interpolated output, 
as the function finally captured during learning may not fit any of 
the points given in the training set. This is illustrated in Figure 4.11. 

1 * 
input X 

Fig- 4.11 Function approximation in pattern mapping problem. 

4.4.2 Pattern Mapping Network 

Earlier we have seen that a multilayer feedforward neural network 
with at least two intermediate layers in addition to the input and 
output layers can perform any pattern classification task. Such a 
network can also perform a pattern mapping task. The additional 
layers are called hidden layers, and the number of units in the hidden 
layers depends on the nature of the mapping problem. For any 
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arbitrary problem, generalization may be difficult. With a sufficiently 
large size of the network, it is possible to (virtually) store all the 
input-output pattern pairs given in the training set. Then the network 
will not be performing the desired mapping, because it will not be 
capturing the implied functional relationship between the given 
input-output pattern pairs. 

Except in the input layer, the units in the other layers must be 
nonlinear in order to provide generalization capability for the 
network. In fact it can be shown that, if all the units are linear, then 
a multilayer network can be reduced to an equivalent two-layer 
network with a set of N x M weights. 

Let W,, W, and W3 be the weight matrices of appropriate sizes 
between the input layer and the first hidden layer, the first hidden 
layer and the second hidden layer, and the second hidden layer and 
the output layer, respectively. Then if all the units are linear, the 
output and input patterns are related by the weight matrix containing 
N x M weight elements. That is, 

WN X M  = W3W2w1 (4.76) 

As can be seen easily, such a network reduces to a linear associative 
network. But if the units in the output layer are nonlinear, then the 
network is limited by the linear separability constraint on the 
function relating the input-output pattern pairs. If the units in the 
hidden layers and in the output layer are nonlinear, then the number 
of unknown weights depend on the number of units in the hidden 
layers, besides the number of units in the input and output layers. 
The pattern mapping problem involves determining these weights, 
given a training set consisting of input-output pattern pairs. We need 
a systematic way of updating these weights when each input-output 
pattern pair is presented to the network. In order to do this updating 
of weights in a supervisory mode, it is necessary to know the desired 
output for each unit in the hidden and output layers. Once the desired 
output is known, the error, i.e., the difference between the desired 
and actual outputs from each unit may be used to guide the updating 
of the weights leading to the unit from the units in the previous layer. 
We know the desired output only for the units in the final output 
layer, and not for the units in the hidden layers. Therefore a 
straightforward application of a learning rule, that depends on the 
difference between the desired and the actual outputs, is not feasible 
in this case. The problem of updating the weights in this case is called 
a hard learning problem. 

The hard learning problem is solved by using a differentiable 
nonlinear output function for each unit in the hidden and output 
layers. The corresponding learning law is based on propagating the 
error from the output layer to the hidden layers for updating the 
weights. This is an error correcting learning law, also called the 
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generalized delta rule. It is based on the principle of gradient descent 
along the error surface. 

Appendix C gives the background information needed for under- 
standing the gradient descent methods. Table 4.5 gives a summary 
of the gradient search methods discussed in the Appendix C. In the 
following section we derive the generalized delta rule applicable for 
a multilayer feedforward network with nonlinear units. 

Table 45  Summary of Basic Gradient Search Methods 

1. Objective 

Determine the optimal set of weights for which the expected error E(w) 
between the desired and actual outputs is minimum. 
For a linear network the error surface is a quadratic function of the 
weights 

The optimumweight vector w* is given by 

w' = w -i R-'v, where V = dE/dw 
2 

and R is the autocorrelation matrix of the input data. 

2. Gradient Search Methods 

We can write the equation for adjustment of weights as 

If R and V, are known exactly, then the above adjustment gives w' in 
one step starting from any initial weights d m ) .  
If R and V, are known only approximately, then the optimum weight 
vector can be obtained in an iterative manner by writing 

where q < 112 for convergence. This is Newton's method. The error 
moves approximately along the path from w(m) to w*. Here q is a 
dimensionless quantity. 
If the weights are adjusted in the direction of the negative gradient at  
each step, it becomes method of steepest descent. 

w(m + 1) = w(m) + CL ( - V,), 
where p < 1 4 2  A,-) for convergence and A,- i s  the largest 
eigenvalue of R. The learning rate parameter CI, has the dimensions of 
inverse of signal power. Here convergence is slower than in the 
Newton's method. 
In general, the gradient cannot be computed, but can only be estimated. 
Hence convergence of the gradient descent methods is not guaranteed. 
The estimate depends on our knowledge of the error surface. 
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Table 4.6 (Cont.) 

3. Nature of error d a c e  
Error surface may not be quadratic if R ie to be estimated from a small 
eet of samples. 
Error surface ie not quadratic for instantaneous measurement of error. 
Error eurface is also not quadratic if the processing units are nonlinear. 
Error eurface is not predictable for nonstationary input data, eince R 
will be varying with time. 

4. Estimation of gradient 
Derivative measurement: Uses general ,howledge of the error surface. 
Inetantaneous measurement (linear units): Uses epecific knowledge of 
the error eurface. 
LMS algorithm. Leads to convergence in the mean (stachaetic gradient 
descent). 
Instantaneous measurement (nonlinear units): Usee specific knowledge 
of the error surface. 
Delta rule. No guarantee of convegence even in the mean as in the 
LMS algorithm. 

4.4.3 Generalized Delta Rule: Backpropagation learning 

The objective is to develop a learning algorithm for a multilayer , 

feedforward neural network, so that the network can be trained to 
capture the mapping implicit in the given set of input-output pattern 
pairs. The approach to be followed is basically a gradient descent 
along the error surface to arrive at the optimum set of weights. The 
error is defined as the squared difference between the desired output 
(i.e., given output pattern) and the actual output obtained at the 
output layer of the network due to application of an input pattern 
from the given input-output pattern pair. The output is calculated 
using the current setting of the weights in all the layers. The optimum 
weights may be obtained if the weights are adjusted in such a way 
that the gradient descent is made along the total error surface. But 
$he desirable characteristic of any learning law is to specify the 
incremental update of the weights of the network for each 
presentation of an input-output pattern pair. While this may result 
in a suboptimal solution, in most cases of practical significance the 
result is acceptable. 

A learning law, called generalized delta rule or backpropagation 
law, is derived in this section [Werbos, 1974; Rumelhart et al, 1986al. 
Let (%, b,), 1 = 1,2, ..., L be the set of training pattern pairs. It is 
not necessary to have all the training data set at one time, nor the 
training data set to be a finite set. The objective is to determine the 
weight update for each presentation of an input-output pattern pair. 
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Since the given data may be used several times during training, let 
us use the index m to indicate the presentation step for the training 
pair at step m. 

For training a multilayer feedforward neural network, we use the 
following estimate of the gradient descent along the error surface to 
determine the increment in the weight connecting the units j and i: 

where q > 0 is a learning rate parameter, which may also vary for 
each presentation of the training pair. The weight update is given by 

The generalized delta rule to be derived below consists of 
deriving expressions for hii for the connections at  different layers. 
Let us consider the multilayer feedforward neural network given in 
Figure 4.12. The network consist of three layers of units, the first 

Figure 4.12 A three layer feedforward neural network. 

layer has I linear input units indexed by i, the second layer has J 
nonlinear units indexed by j, and the third layer has K nonlinear 
units indexed by k .  For simplicity only one layer (the second layer) 
of hidden units is considered here. Extension of learning to a network 
consisting of several hidden layers is trivial. 

Since the input vector a(m) is given at the input layer and the 
desired output b(m) is available only at the output layer, the error 
between the desired output vector b(m) and the actual output vector 
b'(m) is available only at the output layer. Using this error it is 
necessary to adjust the weights (wt) from the input units to the 
hidden units, and the weights ( w ~ j  from the hidden units to the 
output units. 

Let (a(m), b(m)) be the current sample of the function mapping 
the input space to the output space $! + $. Let b'(m) be the actual 
output of the network for the input a(m) at the step m. The mean 
squared error at the mth step is given by 
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where 

The superscript '0' refers to the output units quantities, the 
superscript 'h' refers to the hidden units quantities, and ai , xi , and 
si refer to the input, activation and output values for the unit i, 
respectively. For the weights leading to the units in the output layer: 

where 6i = (bk - e. Here the iteration index is omitted in all the 
functions and variables on the right hand side for convenience. 
Therefore 

h h y ( m )  = qQsj (4.89) 

and 

= w,(m) + 11%~:. (4.91) 

For the weights leading to the units in the hidden layer: 
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K ash 

= - Z  ( b k - f ; ) c  w,' 
k = l  

awh ' 
Jr  

Since sjh = fih(xjh), we get 

Since xjh = Z W; si , we get 
i = l  - ax; 

7 = Si awji 
Therefore 

K --  aE(m) - - (bk - f f )  h W ,  $' si a4 & = I  

= -6hs. 
J r 

where 

Hence 
~ w ; ( m )  = q 6; si = q 6; ai(m) 

since si = xi = ai(m). Therefore 

K 
where 6: = $' kz lw, 6; represents the error propagated back to the 

output of the hidden units from the next layer, hence the name 
backpropagation for this learning algorithm. Table 4.6 gives a 
summary of the backpropagation learning algorithm. 

4.4.4 Discussion on Backpropagation Law 

There are several issues which are important for understanding and 
implementing the backpropagation learning in practice [Haykin, 
1994; Russo, 1991; Guyon, 1991; Hush and Horne, 1993; Werbos, 
19941. A summary of the issues is given in Table 4.7. A few of these 
issues will be discussed in this section. 
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Table 4.6 Backpropagation Algorithm (Generalized Delta Rule) 

Given a set of input-output patterns (al, bl), I = 1, 2, ... L, 
where the lth input vector al = (all, al,, ..., all)T and the lth output vector 
bl = (bll, b12, a * . ,  QT. 

Assume only one hidden layer and initial setting of weights to be arbitrary. 
Assume input layer with only linear units. 
Then the output signal is equal to the input activation value for each of these 
units. Let q be the learning rate parameter. 
Let a = a(m) = a1 and b = b(m) = bl. 
Activation of unit i in the input layer, xi = ai(m) 

I 

Activation of unit j in the hidden layer, < = C wi xi 

Output signal from the jth unit in the hidde; iAyer, s: = l'jh($) 
J 

h Activation of unit k in the output layer, xi = C wU sj 
j =  1 

Output signal from unit k in the output layer, si = c(xi) 
Error term for the kth output unit, 6'; = (bk - s';) c 
Update weights on output layer, wh(m + 1) = w,&m) +q6i s; 

K 
Error term for the jth hidden unit, 6; = C 6: wU 

k = l  
Update the weights on the hidden layer, wi(m + 1) = wi(m) +@ ai 

1 
Calculate the error for the lth pattern, El = 2 (b, - s;)' 

L k = l  

Total error for all patterns, E = C El 
1 = 1 

Apply the given patterns one by one, may be several times, in some random 
order and update the weights until the total error reduces to an acceptable 
value. 

Table 47 Issues in Backpropagation Leanung 

Description and features of backpropagation 

Significance of error backpropagation 
Forward computation (inner product and nonlinear fundion) 
Backward operation (error calculation and derivative of output function) 
'Nature of output function (semilinear) 
Stochastic gradient descent 
Local computations 
Stopping criterion 

Performance of backpropagation learning 

Initialization of weights 
Presentation of training patterns: Pattern and batch modes 
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Table 4.7 Issues in Backpropagation Learning (Cont.) 

Learning rate parametqr q 
- Range and value of q for stability and convergence 
- Learning rate adaptation for better convergence 
Momentum term for faster convergence 
Second order methods for better and faster convergence 

Refinement of backpropagation learning 
Stochastic gradient descent, not an optimization lpethod 
Nonlinear system identification: Extended Kalman-type algorithm 
Unconstrained optimization: Conjugate-gradient methods 
Asymptotic estimation of a posteriori class probabilities 
Fuzzy backpropagation learning 

Interpretation of results of learning 
Ill-posed nature of solution 
Approximation of functions 
Good estimation of decision surfaces 
Nonlinear feature detector followed by linearly separable classification 
Estimation of a posteriori class probabilities 

Generalization 
VC dimension 
Cross-validation 
Loading problem 
Size and efficiency of training set data 
Architectures of network 
Complexity of problem 

Tasks with backpropagation network 
Logic function 
Pattern classification 
Pattern mapping 
Function approximation 
Probability estimation 
Prediction 

Limitations of backpropagation learning 
Slow convergence (no proof of convergence) 
Local minima problem 

' 0  Scaling 
Need for teacher: Supervised learning 

Extensions to backpropagation 

Learning with critic 
Regularization 
Radial basis functions 
Probabilistic neural networks 
Fuzzy neural networks 
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Description and features of backpropagation: The training patterns 
are applied in some random order one by one, and the weights are 
adjusted using the backpropagation learning law. Each application of 
the training set patterns is called a cycle. The patterns may have to 
be applied for several training cycles to obtain the output error to an 
acceptable low value. Once the network is trained, it can be used to 
recall the appropriate pattern (in this case some interpolated output 
pattern) for a new input pattern. The computation for recall is 
straightforward, in the sense that the weights and the output 
functions of the units in different layers are used to compute the 
activation values and the output signals. The signals from the output 
layer correspond to the output. 

Backpropagation learning emerged as the most significant result 
in the field of artificial neural networks. In fact it is this learning 
law that led to the resurgence of interest in neural networks, nearly 
aRer 15 years period of lull due to exposition of limitations of the 
perceptron learning by Minsky and Papert (1969). In this section we 
will discuss various features including limitations of the backpre 
pagation learning. We will also discuss the issues that determine the 
performance of the network resulting from the learning law. We will 
discuss these issues with reference to specific applications, and also 
with reference to some potential applications of the multilayer 
feedforward neural networks. 

As noted earlier, the backpropagation learning involves 
propagation of 'the error backwards from the output layer to the 
hidden layers in order to determine the update for the weights leading 
to the units in a hidden layer. The error at the output layer itself is 
computed using the difference between the desired output and the 
actual output at each of the output units. The actual output for a 
given input training pattern is determined by computing the outputs 
of units for each hidden layer in the forward pass of the input data. 
Note that the error in the output is propagated backwards only to 
determine the weight updates. There is no feedback of the signal 
itself at any stage, as it is a feedforward neural network. 

Since the backpropagation learning is exactly the same as the 
delta learning (see Section 1.6.3) at the output layer and is similar 
to the delta learning with the propagated error at the hidden layers, 
it is also called generalized delta rule. The term 'generalized' is used 
because the delta learning could be extended to the hidden layer 
units. Backpropagation of error is possible only if the output functions 
of the nonlinear processing units are differentiable. Note that if these 
output functions are linear, then we cannot realize the advantage of 
a multilayer network to generate complex decision boundaries for a 
nonlinearly separable (hard) classification problems. In fact a multi- 
layer feedforward network with linear processing units is equivalent 
to a linear associative network, as discussed in Eq. (4.76), which, in 
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turn, is limited to solving simple pattern association problems. On 
the other hand, hard-limiting output function as in a multilayer 
perceptron cannot be used for learning the weights. A common 
differentiable output function used in the backpropagation learning 
is one which possesses a sigmoid nonlinearity. Two examples of 
sigrnoidal nonlinear function are the logistic function and hyperbolic 
tangent function (See Figure 4.13): 

(a) Logistic function and its derivative 

f(x) = tanh px 2 
f ( 4  = PO - f (x)) 

(b) Hyperbolic tangent function and its derivative 

Figure 4.13 Logistic and hyperbolic tangent functions and their derivatives 
for p = 0.5. 

Logistic function 

1 
fix) = -- , - w < x < m  (4.100) 

1 +ez 

Hyperbolic function 

For the logistic function the limits are 0 I Ax) I 1, and for the 
hyperbolic tangent function the limits are - 1 I Ax) I 1. 
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Let us consider the derivative of the logistic function 

It can be seen from Eq. (4.102) that Ax) has the maximum value 
of 0.25 when f(x) = 0.5, and has the minimum value of 0 when f i x )  
= 0 or 1. Since the amount of change in the weight value leading to 
any unit i in the network is proportional to fi(x), the change is 
maximum in the midrange of the activation value. This feature of 
the learning law contributes to its stability [Rumelhart et al, 1986al. 

Note that the hyperbolic tangent function can be viewed as a 
biased and scaled version of the logistic function. That is 

The asymmetry of the hyperbolic tangent function seems to make the 
learning faster by reducing the number of iterations required for 
training [Guyon, 19911. 

The backpropagation learning is based on the gradient descent 
along the error surface. That is, the weight adjustment is proportional 
to the negative gradient of the error with respect to the weight. The 
error is the instantaneous error between the desired and the actual 
values of the output of the network. This instantaneous error is due 
to a given training pattern, which can be assumed to be a sample 
function of a random process. Thus the error can be assumed to be 
a random variable. Therefore this gradient descent method is a 
stochastic gradient learning method. Due to this stochastic nature, 
the path to the minimum of the error surface will be zigzag. The 
error surface itself will be an approximation to the true error surface 
determined by the entire training set of patterns. Moreover, even the 
true error surface is not a smooth quadratic surface as in the case 
of the Adaline. In fact the error surface may contain several local 
minima besides the global minimum. Hence the stochastic approxima- 
tion of the gradient descent used in the backpropagation learning 
need not converge. There is no proof of convergence even in the mean 
as in the case of the LMS algorithm. The issues in the convergence 
of gradient descent methods are summarized in Table 4.8. 

Since there is no proof of convergence, some heuristic criteria are 
used to stop the process of learning. They are based on the values of 
the gradient and the error in successive iterations and also on the 
total number of iterations. The average gradient value over each 
training cycle (presentation of all the training patterns once) is 
observed, and if this average value is below a preset threshold value 
for successive cycles, then the training process may be stopped. 
Likewise, the training process may be stopped using a threshold for 
the average error and observing the average error in successive cycles. 
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Table 4.8 Gradient Descent and Convergence 

1. Let the input-output vector pair (a, b) be the sample function of a random 
process. 
True ensemble average of the error 

where e(m) is the instantaneous error for a given sample function. For 
linear units the error surface E(w) is a smooth bowl-shaped in the weight 
space and hence the gradient descent dE/dWii converges to the optimal 
weight vector w*. 

2. Estimation of the error from a finite set of input-output pairs: 
M 

E(w) = C e2(m) 
m = l  

For linear units, this error surface is an approximation to the bowl-shape 
in the weight space and hence convergence of the gradient descent is only 
approximate. 

3. Instantaneous error (Linear units): 

For linear units, the gradient descent converges only in the mean 
(stochastic convergence) 

4. Instantaneous error (Nonlinear units): 

For nonlinear units, there is no proof of convergence even in the stochastic 
sense. 

Sometimes both the average gradient as well as the average error 
may be used in the stopping criterion. But the main objective is to 
capture the implicit pattern behaviour in the training set data so that 
adequate generalization takes place in the network. The 
generalization feature is verified by testing the performance of the 
network for several new (test) patterns. 

Performance of the backpropagatlon leamlng law: The performance 
of the backpropagation learning law depends on the initial setting of 
the weights, learning rate parameter, output functions of the units, 
presentation of the training data, besides the specific pattern 
recognition task (like classification, mapping, etc.) or specific 
application (like function approximation, probability estimation, 
prediction, logic function, etc.). It is important to initialize the weight 
values properly before applying the learning law for a given training 
set [Hush et al, 1991; Lee et al, 19911. Initial weights cmespond to 
a priori knowledge. If we have the knowledge and also if we know 
how to present the knowledge in the form of initial weights, then the 
overall performance of the resulting trained network in terms of speed 
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of learning and generalization would improve significantly. In general 
it is not known how to collect the relevant knowledge a priori. The 
more difficult part is to know how to include it in the form of weighta. 
Therefore all the weights in the network are initialized to random 
numbers that are unifo~mly distributed in a small range of values. 
The range is typically [- a I@, + a I Kl where Ni is the number of 
inputs to the ith unit. Thus the range can be different for each unit. 
The value of a is typically in the range (1 to 3) [Weasels and Barnard, 
19921. Initial weighta that are in very small range will result in long 
learning times. On the other hand, large initial weight values may 
result in the network output values in the saturation region of the 
output function. In the saturation region the gradient value is small. 
If the saturation is at the incorrect level, it may result in slow 
learning due to small changes made in the weighta in each iteration. 
Incorrect saturation rarely occurs if the unit operates in the linear 
range of the output function. 

Adjustment of the weights using backpropagation learning law is 
done by presenting the given set of training patterns several times. 
Randomizing the presentation of these patterns tends to make the 
search in the weight space stochastic, and thus reduces the possibility 
of limit cycles' in the trajectory in the weight space during learning 
[.Baykin, 1994, p. 1511. Presentation of the training data pattern by 
pattern for a4ustment of the weights makes it possible to have the 
learning online. This pattern mode also reduces the problem of local 
minima. But to speed up the learning process it is preferable to 
update the weights in a batch mode, in which the gradient of the 
error, computed over all the training patterns, is used. The batch. 
mode gives a better estimation of the gradient of the overall error 
surface. 

Learning rate parameter q plays a crucial role in the 
backpropagation learning. The order of values for q depends on the 
variance of the input data. For the case of Adaline, the learning rate 
parameter q < 11 (Zh,,), where &,, is the largest eigenvalue of the 
autocorrelation matrix of the input data. This gives an indication for 
the choice of q, since the derivation in the backpropagation does not 
suggeat any clue for this choice. Since it is a stochastic gradient 
descent learning, too small an q will result in a smooth trajectory in 
the weight space, but takes long time to converge. On the other hand, 
too large an q may increase the speed of learning, but will result in 
large random fluctuations in the weight space, which in turn may 
lead to an unstable situation in the sense that the network weights 
may not converge. 

It is desirable to adjust the weights in such a way that all the 
units learn nearly at the same rate. That is, the net change in all 
the weights leading to a unit should be nearly the same. To 
accomplish this, the learning rate parameters should be different for 
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different weights. The weights leading to a unit with many inputs 
should have smaller compared to the 11 for the weights leading to 
a unit with fewer inputs. Also, the gradient of the error with respect 
to the weights leading to the output layer will be laEger than the 
gradient of the error with respect to the weights leading to the hidden 
layers. Therefore the learning rate parameters 11 should be typically 
smaller for the weights at the output layer and larger for the weights 
leading to the units in the hidden layers. This will ensure that the 
net change in the weights remains nearly the same for all layers. 

Better convergence in learning can be achieved by adapting the 
learning rate parameter 11 suitably for each iteration. For this the 
change in is made proportional to the negative gradient of the 
instantapeous error with respect to 11 [Haykin, 1994, p. 1951. That is 

\ 

where y is a proportionality constant. 
It was shown in [Haykin, 19941 that 

This is called delta-delta learning rule [Jacobs, 19881. The change 
in the learning rate parameter depends on the instantaneous 
gradients at the previous two iterations. In this learning it is difficult 
to chmse suitable values for the proportionality constant y if the 
magnitudes of the two gradients in the product are either too small 
or too large. To overcome this limitation a modification of the above 
learning rule, namely, delta-bar-delta learning rule was proposed 
[Jacobs, 1988; Minai and Williams, 19901. 

The adaptation of the learning rate parameter using the 
delta-delta learning rule or the delta-bar-delta learning rule slows 
down the backpropagation learning significantly due to additional 
complexity in computation at each iteration. It is possible to reduce 
this complexity by using the idea of the gradient reuse method, in 
which the gradient estimate is obtained by averaging the gradient 
values corresponding to several training patterns. Thus 

where 1 is the index for training pattern and $(m) is the propagated 
error. The learning rate parameter %i(m) is also computed using the 
averaged gradient for several training patterns. 

The values of the learning rate parameters computed using any 
of the above methods are very low, thus resulting in slow learning. 
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One way to increase the rate of learning is by using a momentum 
term in the weight change as follows [:Plaut et al, 1986; Fahlman, 
1989; Rumelhart et al, 1986al: 

where 0 I a < 1 is the momentum constant. The use of the momentum 
term accelerates the descent to the minimum of the error surface. It 
will also help in reducing the effects of local minima of the error surface. 

The expression for the updated weight which includes momentum 
term as well as the learning rate adaptation is given by 

L 
+ rl,i(m) a+) sf(m) (4.108) 

1 = 1  

Normally the backpropagation learning uses the weight change 
proportional to the negative gradient of the instantaneous error. Thus 
it uses only the first derivative of the instantaneous error with respect 
t o  the weight. If the weight change is made using the information in 
the second derivative of the error, then a better estimate of the 
optimum weight change towards the minimum may be obtained. The 
momentum method is one such method where both the weight change 
at the previous step and the gradient at the current step are used to 
determine the weight change for the current step. 

More effective methods [Battiti, 19921 can be derived starting 
with the following Taylor series expression of the error as a function 
of the weight vector 

aE a2E 
where g = - is the gradient vector, and H = - aw M the Hessian 

matrix. For small Aw, the higher order terms can be neglected, so 
that we get 

AE = E(w + Aw) - E(w) (4.110) 

Taking the derivative of E with respect to w gives the pdient .  That is 

On the other hand, taking the derivative of AE with respect to Aw 
gives 
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Setting this to zero gives an optimum value of Aw, taking upto the 
second order term into account. Therefore 

Thus the new weight vedor taking the optimal value of Aw is given by 

This is the Newton's method. Note that this is similar to the 
expression (C. 17) in Appendix-C. 

For the quadratic error function E(w), the optimal step Aw* will 
lead to the final weight value w* starting from any initial weight 
vector ~ ( 0 ) .  That is 

provided H-'g is known at w = w(0). For a nonquadratic error 
surface, as in the network with nonlinear units, the Newton's method 
gives the optimal weight change if the variation of the error is 
considered only upto the second derivative. Note that the Newton's 
method is different from the gradient descent. Since the Newton's 
method uses more information of the error surface than the gradient 
descent, it is expected to converge faster. But there is no guarantee 
that this choice of the weight change will converge. 

Implementation of Newton's method is cumbersome due to the 
need for computation of the Hessian matrix. Methods were proposed 
which will avoid the need for the computation of the Hessian matrix. 
The conjugate gradient method is one such method, where the 
increment in the weight at  the mth step is given by 

where the direction of the increment d(m) in the weight is a linear 
combination of the current gradient vector and the previous direction 
of the increment in the weight. That is 

where the value of a(m) is obtained in terms of the gradient by one 
of the following formulae Fletcher and Reeves, 1964; Polak and 
Ribiere, 19691. 

Computation of the learning rate parameters q(m) in Eq. (4.117) 
requires line minimization for each iteration [Johansson et al, 19901. 
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The objective is to determine the value of q for which the error 
E[w(m) +q d(m)l is minimized for given values of w(m) and d(m). 
Performance of the conjugate-gradient method depends critically on 
the choice of q(m) and hence on the line minimization. But generally 
the conjugate-gradient method converges much faster than the 
standard backpropagation learning, although there is no proof of 
convergence in this case also due to the nonquadratic nature of the 
error surface [Kramer and Sangiovanni-Vincentelli, 19891. 

Refinements of the backpropagation learning: The backpropagation 
learning is based on the steepest descent along the surface of the 
instantaneous error in the weight space. It is only a first order 
approximation of the descent as the weight change is assumed to be 
proportional to the negative gradient. The instantaneous error is a 
result of a single training pattern, which can be viewed as a sample 
function of a random process. The search for the global minimum of 
the error surface is stochastic in nature as it uses only the 
instantaneous error at each step. The stochastic nature of the 
gradient descent results in a zig-zag path of the trajectory in the 
weight space in our search for the global minimum of the error 
surface. Note that the zig-zag path is also due to the nonquadratic 
nature of the error surface, which in turn is due to the nonlinear 
output functions of the units. Note also that the backpropagation 
learning is based only on the gradient descent and not on any 
optimization criterion. 

A better learning in terms of convergence towards the global 
minimum may be achieved if the information from the given training 
patterns are used more effectively. One such approach is based on 
posing the supervised learning problem as a nonlinear system 
identification problem [Haykin, 19911. The resulting learning 
algorithm is called an extended Kalman-type learning [Singhal and 
Wu, 19891 which uses piecewise linear approximation to the nonlinear 
optimal filtering problem. 

Better learning can also be achieved if the supervised learning is 
posed as an unconstrained optimization problem, where the cost 
function is the error function E(w) [Battiti, 19921. In this case the 
optimal value of the increment in the weight is obtained by 
considering only upto second order derivatives of the error function. 
The resulting expression for the optimal Aw requires computation of 
the second derivatives of E(w) with respect to all the weights, namely, 
the Hessian matrix. The convergence will be faster than the gradient 
descent, but there is no guarantee for convergence in this case also. 

A multilayer feedforward neural network with backpropagation 
learning on a finite set of independent and identically distributed 
samples leads to an asymptotic approximation of the underlying a 
posteriori class probabilities provided that the size of the training set 
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data is large, and the learning algorithm does not get struck in a 
local minima [Hampshire and Pearlmutter, 19901. 

If the a posteriori conditional probabilities are used as the desired 
response in a learning algorithm based on an information theoretic 
measure for the cost function [Kullback, 1968; Haykin, 1994, Sec. 
6.201, then the network captures these conditional probability 
distributions. In particular, the output of the network can be 
interpreted as estimates of the a posteriori conditional probabilities 
for the underlying distributions in the given training data. 

Yet another way of formulating the learning problem for a 
multilayer neural network is by using the fuzzy representation for 
input or output or for both. This results in a fuzzy backpropagation 
learning law [Ishibuchi et al, 19931. The convergence of the fuzzy 
backpropagation learning is significantly faster, and the resulting 
minimum mean squared error is also significantly lower than the 
usual backpropagation learning. 

Interpretation of the result of learning: A trained multilayer feed- 
forward neural network is expected to capture the functional 
relationship between the input-output pattern pairs in the given 
training data. It is implicitly assumed that the mapping function 
corresponding to the data is a smooth one. But due to limited number 
of training samples, the problem becomes an ill-posed problem, in the 
sense that there will be many solutions satisfying the given data, but 
none of them may be the desired/conect one [Tikhonov and Arsenin, 
1977; Wieland and Leighton, 19871. Figure 4.14 illustrates the basic 

Input 

Output 

Figure 4.14 Illustration of an ill-pwd problem for a function of one variable. 

Training 
data points Function realized 

due to overtraining 

X 

idea of an ill-posed problem for a function of one variable. Given the 
samples marked 'x', the objective is to capture the function 
represented by the solid curve. But depending on the size of the 
network, several solutions are possible, including the overtraining 
situations (shown by dotted curve) in which for all the training data 
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the error is zero. In fact there could be several functions passing 
through the given set of points, none of which is the desired one. This 
happens if the number of free parameters (weights) of the network 
is very large. Such a situation results in a large error when some 
other (test) samples are given to validate the network model for the 
function. This is called 'poor generalization' by the network. On the 
other hand, fewer number of the free parameters may result in a 
large error even for the training data, and hence a poor approximation 
to the desired function. The function approximation interpretation of 
a multilayer feedforward neural network enables us to view different 
hidden layers of the network performing different functions. For 
example, the first hidden layer can be interpreted as capturing some 
local features in the input space. The second hidden layer can be 
interpreted as capturing some global features. This two-stage 
approximation has been shown to realize any continuous 
vector-valued function [Sontag, 1992bl. The universal approximation 
theorem of Cybenko seems to suggest that even a single layer of 
nonlinear units would suffice to realize any continuous function 
[Cybenko, 19891. But this result assumes that a hidden layer of 
unlimited size is available, and that the continuous function to be 
approximated is also available. Thus Cybenko's theorem gives only 
an existence proof, but it is not useful to realize the function by 
training a single hidden layer network. 

A trained multilayer neural network can be interpreted as a 
classifier, with complex decision surfaces separating the classes. 
These decision surfaces are due to multiple layers of nonlinear units. 
In the limiting case of hard-limiting nonlinear units, the geometrical 
arguments for the creation of the complex decision surfaces in a 
multilayer perceptron discussed in Section 4.3.3 are applicable. 

It is also possible to view that the hidden layers perform a 
nonlinear feature extraction to map the input data into linearly 
separable classes in the feature space. At the output layer the unit 
with the largest output is considered as the class to which the input 
belongs. 

As mentioned earlier, the output of a trained multilayer neural 
network can also be considered as an approximation to the a 
posteriori class probabilities. 

Generalization: A backpropagation learning network is expected to 
generalize from the training set data, so that the network can be 
used to determine the output for a new test input. As mentioned 
earlier, 'generalization' is different from 'interpolation', since in 
generalization the network is expected to model the unknown system 
or function from which the training set data has been obtained. The 
problem of determination of weights from the training set data is 
called the loading' problem [Judd, 1990; Blum and Rivest, 19921. The 
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generalization performance depends on the size and efficiency of the 
training set, besides the architecture of the network and the 
complexity of the problem [Hush and Horne, 19931. Testing the 
performance of the network with new data is called cross-validation. 
If the performance for the test data is as good as for the training 
data, then the network is said to have generalized from the training 
data. Further discussion on generalization is given later in Section 
7.3 and in Appendix D. 

Tasks with backpropagation network: A backpropagation network 
can be used for several applications such as realization of logic 
functions, pattern classification, pattern mapping, function approxi- 
mation, estimation of probability distribution and prediction [Hush 
and Horne, 19931. These tasks were demonstrated in several real 
world applications such as in speech, character recognition, system 
identification, passive sonar detection/classification, speech synthesis, 
etc. [Sejnowski and Rosenberg, 1987; Cohen et al, 1993; LeCun et al, 
1990; Narendra and Parthasarathy, 1990; Casselman et al, 19911. 

Limitations of backpropagation: The major limitation of the back- 
propagation learning is its slow convergence. Moreover, there is no 
proof of convergence, although it seems to perform well in practice. 
Due to stochastic gradient descent on a nonlinear error surface, it is 
likely that most of the time the result may converge to some local 
minimum on the error surface [Gori and Tesi, 19921. There is no easy 
way to eliminate this effect completely, although stochastic learning 
algorithms were proposed to reduce the effects of local minima 
[Wasserman, 19881. Another major problem is the problem of scaling. 
When the complexity of the problem is increased, there is no 
guarantee that a given network would converge, and even if it 
converges, there is no guarantee that good generalization would 
result. The complexity of a problem can be defined in terms of its 
size or its predicate order [Minsky and Papert, 1990; Hush and Horne, 
19931. Effects of scaling can be handled by using the prior information 
of the problem, if possible. Also, modular architectures can also 
reduce the effects of the scaling problem [Ballard, 1990; Jacobs et al, 
1991; Haykin, 19941. 

For many applications, the desired output may not be known 
precisely. In such a case the backpropagation learning cannot be used 
directly. Other learning laws have been developed based on the 
information whether the response is correct or wrong. This mode of 
learning is called reinforcement learning or learning with critic 
[Sutton et al, 1991; Barto, 19921 as discussed in Section 2.4.6. 

Extensions of backpropagation: Principles analogous to the ones 
used in the backpropagation network have been applied to extend the 
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scope of the network in several directions as in the case of probabi- 
listic neural networks, fuzzy backpropagation networks, regularization 
networks and radial basis function networks [Wasserman, 19931. 

4.5 Summary and Discussion 

We have presented a detailed analysis of feedforward networks in 
this chapter with emphasis on the pattern recognition tasks that can 
be realized using these networks. A network with linear units 
(Adaline units) performs a pattern association task provided the input 
patterns are linearly independent. Linear independence of input 
patterns also limits the number of patterns to the dimensionality of 
the input pattern space. We have seen that this limitation is overcome 
by using hard-limiting threshold units (perceptron units) in the 
feedforward network. Since threshold units in the output layer results 
in a discrete set of states, the resulting network performs pattern 
classification task. The hard-limiting threshold units provide a set of 
inequalities to be satisfied by the network. Thus the weights of the 
network are not unique any more and hence they are determined by 
means of the perceptron learning law. 

A single layer perceptron is limited to linearly separable classes 
only. For an arbitrary pattern classification problem, a multilayer 
perceptron (MLP) is needed. But due to absence of desired output at 
the units in the intermediate layers of units, the MLP network cannot 
be trained by the simple perceptron learning law. This hard learning 
problem can be solved by using nonlinear units with differentiable 
output functions. Since the output functions are now continuous, the 
multilayer feedforward neural network can perform pattern mapping 
task. The output error backpro~\agation is used in the learning 
algorithm for these multilayer networks. 

Since the backpropagation learning is based on stochastic 
gradient descent along a rough error surface, there is no guarantee 
that the learning law converges towards the desired solution for a 
given pattern mapping task. Several variations of the back- 
propagation learning have been suggested to improve the convergence 
as well as the result of convergence. Although there is no proof of 
convergence, the backpropagation learning algorithm seems to 
perform effectively for many tasks such as pattern classification, 
function approximation, time series prediction, etc. 

How well a trained feedforward network performs a given task 
is discussed both theoretically and experimentally in the literature 
on generalization. The issue of generalization is an important topic, 
but it is not discussed in this book. There are excellent treatments 
of this topic in Widyasagar, 1997; Valiant, 19941. Appendix D gives 
an overview of generalization in neural networks. 

Some of the limitations of backpropagation such as convergence 
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can be addressed with reference to specific tasks, exploiting the know- 
ledge of the task domain. Thus architectures developed for specific 
tasks are more useful than the general feedforward neural networks. 
Some of these architectures will be discussed in Chapter 7. 

Review Questions 
1. What is a linear associative network? 
2. What is pseudoinverse of a matrix? 
3. Explain the significance of (a) determination of weights by 

computation and (b) determination of weights by learning. 
4. What is the difference between linearly independent set and 

orthogonal set of vectors? 
5. What does the rank of an input matrix indicate? 
6. Explain the nature of the input vectors in each of the following 

cases of the optimal choice of weight matrix. (a) W = B A ~ ,  
(b) W = BA-' and (c) W = BA'. 

7. Explain the choice of W = BA' for linearly independent and 
linearly dependent cases of input vectors. 

8. Why the choice of W = BA' need not be the best choice for noisy 
input vectors? Discuss your answer with reference to the 
Murakami result given in Eq. (4.19). 

9. What is the significance of the Widrow's learning for linear 
associative networks? 

10. Why is it that there is no learning law for obtaining the best 
choice of the weights for the case of noisy input vectors? 

11. Why is it that the number of input patterns are linked to the 
dimensionality of the input vectors in the case of linear 
associative network? 

12. Why learning is essential for a network with nonlinear units? 
13. What is perceptron learning for pattern classification? 
14. Explain the significance of perceptron convergence theorem. 
15. Explain how to interpret perceptron learning as a gradient 

descent algorithm. What is the gradient term here? 
16. What is meant by perceptron representation problem? 
17. Distinguish between linearly separable and linearly inseparable 

problems. 
18. Why a single layer of perceptron cannot be used to solve linearly 

inseparable problems? 
19. Give two examples of linearly inseparable problems. 

20. Show by geometrical arguments that with 3 layers of nonlinear 
units, any hard classification problem can be solved. 
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Distinguish between multilayer perceptron and a general 
multilayer feedforward neural network. 

Explain how a multilayer feedforward neural network with linear 
units in all the layers is equivalent to a linear associative 
network. 

What is meant by gradient descent methods? 

Explain the difference between method of steepest descent and 
Newton's method. 

Explain the difference between LMS learning and delta learning. 

Why LMS learning is called a stochastic gradient descent method? 

Comment on the nature of the error surface for a multilayer 
feedforward neural network. 

Why backpropagation learning is also called generalized delta 
rule? 

Why convergence is not guaranteed for the backpropagation 
learning algorithm? 

Discuss the significance of semilinear function in the backpro- 
pagation learning. 

How 'pattern' mode and 'batch' mode of training affect the result 
of backpropagation learning? 

Explain why it is preferable to have gifferent values for q for 
weights leading to the units in different layers in a feedforward 
neural network. 

What is the significance of momentum term in backpropagation 
learning? 

What is conjugate gradient method? 

Discuss various interpretations of the results of backpropagation 
learning. 

What is an ill-posed problem in the context of training a 
multilayer feedforward network? 

What is meant by generalization in feedforward networks? 

Why should generalization depend on the size and efficiency of 
the training set, architecture of the network and the complexity 
of the problem? 

Discuss a few tasks that can be performed by a backpropagation 
network. 

How can we interpret the results of backpropagation learning as 
an estimation of a posteriori class probabilities? 

Explain the limitations of backpropagation learning. 
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Problems 

1. A pth order polynomial threshold function is defined as 
[Hassoun, 1995, p. 81 

1 0 ,  otherwise 

Show that the-number of weights is given by 

and 

r = for a qM 

where ( M ,  is the number of combinations of M different items 
l i  l 

taken i at a time without repetition. (Hint: Count the number of 
weights in each case. Note that for the binary case a E (0, l l M  the 
indices in the summation are ip > ip -, for p 2 2.) 

2. In the equation in Problem 1 above p = 1 corresponds to the case 
of linear threshold function, and p = 2 for a quadratic threshold 
function. Larger values of p gives higher flexibility to realize a 
Boolean function by threshold gates. In fact it can be shown that 
any Boolean function of M variables can be realized using a 
polynomial threshold function of order p l M [Hassoun, 1995, p. 
91. Show that the most difficult M-variable Boolean function to 
implement by a polynomial threshold function requires 2M 
parameters in the worst case. (Hint: Use the result of Problem 
1 for p = M.) 

3. A set of N points in KM is said to be in 'general position' if every 
subset of M or fewer points is linearly dependent. A 'dichotomy' 
is labelling of N points into two distinct categories. The number 
of linearly separable dichotomies of N points in general position 
in R~ is given by [:Hassoun, 1995, p. 181 
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Derive the above result using repeated iteration of the recursive 
relation 

C(N + 1, M) = C(N, M) + C(N, M - 1) 

and noting that C(l, M) = 2. (Hint: See [Hertz, 1991, p. 113-1141.) 

4. A pth order polynodal threshold function with labeled inputs 
a E may be viewed as a linear threshold function 
with (r - 1) preprocessed inputs, where 

The mapping $(a) from the input space, RM to the $-space 
R r - 1  is called '$-mapping'. A dichotomy of N points is '+separ- 

able' if there exist a (r - 2)-dimensional hyperplane in the 
'$-space' which correctly classifies the N points [Hassoun, 1995, 
p. 201. Show that the number of Boolean functions of M-variables 
that can be realized by an M-input pth order polynomial 
threshold function is less than C(N, r - 1). 

5. Using the matrix identities A = A A ~ u + ) ~  and AT = A+ A A ~ ,  derive 
the expression given in Eq. (4.11) from the definition of the 
matrix S given in Eq. (4.10). 

6. Derive the expression for Emi, given in Eq. (4.16) using the 
expression for the pseudoinverse given in Eq. (4.14). 

7. Compute the weight matrix for the following pattern association task 

8. Using the perceptron learning law design a classifier for the 
following problem: 

Class C,: 1- 2 21T, 1- 2 1.51T, [- 2 OIT, 11 OIT, and [3 OIT 

Class C,: [ l  31T, [3 31T, [ l  21T, [3 21T, and r10 OIT 

9. Design and train a feedforward network for the following 
problems: 
(a) Parity: Consider a 4-input and 1-output problem, where the 

output should be 'one' if there are odd number of 1s in the 
input pattern and 'zero' otherwise. The difficulty of the 
problem is due to the fad that the input patterns differing 
in only one bit require opposite oatputs. 
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(b) Encoding: Consider an 8-input and 8-output problem, where 
the output should be equal to the input for any of the 8 
combinations of seven 0s and one 1. 

(c) Symmetry: Consider a 4-input and 1-output problem where 
the output is required to be 'one' if the input configuration 
is symmetrical and 'zero' otherwise. 

(d) Addition: Consider a 4-input and 3-output problem, where 
the output should be the result of the sum of two 2-bit input 
numbers. 

(Hint: Write a program to implement the algorithm. In all the 
cases start with a hidden layer of 8 units and progressively 
reduce the number of units.) 

10. Generalize the XOR problem to a parity problem for N (> 2) 
variables by considering a network for the two variables first 
and then extending the network considering the output of the 
first network as one variable and the third variable as another. 
Repeat this for N = 4 and design a network for solving the parity 
problem for 4 variables. (See [Bose and Liang, 1996, p. 2141.) 

11. For the following 2-class problem determine the decision 
boundaries obtained by LMS and perceptron learning laws. 
Comment on the results. 

Class C,: [-2 21T, [-2 31T, [-1 llT, [ -1 41T [O OIT, 

[O llT, [O 21T, [O 31T and [l l lT 

Class C,: 11 OIT, [2 llT, [3 -llT, 13 llT, [3 21T, 

12. Study the classification performance of a MLFFNN for a 2-class 
problem, where the 2-dimensional data for each class is derived 
from the Gaussian distributions with the following means and 
variances, and the class probabilities: 

Class C,: = [3 OIT, 4 = 4, and P(C,) = 0.6 

Assume a single hidden layer and a sigmoid output function for 
the units in the hidden and output layers. Study the performance 
for different number of hidden units (say 2, 4, and 6), and for 
different learning rate parameters (say 0.01, 0.1, and 0.9). Study 
also the effect of momentum term by considering two different 
values for the momentum parameter (say 0.1 and 0.5). 
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Compare the classification performance of the best network in 
Problem 12 above with the performance of the Bayesian 
classification result. The Bayes classification result is obtained 
by computing the probability of error for optimum Bayes 
classifier for the given distributions. The Bayes classifier is 
defined as follows: 

For a given input x, decide C1 if 

othemise decide C,, where 

and 
2 

P ( X )  = P(X I c& P(ck)- 
k =  1  



Chapter 5 

Feedback Neural Networks 

5.1 Introduction 

This chapter presents a detailed analysis of the pattern recognition 
tasks that can be performed by feedback artificial neural networks. 
In its most general form a feedback network consists of a set of 
processing units, the output of each unit is fed as input to all 
other units including the same unit. With each link connecting any 
two units, a weight is associated which determines the amount of 
output a unit feeds as input to the other unit. A general feedback 
network does not have any structure, and hence is not likely to be 
useful for solving any pattern recognition task. 

However, by appropriate choice of the parameters of a feedback 
network, it is possible to perform several pattern recognition tasks. 
The simplest one is an autoassociation task, which can be performed 
by a feedback network consisting of linear processing units. A detailed 
analysis of the linear autoassociative network shows that the network 
is severely limited in its capabilities. In particular, a linear 
autoassociative network merely gives out what is given to it as input. 
That is, if the input is noisy, it comes out as noisy output, thus giving 
an error in recall even with optimal setting of weights. Therefore a 
linear autoassociative network does not have any practical use. By 
using a nonlinear output function for each processing unit, a feedback 
network can be used for pattern storage. The function of a feedback 
network with nonlinear units can be described in terms of the 
trajectory of the state of the network with time. By associating an 
energy with each state, the trajectory describes a traversal along the 
energy landscape. The minima of the energy landscape correspond to 
stable states, which can be used, to store the given input patterns. 
The number of patterns that can be stored in a given network depends 
on the number of units and the strengths of the connecting links. It 
is quite possible that the number of available energy minima is less 
than the number of patterns to be stored. In such a case the given 
pattern storage problem becomes a hard problem for the network. If 
on the other hand, the number of energy minima in the energy 
landscape of a network is greater than the required number of 
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patterns to be stored, then there is likely to be an error in the recall 
of the stored patterns due to the additional false minima. The hard 
problem can be solved by providing additional (hidden) units in a 
feedback network, and the errors in recall of the stored patterns due 
to false minima can be reduced using probabilistic update for the 
output function of a unit. A feedback network with hidden units and 
probabilistic update is called a Boltzmann machine. It can be used to 
store a pattern environment, described by a set of patterns to be stored, 
together with the probability of occurrence of each of these patterns. 

Table 5.1 shows the organization of the topics to be discussed in 
this chapter. A detailed analysis of linear autoassociative feedforward 
networks is considered first in Section 5.2. The pattern storage problem 
is analyzed in detail in Section 5.3. In particular, the Hopfield energy 
analysis, and the issues of hard problem and false minima are discussed 
in this section. The Boltzmann machine is introduced in Section 5.4. 
This section also deals with the details of the pattern environment 
storage problem and the Boltzmann learning law. Some practical 
issues in the implementation of learning laws for feedback networks 
including simulated annealing are discussed in Section 5.5. 

Table 5.1 Pattern Recognition Tasks by Feedback Neural Networks 

Autoassociation 

Architecture: Single layer with feedback, linear processing units 

Learning: Not important 
Recall: Activation dynamics until stable states are reached 
Limitution: No accretive behaviour 
To overcome: Nonlinear processing units, leads to a pattern storage 
problem 

Pattern Storage 

Architecture: Feedback neural network, nonlinear processing units, 
states, Hopfield energy analysis 
Learning: Not important 
Recall: Activation dynamics until stable states are reached 
Limitation: Hard problems, limited number of patterns, false minima 
To overcome: Stochastic update, hidden units 

Pattern Environment Storage 

Architecture: Boltzmann machine, nonlinear processing units, hidden 
units, stochastic update 
Learning: Boltzmann learning law, simulated annealing 
Recall: Activation dynamics, simulated annealing 
Limitation: Slow learning 
To Overcome: Different architecture 
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5.2 Analysis of Linear Autoassociative FF Networks 

First we censider the realization of an autoassociative task with a 
feedforward network as shown in Figure 5.1. Analogous to the hetero- 

Figuw 5.1 Linear autoassociative feedforward network. 

association, in autoassociation the objective is to associate a given 
pattern with itself during training, and then to recall the associated 
pattern when an approximatelnoisy version of the same pattern is 
given during testing. In other words, in autoassociation the associated 
output pattern bl is same as the input pattern al for the Ith pattern. 
That is, with reference to the pattern association task, bl = nl, 1 = 1, 
2, ..., L in the case of autoassociation. In recall it is desired to obtain 
bl as output for an approximate input al + E. The weight matrix 
W = [wijl of a linear autoassociative network (Figure 5.1) can be 
determined as in the case of the linear heteroassociator, for a fixed 
set of input pattern vectors {al). Since we want WA= A, the optimal 
weights are given by (see Section 4.2.2) 

W=AA+ (5.1) 

where A+ is the pseudoinverse of the M x L matrix A consisting of 
the input vectors {al). The pseudoinverse is given in tern af the 
components of singular value decomposition of the matrix A as follows: 

where hi are the eigenvalues, and pi and q, are the eigenvectors of 
the matrices AAT and A ~ A ,  respectively. That is, 

and 
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The sets of eigenvectors {pi] and (9,) are orthonormal sets. The 
ei envalues are real and nonnegative, since the matrices AAT and F A A are symmetric. The eigenvalues hi are ordered, i.e., hi 2 hi+ l. If 
the rank of the matrix A is r (I L), then the eigenvalues hi, i > r will 
be zero. Therefore 

i = l  

and the pseudoinverse 

The minimum error for the choice of the optimum weight matrix 
W = AA+ is given from Eq. (4.16) as 

But since hi = 0 for i > r, Emin = 0. Thus in the case of linear 
autoassociative network there is no error in the recall due to linear 
dependency of the input patterns, unlike in the case of linear 
heteroassociative network. In other words, in this case the input 
comes out as output without any error. 

When noise is added to the input vector, the noisy input vectors 
are given by 

c, = a,+&, 1 = 1 ,2  ,..., L (5.8) 

where the noise vedor E is uncorrelated with the input vector al, and 
has the average power or variance c?. For the choice of W = AA', the 
error in recall is given &om Eq. (4.19) as [Murakami and Aibara, 19871 

Thus the error in the recall is mainly due to noise, as the linear 
dependence component of the error is zero in the case of auto- 
association. Note that this is because a noisy input vector comes out 
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as a noisy output and hence its difference from the true vector in the 
recall is only due to noise. 

The error in recall due to noise can be reduced by the choice of 
W = A&, where 

where s is given by 

That is, for a given noise power 2 ,  the error can be reduced by 
moving the error into the linear dependency term, which is realized 
by an appropriate choice of the number of terms in.the expression 
for the seudoinverse. The resulting error for the optimal choice of 
w = A is 

The linear autoassociation task can also be realized by a single layer 
feedback network with linear processing units shown in Figure 5.2. The 

w lj WIN 

Figure 5.2 Linear autoassociation by a feedback network. 

condition for autoassociation, namely, Wal = al, is satisified if 
W = I, an identity matrix. This trivial choice of the weight matrix is 
realized if the input vectors are linearly independent, so that 
W=AA-~ = I. For this choice of W, the output for a noisy input 
al + E is given by W(a, + E) = a, + E, which is the noisy input itself. This 
is due to lack of accretive behaviour during recall, and such a 
feedback network is not useful for storing information. It is possible 
to make a feedback network useful, especially for pattern storage, if 
the linear processing units are replaced with processing units having 
nonlinear output functions. We discuss this case in the next section 
and give a detailed analysis of pattern storage networks. 

5.3 Analysis of Pattern Storage Networks 

5.3.1 Pattern Storage Networks 

The objective in a pattern storage task is to store a given set of 
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patterns, so that any of them can be recalled exactly when an 
approximate version of the corresponding pattern is presented to the 
network. For this purpose, the features and their spatial relations in 
the patterns need to be stored. The pattern recall should take place 
even when the features and their spatial relations are slightly 
disturbed due to noise and distortion or due to natural variation of 
the pattern generating process. The approximation of a pattern refers 
to the closeness of the features and their spatial relations to the 
original stored pattern. 

Sometimes the data itself is actually stored through the weights, 
as in the case of binary patterns. In this case the approximation can 
be measured in terms of some distance, like Hamming distance, 
between the patterns. The distance is automatically captured by the 
threshold feature of the output functions of the processing units in a 
feedback network Freeman and Skapura, 19911. 

Pattern storage is generally accomplished by a feedback network 
consisting of processing units with nonlinear output functions. The 
outputs of the processing units at any instant of time define the 
output state of the network at that instant. Likewise, the activation 
values of the units at any instant determine the activation state of 
the network at that instant. 

The state of the network at successive instants of time, i.e., the 
trajectory of the state, is determined by the activation dynamics 
model used for the network. Recall of a stored pattern involves 
starting at some initial state of the network depending on the input, 
and applying the activation dynamics until the trajectory reaches an 
equilibrium state. The final equilibrium state is the stored pattern 
resulting *om the network for the given input. 

Associated with each output state is an energy (to be defined 
later) which depends on the network parameters like the weights and 
bias, besides the state of the network. The energy as a function of 
the state of the network corresponds to something like an energy 
landscape. The shape of the energy landscape is determined by the 
network parameters and states. The feedback among the units and 
the nonlinear processing in the units may create basins of attraction 
in the energy landscape, when the weights satisfy certain constraints. 
Figure 5.3 shows energy landscapes as a function of the output state 
for the two cases of with and without the basins of attraction. In the 
latter case the energy fluctuates quickly and randomly from one state 
to another as shown in Figure 5.3b. But in the energy landscape with 
basins of attraction as in Figure 5.3a, the states around the stable 
state correspond to small deviations from the stable state. The 
deviation can be measured in some suitable distance measure, such 
as Hamming distance for binary patterns. The Hamming distance 
between two binary patterns each of length N is defined as the 
number of bit positions in which the patterns differ. Thus the states 
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Energy Energy 

State State 
(a) (b) 

Figure 5.3 Energy landscapes (a) with basins of attraction and (b) without 
basins of attraction. 

closer to the stable states correspond to patterns with smaller 
Hamming distance. 

The basins of attraction in the energy landscape tend to be the 
regions of stable equilibrium states [Cohen and Grossberg, 19831. If 
there is a fixed state in each of the basins where the energy is 
minimum, then that state corresponds to a fixed point of equilibrium. 
The basins could also be periodic (oscillatory) regions or chaotic 
regions of equilibria. For an oscillatory region, the state of the 
network changes continuously in a periodic manner. For a chaotic 
region, the state of the network is not predictable, but it is confined 
to the equilibrium region. Throughout the subsequent discussion we 
consider only the fixed points of equilibrium in the energy landscape. 

It  is the existence of the basins of attraction or regions of 
equilibrium states that is exploited for the pattern storage task. The 
fixed points in these regions correspond to the states of the energy 
minima, and they are used to store the desired patterns. These stored 
patterns can be recalled even with approximate patterns as inputs. 
An erroneous pattern is more likely to be closer to the corresponding 
true pattern than to the other stored patterns according to some 
distance measure. Each input pattern results in an initial state of 
the network, which may be closer to the desired true state in the 
sense that it may lie near the basin of attraction corresponding to 
the true state. An arbitrary state may not correspond to an 
equilibrium or a stable state. As the dynamics of the network evolves, 
the network may eventually settle at a stable state, from which the 
pattern may be read or derived. 

~ i v e n  a network specified by the number of processing units, their 
connection strengths and the activation dynamics, it  is not normally 
possible to determine exactly the number of basins of attraction in 
the energy landscape as well as their relative spacings and depths 
in the state space of the network. The spacing between two states 
can be measured .by a suitable distance measure, such as the Hamm- 
ing distance for binary patterns. The number of patterns that can be 
stored is called the capacity of the network. It i s  possible to estimate 
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the capacity of the network and also the average probability of error 
in recall. The probability of error in recall can be reduced by adjusting 
the weights in such a way that the resulting energy landscape is 
matched to the probability distribution of the desired patterns. 

Typically the capacity of a fully connected network is of the order 
of N, the number of processing units. Although there are 2N different 
states for a network with binary state units, the network can be used 
to store only of the order of N binary patterns, as there will be only 
that many fixed points or energy minima in the energy landscape. 

In general, the number of desired patterns is independent of the 
number of basins of attractions. The latter depends only on the 
network units and their interconnections. If the number of patterns 
is more than the number of basins of attraction, then the pattern 
storage problem becomes a hard problem, in the sense that the 
patterns cannot be stored in the given network. On the other hand, 
if the number of patterns is less than the number of basins of 
attraction, then there will be the so called false wells or minima due 
to the additional basins of attraction. During recall, it is likely that 
the state of the network, as it evolves from the initial state 
corresponding to the input pattern, may settle in a false well. The 
recalled pattern corresponding to the false well may not be the desired 
pattern, thus resulting in an error in the recall. 

In the next subsection we will consider the Hopfield model of a 
feedback network for the pattern storage and discuss the working of 
a discrete Hopfield model. The Hopfield model is a fully connected 
feedback network with symmetric weights. In the discrete Hopfield 
network the state update is asynchronous and the units have 
binaryhipolar output functions. In the continuous Hopfield model the 
state update is dictated by the activation dynamics, and the units 
have continuous nonlinear output functions. 

5.3.2 The Hopfleld Model 

Consider the McCulloch-Pitts neuron model for the units of a feedback 
network, where the output of each unit is fed to all the other units 
with weights wij, for all i and j. Let the output function of each of 
the units be bipolar (k 1) so that 

and 

where €li is the threshold for the unit i. We will assume ei = 0 for 
convenience. The state of each unit is either +1 or -1 at  any given 
instant of time. Due to feedback, the state of a unit depends on the 
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states of the other units. The updating of the state of a unit can be 
done synchronously or asynchronously. In the synchronous update all 
the units are simultaneously updated at each time instant, assuming 
that the state of the network is frozen until update is made for all 
the units. In the asynchronous update a unit is selected at random 
and its new state is computed. Another unit is selected at random 
and its state is updated using the current state of the network. The 
updatingrusing the random choice of a unit is continued until no 
further change in the state takes place for all the units. That is, the 
state at time (t + 1) is the same as the state at time t for all the 
units. That is 

si(t + 1) = s,(t), for all i (5.15) 

In this situation we can say that the network activation dynamics 
reached a stable state. We assume asyn-nous update throughout the 
following discussion. Note that the asynchronous update ensures that 
$he next state is at most unit Hamming distance from the current state. 

If the network is to store a pattern a = (a l ,  a,, ..., aNIT, then in 
a stable state we must have the updated state value to be the same 
as the current state value. That is 

This can happen if wo = (1IN) ai aj, because 

where a; = 1 for bipolar (f 1) states. 
For storing L patterns, we could choose a general Hebbian rule given 

by the summation of the Hebbian terms for each pattern. That is, 

Then the state ak will be stable if 

N L 

s, [ + z z ali a ,  akj = a,,, for all i I (5.19) 
J = 1  1 = 1  

Taking out the 1 = k term in the summation and simplifying it using 
a$ = 1, we get 

C a ,  ab a~ = ski, for all i (5.20) 1 
Since ski = f 1, the above is true for all aki, provided the crossterm 
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in Eq. (5.20) does not change the sign of ahi plus the crossterm. 
Table 5.2 gives an algorithm for storing and recall of patterns in a 
Hopfield network. 

Table 6.2 Hopfield Network Algorithm to Store and Recall a Set of Bipolar 
Patterns 

Let the network coneiat of N fully connected unita with each unit having 
hard-limiting bipolar threshold output function. Let al, 1 = 1, 2, ..., L be the 
vectors to be stored. The vedore (4) are assumed to have bipolar components, 
i.e,,ali = f 1, i=1,2 ,..., N. 

1. h i g n  the connection weights 

= O , f o r i = j ,  l < i , j < N  
2. Initialize the network output with the given unknown input pattern a 

si(0) = ai, for i = 1, 2, ..., N 

where si(0) is the output of the unit i at time t = 0 
3. Iterate until convergence 

si(t + 1) = sgn wii sj(t) , for i = 1, 2, ..., N 1," ] 
The process is repeated until the outputs remain unchanged with 
further iteration. The steady outputa of the unite represent the stored 
pattern that best matches the given input. 

In general, the crosstern in Eq. (5.20) is negligible if LIN << 1. 
Eq. (5.20) is satisfied if the number of patterns L is limited to the 
storage capacity of the network, i.e., the maximum number of 
patterns that can be stored in the network. 

5.3.3 Capaclty of Hopfleld Model 

We consider the discrete Hopfield model to derive the capacity of the 
network. Let us consider the following quantity [Hertz et al, 19911 

If cf is negative then the cross term and aki have the same sign in 
Eq. (5.20) and hence the pattern ak is stable. On the other hand, if 
cf is positive and greater than 1, then the sign of the cross term 
changes the sign of abi plus the cross term in Eq. (5.20). The result 
is that the pattern a k  turns out to be unstable, and hence the desired 
pattern cannot be stored. 
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Therefore the probability of error is given by 

Pe = Prob (4 > 1) (5.22) 

To compute this probability, let us assume that the probability of 
ali equal to +1 or -1 is 0.5. For random patterns, the cross term 
corresponds to 1/N times the sum of about NZ independent random 
numbers, each of which is +1 or -1. Thus cl is a sum of random 
variables having a binomial distribution with zero mean and 
variance 4 = UN. I f  NL is assumed large, then the distribution of 
cf can be approximated by a Gaussian distribution with zero mean 
and 4 variance Papoulis, 19911. Therefore, 

where eflx) is error function given by 

This gives a value of L,,IN = 0.105 for Pe = 0.001. Thus the 
maximum number of patterns that can be stored for a probability of 
error of 0.001 is L,, = 0.105 N. 

A more sophisticated calculation [Amit et al, 1987; Amit, 19891 
using probabilistic update leads to a capacity of L,, = 0.138 N.  

5.3.4 Energy Analysis of Hoptield Network 

Discrete Hoptleld model: Associated with each state of the network, 
Hopfield proposed an energy function whose value always either 
reduces or remains the same as the state of the network changes. 
Assuming the threshold value of the unit i to be Bi, the energy 
function is given by [Hopfield, 19821 

The energy V(s) as a function of the state s of the network describes 
the energy landscape in the state space. The energy landscape is 
determined only by the network architecture, i.e., the number of 
units, their output functions, threshold values, connections between 
units and the strengths of the connections. Hopfield has shown that 
for symmetric weights with no self-feedback, i.e., wV = wji , and with 
bipolar I-1, +1) or binary (0, 1) output functions, the dynamics of the 
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network using the asynchronous update always leads towards energy 
minima at equilibrium. The states corresponding to these energy 
minima turn out to be stable states, which means that small 
perturbations around it lead to unstable states. Hence the dynamics 
of the network takes the network back to a stable state again. It is 
the existence of these stable states that enables us to store patterns, 
one at each of these states. 

To show that AV 5 0, let us consider the change of state due to 
update of one unit, say k, at some instant. All other units remain 
unchanged. We can write the expressions for energy before and after 
the change as fhllows [Freeman and Skapura, 19911: 

1 void = - - old old + C 0. Sold 2 C C wiist . sj I I 

i j  i 

The change in energy due to update of the kth unit is given by 

AV = Vnew - vOld 

1 

i t k  j + k  i + k 

Since sfew = s;ld, for i + k, the first two terms on the right hand 
side of Eq. (5.27) will be zero. Hence, 

If the weights are assumed symmetric, i.e., wu = wji, then we get 

If, in addition, wkk = 0, then since sFw = sPld for i * k, the terms 
in both the parentheses are equal. Therefore, 

AV = (aild - sim) (5.30) 
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The update rule for each unit k is as follows: 

Case A: If x wki sfd - Elk > 0, then srw = + 1 
1 

Case B: If x wki s;ld - ek < 0, then srw = - 1 
1 

Case C: If x wki s;ld - C& = 0, then ST = sold k 

1 

For case A, if s;ld = + 1, then AV = 0, and if s;ld = - 1, then AV 5 0. 
For case B, if s;ld = + 1, then AV< 0, and if s;ld = - 1, then AV= 0. 
For case C, irrespective of the value of s;ld , AV = 0. 

Thus we have AVS 0. Therefore the energy decreases or remains 
the same when a unit, selected at random, is updated, provided the 
weights are symmetric, and the self-feedback is zero. This is the 
energy analysis for discrete Hopfield model. 

That the expression for V in Eq. (5.25) does indeed represent 
some form of energy can be seen from the following arguments based 
on Hebb's law: 

If a given pattern vector al is to be stored in the network state 
vector s, then the match will be perfect if both the vectors coincide. 
That is, the magnitude of their inner product is maximum. 
Alternatively, the negative of the magnitude of their inner product 
is minimum. Thus we can choose a quantity [Hertz et al, 19911 

to be minimized for storing a pattern vector al in the network. For 
storing L pattern vectors we can write the resulting V as a summation 
of the contributions due to each pattern vector. That is 

If we identify the weights wi with the term (UN) ali ab, then we get 
1 = 1  

which is same as the first term in the Hopfield energy expression 
given in Eq. (5.25). 
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This method of identifying wq from an energy function is useful, 
especially to solve several optimization problems. Given an energy 
function or a cost function or an objective function for a problem in 
terms of its variables and constraints, if we can identify the 
coefficients associated with si s .  si and constant terms in the function, 
then a feedback network can 6e built with weights corresponding to 
these coefficients. Then using an activation dynamics for the network, 
the equilibrium state or states can be found. These states correspond 
to the minima or maxima of the energy function. Higher order terms 
consisting of product of three (si sj sk) or more variables cannot be 
handled by the feedback model with pairwise connections. 

Continuous Hopfield model. In this subsection we will consider the 
energy analysis for a continuous Hopfield model [Hopfield, 1984; 
Hertz et al, 1991; Freeman and Skapura, 19911. A continuous model is 
a fully connected feedback network with a continuous nonlinear output 
function in each unit. The output function is typically a sigmoid 

' e-k which is shown in Figure 5.4 for different function flk) = - 
1 + e-k 

1 - e- 'x  
figure 5.4 (a) Sigmoid function f (z) = - for different values of gain 

1 + e-" 
parameter 1. (b) The inverse function. (c) Contribution of fl.) to 
the energy function. 
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values of the gain parameter A. In the continuous model all the units 
will change their output signals (si) continuously and sihultaneously 
towards values determined by the output function. The activation 
values (xi) will also change continuously according to xi = 'S  w.. s.. 

J V J  

This is reflected in the following equation for the activation dynamics: 

where zi is the time constant and s, = fixj). 
Consider the following energy function [Hopfield, 19841: 

We can show that in this case (dVldt) I 0. 

1 'a = -- C C w..-s.-- ds. ds . 
dt 2 i  j v d t  J 2 .  'xCw,si-$+Zfl(si)& 1 J 1 (5.36) 

Assuming symmetry of weights, i.e., w, = wji, we get 

Using the relation in Eq. (5.34), we get 

Since Ax) is a monotonically increasing function, f(x) > 0. Hence 
dVldt I 0. 

Note that dVldt = 0 when &jdt = 0, for all i. This shows that 
the activation dynamics eventually leads to a state where the energy 
h e t i o n  has a local minimum value, i.e., dVldt = 0. This happens 
when the activation state reaches an equilibrium steady state at 
which there is no further change in the activation values, i.e., 
&jdt = 0. The above result, namely, dVldt I 0, shows that the 
energy always decreases as the state of the network changes. 

Let us examine the differences between the continuous model and 
the discrete model. In the discrete model only one unit is considered 
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at a time for update. The choice of the unit for update is random and 
the dynamics is that of the steady activation values (xi = 0), since 
the transients are assumed to have died down at each update of the 
state of the unit. Hence in the discrete case xi = 0 and V(x) = 0 are 
different conditions. In the continuous case the states of all the units 
and hence the state of the network change continuously, as dictated 
by the differential equations for the activation dynamics. Hence, in 
this case xi = 0 for all i implies that V = 0. The energy function V 
is also called the Lyapunw function of the dynamical system. 

The difference in the energy functions for the discrete and 
'i 

continuous case is due to the extra term j f  '(s) ds in Eq. (5.35). 
' 0 

This expression is for a gain value h = 1. For a general gain value 
'1 

this term is given by (l/h) & j f-'(s) ds. The integral term is 0 for 
' 0 

si = 0 and becomes very large as si approaches f 1 (see Figure 5.4~). 
But for high gain values (h >> I), this term in the energy function 
becomes negligibly small, and hence the energy function approaches 
that of the discrete case. In fact when h + m, the output function 
becomes a bipolar function, and hence is equal to the discrete case. 
In the discrete case the energy minima are at some of the corners of 
the hypercube in the N-dimensional space, since all the states are at 
the corners of the hypercube. On the other hand, for moderate or 
small values of h, the integral term contributes to large positive 
values near the surfaces, edges and corners of the hypercube, and it 
contributes small values interior to the hypercube. This is because 
the value of s, is 1 at the surfaces, edges and corners. Thus the energy 
minima will be displacgd to the interior of the hypercube. As  
h + 0, the minima of the energy function disappear one by one, since 
all the states will tend to have the same energy value. 

The energy analysis so far shows that, for symmetric weights on 
the connections, there exist basins of attraction with a fixed point or 
a stable point for each basin corresponding to an energy minimum. 
If the connections are not symmetric, then the basins of attraction 
may correspond to oscillatory or chaotic states regions. In the case 
of purely random connections, with mean 0 and variance cf, there 
will be a transition from stable to chaotic behaviour as 3 is ipcreased 
[Sompolinsky et al, 1988; Hertz, 1995; Hertz et al, 19911. 

We can summarize the behaviour of feedback networks in relation 
to the complexity of the network as follows: To make a network useful 
for pattern storage, the output functions of the units are made hard- 
limiting nonlinear units. For analysis in terms of storage capacity, 
as well as for the recall of information from the stable states, we 
have imposed Hopfield conditions of symmetry of weights and asyn- 
chronous update. A more natural situation will be to use continuous 
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output functions, so that any type of pattern can be stored. But the 
analysis of the performance of the network will be more difficult. In 
addition, if we relax the conditions on the symmetry of weights, we may 
still get stable regions, but it is not possible to analyse the network in 
terms of its storage capacity and retrieval of information. If we further 
relax the constraints to make the feedback system more closer to the 
natural biological system, then we may be able to get better 
functionality, but it is almost impossible to analyse such complex 
networks. For example it is not possible to predict the global pattern 
behaviour of a feedback network with random weights. Thus, although 
the networks may get more and more powerful by relaxing the 
constraints on the network, they become less useful, if we cannot predict 
and control the pattern storage and recall of the desired information. 

5.3.5 State Transition Diagram 

Derivation of state transition diagram: The energy analysis of the 
Hopfield network in the previous section shows that the energy of 
the network at each state either decreases or remains the same as 
the network dynamics evolves. In other words, the network either 
remains in the same state or moves to a state having a lower energy. 
This can also be demonstrated by means of a state transition diagram 
which gives the states of the network and their energies, together 
with the probability of transition from one state to another. In this 
section we will illustrate the state transition diagram (adapted from 
[Aleksander and Morton, 19901) for a 3-unit feedback network with 
symmetric weights wy = wji. The units have a threshold value of 
8,, i = 1, 2, 3 and a binary (0, 1) output function. A binary output 
function is assumed for convenience, although the conclusions are 
equally valid for the bipolar (-1, +1) case. 

Figure 5.5 shows a 3-unit feedback network. The state update for 
the unit i is governed by the following equation: 

Figure 5.5 A 3-unit feedback network with symmetric weights wy, threshold 
values 8i and the output states si, i = l ,2 ,3 .  
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The energy at any state sl s2 s3 of the network is given by 

There are eight different states for the 3-unit network, as each 
of the si may assume a value either 0 or 1. Thus the states are: 000, 
001, 010, 100, 011, 101, 110 and 111. Assuming the values 

we get the following energy values,for each state. 

V(OO0) = 0.0, V(00l) = 0.7, V(O10) = - 0.2, V(1OO) = - 0.1, 
V(Ol1) = 0.1, V(101) = 0.1, V(110) = 0.2, and V(111) = 0.0. 

The transition from any state to the next state can be computed using 
the state update Eq. (5.39). For example, if the current state is 
000, by selecting any one unit, say unit 2, at random, we can find 

3 
its next state by computing the activation value x2 = .E w2, sj and 

1 = 1  

comparing it with the threshold 02. Since x2 (= 0) > O2 (= - 0.2) the 
state of the unit 2 changes from 0 to 1. Thus if we select this unit, 
there will be a transition from the state 000 to 010. Since we can 
select any one of the three units with equal probability, i.e., U3, the 
probability of making a transition from 000 to 010 is thus U3. 
hikewise by selecting the unit 1 for update, the network makes a 
transition from 000 to 100 with a probability U3. Selecting the unit 
3 for update results in a transition from 000 to itself, since the 
activation x3 (= 0) < O3 (= 0.7). By computing the transition probabili- 
ties for all the states, we get the state transition diagram shown in 
Figure 5.6. Note that while computing the transitions, only asynchro- 
nous update of each unit selected at random was used. Table 5.3 
shows the computation of the state transitions by comparing the 
weighted inputs with the threshold value for each unit. The entries 
in the parenthesis are ?L wu sj < > Oi . 

( J  1 
F'rom the state transition diagram we observe the following points: 

The diagram is drawn in such a way that the higher energy states are 
shown abwe the lower energy states. The transition is always from a 
higher energy state to a state with equal or lower energy. Thus the 
Hopfield result AV I 0 is satisfied. There are some states 010, 100 
and 111 which have a self-transition probability of 1. That means, once 
these states are reached, the network remains in these states, which is 
equivalent to saying that the activation dynamics equation is such that 
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0 
0 1 

(a) A 3-unit network 

1 - 
3 

- 0.2 

3 - 
3 

(b) State transition diagram 

Figure 5.6 A 3-unit network and the corresponding state transition 
diagram. (Adapted from [Aleksander and Morton, 19901). 

where fl.) is the binary output function, i.e., flx) = 0, for x I 0 and 
flx) -= 1, for x > 0. Since there is no transition kom these states to 
other states, these are stable states. Note that only three out of the 
total eight are stable states. As per the approximate capacity 
calculations made in Section 5.3.3 for a Hopfield network, the number 
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Table 6.3 Computation of State Transitions for Figure 5.6 

Unit 1 Unit 2 Unit 3 

of stable states will be much fewer than the number of possible states, 
and in fact the number of stable states are of the order N. The stable 
states are always at the energy minima, so that the transition to any 
of these states is always from a state with a higher energy value 
than the energy value of the stable state. 

Computatlon of welghts for pattern storage: So far we have consi- 
dered the analysis of a given feedback network and studied its 
characteristics. But patterns can be stored at the stable states by 
design. That is, it is possible to determine the weights of a network 
by calculation in order to store a given set of patterns in the network. 
Let 010 and 111 be the two patterns to be stored in a 3-unit binary 
network. Then at each of these states the following activation 
dynamics equations must be satisfied: 

This will result in the following inequalities for each of the states: 
For the state sl s2 s3 = 010 

and for the state sl s2 s3 = 111 
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Since we assume symmetry of the weights (wi = wji) and wii = 0, the 
above inequalities reduce to 

The following choice of the thresholds and weights, namely, 

satisfies the above inequalities and hence the resulting network given 
in Figure 5.7a stores the given two patterns. These two patterns 
correspond to the stable states 010 and 111 in the network as can 
be seen from the state transition diagram in Figure 5.7b. The energy 
values for different states are as follows: 

(a) A 3-unit network 

@) State transition diagram 

Figure 5.7 A 3-unit network and the corresponding state transition 
diagram. (Adapted from [Aleksander and Morton, 19901). 
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The energies of different states are: 

Table 5.4 shows the computation of the state transitions by comp 
aring the weighted inputs with the threshold values for each unit in 
each state. The entries in the parenthesis are wU sj < = > €Ii . [ J I 

Table 6.4 Computation of State Transitions for Figure 5.7 

unit 1 Unit 2 Unit 3 

5.3.6 Pattern Storage by Computation of Weights-Problem of False 
Energy Minima 

For another choice of the values of €Ii and w~ which satisfies all the 
inequalities for the above problem of storage of the patterns 010 and 
111 in a 3-unit network, there may be more than two energy minima 
or stable states in the network. Two of them correspond to the desired 
patterns and the other extra states correspond to false minima. This 
is illustrated for the choice of the thresholds and weights shown in 
Figure 5.6a. The corresponding state transition diagram is given in 
the Figure 5.6b. Here there are three energy minima corresponding 
to the three stable states 010, 100, 111. 

The presence of the extra stable state may result in recalling a 
pattern not in the set of the desired patterns to be stored. If an 
approximate input is given to the units in the network, so that the 
network is forced into the state, say s ,  s2 s3 = 000 initially, then since 
this state is unstable, the dynamics of the network will eventually 
lead to either the state 010 (the desired pattern) or to the state 100 
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(See the state transition diagram in Figure 5.6b). Both these states 
are stable states and have equal probability of transition from the 
initial state 000. While the state 010 is the desirable pattern to be 
recalled, there is an equal chance that the pattern 100 may be 
recalled. Likewise, if the initial state is 110, then there is an equal 
chance that any one of the stable states 010, 100 and 111 may be 
recalled. The recall of the pattern 111 results in an undetectable 
error, as the desired pattern is 010 for the approximate input 110. 
The recall of the pattern 100 at any time will give as output a pattern 
which was not stored in the network intentionally, since in our 
pattern storage task we have specified only 010 and 111 as the 
desired patterns to be stored in the network. The stable state 100 in 
this case corresponds to a false (undesirable) energy minimum. 

Errors in recall due to false minima can be reduced in two ways: 

1. By designing the energy minima for the given patterns in an 
optimal way, so that the given patterns correspond to the 
lowest energy minima in the network. 

2. By using a stochastic update of the state for each unit, instead 
of the deterministic update dictated by the activation values 
and the output function. 

The issue of stochastic update will be discussed in Section 5.4, and the 
issue of designing energy wells by learning in Section 5.5. 

Pattern storag-Hard problems: In the previous subsection we 
have discussed the effect of having more minima in the energy 
landscape than the number required to store the given patterns. In 
this section we consider the case of the so called hard problems of 
pattern storage. Let us consider the problem of storing the patterns 
say 000, 011, 101 and 110. By using the condition 
f (S w, s, - 0, ) = si for each unit i, the inequalities to be satisfied to 

make these states stable in a 3-unit feedback network can be derived. 
In this case no choice of thresholds and weights can satisfy all the 
constraints in the inequalities. The reason is that the number of desired 
patterns is more than the capacity of the network, and hence they cannot 
be representedfstored in a feedback network with 3 units. In some cases, 
even if the number of desired patterns is within the capacity limit of a 
network, the s p e d c  patterns may not be representable in a given type 
(binary) of a feedback network For example, for storing the patterns 
000 and 100, the following inequalities have to be satisfied by the type 
of network we have been considering so far. 

812 0, e2 2 0, e3 2 0, and el < 0, wzl S e2, wI3 5 0, (5.43) 

The conditions on el c 0 and el 2 0 cannot obviously be satisfied 
simultaneously by any choice of 81. In fact any pair of patterns within 
a Hamming distance of 1 cannot be stored in a 3-unit network. 
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Pattern storage problems which cannot be represented by a 
feedback network of a given size, can be called hard problems. This 
is analogous to the hard problems in the pattern classification task 
for a single layer perceptron network. Hard problems in the pattern 
storage task are handled by introducing additional units in the 
feedback network. These units are called hidden units. But with 
hidden units it is difficult to write a set of inequalities as before to 
make the given patterns correspond to stable states in the feedback 
network. Thus the design of a network with hidden units becomes 
difficult due to lack of a straightforward approach for determining 
the weights of the network. In other words, this may be viewed as 
hard learning problems. We will see in Section 5.5 how this problem 
is addressed in Boltzmann learning law. To store a given number of 
patterns, a network with sufliciently large number of units may have 
to be considered. But in general it is difficult to know the required 
number of units exactly for a given number of patterns to be stored. 

5.4 Stochastic Networks and Simulated Annealing 

5.4.1 Stochastic Update 

Error in pattern recall due to false minima can be reduced 
significantly if initially the desired patterns are stored (by careful 
training) at the lowest energy minima of a network. The error can 
be reduced further by using suitable activation dynamics. Let us 
assume that by training we have achieved a set of weights which will 
enable the desired patterns to be stored at the lowest energy minima. 
The activation dynamics is modified so that the network can also 
move to a state of higher energy value initially, and then to the 
nearest deep energy minimum. This way errors in recall due to false 
minima can be reduced. 

It is possible to realize a transition to a higher energy state from 
a lower energy state by using a stochastic update in each unit instead 
of the deterministic update of the output function as in the Hopfield 
model. In a stochastic update the activation value of a unit does n4t 
decide the next output state of the unit by directly using the output 
function f(x) as shown in Figure 5.8a. Instead, the update is expressed 
in probabilistic terms, like the probability of firing by the unit being 
greater than 0.5 if the activation value exceeds a threshold, and less 
than 0.5 if the activation value is less than the threshold. Note that 
the output function f i)  is still a nonlinear function, either a 
hard-limiting threshold logic function or a semilinear sigmoidal 
function, but the function itself is applied in a stochastic manner. 

Figure 5.8b shows a typical probability function that can be used 
for stochastic update of units. The output function itself is the binary 
logic function f(x) shown in Figure 5.8a. 
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Figure 5.8 Stochastic update of a unit using the probability law P (s = 
11~) = ll(1 + e - ( z - e Y T  ). (a) Binary output function and (b) Pro- 
bability function for stochastic update for different values of T. 

The probability of firing for an activation value of x  can be 
expressed as 

The probability function is defined in terms of a parameter called 
temperature T. At T = 0, the probability function is sharp with a 
discontinuity at x  = 8. In this case the stochastic update reduces to 
the deterministic update used in the Hopfield analysis. As the 
temperature is increased, the uncertainty in making the update 
according to A x )  increases, giving thus a chance for the network to 
go to a higher energy state. Therefore the result of the Hopfield 
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energy analysis, namely AVI 0, will be no longer true for nonzero 
temperatures. Finally, when T = m, then the update of the unit does 
not depend on the activation value (x) any more. The state of a unit 
changes randomly from 1 to 0 or vice versa. It is impotant to note 
that the stochastic update for different T does not change the energy 
landscape itself, since the shape of the landscape depends on the 
network, its weights and the output function, which are fixed. Only 
the traversal in the landscape will be changing. In contrast, in the 
continuous Hopfield model, the output function is different for 
different values of the gain parameter h, and hence the energy 
landscape itself is different for different h (See Sec. 5.3.4). 

5.4.2 Equilibrium of Stochastic Networks 

A feedback neural network with N binary units and stochastic update 
of the units is described by the following set of equations: 

Assuming the threshold value ei = 0, 

xi = wGsj, i = 1 , 2  ,..., N (5.45) 
j 

Axi) = 0, for xi 5 0  

= 1, for xi > 0 (5.46) 

A unit i is selected at random for updating. The output is updated 
according to the stochastic update law, specified by the probability 
that the output si = 1 given the activation xi. It is given by 

1 P(si = 1 I xi)  = 
1 + exp (-xilT) 

A network with the above dynamics is called a stochastic network. 
A stochastic network will evolve differently each time it is run, 

in the sense that the trajectory, of the state of the network becomes 
a sample function of a random process. In the case of deterministic 
update the trajectories will eventually reach an equilibrium corres- 
ponding to a stable state. The equilibrium is a static equilibrium. In 
contrast, there will never be a static stable state for a stochastic 
network, as the state of the network is always changing due to 
stochastic update for each unit. However, one could talk of a dynamic 
equilibrium for stochastic networks, if the ensemble average state of 
the network does not change with time Papoulis, 19911. By ensemble 
average we mean that for several (infinitely large) runs of the network 
the average value of the state ((s)) of the network is computed. The 
average value of the state is described in terms of the average value 
((si)) of the output of each unit (i) of the network. That is 
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where p(s) = p(sl, s2, ..., si, ..., sN) is the joint probability density 
function of the components of the state vector s. 

First of all, the probability distribution of states should be 
stationary or independent of time for a network state to be in a 
stochastic equilibrium. If stationarity of the probability distribution 
of states is achieved at a given temperature, then the network is said 
to be in thermal equilibrium [Muller and Reinhardt, 1990, p. 1471. 
At thermal equilibrium the average value of the output of the ith unit 
is given by 

where p(si) the probability density function for the ith unit. For binary 
units 

(si) = 1 x P(si = 1 I xi) + 0 X P(si = 0 (xi) 

= q s i  = 1 I xi) 

- - 1 
1 + exp (-xln 

Thus for a given temperature, the average value of the output unit is 
a continuous function of the activation value of the unit. Figure 5.9 

I 
(a) Discrete output (b) Continuous output 

Figure 5.9 Instantaneous (discrete) and average (continuous) outputs of a 
unit in a stochastic network. 

shows the discrete output and the average continuous output of a 
unit. 

At stochastic equilibrium the average value of the output state 
of a unit does not change due to stationarity of probability distribution 
of the state of the network. For the average value to remain constant, 
the flow of activity of a d t  i between the active (si = 1) to the 
inactive (si = 0) state should be balanced by the corresponding flow 
of activity from the inactive (si = 0) to the active (si = 1) state. This 
will ensure that the average value of the state due to state transitions 
over a period of time remains constant. In other words, for a binary 
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unit, the probability of a unit that is currently active (si = 1) to become 
inactive (sC= 0) muat be equal to the probability of the unit when it 
is inactive (si = 0) to become active (si = 1). That is 

Since the stochastic update rule for each unit is assumed to be 
independent of the state of the unit, we have from Eq. (5.47) 

P(si 4 lIs i=o)  = P (si= 1 l X i )  = 
1 

1 + exp(-x Jr) 
(5.52) 

and 

P ( s i 4 0 ( s i = 1 )  = P(s i=0Ixi )  = 1- 1 
1 + em- JT) 

- - 1 (5.53) 
1 + exp(xJT) 

Therefore from Eqs. (5.51), (5.52) and (5.53), we get 

From the Hopfield analysis we have the global energy for the state 
s as 

Difference in the energy for change of state in the kth unit from 
sk = 0 to sk = 1 is given by 

AEk = E(sk = 1) - E(sk = 0) = - x wkj sj = -xk . (5.56) 
j 

Note that this is true only if the weights are symmetric, i.e., 
wu = wji. The ratio of probabilities of the states of the network before 
and after an update in the ith unit is then given by (see Eq. (5.54)) 

Let Mi = Ep-E, where Ep is the energy for the state 
sp = (sl, s2, ..., si = 1, ..., sN), and E, is the energy for the state 
s, = (sl, s2, ..., si = 0, ..., sN). Therefore we get 
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From Eq. (5.58) we find that the probability of a state at thermal 
equilibrium is inversely proportional to the exponential of the energy 
of the state. That is 

P(s,) = e-EdT (5.59) 

where Ea is the energy of the network in any state s,, and is given 
by the Hopfield energy equation (5.55). 

Since C P(sJ = 1, we get 
a 

where 112 is the proportionality constant. Therefore, 

Therefore the probability of a state at thermal equilibrium is given by 

This is called the Boltzmann-Gibb's probability distribution. The 
normalization factor Z is called the partition function in statistical 
mechanics [Hertz et al, 1991; Muller and Reinhardt, 19901. The 
partition function plays a central role in statistical mechanics, as it 
can be used to compute averages at thermal equilibrium. At high 
temperature (T + m), the stationary probabilities of the states are 
nearly equal and are independent of the energies of the states. On 
the other hand, at low temperatures (T+ 0), the stationary 
probabilities are dictated by the energies of the states, and the states 
with lower energy will have higher probabilities. 

5.4.3 Thermal Averages 

From the stationary probabilities P(sa) of the states at thermal 
equilibrium at a given temperature, the average (A) of any quantity 
A pertaining to the states can be computed as follows: 

(A) = C AaP(sJ (5.64) 
a 

where A, is the value of the quantity for the state s,. This is called 
thermal average of the quantity A. 
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In many cases the thermal averages can be computed from the 
partition function itself, instead of using the stationary probabilities. 
But, in practice, obtaining the partition function becomes the main 
issue. Assuming that the partition function Z is known, the averages 
of some relevant quantities are computed as follows: 

In order to compute the averages, it is convenient to define a 
term, called free energy of the system, given by [Hertz et al, 1991, 
Appendix]. 

F = - T log Z = - T log C e-Ea'T 
( a  1 (5.65) 

where log stands for the natural logarithm. Then 

The average energy (E) of the states is given by 

aF la az 
(E) = C P(sJEa = -2'- = -- 

a aT Z aT 
To compute the averages (s,) and (si si), let us consider the 

expression for the Hopfield energy with the bias term as in Eq. (5.25) 
[Muller and Reinhardt, 1990, p. 1491. 

Taking the derivative with respect to Oi, we get 

We can show using Eqs. (5.65) and (5.69) that 

If we take - aF/awij, then we get 
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Thus. 

Equations (5.67), (5.70) and (5.72) are three thermal average 
expressions in terms of the free energy F and partition function Z. 
The free energy F can be interpreted as follows: 

Since e-F'T = Z = C e-EdT , we have 
a 

e - FIT 
- -  
z - C P(sa> 

a 

The sum of probabilities over all possible states is 1, and hence the 
left hand side of Eq. (5.73) above is equal to 1. But the above equation 
applies even if the summation is taken over a subset of the states. 
Then the lef't hand side gives the probability of finding the system 
in that subset. 

5.4.4 Stability in Stochastic Networks 

In stochastic networks, equilibrium refers to the thermal equilibrium 
at which the averages over all possible realizations of the states are 
independent of time. This is because the probability distribution of 
the states does not change with time. It can be proved that networks 
with symmetric weights do indeed reach thermal equilibrium at a 
given temperature. Since the state of the network changes due to 
stochastic update, it is not possible to talk about absolutely stable 
states in the sense that, once such a state is reached, it should remain 
there. On the other hand, one can still study stability of states at 
thermal equilibrium in which the average values do not change in 
time. Like in the deterministic case, for a stable state in the stochastic 
case we invoke the condition that the average value of the o u t ~ u t  is 
proportional to one of the stored patterns, say the kth one (ak). That 
is, for each component of the vector, 

(si) = maki , i = 1, 2,  ..., N (5.74) 

where m is the proportionally constant. In the deterministic ( T  = 0) 
case, these stable states exist for m = 1 as seen in Section 5.3.2. In 
the stochastic case we have from Eq. (5.50) 

where AEi = -xi = -Z wii(sj). Here the activation value is 
I 

determined using the average of the fluctuations of the outputs from 
the other units. This is called the mean-field approximation by which 
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the actual variables are replaced by their averaged quantities 
ISoukoulis et al, 1983; Bilbro et al, 19921. 

We can obtain an approximate solution of Eq. (5.74) by 
substituting for (si) in Eq. (5.74) and simplifying. In doing this 
analysis it is convenient to assume units with bipolar {-I, +1} outputs. 
Then the average value (si) is given by 

(s,) = ~ x P ( s ~ = ~ I x ~ ) - ~ x P ( s ~ = - ~ ~ x ~ )  (5.76) 

Assuming for convenience the probability of update in this case as 

we get 
1 

('i) = 1 + exp(- 2 xi/n - [ - 1 + exH- 2 x,/T) I 
= tanh [:) 

. , 

where xi is given by 
xi = C wij(sj) 

using the mean-field approximation. From the Hebb's law given in 
Eq. (5.181, we have 

1 L 
wij = - a, a,! N 

1 = 1  

Therefore from Eqs. (5.74), (5.78) and (5.79), we have 

Ignoring the cross terms, which is valid if the number of patterns 
stored (L) is much less than N, we get 

Since aki = f 1, and tanh(-x) = -tan&), we get 

Solutions of this equation are shown in Figure 5.10. It shows that 
the solutions for m are the points of intersection of the straight line 
y = Tx and the sigmoid curve y = tanh(x). If T 2 1, there is only one 
solution at y = 0. For T < 1, there are three solutions. 

From Figure 5.10 we can obtain the values of y for different 



Feedback Neural Networks 

Figure 5.10 Solution of the equation y = tanh (m/T) as  points of intersection 
of y =Tx and y = tanh (x ) .  

temperatures. Figure 5.11 shows the positive value of (s) of Eq. (5.78) 
as a function of the temperature T.  It shows that nonzero solutions 
to (s) exist only when T < Tc. As T -+ 0, (s )  approaches + 1. The critical 
temperature Tc = 1 for stochastic networks with L << N, since &he 
crossterms in Eq. (5.80) are negligible under this condition. 

Figure 5.11 The positive solution (s) as a function of temperature. 

The above analysis shows that a stochastic network with 
symmetric weights will have stable equilibrium states, i.e., will satisfy 
Eq. (5.81), only at temperatures below a critical temperature, 
provided L<<N. The number of such states is very small compared 
to N, and the actual number depends on the temperature. But the 
maximum value of L will be less than 0.138 N, which is the limit for 
the deterministic case, i.e., for T = 0 [Amit et al, 19871. 
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The maximum number of stable states for a stochastic network 
is referred to as the capacity of the network. The capacity will be 
different for different temperatures. Above a critical temperature for 
any given LIN (See Figure 5.121, the network will not have any stable 

0.138 
Figure 5.12 The region (shaded) for the existence of stable states for a 

stochastic network. 

equilibrium state and hence cannot be used as memory. The critical 
temperature is lower for higher values of LIN. For LIN > 0.138, 
however, there are no stable states for any temperature, including T 
= 0 [Amit et al, 1987; Hertz et al, 1991, p. 391. 

5.4.5 Operatlon of a Stochastic Network 

Having seen that a stochastic network exhibits stable states for temp 
eratures below a critical temperature, we shall discuss the operation 
of a stochastic network for memorizing a given set of patterns. 
Throughout we assume that L cc N, and that we are operating at 
temperatures lower than the critical temperature, so that the network 
has stable states at thermal equilibrium at a given temperature. 

Given a feedback network with symmetric connections, there exists 
an energy landscape with a unique value of energy for each state of the 
network. There are two aspects of the network when used as memory: 
Designing a network to store a given set of patterns (training) and 
recalling a pattern stored in the network (recall). To understand these 
aspects, let us f i s t  discuss the operation of a stochastic network in 
detail. The operation involves monitoring the trajectory of the states 
of the feedback network and studying the characteristics of the 
resulting random process in terms of probability distributions of 
states and the relation of these distributions with the energy. 
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Note that the energy landscape is fixed for a given network, as 
the energy depends only on the output state si of each unit i and on 
the weights wij on the connecting link between units j and i. The 
activation dynamics including the asynchronous or synchronous 
operation and the stochastic update decide the trajectory of the states 
and hence the traversal along the energy landscape. Since provision 
for stochastic update is available, the trajectory may move along a 
path which may include movement to states with higher energies in 
the energy landscape. 

Figure 5.13 illustrates the regions for trajectories of states at 
different temperatures. Note that at T = 0, the trajectory can only 

Figure 5.13 Regions of traversal in the energy landscape. The shaded area 
indicates region of traversal for a temperature of T,. 

slide along the downward slope of the energy and reach a fixed point 
equilibrium state. Thus at T = 0, there are as many stable states as 
there are energy minima in the landscape. At higher temperatures 
there is greater mobility, thus resulting sometimes in a movement 
towards higher energy states. In such a case all the energy minima 
regions covered in the region of movement cease to be stable regions. 
Only regions with deep energy minima are likely to be stable. Thus 
the number of stable regions decreases with increase in temperature. 
At a given temperature several trajectories are possible depending 
on the update at each unit. These trajectories may be viewed as 
sample functions of a random process. When the temperature is 
changed, the trajectories correspond to the transient phenomenon 
during which the random process is nonstationary. Consequently the 
probability distribution of states changes with time as shown in 
Figure 5.14 for three time instants (to, t,, t2), where to is the instant 
at which the temperature parameter is changed, t, is an instant in 
the transient region and t ,  is an instant in the steady region after 
the random process became stationary. Note that the probability 
distributions may not be related to the energy landscape during the 
transient phenomenon. But once the thermal equilibrium is reached, 
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state - state - 
Figure 5.14 Probability distribution 

of states at a given new 
temperature during 
transient phenomenon 
at three instants of 
time (t2 > tl > to) (a) 
Energy landscape. (b), 
(c) and (d) are proba- 
bility distributions at 
times to, tl and t2, 
respectively. 

Figure 5.15 Stationary probability 
distribution at three 
different temperatures 
for a stochastic network 
(To < Tl <Tz). (a) Energy 
landscape. (b), (c) and 
(d) are stationary 
probability distri- 
butions at temperatures 
T2, Tl and To, res- 
pectively, with To = 0. 

the stationary probability distribution shows some relation to the 
energy landscape. In particular, the peaks in the probability 
distribution correspond typically to deeper valleys of the energy 
landscape. 

Figure 5.15 shows the stationary probability distributions a t  
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different temperatures. At higher temperatures the probability 
distribution is more flat, indicating that several higher energy states 
are also likely with high probability. At T = 0, the probability 
distribution shows impulses at the states which are fixed stable points 
and at which the energy is minimum. Probabilities of nonminimum 
energy states are zero. Moreover, the probability of a state is inversely 
proportional to the energy at that state. Hence the average energy 
at T = 0 is minimum. The average energy at thermal equilibrium at 
T + 0 is higher for higher temperatures. This is because the energy 
landscape is fixed, but the probability distribution of states is flatter 
at.higher temperatures than at lower temperatures. 

5.4.6 Simulated Annealing 

From the above analysis we can see that the matching probability 
distribution of states for a given network gives the lowest average 
energy at T = 0. When the network is used as a memory to store a 
given set of patterns, the average error in the recall will be minimum 
if the probability distribution of the given patterns matches the 
optimal probability distribution of the stable states of the network at 
T = 0. This can happen only by determining an optimal size of the 
network and the connection weights. Determination of a suitable 
architecture and adjustment of the weights are discussed in 
Section 5.5. But the adjustment of weights or learning involves 
determining the probability distribution at T = 0 for each presentation 
of a pattern input, by going through a sequence of temperature values 
starting from a high temperature to finally T = 0. Thus for each 
application of a training pattern the network is said to be annealed 
to obtain the probability distribution matching the energy landscape. 
To reinforce the given pattern, the weights are adjusted in accordance 
with the statistics of the outputs of the units collected at the end of 
the annealing process. The objective is to ultimately shape the energy 
landscape for the given distribution of the input patterns so as to 
obtain a low probability of error in the recall. But if the number of 
patterns to be stored is smaller than the number of energy minima, 
then during recall the network may settle in a state corresponding 
to an energy minimum not used for storage. This is called the local 
minima problem. 

The existence of local minima may result in an error in the recall, 
even though the training attempts to match the given distribution of 
patterns with the energy landscape of tihe network. For recall, when 
an approximate input is given, the network is allowed to reach an 
equilibrium state near T = 0, following an annealing process starting 
from a high temperature. Thia will reduce the effects of local minima 
and thus reducea the probability of error in the recall. Using the 
given approximate input as a constraint, we want to arrive at a state 
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that corresponds to a minimum energy of the given network. The 
information corresponding to the state gives the desired pattern to 
be recalled. 

Both training and recall of patterns in a stochastic network use the 
process of annealing controlled by the temperature parameter. The rate 
of change of temperature, called annealing schedule, becomes critical in 
realizing the desired probability distribution of states near T = 0. This 
process is called simulated annealing CKirkpatrick et al, 19831. 

5.4.7 Example of Simulated Annealing 

In this section we consider an example to illustrate the ideas of 
stochastic update, thermal equilibrium and simulated annealing. The 
example is adapted from [Aleksander and Morton, 19901. For this we 
take the three unit binary network with symmetric weights shown 
in Figure 5.7. For each unit, the probability of firing for an activation 
x is assumed to be 

Foreach temperature T a separate state transition diagram can be 
derived, which indicates the transition from each state to other states. 
Let us illustrate the calculation of the transition probabilities for one 
state, say s1ss3 = 011. Assuming only one unit is allowed to change 
at a time, for each unit we can compute the activation value (x - 8) 
using 5 wy  sj - 8, . For a temperature T = 0.25, the values of P(l 1 x) 

for units 1, 2 and 3 are 0.6, 0.92 and 0.23, respectively. The corres- 
ponding probabilities for not firing P(O I x) = 1 - P(ll x) are 0.4, 0.08 
and 0.77, respectively for the units 1, 2 and 3. A change of state from 
011 to 111 occurs if the first unit fires. Since each unit can be chosen 
with a probability of 113, and the probability of unit 1 firing is 0.6, 
the transition probability from 011 to 111 is 0.613. Likewise the 
transition probability from 011 to 001 is 0.0813 and from 011 to 
010 is 0.7713. Since only these transitions are possible from 
011, besides self-transition, the probability of self-transition is given 
by 1 - 0.613 - 0.0813 - 0.7713. The transition probabilities for the 
state 011 for three different temperatures (T = 0.0, 0.25 and 0.5) are 
shown in Figure 5.16. It can be seen that in the deterministic case 
(T = 0) the transitions to the state 001 are not possible because it is 
at a higher energy level. For nonzero temperature there is a nonzero 
probability of transition to all possible states including to a state with 
higher energy value. These transition probabilities get distributed 
more evenly at higher temperatures. 

The complete state transition diagram for T = 0.25 shows a tran- 
sition with nonzero probability from every state to its neighbouring 
(Hamming distance = 1) states. The transition probabilities for all 
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(a) T = 0.0 (b) T = 0.25 (c) T= 1.0 

Figure 5.16 State transition probabilitiea for the state 011 at different 
temperatures. (a) T = 0, (b) T = 0.25 and (c) T = 1.0. 

the eight states for T = 0.25 case are shown in the form of a matrix 
in Table 5.5. Note there are four nonzero entries in each row, 
indicating the four possible transitions for each state, and these 
entries in each row add up to 1. 

Table 5.5 State Transition Probabilities P(i I J )  at T = 0.25 for the 3-unit 
Network in Figure 5.7(a) 

For a given state transition probability matrix, it is possible to 
determine the probability distribution of the states (Pi(t)) a t  each 
instant of time t, starting with some assumed distribution at time 
t = 0. Let us assume equal probability for each state as the initial 
state probability distribution. That is Pi(0) = l/8 = 0.125, as there 
are eight states. 

Let P(i I j) be the probability of transition from the state j to the 
state i. Since each state j occurs with probability Pj(t), the probability 
of reaching state i in the next ins tad  from the state j at the current 
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instant is Pj(t) P(i (J). Summing this over all states will give the 
probability of the state i at the next instant and is given by 

P i ( t+ l )  = P,(t)P(iIj), f o r i  = 0,1, ..., 7 (5.84) 
j 

In matrix notation the probability distribution of states at time 
t + 1 is given by 

~ ( t  + 1) = P P@), 

where p(t) = [pi(t)lT is a column matrix with the state probabilities 
as elements, and P = [P(i 1 j]lT, is the transition probability matrix 
with P(i IJ) as elements. Therefore, 

P(t) = P ' ~(01,  (5.85) 

where P i  denotes matrix multiplication t times. From Eq. (5.85) the 
steady probability distribution can be obtained when t + m. Note that 
the time to reach the steady state depends on the initial state 
probabilities and the state transition probability matrix. 

The state transition probability matrix P depends on the temper- 
ature T. As the temperature is varied, these transition probabilities 
also will change. Therefore the steady state probability distribution 
depends on the temperature, and hence the corresponding steady 
state is called thermal equilibrium. When the temperature is changed 
say from T2 to T,, then the network moves from one thermal 
equilibrium condition to another thermal equilibrium condition after 
going through a transient phase during which the state probability 
distribution will be changing. This is illustrated in Table 5.6 for the 
three unit network example in Fig. 5.7(a). In the table, the notation 
Pi(t) indicates the probability of the state i (the integer value of the 
corresponding binary state) at time t. Starting with equal initial 
probabilities for all the states at T = 1, the probabilities during 
transient phase are calculated until thermal equilibrium is reached. 
Thermal equilibrium is indicated when there is no change in the state 
probabilities for subsequent updating instants. At this stage the 
temperature is changed to T = 0.25, and the state probabilities are 
again calculated until thermal equilibrium is reached again. Finally 
the temperature is set to zero, i.e., T = 0, and the state probabilities 
are updated until thermal equilibrium is reached. At this stage, we 
notice that there are only two states with nonzero probabilities, and 
these probabilities are inversely related to their state energies. These 
states correspond to the stable states of the network. 

In general the rate of change of the temperature parameter is 
critical to arrive at the final stable states after passing through 
several stages of thermal equilibrium. This rate of change of 
temperature is called annealing schedule. 
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Table 5.6 Illustration of State Probabilities during Simulated Annealing 
for the 3-unit Network in Figure 5.7(a). (Adapted from 
[Aleksander and Morton, 19901) 

State Probability P,,(t) P,(t) 
Temp. Time t 
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5.5 Boltzmann Machine 

5.5.1 Problem of Pattern Environment Storage 

The relation between probabilities and energies of the stable states 
suggests that the probability of error in the recall of stored patterns 
in a feedback neural network can be reduced if the weights are chosen 
appropriately. If the probability distribution of the given (desired) 
patterns, called pattern environment, is known, then this knowledge 
can be used for determining the weights of the network while storing 
the patterns. The training procedure should try to capture the pattern 
environment in the network in an optimal way. Boltzmann learning 
law to be discussed in Section 5.5.3 gives a procedure to accomplish 
this pattern environment storage in an optimal way for a given 
feedback network. But first we shall discuss considerations in the 
choice of a suitable feedback network for the pattern environment 
storage problem. 

5.5.2 Architecture of a Boltzmann Machine 

Given a set of L patterns, each pattern described by a point in an 
N-dimensional space, it is not clear how many processing units would 
be needed for a feedback network. It may not be possible to store 
them in a network consisting of N units, if the resulting number of 
stable states (for a given set of weights) is less than the number of 
patterns L. That is, the capacity of the network is less than L. Such 
problems are called hard problems. In general it is difficult to say 
whether a given pattern storage problem is a hard problem or not 
for a given network. To be on the safe side, one can add extra units 
to the feedback network. These extra units are called hidden units, 
whereas the remaining N units, to which the input patterns are 
applied during training, are called visible units. A fully connected 
network consisting of both hidden and visible units (Figure 5.17) and 
operating asynchronously with stochastic update for each unit is 
called a Boltzmann machine. Since the steady state probabilities at 
thermal equilibrium follow the Boltzmann-Gibb's distribution, the 
network architecture is called a Boltzmann machine [Ackley et al, 
19851. 

Since the network architecture is so chosen that the number of 
stable states is more than the desired number of patterns, the 
additional stable states become spurious stable states. Existence of 
the spurious stable states results in a nonzero probability of error in 
the recall, even though the network is trained to capture the pattern 
environment in an optimal way. Pattern recall from a Boltzmann 
machine uses simulated annealing to reduce the effects of these 
additional stable states, which correspond to local minima in the 
energy landscape of the network. 
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0 Visible units: 1, 2, 3 are input units 
6, 7 are output units 

0 Hidden units: 4 , 5  

Figure 5.17 Illustration of a Boltzmann machine. 

A Boltzmann machine can also be used for a pattern association 
task. This is accomplished by identifying a subset of the visible units 
with the inputs and the remaining visible units with the outputs of 
the given pattern pairs. In other words, each input-output pair is 
considered as a pattern, and these patterns are stored as in the 
pattern environment storage problem. For recall, the input is 
presented only to the input subset of the visible units. The output is 
read out fiom the output subset of the visible units, after the network 
reached thermal equilibrium at T = 0 using a simulated annealing 
schedule to reduce the local minima effects. 

In general a Boltzmann machine architecture can be used for any 
pattern completion task, in which the stored (input-output) pattern 
can be recalled by providing a partial information about the pattern. 

5.5.3 Boltzmann Learning Law 

The Boltzmann learning law gives a procedure to represent a given 
pattern environment by a Boltzmann machine. The law uses an 
information theoretic measure to evaluate how well the environment 
is represented by the network. If a perfect representation is obtained, 
then there will be as many energy minima as there are desired 
patterns in the environment. Moreover, these energy minima are 
inversely related to the probabilities of occurrence of the 
corresponding patterns in the environment. Normally since only an 
approximate representation of the environment is accomplished after 
training, there will be a residual mismatch of the probabilities of the 
patterns in the environment with the probabilities of the stable states 
of the resulting network. This mismatch, together with the inevitable 
existence of spurious stable states, results in some nonzero probability 
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of error in recalling the stored patterns. In this section we will derive 
the Boltzmann learning law based on an information theoretic 
measure [Gray, 19901. We will discuss the implementation issues in 
the next section. 

Let P +(Va) , a = 1,2, ..., L be the probability distribution of the 
set of given L patterns {Val, where Va is a point in the N-dimensional 
space. The superscript '+' denotes the desired states and their 
probabilities for the visible units of the network. Note that 
Z P+(Va) = 1. During recall it is desirable to have the network settle 

at one of the Gaining patterns only. Let P-(V,) be the actual 
probability distribution of the desired patterns at the visible units at 
equilibrium for a given network. The objective of training is to adjust 
the weights of the network so that the differencelin the network 
behaviour for these two probability distributions is negligible. Ideally 
one would like to have P +(Va) = P -(Va) , a = 1,2, ..., L. 

The distribution P+(Va) corresponds to the desired situation of 
the states at the visible units and the distribution P-(V,) corresponds 
to the probability of occurrence of these states when the network is 
running freely. The difference between these conditions is represented 
by an error criterion derived based on information theoretic measure 
[Gray, 19901. The error function is given by 

It is easy to show that G 2 0, using the relation log x 2 1 - (Ux). The 
error function G = 0, only when P+(Va) = P-(VJ. In other words, 
when G = 0 the given pattern environment is represented by the 
network exactly. Using the gradient descent along the error surface 
G in the weight space to adjust the weights, we have 

To compute the gradient aGlawij, we will use the following relations 
for the probabilities and energies of the states: 

where Hb is a vector of states of the hidden units, Va  is a vector of 
states of the visible units and (V, A Hb) represents the state of the entire 
network. P-(.) represents the probabilities of the states when the 
network is free running. 

Likewise 

P '(V,) = C P+(Va A Hb) (5.89) 
b 
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where Hb is a vector of states of the hidden units. P+(.) represent the 
probabilities of the states when the network is forced or clamped with 
the given patterns as states of the visible units. 

The energy of the network in the state Va A Hb is given by 

where sqb is the output of the unit i when the network is in the state 
V, A Hh. 

Since P-(V, A Hb) represents the probability distribution of states 
a t  thermal equilibrium at some temperature T, the probability of the 
state (V, A Hb) at equilibrium is related to the energy Eab through 
Boltzmann-Gibbs law as follows: 

Therefore, 
1 P-(VJ = Z e- 

b 

The gradient &lawY is given by 

since P+(Va) is constant for a given pattern environment. We have 

From Eq. (5.90) we have 

Therefore we get 
az 
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Therefore, 

and 

a + T P7Vm A Hn) ST ST (5.98) 
mn 

We have the following relations: 

Also we know that the probability that the state Hb will occur on the 
hidden units should not depend on whether the state Va on the visible 
units got there by being forced by environment or by free running. 
That is 

+ (Hb I Va) = -(Hb I (5.100) 

Hence from Eq. (5.991, we get 

Therefore, 

where 

is the average of the product of the outputs of the units i and j, when 
the network is clamped and 

pij = C P-(Vm A H,) s" syn 
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is the average value of the product of the outputs of the units i and 
j when the network is free running. The change in the weight is given 
from Eqs. (5.87) and (5.102) as 

where q is a learning rate parameter and T is the temperature at 
which the equilibrium statistics are computed. This is called 
Boltzmann learning. 

5.5.4 Issues In Implementation of Boltzmann Learning 

Discussion on Boltzmann learning: The Boltzmann learning law in 
Eq. (5.103) is a result of using three principles: (a) Hopfield model 
with symmetric weights, no self-feedback and asynchronous update, 
(b) Boltzmann-Gibb's distribution for probability of states at thermal 
equilibrium under stochastic update of the neurons, and (c) an 
information theoretic measure for error criterion for matching the 
probability distribution of the states a t  thermal equilibrium with the ' 
distribution specified for the pattern environment. In the derivation 
of the law we have implicitly used the features of the Boltzmann 
machine, namely, the concept of hidden and visible units, stochastic 
update of the units, thermal equilibrium of the network at each 
temperature and simulated annealing with a specified schedule for 
annealing. The final objective is to adjust the weights in a systematic 
way so that the feedback network will have stable states at the 
desired input patterns. These states will have energies related to the 
probabilities of the input patterns through the Gibb's law. Table 5.7 
gives a summary of Boltzmann learning law. Table 5.8 lists some of 
the issues in Boltzmann learning which will be discussed in some 
detail in this section. 

The expression in Eq. (5.103) for Boltzmann learning shows that 
the learning has the local property, namely, the change in the weight 
connecting the units i and j depends on the values of the variables 
associated with those units only. It is interesting that the gradient 
descent along the information-theoretic based error surface leads to 
this desirable property of a learning law. The terms p; and p i  
correspond to the terms in a Hebb's learning law. The term p; is the 
average of the product of the output state values for the units i and 
j, averaged over all possible states of the network when the visible 
units of the network are clamped with the patterns to be stored. Thus 
p+. can be interpreted as correlation between the output values of the 
itk and jth units. Likewise p j  is the correlation between the units 
when the network is in free running condition. The contribution to 
the weight change due to p+. can be viewed as Hebbian learning and 
that due to p i  can be viewei as Hebbian unlearning. The second term 
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Table 5.7 Summary of Boltzmann Learning Law 

The objective is to adjust the weights of a Boltzmann machine so as to 
store a pattern environment described by the set of vectors (Val and their 
probabilities of occurrence. These vectors should appear as outputs of the 
visible units. Let (H,) be the set of vectors appearing on the hidden units. 

Let P+(Va) be the probability that the outputs of the visible units will 
be clamped (indicated by '+' superscript) to the vector Va. Then, 
P+(Va) = C P+(Va A Hb), where P+(Va A Hb) is the probability of the state 

b 

of the network when the outputs of the visible units are clamped to the 
vector Va, and the outputs of the hidden units are H& 

w Likewise the probability that V, will appear on the visible units when none 
of the visible units are clamped (indicated by '-' superscript) is given by 

Note that P+(Va) is given by the pattern environment description, and 
P-(V,) depends on the network dynamics and is given by 

p-(va) = z ~ x P ( - E ~ ~ / z  .x~(-~,,,,,m, 
b mn 

where the total energy of the system in the state Va A Hb is given by 

s:b refers to the output of the ith unit in the state Va A Hb. 

w The Boltzmann learning law is derived using the negative gradient 
descent of the functional 

G = Z P'(Va) log [P'(Va)I(P-(Va)l 
a 

w It can be shown that 

where 

p i  = ZP'(Va  AH^) s : ~ s ~ ~ ,  p i  = xP-(Va A H ~ ) s ~ ~ s ; ~  
ab ab 

The weight updates are calculated according to 

The Boltzmann learning law is implemented using an annealing schedule 
for the network during clamped and unclamped phases of the visible 
units of the network to determine p: and pi, respectively. 

can also be interpreted as a forgetting term. When the two correlations 
are equal, then we can interpret that the resulting network with the 
learned weights has absorbed the given pattern environment. 
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Table 5.8 Issues in Boltzmann Learning 

"l Expression for Boltzmann learning: Aw, = - [ p ;  - p i  ] T 
Significance of p; and p i  
Learning and unlearning 
Local property 
Choice of q and initial weights 

Implementation. of Boltzmann learning 
Algorithm for learning a pattern environment 
Algorithm for recall of a pattern 
Implementation of simulated annealing 
Annealing schedule 

Pattern recognition tasks by Boltzmann machine 
Pattern completion 
Pattern association 
Recall from noisy or partial input 

Interpretation of Boltzmann learning 
Markw property of simulated annealing 
Clamped-free energy and full-free energy 

Variations of Boltzmann learning 
Deterministic Boltzmann machine 
Mean-field approximation 

In the implementation of the Boltzmann learning law, there are 
two distinct phases, one for determining pt. by clamping the input 
pattern to the visible units and the ode r  for determining p i  
corresponding to the free running condition. In each phase the 
network is subjected to an annealing process, starting with some high 
temperature and using an annealing schedule. At each temperature 
in the schedule the network is allowed to reach thermal equilibrium. 
The Metropolis algorithm [Metropolis et al, 19531 may be used to 
arrive at the thermal equilibrium of states at each temperature. The 
algorithm uses the probability law given in Eq. (5.47) for updating 
the state of a unit based on the activation value (net input to the 
unit). The probability law is implemented using a random number 
uniformly distributed in the interval 0 to 1, and comparing the 
number with the probability [Binder and Heerman, 19881. If the 
difference between the generated random number and the computed 
probability is positive, then the state of the unit is updated to the 
new value. Otherwise the state is unaltered. This is repeated for each 
unit selected at random, and for several cycles. Each cycle consists 
of N iterations, where N is the number of units in the network. After 
a certain number of cycles the network reaches thermal equilibrium 
at that temperature. At that stage the temperature is lowered to the 
next value in the schedule. 
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At the thermal equilibrium, achieved at the lowest value of the 
temperature in the annealing schedule, the products sisj are computed 
for all i and j. This process is repeated for each presentation of an 
input pattern in the clamped phase. The input patterns are presented 
one by one several times according to their frequency of occurrence 
in the pattern environment. find the average of the sis. from all these 
trials. The resulting average value is an estimate 04~;. The same 
operations are repeated on the network in the free running condition 
for the same number of trials with the same number of cycles at each 
stage in each trial. The resulting average of sisj gives pi. 

To start with, the weights are set to some random initial values 
in the range -1 to +1, assuming that the state of each unit in the 
network is either 0 or 1 (binary units). The value of the learning rate 
parameter q is chosen in the range of 0 to 1, preferably a small value 
of 0.1. The range of temperatures for annealing also could be from 
T = 1 to T = 0.1. The weights are adjusted according to Eq. (5.103). 
The algorithm for implementing the Boltzmann learning law is given 
in Table 5.9. 

Table 6 9  Boltzmann Machine Learning Algorithm for Binary Units 

Clamp one training vector to the visible units. 
Anneal until equilibrium is reached at desired minimum temperature. 
Continue to run the network for several processing cycles. ARer each 
cycle determine the connected units whose states are '1' simultaneously. 
Average the cooccurrence results from Step 3. 
Repeat Steps 1 to 4 for all training vectors to get p;. 
Unclamp the visible units, and anneal until equilibrium at the desired 
minimum temperature 
Continue to run the network for several processing cycles. ARer each 
cycle determine the connected units whose states are '1' simultaneously. 
Average the cooccurrence results from Step 7. 
Repeat Steps 6 to 8 for the same number of times as in Step 5 to get - 
Pw 
Calculate and apply the appropriate weight changes. 
Repeat Steps 1 to 10 until p: - p i  is sufficiently small. 

To recall a stored pattern, the given partial input is clamped to 
the appropriate visible units, and the network is subjected to an anne- 
aling process according to a schedule to reach thermal equilibrium 
at the minimum temperature. The output state of the visible units 
at this stage corresponds to the pattern to be recalled. Table 5.10 
gives an algorithm for recalling a stored pattern. 

The Boltzmann learning is a very slow process, since a large 
number of cycles are needed to obtain suflticient amount of data to 
estimate the desired averages p; and p i  reasonably well. The learning 
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Table 5.10 Boltzmann Machine: Recall from Partial Input 

1. Force outputs of visible units to specified initial input binary vector. 
2. Assign unknown visible units and hidden units to random value (0, 1). 
3. Select a unit k at random and calculate the activation value xk. 
4. Assign the output sk = 1 with probability V(l +e-*hR) .  

5 .  Repeat Steps 3 and 4 until all units have a chance to update (one 
processing cycle). 

6 .  Repeat Step 5 for several processing cycles until thermal equilibrium is 
reached at the temperature T. 

7. Lower T and repeat Steps 3 to 6.  
8. Once the temperature has been reduced to a small value, the network 

will stabilize. 
9. The final result will be the outputs of the visible units. 

rate parameter 7 should be small in order to take care of the inaccura- 
cies in the estimates of these averages. If 7 is large, then there is a 
possibility of taking a large step along a wrong direction due to a p  
proximation in the computation of the gradient of the error measure. 
But a small value of 7 further slows down the learning process. 

Success of annealing in the learning process critically depends on 
the annealing schedule. The probability distribution of the states 
converges asymptotically to the distribution corresponding to the 
minimum average energy value, pro~ided the temperature at the kth 
step in the annealing schedule satisfies the followi~ig inequality [Geman 
and Geman, 1984; Aarts and Korst, 1989; Salamon et al, 19881: 

'T' 

where T,  is the initial high temperature. This annealing schedule is 
too slow for implementation in practice. Several ad hoc schedules 
were suggested to speed up the process of annealing. One such 
method uses Tk = T J 1 +  k),\ which is known as fast annealing schedule 
or a Cauchy machine [Szu, 19861. But there is no proof of convergence 
towards the minimum average energy value in these ad hoc methods. 

Boltzmann machine can be used for recalling a stored pattern 
from partial input, by clamping the known input at the corresponding 
visible units. This is called pattern completion task. Boltzmann 
machine can also be used for pattern association task. In this case 
the visible units are split into two parts, one part corresponding to 
the input pattern and the other to the output pattern. During training 
both the input and output patterns are given as a pair to the visible 
units. Thus all the given pattern pairs are used in the training. While 
recalling, the input part of the visible units are clamped and the 
recall is implemented as in the pattern completion task. The state at 
the output part of the visible units gives the associated pattern. 
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It is also possible to recall a pattern from a noisy version of it. 
In this case the noisy input pattern is presented initially to the visible 
units and subsequently the network is allowed to anneal as in a free 
running condition. The initial presentation of the noisy input pattern 
will bias the state of the network towards the true state and the 
annealing process will be helpful to overcome the local minima states 
to reach the deep minimum corresponding to the stored pattern. 

In the operation of the Boltzmann machine the state of the 
network due to a transition depends on the previous state only and 
not on the states prior to the previous state (See Eq. (5.84)). This is 
called Markov property of the simulated annealing [van Laarhoven 
and Aarts, 1988; Haykin, 1994, p. 3161. Note that the transition 
probabilities are derived assuming a probability distribution for the 
update of the state of a unit and using an asynchronous update in 
which only one unit is considered at a time for updating. The 
probability distribution of the states of the network at a given instant 
together with the transition probabilities will enable us to determine 
the probability distribution of the states at the next instant in the 
simulated annealing process (See Eq. (5.84)). This Markov property 
will eventually lead to a stationary probability distribution of the 
states at thermal equilibrium. Moreover, the stationary probability 
distribution in turn is related to the energy distribution of the states 
through the Boltzmann-Gibb's law. 

The Boltzmann learning law can be interpreted in terms of the 
energy and probability distribution of the states as follows: Let the 
partition function Z be expressed as 

where F is the free energy of the system. Then we have from 
Eqs. (5.65) and (5.72) 

F = - T log2 
and 

Let Zadamped = Z e- and Zunclamped = 2 e- Then 
b ab 
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where Fa is the clamped free energy, i.e., the free energy when the 
visible units are clamped with the state Va. 

The error function G of Eq. (5.86) can be written as 

G = Go - C P +(Va) log P -(Va) 
a 

where Go = C P+(Va) logP+(Va) is independent of the network 
parameters su%h as weights. Therefore, from Eqs. (5.108) and (5.109) 
we get 

where F a  is the average clamped free energy and F is the full free 
energy [Hertz et al, 1991, Appendix]. We can show that (See Problem 
5 in Ch. 5) 

Therefore. 

where p i  and p i  are given by Eqs. (5.111) and (5.107), respectively. 
Thus we can view the error function (G - Go) as the difference 
between the average clamped free energy and the full free energy. 
The full free energy will be lower since under free running condition 
the energy landscape is perfectly matched to the probability 
distribution of states at thermal equilibrium through the Gibb's law. 
In the clamped condition the stationary probabilities do not match 
the energy landscape perfectly due to the constraint of the clamping. 
Note that the energy landscape depends on the connection weights 
and states of the network. 

Computation of the average values of the correlations requires a 
very large number of iterations in the Boltzmann learning law. The 
implementation of the Metropolis algorithm by Monte Carlo method 
[Binder et al, 19881 for state update, together with the simulated 
annealing according to an annealing schedule, results in an extremely 
slow learning of the Boltzmann machine. A fast learning procedure 
is to simply run the machine only at zero temperature. This is called 
deterministic Boltzmann machine [LeCun, 19861. This has the 
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disadvantage of getting stuck in shallow minima. Consequently, the 
pattern environment cannot be exactly matched with the network. 

A better approach for learning which retains some of the 
advantages of the stochastic nature of the network is called 
mean-field annealing [Peterson and Anderson, 19871. In the 
mean-field annealing the stochastic nature of the neurons is replaced 
by mean values of the outputs of the units. That is, according to the 
Eq. (5.78) for bipolar units we have 

(si) = tanh (ZIT ) 

= tanh -c ui, ( s j )  r i i  I 
We get one such nonlinear equation for each unit i. These equations 
are solved using iterative methods. This, combined with the annealing 
process, can be used to obtain the average correlation values at 
thermal equilibrium at the minimum temperature. The average 
correlation values become the product of the individual average 
values. That is, 

The mean-field approximation minimizes the mean-field free energy, 
given by [Hinton, 19891 

where F t f  is the mean-field energy when the visible units are clamped 
and Fmf is the mean-field free energy under unclamped conditions. 
Using gradient descent, the weight update using the mean-field 
approximation is given by 

which is the Boltzmann learning law with the average correlations 
replaced by the average values for each unit. Table 5.11 gives an 
algorithm for implementing the mean-field approximation to 
Boltzmann learning. The mean-field approximation results in 10-30 
times speed up of the Boltzmann learning, besides providing 
somewhat better results [Peterson and Apderson, 19871. 
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Table 5.11 Algorithm for Mean-field Approximation fbr Boltzmann Learning 

1. Initialize the weights to some random values uniformly distributed in the 
range f 1. 

2. Clamp the units with a given pattern. Starting at some high temperature, 
the network is subjected to an annealing process using each time the 
mean-field values (s,). The mean-field value is computed using the 
recursive formula 

3. At the final minimum temperature compute the correlations 

4. Likewise compute the correlations p i  in the free running case 

5. Compute the weight update using the Boltzmann learning law: 

where q is learning rate parameter. 
6. Repeat Steps 2 to 5 until convergence of weights. 

5.6 Summary 
Feedback neural networks are used mainly for pattern storage tasks. 
In this chapter we have given a detailed analysis of simple feedback 
networks for storing a set of patterns. Associated with each state of 
the network is an energy value. The key idea in pattern storage by 
feedback networks is the formation of basins of attraction in the 
energy landscape in the activation or output state space. The Hopfield 
conditions for formation of suitable energy landscape are discussed. 
In order to store a set of patterns in a feedback network with 
hard-limiting threshold units, a set of inequalities have to be satisfied 
by the weights connecting the units. Thus there may be several 
solutions for the weights satisfying the inequalities. The resulting 
energy landscape may have additional false minima corresponding to 
patterns not designed for storage. This happens if the storage capacity 
of the network is higher than the number of patterns required to be 
stored. The presence of false minima will increase the probability of 
error in recall of the stored pattern. 

The effect of false minima is reduced using stochastic units 
instead of deterministic units. Analysis of stochastic neural network 
is based on the concepts of thermal equilibrium and simulated 
annealing. These concepts are used for traversal along an energy 
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landscape to reduce the effects of false minima during recall of stored 
patterns. To reduce the probability of error in recall, the weights of 
a feedback network are adjusted using the knowledge of the patterns 
as well the probability distribution of these patterns. Loading of the 
pattern environment is accomplished in a feedback network with 
stochastic units using Boltzmann learning law. The learning law, 
derived based on an information theoretic criterion, involves only local 
computations, and is implemented using simulated annealing accord- 
ing to a temperature schedule. 

Boltzmann learning law is too slow for implementation in any 
practical situations involving pattern environment storage. For 
practical implementation, an approximation in the form of mean-field 
annealing is used. While there is no guarantee for solution, mean-field 
annealing has been applied in several applications, especially in 
optimization problems. Some of these applications will be discussed 
in Chapter 8. 

Review Questions 
1. Distinguish between autoassociation, pattern storage and pattern 

environment storage tasks. Give examples for each task. 

2. What is the significance of the nonlinear output function of the 
units in feedback neural networks? 

3. Explain the meaning of activation state and energy landscape of 
a feedback network. 

4. What is meant by capacity of a feedback network? 

5. What is the Hopfield model of a neural network? 

6. Explain the differences between discrete and continuous Hopfield 
models in terms of energy landscape and stable states. 

7. What is a state transition diagram for a feedback network? 
Explain how to derive it for a given network. 

8. What are hard problems in pattern storage task? 

9. How to solve the hard pattern storage problems? 

10. Explain with the help of a state transition diagram the meaning 
of stable states and false minima. 

11. Eow to overcome the effects of false minima? 
12. What is the significance of hidden units in a feedback network? 
13. What is meant by stochastic update of a neuron? 
14. Explain the concept of equilibrium in stochastic neural networks. 
15. Explain the meaning of stationary probability distribution at 

thermal equilibrium. 
16. What is the significance of Gibb's distribution? 
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17. What is meant by stability in the case of stochastic neural 
networks? 

18. Show the probability function for update of a neuron for different 
temperatures. Explain the significance of the temperature 
parameter. 

19. Discuss the behaviour of trajectories of the states during the 
transient portion when temperature is changed. 

20. Discuss the behaviour of stationary probability distributions of the 
states at different temperatures in relation to the energy landscape. 

21. Explain the behaviour of a stochastic neural network at thermal 
equilibrium with reference to Brownian particle motion. 

22. Explain how to derive the state transition diagram for a 
stochastic neural network. 

23. What differences will you observe in the state transition 
diagrams at two different temperatures? 

24. Describe a bouncing ball analogy for the dynamics of a stochastic 
neural network. 

25. What is meant by capacity of a stochastic neural network? How 
does it  vary for different temperatures? 

26. What is meant by simulated annealing? What is annealing 
schedule? 

27. Describe the Boltzmann machine. 

28. What is the basis for Boltzmann learning law? 

29. What is the significance of the Boltzmann learning law given by 
Eq. (5.103)? 

30. Distinguish between clamped and free running conditions in a 
Boltzmann machine during learning. 

31. Explain the implementation details of the Boltzmann learning law. 

32. Explain the implementation details of recall of patterns in a 
Boltzmann machine. 

33. How to perform the following tasks by a Boltzmann machine? 

(a) Pattern completion 
(b) Pattern association 
(c) Pattern recall from noisy input. 

34. What are the limitations of the Boltzmann learning? 

35. What is a Cauchy machine? 

36. What is the Markov property of the simulated annealing process? 

37. What is meant by full free energy and clamped free energy in a 
Boltzmann machine? 
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38. How do you interpret the Boltzmann learning in terms of full 
free energy and clamped free energy? 

39. What is mean-field approximation to Boltzmann learning? 
40. What is meant by deterministic Boltzmann machine? 

Problems 
1. Derive the Murakami result in Eq. (5.12) for autoassociation 

task. 
2. Show the result of Hopfield analysis, i.e., AV I 0, for a feedback 

network with binary (0, 1) units. 
3. Draw a state transition diagram for a 3-unit model with bipolar 

(-1, +1) units. 
4. Using the Eqs. (5.65) and (5.69), derive the result in Eq. (5.70). 
5. Show that (See Eqs. (5.72), (5.107), (5.108) and (5.111)) 

where F and Fa are the full free energy and the clamped free 
energy of the Boltzmann machine. 

6. Derive the expression for hi. for the mean-field approximation 
of the Boltzmann learning. (dee Bertz et al, 1991, p. 1721.) 

7. ' Show that the information theoretic measure G 2 0. (See Eq. (5.86)) 
8. Derive the complete state transition diagram for the 3-unit 

network given in the Figure 5.7(a) for a temperature of T = 1.0. 
9. For a 5-unit feedback network the weight matrix is given by 

Assuming that the bias and input of each of the units to be zero, 
compute the energy at the following states. 

10. A 3-unit feedback network has the weight vector given by 

Compute the gradient vector VV and the Hessian matrix V2v 
for the energy function of the network. 
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11. Consider the representation of each of the ten digits (0, 1, ..., 9) 
by a matrix of 10 x 10 elements, where each element is either 1 
or -1. Design a Hopfield network of 100 units to store these 
digits. Study the performance of the network for recall of digits 
if 10% of the elements are randomly switched. 
(See [Haykin, 1994, p. 2971.) 

12. Comment on the capacities of the following networks: 

(a) Feedforward neural network 

(i) linear units C 5 M (dimensionality of the input) 

(ii) nonlinear units C = 2M for large M (See per tz  et al, 
1991, pp. 111-1141). 

(b) Feedback neural network with N units (See Hertz et al, 1991, 
p. 39) 

C = 0.138N for large N 

(c) Hamming network (See Hint for Problem 3 in Chapter 8 and 
[:F(ung, 1993, p. 611) 

c = 2 p M ,  p 5 1 .  



Chapter 6 

Competitive Learning 
Neural Networks. 

6.1 Introduction 
In this chapter we consider pattern recognition tasks that a network 
of the type shown in Figure 6.1 can perform. The network consists 
of an input layer of linear units. The output of each of these units is 
given to all the units in the second layer (output layer) with adaptive 
(adjustable) feedforward weights. The output functions of the units 
in the second layer are either linear or nonlinear depending on the 
task for which the network is to be designed. The output of each unit 
in the second layer is fed back to itself in a self-excitatory manner 
and to the other units in the layer in an excitatory or inhibitory 
manner depending on the task. Generally the weights on the 
connections in the feedback layer are nonadaptive or fixed. Such a 
combination of both feedforward and feedback connection layers 
results in some kind of competition among the activations of the units 
in the output layer, and hence such networks are called competitive 
learning neural networks. Different choices of the output functions 

Output layer with 
on-centre and 
off-surround 
connections 

Input layer 

Figure 6.1 A feedforward and feedback structure. The feedforward weights 
are adaptive and the weights in the feedback layer are fixed. 

201 
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and interconnections in the feedback layer of the network can be used 
to perform different pattern recognition tasks. For example, if the 
output functions are linear, and the feedback connections are made 
in an on-centre off-surround fashion, the network performs the task 
of storing an input pattern temporarily. In an on-centre off-surround 
connection there is an excitatory connection to the same unit and 
inhibitory connections to the other units in the layer. But such a 
network is of theoretical interest only, as there are few occasions 
where one needs to store a pattern temporarily in this manner. On 
the other hand, if the output functions of the units in the feedback 
layer are made nonlinear, with fixed weight on-centre off-surround 
connections, the network can be used for pattern clustering. The 
objective in pattern clustering is to group the given input patterns 
in an unsupervised manner, and the group for a pattern is indicated 
by the output unit that has a nonzero output at equilibrium. The 
network is called a pattern clustering network, and the feedback layer 
is called a competitive layer. The unit that gives the nonzero output 
at equilibrium is said to be the winner. Learning in a pattern 
clustering network involves adjustment of weights in the feedforward 
path so as to orient the weights (leading to the winning unit) towards 
the input pattern. 

If the output functions of the units in the feedback layer are 
nonlinear and the units are connected in such a way that connections 
to the neighbouring units are all made excitatoly and to the farther 
units inhibitory, the network then can perform the task of feature 
mapping. The resulting network is called a self-organization network. 
In the self-organization, at equilibrium the output signals from the 
nearby units in the feedback layer indicate the proximity of the 
corresponding input patterns in the feature space. A self-organization 
network can be used to obtain mapping of features in the input 
patterns onto a one-dimensional or a two-dimensional feature space. 

Table 6.1 shows the organization of the topics to be discussed in 
this chapter. First a detailed discussion on the components of a 
competitive learning network is given in Section 6.2. In particular, 
we will discuss the input layer, a single instar network and a group 
of instars. We will also discuss the learning laws for an instar and 
the activation dynamics of the feedback network. We will show that, 
with some variation of the learning for the instar networks, one can 
obtain the principal component analysis learning networks. In Section 
6.3 an analysis of the combination network with linear units in the 
feedback layer is presented to show the short time memory nature 
of the pattern recognition task performed by such a network. In this 
section the significance of different nonlinear output functions of the 
units in the feedback layer is also discussed. An analysis of the 
competitive learning network for pattern clustering is given in 
Section 6.4. Some applications of the pattern clustering networks are 
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Table 6.1 Pattern Recognition Tasks by Feedforward (FF) and Feedback 
(FB) ANN (Competitive Learning Neural Networks) 

Pattern storage (STM) 
Architecture: Two layers (input and competitive), linear processing units 
Learning: No learning in FF stage, fixed weights in FB layer 
Recall: Not relevant 
Limitation: STM, no application, theoretical interest 
To overcome: Nonlinear output function in FB stage, learning in FF 
stage 

Pattern clustering (grouping) 

Architecture: Two layers (input and competitive), nonlinear processing 
anits in the competitive layer 
Learning: Only in FF stage, Competitive learning 
Recall: Direct in FF stage, activation dynamics until stable state is 
reached in FB layer 
Limitation: Fixed (rigid) grouping of patterns 
To overcome: Train neighbourhood units in competition layer 

Feature map 

Architecture: Self-organization network, two layers, nonlinear processing 
units, excitatory neighbourhood units 
Learning: Weights leading to the neighbourhood units in the competitive 
layer 
Recall: Apply input, determine winner 
Limitation: Only visual features, not quantitative 
To overcome: More complex architecture 

also discussed briefly in this section. A detailed analysis of the 
self-organization network is given in Section 6.5. Several examples 
of feature mapping are given in this section to illustrate the 
significance of the concept of self-organization. 

6.2 Components of a Competitive Learning Network 

A competitive learning network consists of an input layer with linear 
units, a group of instars forming a feedforward portion of the network 
and a feedback layer with linear or nonlinear units. In this section 
we discuss each of these components in some detail. 

6.2.1 The Input Layer 

The purpose of this layer is to distribute the given external input 
pattern vector to the feedforward portion of the network. But in 
general the input vectors may be of varying magnitude, even though 
they may contain the same pattern information. Moreover, for any 
processing by a unit, it is necessary to have the inputs bounded to 
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some limits. In an on-line situation, the input layer should not feed 
background noise to the feedforward portion of the competitive 
learning network. The so called noise-saturation dilemma (discussed 
in Chapter 2) for input vectors can be handled by feeding the actual 
inputs from the environment to a layer of input processing units as 
shown in Figure 6.2. A shunting activation model with on-centre 

Input layer 

External input 

Figure 6.2 Input layer with M processing units, showing a few connections 
with external inputs. 

off-surround configuration takes care of the noise-saturation. problem 
of the input layer, and is given by (see Eq. 2.18) 

As shown in Chapter 2, the steady s';ate activation value of the ith 
unit is given by 

where 
M 

and all the inputs (Ii) are nonnegative. The above equations show 
that in the steady state the activation value of the ith unit is confined 
to the range [-C, Bl. The output function of these units is assumed 
to be linear for x > 0. That is 

The output of the units will be zero as long as the inputs Ii c 
CII(B + C). That is, the input should be greater than some minimum 
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value before it can make the activation of the unit positive. Thus the 
units in the input layers do not respond to noise input, if the noise 
amplitude is below some threshold value. Therefore the input to the 
feedforward portion is always positive and is limited to a maximum 
value of B. Thus this input layer not only normalizes the input data 
valdes, but also takes care of the noise-saturation problem with an 
on-line input data. 

6.2.2 The lnstar 

Each unit in the feedback layer receives inputs from all the input 
units. A configuration where a unit receives weighted inputs from 
several units of another layer i s .  called an instar, as shown in 
Figure 6.3. Let x = (x l ,  x2, ..., xM)~ and w = (wl, w2, ..., wM)~ be the 

n 

Figure 6.3 An instar configuration. 

input and weight vectors, respectively. The net input to the instar 
processing unit is given by wTx. The activation dynamics of the instar 
processing unit is given by the following additive model with a passive 
decay term and the net input term: 

where we have assumed the decay constant to be 1. The solution of 
this equation is 

y(t) = y(0) e-' + s x  (1 -e-t) (6.5) 

The steady state activation value is given by 

which will be zero when the external input x is removed. 

6.2.3 Basic Competitive Learning 

The steady activation value with an external input depends on the 
angle between the input and weight vectors as shown in Figure 6.4. 
For the instar to respond maximally for a given input vector x, the 
weight vector is moved towards the input vector. The adjustment of 
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Figure 6.4 Illustration of adjustments of weights in instar 

the weight vedor is governed by the following synaptic dynamics 
equation (see Eq. 2.40) 

where fly) is the output of the instar processing unit. In discrete 
implementation the change in the weight Aw(t) is given by 

where 7 is a learning rate parameter. For binary output function, 
f i)  = 1 or 0. Therefore the weights in the instar are adjusted only 
when the output of the instar processing unit is 1. The increment in 
the weight is given by 

Aw(t) = 7 [X - w(t)I (6.9) 
The updated weight is given by 

This shows that the weight vector is adjusted in such a way that it 
is moved towards the input vector to reduce the angle between them 
as shown in Figure 6.4. This adjustment is repeated several times 
for a given set of input patterns. When the weight vector reaches an 
average position, the weight adjustment will be such that the average 
movement around the weight vedor will be zero. That is 

Therefore the weight vector w will be equal to the average of the set 
of input vectors. 

An individual instar responds to a set of input vectors, if it is 
trained to capture the average behaviour .of the set. Generally the 
input patterns may fall into different categories. More than one 
instar, i.e., a group of instars (Figure 6.5), can be used to capture the 
average behaviour of each of the different categories of the input 
patterns. One instar may 'be trained to each category of the input 
patterns, so that the corresponding processing unit responds maxi- 
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Figure 6.5 A group of N instars. 

mally when an input vector belonging to that category is given to the 
common input layer of the group of instars. Typically, the number 
( N )  of instars corresponds to the number of different categories of the 
input patterns. The category of an input vector can be identified by 
obselving the instar processing unit with maximum response. 

Plain Hebbian learning: With linear output function for the instar 
processing unit, i.e., f i)  = y, one possibility is to make the output y 
to be a scalar measure of similarity. That is, for the given input vector 
x, the weights should be adjusted to give a large output y, on the 
average. For this, if we use the plain Hebbian learning, we get 

Awi = 11 y xi (6.12) 

where 11 is the learning rate parameter. In this case the weights keep 
growing without bound. That is, the weights never converge, which 
is equivalent to saying that on the average the weight change will 
not be zero. This can be proved as follows: 

Taking the expectation to compute the average, we get 

where it is assumed that the weight vector is statistically independent 
of the input vector. Therefore the average change in the weight vector 
is given by 

&[Awl = 11 R w  (6.14) 

where Aw = (Awl, Aw2, . .., AwMIT, and R = &[xxT] is the auto- 
correlation matrix of the input vectors. 

R is positive semidefinite, since for any vector a, we have 

Therefore R will have only positive eigenvalues. The weight vector 
converges if &(Aw) = 0. Then Eq. (6.14) states that for convergence 
R w  = 0. This means that the resulting weight vector is an eigenvector 
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with zero eigenvalue, which is not a stable situation, since R has 
positive eigenvalues. Any fluctuation of the weight vector with a 
component along an eigenvector of R will result in a weight vector 
which would grow eventually, and the component along the 
eigenvector with the largest eigenvalue will dominate. 

This can be shown as follows: Taking the projection of the 
average change of the weight vector onto one of the eigenvectors qi 
of R, we get 

~ ; & [ A W ]  = q ~ T R W  (6.16) 

This will be nonzero if w is the eigenvector q,, since Rq, = hi q, and 
the eigenvedors (q,) are orthonormal. Therefore we have 

This projection in turn is maximum when qi is the eigenvedor wo 
corresponding to the maximum eigenvalue La,. Therefore we have 

&[Awl = q Rw,  = q &, wo (6.17) 

According to Eq. (6.17) the average change of the weight will be 
dominated by the component along the eigenvector with maximum 
eigenvalue. The norm of w will increase without bound, because 

Starting with an initial value of the weight w ( 0 )  = 0, and determining 
the value of the weight at  each time instant, we get from Eq. (6.18) 

w ( m )  = m rl Lax w0 (6.19) 

Thus, with plain Hebbian learning, there will be only unstable weight 
values. 

Oja's rule: The divergence of the plain Hebbian learning can be 
prevented by constraining the growth of the weight vector w. One 
way of doing this is by normalizing the weight 1) w (1 = 1 at every stage 
after adjustment. Another method, called Oja's rule, uses a decay 
term proportional to y2 in the synaptii dynamics equation. Then the 
weight update in Eq. (6.12) is modified as 

In this case the change in the weight depends on the difference 
between the actual input and the back propagated output (ywi). The 
weight vector will eventually align with the eigenvector of R 
corresponding to the largest eigenvalue [Oja, 19821. 

If R is a covariance matrix, i.e., R = E [ ( x  - p)(x - p)?, 
u = &[XI, then the final weight vedor will be along the largest 
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principal component passing through the origin (Figure 6.6a) [Hertz 
et al, 1991; Haykin, 19941. See Appendix E for details of principal 
component analysis. If R is only an autocorrelation matrix, the final 
weight vector will still be along the largest principal eigenvector, 
passing through the origin (Figure 6.6b). But in the later case the 
choice will not be optimal in the sense that the projection of the set 
of input vectors on the weight vector will not be the least as in the 
case of the covariance matrix. In both cases the weight vector will 
settle to the normalized value II w 11 = 1. 

w(-)% .. . 

. . .  . . .  . . 2 w(0) . .  . . . . .  . 
. . o... . .  XI 

(a) 03) 
Figure 6.6 Illustration of @a's rule for training instar. The training data 

consists of vectors in 2-D space, represented as dots. The line 
from w(-) to w(-) is the trajectory of the weight values. The 
final weight represents direction of maximum variance of the 
input data as shown in (a). But in (b) the direction of maximum 
variance is the average of the input data vectors [Adapted from 
Hertz et al, 1991, p. 2011. 

Oja's rule finds a unit weight vector which maximizes the mean 
squared output E[y21. For zero-mean input data, this becomes the 
first principal component. In order to obtain the first p principal com- 
ponents, one can have a network with p instars. Two learning laws 
for this feedforward network are given by [Sanger, 1989; Oja, 19891 

Sanger's rule: 
i 

, i = 1 , 2  ,..., p (6.21) 

Oja's p-unit rule: 

In both the cases the weight vectors wi converge to orthogonal unit 
vectors. With Sanger's rule, the weight vectors become exactly the 
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first p-principal component directions in order, whereas with Oja's 
p-unit rule, the p weight vectors converge to span the same subspace 
as the first p eigenvectors, but the weight vectors do not correspond 
to the eigenvectors themselves. Table 6.2 gives a summary of the 
learning algorithms for the principal component analysis. 

Table 6.2 Summary of Learning Algorithms for Principal Component 
Analysis Networks 

Consider a group ofp instara, with all the units having linear output function. 
Let R be the covariance matrix of the input vectors. That is  R = 
&[(x - p) (x - p)T, p = & [ X I .  Output of each unit 

M 

y , ( m ) - x  zuo(rn)xj(m), i = l , 2  ,..., p 
i = l  

a Plain Hebbian learning for ith instar 

AWiJ@) = rl u,(m) nJ@) 

Weight vector wi converges to the direction of the first principal 
component but is unbounded. 
Oja's rule for ith instar 

AW,(m) = rl Yi(m) [n,(m) -yi(m) ~$41 
Weight vector wi converges to the direction of the first principal 
component of R. 
Oja's p-unit rule for p instars 

Weight vectors converge to p orthogonal vectors which span the same 
space as the fvst p principal components of R. 
Sanger's rule or Generalized Hebbian rule for p instara 

Weight vectors converge to the first p principal component directions 
of R. 

6.2.4 Feedback Layer 

As mentioned earlier, in the arrangement of a group of instars, the 
category of an input vector can be identified by observing the instar 
processing unit with maximum response. The maximum response unit 
can be determined by the system itself if the outputs of the instar 
processing units are fed back to each other. 
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If the processing units of a group of instars are connected as an 
on-centre off-surround feedback network, as shown in Figure 6.7, then 

Feedback layer 

Input layer 

Figure 6.7 Arrangement of group of instara with output units connected in 
an on-centre off-surround manner. 

the feedback layer is called a competitive layer. In this layer there is 
an excitatory self-feedback to each unit, and an inhibitory feedback 
from a given unit to all other units. The excitatory feedback is 
indicated by a positive (+) weight, and the inhibitory feedback is 
indicated by a negative (-1 weight. Generally these weights are fixed 
a priori. The nature of the output function of the instar processing 
units will determine the behaviour expected from such a competitive 
layer. The pattern recognition tasks for different output functions will 
be discussed in the next section. Figure 6.8 shows the complete 
competitive learning network we have discussed so far in this section. 

Feedback layer 

Input layer 

Input vector 

Figure 6.8 The complete competitive learning network structure. 

6.3 Analysis of Feedback Layer for Different Output 
Functions 

6.3.1 Pattern Storage (STM) Networks 

Earlier in Chapter 5 we have discussed the pattern storage networks 
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which are fully connected feedback networks with symmetric weights. 
The pattern information is captured in the weights of the network, 
and the pattern storage is due to the existence of stable activation 
states in the feedback network. The pattern storage in such cases is 
permanent, in the sense that the patterns are available, and they 
can be recalled from the network as long as the weights are fixed. 
This type of storage can be viewed as long-term memory (LTM). In 
contrast, we have seen in Section 6.2.1 that in an on-centre 
off-surround feedforward network connection (Figure 6.2), the output 
disappears when the input is removed. The pattern is present in the 
activation values of the units, and the pattern disappears once the 
input is removed. Thus the availability of the pattern is purely 
temporary in such a case. 

In this section we will study a pattern storage network where the 
pattern is present even if the input pattern is removed, as long as 
the network is not disturbed by another external input. Note that in 
this case the pattern is stored in the activation valuesef a feedback 
layer, and the activation values remain stable due to feedback. This 
type of storage is called short-term memory (STM). The existing 
pattern information disappears if there is an external input due to 
another pattern, since the new input changes the stable activation 
values to the ones corresponding to the new pattern. The three types 
of pattern storage networks are illustrated in Figure 6.9. 

Figure 6.9 Different pattern storage networks: (a) Temporary storage, (b) Short- 
term memory and (c) Long-term memory. 

6.3.2 Analysis with Linear Output Functions 

To analyze the pattern storage network corresponding to the short- 
term memory, we will use the notation shown in Figure 6.10 for the 
feedback network. The input is fed in an on-centre off-surround type 
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1, 1, ZY 

Figure 6.10 Pattern storage network with linear units in the feedback layer. 

connection to provide normalized input to the units in the feedback 
layer. The units in the feedback layers are all linear. That is the 
output functions of the feedback units are given by f (x) = x.  

The analysis presented in this section is adapted fmm [Freeman 
and Skapura, 19911. The activation dynamics is described by the follow- 
ing shunting model within an operating range [O, Bl (See Eq. (2.20)): 

The passive decay term is given by - Axi and the quantity Hzi) + Iil 
is the total excitatory input to the ith unit, and the quantity 

Z .fixk) + Z .  I,] is the total inhibitory input to the ith unit. Summing 
[ , # I  J + 1 M 
the expression for xi over i and using x =iXlxi ,  we get 

Let xi = x Xi. Then 

xi = % X i + % X i  
Using the Eq. (6.23) to (6.25) we get 

x x i  = x i -%Xi  
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Therefore, 
flXxi)-x,xfixk) + B I ~ - B ~ ~ G  (6.26) 

k I j 

Let f(y) = y g(y). Substituting this for f(y) in Eq. (6.26), we get 

= B x & x  X k [ g ( x X i ) - g ( x X k ) ] + B I i - B X i x  1, (6.27) 
k j 

since Xk g(x Xi) = g(x Xi) 5 Xk = g(x Xi). 
For a linear output function, i,e., fCy) = y, we get g(y) = 1. The 

first term in the expression for xXi will become zero. Therefore 

x x i  = B 1 , - B q  x I, 
j 

In the steady state xi = 0, and hence 

Thus the steady normalized activation values of the units in the feed- 
back layer correspond to the normalized input patterns. Figure 6.11 
shows the performance of the feedback layer with linear processing 
units. Figure 6.11a shows the linear output function and Figure 6.11b 
shows the steady normalized activation values. If the inp.ut is 
removed, i.e., Ii = 0 for all i, then from Eq. (6.28) we get xXi = 0. 
This shows that for nonzero x, Xi = 0. That is Xi = xjx = constant, 
and the activation values are determined by x alone. 

When Ii = 0, for all i, we also get from Eq. (6.24), 

In the steady state and for nonzero x, since x = 0, we get 

x = B-A = constant (6.31) 

Thus both x and Xi are constant. That means xis are constant. That 
is, the steady state activation values will remain at some fixed, 
nonzero values even after removal of the input. The steady state 
values remain until they are disturbed by another set of input values. 
Thus the pattern stored can be viewed as short-term memory. 
Figure 6 .11~  illustrates the performance of the feedback layer with 
linear processing units, when the input values are set to zero. 
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(a) Linear output function f i )  = z 

21 XI 32 

Output I I I I I I 

11 Zi ZU 11 = 0 Zi = 0 ZU = 0 

input Ex"rnd I I I 
(b) Steady state pattern (c) Steady state pattern after 

with external input setting the external input 
to zero 

Figure 6.11 Performance of feedback layer with linear processing units 
[Adapted from Freeman and Skapura, 19911. 

6.3.3 Anaiysls with Quadratic Output Functlons 

The analysis presented in this section is adapted from [Freeman and 
Skapura, 19911. In this section we will discuss the behaviour of the 
competitive learning network of the type .in Figure 6.10 with 
nonlinear processing units in the feedback layer. In particular, let us 
consider the quadratic output function f i )  =. y2. Then substituting 
for g(y) = f i )  l y = y in the expression for xXi in Eq. (6.27), we get 

= B X X ~ ~ X X ~ C Y , - X ~ ) + B I ~ - B X , ~  4 (6.32) 
k j 

If Xi > Xk for k + i, then the h t  term is always positive, and hence 
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it becomes an excitatory term. In this case the network tries to 
enhance the activity Xi. If Xi cXk , for k + i, then the first term is 
negative and hence it becomes an inhibitory term. In this case the 
network tries to suppress the activity Xi. Thus the largest Xi, say 
when i = j, will get enhanced in the steady state as shown in Figure 
6.12b. For the intermediate cases, where (Xi - Xk) is greater than 
zero in some cases and less than zero & some other cases, the steady 
state values will be in between the maximum and zero values. When 
the input is removed, i.e., Ii = 0 for all i, the steady state value of 

' Xi is given by setting xXi = 0 in Eq. (6.32) and x = 0 in Eq. (6.24). 
That is 

C x xk (xi -xk) = 0 (6.33) 
k 

and 
- ~ + ( B - x ) ~ ( x x ~ ) ~  = 0 (6.34) 

k 

Eq. (6.33) gives 

Xi = CX; = q 2 + X x f  (6.35) 
k k # i 

since $Xk = 1. From Eq. (6.35) the only nonzero solution for Xi is 

Xi = 1, and Xk = 0, for k + i .  
Likewise from Eq. (6.34) above, we get 

This shows that the total activation x is bounded by B, since A and 
B are positive. 

The above analysis shows that when the input is zero, in the 
steady state only one of the units is activated to the maximum value 
of xi, which is equal to the total activation value x, as shown in 
Figure 6.12~. The maximum value is bounded by B. Thus we may 
say that only one unit in the feedback layer wins the competition for 
a given input pattern, even after the pattern is removed. Therefore 
the feedback layer is called a competitive layer in this case. Note that 
the result is valid for any function of the type fix) = xn , n > 1. In all 
of these cases only one of the units will have maximum activation 
and all others will have zero activation values. This may be viewed 
as noise suppression, in the sense that al l  activation values lower 
than the maximum will be reduced to zero in the competition. 
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(a) Quadratic output function fix) = f 

output 1 

(b) Steady state pattern (c) Steady state pattern after 
withexternal input setting the external input 

to zero 

Figure 6.12 Performance of feedback layer with units having quadratic 
output functions [Adapted from Freeman and Skapura, 19911. 

From the analysis in the previous section, we notice that pattern 
storage is achieved by using feedback units with linear output 
functions. Analysis in this section shows that noise suppression can 
be achieved by using quadratic output functions. Thus by using a 
quadratic output function for low activation and linear output 
function for high activation, both noise suppression and pattern 
storage (STM) tasks can be accomplished. In addition, if the output 
function increases at a rate less than linear for large activation, then 
the output is bounded all the time. The resulting output function is 
like a semilinear function as shown in Figure 6.13a. In such a case, 
in the steady state more than one of the units may have large 
activation values when the input is present (Figure 6.13b). Likewise, 
when the input is removed, in the steady state more than one unit 



218 Competitive Learning Neural Networks 

may reach maximum activation and all other units will have zero 
activation. This is illustrated in Figure 6.13~. 

(a) Semilinear output function 

XI 5 0 B 

Output 1 
I I 

I, Ii Il = 0 Ii = 0 I-= 0 

I External 
input 1 I 

(b) Steady state pattern (c) Steady state pattern after 
with external input setting the external input 

to zero 

Figure 6.13 Performance of feedback layer with units having semilinear 
output functions. 

6.4 Analysis of Pattern Clustering Networks 
In the previous section we have seen that a competitive learning 
network with nonlinear output functions for units in the feedback 
layer can produce at equilibrium larger activation on a single unit 
and small activations on other units. This behaviour leads to a 
winner-take all situation, where, when the input pattern is removed, 
only one unit in the feedback layer will have nonzero activation. That 
unit may be designated as the winner for the input pattern. If the 
feedforward weights are suitably adjusted, each of the units in the 
feedback layer can be made to win for a group of similar input pat- 
terns. The corresponding learning is called competitive learning. The 
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units in the feedback layer have nonlinear Ax) = xn , n > 1 output 
functions. Other nonlinear output functions such as hard-limiting 
threshold function or semilinear sigmoid function can also be used. 
These units are connected among themselves with fked weights in 
an on-centre off-surround manner. Such networks are called competi- 
tive learning networks. Since they are used for clustering or grouping 
of input patterns, they can also be called pattern clustering networks. 

In the pattern clustering task, the pattern classes are formed on 
unlabelled input data, and hence the corresponding learning is 
unsupervised. In the competitive learning the weights in the 
feedforward path are adjusted only aRer the winner unit in the 
feedback layer is identified for a given input pattern. There are three 
different methods of implementing the competitive learning as 
illustrated in Figure 6.14. In the figure, it is assumed that the input 

Output 

Input 

Figure 6.14 Illustration of basic competitive learning laws: (1) Minimal 
learning-nly connections of type A (solid lines) are trained. 
(2) Malsburg learning-nly connections of type A and B 
(dashed lines) are trained. (3) Leaky learning4onnections of 
all the three types A, B and C (dotted lines) are trained 
[Adapted from Kung, 19931. 

is a binary (0, 1) vector. The activation of the ith unit in the feedback - .  
M 

layer for an input vector x = (x,, x,, ..., xM)T is given by yi =,I;,wu xj, 

where wy is the (i, j)th element of the weight matrix W, connecting 
the jth input to the ith unit. Let i = k be the unit in the feedback 
layer such that 

Yk = max b'i) (6.38) 
1 

then 
T wkx 2 WTE, for all i 

Assume that the weight vectors to all the units are normalized, i.e., 
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( 1  wi) 1 = 1, for all i. Geometrically, the above result means that the input 
vector x is closest to the weight vector wk among all wi. That is 

11 x- wk 11 5 11 x-  wi 11, for all i (6.40) 

Start with some initial random values for the weights. The given set 
of input vectors are applied one by one in a random order. For each 
input the winner unit in the feedback layer is identified, and the 
weights leading to the unit are adjusted in such a way that the weight 
vector wk moves towards the input vector x by a small amount, 
determined by a learning rate parameter q. Note that by doing this 
we are making that unit to respond more for that input. A straight 
forward implementation of the weight adjustment is to make 

hkj = q ( x j -  w ~ ) ,  
so that 

wk(m + 1) = wk(m) + Awk(m) 

This looks more like Hebb's learning with a decay term if the output 
of the winning unit is assumed to be 1. It  works best for 
prenormalized input vectors. This is called the standard competitive 
learning. Figure 6.15 shows the performance of the competitive 

(a) (b) 
Figure 6.15 Illustration of competitive learning. The circles ('0') represent 

input vectors and crosses ('x') represent weight vectors: (a) 
before learning, and (b) after leaming. 

learning law for normalized input and weight vettors for a set of 3 
dimensional input vector clusters. If the input vectors are not 
normalized, then they are normalized in the weight . adjustment 
formula as follows: 

Awkj = q [+$ - wkj] ,  only for those j for which xj = 1. (6.43) 
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This can be called minimal learning Bung, 19931. In the case of 
binary input vectors, for the winner unit, only the weights which have 
nonzero input would be adjusted. That is 

= 0, for xj = 0 (6.44) 

Thus in this case only the connections which have both 1 at either 
end will be adjusted as shown in Figure 6.14 for the minimal learning 
case. 

In the minimal learning there is no automatic normalization of - 
M 

weights after each adjustment. That is .Zpy # 1. In order to 
I =  

overcome this problem, Malsburg suggest& the following learning 
law, in which all the weights leading to the winner unit will be 
adjusted [von der Malsburg, 19731: 

In this law if a unit wins the competition, then each of its input lines 
gives up some portion of its weights, and that weight is distributed 
equally among the active connections for which xj = 1. 

The unit i with an initial weight vector wi far from any input 
vector, may never win the competition. Since a unit will never learn 
unless it wins the competition, another method called leaky learning 
law is proposed [Rumelhart and Zipser, 19851. In this case, the 
weights leading to the units which do not win also are adjusted for 
each update as follows: 

if i wins the competition, i.e., i = k 

if i loses the competition, i.e., i # k (6.46) 

where qw and ql are the learning rate parameters for the winning 
and losing units, respectively (qw >> Q). In this case the weights of the 
losing units ape also slightly moved for each presentation of an input. 
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Basic competitive learning and its variations are used for adaptive 
vector quantization [Nasrabadi and King, 19881, in which the input 
vectors are grouped based on the Euclidean distance between vectors. 
Both unsupervised vector quantization (VQ) and supervised or learn- 
ing vector quantization (LVQ) algorithms are available [Kohonen, 
1988; Kohonen, 19891. The basic learning laws for competitive 
learning and vector quantization are summarized in Table 6.3. 

Table 6.3 Summary of Competitive Learning Methods 

Basic competitive learning 

Assume prenormalized input vectors and weight vectors normalization. 

Let x be the input vector and wi be the weight vector for ith unit in the 
competitive layer. Thus if W% 2 WTX, for all i, then k is the winning unit. 

Minimal learning (for binary input vectors) 

hM = - w ~ ]  , only for those j for which x, = 1. 
C xi 

Malsburg learning (for 'binary input vectors) 

L i J 
Leaky learning (for binary input vectors) 

if i wins the competition, i.e., i = k 

L m  _I 

if i loses the competition, i.e., i # k 

Vector Quantization (unsupervised) 

For input  vector x and weight vector for the  ith unit  wi, if 
I x - w, 1 s I x - wi 1 ,  for all  i, then k is the winning unit. The vector 

quantization learning law is given by 
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Table 6.3 (Cont.) 

Learning Vector Quantization (LVQ1) (supervised) 
If the clam of the input vector x is given, then 

Aw, = 11 (X - w,), if the winning class k is correct 

= - q (x - w,), if the winning clam K is incorrect 

Learning Vector Quantization (LVQ2) (supervised) 
If the input vector x is misclassified by the winning unit k, and if the 
nearestcneighbour unit i has the correct class, then 

Aw, = - q (x - w,), for incorrect winning unit 

Awi = q (x - wi), for correct neighbouring unit 

If the units in the feedback layer are arranged in a geometrical 
fashion, like a 1-D or a 2-D array, then the update of weights could 
be confined to the neighbouring losing units only. This is called 
Kohonen's learning or feature mapping which will be discussed in the 
next section. 

6.5 Analysis of Feature Mapping Network 
In the pattern clustering network using competitive learning, only 
one unit in the feedback layer is made to win by appropriate choice 
of the connections of the units in the feedback layer. The number of 
units corresponds to the number of possible clusters into which the 
set of input pattern vectors are likely to form. Each unit is identified 
with one cluster or a group. The units otherwise have nothing in 
common among themselves. Even the physical location of a unit 
relative to the other units in the output layer has no significance. 

On the other hand, there are many situations where it is difficult 
to group the input patterns into distinct groups. The patterns may 
form a continuum in some feature space, and it is this kind of 
information that may be needed in some applications. For example, 
it may be of interest to know how close a given input is to some of 
the other patterns for which the feedforward path has already been 
trained. In other words, it is of interest to have some order in the 
activation of a unit in the feedback layer in relation to the activations 
of its neighbouring units. This is called feature mapping. The network 
that achieves this is called feature mapping network. 

A feature mapping network is also a competitive learning network 
with nonlinear output functions for units in the feedback layer, as in 
the networks used for pattern clustering. But the main distinction is 
in the geometrical arrangement of the output units, and the signifi- 
cance attached to the ne ighbou~g  units during training. 
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During recall of information the activations of the neighbouring 
units in the output feedback layer suggest that the input patterns 
corresponding to these units are similar. Thus feature mapping could 
also be viewed as topology preserving map kom the space of possible 
input values to a line or a plane of the output units [Kohonen, 198213; 
Kohonen, 19891. 

The inputs to a feature mapping network could be N-dimensional 
patterns (See Figure 6.16a for a 3-D input), applied one at a time, 
and the network is to be trained to map the similarities in the set 
of input patterns. Another type of input is shown in Figure 6.16b, where 

(a) 3-D input apace to (b) 2-D input space to 
2-D output space 2-D output space 

Figure6.16 Feature mapping networks where the layers are fully 
connected although only a few connections are shown. 

the inputs are arranged in a 2-D array so that the array represents 
the input pattern space as in the case of a textured image. At any 
given time only a few of the input units may be turned on. That is, 
only the corresponding links are activated. The objective is to capture 
the features in the space of input patterns, and the connections are 
like s o M g  dictated by the unsupervised learning mode in which 
the network is expected to work. This second type is more common 
in topological mappings in the brain [Hertz et al, 1991, p. 2331. 

There are several ways of implementing the feature mapping 
process. In one method the output layer is organized into predefined 
receptive fields, and the unsupervised learning should perform the 
feature mapping by activating appropriate connections. This can also 
be viewed as orientational selectivity [Hubel and Weisel, 1962; 
Linsker, 1986; Linsker, 19881. Another method is to modify the 
feedback connections in the output layer of Figure 6.16a. Instead of 
connecting them in an oncentre off-surround manner, the connections 
can be made as indicated by a Mexican hat type function, a 1-D 
version of which is shown in Figure 6.17. The function gives the 
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Figure 6.17 A Mexican hat function in ldimension. 

lateral connection weight value for a neighbouring unit k at  a distance 
1 i - k 1 from the current unit i. The unit i and its immediate neigh- 
bours are connected in an excitatory (+ve weights) manner. The unit 
i is connected in an inhibitory (-ve weights) manner to far off units. 

A third method of implementing the feature mapping process is 
to use an architecture of a competitive learning network with on- 
centre off-sul'round type of connections among units, but at each stage 
the weights are updated not only for the winning unit, but also for 
the units in its neighbourhood. The neighbourhood region may be 
progressively reduced during learning. This is called self-organization 
network with Kohonen's learning [Kohonen, 1982al. Figure 6.18 shows 
an example of a feature mapping using a self-organization network. It 
shows a 2-D input vector and a feedback layer with units arranged as 
a 2-D grid. The input and the output layers are fully connected. 

Output layer 

Input layer 

(a) Network Structure (b) Neighbourhood regions at diffe- 
rent times in the output layer 

Figure6.18 Illustration of a self-organizing network. In the network 
structure in (a) the input units are connected to all the units 
in the output layer, although only a few connections are shown. 
In the output layer all the units are connected to each other, 
although the connections are not shown in the figure. 
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The self-organization network is trained as follows: The weights 
are set to random initial values. When an input vector x is applied, 
the winning unit k in the output layer is identified such that 

IIx-wkIII)Ix-wi)I,for dl i (6.47) 

The weights associated with the winning unit k and its neighbouring 
units m, identified by a neighbourhood function h(k, m), are updated 
using the expression 

Aw, = q h(k, m) (X - w,) (6.48) 

The neighbourhood function h(k, m) is maximum for m =k.  A suitable 
choice for h(k, m) is a Gaussian function of the type 

where rk refers to the position of the kth unit in the 2-D plane of the 
output units. The width of the Gaussian function, described by o, is 
gradually decreased to reduce the neighbourhood region in successive 
iterations of the training process. Even the learning rate parameter 
q can be changed as a function of time during the training phase. The 
weights are renormalized each time aRer the update. Table 6.4 gives 
an algorithm for implementing the self-organizing feature map learning. 

Table 6.4 An Algorithm for Self-organizing Feature Map Learning 

1. Initialize the weights from M inputs to the N output units to small 
random values. Initialize the size of the neighbourhood region q(0).  

2. Present a new input a. 

3. Compute the distance di between the input and the weight on each output 
unit i :  

M 

di = [aj(t) - wiAt)12, for i = 1,2, ..., N 
j = 1  

where a.(t) is the input to the j th input unit at  time t and w,(t) is the 
weight horn the jth input unit to the ith output unit. 

4. Select the output unit k with minimum distance 

5. Update weight to node k and its neighbours 

w,(t + 1) = wii(t) + q(t) (aj@) - w,$t)) 

for i E q( t )  and j = 1, 2, ..., M, where ~ ( t )  is the learning rate parameter 
(0 <q(t) .< 1) that decreases with time. q(t) gives the neighbourhood 
region around the node k at  time t. 

6. Repeat Steps 2 through 5 for all inputs several times. 
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Figure 6.19 illustrates the result of Kohonen's learning for feature 
mapping. In the figure the mapping is from a 2-D input to a 2-D 

+ 10,  + lo1  

(a) initial weights (b) after 25 cycles 

+ W I  + Wl 

(c) after 50 cycles (d) aftor 1000 cycles 

Figure 6.19 An illustration of Kohonen's learning for self-organizing networks. 

feature space. The input consists of a point chosen at random from 
the input space defined by the region of interest, a square in this 
case. The feature map is displayed by the weight values of the 
connections leading to each unit in the output layer aRer training. 
The weights for each unit is a point in the (w,, w2) space, and the 
points corresponding to adjacent units in the output layer are joined 
in the figure. Initially the weights are set to some random values 
around the mean. As training proceeds, the weights are m o ~ e d  to 
span the space in the (w,, w2) plane. The shape of the spanned space 
is dictated by the shape of the region (a unit square in this case) 
from which the input values are selected at random. Figure 6.20 
illustrates the feature mapping from a 2-D input space to a 1-D layer 
of output units. The space filling characteristic of the feature mapping 
can be seen from the figure. 

Finally, Figure 6.21 illustrates the feature mapping from a 1-D 
input space to a 1-D layer of output units. Here the input data is 
uniformly distributed random numbers in the interval [O, 11. The 
initial weights for all the units in the 1-D output layer are shown in 
Figure 6.21a. The feature mapping in Figure 6 .21~  shows that the 
weights are organized along a line. The line could have a positive or 
a negative slope depending on how the feature mapping evolves. 
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+ Wl 

(a) initial weights 

+ Wl 

(c) after 75 cycles 

+ Wl 

(b) after 25 cycles 

+ Wl 

(d) after 100 cycles 

Figure 6.20 An illustration of Kohonen's learning for feature mapping from 
2-D input to 1-D feature mapping. 

(a) initial weights (b) after 50 cycles (c) aRer 500 cycles 
Figure 6.21 An illustration of Kohonen's feature mapping h m  1-D input 

to 1-D feature mapping. 

6.6 Summary 
In this chapter simple networks to perform the task of pattern 
clustering have been analyzed in detail. The components of a competi- 
tive learning network were discussed individually. In particular, the 
principal component analysis feature of the instar layer with linear 
output units is useful for feature extraction and data compression. 
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A competitive learning network consists of a feedforward part and 
a feedback part. Use of nonlinear units in the feedback layer of the 
competitive learning network leads to the concept of pattern clus- 
tering. Different choices of competitive learning are available for 
adjusting the weights of the feedforward part of the network. Basic 
competitive learning and its variations are useful for adaptive vector 
quantization. Supervised form of vector quantization, called Learning 
Vector Quantization, was also described briefly. 

The competitive learning networks can be modified to perform 
the task of feature mapping. Kohonen's self-organization learning law 
enables us to interpret the outputs of the units in the second layer 
as features in the input data. Illustrations of feature mapping from 
2-D data to 2-D space, 2-D data to l-D space and l-D data to l-D 
space were given. These illustrations demonstrate the significance of 
SOM .feature of the competitive learning networks. Combination of 
SOM and classification networks have been used effectively for 
pattern classification applications in speech and images [:Huang et al, 
1992; Raghu et al, 19951. 

Review Questions 
1. What are the components of a competitive learning network? 

2. Describe the operation of an input layer when it is directly 
connected to the environment. 

3. What is an instar network? 

4. Describe the basic learning feature of an instar and discuss its 
application. 

5. What is the main difference between an instar network with 
competitive learning and an instar network with Hebbian learning? 

6. Explain how pattern clustering can be achieved by a group of 
instars with binary output functions. 

7. What are principal components of an autocorrelation matrix? 
8. Explain the distinction between eigenvectors of autocorrelation 

and covariance matrices. 
9. What is the Oja's learning law for a single instar? How is it 

different from plain Hebbian learning? 
10. Explain the difference between Sabger's rule and Oja's p-unit rule. 
11. What is meant by on-centre off-smound feedback network? 
12. Give a diagram of the complete competitive learning network. 
13. Distinguish among temporary storage, short-time memory and 

long-term memory. 
14. Explain how a competitive learning network with linear units 

performs a short-term memory task. 
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15. Explain the noise suppression property of the quadratic output 
function in the feedback layer of a competitive learning network. 

16. Discuss the performance of a competitive learning network for 
semilinear output function in the feedback layer. 

17. What is a pattern clustering network? 

18. What are the three basic competitive learning laws? 

19. What is adaptive vector quantization? What is learning vector 
quantization? 

20. Explain the difference between pattern clustering and feature 
mapping. 

21. Explain the three different methods of implementing the feature 
mapping process. 

22. What is a self-organization network? 

23. What are the salient features of the Kohonen's self-organizing 
learning algorithm? 

24. Illustrate the concept of feature mapping with the help of an 
example of mapping 2-D input onto a 2-D feature space. 

25. Explain the feature mapping of 2-D input onto 1-D feature space. 

26. Explain the build up of the 1-D feature map of 1-D input values 
selected at random from an interval 0 to 1. 

Problems 

1. Show how a single unit instar with Hebbian learning results in 
a weight vector that will increase without bound. (See [Hertz et 
al, 1991, p. 200; Hassoun, 1995, p. 901) 

2. Show that for the competitive network of Figure 6.12, in the 
steady state when the inputs are removed, only one of the units 
will have maximum output value for any output function 
f i)  = I f ,  n 2 1. Also show that the activation value is bounded. 
(See [Freeman and Skapura, 19911) 

3. Show that the weight vector in the Oja's rule aligns with the 
eigenvector of the autocorrelation matrix corresponding to the 
largest eigenvalue. (See [Hertz et al, 1991, pp. 202-204; Haykin, 
1994, p. 3741) 

4. Find the eigenvedor corresponding to the first principal component 
of the following correlation matrix of a stochastic process (See 
Appendix E and [Kung, 1993, p. 3051): 
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5. The following is the cross-correlation matrix of two stochastic 
processes (See [Kung, 1993, p. 3061): 

Find the leR and the right eigenvedors corresponding to the k t  
asymmetric principal component. 

6. For feature extraction Linsker used a modified Hebbian rule for 
a single unit given by (See [Hertz et al, 1991, p. 211; Hassoun, 
1995, pp. 95-97]] 

Awi = q(ap+aai+ppC+y) 
where 

and a ,  p and y are the parameters that can be tuned to produce 
the desired behaviour. Assuming that all the input components 
a, have the same mean 5, so that ai = ?i + ci, Show that 

where h and p are some combination of the constants 8, a ,  p, y 
and a, and CU = (E~E,). 

7. Show that the Linsker's rule can be defined by computing 
average of the gradient descent learning hi = - qaEt"wi on the 
cost function 

( J )  
where C = [C"]. Linsker's rule t i e s  to maximize the output 
variance subjected to the constraint that 3; w, = p. 

8. Show that Linsker rule is unstable, i.e., (AW,) does not tend to 
zero unless the weights are subjected to the boundary constraint 
w- 5 wi 5 w,. Note that in contrast, the Oja's rule maximizes the 
output variance subjected to w; = 1 and hence does not need a 
boundary constraint on the 'weights. (See [Hertz et al, 1991, 
p.213; Hassoun, 1995, p. 97; Haykin, 1994, pp.357-3621) 

M 
9. Substituting yi =,f lwi, a, in the Sanger's rule 

i 1 
and taking the average, show'that 
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where wi = [wil, wi2, ..., wNIT, and R = [(aiai)l. Also show by 
induction that it leads to ith eigenvalue of R (see [Hertz et al, 
1991, p. 2081). 

10. Nonlinear PCA neural networks can capture higher order 
statistics of the input data. One way of introducing nonlinearity 
into a PCANN is by using higher order units whose output is 
given by [Hassoun, 1995, p.1011 

Show that this can be interpreted as the output of a linear unit 
with the input vector as 

and the weight vector as 

That is, y = &z 

Also show that the principal component resulting from this 
network corresponds to the principal eigenvector of the matrix 
(22'3. 

11. Show that the Malsburg learning Eq. (6.45) for competition layer 
M 

results in.Z wii = 1, if initially the weights are normalized. 
~ = 1  

12. Generate a set of random points in 2-dimensional space using 
four Gaussian distributions with the following means and 
variances. 
Mean: [-5 -5IT [-5 5IT [5 -2IT [5 5IT 
Variance: 4 3 2 2 

Starting with four random initial weight vectors, determine the 
cluster centres formed by using the competitive learning law 
given in Eq. (6.42). Study the effect of different values of the 
learning rate parameter. 

13. Determine the cluster centres for the data in the Problem 12 
above using the LVQ1 algorithm given in Table 6.3. 

14. Determine the self-organizing map generated by points selected 
at random from an annular ring formed by two concentric circles. 
Consider the following two cases: 

(a) The units in the SOM are arranged in a 2-dimensional plane. 
(b) The units in the SOM are arranged'in a 1-D layer. 
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Architectures for Complex 
Pattern Recognition Tasks 

7.1 Introduction 
In the previous chapters the principles of artificial neural networks 
and some basic hctional  units were presented. These hctional  
units are basic structures of neural networks capable of performing 
simple pattern recognition tasks. In practice the pattern recognition 
tasks are much more complex, and each task may require evolving 
a new structure based on the principles discussed in the previous 
chapters. In fact, designing an architecture for a given task involves 
developing a suitable structure of the neural network and defining 
appropriate activation and synaptic dynamics. 

The pattern recognition tasks perfmed by human beings are 
several orders of magnitude more complex than the simple tasks like 
pattern association, classification, storage and clustering discussed 
earlier. For example, the associative memory function of the biological 
neural network is highly sophisticated in terms of its ability to perform 
the learning, storing and recall operations. Likewise, the abilities of the 
biological network in dealing with pattern variability as in the hand- 
written characters, or with temporal pattern recognition as in speech 
and image sequence are at present impossible to realize by an &cial 
system. However, these features of the biological system motivate people 
to develop new architectures of artificial neural networks. 

While the urge is to develop an architecture to solve a real world 
problem, such as involving pattern variability, the structure of the 
network is still based on the well understood principles (which are 
very few) of models of neurons, connections and the network 
dynamics. In all these cases the real world problems are simplified 
or tailored to satisfy the constraints of the architecture, rather than 
developing suitable phitectures for the problems. Thus an 
architecture is restricted to a class of simplified problems or to a 
specific problem, but not universal. 

One way to organize the networks at architectural level is as 
proposed by Simpson [19901. They are organized along the broad 
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categories of learning (supervised and unsupervised) and along the 
broad categories of s t r u c t m  (feedforward and feedback). In 
supervised learning the weight adjustment at each step is based on 
the given input and the desired output. The adjustment may be of 
correlation type, perceptron learning, delta learning, reinforcement 
learning, etc. In supervised learning, the weights of the network are 
determined either by learning or by computation from the given input 
patterns. In feedforward structures the pattern recall is a 
straightforward application of the computations involved for each unit 
once. But in feedback structures the pattern recall involves several 
cycles of computations, each cycle consisting of computations by all 
the processing units on the average. The cycles are repeated until an 
equilibrium state is reached. The architectures in each category are 
described in a common format consisting of description of the task, 
description of the topology of the network, the encoding scheme (i.e., 
determination of weights), the decoding scheme (i.e., recall of pattern 
information), stability, performance of the network in terms of 
capacity and some applications of the architecture [Simpson, 19901. 

We adopt a different approach in this chapter. We consider a few 
issues in pattern recognition tasks and discuss evolution of 
architectures for addressing these issues. This chapter presents five 
different classes of architecture, to address five different classes of 
complex pattern recognition tasks. While these architectures may not 
solve the real world problems completely, their descriptions do help 
in understanding the issues better and also in developing new 
architectures, once the issues for new classes of problems are clear. 

Table 7.1 gives the organization of topics for this chapter. We 
consider associative memories in Section 7.2, where we discuss 
bidirectional associative memory in some detail. Pattern mapping 
architectures are considered in Section 7.3. In particular, we discuss 
the radial basis function networks for pattern classification and 
function approximation problems. We also consider the counter- 
propagation network which can capture both forward mapping as well 
as inverse mapping (if it exists) between a pair of patterns. In 
Section 7.4 the issue of stability-plasticity dilemma is addressed using 
the class of Adaptive Resonance Theory (ART) models. Architectures 
for temporal pattern recognition and generation are described in 
Section 7.5. In particular, we discuss the Avalanche architecture and 
Time Delay Neural Networks (TDNN) for recognition of sequences of 
patterns. The issue of pattern variability is discussed in Section 7.5 
through the neocognitron architecture. While the pattern recognition 
issues of memory, mapping, stability-plasticity, temporal patterns and 
pattern variability are easily handled by human beings, the 
developments of architectures in this chapter clearly bring out the 
advantages and limitations of ANN models to deal with these 
issues. 
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Table 7.1 Organization of Neural Network Architectures based on Pattern 
Recognition Tasks 

Associative memories 
Linear associative memories (Hetero and Autoassociative) 
Autoassociative memories (Hopfield network and Boltzmann machine) 
Bidirectional associative memories 
Multidirectional associative memoriea 
Temporal associative memories 

Pattern mapping networks 
Multilayer feedforward networks 
Radial basis function networks for 

(a) Classification 
(b) Mapping or function approximation 

Generalized regression neural networks 
Probabilistic neural networks 
Counterpropagation network 

Pattern classification: Stability-plasticity dilemma 
Adaptive Resonance Theory (ART) 

ART1, ART2 and ART3 
ARTMAP 

. Fuzzy ARTMAP 

Temporal patterns 

Avalanche 
Kohonen's phonetic typewriter 
Associative memory based network 
Partially recurrent network 
Fully recurrent network 
Backpropagation through time 
Real-time recurrent learning network 

Pattern variability 

Neocognitron 

7.2 Associative Memory 

Pattern storage is an obvious pattern recognition task that one would 
like to realize using an artificial neural network. This is a memory 
function, where the network is expected to store the pattern informa- 
tion (not data) for later recall. The patterns to be stored may be of 
spatial type or spatio-temporal (pattern sequence) type. Typically, an 
artificial neural network behaves like an associative memory, in 
which a pattern is associated with another pattern, or with itself. 
This is in contrast with the random access memory which maps an 
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address to a data. An artificial neural network can also function as 
a content addressable memory where data is mapped onto an address. 

The pattern information is stored in the weight matrix of a 
feedback neural network. The stable states of the network represent 
the stored patterns, which can be recalled by providing an external 
stimulus in the form of partial input. If the weight matrix stores the 
given patterns, then the network becomes an autoassociative memory. 
If the weight matrix stores the association between a pair of patterns, 
the network becomes a bidirectional associative memory. This is 
called heteroassociation between the two patterns. If the weight 
matrix stores multiple associations among several (> 2) patterns, then 
the network becomes a multidirectional associative memory. If the 
weights store the associations between adjacent pairs of patterns in 
a sequence of patterns, then the network is called a temporal 
associative memory. 

Some desirable characteristics of associative memories are: (a) The 
network should have a large capacity, i.e., ability to store a large 
number of patterns or pattern associations. (b) The network should 
be fault tolerant in the sense that damage to a few units or 
connections should not affect the performance in recall significantly. 
(c) The network should be able to recall the stored pattern or the 
desired associated pattern even if the input pattern is distorted or 
noisy. (d) The network performance as an associative memory should 
degrade only gracefully due to damage to some units or connections, 
or due to noise or distortion in the input. (e) Finally, the network 
should be flexible to accommodate new patterns or associations 
(within the limits of its capacity) and to be able to eliminate 
unnecessary patterns or associations. 

Linear associative memory and autoassociative memory were 
discussed in detail in Chapter 5. In this section the discrete 
Bidirectional Associative Memory (BAM) is discussed in some detail. 
Extensions of the BAM concepts to multidirectional and temporal 
associative memories are discussed briefly. 

7.2.1 Bidirectional Associative Memory (BAM) 

The objective is to store a set of pattern pairs in such a way that 
any stored pattern pair can be recalled by giving either of the patterns 
as input. The network is a two-layer heteroassociative neural network 
(Figure 7.1) that encod9 binary or bipolar pattern pairs (al, bl) using 
the Hebbian learning. It can learn on-line and it operates in discrete 
time steps. The BAM weight matrix from the first layer to the second 
layer is given by 
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Figure 7.1 Bidirectional associative memory. 

where 04 E I - 1, + l lM and bl E I - 1, + l lN for bipolar patterns, and L 
is the number of training patterns. For binary patterns pl E (0, l lM 
and q E (0, llN, the bipolar values ali = 2pli - 1 and bli = 2 qzi - 1 
corresponding to the binary elements pzi and qk, respectively, are used 
in the computation of the weight matrix. The weight matrix from the 
second layer to the first layer is given by 

The activation equations for the bipolar case are as foHows: 

1, ify, > 0 

M 
where yj = , C w .. a.(m), and 

g = l  Ji 

N 
where xi = ,C  wii bj(m). In the above equations a(m) = [al(m), a2(m), 

J =  1 

..., aM(m)lT is the output of the first layer at the mth iteration, and 
b(m) = [bl(m), b2(m), ..., bN(m)lT is the output of the second layer at 
the mth iteration. 

For recall, the given input ai(0), i = 1,2, ..., M, is applied to the 
first layer and the activation equations are used in the forward and 
backward passes several times until equilibrium is reached. The 
stable values b,(=), j = 1,2, ..., N are read out as the pattern 
associated with the given input. Likewise the pattern at the first 
layer can be recalled given the pattern at the second layer. 

The updates in the BAM are synchronous in the sense that the 
units in each layer are updated simultaneously. BAM can be shown 
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to be unconditionally stable using the Lyapunov energy function given 
by [Kosko, 19921 

Therefore, 

The change in energy due to change Aai in ai is given by 

Avai = -[i w p j ] b i ,  i = 1.2 , ,  M (7.7) 
j= 1  

Likewise the change in energy due to change Abj in bj is given by 

For bipolar units, 
2 or 0, ifxi > 0 

hi = { 0, if xi = 0 
- 2  or 0, ifxi<O 

N 
where xi = , Z; wiibj. Similarly, 

~ = 1  

M 
where yj = ,X wj,ai. From these relations, it is obvious that 

r = l  

AV4 5 0, for i = 1,2 ,..., M, 

and 
AVbj 5 0, for j = 1,2, ..., N, 

which means that the energy either decreases or remains the same 
in each iteration. Therefore the BAM reaches a stable state for any 
weight matrix derived from the given pattern pairs. 

The BAM is limited to binary or bipolar valued pattern pairs. 
The upper limit on the number (L) of pattern pairs that can be stored 
is min (M, N) [Kosko, 19881. The performance of BAM depends on 
the nature of the pattern pairs and their number. As the number of 
pattern pairs increases, the probability of error in recall will also 
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increase. The error in the recall will be large if the memory is filled 
to  its capacity. Improved methods of encoding (determination of 
weights) were proposed through the use of matrix transformations 
[Wang et al, 1990a; 1990b; 19911. 

Extensions of the discrete BAM have been proposed to deal with 
analog pattern pairs in continuous time. The resulting network is 
called Adaptive BAM (ABAM) [Kosko, 19871. In this case the pattern 
pairs are encoded using Hebbian learning with a passive decay term 
in learning. For recall of the patterns, the additive model of the 
activation dynamics is used for units in each layer separately. 
According to the ABAM theorem the memory is globally stable. 

7.2.2 Multidirectional Assoclatlve Memory 

The bidirectional associative memory concept can be generalized to 
store associations among more than two patterns. The multiple 
association memory is also called multidirectional associative memory 
(MAM) [Hagiwara, 19901. As an illustration, the architecture of MAM 
is shown in Figure 7.2 for the case of associations among three 

Figure 7.2 Illustration of multidirectional associative memory for three layers 
of units. 

patterns (al, bl, cl). The three layers of units are denoted as A, B, C 
in the figure. The dimensions of the three vectors al, bl and q are 
Nl, N2 and N3, respectively. The weight matrices for the pairs of 
layers are given by 

and 

For recall, the activation equations for the bipolar case are 
computed as shown below for the layer B 
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for j = 1, 2, ..., N2, where 

where wuji is the jith element of the weight matrix WAB, and wcBji 
is the jith element of the weight matrix WCB. 

The outputs c,(m + 1) and a,(m + 1) are likewise computed. Each 
unit in a layer is updated independently and syn&ronously based on 
the net input from units in the other two layers. The updating is 
performed until a multidirectionally stable state is reached. 

The BAM is only a special case of MAM. Due to associations among 
several layers to be satisfied simultaneously, the information recovery 
for the partial input is better in MAM than in BAM [Hagiwara, 19901. 

7.2.3 Temporal Associative Memory (TAM) 

The BAM can be used to store a sequence of temporal pattern vectors, 
and recall the sequence of patterns [Zurada, 1992, Sec. 6.61. The basic 
idea is that the adjacent overlapping pattern pairs are to be stored 
in a BAM. Let al, a2, ..., aL be a sequence of L patterns, each with a 
dimensionality of M. Then (al, a2), (&, a3) ,..., (ai, a, + 1), ..., (aL - 1, aL) 
and (aL, a,) form the pattern pairs to be stored in the BAM. Note 
that the last pattern in the sequence is paired with the first pattern. 
The weight matrix in the forward direction is given by 

The weight matrix for the reverse direction is given by the transpose 
of the forward weight matrix, i.e., by w*. 

The recall steps are exactly the same as for BAM. When stable 
conditions are reached, then it is possible to recall the entire sequence 
of patterns from any one pattern in the sequence. The TAM has the 
same kind of limitations as those of BAM in its error performance in 
recall and also in its capacity for storing a given length (L) of a 
sequence of patterns. 

7.3 Pattern Mapping 

7.3.1 Background for Pattern Mapping Networks 

The multilayer feedforward neural network with error backpropaga- 
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tion learning was primarily developed to overcome the limitation of 
a single layer perceptron for classification of hard problems (non- 
linearly separable classes) and to overcome the problem of training 
a multilayer perceptron (due to hard-limiting output function) for 
these hard problems. In this so called backpropagation network the 
objective is to capture (in the weights) the complex nonlinear 
hypersurfaces separating the classes. The complexity of the surface 
is determined by the number of hidden units in the network. Strictly 
speaking, any classification problem specified by the training set of 
examples can be solved using a network with sufficient number of 
hidden units. In such a case, the problem is more of a pattern 
association type than of a classification type, with no restrictions on 
the associated patterns as in the case of a linear associative network. 

In a classification pr~blem the input patterns belonging to a class 
are expected to have some common features which are different for 
patterns belonging to another class. The idea is that, for a pattern 
belonging to any of the trained classes, the network is supposed to 
give the correct classification. In other words, for a classification 
problem, the trained neural network is expected to perform some kind 
of generalization, which is possible only if there are some features 
common among the input patterns belonging to each class, and these 
features are captured by the network during training. Generalization 
has no meaning for arbitrary association of one pattern to another 
as in the case of arbitrary Boolean functions. Generalization also has 
no meaning if the training set consists of all possible input patterns 
as in the XOR problem. 

Some special association tasks may have common features hidden 
too deep in the input, like in the parity problem [Minsb and Papert, 
19901. In this case the feature characterizing the similarity of 
patterns belonging to the same class is not reflected directly in the 
bit pattern of the input vector. For example, 00110000 and 00001111 
both belong to the same class of even parity, and 01110000 and 
00000111 both belong to the class of odd parity, although the odd 
parity pattern 01110000 is closer to the even parity pattern 00110000 
in the Hamming distance sense. In these cases the representation of 
the input patterns is crucial to achieve generalization by a network. 
Preprocessing of the input vectors is to be performed separately to 
extract the desired features for feeding the features to a neural 
network. A neural network by itself may not be able to extract 
automatically the desired features due to limitations of operations it 
can perform on the input data, and more importantly, due to masking 
of the desired features by the other undesirable, but dominating 
features in the input. 

Therefore a trained neural network is expected to exhibit the 
generalization property for the classification problems in which 
groups of the input patterns belonging to a class possess some 
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common features within each group. Another way of looking at this 
problem is that there should be some redundancy among the patterns 
in each group in order to develop a system for classification. Note 
that the class label that is assigned to a group or a collection of 
groups could be quite arbitrary. In other words, the mapping of a 
group of input patterns to an output or a class label need not have 
any restrictions. 

Another class of problems deals with capturing the mapping 
function implied in the given training set of input-output pattern 
pairs. Here the mapping function represents the system that produced 
the output for a given input for each pair of patterns. A trained neural 
network is expected to capture the system characteristics in their 
weights. The network is supposed to have generalized from the 
training data, if for a new input the network produces the same 
output which the system would have produced. The generalization of 
this mapping function in the network can be tested by a set of test 
input-output pattern pairs. Note that in this case the mapping 
function must exhibit some smoothness or redundancy, as the given 
training data is usually not adequate to sample the function a t  all 
points. Note also that the set of input patterns themselves could be 
quite arbitrary. So generalization in these cases is possible only if 
the mapping function satisfies certain constraints. Otherwise, the 
problem of capturing the mapping function from the training data 
set will be an ill-posed problem [Tikhonov and Arsenin, 19771. 
Assuming that the constraints are satisfied by the mapping function, 
they are forced on the approximating function using regularization 
methods, so that the ill-posed problem becomes well-posed [Poggio et al, 
19851. Finally, generalization by a network is also possible in situations 
where both the input patterns in a group and the mapping function 
have redundancies displayed in the form of common features among the 
patterns in a group and smoothness in the function, respectively. 

A multilayer perceptron (MLP) architecture is suggested to 
address arbitrary pattern association tasks which could not be solved 
by either a linear associative network due to restriction on the type 
and number of input patterns or by a single layer perceptron due to 
linear separability constraint on the classification task specified by 
the input-output mapping. 

A multilayer feedfolward neural network (MLFFNN) can be used 
to realize an  approximation to a multilayer perceptron (MLP) for 
complex (arbitrary) pattern association tasks. It is not intended 
specifically to solve a pattern classification or pattern mapping 
problem, as both require generalization based on 'closeness' property 
in classification and 'smoothness' property in mapping, respectively. 
In other words, a MLFFNN trained with backpropagation learning 
is neither designed to exploit the property of 'closeness' for 
generalizing a classification task, nor is it designed to exploit the 
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property of 'smoothness' to generalize a function approximation task. 
It is designed mainly to provide discrimination between patterns 
belonging to different classes. 

The distinction between what is being achieved by a MLFFNN 
and what is needed to be achieved for classification and function 
approximation tasks is illustrated in Figure 7.3 [Lowe, 1995l.&lere 

Data space 

Classification Data closeness 
(MLP result) (Desired result) 

(a) Classification problem 

Function approximation Function smoothness 
(MLFFNN result) (Desired result) 

(b) Function approximation problem 

Figure 7.3 Distinction between two pattern recognition tasks as realized by 
a trained MLFFNN and the desired results: (a) Classification 
problem and (b) Function approximation problem. 

manipulation of the structure of a neural network and learning of a 
MLFFNN are not likely to achieve the generalization required for a 
given problem. Even if the generalization behaviour of a trained 
MLFFNN is confirmed by cross-validation, it is only an ad hoc 
solution. There is no guarantee of obtaining the desired result. This 
is because, the network is not designed specifically to address the 
generalization problem. Moreover, it is not generally possible to 
analyze a MLFFNN to understand the task each layer is performing. 

In fact, if the given problem is known to be a classification 
problem based on the closeness of data in the input vectors, then 
specific architectures can be evolved to achieve generalization. Such 
architectures tend to be much simpler than a general MLFFNN, ~d 
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training also is likely to be simpler than the backpropagation 
learning. It is also possible to improve the genezalization capability 
by incorporating a priori knowledge about the patterns in the 
classification task. However, developing architectures will be much 
more difficult if the classification is based on deep features present 
in the data, and if preprocessing needed to extract these features is 
not explicitly included as part of the network. 

Likewise, if the given problem is a function approximation based 
on the smoothness of the mapping function of the given input-output 
data, then specific architectures can be evolved to achieve 
generalization in such cases. Here again these architectures tend to 
be much simpler than the MLFFNN, and the training involved also 
will be trivial in most cases. It is possible to improve the generaliza- 
tion capability using regularization which involves imposing some 
smoothness constraints explicitly on the mapping function. The 
smoothness constraint is intended to reflect the a priori knowledge 
of the function. However, developing architectures for proper 
generalization is much more difficult if the mapping function is not 
smooth at the given data level. Even if smoothness of the mapping 
function is present at some deep feature level, it is not possible for 
the network to generalize, unless preprocessing of the data to obtain 
the features is explicitly known and implemented in the network. 

For discussion, we assume that the training set data consists of 
pairs of input-output vectors represented by (al, bl), I = 1,2, ..., L. 
For a classification task, bl is an N-dimensional.vector of zeros and 
ones, with a 1 in the jth position if the input vector al belongs to the 
jth class. This is called 'hard' classification. There may be several 
input vectors, which are close to each other, and hence may have the 
same bl associated with them. In many situations, it may be desirable 
to have the N-dimensional output vector to represent an estimate of 
the probability distribution of the classes for the given input. That 
is, the jth component of bl corresponds to the probability that the 
input vector belongs to the class j. In this case the sum of all the 
components in bl will add upto 1. The input vector al could be an 
M-dimensional vector of ones and zeros or a vector of real numbers. 

In the function estimation or pattern mapping the output vector 
bl is an N-dimensional vector of real values. The function estimation 
can also be viewed as a nonpararnetric regression problem, as we are 
trying to determine a network that realizes the best fit function for 
the given input-output pairs of data. 

In this section we will consider the tasks of pattern classification 
and multivariate function approximation (or pattern mapping). In 
both cases the learned network should generalize well, which means 
that the network should give the correct classification for a new (test) 
data input in the case of a classification task and a reasonable 
approximation to the true function value for a new (test) data input 
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in the case of a function approximation task. We will discuss 
architectures of the Radial Basis Function (RBF) network suitable 
for these tasks. We assume that the 'closeness' property for the 
classification tasks and the 'smoothness' property for the function 
approximation tasks are satisfied in the given training set data. 

7.3.2 Architecture of Radial Basis Function (RBF) Networks 

The architecture of a radial basis function network is shown in 
Figure 7.4. It consists of a single hidden layer with nonlinear units, 
followed by an output layer with linear units. 

I 7.4 General form of a radial basis function network. The nonlinear 
basis function of the jth hidden unit is a function of the normal- 
ized radial distance (11 a-  pj l i lq) between the input vector 
a = 1a1, a2, ..., a d T  and the weight vector pj = [ Pj,, pj2, ..., 

associated with the unit. Normalization factor oj decides 
the range of influence of the jth unit around its centre pj. 

The output of the kth unit in the output layer of the network is 
given by 

where hj = +,,([I a - b IVq) ,  j = 1,2, ..., J and ho (= - 1) is the output 
of the bias unit, so that wko corresponds to the bias on the kth output 
unit. The nonlinear basis function $,,(.) of the jth hidden unit is a 
function of the normalized radial distance between the input vector 
a= (al, a2, ..., aMIT and the weight vector & = (pjl, b2, ..., &M)T 
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associated with the unit. The normalizing factor oj decides the range 
of influence of the jth unit. If the basis function is a Gaussian function 
of the type $(x) = exp( - x2/2), then the weight vector CI, corresponds 
to the mean value of the function and oj corresponds to the standard 
deviation. For a multidimensional vector x with zero mean, the 
Gaussian function is given by $(x) = exp( - X~R-'x), where R is the 
covariance matrix of the input vectors, namely, expectation of xxT. 
The significance of the radial basis function is that the output of the 
unit is a function of the radial distance, i.e., hj = $,(I] a - Lj(I/oj). On 
the other hand, in a multilayer feedforward neural network, 
hj = $j(aTwj), i.e., the output is a nonlinear function of the scalar product 
of the input vedor and the weight vedor. 

7.3.3 Theorems for Functlon Approxlmation 

Before we discuss RBF networks for function approximation, it is 
worthwhile noting the following two theorems for function approxi- 
mation, one based on the linear basis function and the other based 
on the radial basis function [Kung, 19931. 

Theorem 1: Functlon approximation by llnear basis function. 
[Cybenko, 1989; Funahashi, 19891. Let A be a compact subset of 
R~ and F(x) be a continuous function on A. Then for any E > 0, there 
ees t  an integer N and real constants ci, wii and 8, such that 
I F(x) - F(z) 1 < E for all x E A, where 

and fl.) is any nonconstant, bounded and monotonically increasing 
continuous function. The argument of the function fl.) is a linear 
weighted sum of the component values, i.e., $, woxj + ei. Therefore 

I 

fl.) is called linear basis function. In this approximation the function 
fl.) could be like the semilinear output function of a MLFFNN. Thus 
this function approximation, in principle, can be realized by a 
MLFFNN with a single layer of hidden units and an output layer of 
linear units. 

Theorem 2: Function approximation by radiai basis function. Let 
A be a compact subset of and F(x) be a continuous function on A. 
Then for any E.> 0, there exist an integer N and parameters wi and 
ci such that (F(x) - F(x) I < E for all x E A, where wis are M-dimen- 
sional parameter vectors corresponding to the centroids of clusters, 
so that 
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where g(.) is a nonlinear function with unique maximum centered at 
wi [Powell, 1988; Broomhead and Lowe, 1988; Moody and Darken, 
19891. The argument of the function g(.) forms the basis of the 
function. Since the argument is the radial distance between the 
variable vector x from the centroid vector wi, the function g(.) is called 
the radial basis function. The function approximation itself is called 
the radial basis function approximation. Gaussian function is one of 
the commonly used nonlinear functions for g(.). 

The above theorems are called universal approximation theorems. 
They show the existence of the parameters to approximate a given 
function. In the context of neural networks, both the theorems suggest 
that a feedforward network with a single hidden layer with nonlinear 
units can approximate any arbitrary function. But the theorems do 
not suggest any method of determining the parameters, such as the 
number of hidden units and weights in order to achieve a given 
accuracy for the approximation of the function. 

7.3.4 RBF Networks for Function Approximation 

In the RBF networks the weights (b, aj) of the hidden layer units are 
determined directly from the data. No learning is involved. The 
weights wb of the output layer are determined by supervised learning 
[Broomhead and Lowe, 1988; Moody and Darken, 19891. For function 
approximation task the error to be minimized in the supervised 
learning is given by 

where ED is the error due to the given data in the form of inputi 
output pair (al, bl), ER is the contribution due to regularization, and 
h is the regularization parameter. The error term ED is given by 

Note that bik is a function of the input data and the parameters of 
the network, i.e., bfk = F(al, wk). The regularization term ER depends 
on the prior knowledge of the function or some global knowledge 
derived from the given data. This knowledge is normally represented 
in the form of a smoothness constraint on the mapping function 
between the input and the output. In one form of smoothing, the 
weights of the network are constrained using the following expression 
for the regularization term [Hergert et al, 19921. 

Inclusion of this term favours small values of the weights. It can also 
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be viewed as a 'weight decay' term, since the weight change is 
proportional to the negative gradient of the error (See Eq. (4.77)), 
and the negative gradient of ER(F ) gives a decay term in the learning 
equation (See Eq. (2.22)). 

Smoothing constraint is also expressed in the form of the square 
of the derivatives of the mapping function, namely, 

where P is a linear differential operator, and 11 .I1 is the L2 norm. For 
example, P could be a simple second derivative of F with respect to 
w. Then minimization of the square of the derivative restricts the 
discontinuous jumps in the function [Poggio and Girosi, 19901. 

In the expression for E(F ) in (7.21), if h = 0, then the error is 
dictated by the given training data. For a sufliciently large (in terms 
of number of hidden units) network, it is possible to determine the 
weights of the network so that we can get an approximate 
interpolating function as shown by the solid line in Figure 7.5a for 
a 1-D case, whereas what is desired is the function shown by the 
dashed line [Wahba, 19951. Thus the network fails to generalize from 
the data due to overfitting of the data. This is not desirable, as the 
given training data can be usually noisy. In order to improve the 
generalization capability, the h parameter is made nonzero. For a 
suitable choice of A, we get a reasonable estimation of the function 
as shown by the solid line in Figure 7.5b, where the dashed line 
shows the desired function. For large h, if the smoothing function is 
restricted to small value E, i.e., 11 PF 112 < E, then the resulting function 
is a poor estimate of the desired function as shown in Figure 7.5c, 
because the error term due to data does not play a significant role. 
Thus the parameter h controls the performance of the pattern 
mapping network. The value of the parameter h can be inferred from 
the given data using probability theory and Bayes theorem for 
conditional probability [Mackay, 19951. 

Figure 7.5 Function approximation for different values of regularization 
parameter h: (a) h too small, (b) h near optimal and (c) h too 
large. 'x' indicates actual points. Dashed line is the desired 
function. Solid line is the realized function. 
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The regularization problem is to find the function F(.) that 
minimizes the error given by Eq. (7.21), where the second term due 
to regularization is a constraint on the desired level of smoothness 
of the function. The smoothness constraint is usually in the form of 
a differential operator, as noted before. 

Let us consider one dimensional case, i.e., the function F(.) is a 
scalar function and hence there is only one output unit for the 
network. Then 

1 
We have En(F) = 11 PF 112, where P is a linear differential operator. 
The minimization problem reduces to solving the following differential 
equation [Poggio and Girosi, 19901: 

where P* is the adjoint of the differential operator P [Haykin, 19941 
and &.) is a delta function. 

Let G denote the Green's function for the operator P*P, so that 

P*PG(a : al) = 6(a - al) (7.27) 
Then the solution of the regularization problem is given by [Haykin, 
19941 

where 

G is the Green's function for the lth input pattern. The Green's 
function is a result of the smoothness constraint expressed in the 
form of a differential operator. If the differential operator P*P is 
invariant to rotation and translation, then the Green's function is a 
function of the magnitude of the difference of its arguments, i.e., 
G (a : al) = G (11 a - al 11). In such a case G is called a radial basis 
function. For some special cases of the differential operator P, the 
radial basis function becomes a multivariate Gaussian function 
[Haykin, 19941. 

Thus the solution of the regularization problem leads to a radial 
basis function as shown in Figure 7.6 for the l-D case, where the 
Green's function is shown by $ (.). The weights are determined by 
minimizing the error E in Eq. (7.21) which consists of the squared 
error between the desired and actual output values, and the 
regularization term, the extent of which is determined by the 
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Figure 7.6 Radial basis function network for function approximation, with 
one output unit and L hidden units. 

parameter h. In the above formulation the number of hidden units is 
equal to the number of training samples (L) and the centres of the 
basis function are located at the sample values al. 

A suboptimal solution to the function approximation is obtained 
using fewer basis functions. That is, using the radial basis functions, 
the function F is given by 

where H < L, and are the centres of the basis functions to be 
determined from the given data. The weights of the output units and 
the centres of the radial basis function can be determined by 
computation using all the training set data [Haykin, 19941. 

For a 1-D output function, the desired output dl is a scalar for 
the given input vector al. That is, 

Minimizing the error in Eq. (7.21) without regularization (h  = O), the 
optimum weight vector w = [wl, w2, ..., wHIT is given by 

where d = [dl, 4, ..., dLIT, and @+ is the pseudoinverse of the matrix 
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The elements of the matrix are given by 

The pseudoinverse of a+ is given by 

a+ = (aT a) - aT 
If regularization (h + 0) is used in the error function, then the 

corresponding expression for the optimal weight vector is given by 
[Haykin, 19941 

w = (aT@ + h a0)-bTd (7.36) 

where Qo is ap H x H matrix whose jith element is ((11 pj - CI, I)). 
The weights can also be determined by using supervised learning 

methods like LMS algorithm, in which the weight adjustment a t  each 
stage is given by (See Chapter 1) 

where 11 is the learning rate parameter. 

7.3.5 RBF Networks tor Pattern Classification 

Given a set of training samples in the form of input pattern vectors 
al, 1 = 1, 2, ..., L and the associated class labels, the objective in 
pattern classification is to design a system which can classify any 
new input vector a correctly by assigning the correct class label to 
it. Note that in a classification problem there will be fewer classes 
than the number of training patterns, and hence all the class labels 
are not distinct. In the training set there may be many pattern vectors 
associated with each of the distinct classes in the problem. 

The pattern classification problem can be posed as follows [Lowe, 
19951: Given an input pattern a ,  determine the class label Ci such 
that the a posteriori probability P(Ci (a) of the class Ci is maximum 
among all classes. This probability can be computed using the 
probabilities p(a I Ci) and p(a), since 

where p(a ( Ci) gives the probability distribution of the data generated 
for the class Ci and p(a) is the probability distribution of the data 
vector irrespective of the class. These probability distributions can be 
expressed in terms of a linear combination of some standard 
distribution Ma), say Gaussian, in order to reflect the possible 
multimodal nature of the distribution of the data a belonging to any 
class. These mixture distributions can be written as Lowe, 19951 
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and 
p(a 1 ci) = C flj %(a). 

j 

where ak and flj are coefficients of the standard distribution functions. 
Therefore, 

where $,(a) is the normalized basis function and wii = P(Ci) fli/aj is 
the contribution of the output of the basis function to the output unit 
corresponding to the ith class Ci. Thus the expression for P(Ci I a )  can 
be viewed as a basis function formulation of the classification 
problem, and the corresponding radial basis function network is 
shown in Figure 7.7. 

Basis function 

Class 
labels 

C, 

C N  

Figure 7.7 Radial basis function network for pattern classification. The 
number of input nodes depends on the dimensionality of the input 
vector. The number of output nodes is equal to the number of 
distinct classes. The number of hidden nodes is equal to the number 
of basis functions used in the network The number and shapes of 
the basis functions depend on the closeness of the input data in 
the training set. 



Pattern Mapping 253 

The basis functions for classification tasks are determined from 
the input data in the training set. The number and shapes of the 
basis functions depend on the 'closeness' property of the input data 
in the training set. This can be determined using an unsupervised 
clustering of the input data. The representation of the clusters is 
somewhat simplified if the basis functions are assumed to be of 
Gaussian type, so that the parameters of each cluster can be 
determined by computing the first (mean) and second (covariance 
matrix) order statistics of the input data for each cluster. In other 
words, the probability distribution of each cluster is assumed to be 
elliptical. Note that in the classification task the basis fundions are 
solely determined by the distribution of points in the training set in 
the input space. It involves determination of clusters first and then 
fitting a distribution to each cluster. The number of clusters and the 
parameters of the basis functions can be either computed using the 
entire training set data or can be learned using learning techniques 
[Haykin, 19941. 

Once the basis functions are determined, then the weights in the 
output layer can be obtained from the training data either by 
computation using matrix inversion or by supervised learning using 
gradient descent methods. 

To illustrate the steps involved in a pattern classification task, 
let us consider the 2-D cluster points given in Figure 7.8, where each 
class is indicated by a separate symbol like '2, 'O', etc. The first step 
is to determine the clusters using any standard clustering algorithm 
[Haykin, 19941 or by any of the unsupervised learning methods 

Figure 7.8 2-D data points belonging to three classes. 
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described in Chapter 6. The  umber of clusters can be fixed a priori, 
or a criterion may be used to determine the optimum number of 
clusters [Dubes, 19871. Thm a basis function is derived for each 
cluster. If a 2-D Gaussian function is assumed, then the mean and 
covariance matrix are deriv;?d for each cluster to represent the 
corresponding Gaussian bmls function $(a). That is 

where p is the mean vector of the cluster points and R is the 
covariance matrix of the cluster. The i$h element of the matrix R is 
given by 

Ro. = x (ali - CL,) (aU - k,), i, j = 1 ,2  (7.42) 
1 

where I is the index for the sample pattern in the cluster, and 
= SEi and k, = G, are the mean values of the ith andjth components 

of the input vectors. They are given by 6 = Fa,i, for all i .  For the 

kth cluster, $ = qk and the mean vector and covariance matrix can 
be indicated by p = pk and R = Rk, respectively. 

The basis functions specified by the mean vector and the 
covariance matrix for each cluster determine the computations to be 
performed at the hidden units. The number (H) of hidden units is 
equal to the total number of clusters: 

The number (N) of the output units is equal to the number of 
distinct classes. The desired response for the classification task is 
represented by an N-dimensional vector, with a 1 at the output of 
the unit corresponding to the correct class, and a 0 at the output 
of all other units. That is, the desired output vector is given by d = 
[O 0 1 0, ..., OIT for an input pattern a belonging to the class 3. 

Using the training set data, which consists of a set of input 
vectors and the desired class labels, the output weights wo. can be 
determined by any of the following methods: 

1. Determination of weights by matrix inversion: 
For the Ith pattern pair, the error between the desired and 
actual outputs is given by 

The total error E = ?El is minimized to determine the 
optimum weight matrix. This requires computation of 
pseudoinverse of a matrix and uses all the training data in 
the computation of the matrix. 
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2. Determination of weights by learning using LMS algorithm: 
Since the output units are assumed linear, the instantaneous 
error can be used to adjust the weights as in the LMS 
algorithm. That is, 

[ 
H 

Aw, = - q dli - w, $j(al) 
j =  1 I 

where q is the learning rate parameter. 

For the optimum weight matrix, the network output Fi(a) from 
the ith unit is an approximation to the conditional expectation 
E[di ( a] in the mean squared error minimizing sense. The conditional 
expectation &Idi I a1 in turn is equal to the probability P(Ci 1 a) [White, 
1989; Richard and Lippmann, 19911. 

Thus a trained radial basis function for classification gives as 
output the a posteriori probabilities P(Ci 1 a), i = 1,2, ..., N, for a 
given input vector. The class Ck for which P(Ci 1 a) is maximum for 
all i, is the class to which the input vector a belongs. 

We have noted that the basis function networks provide several 
advantages over the multilayer feedforward neural networks. The 
main advantage is that the training of the basis function networks 
is much faster than the MLFFNN. This is because the basis function 
networks are developed specifically for the tasks such as function 
approximation or pattern classification, instead of arbitrary mapping 
that is sought to be achieved by the MLFFNN. The first layer of the 
basis function network involves computation of the nonlinear basis 
function values for each new input vector in order to determine the 
outputs of the hidden units. These computations generally take much 
more time than for the linear basis function (inner product) 
computations in a MLFFNN. Thus the pattern recall takes more time 
for the basis function networks. 

There are other types of networks where the training is 
completely avoided. They are called Generalized Regression Neural 
Networks (GRNN) for function approximation tasks and Probabilistic 
Neural Network (PNN) for pattern classification tasks [Specht, 1991; 
Specht, 1988; Specht, 1990; Wasserman, 19931. Both of them typically 
use as many hidden units as there are training input patterns. These 
networks are similar to the basis function networks, except that there 
is no training<nvolved. GRNN is based on nonlinear regression theory 
and can be designed to approximate any continuous function [Specht, 
19911. On the other hand, PNN is based on Bayesian classification 
theory and uses Parzen windows to approximate the probability 
distribution of the input pattern [Parzen, 19621. GRNN finds the 
regression estimate, i.e., the expected value of the output of the 
network given the input vector. This can be shown to be an optimal 
estimate in the mean squared sense. Any estimate that is optimal in 
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the mean squared sense also approximates a Bayesian classifier 
[Geman et al, 1992; Richard and Lippmann, 19911. Thus GRNN and 
the PNN can be related. 

The effectiveness of all the basis function networks depends on 
the choice of suitable windows or basis functions with appropriate 
values for the spreads. This is because of the dependence of the 
networks on the local nature of the input space. In contrast, the 
MLFFNN captures the global information. Any attempt to make the 
choices of the windows optimal increases the training time due to the 
optimization process involved in determining the number of clusters, 
cluster centres and their spreads. 

7.3.6 Counterpropagatlon Network 

In a multilayer feedforward neural network the training process is 
slow, and its ability to generalize a pattern mapping task depends 
on the learning rate and the number of units in the hidden layer. In 
the use of radial basis functions the unsupervised part of the learning 
involves determination of the local receptive field centres and the 
spread in the input data corresponding to each hidden unit. The 
centres are determined using a vector quantization approach. This 
could be done either by computation or by learning from the input 
data. On the other hand, a different pattern mapping strategy, 
namely counterpropagation, uses winner-take-all instar learning for 
the weights from the units in the input layer to the units in the 
hidden layer. The counterpropagation network (CPN) provides a 
practical approach for implementing a pattern mapping task, since 
learning is fast in this network [Hecht-Nielsen, 1987; HechbNielsen, 
19881. The network (Figure 7.9) consists of two feedforward networks 
with a common hidden layer. The feedforward network formed by 

w 
Layers 1 2 3 4 5 

Figure 7.9 Counterpropagation network. 
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layers 1,3 and 2 is used for forward mapping and the network formed 
by layers 5, 3 and 4 is used for inverse mapping (if it exists) between 
the given input-output pattern pairs. Each feedforward netwrok uses 
a combination of instar and outstar topologies. The first and second 
(hidden) layers of a feedforward network form a competitive learning 
system and the second (hidden) and third layers form an outstar 
structure. Learning takes place in the instar structure of the 
competitive learning system to code the input patterns a, and in the 
outstar structure to represent the output patterns bl. The training of 
the instar and outstar structures are as follows: 

Tralning instars of CPN: 
1. Select an input vector a, from the given training set 

(al, bl), Z = 1, 2, ..., L. 
2. Normalize the input vector and apply it to the CPN 

competitive layer. 

3. Determine the unit that wins the competition by determining 
the unit k whose vector wk is closest to the given input. 

4. Update the winning unit's weight vector as 

5. Repeat Steps 1 through 4 until all input vectors are grouped 
properly by applying the training vectors several times. 

After successful training the weight vector lea* to each hidden 
unit represents the average of the input vectors corresponding to the 
group represented by the unit. 

Tralnlng outstars of CPN: 

1. After training the instars apply a normalized input vector a, 
to the input layer and the corresponding desired output vector 
b, to the output layer. 

2. Determine the winning unit k in the competitive layer. 

3. Update the weights on the connections from the winning 
competitive unit to the output units 

4. Repeat Steps 1 through 3 until all the vector pairs in the 
training data are mapped satisfactorily. 

After successful training the outstar weight vector for each unit 
in the hidden competitive layer represents the average of the subset 
of the output vectors corresponding to the input vectors belonging to 
that unit. 

Depending on the number of units in ,  the hidden layer, the 
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network can perform any desired &apping function. In the extreme 
case, if a unit is provided in the hidden layer for each input pattern, 
then any arbitrary mapping (al, bl) can be realized. But in such a 
case the network fails to generalize. It merely stores the pattern pair. 
By using a small number of units in the hidden layer, the network 
can accomplish data compression. Note also that the network can be 
trained to capture the inverse mapping as well, i.e., al = +-'(bl), 
provided such a mapping exists and it is unique. The name 
counterpropagation is given to this architecture due to the network's 
ability to learn both forward and inverse mapping functions. 

7.4 Stability-Plasticity Dilemma: ART 

Many pattern mapping networks can be transformed to perform pattern 
classification or category learning tasks. However these networks have 
the disadvantage that during learning the weight vectors tend to encode 
the presently active pattern, thus weakening the traces of patterns it 
had already learnt. Moreover, any new pattern that does not belong 
to the categories already learnt is still forced into one of them using 
the best match strategy, without taking into account how good even 
the best match is. The lack of stability of weights as well the inability 
to accommodate patterns belonging to new categories, led to the 
proposal of new architectures for pattern classification. These 
architectures are based on adaptive resonance theory (ART) and dre 
specially designed to take care of the so called stability-plasticity 
dilemma in pattern classification [Carpenter and Grossberg, 19881. 

ART also uses a combination of instar-outstar networks as in the 
CPN, but with the output layer merged with the input layer, thus 
forming a two-layer network with feedback as shown in Figure 7.10. 
The minimal ART network includes a bottom-up competitive learning 

F, Layer 

"1 a; a, 

Figure 7.10 ART network. 
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system (F1 to F,) combined with a top-down (F, to F,) outstar 
pattern learning system. The number of units in the F2 layer 
determines the number of possible categories of the input patterns. 
When an input pattern a* is presented to the Fl layer, the system 
dynamics initially follows the course of competitive learning, leading 
to a winning unit in the competitive F2 layer depending on the past 
learning of the adaptive weights of the bottom-up connections from 
F, to F,. The signals sent back h m  the winning unit in the F, layer 
down to F, via a topdown outstar network correspond to a prototype 
vector. This prototype vector is compared to the input pattern vector 
at the F, layer. If the two vectors match well, then the winning unit 
ip the F2 layer determines the category of the input pattern. If the 
match is poor, as determined by a vigilance parameter, then the 
winning unit in the F, layer does not represent the proper class for 
the input pattern a. That unit is removed from the set of allowable 
winners in the F2 layer. The other units in the F, layer are likewise 
skipped until a suitable match is obtained at the F, layer between 
the top-down prototype vector and the input vector. When a match 
is obtained, then both the bottom-up and top-down network weights 
are adjusted to reinforce the input pattern. If no match is obtained, 
then an uncommitted unit (whose category is not identified during 
training) in the F2 layer is committed to this input pattern, and the 
corresponding weights are adjusted to reinforce the input. The above 
sequence of events conducts a search through the encoded patterns 
associated with each category, trying to find a s6ciently close match 
with the input pattern. If no category exists, a new category is made. 
The search process is controlled by two subsystems, namely the 
orienting subsystem and the attentional subsystem. The orienting 
subsystem uses the dimensionless vigilance parameter that establishes 
the criterion for deciding whether the match is good enough to accept 
the input pattern as an exemplar of the chosen category. The gain 
control process in the attentional subsystem allows the units in the 
F, layer to be engaged only when an input pattern is present, and it 
also actively regulates the learning Freeman and Skapura, 19911. 

Stability is achieved in the ART network due to dynamic matching 
and control in learning. Plasticity is achieved in the ART due to its ability 
to commit an uncommitted unit in the F2 layer for an input pattern 
belonging to a category different h m  the categories already learnt. 

In ART information from units reverberates back and forth 
between two layers. Once the proper patterns develop, the neural 
network can be said to be in resonance. During this resonance period 
the adaptive weights are adjusted. No learning takes place before the 
network reaches a resonant state. 

ARTl network was proposed to deal with binary input patterns 
[Carpenter and Grossberg, 19881. The algorithm for binary valued 
ARTl is as follows [Bose and Liang, 19961: 
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wji is the weight from the ith unit in the F1 layer to the j th  unit 
in the F2 layer. 

wj is the weight vector leading to the jth unit in the F2 layer 
from all units in the F1 layer. 

uG is the weight from the jth unit in the F2 layer to the ith unit 
in the F1 layer. 

vj is the weight vector (prototype vector) emanating from the jth 
unit in the F2 layer to all the units in the F, layer. 

Initially set all the components of all the prototype vectors to 1. 
That is uG = 1, for all i and j. This will enable the uncommitted units 
in the F2 layer also to compete in the same way as the learned units. 

Initialize all wUs to random values in the range 0 to 1. 

1. Enable all the units in the F2 layer. 

2. For an input binary pattern a to the F1 layer, determine the 
winner unit k in the F2 layer by computing 

T k = arg [ max wj a1 . 
j 

3. A similarity measure between the winning prototype vk and 
the input a is computed and compared with a vigilance 
parameter (0 < p c 1). The similarity measure gives the 
fi-action of bits of a that are also present in vk. That is 

- 

i = l  

Once the prototype associated with the winner unit k passes 
the vigilance test, then go to Step 4 to adjust the weight 
vectors associated with the kth unit both in the forward and 
backward directions. 

If the vigilance test fails, then the output unit k is disabled 
and another winner is selected by repeating Steps 2 and 3. 

If none of the committed units in the F2 layer passes the 
vigilance test, then an uncommitted unit is committed to the 
input pattern and the corresponding prototype vector vk is set 
equal to the input pattern a. That is vk = a. 

4. The weights are adjusted as follows: 

where A is the logical AND operation and 

i = l  

wk(m + 1) can be viewed as normalized version of vk(m + I), 
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normalized with the number of 1's in the vector. The factor 
0.5 in the denominator is used to avoid division by zero. With 
this choice of wk the inner product wTa computed in Step 2 
can be interpreted as the fraction of bits of the prototype vector 
v. that are in the input vector a also. Thus the winner-take-all 
decision selects the winner unit that corresponds to a 
prototype vector that has maximum number of bits matching 
with the bits in the input vector a. 

In implementation the ART1 network operates automatically through 
the use of the gain parameter (G) and the reset parameter (R). 

The gain control unit operates as follows: If all the units in the 
F2 layer are OFF, then G = 1. If one of the units in the F2 layer is 
ON, then G = 0. The gain parameter G is generated using the function 

where fix) = 1, if x > 0, and fix) = 0, if x I 0. The quantity y, is the 
output of the jth unit in the F2 layer and is either 1 or 0 depending 
on whether the unit j is a winner or not. If all units in the F2 layer 
are OFF, then y, = 0, for j = 1,2, ..., N. Assuming that there is at 
most one nonzero component in the input vector a, the argument of 
fl.) is greater than 0. Hence G = 1. 

For any winning unit in the F2 layer, one of the y,5 will be 1. 
Then the argument of fl.) is less than 0. Hence G = 0. 

The output of the ith unit in the Fl layer is given by 

This computes the output of the ith unit in the Fl layer as 
xi = ai A v& if the unit k is the winner, since yk = 1 and y, = 0, for 
j ;t k, and also G = 0. If none of the units in the F2 layer are ON, 
then y, = 0, for all j and G = 1, and hence xi = ai, for all i. Thus 
equation (7.46) represents a 213 rule since xi = 1 if any two out of 
the three variables in the argument are 1. 

The reset value R is computed as follows: 

M M 
R = f p C a i - C x i  [ i i = 1  ] 

If the vigilance test 
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succeeds, then the argument of f(.) will be negative, and hence 
R = 0. That is there is no reset. On the other hand, if the vigilance 
test fails, then the argument off (.) is positive and hence R = 1. Then 
the current winning unit is disabled and all the units in the F2 layer 
are reset to OFF. Hence G = 1. Therefore another winning unit will 
be selected. 

Figure 7.11 illustrates the clustering performance of ART1 for 24 
binary patterns each having 4 x 4 pixels. It can be seen that lower 
vigilance p = 0.5 case produces fewer clusters than the larger 
vigilance p = 0.7 case. ART2 network was developed to self-organize 
recognition categories for analog as well as binary input patterns 
[Carpenter and Grossberg, 1987; Carpenter et al, 1991bl. Figure 7.12 
illustrates the clustering of analog signals by an ART2 network. Here 
50 patterns, each of 25-dimensional vector of analog values are 
clustered for two values of the vigilance parameter p. As expected 
smaller vigilance value produces fewer clusters. 

A minimal ART network can be embedded in a larger system to 
realize an associate memory. A system like CPN or multilayer 
feedforward network directly maps pairs of patterns (al, bl) during 
learning. If an ART system replaces the CPN, the resulting system 
becomes self-stabilizing. Two ART systems can be used to pair 
sequences of the categories self-organized by the input sequences. The 
pattern recall can occur in either direction during performance as in 
BAM. This scheme brings to the associate memory paradigm the code 
compression capabilities, as well as the stability properties of ART 
[Carpenter, 19891. 

ART3 network was developed for parallel search of distributed 
recognition codes in a multilevel network hierarchy [Carpenter and 
Grossberg, 19901. All these three ART models are based on unsuper- 
vised learning for adaptive clustering. On the other hand, ARTMAP 
architecture performs supervised learning by mapping categories of 
one input space onto categories of another input space, and both the 
sets of categories are determined by two separate ART systems 
[Carpenter et al, 1991al. Fuzzy ARTMAP extends the ideas of 
ARTMAP to include additional knowledge in the form of production 
rules and fuzzy logic [Carpenter et al, 1991c; Carpenter and 
Grossberg, 19961. 

Note that ART models belong to the class of match-based learning 
as opposed to error-based learning of the backpropagation networks. 
In match-based lealiiing the weights are adjusted only when the 
external input matches one of the stored prototypes, whereas in 
error-based learning the weights are adjusted only if there is an error 
between the actual output and the desired output. Thus match-based 
learning tends to group similar patterns whereas error-based learning 
tends to discriminate dissimilar patterns. 



Figure 7.11 Clustering of random binary pattens by ARTl network for two different values of the vigilance parameter. (a) p = 0.5 
and (b) p = 0.7. The top row in each case shows the prototype patterns extracted by the ARTl network [Adapted from 
Hassoun, 19951. 
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7.5 Temporal Patterns 

The ANN architectures described so far are applicable for recognition 
of patterns on the basis of information contained within the pattern 
itself. Even if a sequence of patterns with temporal correlations is 
presented, the previous or subsequent patterns have no effect on the 
classification of the current input pattern. But there are many 
applications (for example, speech recognition) where it is necessary 
to encode the information relating to the time correlation of spatial 
patterns, as well as the spatial pattern information itself. 

In a temporal pattern the ordering among the components in the 
sequence is important. The components themselvea may be fixedtrigid 
like printed text symbols, or they may be varying naturally due to 
production and context as in the case of sound units in speech or 
symbols in a cursive script. Temporal patterns could be very complex 
depending on the extent of influence of the context and the inherent 
variability of each component. In this section we consider simple 
temfioral pattern sequences in which each component is of fixed 
duration, and it depends only on the components adjacent to it. 

There are three types of problems involving temporal sequences 
[Hertz et al, 19911: 

(a) Sequence recognition in which the objective is to determine 
the class label of a given temporal pattern. This is like the standard 
pattern classification task performed by a multilayer feedforward 
neural network. 

(b) Sequence reproduction in which the desired temporal pattern 
is generated from a partial input of the pattern. This is like an 
autoassociation task in the feedback neural networks. This can also 
be viewed as a pattern completion task. One can also interpret 
prediction of time-series data as a sequence reproduction task. 

(c) Temporal association in which the desired sequence is generated 
as an output in response to a given input sequence. This can be viewed 
as generalization of the hetmassociation task for temporal sequences. 

Architectures for temporal pattern recognition tasks have evolved 
from the well-understood principles of multilayer feedforward and 
feedback neural networks. In order to use models based on these 
known architectures, it is necessary to represent the temporal pattern 
as a static spatial pattern. For this representation, delay units are 
used to store a fixed number of components belonging to the preceding 
instants. Thus a temporal pattern is represented using a tapped delay 
line as shown in the input layer in Figure 7.13. The figure illustrates 
an architecture for temporal pattern recognition using a multilayer 
feedforward neural network. The disadvantage of this approach is 
that the length of the sequence has to be fixed a priori. Also, a large 
number of training sample sequences are required for learning and 
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Figure 7.13 A tapped delay neural network with one input and M delays 
in the input layer, one hidden layer and a single unit output 
layer. 

generalization. Moreover, the input signal must have precise time 
registration. Many natural signals like speech do not conform to these 
restrictions. 

One of the early architectures proposed for classification of spatio- 
temporal patterns (STP) is based on the Grossberg formal avalanche 
structure [Grossberg, 19691. The structure of the network shown in 
Figure 7.14 resembles the top two layers of the CPN, and both use 
multiple outstars [Freeman and Skapura, 19911. The avalanche 
architecture shows how a complex spatio-temporal pattern can be 
learned and recalled. Let a(t) = (a,(t), a2(t), ..., aM(t)) be the spatial 
pattern required at time t. The sequence of a(t) at time intervals of 
At in the range to I t I t, correspond to the desired spatio-temporal 
pattern. The unit labelled to is activated and a(to) is applied, which 

Figure 7.14 Avalanche architecture. 
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is to be learned by the outstar's output units. The second pattern 
a(to+At) is applied while activating the second outstar, labelled 
to + At. This process is continued by activating successive outstam 
until all the patterns in the sequence have been learned. Replay of 
the learned sequence can be initialized by stimulating the to unit, 
while a zero vector is applied to the a inputs. The output sequence 
b(t) = a(t), for to I t I t,, is the learned sequence. 

More sophisticated time delay neural network architectures were 
proposed for recognition of speech patterns [Waibel, 19891. These will 
be discussed in Chapter 8. Once the temporal pattern is represented 
as a static pattern, a recognition system can be developed by template 
matching using principles of competitive learning or self-organiza- 
tion. Kohonen's phonetic typewriter is an example of such an 
architecture, which will be described in Chapter 8 [Kohonen, 19881. 

Tank and Hopfield [1987a; 1987131 proposed an associative 
memory based approach for temporal pattern recognition using the 
exponential kernels representation of temporal patterns. This 
representation replaces the h e d  delays with filters that broaden the 
signal duration in time as well as delaying it. Figure 7.15 shows four 

Figure 7.15 Four time reversed exponential kernel functions which are 
used to window the time signal x(t). The network input at time 
t for a four delay network are averages of the past signal 
weighted by these functions. 

typical exponential kernels for four delays. The network inputs at 
time t for a four delay network are averages of the past signal 
weighted by these functions. This representation is more robust and 
can handle speech-like signals. 

Recurrent network models are more natural models to deal with 
temporal patterns. But training will be a problem with these models. 
Several partially recurrent models were proposed in the literature 
[Elman, 1990; Jordan, 1986; Stornetta et al, 1988; Mozer, 19891. The 
connections are mostly feedforward with a few selected fixed feedback 
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connections so as to keep the training within manageable complexity. 
Thus the recurrent part is realized with context units in different 
configurations. The context units receive the feedback signals as 
shown in Figure 7.16 for the configuration proposed by Jordan [19861. 

Figure 7.16 Architecture with context unita to receive feedback signals. 
Only two unita are considered for each of the input, feedback, 
hidden and output layers for illustration. 

The input layer consists of two parts. One part (input units) 
receives external inputs and the other part (context units) receives 
feedback from output units with unit gain. There is also a 
self-feedback with gain a < 1 on the context units so that the inputs 
to the hidden layer units from the context units have exponentially 
decaying memory of the past. Therefore the output of the ith context 
unit Ci(t) is given by 

where oi(t) is the output of the ith unit in the output layer a t  time 
t. Thus the context units accumulate the weighted average of the past 
o u t ~ u t  values. With a fixed input pattern the network can be trained 
using backpropagation learning to generate a desired output 
sequence. Thus different fixed input patterns can be associated with 
different output sequences [Jordan, 1986; Jordan, 19891. By applying 
a sequence of patterns at the input, one at a time, and a fixed output 
for each sequence of the inputs, the network can be trained to 
distinguish different input sequences. Thus temporal pattern 
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recognition can be achieved. Anderson et al, [I9891 have studied the 
problem of recognizing a class of English syllables using this network. 

Partially recurrent networks have been proposed for time-series 
prediction which involves prediction of the future patterns based on 
the patterns learnt fiom the past data. In these cases the network 
is designed to capture the pattern behaviour embedded in the past 
data. These ideas have been applied in several forecasting situations 
such as in the case of financial markets [Weigend and Gershenfeld, 
1993; Lapedes and Farber, 1988; Weigend et al, 19911. 

Ideas based on time-series prediction have also been exploited for 
identification of nonlinear dynamical systems using partially recur- 
rent networks [Narendra and Parthasarathy, 19901. The nonlinear 
plant dynamics is given by 

x(t + 1) = g[x(t), x(t - I), ..., x(t - n); u(t), u(t - I), ..., u(t - m)] 

where m I n, and u(t) and x(t) are the input and output signals of 
the plant at t, respectively. The function g(.) is a nonlinear function 
representing the dynamics of the plant. The network shown in 
Figure 7.17 is trained with backpropagation learning using the actual 

Desired 
Actual output output 

plant Lf' 
Feedforward neural network rn 

I I 

t 
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Figure 7.17 Partially recurrent neural network for identification of 
nonlinear dynamical system. 

output from the plant. During training the same input is given to 
the plant as well as to the network. If the network has generalized 
from the training data, then for an input u(t) it produces an output 
4(t + 1) which is almost close to the actual output, thus predicting the 
plant's output. 

Fully recurrent networks are more efficient in terms of number 
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of units, in order to realize temporal association tasks. Here the 
individual units may represent input units, output units or both. The 
desired outputs are specified on some units at some predetermined 
time instants. A two-unit fully recurrent network is shown in Figure 
7.18 with the unit 1 as input unit and the unit 2 as the oMput unit. 
The desired output is specified on the unit 2. 

Figure 7.18 A two unit recurrent network. 

If sequences of small lengths (P) (measured in time units) 
are involved, then the recurrent network p a y  be unfolded into a 
feedforward network with P layers as shown in Figure 7.19 for 

Figure 7.19 Feedforward network generated by unfolding a recurrent 
network in time by four time units. 

P = 4. In this case the desired outputs are specified for units in the 
hidden layers also. Moreover, the errors are propagated not only from 
the outputs of the final layer but also from the outputs of the hidden 
layers as well. It should also be noted that the weights are copied 
for different layers. The average increment of all the corresponding 
weights is used for updating. This is called backpropagation- 
through-time learning method [Rumelhart et al, 19861. This is not a 
very efficient method for long sequences. One interesting application 
of backpropagation-through-time is the truck backer-upper problem 
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deshbed in [Rumelhart et al, 19861, in which the goal is to design 
a controller that successfully backs up a truck so that the back of 
the trailor designated by the (x,  y )  coordinates ends at (0, 0) with the 
trailer perpendicular to the dock, when only backward movements of 
the truck are allowed. 

Williams and Zipser [I9891 proposed a real time recurrent learning 
method for on-line learning of the time sequences. It can thus deal with 
sequences of arbitrary length. It was shown that the real time recurrent 
network can be imined to be a flip-flop or even a finite state machine. 
F'inally, Pearlmutter [I9891 developed an algorithm for training a 
continuous time recurrent network. It can be viewed as a continuous 
time extension of backpropagation-through-time learning. 

7.6 Pattern Variability: Neocognitron 
Visual pattern recognition, such as recognition of handwritten charac- 
ters or hand-drawn figures, is done effortlessly by human beings 
despite variability of features in different realizations of the pattern 
of the same character or figure. The patterns considered in the 
architectures described so far assume that the objects in the training 
and test patterns are identical in size, shape and position, except that 
in some cases there may be some noise added or some portions of 
the pattern missing. Models of associative memory can recover 
complete patterns from such imperfections, but normally cannot work 
if there is variability or deformation in the patterns of the test input. 

Neural network models based on our understanding of human 
visual pattern recognition tend to perform well even for shifted and 
deformed patterns. In the visual area of the cerebrum, neurons 
respond selectively to local features of a visual pattern such as lines 
and edges. In areas higher than the visual context, cells exist that 
respond selectively to certain figures like circles, triangles, squares, 
human faces, etc [Fukushima, 19751. Thus the human visual system 
seems to have a hierarchical structure in which simple features are 
first extracted from the stimulus pattern, then integrated into more 
complicated ones. A cell at a higher stage generally receives signals 
from a wider area of the retina and is less sensitive to the position 
of the stimulus. Within the hierarchical structure of the visual system 
are forward (afferent or bottom-up) and backward (efferent or 
top-down) propagation of signals. This kind of physiological evidence 
suggests a neural network structure for modelling the phenomenon 
of visual pattern recognition. 

The objective is to synthesize a 'neural network model for pattern 
recognition for shifted and deformed patterns. The network model 
learns with a teacher (supervised learning) for reinforcement of the 
adaptive weights. The network model is called neocognitron. It is a 
hierarchical network (Figure 7.20) consisting of many layers of cells, 
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Figure 7.20 Neocognitron architecture. A hierarchical structure of neo- 
cognitron for recognition of alphanumeric characters. The first 
stage of the network consists of a 2-dimensional array of 
receptor cells. Each succeeding stage has layers consisting of S 
cells and C cells alternatively. Each layer is organized into 
groups of these cells, each group responding to a particular 
geometrical position. The numbers show the total numbers of 
S and C cells in individual layers of the network S cells are 
feature extracting cells. The C cells are inserted to allow for 
positional errors in the feature. [Adapted fmm Fukushima 
et al, 19911. 

and has variable connections between cells in adjoining layers. It can 
be trained to recognize any set of patterns. ARer training, pattern 
recognition is performed on the basis of similarity in shape between 
patterns, and the recognition is not affected by deformation, or 
changes in size, or shifts in the positions of the input patterns 
[Fukushima, 19881. 

In the hierarchical network of the neocognitron, local features of 
the input pattern are extracted by the cells of the lower stage, and 
they are gradually integrated into more global features. Finally, each 
cell of the highest stage integrates all the information of the input 
pattern, and responds only to one specific pattern. During the process 
of extracting and integrating features, errors in the relative positions 
of the local features are gradually tolerated. The operation of 
tolerating positional error a little at a time at each stage, rather than 
all in one step, plays an important role in endowing the network with 
the ability to recognize even distorted patterns [Fukushima et al, 19911. 

Neocognitron also provides backward connections which will 
enable it  to realize the selective attention feature of the visual pattern 
recognition system. The selective attention feature relates to two or 
more patterns simultaneously present in the data, and our ability to 
focus on the desired one. 

Neocognitron was developed for recognition of handwritten char- 
acters, although the ideas used in the architecture may be extended 
to other situations of pattern variability [Fukushima et al, 19911. 
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7.7 Summary 
The objective of this chapter is to highlight the need for evolving 
architectures specific to particular tasks. In this context we have 
discussed neural network architectures for five classes of pattern 
recognition tasks, namely, associative memory, pattern mapping, 
stability-plasticity dilemma, temporal patterns and pattern 
variability. These architectures use the well understood principles of 
models of neurons, their interconnections and network dynamics. The 
bidirectional associative memory is similar in principle to the Hopfield 
model. The extension of these principles to multidirectional and 
temporal associative memories is straightforward. Pattern mapping 
task is one of the well studied pattern recognition tasks in neural 
network studies.. We have also highlighted the fact that all pattern 
mapping problems are not generalizable by a neural network 
architecture. The specific characteristics of generalizable problems 
are exploited for developing suitable architectures as in the radial 
basis function networks. It is interesting to note that pattern 
classification and function approximation tasks automatically lead to 
radial basis function network architectures. 

The adaptive resonance theory networks for stability-plasticity 
dilemma have evolved over a long period of nearly 20 years, with 
different networks addressing different situations, such as discrete, 
analog and fuzzy data situations. It is one of the most sophisticated 
architectures developed for a variety of problems [Carpenter and 
Grossberg, 1996; Grossberg, 19961. We have considered a few simple 
neural network architectures for temporal pattern recognition as well 
as generation. More sophisticated architectures are needed to exploit 
the temporal pattern behaviour directly without processing individual 
frames of data. Finally, the neocognitron architecture for pattern 
variability task has been discussed briefly. Development of 
neocognitron structure clearly demonstrates how issues specific to a 
given task need to be addressed. 

Review Questions 

1. Explain the following with reference to memory in artificial 
neural networks: 
(a) Transient memory, (b) Temporary memory, (c) Short-time 
memory, and (d) Long-term memory. 

2. Distinguish between content-addressable and address-address- 
able memories. 

3. What is an associative memory? 

4. What are the requirements of an associate memory? 

5. Distinguish between static and dynamic memories. 



274 Architectures for Complex Pattern Recognition Tasks 

6. Distinguish between heteroassociative and autoassociative 
memories. 

7. What is a linear association? What are its limitations as an 
associative memory? 

8. What is a recurrent autoassociative memory? 

9. How is noise suppression achieved in a recurrent autoassociative 
memory? 

10. What is a Bidirectional Associative Memory? What is meant by 
'BAM is unconditionally stable'? 

11. Explain the following terms with reference to an autoassociative 
memory: 

(a) Storage, (b) Encoding, (c) Retrieval, (d) Stability, and 
(e) Performance 

12. What is meant by synchronous and asynchronous update in 
BAM? 

13. What is an adaptive BAM? 

14. What is a MAM? Explain why MAM will have superior 
performance over BAII for pattern retrieval. 

15. What is a temporal associative memory ? What are its limitations 
in recalling a sequence of temporal patterns? 

16. Explain the distinction between 

(a) pattern association and pattern classification tasks. 
(b) pattern classification and function approximation tasks. 

17. What is meant by generalization in the context of (a) pattern 
classification and (b) function approximation tasks? Illustrate 
with examples. 

18. Why is it that any arbitrary pattern association task does not 
fall under the category of generalizable problems? 

19. What is meant by (a) surface features and (b) deep features? 

20. Why a general MLFFNN is not likely to generalize a problem 
always? 

21. Explain the concept of 'closeness' of data and 'smoothness' of a 
mapping function. 

22. Explain why is it that an MLFFNN does not take closeness of 
data into account. 

23. Give the architecture of a basis function network. 

24. What is the significance of the regularization term in the cost 
function for a function approximation problem? 
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25. Explain the significance of regularization using constraints on 
the weights. 

26. Explain how the constraint of smoothness is realized by the 
square integrable derivatives of the mapping function. 

27. What is the significance of Green's function? 

28. Explain the behaviour of a radial basis function method for function 
approximation for different values of the regularization parameter. 

29. Explain how a pattern classification problem leads to a radial 
basis function network. 

30. What decides the basis functions in a pattern classification 
problem? 

31. Explain the basis for the statement: 
A trained radial basis function for classification gives as output 
the a posteriori probabilities P(Cil x) of each class for a given 
input vector x. 

32. How do you determine the basis fUndions for a given pattern 
classification task? 

33. How do you determine the weights of the output layer of a radial 
basis fundion network for a given pattern classification problem? 

34. Discuss the significance of the number and distribution of 
clusters on the performance of a pattern classification task. 

36. What is a probabilistic neural network? In what way it is 
different from a basis fundion network? 

36. What is a generalized regression neural network? In what way 
it is different from a basis function network for function 
approximation? 

37. What is a counterpropagation network? 

38. Explain the differences in the performance of multilayer 
feedforward neural network and counterpropagation network for 
a pattern mapping task. 

39. What is the significance of 'resonance' in ART network? 

40. Explain briefly the operation of an ART for binary patterns? 

41. Explain the 'gain control' mechanism in ART. 

42. Explain how the orienting subsystem works in ART network. 

43. What are some extensions of the ART concept? 
44. What is a temporal pattern, and in what way it is different from 

a static pattern? 

45. Explain the three categories of problems involving temporal 
patterns. 
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46. What is an 'avalanche' architecture? 
47. What is the disadvantage of fixed delay neural networks for 

temporal pattern classification and how is it overcome in an 
associative memory based approach? 

48. What are partially recurrent neural networks? 
49. What is meant by backpropagation-through-time? 
50. Explain the principle of neocognitron for pattern variability task. 

Problems 

1. Prove that BAM is unconditionally stable for any binary units. 
2. Prove that BAM for binary or bipolar units is stable for 

asynchronous update of units. (Hint: Convert BAM into a 
feedback network of Hopfield type.) 

3. Construcl-dlllexample to show that pattern recall is superior in 
a tridirectional associative memory compared to a bidirectional 
associative memory. (See [Zurada, 1992, , p. 3681) 

4. Show that the weight vector for a radial basis function network 
for function approximation task is given by (Eq. (7.36)). (See 
[Haykin, 1994, p. 2581) 

5. Generate training data for the following two functions: 
fix) = logx, 1 l x l l O  and fix) = exp(-x), ISxS lO.  Design a 
suitable MLFFNN with one hidden layer to capture the mapping 
function from the training data. Explain the complexity (in terms 
of number of hidden units of the network) to the function being 
mapped. (See Haykin, 1994, p.2311) 

6. Cluster all the 5-bit binary vectors except the all zero vector, 
.10 0 . . . 0IT, using ART1 algorithm. Study the effect of vigilance 
parameter on the resulting clusters. 

7. Study the classification performance of a RBFNN for the 2-class 
problem given in the Problem 4.12. Study the performance for 
two sets of clusters with H = 20 and H = 10. Choose the centres 
(ti) arbitrarily and the variance of the Gaussian distribution for 
each cluster as a2/M, where o is the maximum distance between 
the chosen cluster centres. That is 

fo r i  = 1 , 2  ,..., N. 
The weight matrix of the output layer of the network is given by 
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where G is an M x H matrix of the basis function and Go is an 
H x H matrix whose elements are given by gii = G( ( 1  ti - ti 1 1  2). 
Examine the performance of the network for different values of 
the regularization parameter X = 0.01, X = 1.0 and X = 100. 

8. For binary {O, 11 patterns, the weight vectors are obtained by 
using (2aU - 1) in place of aU, and the threshold of a unit is given 

1 M by 8, = - 2 ,f 1 ~ " ,  where ws is the weight leading to the ith unit 

from the jth input and aU is the jth component of the 
M-dimensional input pattern. 

Determine the weights and discuss retrieval of patterns for 
the following pattern recognition tasks with binary patterns 

(a) Feedforward neural network (pattern association) 

input a, = [ l l l l O 1 l l l T  a, = [ : L 0 1 0 1 0 1 0 ] ~  

output b, = [ l o  1 0IT b, = [ l  11 l l T  

Test pattern t = [ 1 1 0 1  1 0 0 l l T  

(b) Feedback neural network (pattern storage) 

a, = [ l l l l O  11 l lT  and a, = [ l o  1 0  1 0  10IT 

Test pattern t = [110  11 0 0 l l T  

(c) Hamming network (pattern storage) using the data given in 
(b) (see Section 8.2.1) 

(d) Bidirectional associative memoly using the input-output 
pattern given in (a). 

9. Ti-ain a MLFFNN to capture the nonlinear dynamical system 
given by [Narendra and Parthasarathy, 19901 

using inputs u(t) generated using samples uniformly distributed 
in the range [ - 1, + 11. Consider a network with two hidden 
layers of 20 and 10 units with bipolar output functions. The 
inputs to the network during training are x(t),x(t - 1), 
x(t - 2), u(t) and u(t - 1). Study the perfoxl~lance of the dystem 
for two learning rates 7 = 0.1 and 7 = 0.3. Compare the outputs 
of the model and the system by plotting the outputa for the 
following input: 

u(t) = sin (2d250) for 0 S t I 500 
0.8 sin (2nt1250) + 0.2 sin (2d25) for t > 500 



Chapter 8 

Applications of ANN 

8.1 Introduction 
This chapter is devoted to applications of artificial neural network 
models and some research issues that are being currently addressed 
in this field. In the applications two different situations exist: (a) 
where the known neural networks concepts and models are directly 
applicable, and (b) where there appears to be potential for using the 
neural networks ideas, but it is not yet clear how to formulate the 
real world problems to evolve a suitable neural network architecture. 
Apart from the attempts to apply some existing models for real world 
problems, several fundamental issues are also being addressed to 
understand the basic operations and dynamics of the biological neural 
network in order to derive suitable models of artificial neural \ 
networks. 

In problems such as pattern classification, associative memories, 
optimization, vector quantization and control applications, the 
principles of neural networks are directly applicable. Many real world 
problems are first formulated as one of these problems, identifying 
the relation between the parameters from the physical data with the 
input/output data and other parameters describing a neural network. 
Note that in these cases the ingenuity of the problem solver lies in 
the formulation part, and several compromises may have to be made 
in arriving at the formulation. These direct applications are discussed 
in Section 8.2. 

While neural network concepts and models appear to have great 
potential for solving problems arising in practice, for many such 
problems the solution by neural networks is not obvious. This is 
because the problems cannot be mapped directly onto an existing 
(known) neural network architecture. In fact there are no principles 
guiding us to this mapping. As human beings we seem to perform 
effortlessly many pattern recognition tasks in speech, vision, natural 
language processing and decision making, although we do not 
understand how we do it. For example, in speech our auditory 
mechanism processes the signal directly in a manner suitable for later 
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neural processing. To prepare input to an artificial neural network, 
the speech signal is normally processed in fixed frames of 10-20 msec 
duration to extract a fixed number of spectral or related parameters. 
In this process the temporal and spectral features with proper 
resolution needed for recognition may not have been captured. There 
is as yet no neural network architecture which could perform the 
speech pattern recognition task with the same effectiveness as human 
beings do. Similar comments apply to problems in the visual pattern 
recognition also. Some of the other areas where human performance 
could not be matched by the existing neural network architectures 
are in motor control and decision making. Despite realization of these 
issues, there are several situations where neural principles have been 

I used successfully. Some of these applications are discussed in 
Section 8.3. 

The most important issue for solving practical problems using the 
principles of artificial neural networks is still in evolving a suitable 
architecture to solve a given problem. Neural network research is 
expanding in its scope to take into account the fuzzy nature of the 
real world data and reasoning, and the complex (and largely 
unknown) processing performed by the human perceptual mechanism 
through the biological neural networks. Some of the current research 
issues *are discussed in Section 8.4. Table 8.1 gives an organization 
of the topics to be discussed in this chapter. 

Table 8.1 Organization of Topics on Applications of Artificial Neural 
Networks 

%at applications 

Pattern classification 
Recognition of Olympic symbols 
Recognition of printed characters 
Making an opening bid in Contract Bridge game 

Associative memories 
Image pattern recall 
Content addressable memory 
Information retrieval 

Optimization 
Graph bipartition problem 
Linear programming problem 
'i'ravelling salesman problem 
Smoothing images with discontinuities 

Vector quantization 
Control applications 
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Table 8.1 Organization of Topics on Applications of Artificial Neural 
Networks (Cont.) 

Application areas 

Applications in Speech 
NETtalk 
Phonetic typewriter 
Vowel classification 
Recognition of consonant-vowel (CV) segments 
Recognition of stop CV utterances in Indian languages 

Applications in Image Proceasing 
Recognition of handwritten digits 
Image segmentation 
Texture classification and segmentation 

Applications in decision makmg 

8.2 Direct Applications 

8.2.1 Pattern Classlflcatlon 

Pattern classification is the most direct among all applications of 
neural networks. In fact, neural networks became very popular 
because of the ability of a multilayer feedforward neural network to 
form complex decision regions in the pattern space for classification. 
Many pattern recognition problems, especially character or other 
symbol recognition and vowel recognition, have been implemented 
using a multilayer neural network. Note, however, that these 
networks are not directly applicable for situations where the patterns 
are deformed or modified due to transformations such as translation, 
rotation and scale change, although some of them may work well 
even with large additive uncorrelated noise in the data. 

Direct applications are successful, if the data is directly 
presentable to the classification network. Three such cases are 
considered for detailed discussion in this section. They are: (a) Re- 
cognition of Olympic games symbols, (b) Recognition of characters, 
and (c) Making an opening bid from a dealt hand in the card game 
of Contract Bridge. As can be seen below, in e'ach of these cases there 
is no difficulty in presenting the input data to a multilayer neural 
network. Limits of classification performance will be reached if the 
symbols are degraded due to 'deformations' in the case of Olympic 
symbols, or if the input corresponds to casually 'handwritten' 
characters in the case of character recognition, or if the 'knowledge' 
of the bidding sequence and the 'reasoning' power of human players 
have to be used in the bridge bidding problem. 
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Recognition of Olympic Games Symbols: We consider a set of 20 
Olympic games symbols shown in Figure 8.1 for illustrating a pattern 

Archery Athletics Baseball Basketball Boxing 

Gymnastics Handball Hockey Pentathalon Rowing 

-. Swimming Shooting Syncswim Tennis 
1*1 
Volleyball 

Figure 8.1 Olympic games symbols (20) used for studies on recognition of 
objects from degraded images. 

classification task by a neural network [Ravichandran and 
Yegnanarayana, 19951. The symbols are all represented as black and 
white pixels on a 128 x 128 points grid. Although the symbols appear 
complex in terms of detail, each symbol represents a rigid-object-like 
behaviour. This behaviour ensures that the relative pixel positions of 
a symbol do not change even under severe degradation, such as 
translation, rotation and scaling. For such objects the performance of 
a neural network classifier is always satisfactory. We discuss the 
results of classification studies for various types of degradation. The 
type of degradation studied in this case corresponds to the poor 
resolution of the image obtained when the image is reconstructed 
using a sparse set of elements as in a sensor array imaging situation 
Wegnanarayana et al, 19901. For example, the reconstructed 
(128 x 128 pt) images from a 16 x 16 element array are shown in 
Figure 8.2. In this case a Hamming network which performs template 
matching using neural principles is suitable for classification. The 
Hamming network is a maximum likelihood classifier for binary 
inputs, and it performs correlation matching between the input and 
the stored templates [Lippmann, 19871. It consists of two subnets as 
shown in Figure 8.3. The lower subnet consists of M (128 x 128) input 
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Archery 46 Athletics 53 Bascball 85 Basket 133 Boxing 141 

Canoe 123 Cycling 50 Diving 161 Fence 64 Football 64 

Shoot 94 Swim 77 Syncswim 134 Tennis 84 VoUey 95 
Figure 86 Recognition results for images reconstructed from data collected 

from a 16 x 16 element sensor array. The class decision of the 
network is given along with the activation value of the winning 
pattern. In this case, all of the 20 images were correctly 
identified. 

units, each corresponding to a pixel in the given pattern, and N output 
units corresponding to the N pattern classes, which in this case is 20. 

In the lower subnet the connection weights between the input 
and output units are fixed in such a way that the network calculates 
the distance from the input pattern to each of the N stored pattern 
classes. The weights are given by [Lippmann, 19871 

where w, is the connection weight from the input unit j to the output 
unit i in the lower subnet, €Ii is the threshold for the ith output unit 
and ai, is the element j of the pattern for the ith symbol. The values 
of a@ are -1 or 1. 

In the upper subnet, the weights are fixed in such a way that 
the output units inhibit each other. That is 

vkl = 1, for k = l  
= - E ,  f o r k # l  

where vkl is the connection weight between the units K and I in the 
upper net, and E is a small positive number, say E = 0.1. 

When a bipolar pattern is presented for classification, the lower 
subnet calculates its matching score (si) with the stored pattern for 
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the ith class as follows: 
si = s,(O) = f [X W,X,- ei 1 (8.3) 

j 

where fl.) is the output function, x, is the jth element of the input 
pattem and ei is the threshold value for the ith unit. 

The output of the lower subnet is presented to the upper subnet, 
where a competitive interaction takes place among the units. The 
dynamics of the upper subnet is given by 

The competition continues until the output of only one unit remains 
positive, and the outputs of all other units become negative. The 
positive unit corresponds to the class of the input pattem. 

For the set of degraded symbols given in Figure 8.2, the correct 
classification performance is 100%. The performance ie impressive, 

Figure 8.3 The Hamming network. The input and output units are 
represented by x and y vectors, respectively. 

since it is diiEcult even for us to identify visually the discriminating 
features in many of these images. When the degradation is increased 
by reducing the resolution using an array of 8 x 8 elements, the 
recognition performance is only 13 out of 20. Figure 8.4 gives a 
summary of the recognition performance with different sparse arrays 
[Ravichandran, 19931. The figure shows the number of patterns 
correctly classified out of 20. The abwe experiment illustrates the 
following points: (a) It is interesting to note that many images for 
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Array size 
Correct Incorrect 

Figure 8.4 Summary of recognition performance with different sparse 
arrays (64 x 64, 32 x 32, 16 x 16 and 8 x 8 sensors). Graph 
shows the number of patterns correctly classified out of twenty 
patterns in each case. 

the 16 x 16 sensor array size case seem to have very few visual clues 
(Figure 8.2) for us to recognize, but were recognized correctly by the 
network. (b) The performance of the classifier degrades gradually with 
increasing image degradation due to sparsity and noise. (c) The 
activation values of the winner units are indicative of the level of the 
image degradation, i.e., greater the degradation the lower is the 
activation of the winning units. (d) The matching scores obtained at 
the first layer are measures of similarity of the input pattern with 
each of the patterns stored in the network. But the activation level 
of each unit in the second layer is affected by the activation values 
of all other units. Hence when an output unit becomes positive, its 
activation level not only reflects how close the input image is to the 
identified pattern, but also gives an idea of the degree of confidence 
given to this decision relative to other patterns stored in the network. 
Thus the activation value also reflects the complexity of the symbol 
set in terms of how close in shape the symbols are. 

Thus this study indicates that if the set of expected objects is 
known, then it is possible to design a neural network for object 
recognition, where the network performs a simple correlation 
matching only. In this study only direct pixel-wise description of the 
object was used, and hence the network may not function well if the 
objects are deformed due to transformation and scaling. 

If the images are clean and noise-free, then there exist methods 
to overcome the effects of metric transformations of the objects. Sev- 
eral neural network models have been proposed for invahant pattern 
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recognition [Barnard and Casasent, 19911. In the case of networks 
which achieve invariance by structure, the structure of the network 
is designed such that the output is invariant to the transformations 
of interest. In the case of invariance by training, representative 
samples of various transformations are presented during training so 
that the network learns equivalent transformations. 

Invariance by structure or by training assumes the existence of 
a fixed set of weights which provide invariance over the continuum 
of transformations. I t  also assumes that a network can be trained to 
estimate this set of weights from examples. But invariances cannot 
be built as static functions in the structure. They have to be 
dynamically estimated from the data. Alternatively, one can first 
address the transformation invariance by feature extraction, and then 
use these features as input to a classifier [Ravichandran and 
Yegnanarayana, 19911. 

Methods based on the theory of geometric moments have been 
used for normalization and invariant feature extraction mu, 19621. 
If the object is compact and has only a few details, these invariant 
measures, which are stable over a wide range of spatial trans- 
formations can be designed. In this study the six moment values 
proposed by Hu [I9621 are used as features invariant with respect to 
scale, position and orientation. Since these features values vary over 
a wide range, logarithm of the absolute values of these moments are 
used as features representing an image. 

For classification, a feedforward neural network with 6 units in 
the input layer, corresponding to the input features, and 20 units in 
the output layer corresponding to the number of different symbols, 
are used. The network has one hidden layer with 8 units. The number 
of units in the hidden layer in this case appears to be not very critical 
as long as it is above a certain minimum value, which in this case 
is 8. The network was trained with eight different transformed images 
for each of the twenty symbols. Some samples of the transformed 
images used in the training are shown in Figure 8.5 for six different 
symbols. Since reduction in the size of the image causes loss of detail, 
100% classification accuracies were obtained only for images reduced 
upto l/3 of the linear dimension of its original, i.e., when the 
128 x 128 pt image was reduced to a 40 x 40 pt image. Further 
reduction in scale decreases the classification accuracy as shown in 
Figure 8.6. 

When sparse data reconstruction is used on the transformed 
images, the reconstructed images are not only transformed, but also 
noisy as shown in Figure 8.7 for images reconstructed from a 
32 x 32 element sensor array. In this case the computation of moment 
features had to be done after preprocessing the noisy image. A neural 
network-based method proposed in bvichandran, 19931 for 
preprocessing the noisy images is used to derive the preprocessed 
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Tcnnis 

Athletics Baseball 

(a) (b) (c) (a) @) (c) 
F'igum 8.7 Some examplea of transformed imam. (a) Transformed images 

of four Olympic games symbols, tennis, archer, athletics and 
baseball. (b) Corresponding images obtained by reconstruction 
from data collected by a sparse 32 x 32 sensor array. (c) Images 
in @I) after noise suppression. 

images of the objects as shown in Figure 8.7(c) for a few cases of 
transformation. In this case some features are lost even when there 
is a scale change of less than l/2 along linear dimensions, and hence 
there is loss of recognition accuracy as shown in Figure 8.8. 

Recognition of prlnted characters: Similar results were obtained 
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70 60 50 40 30 20 10 0 

One side length of the scaled image in pixels 

Figure 8.8 Transformation invariant recognition of olympic game symbols 
from degraded images obtained by reconstruction from data 
collected by a 32 x 32 array. Graph shows the n u b r  (out of a 
set of 60 test patterns) of objects (maximum size 128 x 128) 
correctly classified as the size of the image is reduced. 

when images (128 x 128 pts) of ten characters of alphabet were used 
in the study of transformation invariant object recognition. The ten 
characters and some transformed versions of these characters used 
in the study are shown in Figure 8.9. In this case 100% classification 
accuracies could be obtained for all the test data upto a scale 
reduction of 1/12 of the linear dimension of the original, i.e., the 
reduced image is about 10 x 10 pts. Thus the moment feature approach 
gives better transformation invariant recognition in this case than in 
the case of the Olympic games symbols, since the objects are simpler 
in detail in the case of the printed characters of the alphabet. 

The above studies illustrate that pattern classifications can be 
accomplished using neural network models for objects whose images 
are severely degraded by transformations and noise. But in all these 
cases the objects were assumed to be rigid, in the sense that there 
was no relative displacement in different parts of the object. Note 
that the above illustrations differ fiom the handwritten characters in 
which different parts of a character are deformed differently in each 
sample. Thus the classification methods based on correlation matching 
or training a feedforward network using moment features are not useful 
for problems such as recognition of handwritten characters. 
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where q is the learning rate parameter. 
Kohonen suggested a supervised version of the vector 

quantization called Learning Vector Quantization (LVQ) Kohonen, 
19891. This learning law is applicable when labelled sets of input data 
are given. The algorithm is given by 

w(m + 1) = w(m) + q (a(m) - w(m)), if the input is classified 
correctly. 

w(m + 1) = w(m) - q (a(m) - w(m)), if the input is classified 
incorrectly. 

w(m + 1) = w(m), if the input does aot 
belong to the class 
corresponding to w(m). 

8.2.5 Control Applications 

There are several situations in control applications where the 
principles of neural networks can be directly applied. The applications 
include process control, robotics, industrial manufacturing, aerospace 
and several others [Zurada, 19921. The main task in a control 
situation is to generate an appropriate input signal to the physical 
process (plant) to obtain the dpshd  response h m  the plant 
[Narendra and Parthasarathy, 1990; Nguyen and Widrow, 19901. 

The controller generates the actuating signal when the external 
input is given. The design of a controller depends on the nature of 
the plant and the way the input is derived for the controller in the 
operation of the plant. The plant may be static or dynamic. For a 
static plant, th8, transfer function is given by a constant. For a 
dynarnical plant, the transfer function is given by the ratio of the 
Laplace transform of the plant's output to the Laplace transform of 
the plant's input [Zurada, 19921. 

There are two ways of controlling a plant: open-loop control and 
feedback control. In an open-loop control the controller consists of 
cascade of a system and the inverse of the plant. The system is used 
to achieve the desired response for the input. The controller thus 
generates an actuating signal to the plant to obtain the desired 
response a t  the output of the plant. This needs inverse transfer 
function of the plant, and the plant should not change its 
characteristics during its operation. Both these problems are 
overcome in a feedback control mechanism where the controller is 
designed in such a way that the output becomes independent of the 
plant transfer function. 

Multilayer feedforward networks can be used to capture the 
characteristics of the plant transfer function or the plant's inverse 
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transfer function. The neural network is then used to design a 
controller. A detailed discussion on the use of neural networks for 
control applications can be found in [Hunt et al, 1992; Narendra and 
Mukhopadhyay, 19921. 

8.3 Application Areas 

The excitement in neural networks started mainly due to difficulties 
in dealing with problems in the field of speech, image, natural 
language and decision making using known methods of pattern 
recognition and artificial intelligence. Several of these problems have 
been attempted using the principles of neural networks, and some of 
these attempts will be discussed in this section. 

The main issue in all these problems is the representation of the 
real world problem in a system. The power of a neural network can 
be exploited provided the problem can be well represented in the 
network as discussed in Sec. 8.2 on direct applications. But in the 
application areas to be discussed in this section, the poor and fragile 
performance of the neural network based system may be attributed 
to the weakness in the input processing and the mapping of the 
problem onto the neural network model. Since problems in speech, 
image, natural language and decision making seem to be solved 
effortlessly by human beings, our expectations from an artificial 
system are also high [:Reddy, 1996; Dreyfus, 19921. In this context, 
it is worth remembering that the human pattern recognition 
processing is an integrated system of data acquisition, input 
preprocessing, feature extraction, recognition and understanding. It  
is not feasible to assess the performance of each of these processes 
in isolation. 

In this section some problems in the, application areas of speech 
and image processing are discussed. A brief discussion on the use of 
neural networks for expert decision making is also given. 

8.3.1 Applications in Speech 

Speech signal is the output of a time-varying vocal tract system 
excited by a time-varying excitation signal. The vocal tract system, 
including the coupling of the nasal tract, can be accurately described 
in terms of the positions of the articulators such as tongue, lips, jaw, 
velum, etc. Generally the vocal tract system is approximately 
described in terms of the acoustic features such as the frequency 
response or the resonances (formants) and anti-resonances 
(anti-formants) of the system. These features are easier to extract 
from the signal than the articulatory parameters. The excitation of 
the vocal tract system consists of broadly three categories: (a) Voiced 
source (the quasiperiodic excitation due to the vibrating vocal folds), 



Application Areas 307 

(b) Unvoiced source (the turbulent flow of air at a narrow constriction 
created in the vocal tract during production), and (c) Plosive source 
(the abrupt release of the pressure built up behind a closure in the 
vocal tract system). The voiced source is characterized by the 
periodicity (pitch period), and the change of the pitch period with 
time (intonation). In Igeneral the short-time characteristics of the 
speech signal are represented by the short-time (10-20 ms) spectral 
features of the vocal tract system as well as the nature of excitation 
in the short-time segment. These are called segmental features. Supra- 
segmental features of speech are represented by the variation of the 
pitch period (intonation), the durations of different sound units, and 
the coarticulation reflecting the dependence of characteristics of one 
sound unit on the neighbouring sound units during speech production. 

Speech is a sequence of sound units corresponding to a linguistic 
message. Important applications in speech area are: 

(a) Speech Recognition: The objective is to determine the sequence 
of sound unita from the speech signal so that the linguistic message 
in the form of text can be decoded from the speech signal. 

(b) Speech Synthesis: The objective is to determine the sequence 
of sound units corresponding to a text so that the given text message 
can be encoded into a speech signal. 

(c) Speaker Identification: The objective is to determine the 
identity of the speaker from the speech signal. 

The main problem in these speech applications is processing of 
the speech signal in a manner similar to human auditory processing 
mechanism, so that features relevant to a particular task can be 
extracted. The speech problem is further complicated by the fact that 
the message is conveyed not only through the segmental features but 
also by the suprasegmental features. It is our lack of understanding 
of these segmental and suprasegmental features and their extraction 
mechanism that makes the speech tasks extremely difficult for 
implementation by machines [Flanagan, 1972; Rabiner and Juang, 
19931. In this section we will briefly discuss neural network models 
for some speech tasks. We will discuss in detail the development of 
neural network architectures for recognition of consonant-vowel (CV) 
segments. Other interesting applications in speech can be found in 
[Lippmann, 1989; Narendranath et al, 1995; Cole et al, 1992; Pal and 
Mitra, 19921. 

NETtalk: The NETtalk is a multilayer fbedforward neural network 
(Figure 8.15) developed to generate pronunciation units or phoneme 
code from an input text [Sejnowsky and Rosenberg, 19871. The 
phoneme code is presented as input to a speech synthesizer to produce 
speech corresponding to the text. The network consists of an input 
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utterance. A block diagram of the phonetic typewriter developed by 
Kohonen [Kohonen, 1988; Torkkola et al, 19911 is given in 
Figure 8.16. The input speech signal to the phonetic typewriter is 

Mel-cep. Quaei-phoneme Phoneme 
vectors sequence sequence 

(every 10 ms) (every 10 ms) 

Figure 8.16 Block diagram of a phonetic typewriter. 

spGz 

processed to obtain a spectral representation using 20 mel-scale 
cepstral coefficients for every 10 ms segments of data [Davis and 
Mermelstein, 19801. The sequence of coefficient vectors is given as 
input to a phoneme classifier, one vector at a time, to obtain the 
quasi-phoneme sequence as output. The phoneme classification is 
achieved by using either LVQ or SOM learning [Kohonen, 1990a; 
Kohonen, 1990bl. The sequence of phoneme-like units is converted to 
the phonetic transcription using a multiple codebook Hidden Markov 
Model (HMM) technique [Rabiner, 19891. The errors in the phonetic 
decoding by the HMM are corrected using the Dynamically Expanding 
Context (DEC) algorithm [Kohonen, 19861, and then converted into 
the text corresponding to the input utterance. The phonetic typewriter 
was able to produce letter accuracies of 95% for the Finnish language. 
The approach was reported to have worked well for languages whose 
orthography and phonemic transcriptions have simple 
correspondence. 

input 

Mel-cep. 
by D m  

Vowel classlflcatlon: The classic Peterson and Barney [I9521 
formant data for 10 vowels is a good test case for a real-world 
classification problem. It consists of the first two form* collected 
from spectrographic analysis of the vowel data. The vowel data was 
collected for a total of 67 men, women and children. The data was 
collected in the constant-vowel-consonant context of hVd. Figure 8.17 
shows the distribution of the first two formants data for the vowels 
in the following ten words: heed, head, had, hud, M, hawed, who'd, 
hood, heard and hid. The available vowel data was split into two 
sets, one set was used for training the classification network and the 
other set for testing the performance. Using a radial basis k c t i o n  
network for classification, Nowlan obtained a recognition accuracy of 
87% Wowlan, 19901. Considering the fact that there is significant 
overlap among the classes, the classification performance of the 
network is indeed significant. 

Error 
correction 
~ Y D E C  

- Phoneme 
cheification by 
SOM or LVQ 

- Deco* 
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Figure 8.17 Vowel data from Peterson and Barney [19521. The lines are 
the class boundaries obtained by a two-layer feedforward 
network. [Adapted from Huang and Lippmann, 19881. 

Recognition of Consonant-Vowel (CV) segments: Consonant-Vowel 
(CV) utterance typically forms a production unit (syllable) in speech, 
and hence several attempts have been reported for recognition of CV 
utterances ['Barrington, 19881. Since these are dynamic sounds, the 
spectral patterns change with time. Each utterance of a CV unit is 
represented as a temporal sequence of spectral vectors. Each spectral 
vector corresponding to a fixed 10 ms segment may be represented 
using 16 log spectral coefficients on a mel-frequency scale or using the 
corresponding mel-scale cepstral coefficients [Davis and Mermelstein, 
19801. The number of spectral vectors per CV utterance generally 
varies. But usually a k e d  duration (50-200 ma) segment of CV 
enclosing the vowel onset, the transition to vowel and some steady 
part of the vowel, is used to represent a CV unit. The CV units are 
thus temporal sequence patterns and hence static pattern recognition 
networks like multilayer feedforward neural network (MLFFNN) are 
not suitable for recognition of these units. Moreover, discriminability 
among these CV units is low due to domination of the vowel context. 
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An obvious method to perform sequence recognition is to view the 
temporal sequence of the spectral vectors as a two-dimensional spatial 
input pattern for a MLFTNN. The conventional backpropagation 
learning can then be used to train the network. A better approach 
for CV recognition is through timedelay neural networks (TDNN) 
[Waibel, 1989; Waibel et al, 19891. TDNN is a MLFFNN with its 
input consisting of tim'e-delayed input frames of data. The input to 
the intermediate hidden layers also consists of time-delayed outputs 
of the preceding layer. Figure 8.18 illustrates the idea of a time-delay 

Output 
layer 

Second hidden 
layer 

Firet bidden 
layer 

Input 
layer 

Time 

Figure 8.18 Architecture of a Time Delay Neural Network CTDNN) for 
classification of three CV units. Multiple copies of the TDNN 
are aligned with adjacent spectral vectors. The first TDNN is 
shown in boxes marked by thick lines. 

neural network applied for classification of three CV units lbl, Id ,  
and Igl. The time sequence is reflected in ,the computation of block 
of three frames of data at a time, with two fiames overlapping for 
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successive blocks. In other words, Figure 8.18 shows multiple copies 
of the TDNN aligned with adjacent input spectral vectors. The first 
TDNN is shown in the boxes marked by thick lines. In this case each 
utterance has 15 frames of data, each frame consisting of 16 spectral 
components. For this, 13 different copies of TDNN are created. These 
include 13 copies of the input layer, nine copies of the first hidden 
layer, and only one second hidden layer aqd one output layer. The 
output layer has three units corresponding to the three classes Ibl, 
/dl, and Igl. For each TDNN, each unit in a layer is connected to all 
the units in the layer below it. For each TDNN there are 16 x 3 units 
in the input layer, 8 x 5 units in the first hidden layer and 9 x 3 units 
in the second hidden layer and 3 units in the output layer. Multiple 
copies of the TDNN as shown in the Figure 8.18 enable the entire 
history of the network activity to be present a t  the same time. This 
allows the use of the backpropagation learning algorithm to train the 
network. 

The 16 log spectral coefficients for each 10 ms frame are 
normalized using the average of each coefficient for an the 15 frames 
in the utterance, and the coefficients are mapped into the range [-I, 
11. The normalized values are given as input to the TDNN network. 
The speech data for the three classes was excised from continuous 
speech in Japanese, and a database of about 800 CV units was 
collected for a given speaker. The TDNN was able to discriminate 
the three classes with an accuracy of 98.5%. Considering the fact that 
the data for each class has significant variation due to contextual 
effects, this result is impressive. 

Extending this network model for large number of CV classes 
requires modular approach, where it is necessary to distinguish the 
groups of CV classes first before the individual classes can be 
identified [Waibel, 19891. Moreover, because of the large size of the 
network, the training of the network will be slow. It  will also be 
difficult to collect sufficient data to obtain good generalization 
performance from such a large network. 

Recognition of stopconsonant vowei utterances in indian languages: 
For the development of a recognition system for large number of CV 
classes, recognition of Stop-Consonant-Vowel (SCV) utterances in 
Indian languages is considered [Chandrasekhar, 19961. In particular, 
we consider the SCV classes of the Indian language, Hindi. The 80 
SCV classes considered in this study are given in Table 8.3, where 
the classes are organized according to the 4 manners of articulation, 
namely, Unvoiced-UnAspirated (UWA), Unvoiced-Aspirated (UVA), 
Voiced-UnAspirated (VUA) and Voiced-Aspirated (VA). These are 
highly confusable set of sound classes. A modular network approach 
followed by a Constraint Satisfaction Model (CSM) approach is 
proposed for recognition of isolated utterances of the 80 SCV classes. 
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Table 8.3 Arrangement of SCV Classes into Subgroups using Manner of 
Articulation for Grouping 

Subgroup SCV Classea 
U W A  ka ki ku ke ko 

t a ti tu te to 
ta ti tu ta to 
Pa pi PU P PO 
kha khi khu khe kho 
tha thi thu the tho 
tha thi. thu the tho 
pha phi P ~ U  phe pho 

VA gha ghi ghu ghe gh0 
aha dhi ahu *e *o 
dha dhi dhu dhe dho 
bha bhi bhu bhe bho 

When the number of classes is large and the similarity amongst 
the classes is high, it is difiicult to train a monolithic neural network 
classifier based on the All-Class-One-Network (ACON) architecture 
to form the necessary decision surfaces in the input pattern space 
[Kung, 19931. An attempt has been made to train a multilayer 
feedforward neural network for all the 80 SCV classes. It was 
observed that even after a large number of epochs, the sum of the 
squared error remained high and it did not change significantly from 
one epoch to another. It shows that a single network could not be 
trained for these large number of classes. It is possible to develop a 
classifier based on the One-Class-One-Network (OCON) architecture 
in which a separate network is trained for each class [Kung, 19931. 
But the discriminatory capability of the OCON classifiers was found 
to be poor [Chandrasekhar and Yegnanarayana, 19961. 

Modular approaches [Haykin, 19941 can be used to overcome the 
limitations of the ACON and OCON architectures. In modular appro- 
aches large number of classes are grouped into smaller subgroups, 
and a separate neural network (subnet) is trained for each subgroup. 
A post-processor can be used to combine the outputs of the subnets. 

Criteria guided by the phonetic descriptions of the SCV classes 
can be used to form subgroups. Such criteria are useful in analyzing 
the performance of the classifiers and determining the sources of 
errors in classification. A unique phonetic description can be given 
for each of the 80 SCV classes in terms of three features, namely, 
(a) the manner of articulation (MOA) of the stop consonant, (b) the 
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place of articulation (POA) of the stop consonant, and (c) the identity 
of the vowel in the SCV. For example, the class /ka/ is described as 
unvoiced unaspirated velar stop consonant followed by the vowel /a/. 
The phonetic descriptions of the SCV classes suggest that grouping can 
be done in such a way that one of the three features is common to the 
classes in a subgroup. This gives 3 different criteria for grouping. 

Grouping based on MOA leads to 4 subgroups given in Table 8.3. 
Grouping based on POA leads to 4 subgroups: Velar (eg. M, h a / ,  
/gal, g h d ,  Alveolar (eg. It a/ ,  It ha/, Id a/, Id ha/), Dental (eg. Itd, Itha/, 
Ida/, d h d ,  and Bilabial (eg. /pa/, /pha/, ha/, hhaf). Each POA 
subgroup cbnsists of 20 classes, and the stop consonants in these 
classes have the same place of articulation. Grouping based on the 
vowel lea* to five subgroups with one subgroup for each of the five 
vowels: /a / ,  /i/, /u/, /el and 101. Each vowel subgroup consists of 16 
classes, and these classes have the same vowel. 

We consider each of the three grouping criteria to develop a 
modular network for all the SCV classes. The classification 
performance of the modular network depends on the performance of 
its subnets ahd on the way the outputs of the subnets are combined. 
A simple way of combining the outputs of the subnets is t o  assign to 
the test input the class corresponding to the largest value among the 
outputs of all the subnets. Better performance can be obtained by 
combining the evidence &om the output values of each subnet in an 
effective way [Chandrasekhar, 19961. 

Data from isolated utterances of all the 80 SCV classes was 
collected from three male speakers. For each class, 12 tokens were 
collected from each speaker. The training data for a class consists of 
4 tokena from each speaker. The remaining 8 tokens from each 
speaker are used as the test data. 

A fixed duration portion of the signal around the Vowel Onset 
Point (VQP) of an SCV utterance is processed to derive a pattern 
vector. A 200 -ms portion of the signal with 60 ms before and 140 ms 
after the VOP is considered for analysis. This fixed duration signal 
is processed (using a frame size of 20 ms and a frame shift of 5 ms) 
to obtain 40 frames of parameter data consisting of 12 weighted 
cepstral coefficients in each frame. The size of the pattern vector is 
reduced using the average of the coefficients for every two adjacent 
frames. Thus a 20 x 12 = 240 dimensional pattern vector is used to 
represent an SCV utterance. A multilayer feedfornard neural network 
(MLFFNN) is used to build the subnets. The network has 70 units in 
the first hidden layer and 50 units in the second hidden layer. 

The training and test data sets for each subnet consists of pattern 
vectors belonging to the classes in that subgroup only. Performance 
of the subnets for different subgroups is given in Table 8.4. The 
performance is given as percentage of the total number of pattern 
vectors in the data set that are correctly classified by the subnet. 
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is significant considering the fad  that there are 80 different classes, 
and that they are confusable. The modular network for the POA 
grouping criterion gives a better performance compared to the other 
two grouping criteria. It is important to develop techniques to reduce 
the errors in classification at the level of subnets in order to improve 
the over all performance of the modular networks. 

It is also possible to improve the classXcation performance by 
properly combining the evidence available at the outputs of the 
subnets. Confusability among the classes can be resolved to some 
extent by using the acoustic-phonetics knowledge of the classes. This 
knowledge can be incorporated as constraints to be met by the classes. 
A constraint satisfaction model McClelland and Rumelhart, 19861 that 
tries to satisfy as many of these constraints as possible can be used to 
process the outputs of the subnets (see Appendix A). The advantage is 
that it may work even if some of the constraints derived from the 
acoustic-phonetic knowledge are weak, conflicting and erroneous. 

For the constraint satisfaction model, a feedback neural network 
is used with one unit for each of the 80 SCV classes. The weight on 
the connection between a pair of units is determined based on the 
similarity between the classes represented by the units. The 
similarity between two SCV classes is determined from the knowledge 
of speech production features and also from the confusability between 
them indicated by the outputs of the subnets. 

There are 3 different feedback networks, one for each of the 3 
grouping criteria. Since the SCV classes within a subgroup are 
designed to compete among themselves during training, excitatory 
connections are provided between the units in the subgroup. The 
connections across the subgroups are made inhibitory. The weights 
for the excitatory and inhibitory connections are derived from the 
similarity matrices derived from the classification performance of 
subnets on test data. The similarity matrix for different manners of 
articulation is given in Table 8.6(a). The matrices for different places 
of articulation and for different vowels in SCVs are given in 
Tables 8.6(b) and 8.6(c), respectively. An excitatory connection is 
provided between units of two SCV classes within a subgroup if they 
differ in only MOA or POA or vowel. The weight of an excitatory 
connection is equal to the similarity measure between the production 
features of the two classes. An inhibitory connection is provided 
between classes in different subgroups only if the two classes differ 
in MOA or POA or vowel. The weight for the inhibitory connection 
is inversely proportional to the similarity measure between the 
production features of the two classes. If the similarity measure is C 
(in the range 0.0 to 1.0), then the inhibitory weight w is assigned as 
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Table 8.6 Similarity Matrices for (a) Different Manners of Articulation of 
Stop Consonante, (b) Different Plabs of Articulation of Stop 
Consonants and (c) m r e n t  Vowels in SCVs 

(a) Similarity matrix for manners of articulation 

MOA U W A  W A  W A  VA 
U W A  0.87 0.03 0.06 0.02 
W A  0.03 0.84 0.04 0.08 
W A  0.06 0.04 0.78 0.12 
VA 0.02 0.08 0.12 0.82 

(b) Similarity matrix for places of articulation 

POA Velar Alveolar Dental Bilabial 

Velar 0.72 0.08 0.08 0.08 
Alveolar 0.08 0.75 0.10 0.09 
Dental 0.08 0.10 0.68 0.10 
Bilabial 0.08 0.09 0.10 0.80 

(c) Similarity matrix for vowels 

Vowel /a/ /i/ N /el 101 

/a/ 0.89 0.01 0.02 0.01 0.05 
/i/ 0.01 0.86 0.02 0.08 0.00 
Id 0.02 0.02 0.82 0.01 0.16 
/el 0.01 0.08 0.01 0.90 0.00 
101 0.05 0.00 0.16 0.00 0.77 

If the similarity measure C is less than 0.01, then the corresponding 
inhibitory weight is assigned as -1.0. 

The connections in the feedback network for the POA grouping 
criterion are illustrated in Figure 8.19. The excitatory connections for 
the class /ka/ in the 'Velar' subgroup are shown in Figure 8.19a 
and the inhibitory connections for the same class accross the 
subgroups are shown in Figure 8.19b. 

The feedback networks for different grouping criteria interact 
with each other through a pool of units, called instance pool 
[McClleland and Rumelhart, 19881 (see Appendix A). There are as 
many (80) units in the instance pool as the number of SCV classes. 
Each unit in the instance pool (for example, the unit corresponding 
to the class k 4  has a bidirectional excitatory connection with the 
corresponding units in the feedback networks (for example, units 
corresponding to ka/ in the MOA group, ka/ in the POA group and 
/ka/ in the Vowel group). Units within the instance pool compete with 
one another and hence are connected by a fixed negative weight 
(-0.2). The 3 feedback networks along with the instance pool 
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Velar 

(a) Excitatory connectione for the class Ral in the POA feedback network 

Alveolar Dental 

-0.126 : -0.126 .:' 

-0.125 . 

Velar Bilabial 

(b) Inhibitory connectione for the class flra/ in the POA feedback network 

Figure 8.19 Connections for the class /ka/ in the POA feedback network. 
The excitatory connections for the clam /'a/ in the 'Velar' 
subgroup are shown in (a). The inhibitory connections for the 
class /ka/ are shown in (b). 

constitute the constraint satisfaction model reflecting the known 
speech production knowledge of the SCVs as well as the knowledge 
derived from the trained subnets. The complete constraint satisfaction 
model developed for classikation of SCVs is shown in Figure 8.20. 

A Multilayer Feedforward Neural Network (MLFFNN) trained for 
a subgroup of classes can be considered as a set of nonlinear filters 
designed to provide d i sh ina t ion  among the classes. There are 16 
or 20 filtprs in each subgroup and a total of 80 filters for each 
grouping criterion. It may be noted that each SCV class occurs in a 
different subgroup for each of the three grouping criteria. The outputs 
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POA 
1 Alveolar Dental I 

Figure 6.20 A constraint eatiafaction model for classification of SCV utter- 
ances. Connections for /ka/ are ahown for illustration. 

Inetance pool 

MOA 1.0 Vowel 

of the filters for each subgroup for a given training sample is 
considered as a feature v h r .  The distribution of the feature vectors 
for each class is obtained from a second set of training data. The 
distribution is represented in terme of a mean vector p and a 
covariance matrix R derived from the feature vectors for the class. 

The operation of the constraint satisfaction model is as follows: 
Each unit j in the constraint satisfaction model computes the 
weighted sum of the inputs from the other units (sj) in the model. 
An external input for each of the units in the feedback networks is 
provided as bias. The bias is derived from the 16- or 20-dimensional 
feature vector x of the subgroup to which the unit belongs. The bias 
for the unit j is given by 

UWA do"* 

where M is the dimension of the feature vector, ~r j  is the mean feature 
vector of the class associated with thejth unit and Rj is the covariance 
matrix associated with the class of thej th unit. 

la/ b 0 I i /  

VA 
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The net input to the unit j is given by 

where a ,  p and y are constants in the range 0.0 to 1.0, chosen 
empirically by trial and error. The output function for each unit is a 
sigmoid function. 

The constraint satisfaction model is initialized as follows: For a 
new input pattern, the feature vectors (x) are obtained h m  all the 
MLFFNNs. The outputs of the unita in the feedback networks for 
which the corresponding feature vector component value is above a 
threshold 6 (= 0.3) are initialized to +1.0, and the outputs of all other 
units in the feedback networks are initialized to 0.0. The bias for a 
unit in the instance pool is computed from the net input to the unit 
aRer the feedback networks are initialized. The output of a unit in 
the instance pool is initialized to +1.0, if the net input to the unit is 
greater than 0.0. The constraint satisfaction model is then allowed 
to relax until a stable state is reached for a given input using a 
deterministic relaxation method. In this method a unit in the model 
is chosen at random and its output is computed. This is continued 
until there is no significant change in the outputs of all the units. 
When a stable state is reached, then the outputs of the instance pool 
units can be interpreted to determine the class of the input pattern. 

The class of the instance pool unit with the largest output value 
is assigned as the class of the input utterance. Because of similarity 
among the SCV classes, we consider the cases (Cased) in which the 
correct class is among the classes corresponding to the k largest 
output values. The classification performance of the constraint 
satisfaction model (CSM) for different cases is given in Table 8.7. The 
performance of the modular network is also given in the table for 
comparison. Here the performance of the modular network based on 
POA grouping is given, as it gave the best classification performance 
among the three grouping criterion. 

Table 8.7 Classification Performance of the Constraint Satisfaction Model 
using Test Data for all the 80 SCV Classes 

Model Case-1 Cask2 Case-3 Case-4 

CSM 65.6 75.0 80.8 82.6 
Modular Network 35.1 56.9 69.5 76.6 

It can be seen that the performance of the CSM is significantly 
better than the performance of the modular networks. The performance 
of the CSM for Case-1 is as high as 65% indicating that the instance 
pool unit with the largest output value gives the class of the input 
utterance correctly for 65% of the total number of test utterances. This 
result is significant considering the fact that the classification is 
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performed by the CSM by discriminating among 80 SCV classes and 
that many of these classes are similar. The performance of the CSM 
increases to 82% for the Case-4 of the decision criterion. 

The ability of the CSM to combine evidence from multiple sources 
may be useful for performing wen speaker independent classification. 
The subnets are trained using the data collected from multiple 
speakers. Since the operation of the CSM is speaker independent, it 
is expected that the CSM would show a distinct improvement for 
speaker independent classification over the modular networks 
[Chandrasekhar, 19961. 

The description of the recognition system for the SCV units given 
above clearly demonstrates the need to evolve an architecture suitable 
for a given problem. For example, the acoustic-phonetic knowledge 
has been used effectively in the form of constraints to improve the 
performance of the 80 class network for the confusable set of SCV 
units. It is obvious that ultimately the recognition performance is 
limited primarily by the features derived from the signal. 

8.3.2 Appllcatlons In Image Processing 

An image is represented as a two-dimensional array of pixels, with 
some gray value or colour associated with each pixel. Characteristics 
of an images are: (a) the local structure, dictated by the spatial 
correlations among nearby pixels, and (b) the global structure, 
conveying the semantics of the image. These local and global features 
are used in interpreting an image for recognition. Standard neural 
network models accept the input data in an unstructured manner, in 
the sense that the input to each unit in the input layer is considered 
independent. Thus when an image is fed as an input to a neural 
network the gray value of each pixel is provided as input, and the 
input units have no spatial structure reflecting the spatial 
correlations among the pixel values. Before feeding an image to a 
network, the image is size-normalized, since the dimensionality of the 
input to the network is fixed. In some cases like handwriting, the 
normalization may be carried out at word level, in which case the 
size, slant and position variations of the individual characters will 
cause difficulty for recognition by the neural network. Thus the main 
difficulty of the unstructured natbre of the input units of neural 
network architectures is that there is no built-in invariance to 
translation, rotation, scaling and distortion at local or global features 
levels [LeCun and Bengio, 1995a and 1995bl. 

In this section we describe the development of some neural 
network models for three applications in image processing, namely, 
handwritten character recognition, image segmentation and texture 
classification. 
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Recognltlon of handwrltten digits: The objective is to develop a 
recognition system for binary images consisting of handwritten 
characters or digits. Even after an overall size-normalization of each 
character before inputting, the system still has to take care of the 
variations due to s h i h  and local distortions. Convolutional network 
architectures are proposed for such images [LeCun and Bengio, 
1995a; Sackinger et al, 1992; LeCun et al, 19901. These architectures 
use three key ideas, namely, local receptive field, weight sharing and 
spatial subsampling. The images are applied directly to the network 
after some size-normalization and centering. The network 
architecture for an optical character recognition for a digits task is 
shown in Figure 8.21 [Sackingex- et al, 19921. It is a multilayer feed- 

Input Feature Feature Feature Feature Output 
20x20 maps maps maps maps 10~1x1 

4~16x16 4x8~8 12X4X4 12~2x2 

Convolution Subsampling Convolution Subsampling Convolution 

Figure 891 A convolutional network for optical character recognition. 

forward neural network with one input layer, four hidden layers and 
one output layer. The input layer consists of 400 units corresponding 
to a 20 x 20 normalized binary image of each digit. The first hidden 
layer consists of 4 feature maps, each unit in the feature map is 
connected to a local receptive field of 5 x 5 pixel neighbourhood in the 
input layer. Two adjacent units in a feature map have their local 
receptive fields displaced by one unit shift in the input layer. 

Weight sharing is achieved by assuming the same set of weights 
to each unit in the feature map. Thus there are 25 free parameters 
only for each of the 4 feature maps in the first hidden layer. From 
each local receptive field, each unit extracts some elementary features 
such as oriented edges, corners, etc. Each of the feature maps extracts 
different features from the same rece~tive field. The first hidden layer 
thus performs four separate, 2-D nonlinear convolutions of the feature 
map with the input image. 

The features extracted in the first hidden layer are combined in 
the second hidden layer to take care of shifts in the features. A shift 
of the input of a convolutional layer will shift only the features but 
the output remains the same. Therefore once the feature has been 
detected, its location is not very critical, as long as its position relative 
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to other features does not change. Therefore the second hidden layer 
is used to reduce the resolution by subsampling. Each unit in a 
feature map in the second hidden layer computes the average of the 
outputs of four (2 x 2) neighbouring qnits in the corresponding feature 
map in the h t  layer. The local receptive fields for adjacent units in 
this case do not overlap. 

The third and fourth hidden layers perform feature extraction 
and subsampling as in the case of the first and second hidden layers, 
respectively. Each unit in each feature map of the third hidden layer 
extracts features form 5 x 5 units receptive field in the output of the 
second hidden layer. But each unit this time is connected to the 
outputs of more than one feature map in the second hidden layer. 
For example, 5 x 5 units h m  each of the two feature maps in the 
second hidden layer may be combined by connecting outputs of all 
the 50 units to each unit in the third layer. The weight sharing is 
done for each unit as in the case of the first hidden layer. The number 
of feature maps in the third layer are 12 corresponding to 4C, 
combinations of features h m  the lower layer. The fourth hidden 
layer performs averaging and subsampling as in the case of the 
second hidden layer. 

The outputs of all the units in the hurth hidden layer are 
connected to each of the units in the output layer. The output layer 
has 10 units corresponding to the 10 digits to be recognized. The 
classification is indicated by the maximum output among the 10 units 
in the output layer. 

m e  network is trained using samples of handwritten digits 
collected from real life situation such as the digits in the postal 
addresses on the envelopes. Note that the weights h m  the hidden 
layers 1 to 2 and from the hidden layers 3 to 4 are fixed, as they 
perform only averaging. All other weights are adjusted using the 
standard backpropagation learning algorithm. The results reported 
in [Sackinger et al, 19921 are impressive as the network achieved an 
error rate of 4.9% compared to human performance of 2.5%. 

The architecture implementing the convolution and subsampling 
operations in these networks is similar to the neocognitron developed 
by Fukushima [1975, 19881 (see Sec. 7.6). But neocognitron uses 
self-organization learning, thus it is unsupervised, whereas the 
backpropagation learning in convolutional networks is supervised. 

Image segmentation: LeCun has described an architecture for 
recognition of handwritten characters [LeCun et al, 19901. But when 
the characters form a portion of a cursive script, then it is necessary 
to segment the word or sentence in cursive writing into individual 
characters, size-normalize, and then feed to the convolutional network 
for recognition. Automatic segmentation of cursive writing into 
characters is not normally possible. But convolutional networks can 
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be used to scan over large, variable size input fields. Convolutional 
networks can also be replicated to scan a cursive writing. This is 
because the output of a network will be high when the input encloses 
most part of a character, and then the adjacent replicated network 
produces a low output. The outputs of such replicated convolutional 
networks have to be interpreted further. Two-dimensional replicated 
convolutional networks are called Space Displacement Neural 
Networks [SDNNI Wolf and Platt, 1994; Burges, 19951. These 
SDNNs together with Hidden Markov Models (HMM) have been 
proposed for segmentation of handwritten word recognition [Keeler 
et al, 19911. 

Texture classlficatlon and segmentatlon: Intensity-based methods 
for segmentation of an image into different regions depend on the 
distributions of gray values of the pixels in each region. But images 
of many natural scenes appear as distribution of spatial patterns 
consisting of repetition or a quasi-repetition of some fundamental 
image features. Such image regions may be hypothesized as 
texture-like. Intensity-based methods do not perform well on such 
images. One has to adopt a texture-based scheme which involves 
identification and extraction of some local features which can 
efficiently characterize different textures in the image. 

Neural networks have been successfully applied to texture 
classification and segmentation [Visa, 1990; Chellappa et al, 1992; 
Schurnacher and Zhang, 1994; Hwang, 1995; Raghu et al, 1993, 
1997al. In some methods the neural network itself was used to sort 
out the unknown and complicated neighbouring-pixel interaction, 
whereas in some other methods these interactions were explicitly 
captured by extracting features using deterministic or stochastic 
modelling of textures. Among the stochastic models, the Markov 
random field models have been studied extensively [Rangarajan and 
Chellappa, 19951. Among the deterministic models, feature extraction 
by multiresolution filters like Gabor filters and wavelets have been 
explored [Greenspan et al, 1991; Schumacher and Zhang, 19941. 

Image segmentation can be posed as an optimization problem, 
the optimality criterion involving maximizing a posterior probability 
(MAP) distribution of the intensity field given the label field [Richard 
and Lippmann, 19911. The a posteriori distribution is derived using 
Markov random fields. An approximate solution to the MAP estimate 
can be realized by mapping the optimization problem as relaxation 
of a Hopfield neural network model. The relaxation could be 
implemented either in a deterministic manner or in a stochastic 
manner. In these cases the neural network can be viewed as a 
constraint satisfaction model, where each unit represents a 
hypothesis and the connection between two units as a constraint 
[Rangarajan et al, 1991; McClelland and Rumelhart, 19861. 
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Constraint satisfaction models for texture classification and 
segmentation based on Markov random fields assume a fixed 
resolution of the neighbourhood, whereas real images contain textures 
with large variations in the texture sizes. Moreover, the texture 
properties in real images are not stationary. 

A texture classification scheme using a constraint satisfaction 
model was proposed in [Raghu, 1995; Raghu and Yegnanarayana, 
19961. The textual features are extracted using a set of Gabor filter$ 
[Bovik et al, 19901. Image-specific constraints are used to represent 
domain-specific knowledge. The classifier uses two kinds of 
image-specific constraints, namely, feature-label interaction and 
label-label interaction. These constraints are defined using three 
random processes: feature formation, partition and label competition. 
The a posteriori probability of the label of each pixel is modelled 
based on these constraints in the form of Gibb's distribution. The 
corresponding posterior energy is used to derive a Hopfield network. 
The details of the texture classification scheme are described below. 

A 2-D Gabor filter is an oriented complex sinusoidal grating 
modulated by a 2-D Gauslsian function, and is given by 

- e-(l/Zaz) (ra + yz) + ju, (x cos 0 + y ain 0) f (x, Y ,  w, 8,o) - (8.33) 

where o is the spatialwidth, 8 is the orientation and w is the radial 
frequency of the Gabor filter [Daugman, 19851. 

Gabor-filtered output of the image is obtained by convolution of 
the image with the Gabor function. The power spectrum of the filtered 
image at each pixel position is used as a feature to characterize that 
pixel. If T is the textured image, the feature vector at each spatial 
location (i, j) is specified as, 

gii = (gii(w9 8, ~ ) ) , , 0 ~  

where 

where * denotes 2-D convolution operation. 
Let us assume that M Gabor filters (defined by different sets of 

w, 8 and a) are used for feature extraction. The M-dimensional vector 
gii constitutes the feature vector to characterize the pixel (i, j) in the 
image. 

Consider the domain R = ((i, J] ,  0 5 i c I, 0 I j c J) designating the 
pixel positions of the given textured image Tn. Each pixel s E R in 
the image Tn is characterized by an Mdimensional feature vector 
g, which is generated by Gabor filtering the image. Assume each g, 
as the realization of an Mdimensional random process G,, called the 



326 Applications of ANN 

feature process. Let us assume that the image Tn consists of K 
different textures, so that each pixel s can take any texture label 0 
to K-  1. The corresponding texture classes are denoted by 
C,, ..., CK-l. Also, let Rk, a subset of f2, be the training site for the 
class Ck. The Gabor features of the training site of a given class are 
used to estimate the model parameters for that class. We use the 
notation La to denote the random variable describing the texture label 
of the pixel s. 

The feature formation process is defined by the probability of 
assigning a value g, E R M  to the feature process G, of the pixel s, 
given the model parameters of each texture label k. It is given by 
the conditional probability of G, = g,, given the label of the pixel s 
as k. Writing the feature formation process as a Gibb's distribution, 
we get 

Here Zt(L,= k) is the normalization factor. One may use any of the 
three standard statistical distributions (namely, Gaussian, 
multivariate Gaussian and Gaussian mixture models) to model 
P(G, = g, I Ls = k) [Raghu, 19951. 

Assuming a Gaussian model to describe the feature formation 
process, the energy function Ek.) is given by 

The normalization factor ZAL, = k) for this Gaussian process is given 
by 

Z,(La = k) = (8.38) 

The model parameters, mean and variance oh, are defined for each 
class Ck as, 

where Sk = card(Qk) is the cardinality of the subset. 
We can write the conditional probability distribution of the 

feature formation process as, 

The label-label interaction constraint is defined using two 
random processes: partition and label competition. The partition 
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process describes the probability of the label of each pixel s given the 
labels of pixels in a uniform pth order neighbourhood Nt of s. The 
neighbourhood of any pixel 8 is defined as the set of pixels 8 + r, Vr 
E NL. The operator + is defined as follows: For any pixel 
s = (i, J)  E Q and for any displacement r = (k, I) E NPL, s + r = (i + k, 
j + I). 

The partition process is expressed as a pth order Markw random 
field model defined by [Raghu, 1995, Appendix Cl 

This relation is alsa a Gibb's distribution. 
We define the energy function Ep as follows: 

where p is a positive constant,, and 6(.) is the Kronecker delta 
function, defined by 

The normalization factor Zp for the partition process is given as, 

" 4 
which is independent of s and k. The importance of partition process 
is that it acts as a mechanism for partitioning an image into its 
texture boundaries. It also smoothens the classification output at each 
step of relaxation. 

The label competition process is based on the fact that any pixel . 
in an image can belong to only one class, and hence a pixel can have 
only one label. It is expressed as the conditional probability of 
assigning a new label to an already labelled pixel. 

Assuming that the current label of a pixel s is I, let us define the 
probability of assigning a new label k to that pixel as, 

e - a & h - ~  
P(L,=kIL,=l) = (8.46) 

Zc,l 
where a is a positive constant. The function 8 is the inverse of 
Kronecker delta function given by, 

- 
6(1) = 0, i f I = O  

1, otherwise 

ZcC is a local normalization factor, where c denotes that it is for the 
competition process. 
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We define the label competition process using a conditional 
probability P(L, = k I L, = , where k is the new label for pixel s and 
1 stands for any label already assigned to s. This probability can be 
expressed in the following form, 

where the energy function E,(.) is, 

Ec(L,=kIL,=l)w = C & k - l )  (8.49) 
Vl 

and Zc = ? Z c , l ,  independent of s and k. The energy function E, is 

such that it reduces the probability of having another label when the 
pixel is already labelled. The competition process controls the 
labelling of each pixel by shutting off other possible labels for that 
pixel. 

The objective is to find the label of each pixel in the image such 
that the constraints defined above are satisfied to a maximum extent. 
We can model the a posteriori probability P(L, = k 1 Gs , L, +, , Vr 
E NL, L, = l)vl of the label of each pixel s based on these constraints. 

Using Bayes theorem, this probability can be written as, 

where the processes described by P(G,) and P(L, = k)  are assumed 
independent of each other. See [Raghu, 1995, Appendix A] for details 
of the derivation leading to Eq. (8.50). 

The a posteriori probability can be expressed as a Gibbs distribution, 

where the energy function E(.) is given by 
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and Z =Z#J'(L, = k)  P ( G  is a normalization constant. The total 
energy of the system is given by 

ptal = ' C E ( L , = ~ I G ,  , L , + , ,  V r ~ N , f , L , = l ) ~  (8.53) 
8. k 

Substituting Eqs. (8.37), (8.43) and (8.49) in Eq. (8.52), the total Gibbs 
energy in Eq. (8.53) can be written as 

This energy function can be considered as a set of feature and 
label constraints acting on each pixel and the corresponding possible 
labels. Estimation of a state configuration L, for all pixels s which 
minimizes the energy will yield an optimal classification of the 
textured image. This is the maximum a posteriori (MAP) estimate of 
the pixel labels since minimization of this energy maximizes the a 
posteriori probability given in Eq. (8.50). To evolve such an optimal 
state one can use a Hopfield neural network model whose energy 
function is matched with the energy expression in Eq. (8.54). This 
can be interpreted as a constraint satisfaction neural network with 
a suitable relaxation method. 

The neural network consists of a 3-dimensional lattice of units. 
For an image T, of size I x  J with K  possible labels for each pixel, 
the size of the network is I x  J x K  units. Each unit in the network 
is designated as (i, j, k) ,  where ( i ,  J )  = s is the pixel position and k 
is the label index of the pixel. The network can also be interpreted 
as having K  layers of units. Each layer is a label layer. For a given 
pixel (i, j),  the corresponding units in different label layers constitute 
a column of units, which we can call a label column. 

Each unit (i, j, k )  in the network represents a hypothesis giving 
the label status of the pixel (i, j ) .  The a priori knowledge about the 
truth value of each hypothesis is represented by providing a bias 
B,, ,, to the unit. Constraints among the hypotheses are indicated by 
the symmetric weights WL, ,, ,,, ,,, k ,  between the units (i, j, k )  and 
( i l ,  j l ,  kl). 

Let A,,,, E (0, I) denote the output state of the unit (i, j, k).  Let 
the state of the unit at the nth iteration is (n).  The energy 
function of the network is given by 
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The bias values and the weights of the neural network are determined 
by comparing the energy expression in Eq. (8.55) with the expression 
in Eq. (8.54). The feature formation term in Eq. (8.54) is active only 
if L, = k, i.e., 4, j, = 1, where s = (i, J). The instantiation k for the label 
random variable L, of the pixel s = ( i , ~ )  denotes the truth value 
Ai, j ,  = 1 of the hypothesis corresponding to the unit (i, j, k). Similarly, 
eke instantiation LSi , = k, s + r = (i,, jl) indicates that k , ,  j l ,  k  = 1 for 
the hypothesis corresponding to the unit (i,, jl, k). So the term 
6(k - L, + ,) in Eq. (8.54) is equivalent to the product AiBj,  k  4 , j,, k ,  and 
it is active only if (il, jl) is in the pth order neighbourhood of (i, j). 
The label competition term q k  - I) is 1 only if k # I. Therefore 

- 
6(k - I) = { j k i j  if if k k = I  # 1 

So the energy function in Eq. (8.54) can be written as, 

Comparing Eqs. (8.55) and (8.571, the bias B i S j , k  and the weight 
W i ,  j, k; i , ,  j,, k ,  can be written as 

and 
20,  if (i-i,,j-j,) E Nf and k = kl 

- 2a, if (i,, j,) = (i, J) and k # k, (8.59) 
0, otherwise 

The expression for the weight shows the connections in the 
network. Any unit (i, j, k) at a pixel position (i, j) has excitatory 
connections with strength 2f3 fiom all nodes in a neighbourhood 
defined by the displacement vector set in the same label layer k. 
The - 2a term denotes inhibitory connections from all nodes in the 
label column for each pixel (i, JI in the image. The structure of the 
3-D Hopfield neural network is given in Figure 8.22. 

In order to obtain a minimum energy state of the network, one can 
use either deterministic or stochastic relaxation strategies lRaghu, 
19951. Figure 8.23a shows a textured image of 256 x 256 pixels. The 
image has four different types of textures, two of them are nearly 
deterministic (dots and diamonds: upper left and lower right tiles) 
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(a) (b) (4 

Figure 822 Structure of 3-D hopfield network: (a) 3-D lattice of size 
I x J x  K. (b) Connections among nodes in the label column of 
each pixel. Each connection is of strength - 2a. (c) Connections 
from a set of neighbouring nodes to each node in a label layer. 
Each connection has a strength 2P. 

(a) (b) 

Figure 8223 Image classification using the constraint satisfaction network 
for an image with four texture tiles. (a) Original image 
containing four textures. (b) Final segmentation result. 

and the other two are stochastic (sand and pebbles: upper right and 
lower leR tiles). A 16-dimensional feature vector is used to represent 
each pixel in the image. The 16 dimensions correspond to 16 different 
Gabor filters with 2 spatialwidths, 2 frequencies and 4 orientations. 

A training site consisting of 1000 pixels per class is used for 
parameter estimation for each class. For this image, a simple 
Gaussian model is used for feature formation process. A deterministic 
relaxation strategy is applied for obtaining the maximum a posteriori 
probability state. Figure 8.23b shows the result of classification. 

The approach was also proved to be successful for classification 
of multispectral band imagery from remote sensing. For illustration, 
an image obtained by the NASA Jet Propulsion Laboratory using 
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their Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar 
(SIR-C/X-SAR) setup [Jordan et al, 19911 is considered. The 
SIR-C/X-SAR setup acquires images in three microwave bands with 
four linear polarization states. Figure 8.24a is a gray level representa- 
tion of one such image with three spectral components. The texture- 
like image is known to have four classes. The image is represented 
using 8 Gabor filters for each of the three spectral bands, giving a 
24-dimension feature vector for each pixel. The feature formation 
process is described in terms of a multivariate Gaussian distribution 
in which the covariance matrix characterizes the interband 
correlation as well as the intraband correlation of the Gabor-filtered 
multispectral imagery. Stochastic relaxation using simulated anneal- 

(4 (dl 
Figure 8.24 Multispectral classification of SAR imagery using constraint 

satisfaction network with multivariate Gaussian model for 
feature formation. (a) Gray level representation of the image. 
(b) Classification based on multispectral textural information. 
(c) Classification using textural information in one band. (d) 
Classification based on gray level information in multispectral 
data. 
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ing can be used to obtain the minimum energy state of the Hopfield 
model [Raghu and Yegnanarayana, 19971. Figure 8.24b shows the 
classification based on multispectral-textural information. For com- 
parison, Figure 8 .24~ gives the result of classification using textural 

. information in one band only. Figure 8.24d shows the result of 
classification using only the pixel intensities of the multispectral data 
in all the three bands. That means the textural features of the image 
are not used. It can be seen from these results that incorporation of 
multispectral and textural knowledge in the classification process 
improves the performance much better than a scheme based only on 
the textural information or only on the multispectral information. 

- 8.3.3 Application in Decision Making 

Like speech and image processing, decision making is also a purely 
human attribute. Just as the feature extraction process is in-built 
into our biological system, decision making also seems to be in-built 
into our system. We anive at an intelligent decision based on partial, 
noisy and sometimes inconsistent data mainly because we seem to 
invoke our acquired knowledge over a period of time. It is difficult 
to articulate the acquired knowledge, although expert systems have 
been developed to represent the articulated knowledge by a domain 
expert to arrive at a decision [Duda and Shortliffe, 1983; Gallant, 
19931. The knowledge in an expert system is represented in the form 
of if-then rules, and the rules are fired in a desired manner. Since 
expert systems require this knowledge explicitly, there is a basic 
limitation on the utility of expert systems in many decision making 
situations. 

Due to the inherent nonlinearity and also due to the learning 
ability, neural networks appear to be promising in some decision 
making applications [Baxt, 1990; Tan et al, 19961. The nonlinear 
regression capability of feedforward neural networks and the 
constraint satisfaction property of feedback neural networks are 
exploited in medical diagnosis, investment management and 
automated inspection of industrial parts [Chen, 19961. The threshold 
output function of the nonlinear processing unit in a neural network 
can be effectively used for decision making [Gallant, 19951. For 
example, the symptoms and parameters of a patient can be given as 
input to a MLFFNN, and the corresponding diseases as output of the 
network. The network can be trained using the known data from 
medical records. The trained network can now be used as an 
automated medical diagnosis tool, so that any new test input will 
give an idea of the disease. Such a network is called connectionist 
expert system [Gallant, 19881. The network can be continuously 
updated with additional knowledge acquired in the form of input and 
output parameters. The main disadvantage of these systems is that 
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it does not provide an explanation or justification for the decision 
arrived at by the system as in the case of a rule-based expert system. 
Neural network-based systems were developed, for example, for skin 
diseases diagnosis and for low back pain diagnosis [Yoon et al, 1989; 
Bounds et al, 19881. The scope of these neural network expert systems 
could be enhanced significantly using fuzzy logic to represent the 
linguistic form of input and output variables [Chen, 1996, Ch. 71. 
Many other useful applications of neural networks-based decision 
systems have been implemented, such as investment management, 
credit scoring, fraud detection and fault detection [Burke, 1992; 
McGough, 19921. 

A MLFFNN for pattern mapping can be viewed as a nonpara- 
metric nonlinear regression analysis. This property has been exploited 
for forecasting applications, especially in exchange rate forecasting 
and stock prices [Ungar, 1995; Zapranis and Refenes, 19951. 

8.4 Summary 
The field of artificial neural networks came into prominence mainly 
because of our inability to deal with natural tasks such as in speech, 
image processing, decision making and natural language processing. 
Our discussion on some tasks in these areas suggests that we still 
have not succeeded in realizing the natural human-like preprocessing 
of speech and images for feature extraction and in modelling the 
higher levels of cognition for decision making and for natural 
language processing [Morgan and Scofield, 19911. It is likely that new 
models may evolve to deal with issues such as invariant pattern 
recognition, interaction of local and global knowledge, 
stability-plasticity, feature extraction from temporal sequences like 
image sequences and matching patterns at semantic levels. 

Some recent trends in ANN research are briefly discussed in this 
section. Appendix F gives a more detailed discussion on some of the 
trends. 

The learning laws in ANN basically optimize certain objective 
functions which reflect the constraints associated with the given task. 
Most of the learning laws utilize gradient based approach for this 
optimization purpose. However, due to its deterministic nature, 
gradient based methods frequently get stuck at local optima or saddle 
points. This is because the step size and step direction of the 
optimization process are dictated by the local information supplied 
by the gradient. We try to overcome this drawback by choosing the 
step size and step direction stochastically in a controlled manner. The 
efficiency of the search for global optimum can be enhanced further 
if it is carried out in parallel. Evolutionary Computation is one such 
(biologically inspired) method, where a population of solutions are 
explored over a sequence of generations to reach globally optimal 
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solution. The integration of evolutionary computational technique into 
ANN models is called Neuro-Evolutionary technique, which can be 
used to enhance the learning capability of the model. The technique 
is also useful to determine suitable topology of the network and to 
select proper learning rule [Fogel, 19941. 

In a classification task an ANN is used to find the decision regions 
in the input pattern space. But if the patterm from different classes 
are overlapping, then it is difficult for an ANN to find the class 
boundaries. In pattern mapping also similar problems may arise when 
the inputs or target outputs are ill-defined or fuzzy. These situations 
are common in many pattern recognition tasks because of inherent 
fuzziness associated with human reasoning. The pattern recognition 
capability of an ANN can be made powerful, if fuzzy logic is 
incorporated into the conventional ANN models. The resulting 
systems are called Neuro-Fuzzy systems [Lin and Lee, 19961. 

In some cases an ANN training may end up finding a 
boundary when the same input pattern belongs to one class in som y 
examples, and to another class in some other examples. This scenario 
is due to the presence of rough uncertainty, which arises fram 
indiscernibility of the objects based on input features. The 
classification ability of an  ANN can be sigmficantly improved if the 
input data set is processed to reduce the rough uncertainty. Motivated 
by this idea, a new promising area based on Neuro-Rough synergism 
is emerging. It has already been employed to reduce the size of the 
input data set, to determine the number of input units needed and 
to accelerate networks training ['Pawlak, 1991; Pawlak et al, 1995; 
Sarkar and Yegnanarayana, 1997~1. 

The ability of a feedback network to store patterns can be 
improved, if we can exploit the chaotic nature of the networks 
dynamics. This observation has resulted in proposing hybrid neurons, 
known as chaotic neurons. Different models of chaotic neurons are 
studied, and initial results are quite promising [Andreyev et al, 19961. 

There are several other attractive paradigms which can be fused 
with the current ANN techniques. For example, Artificial Ant System 
[Dorigo et al, 19961, Cultural Evolution [Belew, 19891, DNA 
Computing [Adleman, 19941, and Immunity Net [Hunt and Cooke, 
19961, seem to be attractive and viable approaches that can be 
amalgamated with ANN. 

One key advantage of ANN is that it is adaptive. Many existing 
paradigms can be fused into it easily. Although, as of now there are 
no guidelines for developing hybrid paradigms, the urge to develop 
models to perform human cognition tasks will continue to motivate 
researchers to explore new directions in this field. 

The most important issue for solving practical problems using the 
principles of ANN is still in developing a suitable architecture to solve 
a problem. This continues to dominate this research area. ANN 
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research has to expand its scope to take into account the fuzzy nature 
of real data and reasoning, and the complex (unknown) processing 
performed by the human perceptual mechanism. 

It is possible to view research in ANN along the following directions: 

Problem level: This involves issues in mapping the real world 
problems as pattern processors. This may require good understanding 
of human information processing both from the psychological and the 
biological angles. 

Basics level: It is necessary to evolve better models for neurons as 
processing units, their interconnections, dynamics (activation and 
synaptic), learning laws and recall procedures. 

Functional level: This involves development of basic structures 
which can solve a class of pattern recognition problems. These form 
building blocks for development of new architectures. 

Architectural level: This requires ideas to evolve new architectures 
from known principles, components and structures to solve complex 
pattern recognition problems. It is possible that the problems may be 
tailored somewhat to suit the architectural principles. 

Application level: The objective is to solve a given practical problem 
using generally the principles of ANN, but with ideas from other 
areas such as physics and signal processing. 

Review Questions 

1. What are some direct applications of the' principles of neural 
networks? Why are they called 'direct' applications? 

2. Under what conditions mere correlation matching can be 
successfully applied for pattern classification? 

3. What is meant by complexity of a set of objeds for classification? 
Explain this in relation to Olympic symbols and printed characters. 

4. Why is it that mere correlation matching cannot be used for 
classification of deformed patterns? 

5. Discuss the significance of backpropagation learning in situations 
like 'Contract Bridge Bidding'. 

6. Explain why information retrieval can be viewed as a direct 
application of neural network principles. 

7. How is an optimization problem formulated for solution using a 
neural network model? 

8. Explain the steps in the solution of a general optimization 
problem by a neural network. 
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9. What is a local minima problem in optimization? 

10. How is mean-field annealing applied in the solution of 
optimization problems? 

11. Explain the formulation of the graph bipartition problem as an 
optimization problem. 

12. Explain the difficulties in the solution of travelling salesman 
problem by a feedback neural network. 

13. Explain how an image smoothing problem can be solved by 
principles of neural networks. 

14. What is the problem in vector quantization? 

15. Explain how neural network principles are useful in control 
applications. 

16. Explain why a speech recognition problem is not a direct 
application of neural network principles. 

17. What is the significance of neural networks in the NETtalk 
application? 

18. What neural network ideas are used in the development of 
phonetic typewriter? 

19. Why is the problem of vowel classification based on Peterson and 
Barney formant data a difficult one for neural networks? 

20. Discuss some neural network methods for classification of 
consonant-vowel (CV) segments of speech. 

21. What is a time-delay neural network architecture? How is i t .  
suitable for classification of CV segments? 

22. What is a modular architecture in neural networks? 

23. What is the problem in the classification of large (20 or more) 
number of CV segments? 

24. How is a modular architecture useful for classification of large 
number of CV segments? 

25. Discuss the significance of a constraint satisfaction model for 
combining multiple evidences for large number of classes. 

26. Explain how a constraint satisfaction model can be exploited for 
improving the recognition accuracy for. CV units. 

27. What is the problem in the recognition of handwritten digits? 

28. What is a convolutional network architecture and how is it useful 
for the problem of handwritten digit recognition? 

29. What is image segmentation problem? 
30. How are convolutional networks used for segmentation of 

handwritten characters in a cursive script? 
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31. Explain how neural network principles are useful for a texture 
classification problem. 

32. Explain the constraints in a texture classification problem that 
can be used as a priori knowledge for a network formulation. 

33. Discuss the feature formation process in texture analysis as 
Gibbs distribution. 

34. Discuss the partition process in texture analysis as Gibbs 
distribution. 

35. Discuss the label competition process in texture analysis as Gibbs 
distribution. 

36. Show the formulation of maximum a posteriori probability esti- 
mation for texture analysis as an energy minimization problem. 

37. Discuss a neural network model for energy minimization in a 
texture classification problem. 

38. Discuss the relaxation strategies (deterministic and stochastic) 
for texture classification. 

39. What are the issues in decision making problems? 
40. Discuss the application of neural network principles for decision 

making. 
41. What are some recent trends in neural networks? 

Problems 

1. For the Hamming net given in Figure 8.3, the input to the unit 
i in the upper subnet is given by 

j =  1 

where ay is the jth component of the input vector al. Show that 

where HD(al, ai) refers to the Hamming distance between 
the input vector al and the vector ai corresponding to the ith 
unit. (See [Zurada, 1992, p. 3921) 

2. Compute the weight matrix of a Hamming network for the 
following three prototype vectors 

Find the output of each unit for the input vector al = 
[ l  1 1 1 1 1lT. Verify that the Hamming distance computed by the 
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network agrees with the actual Hamming distance. Find the 
steady state output of the upper subnet of the Hamming network. 

3. Explain why the capacity of the Hamming network to store patterns 
is higher than the Hopfield network. (See Kung, 1993, p. 591) 
(Hint: The number of connections increase linearly for the 
Hamming network as the number of bits in the input patterns 
increase. o n  the other hand, the number of connections increase 
quadratically with the number of bits for the Hopfield network.) 

4. Study the performance of the graph bipartition problem for the 
example shown in Figure 8.10. 

5. Study the performance of the Travelling Salesman problem for 
ten cities, using the formulation given in Eq. (8.22). Assume the 
distances between the cities. Examine the effect of the 
parameters a, p, y on the performance. 

8 

6. Implement the image smoothing algorithm for an image with 
discontinuities in a 1-D case as' shown in Figure 8.13. 

7. Weighted matching problem [ & ~ z  et al, 1991, p.721 : Suppose 
there are N (even) points in a, !&dimensional space with known 
distances between each pair of points. The problem is to link the 
points together in pairs, with each point linked to exactly one 
other point, so as to maxinii$ the total length of the links. Let 
du be the distance between the points i and j. Let n.. be a unit 
in a Hopfield network, such thqk the state n, = 1 inchates that 
the points are linked and the state n, = 0 indicates that the 
points are not linked. The optimization problem involves 
minimizing the total length of links L = .X.du n, subjected to the 
constraint that C n, = 1 for all i. r < J  

Assuming h.. = nji and nii = 0, solve the problem for 
N = 4. Assume four random points in a unit square in the 
2-dimensional space. 

Discuss the solutions of the problem obtained by using 
(a) Deterministic relaxation algorithm. 
(b) Stochastic relaxation using simulated annealing (use 

suitable stochastic update and annealing schedule). 
(c) Mean-field annealing. 

8. Study the solution of the Travelling Salesman problem using 
SOM for the following different cases: 
(a) 30 cities, 30 units 
(b) 30 cities, 100 units 
(c) 30 cities, 500 units 
(d) 100 cities, 100 units 
(e) 100 cities, 500 units 





Appendix A 

Features of Biological Neural 
Networks through Parallel 
and Distributed Processing 
Models 

Some of the features of the biological neural networks were 
demonstrated using parallel and distributed processing (PDP) models 
in [Rumelhart and McClelland, 1986; McClelland and Rumelhart, 
1986; McClelland and Rumelhart, 19881. We will consider two of those 
models for illustration, namely, the Interactive Activation and 
Competition (IAC) model and the Constraint Satisfaction (CS) model. 

A.l Interactive Activation and Competition Model 

The objective of the IAC model is to illustrate the process of retrieving 
general and specific knowledge from stored knowledge of specifics 
[.McClelland and Rumelhart, 1988, p. 391. Some of the features of 
human memory that are illustrated through this model are: Retrieval 
by key (name) and by context, retrieval with noisy clues, assignment 
of default values and spontaneous generalization. The model is 
illustrated through the example of Jets 'and Sharks database 
described in [McClelland, 19811 and given in Table A.1. Information 
in such a data, if stored in a computer memory, can be a~cessed by 
name or by any other set of items, provided the method of access is 
preprogrammed into the system. Moreover, certain characteristics of 
the data like the distribution of persons in different age groups, or 
the nearly 'common' characteristics among some persons, etc., can be 
obtained only by explicitly programming to derive the information 
embedded in the data. In other words, any information in the data 
has to be sought explicitly. Whereas human memory stores the data 
in terms of the patterns implicit in the data automatically, and these 
patterns can be recalled even with partial clues. These features of 
human memory can be demonstrated through a parallel and distri- 
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Table A1 The Jets and the Sharks Data for IAC Model [Adapted from 
McClelland and Rumelhart, 1988, Ch. 2; with permission from 
MIT Press]. 

Name Gang Age Edu Mar Occupation 
Art Jets 40's J.H. Sing. Pusher 
A1 Jets 30's J.H. Mar. Burglar 
Sam Jets 20's Col. Sing. Bookie 
Clyde Jets 40's J.H. Sing. Bookie 
Mike Jets 30's J.H. Sing. Bookie 
Jim Jets 20's J.H. Div. Burglar 
Greg Jets 20's H.S. Mar. Pusher 
John Jets 20's J.H. Mar. Burglar 
Doug Jets 30's H.S. Sing. Bookie 
Lance Jets 20's J.H. Mar. Burglar 
George Jets 20's J.H. Div. Burglar 
Pete Jets 20's H.S. Sing. Bookie 
Fred Jets 20's H.S. Sing. Pusher 
Gene Jets 20's Col. Sing. Pusher 
Ralph Jets 30's J.H. Sing. Pusher 

Phil 
Ike 
Nick 
Don 
Ned 
Karl 
Ken 
Earl 
Rick 
01 
Neal 
Dave 

Sharks 
Sharks 
Sharks 
Sharks 
Sharks 
Sharks 
Sharks 
Sharks 
Sharks 
Sharks 
Sharks 
Sharks 

Col. 
J.H. 
H.S 
Col. 
Col. 
H.S. 
H.S. 
H.S. 
H.S. 
Col. 
H.S. 
H.S 

Mar. 
Sing. 
Sing. 
Mar. 
Mar. 
Mar. 
Sing. 
Mar. 
Div. 
Mar. 
Sing. 
Div. 

Pusher 
Bookie 
Pusher 
Burglar 
Bookie 
Bookie 
Burglar 
Burglar 
Burglar 
Pusher 
Bookie 
Pusher 

buted processing model shown in Figure A.1. In the figure the units 
are organized in different pools, such as 'names' pool, 'age' pool, etc. 
The number of units in each pool corresponds to different possibilities 
in that category, as for example, 27 units in 'names' pool and 3 units 
in 'age' pool, etc. There are as many pools as there are categories (6 
in this case), plus one additional pool called 'instance' pool. Units 
within each pool are conneded in an 'inhibitory' manner, i.e., the 
output of each unit is fed with a negative weight to all other units 
in the same pool. The units in each pool are conneded to the 
corresponding units in the instance pool in an 'excitatory' manner, 
i.e., the connection weight is positive. For example, the 'Ralph' unit 
in the 'names' pool, 'Jets' units in the 'gang' pool, '30' unit in the 'age' 
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[Adapted from McClelland and Rumelhart, 1988, Ch. 2; with 
permission from MIT Ress]. 

pool, 'JH' unit in the 'education' and the 'pusher' unit in the 
'occupation' pool are all connected to the 'Ralph' unit in the 'instance' 
pool with positive weights. The units in the 'instance' pool are called 
'hidden' units, since by design they are not accessible for external 
input or output. The units in all other pools are called 'visible' units. 
Only 5 of the 27 units are shown in the 'names' pool and 'instance' 
pool for illustration. Also the inhibitory connections within the pools 
are not shown in the figure. 

There are a total of 68 units in the model. Each unit computes 
a weighted sum of the input values to the unit, fed from other units 
as well as from external inputs, if any. The weighted sum or the 
activation value is passed through a nonlinear output function, which 
gives as output the activation value itself, if the sum lies between 
some prespecified minimum and maximum values. Otherwise, the 
function gives either the minimum value at the lower limit or 
maximum value at the upper limit. The state of the model is described 
as the outputs of all the 68 units at any given instant of time. Starting 
from any state, the next state can be computed by selecting a unit 
at random and computing the weighted sum of its inputs first and 
then the output of the unit. Due to change in the value of the output 
of this unit, the model goes to a different state. Then another unit 
is selected at random, and the new state for that unit is determined. 
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All the units are updated by selecting the units in a random sequence, 
to compute one 'cycle' of activation dynamics. After several cycles, the 
model is guaranteed to reach a stable equilibrium state, when there 
will not be any further change in the state of the model. 

For each set of external inputs, the model reaches a stable state 
eventually. From the stable state the stored data can be read out. 
For example, if we want the data about 'Ralph', an external input is 
given to the input of the 'Ralph' unit in the 'names' pool. Starting 
with some initial state, the network activations are computed for 
several cycles, until an equilibrium state is reached. At equilibrium, 
there will be one unit in each pool having large positive value. Those 
units correspond to the data that belongs to 'Ralph'. The details of 
implementation are discussed in [McClelland and Rumelhart, 19881. 

The model demonstrates several features of the functioning of the 
biological neural network in human memory. Some of the features 
are: (a) Retrieving an individual's data from his name, (b) Retrieval 
from a partial description, (c) Graceful degradation, (d) Default 
assignment, and (e) Spontaneous generalization for novel inputs. The 
most important point is that the model stores the patterns embedded 
in the given data. Therefore one could get from the model even such 
illformation for which the model was not explicitly designed. For 
example, in the feature of default assignment, the model gives 
possible good guess about missing information, even though we do 
not know certain things about an individual. It  evaluates the relative 
strengths of the attributes from the given data in a complex manner, 
which is difficult to describe explicitly. Thus this model clearly brings 
out the distinction between computer memory and human memory 
for storage and retrieval of information. The model also brings out 
the features of content-addressable memories and associative 
memories for information retrieval. Note the distributed nature of the 
memory in this model in the sense that the information is distributed 
in the weights throughout the network. Also note the parallel and 
distributed nature of the activation dynamics when the model is 
realized in hardware, and when i t  is allowed to relax naturally 
changing from one state to another until an equilibrium state is 
reached from the given initial state and external input. There will 
be several equilibrium states, some of them correspond to the desired 
information about the data in the Table A.l [McClelland and 
Rumelhart, 1988, p. 641. 

A.2 Constraint Satisfaction Model 

We consider another PDP model, namely the constraint satisfaction 
model, to illustrate how we attempt to build concepts or arrive at 
conclusions based on some limited, partial, and sometimes partially 
erroneous knowledge. The key idea in this model is that a large 
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number of weak constraints together will evolve into a definitive 
conclusion. For example, even in an apparently simple task of 
recognition of handwritten characters, it is difficult to articulate 
precisely what we capture as features in the patterns of several 
samples of each character. But when we are presented with a new 
sample of a handwritten character, most of the time we have no 
difficulty in recognizing it correctly. It is likely that &om the samples 
of a handwritten character we may have captured a large number of 
weak evidence of features in our memory, so that with a new sample 
as input, the memory relaxes to a state that satisfies as many 
constraints as possible to the maximum extent. 

The above idea of constraint satisfaction can be captured in a 
PDP model consisting of several units and connections among the 
units. In this model the units represent hypotheses and the 
connections represent the knowledge in the form of constraints 
between any two hypotheses. It is obvious that the knowledge cannot 
be precise and hence the representation of the knowledge in the form 
of constraints may not also be precise. So the solution being sought 
is to satisfy simultaneously as many constraints as possible. Note 
that the constraints usually are weak constraints and hence all of 
them need not be satisfied fully as in the normal constrained 
optimization problems. The degree of satisfaction is evaluated using 
a goodnesg-of-fit function, defined in terms of the output values of 
the units as well as the weights on the connections between units. 

The constraint satisfaction PDP model is illustrated here with an 
example of how our concepts of various types of rooms can be captured 
by the model &om samples of description of these rooms [McClelland 
and Rumelhart, 1986, Ch. 141. Let us assume that we collect data 
from subjects about their understanding of the following five types 
of rooms: Living room, kitchen, bedroom, office and bathroom. In 
order to elicit information from the subjects, 40 descriptors are 
provided to them, in terms of which each subject can be asked to give 
his~her view of the above room types. The descriptors are shown in 
Table A.2. 

Table A2 The 40 Room Descriptors used in the Constraint Satisfaction 
Model [From McClelland and Rumelhart, 1988, p. 64; with 
permission fmm MIT Press]. 

ceiling walls door windows very-large 
large medium small very-small desk 
telephone bed typewriter bo

o

kshelf carpet 
books desk-chair clock picture floor-lamp 
sofa easy~hair coffee-cup ashtray fireplace 
drapes stove coffeepot refrigerator toaster 
cupboard sink dresser television bathtub 
toilet scale wen computer clothes-hanger 
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Each subject can be asked to mark which of these descriptors are 
valid for each room type. F'rom the data collected from a number of 
subjects, the weights between units are captured. Here the units 
represent the descriptors. The output of a unit is binary indicating 
whether the description is present or not. The connection weights 
between units are derived fiom the co-occurrence patterns of the 
descriptors in the responses of the subjects for all the room types. 
One method of describing the weights is as follows: 

P(xi = 0 and xj = 1) P(xi = 1 and x, = 0) 
w, = -log P(xi = 0 and x, = 0) P(xi = 1 and x, = 1) (A. 1) 

where wij represents the symmetric weight connecting the unit j and 
unit i. The numerator represents the product of probabilities that the 
hypotheses of the units i and j are competing with each other, i.e., 
one unit has the value xi = 1 and the other has the value x, = 0. 
The denominator represents the product of probabilities that the 
hypotheses of units i and j support each other. Thus if the evidence 
is greater for sup~orting the hypotheses, then the weight w d  will be 
positive, otherwise it is negative. Note that the probabilities can be 
replaced by the relative frequencies in the data. In addition, each 
unit can have a bias reflecting the prior information about the 
hypothesis the unit represents. In this case the bias is given by 

There can be direct evidence for a hypothesis through an external 
input. The corresponding input unit could be clamped indicating that 
the hypothesis is either always 'on' or always 'off. Other types of 
external input could be a graded one indicating a weak constraint. 

A constraint satisfaction model can be displayed by means of a 
Hinton diagram as shown in Figure A.2 [McClelland and Rumelhart, 
1988, p. 661. Each larger square in the figure represents a unit. There 
are 40 units corresponding to 40 descriptors. Within the square of 
each unit a replica of all the 40 units are displayed as dots, each dot 
representing the unit in its relative position in the diagram. Around 
each dot, a white square indicates a positive weight connecting the 
unit representing the dot and the unit enclosing the dot. Thus for 
example, the white square on the second dot in the unit for 'ceiling' 
indicates that the 'walls' unit is connected to the ceiling unit with a 
positive weight. The size of the small white square indicates the 
strength of the positive connection. Likewise in the last unit 
corresponding to 'oven', the small dark square around the last but 
one dot indicates that the units 'oven' and 'computer' are connected 
with a negative weight. There are many units which have no 
conlnections at all. 
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Figure A2 The figure uses the method of Hinton and Sejnowski [I9861 to 
display the weights. Each unit is represented by a square. The 
name below the square is the descriptor represented by each 
s q m .  Within each unit, the small black and white squares 
represent the negative or positive weights, respectively, from that 
unit to each of the other units in the system. The relajhve position 
of the small squares within each unit indicates the unit with which 
the unit is connected [Adapted from McClelland and Rumelhart, 
1988, Ch. 3; with permission from MIT Preas]. 

The model is allowed to relax by computing the next state for 
each unit selected at random, computing sum of its weighted inputs 
and thresholding the weighted sum using a hard-limiting output 
function. For a given external evidence, say like 'oven' and 'ceiling' 
in Figure A.3, the state of the network aRer each cycle is shown in 
the figure. ARer 17 cycles the model settles down to an equilibrium 
state closest to the given external evidence, and the state description 
gives a description of the concept of the room satisfying the external 
evidence, namely ?kitchen', in this case. Thus the.PDP model clearly 
demonstrates the concepts of rooms captured by the weak constraints 
derived from the data given by the subjects. The model captures the 
concepts of the five room types at the equilibrium states 
corresponding to the description that best fits each room type. A 
goodness-of-fit function (g)  is defined for each state (x,, x,, ..., xN) ,  
where xi = 1 or 0, as 
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Figure A3 The state of the CS model after each cycle, starting with an 
initial state where the units 'ceiling' and 'oven' are clamped. The 
system settles down to a prototype for the type of room most 
closely related to the clamped units, which in this case is 
'kitchen' [Adapted from Rumelhart et al., 1986b; with permission 
from MIT Press]. 

where ei is the external input to the ith unit and bi is the bias of the 
unit i. At each of the equilibrium states the goodness-of-fit function 
is maximum. 

The model not only captures the concepts of the room types, but 
it also gives an idea of their relative separation in the 40 dimensional 
space. In order to visualize the shape of the goodness-of-fit surface 
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as a function of the state of the model, the goodness-of-fit surface for 
states lying on a plane passing through the three equilibrium states 
corresponding to 'kitchen', 'office' and bedroom is shown in Figure A.4 
[McClelland and Rumelhart, 19861. Note that the x-y plane 

Office 
1 
t C 

Kitchen, . . . ... ... ... .. . .. Bedroom 

Figure A4 The value of the goodness-of-fit function for the states on the 
plane passing through the three goodness maxima corresponding 
to the prototypes for 'kitchen', 'bedroom' and 'office'. [Adapted 
from Rumelhart et al., 1986b; with permission from MIT Press]. 

corresponds to the plane passing through the selected equilibrium 
states. The shaded curve gives values of goodness-of-fit function for 
all states on this plane. Obviously, the function is maximum at each 
of the three equilibrium states. The figure shows that the concepts 
of 'office' and bedroom have more in common than that of kitchen, 
since the peak for the kitchen is far off fiom the other two. 

The model will have several other equilibrium states 
corresponding to some local peaks of the goodness-of-fit function. 
These peaks do not correspond to the room types intended to be 
captured by the model fiom the data. In general the model is allowed 
to relax in order to reach some global peak overcoming the 
insignificant local peaks. This is generally accomplished using the 
method of simulated annealing. 

Note that this constraint satisfaction model is a good illustration 
of learning or capturing the concepts fiom examples. The derived 
constraints will be more representative of theknowledge if the 
examples are large in number. It is also interesting to note that there 
is no uniqueness about the model in terms of descriptors, weights, 
etc. The objective is to represent somehow the knowledge of the 
problem domain in the form of weights. Obviously the model will 
function better if the number of hypotheses or units and the 
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constraints are large, and the number of concepts is much smaller 
compared to the dimensionality of the state of the model. The model 
clearly illustrates the pattern behaviour in human cognition, which 
we cannot articulate precisely, but we use effectively in classifying 
correctly when a new sample is presented. 



Appendix B 

Mathematical Preliminaries 

B.l MDimensional Euclidean Geometry 

To appreciate the problems in representation and recall of 
information in artificial neural networks, concepts of higher 
dimensional geometry are useful. In this section we will describe some 
basic principles of N-dimensional Euclidean geometry that will help 
visualise the behaviour of the state of a neural network 
[:Hecht-Nielsen, 19901. Let us consider a network with N processing 
units. Let the output signal of each unit be one of the following four 
types: 

Binary: (0, 1) 
Bipolar: (-1, 1) 
Continuous in the range [O, 11 
Continuous in the range [-I, 11 

The output signal vector of the network can be represented as 
9 = (sl, s2, . . . , sN). 

The domains of the signal vectors for the four types of output in 
the N-dimensional space RN are hypercubes defined as follows: 

The points in the discrete binary cube (0, l lN are located at 
varying distances from the origin in the range (0 to m). On the other 
hand, the points in the discrete bipolar cube (-1, l lN  are all of length 
m. Therefore, the hypercube (-1, l lN is enclosed in the sphere of 
radius in RN. 

The volumes and areas of the hypersphere (radius r)  and 
hypercube (side length I )  in RN are given by the following expressions: 
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Volume of hypersphere: 

(N/2)! 
if N is even 

v, (NY r)  = 
l2 [N - 11/2)! p 

if N is odd 

Area of hypersphere: 

I ( N Z ) ~ ' ~  p - 1 

(N/2)! 
if N is even 

As (NY r)  = 
2N (Z)w-  (IN - lIL?)! p - 1 if is odd 

(N - I)! 

Volume of hypercube: Vc(N, 1) = lN 

Area of hypercube: Ac(N, 1) = f l -  ' 
Therefore we notice the following interesting properties: 

Volume of a unit side length cube is a constant, since Vc(N, 1) = 1 

Volume of a sphere inscribed in a cube is V,(N, 0.5) + 0, as N + 
The distance from the centre to the vertices of a unit cube in iN is 
m12, which is a function of N. 

The distance from the centre of the sphere inscribed in the unit cube 
to any point on its surface is 112. 

8.2 Linear Algebra 

Some Deflnitlons 

Llnear dependence: A set of M-dimensional vectors {xl, q, ..., q,,] is 
said to be linearly dependent if there exist numbers {c,, c,, ..., c,] not 
all zero such that 

CIXl  +C2X, + ... + CN+ = O (B.1) 

If the vectors are not linearly dependent, they are said to be linearly 
independent. 

Rank: The rank of a matrix A E iNxM is defined as the number of 
linearly independent rows or columns of A. If A is full rank, then its 
rank is N or My whichever is lower. 

Inner product: The inner product of two vectors x, Y E  iM, x = [ X I ,  

x2, ... , xM1 and y = [yl, y2, ..., y M ~ T ,  is defined as 
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When the inner product of the two vectors (x, y) is zero, the vectors 
are said to be orthogonal. 

Outer product: The outer product of two vectors x, y is defined as 

Norm: The 4 norm of the vector x is deked  as 

4= 

( i = l  ) 
The L~ norm is called Euclidean norm and is given by (18x)" 

Gradlent: The g d i e n t  of a multivariable function $(x) w.r.t. x is 
defined as 

The rank of the outer product is one. The outer product is a symmetric 
matrix when y = x. 

- "0'1 X0'2  ... X ~ ' M  - 

If x is a time varying vector (denoted as x(t)), then the derivative of 
$(x(t)) w.r.t. time t is 

"a35 X a Y 2  X a Y ~  

. . . . 

" ~ l  "ddY2 - . .  - 

d@(x (t)) a(=) &1(t) - + ... + & A t )  
dt axl dt ax,. dt 

T&XO 
= I dt (B.6) 

03.3) 

Jacoblan: For a vector function of a vector given by 

the Jacobian matrix is defined as 
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Quadratic forms. A quadratic form is a scalar valued function of 
the vector x, defined through a symmetric matrix A E R ~ ~ ~ .  The 
quadratic form is given by 

Q(x) = &4x 

i = l  j = 1  

Note that since A is symmetric, a ,  = aji. 
If Q(x) 2 0, then A is called a positive semidefinite matrix. If 

Q(x) > 0 then A is called a positive definite matrix.. If Q(x) 5 0, then 
A is called a negative semidefinite matrix. If Q(x) c 0, then A is called 
a negative definite matrix. 

The gradient of the quadratic form is given by 

VQ(x) = 2Ax (B.9) 

Multidimensional Taylor series: 

A multivariable continuous function $(x), whose derivatives of all 
orders exist, can be expressed in Taylor series as 

where 6x = [6al, 6az, ..., 6aM lT is an incremental vector, V$(x) is the 
gradient of $(x) w.r.t. x and v2((x) is the Hessian matrix defined as 
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If $(x) has an extremum at x = q ,  then V$(q) = 0. Neglecting higher 
order terms in the Taylor series in Eq. (B.10), we have at x = xo 

Since the last term in the above expression has a quadratic form, 
$(x) exhibits a minimum at x =  % if the Hessian matrix v2$(q) is 
positive definite. If the Hessian is negative definite, $(x) exhibits a 
maximum at x = q. 

Elgenvalues and Elgenvectors: 

Consider minimization of the quadratic form ~ A V  subjected to the 
constraint g v  = 1, where A E RMxM. That is, taking the derivative 
of 1. ~ A V -  h g v  w.r.t. v and setting it to zero, we get 

(2 I 
Av = hv (B.12) 

where A is called the Lagrange multiplier. The set of all vectors 
V E  R~ which satisfy equation (B.12) are called the eigenvectors of A 
and the corresponding scalars h are its eigenvalues. 

If A has M nonzero distinct eigenvalues, A can be expressed as 

where V = [vl v2 ... VM I is the matrix having the eigenvectors as its 
C O ~ U ~ ~ S  and A = diag [hl & . . . hM] is the diagonal matrix of 
eigenvalues. The representation of A in Eq. (B.13) is called the 
eigendecomposition of A. 

Slngular Value Decomposltlon: 

The Singular Value Decomposition (SVD) can be viewed as a 
generalization of the eigendecomposition. For a matrix A E RN M, 
there exist orthogonal matrices U = [ul q . . . I E RNx and 
v = [v, v2 . . . vM] E R~ such that 

VAV = diag [a, 0, . . . or I (B.14) 

where a, 2 a2 2 ... a, 2 0, and r I min(N,M) is the rank of the 
matrix A. The ais are the singular values of A and the vectors q, 
v, are the ith lefi singular vector and the ith right singular vector, 
respectively. 

Therefore the matrix A can be written as 
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where 
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It can be shown that ui and vi are the eigenvedors of the square 
matrices AAT and ATA, respectively. That is 

( M T ) ~  = oi2y 
and 

(A~A)v, = a,2vi 

c$ are the eigenvalues in both the cases. 

Solutlon of Linear Equatlons: 

Let A is an N x M matrix, x is an M x 1 column vedor, and b is an 
N x 1 column vector. Then for solving a set of N linear equations 
given by 

A x  = b (B. 17) 
three cases arise: 

Case I: N = M. For this case of square matrix the solution to Eq. (B.17) 
is given by x = A-'b, provided A-' exists, i.e., A is a full rank matrix. 

Case 11: N > M. The solution for this overdetermined case is obtained 
by solving the following least squares problem 

T 
min (b-Ax) (b-Ax) (B.18) 

x 

The solution to Eq. (B.18) is given by 

X, = (A~A)-~A% = ~ + b  ( B . I ~ )  

where A+ is called the pseudoinv&se of A. The vector 

gives the projection of b onto the space spanned by the columns of 
A. Hence, the matrix P is called the projection matrix. 

Case 111: N N M. There are infinite solutions for this undetermined 
case. The Minimum Norm Least Squares (MNLS) solution is obtained 
by minimising (xTx) subjected to the constraint that Ax = b. That is, 
the solution is obtained by minimising [xTx - A ~ ( A ~  - b)] w.r.t. x. The 



vector A is the set of Lagrange multipliers [XI, h, ..., hNIT. The 
solution to the above constrained optimization problem is given by 

Projection Matrix 

Consider the vectors al, a2, b E R ~ .  

a1 
The scalar projection of b onto al = ( b, - ) 

Ila1llz 

a1 a1 The vector projection of b onto al = ( b, - ) - 
IIalll2 llall12 

Let 6 be a projection of vector b onto the subspace spanned by al 
and %. The subspace is giv n by the linear combination of al and 
a2, i.e., qal + x2% =Ax. Let 1 =AS. Then the vector b - 6 = b -Axp 
is orthogonal to all the vectors in the subspace Ax. Therefore 

Since this should be true for all x, we have 

X, = (A~A)-~A% 

Note that the solution in Eq. (B.22), which has been derived using a 
geometrical approach, is identical to the least squares solution given 
in Eq. (B.19). Thus the projection of b onto the space spanned by the 
columns of A can be written as 

A 

b = % = A(A~A)-~A% = n, 

where P is the projection matrix. 

B.3 Probability 

Sample Set 

A set U which consists of all possible outcomes of a random 
experiment is called sample space. The sample space corresponds to 
the universal set. 

Event 

An event A E U is a set of possible outcomes. If the events A and B 
do not have any element in common, then they are called mutually 
exclusive events. 
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Random Variable 

A random variable Xis  a function that maps the outcome of a random 
event, i.e., each point of a sample space into real scalar values. A 
random variable which takes discrete values is called a discrete 
random variable, and the one which assumes continuous values is 
called a continuous random variable. A vector random variable X is 
a vector whose components Xi are random variables. 

Definition of Probabllity 

Classical or a prioriapproach: If an event A can occur in h 
different ways out of a total number of n possible ways, all of which 
are equally likely, then the probability P(A) of the event A is defined 

Frequency or a posteriori approach: If aRer n repetitions of an 
experiment, where n is very large, an event A is observed to occur in 

h 
h of these, then the probability PtA) of the event A is defined as ; . 

Axioms of Probabllity 

P(A) is defined as the probability of an event A if it satisfies the 
following three axioms: 

Al: 0 I P(A) I 1 

A3: For any sequence of mutually exclusive events Al, A2, ... 

Important Properties of Probablllty 

1. If g denotes an empty set, then 

P($) = 0 , 

2. If A is the complement of A, then 

P(Z) = 1 7  P(A) 

3. If A and B are any two events, then 

P(A u B) = P(A) + P(B) - P(A n B) 
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Condltlonal Probablllty 

Let A, B s X be two events such that P(A) > 0. Then the probability 
of B given that A has o c c m d ,  i.e., conditional probability of B given 
A, is defined as 

P(A n B) 
P(BIA) - p(A) (B.26) 

Independent Events 

The event A s X  is called independent of the event B s X if and only 
if P(A I B)  = P(A). 

Bayes Theorem 

Let Al, A2, ..., An are mutually exclusive events such that 
dk, Ak = U. If one of the events must occur, then 

Probablllty Dlstrlbutlon 

For the discrete case, the function p(x) = P(X=x) is a probability 
distribution of the random variable X if p(x) 1 0 and Z p(x) = 1. For a 
continuous case p(x) is called a probability density function, if 
p(x) 1 0  and Ip(x)& = 1. 

Expectation or Mean 

For a discrete random variable X with the possible values xl, x2, ..., 
x,, the expectation or mean is defined as 

provided the series converges absolutely. 
For a continuous case 

Variance 

The variance of a random variable X is 
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The positive square root of the variance is called standard deviation 
and is given by 

Uniform Distribution 

A uniform probability distribution between a and b for a random 
variable X is defined as 

for a l x l b  
u(x) = (B.32) 

otherwise 

The mean and variance of the uniform probability distribution are 

1 1 Em = 5 (a + b)  and Var(X) = - (b - a12 (B.33) 
12 

~inomlai Distribution 

If each experiment is identical, i.e., each experiment has the same 
sample space and same probability distribution on its events, then 
the experiments are called trials. Repeated independent trials are 
called Bentoulli trials if there are only two possible outcomes for each 
trial and their probabilities remain the same throughout the trials. 
Let q be the probability that an event will occur in a single Bernoulli 
trial. Then (1 - q )  is the probability that the event will fail to occur 
in any single trial. The probability that the event will happen exactly x 
times in n 2 0 trials is given by the binomial distribution of order n 

b(x; n, q )  = P(X= x) = q"(1- 9)"- for x = 0,1, ..., n [ i  I 
where the random variable X denotes the number of successes in n 
trials. 

The mean and variance of the binomial distribution are 

Univariate Gaussian Distribution 

The function defined by 

N(x, CL, 0) = 
1 

is known as the Gaussian distribution of the random variabie X with 
mean p and variance $. 
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A broad class of measures of similarity between two patterns is 
based on metric distance measures. A distance measure d between two 
M-dimensional pattern vectors x and y is called a metric if it satisfies 

(a) d(x, y) 2 0 and d(- y) = 0 iff X= y (positivity) 

(b) 4- Y) = d ( ~ ,  X) (symmetry) 

(4 4- Y) + d(Y, 2) 2 4 2 ,  X) (triangle inequality) 

The most common example of this kind of distance measure is 
Minkowski r-metric, which is given as follows: 

The particular cases of the above distance measure are: 

(a) When r = 1 and xi, yi E (0, I), dr refers to Hamming distance. 

(b) When r = 2, dr refers to Euclidean distance. 

(c) When r = =, dr refers to Chebyshev distance. 

Two other metrics that are useful in the ANN context are: 

(d) Absolute value distance or city block distance or 4 m n n  

(e) Maximum value distance or L, norm 

The distance between a pattern vector (x) and its mean vector 
(p) of a Gaussian distribution is described in terms of the following 
Mahalambis distance. 

where C is the covariance matrix of the distribution. This distance is 
also used in Eq. (B.37) of the multivariate Gaussian distribution. 
When C is a diagonal matrix, dM becomes the weighted inner product. 

A similarity measure between two pattern vedors need not be a 
distance measure. For example, the cosine of the angle 8 subtended 
between the vectors x and y can serve as a similarity measure. That is 

The inner product 2 y  alone can serve as a similarity measure. This 
is also called cross correlation. 
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In some cases, we need to have a similarity measure between two 
probability distributions {p .) and {qj) for discrete random variables. 
Cross entropy or ~ullback-teibler measure is one such measure. The 
cross entropy is defined as 

The first term of Se, i.e. x p j  log , is also used as a similarity ($1 
J \ - /  

measure. It is known as cross entropy of the distribution (pi) with 
respect to the distribution {q,). 
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Basics of Gradient Descent 
Methods 

C.l Mean Squared Error 

Gradient descent methods form the basis for many supervised 
learning laws in artificial neural networks. We introduce the basics 
of the gradient descent methods [widrow and Stearns, 19851 by consi- 
dering a single layer, single unit network with linear output function, 
namely the Adaline, 'as shown in Figure C.1. The error in the actual 

Desired output 

Activation Act 

0 1  
Wl m- 

w, 4 w, 4 

au wkl - Linear function 

Figure C.l A single layer single linear unit network (Adaline). 

T output for a given input vector a = (al, %, ..., aM) is given by 
M 

The squared error is given by 

The input vector can be considered as a sample function of a 
stationary random process [Papoulis, 19901. Then the mean squared 
error is given by the expected value of e2 as follows: 
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where R = &[aaT is an M x M autocorrelation matrix with &[a,ai] as 
its (i, j]th element, and pT = &[baT] = &[bal, baz, ..., baM lT. To find the 
weights for minimum E, we take the gradient of the mean squared 
error E(w). That is 

aE(w) v = -  
awT 

Note that even though E is a scalar, ~ E I ~ W ~  is a vector with 
components of gradient along each wi axis in the weight space. Setting 
the gradient equal to zero, and solving the resulting normal equations 
for the optimal set of weights w*, we get 

V =  0 = 2Rw* - 2p 
Therefore 

w* = R 1 p  

provided that R1 exists. The minimum error is obtained by substituting 
w* for w in the Eq. ((3.3) for E. Therefore, we get after simplification 

We can show that the mean squared error in Equation ((3.3) is given 
by 

E(w) = E,, + (W - w*lTR(w - w*) 

= E,, + vTRv 
where 

V = W - W* = [vl, v2, . .a ,  vM] T 

is a translated weight vector with origin at w = w*. This can be proved 
by using the property that R is a symmetric matrix, i.e., RT = R. 

C.2 Properties of the Autocorrelation Matrix R 

The following properties of the autocorrelation matrix are useful for 
studying the properties of the error function E(w) [Widrow and 
Stearns, 19851. 

(a) RT = R, RR-I =I and (R-')~ = R-l. 

(b) Using the eigenvalues and eigenfunctions of R, we can get the 
normal form representation of R as R = &A&-', where A is a 
diagonal matrix consisting of the eigenvalues hi of R, and Q 
is a matrix consisting of the eigenvectors of R. That is 
Q = [ql, qZ, ..., %I. We also have Q-'RQ = A. 
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(c) The eigenvectors corresponding to the distinct eigenvalues are 
orthogonal to each other. That is qYqj= 0, for all i and j, and 
i + j .  

(d) Since R is a real and symmetric matrix, all its eigenvalues 
are real, and each eigenvalue is greater than or equal to zero. 

(e) If all the eigenvectors are normalized to unit magnitude, then 
the resulting set of eigenvedors are orthonormal. That is 
QQT = I = QQ-'. Hence QT = &'. 

C.3 Prooerties of the Mean Squared Error q w )  
E(w) is a quadratic function of the components of the vedor w. That 
is, in E(w), when expanded, the elements of w will appear in first 
and second degrees only. Thus the error surface E(w) is a hyperboloid 
in the weight space. Since E(w) is a squared error, Emh is the 
minimum value of the squared error. Therefore we have 

E(w) 2 E,, 2 0 
and 

vTRv = E(w) - Emh 2 0 

Note that vTRv is also quadratic function of the components of the 
vector v. The error surface E(w) is a bowl-shaped surface. F'igure C.2 

Figure C.2 Constant error  contour^ for the quadratic error Burface. 

shows constant error contours of an error surface for a two 
dimensional case. The term V ~ R V  represents a hyperellipse, which in 
the two dimensional weight space is an ellipse with two principal 
axes as shown in Figure C.2, for different values of the constant in 
the equation 

vTRv = constant (C.10) 
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Any increase in the radius from the v = 0 point increases the error. 
Therefore, the gradient of E(w) with respect to v is always positive. 

Expressing R as &AQT in Eq. (C.8)) and using d = QTv, we get 

With the transformed coordinates v', the axes are along the two 
principal axes of the ellipses in the weight space as shown in 
Figure C.2. It can be shown that the eigenvectors of the matrix R 
define these principal axes of the hyperellipses formed by the error 
surface. Since 

the eigenvalues of R are given by the second derivative of the error 
surface with respect to the principal axes, i.e., 

We want to find w for which E(w) is minimum. For a quadratic error 
surface the minimum of E(w) occurs at a point w* in the weight space 
at which the gradient of the error surface is zero. Therefore the 
gradient of 

E(w) = E,, + (W - w*)~R(w - w*) (C. 14) 
is given by 

Multiplying both sides with R1 and rearranging, we get 

Note that 2~ w 1 - = 2R. Thus R 'V can be interpreted as the ratio 
dW2 

of the first derivative to the second derivative of the error with respect 
to the weight in 1-D case. From Equation (C.16), we note that, 
starting fiom any initial value of the weight vector w, the optimum 
weight vector w* can be obtained in one step, provided the first and 
the second derivatives of the error surface are known at that initial 
point in the weight space. 

C.4 Newton's Gradient Search Method 

The optimum weight value can also be captured in an iterative 
manner by writing 

w ( ~  + 1) = ~ ( m )  - rl R ~ V ,  (c.17) 
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where q is a positive constant. This is called Newton's gradient search 
method. This is useful only when the approximate values of the first 
and second derivatives of the error surface are available at  each point. 

We can show that the Newton's method converges to the optimal 
weight w*. Let us rewrite Eq. ((3.16) as 

where V,  = V a t  w = w(m) .  Therefore from Eqs. (C.17) and ((2.18) we 
get 

w ( m  + 1) = w ( m )  - 2q(w(m) - w*). = w ( m ) ( l  - 2q) + 2qw' ((2.19) 

Starting with an initial weight of w(O), we get 

w ( m )  = w* + (1  - 2 q ) m ( ~ ( 0 )  - w*) (C.20) 

Since w ( 0 )  - w* is fixed, w ( m )  converges to w*, provided 
0 < 2n 1, i.e., 0 < 11 5 l12. The one step solution is obtained for 
q = &2 as shown in Eq. ((2.16). 

For a known quadratic error surface E(w),  the first and second 
derivatives are known exactly for all values of w. Hence the optimum 
weight vector can be obtained in one step as in Eq. (C.16). But if the 
error surface E(w),  though quadratic, is not known exactly, then'the 
computation needs to be iterative as in Eq. (C.17). If the error surface 
is not quadratic, then the Newton's method is not guaranteed to 
converge to the final value, starting from any arbitrary weight value. 
In the Newton's method the steps do not proceed along the direction 
of the gradient. 

C.5 Method of Steepest Descent 

If the weights are adjusted in the direction of the negative gradient 
at  each step, as shown in Figure C.3, then the method is called 
steepest descent. For the method of steepest descent, the weight 
update is given by 

w ( m  + 1) = w ( m )  + p (- V,) (C.21) 

where p regulates the step size, and V ,  is the gradient of the error 
surface at  w = w ( m ) .  Substituting for V ,  from Eq. (C.18) we get 
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Newton's method 
(the path is approxi- 
mately along the 

+ 
w,  

Figure C.3 Illustration of trajectories in the weight space for different 
gradient descent methods. 

w(m + 1) = w(m) - 2@(w(m) - w*) 

In terms of v = w - w* (translation), we get 

If we rotate the principal axes by substituting v = Qv' in Eq. (C.231, 
we get 

Qv'(m + 1) = (I - 2pR) Qv'(m) (C.24) 

Multiplying both sides by Q-', we get 

Therefore, starting with m = 0, we get 

This result will be stable and convergent if 

lim (I - 2pA)m = 0 
m + -  

The convergence condition is satisfied by choosing 

where ha, is the largest eigenvalue of R. After convergence 
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lim v'(m) = 0 
m - + -  

Hence 
lim w(m) = w' 

m - + -  

Figure C.3 shows the trajectory of the path for the method of steepest 
descent. The Newton's method converges faster because it uses the 
information in the R matrix to find a path close to the direct path on 
the error surface towards Emh. Note that only the first derivative of 
E(w) is required for the steepest descent, whereas both the first and 
the second derivatives of E(w) are needed for the Newton's method. 

C.6 The LMS Algorithm 

Since the gradient of the error surface is not available in general, it 
needs to be estimated from the available data. If we assume that the 
input vector a(m) and the desired output b(m) are the realization of 
a random process at the mth instant, then the error e(m) = 
b(m) - aT(m)w(m) is also a random variable. 

One method of estimating the gradient is to use an estimate of 
the gradient of the error by taking differences between short-term 
averages of e2(m). But in the LMS algorithm we use each realization 
e2(m) itself instead of &[e2(m)1 as in Eq..(C.3). The estimate of the 
gradient a t  each realization is given by 

Using this estimate, the steepest descent algorithm is given by 

This is called the LMS algorithm. Each component of the gradient 
vector is obtained from a single data sample. Without averaging, the 
gradient components do contain a large component of noise, but noise 
is attenuated with time by the weight adaptation process, which acts 
as a low-pass filter in this respect. 

By taking expectation on both sides of Eq. (C.31), it can be shown 
1 

that the weight vector converges in the mean provided 0 < p < - 
2 L '  
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where &, is the largest eigenvalue of R [Widrow and Stearns, 19851. 
But we know that &,I tr[Al= tr[Rl. If the input is considered as a 
signal vector, then tr[Rl gives sum of the diagonal elements of R. 
Each element is of the type E[aa, which can be viewed as signal 
power. Therefore, tr[R] is equal to the signal power. Hence 

o < p <  1 1 
I- 

2 (signal poweo 2 A,,,, 

This gives an idea for the choice of p based on the input data. The 
LMS algorithm is a stochastic gradient descent algorithm. Although 
the algorithm converges in the mean, the trajectory in the weight 
space is random. 

Table 4.5 in Chapter 4 gives a summary of the gradient search 
methods discussed in this Appendix. 



Appendix D 

Generalization in Neural 
Networks: An overview 

In this Appendix we present an overview of the issues of generaliza- 
tion in neural networks. The material in this section is collected from 
[Neeharika, 19961. 

D.1 Concept of Generalization 
Generalization is an intuitive concept unique to human learning. For 
example, we learn the concept of addition of numbers by looking at 
several examples of addition along with some explanation provided 
by the teacher. Likewise, we learn the pattern embedded in the 
written character by observing and by writing several examples of 
the same character. Thus learning from examples with additional 
knowledge forms the basis of the concept of generalization. 

Generalization by learning fimm examples is possible because of 
some inherent features ,in the input patterns or because of some 
constraints inherent in the mapping function. Learning, and hence 
generalization, is not possible if we are presented with a set of random 
data as examples. Therefore all problem situations are not generalizable. 

Atter learning we are capable of dealing with new situations such 
as a new addition problem or a new sample of a character. Our ability 
to deal with new situations can be evaluated by testing ourselves 
with several new examples for which we know the answers for 
comparison. If our performance with this so called test data is better, 
then we can say that our ability to generalize is also better. 
Performance of a pattern recognition system depends on its ability 
to generalize from the training examples. Generalization concept is 
involved in all pattern recognition tasks, such as classification, 
mapping, storage and clustering. For example, in pattern mapping, 
it is the smoothness of the mapping function that makes 
generalization by a network possible. Likewise, in pattern clustering, 
it is the common feature in each cluster that enables the network to 
generalize the concept in a given cluster. 
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D.2 Some Measures of Generallzatlon 
Analytical studies on generalization use models for the learning 
machine [Blumer et al, 1989; Haussler, 1992; Amari, 1995; Seung 
et al, 19921. Various methods of measuring generalization are used 
in practice [Liu, 1995; Musavi et al, 19941. We discuss some of the 
methods in this section. 

D.2.1 Kullback-Lelbler Measure 

The Kullback-Leibler measure (Ern) is given by the following 
equation: 

where p(y 1 x) is the class conditional probability distribution of the 
sample space and f d y  ( x) is the function approximated by the neural 
network after training using the training set Tk = ((xl, yl), ..., (xk, 
y,)) consisting of k examples. The integral in Eq. (D.1) is over the 
input-output space. The Eq. (D.1) can be written as 

where E is the expectation operator with respect to the random 
variables (x, y). 

The value of Ern is equal to zero when the function approximated 
by the neural network is equal to the actual function, i.e., 
fw(y I x) = p(y ( x). Since the second term in Eq. (D.2) is independent 
of the weights, the first term can be used to define the generalization 
error. That is 

E, = - EDog(f,(y Ix))l (D.3) 

The Kullback-Leibler measure is useful for the networks designed for 
classification purpose. The measure requires the knowledge of the 
underlying probability distribution p(x, y), which is not known in many 
cases. Therefore an alternative method of measuring generalization 
ability is needed. One such measure is the cross-validation measure. 

D.2.2 Cross-Valldatlon and Error Rate Measures 

Cross-validation is a method of estimating the generalization error by 
making use of the training and test data [Liu, 19951. In this method, 
the generalization e m r  E, in Eq. (D.3) can be estimated using 

1 4 = -- log Giej I xj)) 
j r i  

In the above equation (xj, yj) E Tk and is the weight vector 
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obtained by using the training set Tk with its ith sample deleted. The 
method of cross-validation to estimate the generalization error 
involves training the network several times, each time by deleting a 
different example from the training set. This is a computationally 
expensive procedure. 

The most commonly used measure of generalization for pattern 
classification task is the percentage misclassification of the test 
samples or the error rate. This measure is extensively used because 
it is simple and easy to implement. It can be viewed as a variation 
of the cross-validation measure. 

D.2.3 Other Measures of Generallzatlon 

Generalization error can also be measured by the probability that the 
output far the (k + 1)th sample is misclass3ed after the network is 
trained on k examples of the training set [Anthony and Holden, 1994; 
Holden and Rayner, 19951. It is given by 

where fw (.) is the output of the neural network with weights w. 
Another measure of generalization is based on the entropic error 

[Ammi, 19931. It is defined as the negative logarithm of the 
pmbability of correct classification of the (k + 1)th pattern. The 
entropic error is given by 

ei(w, k) = - log (1 - eg(w, k)) (D.6) 

It i a  clear that when the probability of correct classification is one, 
the value of the entropic error is zero. 

D.3 Theoretical Studies on Generalization 

D.3.t Learning Models 

Theoretical studies on generalization make use of a model of learning. 
The key idea is to compute the probability that the neural network 
gives the correct output for new samples after learning from a 
training set. 

Let z = (x, y) be a sample from the input-output space, so that 
p(z) = p(x, y). The goal in learning is to minimize the risk functional 

R(w) = Q(z, w) ~ P ( z )  0 7 )  
where Q(z, w) represents a measure of the loss or discrepancy 
between the desired response y and the actual response produced by 
the learning machine (defined by the weights w) for the input x. If 
the probability measure p(z) is unknown, the minimization can be 
carried out on the training set drawn from the input-output space. 
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All learning problem are particular cases of this general problem 
of minimizing the risk functional based on empirical data. Learning 
theory addresses the issues of consistency, convergence, generaliza- 
tion and learning algorithm [Vapnik, 19951. 

D.3.2 VC Dlmenslon 

We consider the issue of generalization of a learning process in some 
detail [Holden, 19941. Consider a network which has been trained 
using a set of training examples for a particular problem. If there is 
a !high enough' probability that the a c t d  error from the network 
for future samples drawn from the same problem is 'small enough', 
then we say that the network generalizes. 

This idea of the concept of generalization is used in the Probably 
Approximately Correct (PAC) learning theory [Haussler, 19921, which 
is based on the learning model introduced by Valiant [Valiant, 19841. 
We detine some terms that are essential to understand the theoretical 
results obtained in the PAC theory in the context of neural networks. 
In the following definitions, Fdenotes the class of functions that can 
be implemented by a neural network, fw represents one of the 
members of this class for a particular value of weight vector w and 
S is the input space. 

Definition 1 (Dichotomy): Given a finite set S s RN and some 
function fw E 2 we define the dichotomy (Sf, S-) of-S, where Sf and 
S- are disjoint subsets of S. Here S US- = S and x E S+ if 
fw(x) = 1, whereas x E S- if fw = 0. 

Definition 2: The hypothesis hw associated with the function fw is 
the subset of RN for which fw(x) = 1, that is, 

The hypothesis space H computed by the neural network is the set 
given by 

H = { h w l w ~  $ w l }  (D.9) 

where I w 1 is the total number of weights in the network. 

Definition 3: Given a hypothesis space H and a finite set S E R ~ ,  
we define AH@) as the set 

We say that S is shattemd by H, if AH@) = 21sl where IS ( is the 
number of elements of the set S. 
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Deflnltlon 4: Growth tunctlon. The growth function, A&), is 
defined on the set of positive integers as, 

A&) = max ( I AH@) I 
s s e ,  1st =i 

The growth function gives the maximum number of distinct 
dichotomies induced by H for any set of i points. 

Detlnltlon 5 (Vapnlk-Chervonenkls dlmenslon): The Vapnik- 
Chervonenkis dimension or VC dimension of the hypothesis space 
H, denoted by VCdim(H), is the largest integer i such that 
A&) = 2'. In the case when no such i exists, VC dim(H) is infinity. 

Figure D.l illustrates the shattering of 3 noncollinear points by 
straight lines. A set of 3 noncollinear points is the largest set of pointa 

Figure D.l Shattering of three noncollinear points by straight lines. The VC 
dimension is three for straight linea in 2dimensional space on 
a set of noncollinear pointe. 

that can be shattered in a 2-dimensional space by straight lines. 
Therefore the VC, dimension of the set of straight lines with respect 
to a set of noncollinear pointa in a 2-dimensional space is 3. 

VC dimension is a combinatorial parameter which measures the 
expressive power of a network. VC dimension has been used 
extensively to obtain the generalization ability of a trained network 
[Blumer et al, 1989; Baum and Haussler, 1989; Sontag, 1992al. It 
has been shown that it is not the size of the set of computable 
functions but the VC dimension of the function that is crucial for 
good generalization in the context of PAC learning model [Blumer 
et al, 19891. The following key result on the bound of the 
generalization error is given in [Haussler et al, 19941: 

(D. 12) 

where E is the expectation operator, L is the class of target functions 
(like straight lines in 2-D plane) and k is the number of training 
patterns. 

Experiments conducted by Holden and Niranjan [I9941 on real data 
have shown that the above bound is a moderately good approximation 
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for the worst case generalization error. The results of bounds based 
on the VC dimension cannot be used most of the time since it is 
difficult to calculate the VC dimension. However the calculation of 
VC dimensions for some classes of functions are reported in [Anthony 
and Holden, 1994; Sontag, 1992a; Wenocur and Dudley, 19811. 

D.3.3 Asymptotic Behavlour of Learning Curves 

When the generalization error of a neural network is plotted against 
the number of training patterns, then the resulting curve is called a 
learning curve. The behaviour of the learning curve gives an idea about 
the generalization capability of the trained network [Amari, 19951. 

A universal result on the dependence of the entropic error 
eJw, k) on the number of training samples is given by b a r i ,  19931 

where I w 1 stands for the number of weights, k for the number of 
training samples and (ei(w, k)) indicates the average over all the 
training data. This result is independent of the architecture of the 
neural network and the learning algorithm used for training. 

D.3.4 Dlscusslon 

The VC dimension of a network can be regarded as a measure of 
capacity or expressive power of a neural network. The number of 
weights also indicates the capacity of a neural network. The genera- 
lization error is directly proportional to the capacity of the network 
and is inversely proportional to the number of training pattern. 

In the case of Radial Basis Function Neural Networks (RBFNN), 
I w I - 1 I VC dim (F) 5 1 w 1 , where Fis  the family of functions that 
a network can approximate and I w 1 is the number of weights 
[Anthony and Holden, 19941. In the case of polynomial basis 
networks, VC dim (F) = I w I . The bounds on the generalization error 
obtained from computational learning and the behaviour of the 
learning curves give essentially similar results. But in the 
computational learning the worst case behaviour of the error is 
studied, whereas in the learning curves case the average behaviour 
is analyzed [Holden, 19941. Relationship between these theoretical 
methods is discussed in [Seung et all 19921. 

D.4 Generalization in the Context of Feedforward Neural 
Networks 

Pattern recognition tasks are usually complex, and cannot be solved 
by designing a single algorithm to take care of all the variations in 
the patterns [Lecun and Bengio, 1995bl. Generalization of a network 
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depends on the features used for training, whereas the theoretical 
learning models do not take into account the issue of feature 
extraction. This is one of the major limitations of the neural networks 
for the study of generalization. 

Despite the above limitation, neural networks perform reasonably 
well for pattern association problems because of their ability to learn 
complex mappings in the higher dimensional space. In some cases 
the generalization performance of a neural network can be improved 
by manipulating the parameters of the network as follows: 

Architecture of neural networks: Choice of an optimum architec- 
ture is one of the methods to improve generalization. One way of 
optimizing the architecture is by pruning, which is discussed in detail 
in the survey paper by Reed [19931. 

Size and quality of the training set: A large number of training 
samples are useful for improving the generalization by a network. 
One method of increasing the training set data is by introducing noise 
into the training samples to generate new training examples 
[Holmstrom and Koistnen, 19931. A good representation of the 
training data also improves the generalization [Narendranath, 19951. 

Learning algorithm: Methods to accelerate learning are proposed in 
an effort to train a network with large number of examples [Jean 
and Wang, 19941. 

Criterlon for stopplng training: Figure D.2 gives plots showing the 
behaviour of training and test error with number of training 
iterations. Overtraining occurs due to memorization of the training 
samples by the neural network. There is an increase in the 
generalizationltest error even though the error on the training set 
decreases with increase in the number of training iterations. Finding 
a criterion for stopping the training is a key issue in the 
generalization in feedforward neural networks. 

A 

Error 

Number of training iterations 

Figure D.2 Graph depicting overtraining. Generalization error is shown as 
a function of number of iterations. There is an increase in the 
generalizationltest error even though the error on the training 
set decreases as the number of training iterations is increased. 
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Principal Component Neural 
Networks: An overview 

Neural networks have the ability to discover significant features in 
the input data using self-organized unsupervised learning [Haykin, 
1994; Linsker, 19881. The principal component neural network is a 
self-organizing network which can perform principal component 
analysis [Matsuoka and Kawamoto, 19941. In this Appendix we 
present an overview of the principal component neural networks. The 
material for this section is obtained from [Sudha, 19961. 

E.l Basics of Principal Component Analysis 

From statistical point of view, Principal Component Analysis (PCA) 
is a method of representing the data points in a compact form [Jolliffe, 
1986; Hotelling, 19331. Let us consider a data set D = {x lx E ~ ~ 1 .  
This data set can be represented as points distributed in an 
N-dimensional space. The first principal component is the direction 
along which the points have maximum variance. The second principal 
component is the direction orthogonal to the first component along 
whidh' the variance is maximum for the data points, and so on for 
the third, fourth, etc. For example, Figure E.l shows the directions 
(PC1 and PC2) of the first and second principal components of the 
data points distributed in a 2-dimensional plane. 

- 
XI 

Figure E.l Directions of the principal components of the data points 
distributed in a 2-dimensional space. 

379 
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It is possible to have an effective transformation x + y, where 
x E !&N, y E Rp and p < N, when there is redundancy in the data 
points. This is done by projecting the data points onto the principal 
subspace formed by the &st p principal components, also called G j o r  
components which capture the maximum variations among the points. 
This forms the basis for dimensionality reduction, and the method of 
data representation is commonly referred to as subspace decomposi- 
tion. Approximation to the data point x reconstructed with minimum 
error from the projections y onto the p largest principal component 
directiom q s  is given by 

A N 
The error vector e = x- x = Z yiqi is orthogonal to the 

i=ptl 

approximating data vector k, wGch is called the principle of 
orthogonality. PCA is similar to the Karhunen+eve transformation 
[Devijver and Kittler, 19881 in communication theory. The principal 
component analysis is a data dependent transformation. 

Extraction of the principal components can be done using the 
covariance matrix, C = E[(x - Z) (X - @'PI of the data set, where 
ii = Eb] is mean of the data set. The principal components are the 
eigenvectors of the data covariance matrix C arranged in the 
descending order of the eigenvalues [Haykin, 1994; Preisendorfer, 
1988; Leon, 19901. 

E.2 Need for Neural Networks in PCA 

In practice we have only an estimate of the covariance matrix due to 
limited data, whereaa the true covariance matrix is the ensemble 
average of the stochastic process generating the data. Moreover, for 
a nonstationary process, the principal components may vary with 
time. Therefore direct computation of the principal components is 
H c u l t ,  and is also not likely to be accurate. 

On the other hand, a neural network can extract the principal 
components directly from the data, by incrementally adjusting its 
weights. Moreover, it is possible to extract the required number of 
principal components by a neural network, instead of extracting all 
the components as in the direct computation. For nonstationary 
processes, the principal components are incrementally adjusted based 
on the new input to the neural network. 

With a single linear unit the simple unsupervised Hebbian 
learning performs variance maximization, and hence gives the 
direction of the f i s t  principal component [Hebb, 1949; Palmieri and 
Zhu, 19951. The supervised mean squared error learning for a linear 
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network can be interpreted as a sum of Hebbian and anti-Hebbian 
learning components [Wang et al, 19951. 

The main feature of the linear network is that the energy 
landscape has a unique global minimum, and the principal component 
learning converges to the global minimum. Both the gradient descent 
and the Newton's type methods may get stuck in the saddle points 
[Haykin, 1994; Hertz et al, 19911, Thus the principal component 
learning is the best learning [Baldi and Hornik, 19891 for a linear 
feedforward neural network. 

E.3 Principal Component Neural Networks (PCNN) 

E.3.1 Oja's Learning 

The drawback of the Hebbian learning for principal component 
analysis is that the weights may grow indefinitely with training or 
they may tend to zero. This can be avoided by adding a stabilizing' 
term. Oja modified the Hebbian learning rule which incorporates the 
normalization of weights. 

For a single linear unit shown in Figure E.2, the weight update 
according to the Hebbian learning is given by 

Figure E.2 Single linear unit model as a maximum eigefilter. 

where q is the learning rate parameter, y(m) is the output of the 
linear neuron and xj(m) is the jth component of the input pattern vector 
at the mth iteration. After incorporating the normalization term in the 
learning rule, the above equation leads to the following Oja's learning 
rule [Oja, 1982; Yan et al, 1994; Zhang and Leung, 19951: 
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The Oja's learning has two feedback terms: (a) The positive feed- 
back or self-amplification term for the growth of the synaptic weight 
wj(m) according to the external input xJ{m). (b) The negative feed- 
back term due to the term -y(m) wj(m) for controlling the growth, 
thereby resulting in the stabilization of the synaptic weight wj(m). 

The weights converge to the first principal component of the input 
distribution as shown below: 

Substituting y(m) = g(m)w(m) = wT(m)x(m) in Eq. (E.21, we get 

Taking statistical expectation on both sides, for large m, we should 
get &[Awl = 0. Therefore, 

where w(m) + qo as m + m and R = &[x(m)xT(m)]. qo is the 
eigenvector of the correlation matrix R corresponding to the largest 
eigenvalue [Haykin, 19941. 

E.3.2 Learnlng Principal Subspace 

Oja extended the single unit case to multiple units to extract the 
principal subspace [Oja, 19891. The learning algorithm is given by 

where wii is the weight connecting the jth input with the ith unit. 
Here the weights will not tend to the eigenvectors but only to a set 
of rotated basis vectors which span the principal subspace 
corresponding to the first p principal components. 

E.3.3 Multiple Principal Component Extraction: Generalized 
Hebblan Algorithm 

By combining the Oja's rule and the Gram-Schmidt orthonorma- 
lization process, Sanger modified the subspace network learning 
algorithm to compute the first p principal components of a stationary 
process simultaneously [Sanger, 19891. A feedforward neural network 
with a single layer of linear units (M inputs and p outputs) as shown 
in the Figure E.3 performs the principal component analysis of the 
input data. The Generalized Hebbian learning Algorithm (GHA) is 
given by - -, 

i 

AwQ(m) = q yi(m) wh(m)yb(m) , for j = 1,2, . .., M l 
and i = 1,2, . . ., p 
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Figure E.3 Single layer of linear unita for multiple principal component 
extraction. 

and the output yi(m) of the ith unit is 

j =  1 

In the GHA the modified form of the input vector is given by 

(a) For the first unit, i = 1 and f ,(m) = x(m). The GHA reduces 
to the Oja's learning rule. So it extracts the first principal 
component. 

(b) For the second unit, i = 2 and %(m) = x(m) - wl(m)yl(m). The 
second unit sees an input vector %(m) in which the component 
corresponding to the first eigenvector of the correlation matrix 
R has been removed. So the second unit extracts the first 
principal component of %(m) which is equivalent to the second 
principal component of x(m). 

(c) Proceeding in this fashion, the outputs of the units extract the 
principal components of x(m) in the decreasing order of the 
eigenvalues. 

E.3.4 Adaptive Principal Component Extraction 

Principal components can be extracted one by one recursively. By 
including anti-Hebbian feedback connections [Palmieri et al., 19931 in 
the network, the outputs of the units define a coordinate system in 
which there are no correlations even when the incoming signals have 
strong correlations. Foldiak [Foldiak, 19891 developed a procedure 
which uses anti-Hebbian connections between every pair of network 
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outputs to orthogonalize the weight vectors. Kung and Diamantaras 
developed an algorithm called Adaptive Principal Component 
Extraction (APEX) for recursive computation of the principal 
components based on a sequential training scheme which uses anti- 
Hebbian weights from the already trained units to the unit that is 
currently being trained Kung and Diamantaras, 1990; Kung and 
Diamantaras, 19941. Using this scheme, one can adaptively increase 
the number of units needed for the principal component extraction. 
The architecture of the APEX network is shown in the F'igure E.4. 

Figure E.4 APEX network architecture for multiple principal component 
extraction. 

There are two kinds of synaptic connections in the network: 

(a) Feedforward connections from the input to each of the units 
which operate in accordance with the Hebbian learning rule. 
They are excitatory and therefore provide self-amplification. 

(b) Lateral connections to a unit from the outputs of the previous 
units, which operate in accordance with anti-Hebbian learning 
rule, which has the effect of making them inhibitory. 

The output of the ith unit is given by 

where the feedforward weight vector wi(m) = [wil(m), ..., wN(m)lT, 
the feedback weight vector vi(m) = [vil(m), ..., vici-l,(m)lT and the 
feedback signal vector yi(m) = b1(m), . . ., yi-l(m)lT. 

The feedforward and lateral connection weights are updated as 
follows : 

where the term yi(m)x(m) represents the Hebbian learning, and the 
term -yi(m)yi-,(m) represents the anti-Hebbian learning. The 
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remaining terms are included for the stability of the algorithm. In 
the following sections some PCNNs designed for specific situations 
are discussed. 

E.3.5 Crosscorrelatlon Neural Network Model 

The neural network models discussed in the previous sections extract 
the principal components of the autocorrelation matrix of the input 
data. A crosscorrelation neural network model [Diamantaras and 
Kung, 19941 performs Singular Value Decomposition (SVD) [Leon, 
19901 of the crosscorrelation matrix of two signals generated by two 
different stochastic processes which are related to each other. The 
principal singular vectors of the crosscorrelation matrix encode the 
directions in both the spaces of the stochastic procesBes, that support 
the major common features of both the signals. The learning rule is 
an extension of the Hebbian rule called the mutual or cross-coupled 
Hebbian rule, and it can be considered as a crosscorrelation 
asymmetric PCA problem [Kung, 19931. 

The SVD of the crosscorrelation matrix C =  E [ ~ X T ]  of two 
stochastic signals, x and y is given by C = U X p, where U is the 
matrix containing left singular vectors which span the column space 
of the matrix C (eigenvectors of C C ~ )  and V contains the right 
singular vectors which span the row space of the matrix C (eigen- 
vectors of cTC). The mutual Hebbian rule extracts both the left and 
right singular subspaces. 

Consider two linear units as shown in the Figure E.5 with inputs 
x E $M, y E $N, and outputs 

Figure E.5 Crosscorrelation neural network model for performing SVD of 
crosscorrelation matrix of two stochastic signals x and y. 
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a = WTx and b = Ty 
The cross-coupled Hebbian rule that updates the weights of any one 
of the two units is based on the correlation between the input of this 
unit and &e output of the other unit and hence the name of the rule. 

where q is the learning rate parameter. In order to maintain stability, 
the weights are normalized and the resultant update rule becomes 

Ax(m) = ~ ( m  + 1) - w(m) = q [x(m) - w(m)a(m)l b(m) 

By maximizing the crosscorrelation cost 

where R, is the crosscorrelation matrix, the solution for the weight 
vectors converges to the principal singular vectors [Leon, 19901. 

E.3.6 Hlgher Order Correlation Learning Network 

The Oja's learning does not capture the higher order statistics in the 
input data. A higher order unit Paylor and Coombes, 19931, which 
accepts inputs from more than one channel, is capable of capturing 
the higher order statistics of the input. Figure E.6 shows a higher 

Figure E.6 Higher order neuron model for learning higher order statistics 
of the input. 
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order unit consisting of a set of higher order connection weights, 
wi, wc, W U ~ ,  . .., such that the output of the unit is given by 

where 

xi denotes the ith component of an M-dimensional input vector x, K 
is called the order of the unit, Q, is a nonlinear function such as 
sigmoid. 

E.3.7 Noniinear PCNN and Independent Component Anaiysis 

Normally the PCNN is a single layer linear feedforward neural 
network. Nonlinear units in the network introduces higher order 
statistics into computation. The weight vectors become independent 
of each other and they need not be orthogonal. The network thus 
performs an Independent Component Analysis (ICA) [Comon, 1994; 
Cardoso, 1989; Karhunen and Joutsensalo, 19951. This helps in 
separating the independent subsignals from their mixture. The 
nonlinear learning algorithm of ICA may get caught easily in a local 
minimum. 

ICA provides independence, whereas PCA provides only 
decorre2ation [Jutten and Herault, 19881. The principal component 
basis vectors are orthogonal, whereas the ICA basis vedors may not 
be orthogonal. Principal components can be ordered according to their 
eigenvalues. But in the case of ICA, the coordinates are independent 
of each other. ICA involves higher order statistical moments while 
PCA considers only the second order moments. PCA is useful for data 
compression applications, whereas ICA is useful for signal separation 
problems. 

A simple illustration of the difference between PCA and ICA is 
given in Figure E.7. Consider a 2-dimensional plane where the data 
points are distributed inside a parallelogram [Burel, 19921. PCA finds 
orthogonal coordinate axes (PC1 and PC2) where the maximum 
dispersion is obtained on the first axis. The coordinate axes of ICA 
(IC1 and IC2) are fully independent. Knowledge of IC1 does not give 
any information about IC2. 
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Figure E.7 Comparison of principal component analysis and independent 
component analysis. 

A summary of the principal component neural networks is given 
in Table E.1. 

Table E.1 Summary of Principal Component Neural Networks 

1; A linear unit model as a maximum eigedter 
Oja's learning rule: A normalized Hebbian learning algorithm. 
Extracts the first Principal Component (PC). 

2. Principal subspace extraction with a layer of neurona 
Oja's p-unit learning algorithm 
Extracts pdimensional subspace with p units. 

3. Multiple principal component extraction 
Generalized Hebbian learning algorithm: Sanger's rule. 
Extracts the first p PCs using a single layer linear feedforward neural 
network with p units. 

4. Adaptive principal component extraction 
Computes PCs one by one recursively. 
Anti-Hebbian lateral connections in the output. 

5. Crosscorrelation neural network model 
Crosscoupled Hebbian rule. 
Performs SVD of the crosscorrelation matrix of two stochastic signals. 

6. Higher order correlation learning network 

Learns the higher order statistics of the input data. 

7. Nonliuear PCNN 
Nonlinear learning algorithm. 
Performs Independent Component Analysis. 
Used for blind separation of independent source signals from their 
mixture in the received signal. 
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E.4 Applications of PCNN 
Applications of PCNN are based on two kinds of data: (a) Statistical 
data in which the data vector is considered as a point in an 
N-dimensional space. (b) Temporal data in which the data vector is 
a segment of sampled signal. 

E.4.1 General Appllcatlons 

These applications consider the statistical data. 

Data compression: The dimensionality reduction property of PCA 
forms the basis for data compression. 

Compensatlon of mlsallgnment of an Image. The misalignment of 
an image due to rotation andlor translation is compensated by finding 
the principal eigenvector of the image and aligning it with the new 
coordinate system. 

PCA as a preprocessor: The projections of a data vector onto the 
principal components are uncorrelated to each other. When these 
components are given as input to a neural network classifier, the 
convergence of the network improves [Veckovnik et al, 19901. 

Evaluatlon of feature extraction technlques: If the data set is 
made up of aggregate of several clusters, the separability of the 
clusters can be improved using t,he projections of the clusters onto 
the principal axes. 

Subspace-based classification: Different classes of patterns have 
different sets of principal components. The patterns of a class tend 
to have larger projections on their own class components than any 
other class components. 

Generallzatlon measure: Generalization here means how well a new 
pattern can be reconstructed [Baldi and Homik, 19891. The amount 
of distortion in the new pattern can be interpreted as the distance of 
the pattern point to the principal subspace. 

Curve and surface fitting:Conventional total least square curve 
fitting problem can be reduced to finding the minimum eigenvalue 
and its corresponding normalized eigenvector of the input covariance 
matrix [Xu and Suen, 19921. Higher order neural networks can 
implement nonlinear decision boundaries [Taylor and Coombes, 19931. 

Nolse cancellation by crosscorrelatlon neural network: In some 
adaptive control applications, the crosscorrelation matrix represents 
the unknown plant transfer function from inputs to outputs. The 
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crosscorrelation neural network model can be potentially used for 
filtering applications [Diamantaras and Kung, 19941 if we have a 
priori knowledge of noise present in a signal. 

E.4.2 Appllcatlons Specific to Signal Processing 

In signal processing applications the data is a temporal data. Many 
of the frequency estimation algorithms are based on the 
eigendecomposition of the signals [Kay, 1988; Marple, 19871. PCNN 
finds application in the problem of frequency estimation. The signal 
and noise subspaces of the observed signal space can be estimated 
by eigendecomposition of the autocorrelation matrix of observed 
signal [Lee, 1992; Kung, 19931. In the eigendecomposition of the 
autocorrelation of a signal with M complex sinusoids, the first M 
eigenvectors corresponding to the large eigenvalues span the signal 
subspace and the remaining span the noise subspace [Lee, 1992; 
Kung, 1993; TuRs and Kumaresan, 1982; van der Veen, 19931. 
Methods for estimating the frequencies by signal subspace are called 
principal component frequency estimation. In the noise subspace 
frequency estimation, the property that the noise subspace is 
perpendicular to the signal subspace is applied Kay, 1988; Marple, 
19871. By reconstructing the signal from the projections of the signal 
onto the signal subspace eigenvectors, the noise in the signal is 
considerably reduced. Thus PCNN can be applied for noise 
suppression. 

We can estimate the principal components of the input signal 
using PCNN, and these estimated components can then be used for 
frequency estimation algorithms such as MUSIC, Bartlett or 
Pisarenko harmonic decomposition [Kay, 1988; Marple, 1987; 
Karhunen and Joutsensalo, 19911. Recently, it was found that the 
PCNN can be made to perform independent component analysis by 
introducing nonlinearity in the learning algorithm [Karhunen and 
Joutsensalo, 19941. The resultant network can be used for blind 
separation of independent sources from an observed signal. This is 
useful in sonar and speech for extracting different frequency 
components present in the signal and hence tracking the changes in 
these frequencies [Sudha, 19961. 



Appendix F 

Current Trends in Neural 
Networks 

Over the past few years there are attempts to combine ANN models 
with other well-established paradigms, like evolutionary computation, 
fuzzy logic, rough sets and chaos. In this Appendix, we briefly discuss 
how these paradigms are being fused with the existing ANN models. 

F. 1 Evolutionary Computation 

Evolutionary Computation (EC) [Fogel, 19941 is a methodology that 
encompasses a variety of population-based problem solving techniques 
which mimic the natural process of Darwinian evolution. Current 
research in the evolutionary computation has resulted in powerful 
and versatile problem-solving mechanisms for global searching, 
adaptation, learning and optimization for a variety of pattern 
recognition tasks. The main techniques in evolutionary computation 
are genetic algorithms ['Holland, 1975; Goldberg, 19891, genetic 
programming [Koza, 19921, evolutionary strategies [Schwefel, 19811 
and evolutionary programming [Fogel et al, 1966; Fogel, 1991; Fogel, 
19951. Genetic algorithms deal with chromosomal operators, genetic 
programming stresses on operators on general hierarchical 
structures, evolution strategies emphasize on the behavioural changes 
at the individual level, and evolutionary programming focusses on 
the behavioural changes at the level of species. The common factor 
underlying all these techniques is the emphasis on an ensemble of 
solution structures, and on the evaluation and evolution of these 
structures via specialized operators similar to a biological system in 
response to an ever changing environment. Specifically, all the 
techniques maintain a population of trial solutions, impose random 
changes to those solutions, and incorporate selection to determine 
which solutions are to be retained for future generation and which 
are to be removed h m  the pool of trial solutions. From a 
mathematical point of view, all the EC techniques can be considered 
as controlled, parallel, stochastic search, optimization techniques. 
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Since the learning methods used in ANN depend on the optimization 
of some objective function, it is possible to  employ the methodology 
of EC for learning the weights, for evolving the network architecture, 
for developing a learning rule, for selection of an input feature and 
so on lYao, 1993; Bornholdt and Graudenz, 19921. For instance, in a 
MLFFNN the gradient-based local search methods can be substituted 
by EC for determining the weights Porto et al, 1995; Saravanan and 
Fogel, 1995; Miller et al, 19891. In some cases it may be possible to 
exploit both the local search methods (like the gradient descent) and 
the global search methods (like EC) simultaneously [Renders and 
Flasse, 19961. The advantages of the local search methods are better 
accuracy and fast computation. The disadvantages of the local search 
methods are stagnation at some suboptimal solutions and sensitivity 
to the initialization of weights. On the other hand EC is a global 
search method which can avoid the local optima and the initialization 
problems [Sarkar and Yegnanarayana, 1997al. However, EC can be 
extremely slow in convergence to a good solution. This is because EC 
uses minimal a priori knowledge, and does not exploit available local 
information [Renders and Flasse, 19961. In fact EC is good for 
exploration, whereas the gradient descent methods are good for 
exploitation. Yao and Liu [Yao and Liu, 19971 have proposed a method 
to evolve the topology (architecture and weights) of a MLFFNN by 
using both the evolutionary programming and backpropagation 
algorithm simultaneously. 

EC-based techniques are successfully applied to  configure RBF 
networks for improving generalization [Whitehead, 1996; Billings and 
Zheng, 19951. In [Angeline et al, 19941 the authors have used EC to 
configure recurrent neural networks. Jockusch and Ritter [Jockusch 
and Ritter, 19941 have introduced a training strategy to determine 
the number of units for a SOM network automatically. EC has also 
been used to find the optimal number of clusters present in the input 
data [Sarkar and Yegnanarayana, 1996; Sarkar et al, 1997el. The 
clustered output can be used to construct a probabilistic neural 
network [Sarkar and Yegnanarayana, 1997bl. Attempts are being 
made to explore the EC approach for simultaneously learning the 
weights and evolving the architecture of a neural network Wao, 19931. 
The problem of large search space for this type of problem can be 
addressed by using parallel machines to implement the search 
operation [Bhattacharya and Roysam, 19941. The search operation 
can also be made more efficient and less time consuming by using 
adaptive EC operators [Sarkar and Yegnanarayana, 1997al. 

For some ANN related problems, EC appears to be a more 
powerful optimization tool than the simulated annealing (SA), since 
SA is a sequential search operation whereas EC is a parallel search 
algorithm. In fact, we can say that EC is more than a parallel search. 
Parallel search starts with a number of different paths and continues 
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until all the search paths get stuck in blind alleys or any one of them 
finds the solution. EC also starts with P different paths, but it tries 
to generate new paths that are better than the current paths. Thus 
the EC-based search may be more efficient than the SA-based search 
[Porto et al, 19951. 

F.2 Fuzzy Logic 
The concept of fuzzy sets was first introduced by L. Zadeh in 1965 
[Zadeh, 19651 to represent vagueness present in human reasoning. 
Fuzzy sets can be considered as a generalization of the classical set 
theory. In a classical set an element of the universe either belongs 
to or does not belong to the set. Thus the belongingness of an element 
is crisp. In a fuzzy set the belongingness of an element can be a 
continuous variable. Mathematically, a fuzzy set is a mapping (known 
as membership function) from the universe of discourse to [O, 11. The 
higher the membership value of an input pattern to a class, the more 
is the belongingness of the pattern to the class. The membership 
function is usually designed by taking into consideration the 
requirements and constraints of the problem. One may obtain the 
membership function from an expert (subjective computation) or from 
the data (objective computation) [Bezdek and Pal, 19921. Fuzzy logic 
deals with reasoning with fuzzy sets and fuzzy numbers. It is to be 
noted that fuzzy uncertainty is different from probabilistic 
uncertainty Wir  and Folger, 1993; Klir and Yuan, 19951. 

ANNs adopt numerical computations for learning. But numerical 
quantities lack representative power in situations where the 
information is expressed in linguistic terms only Lin and Lu, 19951. 
The linguistic information can be incorporated using the membership 
function values of the fuzzy sets. Use of the concepts of fuzzy sets in 
ANNs is also supported by the fad that human reasoning does not 
employ precise mathematical formulation [Pal and Majumder, 19861. 
Spe&cally, the fuzzy set theory can be used in ANN at various levels 
such as the input, output and target, and also for the weights, basis 
functions and the output functions. Introduction of fuzzy set theory 
into the perceptron learning algorithm makes the decision boundary 
a soft one, so that the class labels of the input patterns can change 
slowly from one class to another class, rather than abruptly [Keller 
and Hunt, 19851. 

In [Sarkar et al, 1998; Pal and Mitra, 19921 the network outputs 
are interpreted as fizzy membership values. Learning laws are derived 
by minimizing a fuzzy objective function in a gradient descent manner. 
In [Sarkar and Yegnanarayana, 1997dl the concept of cross entropy was 
extended to incorporate fuzzy set theory. Incorporation of fuzziness in 
the objective functions led to better classiiication in many cases. 

A neural network reinforcement learning algorithm, with 
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linguistic critic signals like good, bad, is proposed in [Lin and Lu, 
19951. The network was able to process and learn numerical 
information as well as linguistic information in a control application. 

In [Chung and Lee, 19941, three existing competitive learning 
algorithms, namely the unsupervised competitive learning, learning 
vector quantization, and frequency sensitive competitive learning, are 
fuzzified to form a class of fuzzy competitive learning algorithms. 
Unlike the crisp counterpart, where only one output unit wins, here 
all the output units win with different degrees. Thus the concept of 
win has been formulated as a fuzzy membership function. It has been 
observed that this scheme leads to better convergence and better 
classification performance. 

In [Tsao et al, 19941 Kohonen's clustering network has been 
generalized to its fuzzy counterpart. One advantage of this approach 
is that the final weight vectors do not depend on the sequence of 
presentation of the input vectors. Moreover, the method uses a 
systematic approach to determine the learning rate parameter and 
size of the neighbourhwd. 

A fuzzy adaptive resonance theory model capable of rapid learning 
of recognition categories in response to arbitrary sequence of binary 
input patterns is proposed in [Carpenter et al, 1991~1. This 
upgradation from binary ART1 to fuzzy ART is achieved by converting 
the crisp logical operators used in the binary ART to the 
corresponding fuzzy logical operators. As a result of this upgradation, 
learning becomes fast and also the previously learned memories are 
not erased rapidly in response to fluctuations in the input. 

In Wang and Mendel, 19921 the authors have proposed fuzzy 
basis functions to design an RBF network which can accept both 
numerical inputs as well as fuzzy linguistic inputs. In [Pedrycz, 19921 
Pedrycz has proposed a neural network model based on fuzzy logical 
connectives. Instead of using linear basis function, he has utilized 
fuzzy aggregation operators. This technique has been extended to a 
more general case where the inhibitory and excitatory characteristics 
of the inputs are captured using direct and complemented (i.e., 
negated) input signals ['Pedrycz and Rocha, 1993; Hirota and Pedrycz, 
19941. The advantage of this approach is that the problem specific a 
priori knowledge can be incorporated into the network. 

In another development, Ishibuchi et al have proposed a learning 
algorithm where the a priori knowledge in terms of fuzzy if-then rules 
can be incorporated along with the information supplied by the 
numerical data [Ishibuchi et al, 19931. This type of approach has been 
used for both function approximation and classification. Fuzzy set 
theory has also been employed to speed up the training of an ANN. 
In [Choi et al, 19921, a fuzzy rule base is used to dynamically adapt 
the learning rate and momentum parameters of a MLFFNN with 
backpropagation learning algorithm. 
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F.3 Rough Sets 

In many classification tasks the aim is to form classes of objects which 
may not be significantly different. These indiscernible or 
indistinguishable objects are useful to build knowledge base 
pertaining to the task. For example, if the objects are classified 
according to colour (red, black) and shape (triangle, square and circle), 
then the indiscernible classes are: red triangles, black squares, red 
circles, etc. Thus these two attributes make a partition in the set of 
objeds. Now if two red triangles with different areas belong to 
different classes, then it is impossible for anyone to classify these two 
red triangles based on the given two attributes. This kind of 
uncertainty is referred to as rough uncertainty [Pawlak, 1982; Pawlak 
et al, 19951. Pawlak formulated the rough uncertainty in terms of 
rough sets. The rough uncertainty is completely avoided if we can 
successfully extract all the essential features to represent different 
objeds. But it may not be possible to guarantee this as our knowledge 
about the system generating the data is limited. It  must be noted 
that rough uncertainty is different fiom fuzzy uncertainty [Dubois 
and Prade, 19921. 

In this section we briefly describe the formulation of rough sets. 
In any classification problem, two input training patterns q and x, 
(where q ,  x, E X) are indiscernible with respect to the 9th feature 
when the 9th component of these two patterns have the same value. 
Mathematically, it can be stated as x, Rq x, iff x, =xSq, where R

q 
is 

a binary relation over X x X  . Obviously, R
q 

is an equivalence relation 
that partitions the universal set X into different equivalence classes. 
Instead of taking only one feature, if we consider any two features 
(say p th  and qth), then we obtain some other equivalence relation 
RPq and a new set of equivalence classes. This idea can be generalized 
to take all known features into consideration. Let R be an equivalence 
relation on the universal set X and XIR denote the family of all 
equivalence classes induced on X by R. One such equivalence class 
in XIR that contains x E X is designated by [ x ] ~ .  In any classification 
problem the objective is to approximate the given class A G X by XI R. 
For the class A, we can define the lower R(A) and upper R_(A) 
approximations, which approach A as closely as possibly from inside 
and outside, respectively [Klir and Yuan, 19951. Here, R_(A) = 
uI[xl, I [ x ] ~  EA, x E XI is the union of all equivalence classes in X ( R  
that are contained in A, and g(A) = u I[xIR I [xIR n A  # $, x E Xj is the 
union of all equivalence classes in X ( R  that overlap with A. A rough 
set R(A) ~ R ( A ) ,  &A)) is a representation of the given set A by 
R(A) - and R(A). The set difference R(A) -&A) is a rough description 
of the boundary of A by the equivalence classes of XJR. The 
approximation is free of rough uncertainty if R(A) =&(A). When all 
the patterns from an equivalence class do not have the same class 
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label, rough ambiguity is generated as a manifestation of the 
one-to-many relationship between that equivalent class and the class 
labels to which the patterns belong. 

In ANN design one critical problem is to determine how many 
input units are essential. Obviously, it depends on the number of 
features present in the input data. Using rough sets it may be possible 
to decrease the dimensionality of the input without losing any 
information. A set of features is sufficient to classi.  all the input 
patterns if the rough ambiguity, i.e., the quantity (R@) -R_(A)), for 
this set of features is equal to zero. Using this quantity it is possible 
to select a proper set of features from the given data [Pawlak et al, 
19881. 

In a classiiication task all the features need not carry equal 
weightage. Hence to facilitate the training as well as to improve the 
accuracy of classification, it is better to give different weightage or 
importance for each input feature. Suitable weightage can be derived 
using the ideas of rough sets [Sarkar and Yegnanarayana, 1997~1. 

The training of an ANN can be accelerated if the weights of the 
networks are initially close to the desired ones. For this purpose 
knowledge extracted from the training data through rough sets can be 
used to initialize the ANN [Banejee et al, 19971. In [Pawlak et al, 19951 
it was shown that for a classification task the number of lidden units 
needed in a MLFFNN is equal to the minimal number of features needed 
to represent the data set without increasing the rough uncertainty. 

F.4 Chaos 
In many physical systems there appears to be no relationship between 
cause and effects. In these cases the uncertainty of the system 
behaviour cannot be predicted using the standard statistical methods. 
The apparent randomness may in fact be generated by small 
differences in the initial values of the physical systems. Since the 
whole process is absolutely deterministic, this type of uncertainty is 
termed as deterministic chaos or simply chaos [Crubchfield et al, 19861. 

Chaotic dynamics is known to exist in biological neural neb 
works due to nonlinear processing units and their interaction due to 
complex feedback mechanism [Harth, 19831. The stability-plasticity 
phenomenon in the biological neural network is attributed to its 
ability to convert the neural dynamics fiom highly ordered state to 
chaotic state and vice versa. In order to realize some form of human 
reasoning capability on machines it may be necessary to exploit the 
phenomenon of chaos existing in the artificial neural networks. But 
the sensitivity of feedback networks to initial input conditions makes 
it difficult to come with any long term predictions about the behaviour 
of the networks [Parker and Chua, 19871. 

The dynamics of a feedback neural network is studied in terms 
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of the equilibrium states that the network reaches starting from some 
initial states. The equilibrium states can be characterized in term of 
fixed point stability, oscillatory stability and chaotic stability. The 
regions of oscillatory stability are termed as attractors. There can be 
several other types of attractors like quasi-periodic and strange 
attractors. The strange attractor is an example of chaotic attractor 
Wasserman, 19931. In the state space the orbits of the strange 
attractors sometimes diverge. But, the divergence cannot continue 
forever as the state space is finite. So the attractors fold over onto 
themselves. These stretching and folding operations continue 
repeatedly, creating folds within folds. Consequently, chaotic 
attractors generate a fractal-like' structure that reveals more and 
more as it is increasingly magnified [Mandlebrot, 19831. This 
stretching operation systematica,lly removes the initial information 
and makes small scale uncertainty large. The folding operation also 
removes the initial information. Jf we know the initial state of the 
network with some uncertainty (due to measurement error), after a 
short period of time the initial uncertainty covers the entire attractor 
and all predictive power is lost. Thus there exists no relationship 
between the past and the future, or the cause and the effects. 

There are several avenues to exploit chaos under the ANN 
paradigm. It is claimed that several limitations of ANNs are due to 
its grossly oversimplified structure. For example, the output of an 
artificial neuron is smooth, whereas the output of a biological neuron 
forms a train of pulses. Hence, using Hodgkin-Huxley type cell 
equations, attempts are being made to create complex artificial 
neuron models to exploit the chaos generated by the cell equations. 
Freeman and his co-workers have demonstrated that different kinds 
of stimuli in animal cortex can be represented as chaotic attractors 
Wao et al, 19901. They have successfully developed an artificial 
olfactory model, where the artificial neurons exploit chaos for its 
functioning misenberg et al, 19891. 

Attempts are also being made to control the chaotic behaviour of 
an artificial neuron [Hsu et al, 1996; Sompolinsky et al, 1988; 
Hayashi, 1994; Ott et al, 1990; Hunt, 19911. The chaotic variables 
may be neuron output activities and the control parameters may be 
synaptic weights or external inputs [Blondeau et al, 19921. In many 
cases the proposed models do not have any direct physiological 
interpretation [Blondeau and Rivest, 19921. 

Scientists are recently analyzing the chaotic dynamics of feedback 
networks Wang, 19961. They are employing the periodic attractors 
embedded in each chaotic attractor to store input patterns. Following 
this strategy, in [Adachi and Aihara, 19971 a chaotic associative 
memory was constructed. It has been observed that this type of model 
has the possibility to store a large number of spatio-temporal patterns 
[Andreyev et al, 19961. 
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Initial weights, 126, 190, 191 
Inner product, 154, 352 
Input 

dimensionality, 143 
layer, 90, 203 
matrix, 90 
vector, 90 

Input-output pattern pairs, 88, 242 
Instance pool, 317, 343 
Instantaneous error, 62, 126, 129, 

255 
Instar, 30 

group of instars, 31, 202 
learning law, 34 
network, 202 
processing, 206 
steady activation value, 205 
structure, 257 

Integer programming problem, 298 
Intelligence, 2, 4 
Intelligent decision, 333 
Intelligent tasks, 2 
Intensity-based methods, 324 
Interactive and competition (IAC), 

293, 341 
Intercity distances, 298 
Interconnections, 24 
Intermediate layers, 114 
Interneuron, 17 
Interpolating function, 248 
Interpolative, 7, 77 
Interpolative recall, 73 
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Interpretation of Boltzmann learn- 
ing, 190 

Intersection of convex regions, 111 
Intonation, 307 
Invariance 

by structure, 285 
by training, 285 

Invariant 
feature extraction, 285 
measures, 285 
pattern recognition, 284 

Inverse Kronecker delta function, 327 
Inverse mapping, 258 
Investment management, 333 
Ising model, 22 
Issues in Boltzmann learning, 190 

annealing schedule, 190, 192 
implementation of simulated 

annealing, 190 
initial weights, 191 
learning and unlearning, 190 
learning pattern environment, 190 
learning rate parameter, 191 
local property, 190 
recall of patterns, 191 

Iteration index, 119 

Jacobian matrix, 353 
Jaw. 306 

Kalman-type learning, '131 
Karhunen-Loeve transformation, 380 
Knowledge-based systems, 9 
Kohonen learning, 223, 225 

algorithm for implementation, 226 
Kohonen mapping, 223 
Kronecker delta function, 327 
Kullback-Leibler measure, 363, 373 

LMS algorithm, 370 
convergence, 371 
learning rate parameter, 371 
trajectory of path, 371 

Label competition, 325, 326 
Label-label interaction, 326 
Lagrange multipliers, 357 
Laplace transform, 305 
Layers of processing units, 29 
Leaky learning law, 221 
Learning laws, 31, 53 

algorithm for multilayer FFNN, 
117 

algorithms for PCA, 210 
anti-Hebbian, 384 
associated reward and penalty, 64 
asymptotic behaviour, 377 
backpropagation, 121 
Boltzmann, 189 
competitive, 222 
correlation, 33, 68 
curve, 377 
delta, 32, 68 
equation, 31 
from exaniples, 372 
function, 66 
Hebb's, 32, 67 
leaky, 221 
Linsker, 231 
LMS, 33 
machine, 22, 374 
methods, 57 
models, 374 
Oja, 208 
online, 271 
pattern environment, 190 
perceptron, 32, 68 
principal subspace, 382 
rate parameter, 89, 97, 127, 221 
reinforcement, 63 
Sanger, 209 
supervised, 32 
temporal, 54 
theory, 3% 
unsupervised, 32 
Widrow-Hoff, 33, 68 
with critic, 63 
with teacher, 63 

Learn matrix, 22 
Learning vector quantization (LVQ), 

222, 305 
Learning with critic, 63, 122 
Learning with teacher, 63 
Least Mean Square (LMS) learning, 

22 
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Subject Index 

Mean of input data, 253 
Mean squared error, 53, 91, 365 
Mean-field 

algorithm, 196 
annealing, 195 
approximation, 172, 195, 295 
energy, 195 
free energy, 195 

Medical diagnosis, 333 
Mel-scale, 310 
Membership function, 393 
Membrane 

capacitance, 45 
potential, 17, 42 
resistance, 45 

Memorizing, 7 
Memory 

content addressable, 21 
long term, 25 
short term. 21, 25 

Memory function, 235 
Meshed regions, 111 
Metric distance measures, 362 

absolute value distance, 362 
Chebyshev distance, 362 
city block distance, 362 
Euclidean distance, 362 
Hamming distance, 362 
maximum value distance, 362 
Minkowski r-metric, 362 

Metric transformation, 284 
Metropolis algorithm, 190, 295 
Mexican hat function, 224 
Min-max learning, 65 
Minimal 

ART, 262 
learning, 221 

Minimum error, 93, 146 
Minimum error retrieval, 93 
Minimum norm solution, 356 
Mismatch of probabilities, 184 
Mixture distribution (see Gaussian 

mixture) 
Models of 

activation dynamics, 42 
computing, 1, 15 
neural networks, 41 
neuron, 26 
synaptic dynamics, 52 

Modular approach, 312, 313 
Modular architecture, 134 

Modular network, 312 
Momentum constant, 129 
Momentum term, 121 
Monotonically increasing function, 

156 
Monte Carlo method, 194 
Motor neuron, 17 
Multilayer feed forward neural 

network (MLFFNN), 88, 114 
Multiclass problem, 106 
Multidimensional patterns, 110 
Multidirectional associative memory 

(MAM), 236, 239 
Multidirectionally stable, 240 
Multilayer perceptron (MLP), 110, 

113, 133, 241 
Multilevel network hierarchy, 262 
Multiple associations, 239 
Multiple binary output units, 100 
Multiple principal component extrac- 

tion, 382 
Multispectral band imagery, 331 
Multivariate function approximation, 

244 
Multivariate Gaussian function, 249, 

326 
Murakami result, 94, 145 
Mutual Hebbian rule, 385 
Mutually exclusive events, 359 
Mutually orthogonal vectors, 96 

N-dimensional 
Euclidean geometry, 351 
space, 157 

Nasal tract, 306 
Natural language processing, 1 
Nearest neighbour 

recall, 73 
stored pattern, 72 

Negative definite matrix, 354 
Negative reinforcement, 63 
Negative semidefinite matrix, 364 
Negative gradient, 107 
Neighbouring pixel interaction, 324 
Neighbouring units, 223 
Neocognitron, 22, 271, 323 
NETtalk, 280, 307 
Nerve fibres, 16 



Subject Index 

Neural network 
architectures, 235 
feedback, 142 
feedforward, 88 
models, 41 
recall, 72 

Neuro-evolutionary techniques, 335 
Neuro-fuzzy systems, 335 
Neuro-rough synergism, 335 
Neuron 

firing, 17 
number in brain, 18 
structure of, 16 

Neurotransmitter, 18 
Newton's method, 116, 130, 367 
Noise 

cancellation, 389 
power, 94 
subspace, 390 
suppression, 216 
vector, 93 

Noise-saturation dilemma, 43, 204 
Noisy 

image, 285 
input, 93 
pattern, 193 

Nonautonomous dynamical system, 
41 

Noncwex regions, 111 
Nonlinear 

basis function, 245, 255 
convolution, 322 
dynamical systems, 70, 269 
error surface, 134 
feature detector, 121 
feature extraction, 133 
filters, 318 
hypersurfaces, 241 
optimal filtering, 131 
output function, 100, 131 
PCNN, 387 
plant dynamics, 269 
processing units, 88, 99, 143 
regression, 255, 333 
system ideqtification, 122, 131 

Nonlinearly separable classes, 241 
Nonparametric nonlinear regression, 

334 
Nonparametric regression problem, 

244 
Nonquadratic error surface, 130 

Nonstationary input, 117 
Norm4 distribution (see Gaussian 

distribution) 
Normalization of features, 285 
Normalized basis function, 252 
Normalized radial distance, 245 
Normalizing the weight, 208 
Notrump in card game, 290 
Number of 

cycles, 191 
linearly separable classes, 107 
linearly separable functions, 108 
trials, 191 

Objective function, 293 
Odd parity, 241 
Oder-limited, 109 
Off-line learning, 54 
Oja's learning, 208, 381 
Oja's punit rule, 209 
Olympic game symbols, 280 
On-centre and off-surround, 48, 202 
One-Class-One-Network (OCON), 

3 13 
On-line learning, 54, 271 
Opening bid in card game, 280, 

290 
Operating range, 43 
Operation of ANN, 1 
Operation of stochastic network, 

175 
Optical 

character recognition, 322 
computers, 4 
image processing, 296 

Optimization, 279, 293, 391 
criterion, 131 
problems, 155, 293 

Optimum 
choice of weights, 93 
number of clusters, 254 
set of weights, 117 
weight matrix, 145 
weight value, 104 
weight vector, 116, 250 

Order of a unit, 387 
Orientational selectivity, 224 
Orienting subsystem, 259 



Subject Index 

Orthogonal 
inputs, 98, 143 
unit vectors, 209 
vectors, 98, 353 

Orthography, 309 
Orthonormal, 96, 208 
Oscillatory 

regions of equilibrium, 148 
stable states, 69 
state regions, 157 

Outer product, 353 
Output function, 25 

binary, 27 
bipolar, 32 
continuous, 33 
discrete, 32 
linear range, 127 
ramp, 26 
saturation region, 127 
sigmoid, 26 

Output 
layer, 90 
matrix, 90 
pattern space, 80 
signal, 26 
state, 25 
vector, 90 

Outstar, 30 
group of, 30 
learning law, 34 
structure, 257 

Overall logical predicate, 108 
Overdetermined, 356 
Overlapping frames, 311 
Overtraining, 378 

PCNN, 381 
applications, 389 

statistical data, 389 
temporal data, 390 

curve fitting, 389 
data compression, 389 
feature extraction, 389 
generalization measure, 389 
misalignment of image, 389 
noise suppression, 390 
preprocessor, 389 
summary, 390 
surface fitting, 389 

PCNN learning, 381 
PDP models, 36, 345 
Parallel and Distributed Processing 

(PDP), 4, 20, 341 
Parallel computers, 4 
Parametric level matching, 9 
Parity problem, 109 
Partial information, 184 
Partially recurrent models, 267 
Partition function, 170 
Partition process, 326 
Partitioned graphs, 296 
Parzen windows, 255 
Passive 

decay rate, 45 
decay term, 56 
sonar detection, 134 

Pattern 
association, 6,76,77,98,184,187, 

190 
classification, 6, 76, 81, 88, 99, 

100, 122, 251, 279, 280 
clustering, 7, 76, 85, 202, 219 
completion, 184, 190, 192, 265 
environment, 143, 183 
environment storage, 85, 183 
grouping, 7 
mapping, 7, 76, 83, 88, 113, 240 
matching, 9 
storage, 76, 84, 143, 146, 211 
variability, 8, 271 

Pattern and data, 4 
Pattern recall, 183 
Pattern recognition tasks, 76, 89 
Patterns in data, 341 
Perception, 2 

by human beings, 2 
by machines, 2 

Perceptron, 27, 103 
classification, 113 
convergence, 28, 102, 113 
learning law, 28,32,101,106,113 
model, 27 
multilayer, 110 
network, 113 
representation problem, 107, 113 
single layer, 108, 241 

Perceptron convergence theorem, 28, 
102, 113 

alternate proof, 104 
discussion, 106 
proof, 102 



Subject index 

Perceptron learning 
continuous, 33 
discrete, 32 
gradient descent, 106, 113 

Performance measure, 107 
Performance of backpropagation 

learning, 121, 126 
moddar network, 315 
subnets, 315 

Periodic 
regions of equilibrium, 148 
stability, 148 

Perkel's model, 46 
Peterson and Barney data, 309 
Phoneme 

classifier, 309 
code, 307 

Phoneme-like units, 308 
Phonetic 

decoding, 309 
description, 313 
transcription, 308 
typewriter, 267, 280, 308 

Pitch period, 307 
Pixels, 281, 303, 325 
Place of articulation, 314 
Plain Hebbian learning, 207 
Plant dynamics, 305 
Plant transfer function, 305 
Plasticity in ART, 259 
Plosive source, 307 
Polarization, 18 
Pools of units, 342 
Poor generalization, 133 
Population-based problem solving, 

391 
Positional errors, 272 
Positive definite, 354 
Post-processor, 313 
Post-synaptic neuron, 18 
Post-synaptic potential, 18 
Postal addresses, 323 
Power spectrum, 325 
Prediction of time series, 265 
Preprocessing of image, 285 
Preprocessing of input, 241 
Principal axes;366 
Principal component neural network, 

379 
Principal component learning, 66, 

209, 381 

Principle Component Analysis (PCA), 
209, 379 

Principle of orthogonality, 380 
Printed characters, 7, 279, 287 
Printed text symbols, 265 
Prior knowledge, 126, 247 
Probabilistic 

neural networks, 121, 135, 255, 
392 

uncertainty, 393 
update, 23, 152, 165 

Probability, 357 
a posteriori, 358 
a priori, 358 
axioms, 358 
definition, 358 
properties, 358 

Probability density function (see 
distribution) 

Probability distribution, 168, 359 
expectation, 359 
mean, 359 
variance, 359 

Probability distribution of states, 
168, 176 

Probability estimation, 122 
Probability of 

error, 149, 152 
error in recall, 178 
firing, 165 
occurrence of patterns, 184 
transition, 158 

Probability theory, 248 
Probably Approximate Correct (PAC) 

learning, 375 
Problem level, 10, 11, 336 
Problem of false minima, 163 
Processing unit, 24 
Production rules, 262 
Projection matrix, 357 
Proof of convergence, 126 
Prototype vector, 259 
Pseudoinverse of a matrix, 92, 144, 

250 
Puzzles, 4 

Quadratic 
error function, 130, 366 
error surface, 130 
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S-cells, 272 
SCV classes, 312, 314 
SVD expression for pseudoinverse, 94 
SVD of crosscorrelation matrix, 385 
Sample 

function, 167, 364 
set, 357 
space, 357 

Sanger's rule, 209, 382 
Saturation model, 48 
Scaling, 99, 122, 280 
Search methods 

controlled, 391 
global, 392 
gradient-descent, 364-371, 392 
parallel, 391 
stochastic, 391 

Second order 
derivatives, 131 
methods, 122 
statistics, 253 

Segmental features, 307 
Selective attention feature, 272 
Self-amplification, 382 
Self-feedback, 188 
Self-organization, 22, 202, 262 

learning, 379 
network, 225, 300 

Self-stabilizing, 262 
&ensor array imaging, 281 
Sensory mechanism, 5 
Sensory units, 27 
Sequence of patterns, 265 
Bequence recognition, 265 
Sequence reproduction, 265 
Sequential model, 8 
Set of inequalities, 100 
Shattering, 376 
Shifted patterns, 271 
Short time memory (STM), 25, 40, 

85, 202, 212 
Short-time characteristics, 307 
Short-time segment, 307 
Shunting activation, 48, 50, 204 

general form, 50 
summary, 51 

Sigmoid function, 26, 112, 155 
Sigmoidal nonlinearity, 124 
Signal power, 371 

Signal processing, 390 
Signal separation, 387 
Similarity 

matrix, 316 
measure, 260, 361 

Simulated annealing, 22, 65, 143, 
165, 178, 179, 349, 392 

Single layer perceptron, 106, 241 
Singular subspaces, 385 
Singular value decomposition (SVD), 

92, 144, 355 
Singular vectors 

left, 355, 385 
right, 355, 385 

Size-normalization, 321 
Skin diseases diagnosis, 334 
Slow convergence, 134 
Slow learning, 143 
Smoothed surface, 301 
Smoothness constraint, 244, 247 
Smoothness in mapping function, 242 
Smoothness property, 242 
Soft constraints, 299 
Software, 2 
Softwiring, 224 
SOM network, 225, 392 
Sonar, 134, 390 
Sound units in speech, 265, 307 
Space displacement neural networks, 

324 
Space filling characteristic, 227 
Spade in card game, 290 
Sparse data, 285 
Sparse encoding, 65 
Spatial 

correlation, 321 
pattern, 235, 265 
relations in features, 147 
transformation, 285 

Spatio-temporal pattern, 235, 266, 
397 

Speaker identification, 307 
Spectral features, 307 
Spectral vector, 310 
Speech, 1, 4, 99, 134, 306, 390 

production knowledge, 318 
recognition, 307 
spectra, 7 
synthesis, 134, 307 

Speech-like signals, 267 
Speed, 19 
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Spin glasses. 22 
Spontaneous generalization, 344 
Spurious stable states, 183 
Square norm, 92 
Stability, 68 

chaotic, 69, 397 
fixed point, 69, 157 
in ART, 259 
in stochastic networks, 172 
of patterns, 69 
oscillatory, 69, 397 
theorems, 42 
thermal equilibrium, 172 

Stability and convergence, 42, 68 
Stability-plasticity dilemma, 8, 258, 

396 
Stable state, 55, 69, 150 
State at  thermal equilibrium, 170 
State of energy minima, 148 
State of network, 147 
State space, 25 

depth of energy minima, 148 
relative spacings of energy 

minima, 148 
State transition 

diagram, 158, 179 
probability matrix, 181 

Static 
equilibrium, 167 
pattern, 310 
spatial pattern, 265 

Stationary 
probabilities, 170, 295 
probability distribution, 177 
random process, 364 

Statistical machines, 23 
Statistical mechanics, 170 
Steady 

activation stat . ,  40, 55 
state, 45, 55 
weight state, 40 

Steepest descent method, 368 
Stereovision matching, 296 
Stochastic, 25, 42, 51, 165,324, 330, 

391 
activation models, 51 
differential equation, 59 
equilibrium, 168 
gradient descent, 62,121, 134,371 
learning algorithms, 134 
learning, 54, 65 

network, 165, 167, 175 
process, 51 

scalar, 51 
vector, 51 

relaxation, 299 
unit, 22 
update, 143, 164, 165, 295 
update law, 167 

Stock prices, 334 
Stop-Consonant-Vowel (SCW atter- 

aqces, 312 
Stopping criterion, 121, 126, 378 
Storage capacity, 53, 151, 157 
Strange attractom, 397 
Stretching operation, 397 
Structural 

learning, 54 
stability, 42, 44 

Subjective computation, 393 
Submatrices, 93 
Subnet, 313 
Suboptimal solution, 117, 250 
Subsampling, 323 
Subsignals, 387 
Subspace decomposition, 380 
Summary of 

backpropagation learning algo- 
rithm, 121 

gradient search methods, 116 
perceptron learning, 113 

Summing part, 24 
Supervised learning, 6, 32 
Supervised vector quantization, 223 
Supervisory mode, 115 
Suprasegmental features, 307 
Surface fitting, 389 
Syllable, 310 
Symbolic processing, 5 
Symmetric 

matrix, 366 
weights, 149, 153 

Synapse, 16 
Synaptic connection, 18 
Synaptic dynamics, 25, 40, 52 

discrete-time implementation, 56 
model, 52 

Synaptic equilibrium, 59 
Synaptic junctions, 16 
Synaptic strength, 18 
Synchronous update, 150, 237 
Syntactic pattern recognition, 9 
System identification, 134 
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Tapped delay line, 265 
Tasks with backpropagation, 122 
Taylor series, 129, 354 

multidimensional, 354 
Temperature parameter, 166, 181 
Template matching, 9 
Temporal 

association, 265 
aseociative memory, 240 
correlations, 265 
learning, 54 
pattern, 8, 265 
pattern recognition, 265 
pattern vectors, 240 
sequence, 265 

Temporary pattern storage, 85, 212 
lbrminology of ANN, 24 
Test patterns, 9 
Test error, 378 
Texture classes, 326 
Texture classification, 279, 321, 324 
Texture features, 324 

deterministic modelling, 324 
stochastic modelling, 324 

Texture label, 326 
Texture segmentation, 324 
Texture-based scheme, 324 
Theorems for function approxi- 

mation, 246 
Theoretical machine, 22 
Thermal averages, 170 
Thermal equilibrium, 168, 181, 295 
Threshold function 

linear, 138 
polynomial, 138 
quadratic, 138 

Threshold value, 101 
Time constant, 18 
Time correlation, 265 
Time registration, 266 
Time sequences, 271 
Time-delay neural networks (TDNN), 

311 
Time-series prediction, 269 
Top-down outstar learning, 259 
Top-down weights, 259 
Topological mapping, 224 
Topology of ANN, 29 
Topology preserving map, 2% 

Total error, 91 
Total error surface, 117 
Tongue, 306 
Trace of a square matrix, 92 
Tracking frequency components, 390 
Training, 127 

batch mode, 127 
instars of CPN, 257 
outstars of CPN, 257 
pattern mode, 127 
process, 89 
samples, 89, 377 

Training data, 117, 378 
Trajectory, 25,53,147,167,176,368 
Transformation invariant object 

recognition, 288 
Transient 

phenomenon, 176 
region, 176 

Transition probabilities, 180 
Translation, 99, 280 
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