
Zconomy
Edition

ARTIFICIAL
NEURAL

NETWORKS

1 R, Y EGNANARAYANA . ')
..

Artificial Neural Networks

B. YEGNANARAYANA
Professor

Department of Computer Science and Engineering
Indian Institute of Technology Madras

Chennai

Prentice-Hall of India Dob& M n m
New Delhi - 11 0 001

2005

Rs. 275.00

ARTIFICIAL NEURAL NETWORKS
by B. Yegnanarayana

O 1999 by Prentice-Hall of lndia Private Limited, New Delhi. All rights reserved.
No part of this book may be reproduced in any form, by mimeograph or any
other means, without permission in writing from the publisher.

The export rights of this book are vested solely with the publisher.

Eleventh Printing June, 2005

Published by Asoke K. Ghosh, Prentice-Hall of lndia Private Limited, M-97,
Connaught Circus, New Delhi-110001 and Printed by Rajkamal Electric Press,
6-35/9, G.T. Karnal Road Industrial Area, Delhi-110033.

Ib My Parents

B. Ramamurthy
and

B. Savitri

Contents

Preface
Acknowledgements

INTRODUCTION

ix ...
XZZZ

Trends in Computing 2
Pattern and Data 4
Pattern Recognition Tasks 6
Methods for Pattern Recognition Tasks 8
Organization of the Topics 10
REVIEW QUESTIONS 13

1. BASICS OF ARTIFICIAL NEURAL NETWORKS 15-39

1.1 Characteristics of Neural Networks 15
1.2 Historical Development of Neural Network

Principles 21
1.3 Artificial Neural Networks: Terminology 24
1.4 Models of Neuron 26
1.5 Topology 29
1.6 Basic Learning Laws 31
1.7 Summary 36

REVIEW QUESTIONS 37
PROBLEMS 38

2. ACTIVATION AND SYNAPTIC DYNAMICS
2.1 Introduction 40
2.2 Activation Dynamics Models 42
2.3 Synaptic Dynamics Models 52
2.4 Learning Methods 57
2.5 Stability and Convergence 68
2.6 Recall in Neural Networks 72
2.7 Summary 73

REVIEW QUESTIONS 73
PROBLEMS 74

3. FUNCTIONAL UNITS OF ANN FOR PATTERN
RECOGNITION TASKS 76-07
3.1 Pattern Recognition Problem 77

Contents

3.2 Basic Functional Units 78
3.3 Pattern Recognition Tasks by the Functional

Units 79
REVIEW QUESTIONS 87

4. FEEDFORWARD NEURAL NETWORKS
4.1 Introduction 88
4.2 Analysis of Pattern Association Networks 90
4.3 Analysis of Pattern Classification Networks 99
4.4 Analysis of Pattern Mapping Networks 113
4.5 Summary and Discussion 135

REVIEW QUESTIONS 136
PROBLEMS 138

5. FEEDBACK NEURAL NETWORKS 142-200
5.1 Introduction 142
5.2 Analysis of Linear Autoassociative FF Networks 144
5.3 Analysis of Pattern Storage Networks 146
5.4 Stochastic Networks and Simulated Annealing 165
5.5 Boltzmann Machine 183
5.6 Summary 196

REVIEW QUESTIONS 197
PROBLEMS 199

6. COMPETITIVE LEARNING NEURAL NETWORISS 201-232
6.1 Introduction 201
6.2 Components of a Competitive Learning Network 203
6.3 Analysis of Feedback Layer for Different Output

Functions 211
6.4 Analysis of Pattern Clustering Networks 218
6.5 Analysis of Feature Mapping Network 223
6.6 Summary 228

REVIEW QUESTIONS 229
PROBLEMS 230

7. ARCHITECTURES FOR COMPLEX PATTERN
RECOGNITION TASKS 233-277
7.1 Introduction 233
7.2 Associative Memory 235
7.3 Pattern Mapping 240
7.4 Stability-Plasticity Dilemma: ART' 258
7.5 Temporal Patterns 265
7.6 Pattern Variability: Neocognitron 271
7.7 Summary 273

REVIEW QUESTIONS 273
PROBLEMS 276

Contents

8. APPLICATIONS OF ANN

vii

278339

8.1 Introduction 278
8.2 Direct Applications 280
8.3 Application Areas 306
8.4 Summary 334

REVIEW QUESTIONS 336
PROBLEMS 338

Appendices 341397

A - Features of Biological Neural Networks through
Parallel and Distributed Processing Models 341

B - Mathematical Preliminaries 351
C - Basics of Gradient Descent Methods 364
D - Generalization in Neural Networks:

An Overview 372
E - Principal Component Neural Networks:

An Overview 379
F - Current Trends in Neural Networks 391

Bibliography

Author Index

Subject Index

Preface

Over the past f i h n years, a view has emerged that computing based
on models inspired by our understanding of the structure and function
of the biological neural networks may hold the key to the success of
solving intelligent tasks by machines. The new field is called Artificial
Neural Networks, although it is more apt to describe it as parallel
and distributed processing. This introductory book is aimed a t giving
the basic principles of computing with models of artificial neural
networks, without giving any judgment on their capabilities in solving
intelligent tasks.

This text is an outgrowth of the author's teaching and research
experience for the past 25 years in the areas of speech and image
processing, artificial intelligence and neural networks. The principles
of neural networks are closely related to such areas as pattern
recognition, signal processing and artificial intelligence. Over the past
10 years many excellent books have been published in the area of
artificial neural networks and many more are being published. Thus
one more book like this may seem redundant. However, there seems
to be still a need for a book that could be used as a text book a t an
introductory level. This text is designed to meet such a demand. It
must be pointed out that most of the ideas presented here have been
taken from the available references and mainly from the recently
published books in this area. The distinguishing feature of this book
is the manner in which the various concepts are linked to provide
a unified view of the subject.

The book is a self-contained, covering the fundamental principles
of artificial neural networks. It can be adopted as a text book for a
graduate level course. Students with basic engineering or physics or
mathematics background can easily follow the topics discussed. No
advanced concepts from any field are assumed. It can also be used
by scientists and engineers who have an aptitude to explore new ideas
in computing.

'l'he book starts mth tracing the developments in computmg m
general, and the trends in artificial intelligence, in particular. The
prevailing notions of intelligence and intelligent tasks are discussed
in the context of handling these tasks by machines. The primary
reasons for the performance gaps in the current systems can be traced
to the differences in the perceptions of a given input by machine

Preface

and by human beings. The introductory chapter discusses the
distinction between data and pattern, and between recognition and
understanding, to highlight the differences in machine and human
perceptions of input to a system. The chapter also deals with several
pattern recognition tasks which human beings are able to perform
naturally and effortlessly, whereas there are no good algorithms to
implement these tasks on a machine. A brief discussion on existing
models and methods of solving pattern recognition tasks is given,
followed by an analysis of the need for new models of computing to
deal with such tasks.

The basics of artificial neural networks are introduced in
Chapter 1. The terminology is introduced with reference to a single
computing element (or artificial neuron) and some simple connection
topologies of the computing elements. Basic learning laws are also
discussed in this chapter.

In an artificial neural network the changes of activation values
of units and the connection weights (synapses) between units are
governed by the equations describing the activation and synaptic
dynamics, respectively. Models for activation and synaptic dynamics
are introduced in Chapter 2. Stability and convergence issues of these
models are discussed, as these will determine the ability of an
artificial neural network to accomplish a given pattern recognition
task.

Chapter 3 introduces some basic structures of artificial neural
networks and the pattern recognition tasks that these structures
can perform. The structures are organized into feedforward, feedback
and competitive layer networks. The corresponding broad pattern
recognition tasks are pattern association, pattern storage and pattern
clustering, respectively. Chapters 4-6, the kernel of the book, provide
a detailed analysis of the three basic structures of artificial neural
networks and discuss the different pattern recognition tasks that
these structures address. Chapter 4 deals with feedforward networks,
where the pattern association, classification and mapping tasks are
analyzed. Perceptron learning and its limitations for adjusting the
weights of a multilayer feedforward network are covered. The
generalized delta rule or the backpropagation learning is presented
for training a multilayer feedforward neural network. In Chapter 5
feedback networks and the associated pattern storage and pattern
environment storage tasks are analyzed. Here, the Hopfield energy
analysis of feedback networks is presented in detail, and the need
for stochastic neural networks is clearly brought out, besides
introducing the Boltzmann machine to accomplish the task of pattern
environment storage. Finally, the chapter concludes with a detailed
discussion on the Boltzmann learning law for stochastic neural
networks. Competitive learning networks are analyzed in Chapter 6
which presents the details on how pattern clustering and feature

Preface xi

mapping are accomplished through the competitive learning networks.
The chapter also discusses the principles of self-organization and the
self-organization learning for feature map.

Chapter 7 deals with artificial neural network architectures for
complex pattern recognition tasks such as associative memory, pattern
mapping, stability-plasticity dilemma, temporal patterns and pattern
variability. In each case, a brief description of the task and a suitable
architecture for the task is given. Applications of artificial neural
network models are covered in Chapter 8. Some direct applications
considered are: pattern classification, associative memories,
optimization, vector quantization and control. Some of the application
areas discussed are: speech and image processing and decision
making. In each case a simplified version of the problem to suit an
existing neural network architecture is considered for illustration.
The chapter also analyzes issues in the development of neural
network models for practical problems. It concludes with a discussion
on several unresolved issues that- severely limit the application of
models based on artificial neural networks.

The book provides examples and illustrations a t appropriate
places. I t also gives algorithms are given for important learning laws
to enable the reader to implement them. Finally, review questions
and problems are given a t the end of each chapter. A solution manual
for all the problems is available and can be obtained either from the
publisher or at the website http:/ / speech.iitm.ernet.in/Main/faculty/
yegm/Biodata/solutionmanual.tar.gz.

Acknowledgements

I am grateful to the Director of the Indian Institute of Technology
Madras for providing an excellent environment for work with ample
facilities and academic freedom. I wish to thank several of my faculty
colleagues for providing feedback on ~qy lectures as well as my
notes. In particular, I would like to thank Dr. C. Chandra Sekhar,
Dr. S. Das, Dr. Deepak Khemani and Dr. R. Sundar for many useful
interactions.

I have been fortunate to have an excellent group of students and
colleagues in the Speech and Vision Laboratory of the Department
of Computer Science and Engineering. In particular, the following
students have contributed significantly in the preparation of many
diagrams, tables and examples: Anitha Mary Jacob, Hemant, Ikbal,
Kedar, Jaganadha Reddy, Mathews, Pavan Kumar, Poongodi, Raghu,
Rajasekhar, Rajendran, Ravindra Babu, Seetha, Shaji, and Vijay.

The following students have really helped me to improve my
understanding of the concepts through discussions and constant
criticism: Madhukumar, Manish, Murthy and ~ a g h u .

I would like to thank the following students who have contributed
significantly in the preparation of the manuscript: A. Ravichandran,
C. Chandra Sekhar, P.P. Raghu, N. Sudha, A. Neeharika and
Manish Sarkar.

One individual who has been associated with this effort almost
from the beginning is A. Tamilendran, who patiently typed several
versions of this book and also helped me in organizing the material
for the book. I am indeed grateful for his untiring and dedicated
effort.

Finally, I would like to thank my wife Suseela and my daughters
Madhuri and Radhika for their patience and cooperation during the
nearly five years period of writing this book. I am indeed very
fortunate to have understanding and accommodative members in my
family, without whose help I would not have been able to write this
book.

The current search for new models of computing based on artificial
neural networks is motivated by our quest to solve natural
(intelligent) tasks by exploiting the developments in computer
technology [Marcus and Dam, 1991; IEEE Computer, Oct. 19961. The
developments in Artificial Intelligence (AI) appear promising, but
when applied to real world intelligent tasks such as in speech, vision
and natural language processing, the AI techniques show their
inadequacies and 'brittleness' in the sense that they become highly
task specific [DreyfUs, 1992; Rich and Knight, 1991; Holland, 1986;
Pearl, 19841. Like in the algorithmic methods for problem solving,
even the A1 techniques need clear specification and mapping of the
given problem into a form suitable for the techniques to be applicable.
For example, in order to apply heuristic search methods, one needs
to map the problem as a search problem. Likewise, to solve a problem
using a rule-based approach, it is necessary to explicitly state the
rules. It is here scientists are hoping that computing models inspired
by biological neural networks may provide new directions to solve
problems arising in natural tasks. In particular, it is hoped that
neural networks would extract the relevant features from the input
data and perform a pattern recognition task by learning from
examples without explicitly stating the rules for performing the task.
The purpose of this book is to discuss the issues in pattern recognition
tasks and some of the current approaches used to address these issues
based on Artificial Neural Networks (ANN). We discuss the notion of
intelligence and intelligent tasks, and then we briefly trace the
developments in AI, in particular, and computer technology, in
general. We show that computing in intelligent tasks requires a
distinction between pattern and data. To give a better appreciation
of the nature of intelligent tasks, we elaborate the distinction between
pattern and data with illustrations. We also discuss the nature of
patterns and various types of pattern recognition tasks which we
encounter in our daily life. We present briefly different methods
available for dealing with various pattern recognition tasks, and make
a case for new models of computing based on ANNs to address these
tasks. To appreciate the ANN models, some basics of ANN, including
the terminology, are introduced. We provide a detailed discussion on
the operation of ANNs through models of activation and synaptic
dynamics of ANNs. Some ANNs are identified as basic functional

2 Introduction

units which form building blocks for more complex networks. The
pattern recognition tasks that these functional units can handle are
discussed, and a detailed analysis of the performance of these units
is given. Specific architectures are needed to address complex pattern
recognition tasks. Each of these architectures is typically tailored to,
deal with some critical issues of the pattern recognition tasks.
Principles and architectures of ANNs are currently limited to trivial
applications, where the problems are modified to suit the
architectures. Some of these direct applications are discussed in
detail. The more challenging task is to solve real world problems.
Limitations of the existing ANNs and issues that need to be addressed
to deal with the real world problems are discussed in the final sections
of this book. In the end we notice that our current understanding of
problems and the existing models of ANNs still fall too short of our
needs and expectations.

Trends in Computing

In this section we trace the background for the development of neural
network models from the viewpoint of computing. First we shall
consider the prevailing notion of intelligence and intelligent tasks.
Then we shall trace the developments in computing and computer
technology that led to the belief that intelligent tasks can be realized
by a machine. In particular, we shall discuss the trends in AI and
the gaps in performance of the current AI systems. The primary
reason for the performance gaps can be traced to the differences in
the perception of an input by machines and by human beings. These
differences will be discussed in the following sections.

The current usage of the terms like AI systems, intelligent
systems, knowledge-based systems, expert systems, etc., are intended
to convey that it is possible to build machines that can demonstrate
intelligence similar to human beings in performing some simple tasks.
In these tasks we look for the final result of the performance of the
machine for comparison with the performance of a human being. We
attribute intelligence to the machine if the performance of the
machine and human being are the same. But the ways the tasks are
performed by the machine and a human being are basically different.
The machine performs a task in a step-by-step sequential manner
dictated by an algorithm, which may be modified by some known
heuristics. Therefore the algorithm.and the heuristics have to be
derived for a given task. Once derived, they remain fixed. Typically,
implementation of a task requires large number of operations
(arithmetic and logical) and a large amount of memory. The trends
in computing along several dimensions clearly point out the ability
of a machine to handle large number of operations.

Table I shows the developments in device technology, software,

Trends in Computing

Table I Trends in Computing
. -

1. Techn01ogy
Mechanical devices
Vacuum tubes
Transistors
Medium scale integration
Large scale integration
Very large scale integration
Optical devices

2. Sof'tware
Machine language
Assembly language
High level languages
LISP, PROLOG
4th generation languages
Object-oriented languages
Distributed 1anguagedAVA
Natural language

3. Architecture
Uniprocessors
Array processors
Special purpose chips
Supercomputers
Parallel computers
VLSI array processors
Parallel distributed processing models
Optical computers

4. AI Concepts
Numerical processing
Symbolic processing

General problem solving
Logic
Heuristic search

Computational linguistics
Natural language processing
Knowledge representation
Expert systems
Hidden markov models
Artificial neural networks

architecture and artificial intelligence concepts [IEEE Computer, Oct.
19961. In device technology, the trend is to make each device more
and more powerful andlor to pack more and more devices in a single
chip, thus increasing the packing density. The trend in software is
to bring the computer more and more closer to the user by providing
multimodal communication and natural input and output facilities.
In particular, the goal is to achieve communication through the natural
language of the user, instead of using artificial computer languages.

Significant developments are taking place in the evolution of

4 Introduction

computer architectures. It is realized that single or multiple pro-
cessors using Von Neumann model have severe limitations of speed.
Parallel computers and optical computers are also limited in scope
due to their mismatch with the problems [Partridge, 19971. The trend
is to explore architectures based on Parallel and Distributed
Processing (PDP) models motivated by our understanding of the
structure and function of the biological neural network [Rumelhart
and McClelland, 1986; McClelland and Rumelhart, 19861. The driving
force for these developments is the desire to make machines more
and more intelligent. Finally, it is in the applications and in the
simulation of applications, the real test of the technology develop
ments can be seen.

The notion of intelligence and intelligent systems is changing con-
tinuously as can be seen from the evolution of A1 concepts (Table I).
Originally computing was meant only for numerical calculations.
When it was realized that symbols like text also can be manipulated
using step-by-step algorithmic approach, it was felt that logical
inference could be implemented on a computer. Through logic it was
possible to incorporate heuristics in reducing the search in the
solution of an A1 problem. Therefore it was felt that all A1 problems
including problems of speech and image understanding could be
solved by using clever search methods [Reddy, 1988; Reddy, 19961.
But it was soon realized that mapping a problem onto a problem of
heuristic search was possible only for tasks where representation was
obvious as in some games and puzzles. To overcome the representa-
tional problems, rule-based approaches were suggested, where the
rules for the solution of a problem could be explicitly obtained from
a human expert. The set of rules constituting the knowledge, together
with an inferencing mechanism for the application of the rules,
resulted in proliferation of expert systems or knowledge-based
systems for various tasks [Feigenbaum et al, 19881. It did not take
much time to realize that explicit statement of rules by a human
expert does not constitute all the knowledge he uses for a given
problem [Holland, 1986; Drefis, 19891. Moreover, the issues of
common sense knowledge and learning, which are so natural to any
human being, could not easily be captured in a machine [Dreyfus,
1972; Dreyfus, 19921.

Pattern and Data
Speech, vision and natural language processing problems dominated
the attention of designers of intelligent systems [Reddy, 19961. The
most difficult issues in these cases are to derive the description of
the pattern in data in terms of symbols and to derive a set of rules
representing the knowledge of the problem domain. Even if we can
implement highly complex and compute intensive algorithms with the

Pattern and Data 5

current technology, it is now realized that we cannot derive the
pattern description and knowledge completely for a given problem.
Thus the mere ability of a machine to perform large amount of
symbolic processing and logical inferencing (as is being done in AI)
does not result in an intelligent behaviour.

The main difference between human and machine intelligence
comes from the fact that humans perceive everything as a pattern,
whereas for a machine everything is data [Greenberger, 19621. Even
in routine data consisting of integer numbers (like telephone
numbers, bank account numbers, car numbers), humans tend to
perceive a pattern. Recalling the data is also normally from a stored
pattern. If there is no pattern, then it is very difficult for a human
being to remember and reproduce the data later. Thus storage and
recall operations in human beings and machines are performed by
different mechanisms. The pattern nature in storage and recall
automatically gives robustness and fault tolerance for the human
system. Moreover, typically far fewer patterns than the estimated
capacity of human memory system are stored. Functionally also
human beings and machines differ in the sense that human beings
understand patterns, whereas machines can be said to recognise
patterns in data. In other words, human beings can get the whole
object in the data even though there is no clear identification of
subpatterns in the data. For example, consider the name of a person
written in a handwritten cursive script. Even though the individual
patterns for each letter may not be evident, the name is understood
due to the visual hints provided in the written script. Likewise, speech
is understood even though the patterns corresponding to the
individual sounds may be distorted, sometimes to unrecognizable
extents [Cooper, 19801. Another major characteristic of a human being
is the ability to continuously learn from examples, which is not
understood well enough to implement it in an algorithmic fashion in
a machine. Human beings are capable of making mental patterns
in their biological neural network from an input data given in the
form of numbers, text, picture, sounds, etc., using their sensory
mechanisms of vision, sound, touch, smell and taste. These mental
patterns are formed even when the data is noisy or deformed due to
variations such as translation, rotation and scaling. The patterns are
also formed from a temporal sequence of data as in the case of speech
and pictures. Human beings have the ability to recall the stored
patterns even when the input information is noisy or partial
(incomplete) or mixed with information pertaining to other patterns.
Although patterns and data are different, these terms are used
interchangeably in the literature. While we also use these terms
interchangeably throughout the book, the distinction between these
must be kept in mind to appreciate the limitations of a machine over
human beings for performing pattern recognition tasks.

6 Introduction

Pattern Recognition Tasks

The inherent differences in information handling by human beings
and machines in the form of patterns and data, respectively, and in
their functions in the form of understanding and recognition,
respectively, have led us to identify and discuss several pattern
recognition tasks which human beings are able to perform very
naturally and effortlessly, whereas no simple algorithms exist to
implement these tasks on a machine. The identification of these tasks
below was somewhat influenced by the organization of the artificial
neural network models described in this book [Yegnanarayana, 1994;
Duda and Hart, 19731.

Pattern Association

Pattern association problem involves storing a set of patterns or a
set of input-output pattern pairs in such a way that when a test
pattern is presented, the stored pattern or pattern pair corresponding
to the test pattern is recalled. This is purely a memory function to
be performed for patterns or pattern pairs. Typically, it is desirable
to recall the correct pattern even though the test pattern is noisy or
incomplete. The problem of storage and recall of patterns is called
the autoassociation task. Since this is a content addressable memory
function, the system should display accretive behaviour, i.e., should
recall the stored pattern closest to the given input. The problem of
storage and recall of pattern pairs is called a heteroassociation task.
It is also necessary to store as many patterns or pattern pairs as
possible in a given system. Printed characters or any set of fixed
symbols could be considered as examples of patterns for these tasks.
Note that in this case the test patterns are the same as the training
patterns, but with some noise added or some portions missing. In
other words, the test patterns are generated from the same source
in an identical manner as the training patterns.

Pattern Classification

In pattern classification, given a set of patterns and the corresponding
class label, the objective is to capture the implicit relation among the
patterns of the same class, so that when a test pattern is given, the
corresponding output class label is retrieved. Note that the individual
patterns of each class are not memorized or stored. Typically, in this
case the test patterns belonging to a class are not the same as the
patterns used in the training, although they may originate from the
same source. Speech spectra of steady vowels generated by a person,
or hand-printed characters, could be considered as examples of
patterns for pattern classification problems. Pattern classification
problems display accretive behaviour. Pattern classification problems
are said to belong to the category of supervised learning.

Pattern Recognition Tasks 7

Pattern Mapping

In pattern mapping, given a set of input patterns and the
corresponding output patterns, the objective is to capture the implicit
relationship between the input and output patterns, so that when a
test input pattern is given, the pattern corresponding to the output
of the generating system is retrieved. Note that the system should
perform some kind of generalization as opposed to memorizing the
information. Typically, in this case the test patterns are not the same
as the training patterns, although they may originate h m the same
source. Speech spectra of vowels in continuous speech could be
considered as examples of patterns for pattern mapping problem.
Pattern mapping generally displays interpolative behaviour.

Pattern Grouping

In this case, given a set of patterns, the problem is to identify the
subset of patterns possessing similar distinctive features, and group
them together. Since the number of groups and the features of each
group are not explicitly stated, this problem belongs to the category
of unsupervised learning. Note that, this is possible only when the
features are unambiguous as in the case of hand-printed characters
or steady vowels. In the pattern classification problem the patterm
for each group are given separately. In pattern grouping, on the other
hand, patterns belonging to several groups are given, and the system
has to resolve them into different groups. Pattern grouping is also
called pattern clustering task.

Examples of the patterns for this task could be printed characters
or hand-printed characters. In the former case the grouping can be
performed based on the data itself. Moreover, in that case, the test
data is also generated from an identical source as for the training
data. For hand-printed characters or steady vowel patterns, features
of the patterns in the data are used for grouping. In this case the
test data is generated from a similar source as for the training data,
such that only the pattern features are preserved. The actual training
data values are not necessarily reproduced in the test patterns.

Feature Mapping

In several patterns the features are not unambiguous. In fact the
features vary over a continuum, and hence it is difficult to form
groups of patterns having some distinct features. In such cases, it is
desirable to display directly the feature variations in the patterns.
This again belongs to the unsupervised learning category. In this case
what is learnt is the feature map of a pattern and not the group or
the class to which the pattern belongs. This occurs, for example, in the
speech spectra for vowels in continuous speech. Due to changes in

8 Introduction

the vocal tract shape for the same vowel occurring in different
contexts, the features (formants or resonances of the vocal tract in
this case) vary over overlapping regions for different vowels.

Pattern Variablllty

There are many situations when the features in a pattern undergo
unspecified distortions each time the pattern is generated by the
system. This can be easily seen in the characters in normal
handwritten cursive script. Human beings are able to recognise them
due to some implicit interrelations among the features, which are not
known precisely. Classification of such patterns falls into the category
of pattern variability task.

Temporal Patterns

All the tasks discussed so far refer to the features present in a given
static pattern. Human beings are able to capture effortlessly the
dynamic features present in a sequence of patterns. This is true, for
example, in speech where the changes in the resonance characteristics
of the vocal tract system (e.g., formant contours) capture the
significant information about the speech message. This is also true
in any dynamic scene situation as in a movie on a television. All such
situations require handling multiple static patterns simultaneously,
looking for changes in the features in the subpatterns in adjacent
pattern pairs.

Stabiiity-piasticity Dilemma

In any pattern recognition task the input patterns keep changing.
Therefore it is difficult to freeze the categorization task based on a
set of patterns used in the training set. If it is frozen, then the systkm
cannot learn the category that a new pattern may suggest. In other
words, the system lacks its plasticity. On the other hand, if the system
is allowed to change its categorization continuously, based on new
input patterns, it cannot be used for any application such as pattern
classification or grouping, as it is not stable: This is called
stability-plasticity dilemma in pattern recognition.

Methods for Pattern Recognition Tasks

Methods for solving pattern recognition tasks generally assume a
sequential model for the pattern recognition process, consisting of
pattern environment, sensors to collect data from the environment,
feature extraction from the data and associatiodstorage/classi-
ficatiodgrouping using the features [Kanal, 1974; Mantas, 19871.

Methods for Pattern Recognition Tasks 9

The simplest solution to a pattern recognition problem is to use
a template matching, where the data of the test pattern is matched
point by point with the corresponding data in the reference pattern.
Obviously, this can work only for very simple and highly restricted
pattern recognition tasks. At the next level of complexity, one can
assume a deterministic model for the pattem generation process, and
derive the parameters of the model from a given pattern in order to
represent the information in the pattern.-Matching the test and
reference patterns is done at the parametri'c level. This works well
when the model of the generation process is known with reasonable
accuracy. One could also assume a stochastic model for the pattern
generation process, and derive the parameters of the model from a
large set of training patterns. Matching the test and reference
patterns can be performed by several statistical methods such as
likelihood ratio, variance weighted distance, Bayesian classification,
etc. Other approaches for pattern recognition tasks depend on
extracting features from parameters or data. These features may be
specific for the task. A pattern is described in terms of features, and
pattern matching is done using descriptions in terms 'of the features.
Another method based on descriptions is called syntactic pattern
recognition in which a pattern is expressed in terms of primitives
suitable for the classes of patterns under study. Pattern matching is
performed by matching the descriptions of the patterns in terms of
the primitives. More recently, methods based on the knowledge of the
sources generating the patterns are being explored for pattern
recognition tasks. These knowledge-based systems express the know-
ledge in the form of rules for generating and perceiving patterns.

The main difficulty in each of the pattern recognition techniques
alluded to above is that of choosing an appropriate model for the
pattern generating process and estimating the parameters of the
model in the case of a model-based approach, or extraction of features
from the datalparameters in the case of feature-based methods, or
selecting appropriate primitives in the case of syntactic pattern
recognition, or deriving rules in the case of a knowledge-based
approach. It is all the more difficult when the test patterns are noisy
or distorted versions of the patterns used in the training process. The
ultimate goal is to impart to a machine the pattern recognition
capabilities comparable to those of human beings. This goal is difficult
to achieve using many of the conventional methods, because, as
mentioned earlier, these methods assume a sequential model for the
pattern recognition process Devijver and Kittler, 1982; Schalkolff,
1992; Bezdek, 19961. On the other hand, the human pattern
recognition process is an integrated process involving the use of
biological neural processing even from the stage of sensing the
environment. Thus the neural processing takes place directly on the
data for feature extraction and pattern matching. Moreover, the large

10 Introduction

size (in terms of number of neurons and interconnections) of the
biological neural network and the inherently different mechanism of
processing may be contributing to our abilities of pattern recognition
in spite of variability and noise, and also to our abilities to deal with
the temporal patterns as well as with the so called stability-plasticity
dilemma. It is for these reasons attempts are being made to explore
new models of computing. Such models for computing are based on
artificial neural networks, the basics of which are introduced in the
next chapter.

Organization of the Topics

It is possible to view the topics of interest in artificial neural networks
at various levels as follows (Table 11):

Table II Organization of Topics in Artificial Neural Networks a t Different
Levels

(i) Problem level
Issues:

Understanding human problem solving as a pattern recognition process
Understanding biological neural networks

Topics discussed: (Introduction)
Distinction between pattern and data
Distinction between information processing by human beings and by
machines
Pattern recognition tasks
Methods and models for pattern recognition tasks

(ii) Basics level
Issues:

Models of neurons
Models of interconnections
Models of activation dynamics
Models of synaptic dynamics
Global pattern formation by models
Stability and convergence

Topics discussed: (Chapters 1 and 2)
Basic principles of biological neural networks
Three basic models of artificial neurons: MP neuron, Percephn and
Adaline
Topology: Basic structures of ANN
Basic learning laws
Activation dynamics models: Additive and shunting
Synaptic dynamics models: Requirements for learning and categories of
models of learning process
Stability theorems
Neural network recall

Organization of the Topics 11

Table II (Cont.)

(iii) Functional level
Issues:

Identification of basic functional units which can be analyeed
Analysis of pattern recognition t a s b by the functional units
Functional units as basic building blocb for complex architectures of
ANN

Topics discussed: (Chapters 3 to 6)
Three types of functional units namely, FF, FB and CL networks
Analysis of FF networks: Pattern association, perceptron, multilayer
perceptron, gradient descent methods, backpropagation algorithm
Analysis of FB networks: Pattern storage, Hopfield network, Boltzmann
machine, simulated annealing
Analysis of CL networks: Pattern clustering, self-organization, feature
mapping

(iv) Architectural level
Issues:

Identification of pattern recognition t a s b and issues
Development of architectures for complex pattern recognition t a s b
Architectures specific to problems

Topics discussed: (Chapter 7)
Associative memory: BAM
Pattern mapping: RBF and CPN
Stability-plasticity dilemma: Adaptive k o n a n c e Theory (ART)
Temporal patterns: Avalanche, Time Delay NN (TDNN)
Pattern variability: Neocognitron

(v) Applications level
Issues:

Potential for direct application
Mapping of the given application onto a neural network model

Topics discussed: (Chapter 8)
Direct applications: Associative memory, data compression, optimization,
vector quantization and control
Application areas: Problems in speech, image and decision making

(i) Problem level: This involves mapping the real world problems as
pattern processors. This may require good understanding of human
information processing both from the psychological and biological
angles. This topic is not within the scope of this book, although in
the introductory chapter we have discussed briefly the issues in
problem solving by humans and by machines.

(ii) Basics level: Advances in technology and understanding of
human information processing system enable us to evolve better
models of neurons as processing units, their interconnections and
dynamics (activation and synaptic), learning laws and recall
procedures. These models in turn will enable us to build sophisticated

12 Introduction

artificial neural networks for solving complex pattern recognition
tasks. Chapters 1 and 2 deal with some issues at the basics level. In
particular, in Chapter 1, we present basic models of artificial neurons
and some basic structures obtained by interconnecting these neuron
models. The chapter also includes some basic learning laws commonly
used in artificial neural networks. In Chapter 2, models of activation
and synaptic dynamics are described. The chapter also deals with
issues of stability and convergence, pertaining to activation and
synaptic dynamics models, respectively.

(iii) Functional level: It is necessary to understand the pattern
recognition tasks that can be performed by some of the basic
structures of artificial neural networks. These basic structures then
will form building blocks for development of new architectures for
complex pattern recognition tasks. We have identified three categories
of functional units, namely, feedforward, feedbackward and com-
petitive learning networks. Chapters 3 to 6 deal with detailed analysis
of the pattern recognition tasks that these functional units can
perform. Chapter 3 deals with a description of the functional units
and the corresponding pattern recognition tasks. Chapter 4 gives a
detailed analysis of feedforward networks, illustrating at each stage
the limitations of the networks to solve a given pattern recognition
task. The chapter concludes with a discussion on the capabilities and
limitations of multilayer feedforward neural networks and the
associated backpropagation learning law. Chapter 5 i s devoted to
analysis of feedback networks. The significance of the nonlinear
output function of a processing unit in feedback networks for pattern
storage task is discussed. Hopfield energy analysis of a feedback
network is used to demonstrate the capability and also limitations of
such networks. Stochastic network models are introduced to overcome
some of the limitations of the Hopfield model due to local minima
problems. Finally, the Boltzmann machine is presented to address
the issue of pattern environment storage. The chapter concludes with
a discussion on Boltzmann learning law and its implementation using
simulated annealing. Chapter 6 deals with a detailed analysis of
competitive learning networks. In particular, simple networks for
pattern clustering are considered. Self-organizing neural networks are
presented as an extension of the idea of competitive learning. The
feature mapping capability of the self-organizing networks is
illustrated with examples.

(iv) Architectural level: For complex pattern recognition tasks new
architectures need to be evolved from the known principles,
components and structures at the basics and functional levels.
Chapter 7 discusses development of architectures which address some
complex issues in pattern recognition tasks. We present an extended

Organization of the Topics 13

discussion on some specific architectures for associative memory and
pattern mapping tasks. In addition, we discuss Counter Propagation
Networks (CPN) for data compression, Adaptive Resonance Theory
(ART) architecture for stability-plasticity dilemma, neocognitron for
pattern variability, and avalanche architecture and time delay neural
networks for temporal patterns. These architectures are meant for
specific tasks and hence are severely limited in their use. However,
understanding the development process of these architectures helps
us to evolve new architectures tailored to specific issues.

(v) Appllcatlons level: Cumently most of the neural network models
are severely limited in their abilities to solve real world problems.
At the application level, one can consider two different categories.
In one case it may be possible to map the given application onto a
neural network model or architecture. We call such situations as
direct applications. Simple associative memories, data compression,
optimization, vector quantization and pattern mapping fall into the
category of direct application. But in case of problems such as in
speech recognition, image processing, natural language processing
and decision making, it is not normally possible to see a direct
mapping of the given problem onto a neural network model. These
are natural tasks which human beings are good at, but we still do
not understand how we do them. Hence it is a challenging task to
find suitable neural network models to address these problems
[Barnden, 1995; Cowan and Sharp, 19881.

Review Questions
1. Give examples for which heuristic search methods of artificial

intelligence are applicable.

2. Discuss the developments in artificial intelligence that led to the
interest in exploring new models for computing.

3. What is a rule-based expert system? Why do we say such systems
are 'brittle'? Discuss your answer with an illustration.

4. What are the differences in the manner of solving problems by
human beings and by machines? lllustrate with examples.

5. Explain the distinction between pattern and data.

6. What are the features of pattern processing by human beings?

7. Explain, with examples, differences between the following
pattern recognition tasks:
(a) Association vs classification
(b) Classification vs mapping
(c) Classification vs clustering

14 Introductipn

8. Explain the following pattern recognition issues with illustrations:

(a) Pattern variability
(b) Temporal patterns
(c) Stability-plasticity dilemma

9. What are different methods for solving pattern recognition tasks?

10. What is the difficulty with the existing methods for solving
natural pattern recognition problems?

11. Identifj. some difficult pattern recognition problems in the
following areas:

(a) Speech
(b) Vision
(c) Natural language processing

12. What are the issues at the architectural level of artificial neural
networks?

13. What are the situations for direct applications of artificial neural
networks?

14. What is the difficulty in solving a real world problem like speech
recognition even by an artificial neural network model?

Chapter 1

Basics of Artificial Neural
Networks

New models of computing to perform pattern recognition tasks are inspired
by the structure and performance of our biological neural network. But
these models are not expected to reach anywhere near the performance
of the biological network for several reasons. Firstly, we do not fully
understand the operation of a biological neuron and the neural
interconnections. Moreover, it is nearly impossible to simulate: (i) the
number of neurons and their interconnections as it exists in a biological
network, and (ii) their operations in the natural asynchronous mode.

However, a network consisting of basic computing units can
display some of the features of the biological network. In this chapter,
the features of neural networks that motivate the study of neural
computing are discussed. A simplified description of the biological
neural network is given in Section 1.1. The differences in processing
by the brain and a computer are then presented. In Section 1.2 a
brief history of neurocomputing is presented, indicating some of the
significant developments that have led to the current interest in the
field. In Section 1.3 the terminology of artificial neural networks is
introduced by considering the structure and operation of a basic
computing unit, i.e., the artificial neuron. Three classical models of
artificial neurons are described in Section 1.4. It is necessary to arrange
the units in a suitable manner to handle pattern recognition tasks. In
Section 1.5 we discuss a few basic structures which form the building
blocks for more complex architectures. The basic training or learning
laws for determining the connection weights of a network to represent
a given problem are then discussed in Section 1.6. The concluding section
gives a summary of the issues discussed in this chapter.

1.1 Characteristics of Neural Networks

1.1.1 Features of Biologlcal Neural Networks

Some attractive features of the biological neural network that make

16 Basics of Artificial Neural Networks

it superior to even the most sophisticated A1 computer system for
pattern recognition tasks are the following:

(a) Robustness and fault tolerance: The decay of nerve cells does
not seem to affect the performance significantly.

(b) Flexibility: The network automatically adjusts to a new
environment without using any preprogrammed instructions.

(c) Ability to deal with a variety of data situations: The network
can deal with information that is fuzzy, probabilistic, noisy and
inconsistent.

(dl Collective computation: The network performs routinely many
operations in parallel and also a given task in a distributed manner.

1.1.2 Biological Neural Networks

The features of the biological neural network are attributed to its
structure and function. The description of the biological neural
network in this section is adapted from [Muller and Reinhardt, 199:CI.
The fundamental unit of the network is called a neuron or a nerve
cell. Figure 1.1 shows a schematic of the structure of a neuron. It

From other \

I

Cell body Nucleue

NEURON 1

NEURON 2

Figure 1.1 Schematic diagram of a typical neuron or nerve cell.

consists of a cell body or soma where the cell nucleus is located. Tree-
like nerve fibres called dendrites are associated with the cell body.
These dendrites receive signals from other neurons. Extending from
the cell body is a single long fibre called the axon, which eventually
branches into strands and substrands connecting to many other
neurons at the synaptic junctions, or synapses. The receiving ends of
these junctions on other cells can be found both on the dendrites and
on the cell bodies themselves. The axon of a typical neuron leads to
a few thousand synapses associated with other neurons.

Characteristics of Neural Networks 17

The transmission of a signal from one cell to another at a synapse
is a complex chemical process in which specific transmitter sub-
stances are released from the sending side of the junction. The effect
is to raise or lower the electrical potential inside the body of the
receiving cell. If this potential reaches a threshold, an electrical
activity in the form of short pulses is generated. When this happens,
the cell is said to have fired. These electrical signals of fixed strength
and duration are sent down the axon. Generally the electrical activity
is confined to the interior of a neuron, whereas the chemical
mechanism operates a t the synapses.

The dendrites serve as receptors for signals from other neurons,
whereas the purpose of an axon is transmission of the generated
neural activity to other nerve cells (inter-neuron) or to muscle fibres
(motor neuron). A third type of neuron, which receives information
from muscles or sensory organs, such as the eye or ear, is called a
receptor neuron.

The size of the cell body of a typical neuron is approximately in
the range 10-80 micrometers (pm) and the dendrites and axons have
diameters of the order of a few pm. The gap at the synaptic junction
is about 200 nanometers (nm) wide. The total length of a neuron
varies from 0.01 mm for internal neurons in the human brain up to
1 m for neurons in the limbs.

In the state of inactivity the interior of the neuron, the
protoplasm, is negatively charged against the surrounding neural
liquid containing positive Sodium (Na+) ions.. The resulting resting
potential of about - 70 mV is supported by the action of the cell
membrane, which is impenetrable for the positive Sodium ions. This
causes a deficiency of positive ions in the protoplasm. Signals arriving
from the synaptic connections may result in a temporary
depolarization of the resting potential. When the potential is
increased to a level above - 60 mV, the membrane suddenly loses its
impermeability against Na+ ions, which enter into the protoplasm
and reduce the potential difference. This sudden change in the
membrane potential causes the neuron to discharge. Then the neuron
is said to have fired. The membrane then gradually recovers its
original properties and regenerates the resting potential over a period
of several milliseconds. During this recovery period, the neuron
remains incapable of further excitation. The discharge, which initially
occurs in the cell body, propagates as a signal along the axon to the
synapses. The intensity of the signal is encoded in the frequency of
the sequence of pulses of activity, which can range fiom about 1 to
100 per second.

The speed of propagation of the discharge signal in the cells of
the human brain is about 0.5-2 mls. The discharge signal travelling
along the axon stops at the synapses, because there exists no conduc-
ting link to the next neuron. Transmission of the signal across the

18 Basics of Artificial Neural Networks

synaptic gap is mostly effected by chemical activity. When the signal
arrives at the presynaptic nerve terminal, special substances called
neurotransmitters are produced in tiny amounts. The neurotrans-
mitter molecules travel across the synaptic junction reaching the
postsynaptic neuron within about 0.5 ms. These substances modify
the conductance of the postsynaptic membrane for certain ions,
causing a polarization or depolarization of the postsynaptic potential.
If the induced polarization potential is positive, the synapse is termed
excitatory, because the influence of the synapse tends to activate the
postsynaptic neuron. If the polarization potential is negative, the
synapse is called inhibitory, since it counteracts excitation of the
neuron. All the synaptic endings of an axon are either of an excitatory
or an inhibitory nature.

The cell body of a neuron acts as a kind of summing device due
to the net depolarizing effect of its input signals. This net effect
decays with a time constant of 5-10 ms. But if several signals arrive
within such a period, their excitatory effects accumulate. When the
total magnitude of the depolarization potential in the cell body
exceeds the critical threshold (about 10 mV), the neuron fires.

The activity of a given synapse depends on the rate of the arriving
signals. An active synapse, which repeatedly triggers the activation
of its postsynaptic neuron, will grow in strength, while others will
gradually weaken. Thus the strength of a synaptic connection gets
modified continuously. This mechanism of synaptic plasticity in the
structure of neural connectivity, known as Hebb's rule, appears to
play a dominant role in the complex process of learning.

Although all neurons operate on the same basic principles as
described above, there exist several different types of neurons,
distinguished by the size and degree of branching of their dendritic
trees, the length of their axons, and other structural details. The
complexity of the human central nervous system is due to the vast
number of the neurons and their mutual connections. Connectivity is
characterised by the complementary properties of convergence and
divergence. In the human cortex every neuron is estimated to receive
a converging input on an average from about lo4 synapses. On the
other hand, each cell feeds its output into many hundreds of other
neurons. The total number of neurons in the human cortex is
estimated to be in the vicinity of lo1', which are distributed in layers
over a full depth of the cortical tissue at a constant density of about
15 x lo4 neurons per mm2. Combined with the average number of
synapses per neuron, this yields a total of about 1015 synaptic
connections in the human brain, the majority of which develop during
the first few months after birth. The study of the properties of
complex systems built of simple, identical units may lead to an
understanding of the mode of operation of the brain in its various
functions, although we are still very far from such an understanding.

Characteristics of Neural Networks

1.1.3 Performance Comparison of Computer and Biological
Neural Networks

A set of processing units when assembled in a closely interconnected
network, offers a surprisingly rich structure exhibiting some features
of the biological neural network. Such a structure is called an
artificial neural network (ANN). Since ANNs are implemented on
computers, it is worth comparing the processing capabilities of a
computer with those of the brain [Simpson, 19901.

4

Speed: Neural networke are slow in processing information. For the
most advanced computers the cycle time corresponding to execution
of one step of a program in the central processing unit is in the range
of few nanoseconds. The cycle time corresponding to a neural event
prompted by an external stimulus occurs in milliseconds range. Thus
the computer processes information nearly a million times faster.

Processing: Neural networks can perform massively parallel
operations. Most programs have large number of instructions, and
they operate in a sequential mode one instruction &er another on a
conventional computer. On the other hand, the brain operates with
massively parallel operations, each of them having comparatively
fewer steps. This explains the superior performance of human
information processing for certain tasks, despite being several orders
of magnitude slower compared to computer processing of information.

Size and complexity: Neural networks have large number of
computing elements, and the computing is not restricted to within
neurons. The number of neurons in a brain is estimated to be about
1011 and the total number of interconnections to be around 1015. It
is this size and complexity of connections that may be giving the
brain the power of performing complex pattern recognition tasks
which we are unable to realize on a computer. The complexity of
brain is further compounded by the fact that computing takes place
not only inside the cell body, or soma, but also outside in the dendrites
and synapses.

Storage: Neural networks store information in the strengths of the
interconnections. In a computer, information is stored in the memory
which is addressed by its location. Any new information in the same
location destroys the old information. In contrast, in a neural network
new information is added by adjusting the interconnection strengths,
without destroying the old information. Thus information in the brain
is adaptable, whereas in the computer it is strictly replaceable.

Fault tolerance: Neural networks exhibit fault tolerance since the
information is distributed in the connections throughout the network.

Basics of Artificial Neural Networks

Even if a few connections are snapped or a few neurons are not
functioning, the information is still preserved due to the distributed
nature of the encoded information. In contrast, computers are
inherently not fault tolerant, in the sense that information corrupted
in the memory cannot be retrieved.

Control mechanism: There is no central control for processing
information in the brain. In a computer there is a control unit which
monitors all the activities of computing. In a neural network each

C
neuron a d s based on the information locally available, and transmits
its output to the neurons connected to it. Thus there is no specific
control mechanism external to the computing task.

While the superiority of human information processing system
over the conventional computer for pattern recognition tasks is
evident from the basic structure and operation of the biological neural
network, it is possible to realize some of its features using an artificial
network consisting of basic computing units. It is possible to show that
such a network exhibits parallel and distributed processing capability.
In addition, information can be stored in a distributed manner in the
connection weights so as to achieve some fault tolerance. These
features are illustrated through several parallel and distributed
processing models for cognitive tasks in [Rumelhart and McClelland,
1986; McClelland and Rumelhart, 1986; McClelland and Rumelhart,
19881. Two of these models are described briefly in Appendix A.

The motivation to explore new computing models based on ANNs
is to solve pattern recognition tasks that may sometimes involve
complex optical and acoustical patterns also. It is impossible to derive
logical rules for such problems for applying the well known A1
methods. It is also difficult to divide a pattern recognition task into
subtasks, so that each of them could be handled on a separate
processor. Thus the inadequacies of the logic-based artificial
intelligence and the limitations of the sequential computing have led
to the concept of parallel and distributed processing through ANN.
It may be possible to realize a large number of simple computing
units on a single chip or on a few chips, and assemble them into a
neural computer with the present day technology. However, it is
difficult to implement the large number of synaptic connections, and
it is even more difficult to determine the strategies for synaptic
strength adjustment (learning).

Even with these limitations, ANNs can be developed for several
pattern recognition tasks for which it is difficult to derive the logical
rules explicitly. The network connection weights can be adjusted to
learn from example patterns. The architecture of the network can be
evolved to deal with the problem of generalization in pattern
classification tasks. ANNs can also be designed to implement selective
attention feature required for some pattern recognition tasks. While

Historical Development of Neural Network Principles 2 1

the adjustment of weights may take a long time, the execution of
pattern classification or pattern recall will be much faster, provided
the computing units work in parallel as in a dedicated hardware.

Since information is stored in the connections and it is distributed
throughout, the network can function as a memory. This memory is
content addressable, in the sense that the information may be recalled
by providing partial or even erroneous input pattern. The information
is stored by association with other stored data like in the brain. Thus
ANNs can perform the task of associative memory. This memory can
work even in the presence of certain level of internal noise, or with
a certain degree of forgetfulness. Thus the short-term memory
function of the brain can be realized to some extent. Since information
is stored throughout in an associative manner, ANNs are somewhat
fault tolerant in the sense that the information is not lost even if
some connections are snapped or some units are not hctioning.
Because of the inherent redundancy in information storage, the
networks can also recover the complete information from partial or noisy
input pattern. Another way of looking at it is that an ANN is a reliable
system built h m intrinsically unreliable units. Any degradation in
performance is 'graceful' rather than abrupt as in the conventional
computers. A remarkable feature of ANNs is that it can deal with data
that are not only noisy, but also fuzzy, inconsistent and probabilistic,
just as human beings do. All this is due to the associative and dktributed
nature of the stored information and the redundancy in the information
storage due to large size of the network. Typically, the stored information
is much less than the capacity of the network.

1.2 Historical Development of Neural Network Principles

The key developments in neural network principles are outlined in
this section. Table 1.1 gives a list of some significant contributions
in this field that have put the field on a strong theoretical and
conceptual foundation, as it exists today.

In 1943 Warren McCulloch and Walter Pitts proposed a model of
computing element, called McCulloch-Pitts neuron, which performs a
weighted sum of the inputs to the element followed by a threshold
logic operation [McCulloch and Pitts, 19431. Combinations of these
computing elements were used to realize several logical computations.
The main drawback of this model of computation is that the weights
are fixed and hence the model could not learn fiom examples.

In 1949 Donald Hebb proposed a learning scheme for adjusting
a connection weight based on pre- and post-synaptic values of the
variables [Hebb, 19491. Hebb's law became a fundamental learning
rule in neural networks literature.

In 1954 a learning machine was developed by Marvin Minsky,
in which the connection strengths could be adapted automatically

22 Basics of Artificial Neural Networks

Table 1.1 Historical Development of Neural Network Principles

Key developments Other significant contributions

McCulloch and Pitts (1943)

Model of neuron

Logic operations

Lack of learning

Hebb (1949)

Synaptic modifications

Hebb's learning law

Minsky (1954)

Learning machines

Rosenblatt (1958)

Perceptmn learning and
convergence

Pattern classification

Linear separability
constraint

Widrow and Hoff (1960)

Adaline-LMS learning

Adaptive signal
processing

Minsky and Papert (1969)

Perceptron-Multilayer
perceptron (MLP)

Hard problems

No learning for MLP

Werbos (1974)

Error backpropagation

Hopfield (1982)

Energy analysis

Ackley, Hinton a d
Sejnowski (1985)

Boltzmann machine

Rumelhart, Hinton and
Williams (1986)

Generalised delta rule

von Neumann (1 9 4 6) a n e r a l purpose
electronic computer

Norbert Weiner (1948Mybernetics
Shannon (1948tInformation theory
Ashby (1952tDesign for a Brain
Gabor (1954)-Nonlinear adaptive filter
Uttley (1956)-Theoretical machine
Caianiello (1961)-Statistical theory and

learning
Minsk (1961)-Artificial intelligence
Steinbuch (1961)-Learnmatrix
Minsk and Selfiidge (196ltCredit

assignment problem
Nilsson (1965tLeamhg machine
Amari (1967)-Mathematical solution to

credit assignment
Kohonen (1971)-Associative memories
Willshaw (1971)-Self-organization and

generalization
Malsburg (1973jSelf-organization
Tikhonw (1973)-Regularization theory
Little (1974)-Ising model and neural

network
Grossberg (1976bAdaptive resonance

theory
Anderson (1977)-Brain state-in-box model
Little and Shaw (1978)-Stochastic law for

NN, spin glasses
Fukushima (1980)-Neocognitmn
Kohonen (1982)-Feature mapping
Barto, Sutton and Anderson (1983)-

Reinforcement learning
Kirkpatrick (1983Himulated annealing
Peretto (1984Htochastic units
Mead (1985)-Analog VLSI
Arnit (1985)43tatistical machines and

stochastic networks
Mopf (1986)-Drive-reinforcement leamhg
Hecht-Nielsen (1987)-Counterpropagation
Linsker (1988Helf-organization based on

information preservation
Kosko (1988)-BAM, Fuzzy logic in ANN
Broomhead (1988)-Radial basis functions

(RBF)
Poggio and Girosi (1990bRBF and

regularization theory

Historical Development of Neural Network Principles 23

[Minsky, 19541. But it was in 1958 that Rosenblatt proposed the
perceptron model, which has weights adjustable by the perceptron
learning law [Rosenblatt, 19581. The learning law was shown to
converge for pattern classification problems, which are linearly
separable in the feature space. While a single layer of perceptrons
could handle only linearly separable classes, it was shown that a
multilayer perceptron could be used to perform any pattern
classification task. But there was no systematic learning algorithm
to adjust the weights to realize the classification task. In 1969 Minsky
and Papert demonstrated the limitations of the perceptron model
through several illustrative examples [Minsky and Papert, 19691.
Lack of suitable learning law for a multilayer perceptron network
had put brakes on the development of neural network models for
pattern recognition tasks for nearly 15 years till 1984.

In 1960s Widrow and his group proposed an Adaline model for a
eomputing element and an LMS learning algorithm to adjust the
weights of an Adaline model Widrow and Hoff, 19601. The
convergence of the LMS algorithm was proved. The algorithm was
successfully used for adaptive signal processing situations.

The resurgence of interest in artificial neural networks is due to
two key developments in early 1980s. The first one is the energy
analysis of feedback neural networks by John Hopfield, published in
1982 and 1984 [Hopfield, 1982; Hopfield, 19841. The analysis has
shown the existence of stable equilibrium states in a feedback
network, provided that the network has symmetric weights, and that
the state update is made asynchronously. Also, in 1986, Rumelhart
et al have shown that it is possible to adjust the weights of a
multilayer feedforward neural network in a systematic way to learn
the implicit mapping in a set of input-output pattern pairs
[Rumelhart et al, 1986al. The learning law is called generalized delta
rule or error backpropagation learning law.

About the same time Ackley, Hinton and Sejnowski proposed the
Boltzmann machine which is a feedback neural network with
stochastic neuron units [Ackley et al, 19851. A stochastic neuron has
an output function yrhich is implemented using a probabilistic update
rule instead of a deterministic update rule as in the Hopfield model.
Moreover, , the Boltzmann machine has several additional neuron
units, called hidden units, which are used to make a given pattern
storage problem representable in a feedback network.

Besides these key developments, there are many other significant
contributions made in this field during the past thirty years. Notable
among them are the concepts of competitive learning, self-
organization and simulated annealing. Self-organization led to the
realization of feature mapping. Simulated annealing has been very
useful in implementing the learning law for the Boltzmann machine.
Several new learning laws were also developed, the prominent among

24 Basics of Artificial Neural Networks

them being the reinforcement learning or learning with critic. Several
architectures were developed to address specific issues in pattern
recognition. Some of these architectures are: adaptive resonance
theory (ART), neocognitron and counterpropagation networks.
Currently, fuzzy logic concepts are being used t o enhance the
capability of the neural networks to deal with real world problems
such as in speech, image processing, natural language processing and
decision making [Lin and Lee, 19961.

1.3 Artificial Neural Networks: Terminology

Processing unit: We can consider an artificial neural network
(ANN) as a highly simplified model of the structure of the biological
neural network. An ANN consists of interconnected processing units.
The general model of a processing unit consists of a summing part
followed by. .an output part. The summing part receives N input
values, weights each value, and computes a weighted sum. Th_e
weighted sum is called the activation value. The output part produces
a signal from the activation value. The sign of the weight for each
input determines whether the input is excitatory (positive weight) or
inhibitory (negative weight). The inputs could be discrete or
continuous data values, and likewise the outputs also could be
discrete or continuous. The input and output could also be
deterministic or stochastic or fuzzy.

Interconnections: In an artificial neural network several processing
units are interconnected according to some topology to accomplish a
pattern recognition task. Therefore the inputs to a processing unit
may come from the outputs of other processing units, and/or from
external sources. The output of each unit may be given to several
units including itself. The amount of the output of one unit received
by another unit depends on the strength of the connection between
the units, and it is reflected in the weight value associated with the
connecting link. If there are N units in a given ANN, then at any
instant of time each unit will have a unique activation value and a
unique output value. The set of the N activation values of the network
defines the activation state of the network at that instant. Likewise,
the set of the N output values of the network defines the output state
of the network at that instant. Depending on the discrete or
continuous nature of the activation and output values, the state of
the network can be described by a discrete or continuous point in an
N-dimensional space.

Operations: In operation, each unit of an ANN receives inputs from
other connected units and/or from an external source. A weighted

Artificial Neural Networks: Terminology

sum of the inputs is computed at a given instant of time. The
activation value determines the actual output from the output
function unit, i.e., the output state of the unit. The output values and.
other external inputs in turn determine the activation and output
states of the other units. Activation dynamics determines the
activation values of all the units, i.e., the activation state of the
network as a function of time. The activation dynamics also
determines the dynamics of the output state of the network. The
set of all activation states defines the activation state space of the
network. The set of all output states defines the output state space
of the network. Activation dynamics determines the trajectory of
the path of the states in the state space of the network. For a
given network, defined by the units and their interconnections with
appropriate weights, the activation states determine the short term
memory function of the network.

Generally, given an external input, the activation dynamics is
followed to recall a pattern stored in a network. In order to store a
pattern in a network, it is necessary to adjust the weights of the
connections in the network. The set of all weights on all connections
in a network form a weight vector. The set of all possible weight
vectors define the weight space. When the weights are changing, then
the synaptic dynamics of the network determines the weight vector
as a function of time. Synaptic dynamics is followed to adjust the
weights in order to store the given patterns in the network. The
process of adjusting the weights is referred to as learning. Once the
learning process is completed, the final set of weight values
corresponds to the long term memory function of the network. The
procedure to incrementally update each of the weights is called a
learning law or learning algorithm.

Update: In implementation, there are several options available for
both activation and synaptic dynamics. In particular, the updating of
the output states of all the units could be performed synch~onously.
In this case, the activation values of all the units are computed at
the same time, assuming a given output state throughout. From the
activation values, the new output state of the network is derived. In
an asynchronous update, on the other hand, each unit is updated
sequentially, taking the current output state of the network into
account each time. For each unit, the output state can be determined
from the activation value either deterministically or stochastically.

In practice, the activation dynamics, including the update, is
much more complex in a biological neural network than the simple
models mentioned above. The ANN models along with the equations
governing the activation and synaptic dynamics are designed
according to the pattern recognition task to be handled.

26 Basics of Artificial Neural Networks

1.4 Models of Neuron

In this section we will consider three classical models for an artificial
neuron or processing unit.

1.4.1 McCulloch-Pitts Model

In McCulloch-Pitts (MP) model (Figure 1.2) the activation (x) is given
by a weighted sum of its M input values (ai) and a bias term (8). The

Weights
Input (Eured) Activation Output

value signal
a1

W l - - -
w2 M '-0 s = f (x) . W i ai - 9 m

W M i = l
afd -

Summing part Output
function f (.)

Figure 1.2 McCulloch-Pith model of a neuron.

output signal (s) is typically a nonlinear function flx) of the activation
value x. The following equations describe the operation of an MP model:

M

Activation: x = x w i a i - 8
i = l

Output signal: s = f (XI
Three commaply used nonlinear functions (binary, ramp and

sigrnoid) are shown in Figure 1.3, although only the binary function

(b) Ramp (c) Sigmoid

Figure 1.3 Some nonlinear functions.

Models of Neuron 27

was used in the original MP model. Networks consisting of MP
neurons with binary (on-off) output signals can be configured to
perform several logical functions FlcCulloch and Pitts, 1943; Zurada,
19921. Figure 1.4 shows some examples of logic circuits realized using

(a) NOR gate

(b) NAND gate -1
a1

(c) Memory cell
assuming unit
delay for neuron. Excitatory 1
An initial excitatory input
input 1 sustains the
output 1 and an initial

5jjlL..
inhibitory input +1 Inhibitory
sustains the output 0 input

Figure 1.4 Illustration of some elementary logic networks using MP neurons.

the MP model. In this model a binary output function is used with
the following logic:

f(x) = 1, X > O

A single input and a single output MP neuron with proper weight
and threshold gives an output a unit time later. This unit delay property
of the MP neuron can be used to build sequential digital circuits. With
feedback, it is also possible to have a memory cell (Figure 1 .4~) which
can retain the output indefinitely in the absence of any input.

In the MP model the weights are fixed. Hence a network using this
model does not have the capability of learning. Moreover, the original
model allows only binary output states, operating at discrete time steps

1.4.2 Perceptron

The Rosenblatt's perceptron model (Figure 1.5) for an artificial neuron
consists of outputs from sensory units to a fixed set of association
units, the outputs of which are fed to an MP neuron [Rosenblatt,

Basics of Artificial Neural Networks

Weights
(adjustable)

Input

Activation Output
signal

(binary)

Sensory Association
units units unit unit

Figure 1.5 Rosenblatt's perceptron model of a neuron.

19581. The association units perform predetermined manipulations on
their inputs. The main deviation from the M P model is that learning
(i.e., adjustment of weights) is incorporated in the operation of the
imit. The desired or target output (b) is compared with the actual
binary output (s), and the error (6) is used to adjust the weights. The
following equations describe the operation of the perceptron model of
a neuron:

Activation:

Output signal: s = fix)

Error: 6 = b- s

Weight change: Aw, = 76 ai

where 7 is the learning rate parameter.
There is a perceptron learning law which gives a step-by-step

procedure for adjusting the weights. Whether the weight adjustment
converges or not depends on the nature of the desired input-output
pairs to be represented by the model. The perceptron convergence
theorem enables us to determine whether the given pattern pairs are
representable or not. If the weight values converge, then the corres-
ponding problem is said to be represented by the perceptron network.

1.4.3 Adaline

ADAptive LINear Element (ADALINE) is a computing model
proposed by Widrow and is shown in Figure 1.6 [Widrow, 19621. The
main distinction between the Rosenblatt's perceptron model and the

Topology

Input Weights Activation Output

Figure 1.6 Widmw'~ Adaline model of a new&.

value
W l +-

signal

Widrow's Adaline model is that, in the Adaline the analog activation
value (x) is compared with the target output (b). In other words, the
output is a linear fundion of the activation value (x). The equations
that describe the operation of an Adaline are as follows:

a1

a, Wa

: w,
a, --C

Activation:

Output signal: s = fix) = x

output
Summing part function f (.)

M
w i a i - 0

i = l

Error: 6 = b- s = b-x

10 s=f(x)=x
w

Weight change: Awi = q6 ai

where q is the learning rate parameter. This weight update rule
minimises the mean squared error a2, averaged over all inputs. Hence
it is called Least Mean Squared (LMS) error learning law. This law
is derived using the negative gradient of the error surface in the
weight space. Hence it is also known as a gradient descent algorithm.

1.5 Topology
Artificial neural networks are useful only when the processing units
are organised in a suitable manner to accomplish a given pattern
recognition task. This section presents a few basic structures which
will assist in evolving new architectures. The arrangement of the
processing units, connections, and pattern inputloutput is referred to
as topology [Simpson, 19901.

Artificial neural networks are normally organized into layers of
processing units. The units of a layer are.similar in the sense that
they all have the same activation dynamics and output function.
Connections can be made either from the units of one layer to the
units of another layer (interlayer connections) or among the units
within the layer (intralayer connections) or both interlayer and
intralayer connections. Further, the connections across the layers and
among the units within a layer can be organised either in a
feedforward manner or in a feedback manner. In a feedback network
the same processing unit may be visited more than once.

We will discuss a few basic structures which form building bk&s

30 Basics of Artificial Neural Networks

for more complex neural network architectures. Let us consider two
layers F1 and F2 with M and N processing units, respectively. By
providing connections to theJth unit in the F, layer from all the units
in the F , layer, as shown in Figures 1.7a and 1.7b, we get two network
structures instar and outstar, which have fan-in and fan-out
geometries, respectively [Grossberg, 19821. During learning, the
normalised weight vector wj = (w,,, wj2, ..., wjMIT in instar approaches
the nomalized input vector, when an Input vector a = (a,, a2, ..., aMIT

M
is presented at the F, layer. Thus the activation w;a = Z w.. a . of i = l J t 8

the jth unit in the F2 layer will approach maximum value during
learning. Whenever the input is given to F,, then the Jth unit of F,

(a) Instar (b) Outstar

(c) Group of instars (d) Group of outstars

(e) Bidirectional associative memory (f) Autoassociative memory

Figure 1.7 Some basic structures of artificial neural networks.

Basic Learning Laws 31

will be activated to the maximum extent. Thus the operation of an
instar can be viewed as content addressing the memory. In the case
of an outstar, during learning, the weight vedor for the connections
from the jth unit in F2 approaches the activity pattern in F,, when
an input vector a is presented at F1. During recall, whenever the unit
j is activated, the signal pattern (sjwL, s,wy, ..., s,w .) will be
transmitted to Fl, where sj is the output of the jth umt. %us signal
pattern then produces the original activity pattern corresponding to
the input vector a, although the input is absent. Thus the operation
of an outstar can be viewed as memory addressing the contents.

When all the connections from the units in F1 to F2 are made as
in Figure 1.7c, we obtain a heteroassociation network. This network
can be viewed as a group of instars, if the flow is from Fl to F2. On
the other hand, if the flow is from F2 to F1, then the network can be
viewed as a group of outstars (Figure 1.7d).

When the flow is bidirectional, we get a bidirectional associative
memory (Figure 1.7e), where either of the layers can be used as
input'output.

If the two layers Fl and F2 coincide and the weights are
symmetric, i.e., wj, = w", i ;t j, then we obtain an autoassociative
memory in which each unit is connected to every other unit and to
itself (Figure 1.70.

1.6 Basic Learning Laws

The operation of a neural network is governed by neuronal dynamics.
Neuronal dynamics consists of two parts: one corresponding to the
dynamics of the activation state and the other corresponding to the
dynamics of the synaptic weights. The Short Term Memory (STM) in
neural networks is modelled by the activation state of the network.
The Long Term Memory (LTM) corresponds to the encoded pattern
information in the synaptic weights due to learning. We will discuss
models of neuronal dynamics in Chapter 2. In this section we discuss
some basic learning laws [Zurada, 1992, Sec. 2.5; Hassoun, 1995,
Ch. 31. Learning laws are merely implementation models of synaptic
dynamics. Typically, a model of synaptic dynamics is described in
terms of expressions for the first derivative of the weights. They are
called learning equations.

Learning laws describe the weight vector for the ith processing
unit at time instant (t + 1) in terms of the weight vector at time
instant (t) as follows:

wi(t + 1) = wi(t) + Awi(t) (1.1)

where Awi(t) is the change in the weight vector.
There are different methods for implementing the learning

feature of a neural network, leading to several learning laws. Some

32 Basics of Artificial Neural Networks

basic learning laws are discussed below. All these learning laws use
only local information for adjusting the weight of the connection
between two units.

1.6.1 Hebb's Law

Here the change in the weight vector is given by

Therefore, the jth component of Awi is given by
T Aw.. = q flw, a)aj V

= q s i a j , for j = 1 , 2 ,..., M (1.3)

where si is the output signal of the ith unit. The law states that the
weight increment is proportional to the product of the input data and
the resulting output signal of the unit. This law requires weight
initialization to small random values around w, = 0 prior to learning.
This law represents an unsupervised learning.

1.6.2 Perceptron Learning Law

Here the change in the weight vector is given by

where sgn(x) is sign of x. Therefore, we have

A w, = q [bi - sgn(wTa)l aj

= q (b, - s,) aj , for j = 1, 2, ..., M (1.5)

This law is applicable only for bipolar output functions fl.). This
is also called discrete perceptron learning law. The expression for
Aw, shows that the weights are adjusted only if the actual output
si is incorrect, since the term in the square brackets is zero for the
correct output. This is a supervised learning law, as the law requires
a desired output for each input. In implementation, the weights can
be initialized to any random initial values, as they are not critical. The
weights converge to the final values eventually by repeated use of the
input-output pattern pairs, provided the pattern pairs are representable
by the system. These issues will be discussed in Chapter 4.

1.6.3 Delta Learning Law

Here the change in the weight vector is given by

AW, = q [b, - AwTa)] fiwTa) a

Basic Learning Laws 33

where fix) is the derivative with respect to x. Hence,

This law is valid only for a differentiable output function, as it
depends on the derivative of the output function fi.). I t is a supervised
learning law since the change in the weight is based on the error
between the desired and the actual output values for a given input.
Delta learning law can also be viewed as a continuous perceptron
learning law.

In.implementation, the weights can be initialized to any random
values as the values are not very critical. The weights converge to
the final values eventually by repeated use of the input-output
pattern pairs. The convergence can be more or less guaranteed by
using more layers of processing units in between the input and output
layers. The delta learning law can be generalized to the case of multiple
layers of a feedforward network. We will discuss the generalized delta
rule or the error backpropagation learning law in Chapter 4.

1.6.4 Wldrow and Hoff LMS Learning Law

Here the change in the weight vector is given by

Awi = q [b, - wTa] a (1.8)
Hence

T AwU=q[b i -wia la j , f o r j = 1 , 2 ,..., M (1.9)

This is a supervised learning law and is a special case of the delta
learning law, where the output function is assumed linear, i.e.,
f(xi) =xi. In this case the change in the weight is made proportional
to the negative gradient of the error between the desired output and
the continuous activation value, which is also the continuous output
signal due to linearity of the output function. Hence, this is also called
the Least Mean Squared (LMS) error learning law. This is same as
the learning law used in the Adaline model of neuron. In
implementation, the weights may be initialized to any values. The
input-output pattern pairs data is applied several times to achieve
convergence of the weights for a given set of training data. The
convergence is not guar-d for any arbitrary training data set.

1.6.5 Correlation Learning Law

Here the change in the weight vector is given by

34 Basics of Artificial Neural Networks

Therefore
Aw, = qb,aj, f o r j = 1 ,2 , ..., M (1.11)

This is a special case of the Hebbian learning with the output signal
(si) being replaced by the desired signal (bi). But the Hebbian learning
is an unsupervised learning, whereas the correlation learning is a
supervised learning, since it uses the desired output value to adjust
the weights. In the implementation of the learning law, the weights
are initialised to small random values close to zero, i.e., wii = 0.

1.6.6 lnstar (Winner-take-all) Learning Law

This is relevant for a collection of neurons, organized in a layer as
shown in Figure 1.8. All the inputs are connected to each of the units

Figure 1.8 Arrangement of units for 'instar learning', where the adjusted
weights are highlighted.

in the output layer in a feedfonvard manner. For a given input vector
a, the output from each unit i is computed using the weighted sum
wTa. The unit k that gives maximum output is identified. That is

T T wk a = max (wi a) (1.12)
i

Then the weight vector leading to the kth unit is adjusted as follows:

Awk = 7 (a - wk) (1.13)
Therefore,

h = (a - w) , for j = 1 ,2 , ..., M (1.14)

The final weight vector tends to represent a group of input vectors
within a small neighbourhood. This is a case of unsupervised
learning. In implementation, the values of the weight vectors are
initialized to random values prior to learning, and the vector lengths
are normalized during learning.

1.6.7 Outstar Learning Law

The outstar learning law is also related to a group of units arranged
in a layer as shown in Figure 1.9. In this law the weights are adjusted
so as to capture the desired output pattern characteristics. The
adjustment of the weights is given by

Aw. ~k = q(bj-wjk), f o r j = 1, 2, ..., M (1.15)

Basic Learning Laws

Figure 1.9 Arrangement of units for 'outstar learning', where the adjusted
weights are highlighted.

where the kth unit is the only active unit in the input layer. The
vector b = (bl, b2, ..., bMIT is the desired response from the layer of
M units. The outstar learning is a supervised learning law, and it is
used with a network of instars to capture the characteristics of the
input and output patterns for data compression. In ,implementation,
the weight vectors are initialized to zero prior to blaming.

1.6.8 Discussion on Basic Learning Laws

Table 1.2 gives a summary of the basic learning laws described so

Table 1.2 Summary of Basic Learning Laws (Adapted from [Zurada, 19921)

Learning Weight adjustment Initial Learning
law hU, weights

T Hebbian h.. = q flwi a) a, Near zero Unsupervised
tJ

= q sia,,
for j = 1, 2, ..., M

Perce~tron Aw, = q [bi - sgn(wTa)] a, Random Supervised
= q (bi - si) aj,

for j = 1,2, ..., M

Delta Aw, = q [bi - f($a)] fiwTa) aj Random Supervised

= q [bi -si] fixi) a,,
for j = 1,2, ..., M

Widrow- AW, = q [bi - wya] a,, Random Supervised
Hoff for j = 1, 2, ..., M
Correlation Aw, = qb,a,, Near zero Supervised

for j = 1, 2, ..., M

Winner- Awy=q(a,-wy), Random but Unsupervised
take-all k is the winning unit, n~rmalised

for j = 1, 2, ..., M

Outstar Awjk = q (b, - wjk), Zero Supervised
for j = 1,2, ..., M

Basics of Artificial Neural Networks

far. It shows the type of learning (supervised/unsupervised) and the
nature of the output function (sgn for discrete1 f l .) for continuous)
for which each law is applicable. The most important issue in the
application of these laws is the convergence of the weights to some
final limit values as desired. The convergence and the limit values
of the weights depend on the initial setting of the weights prior to
learning, and on the learning rate parameter.

The Hebb's law and the correlation law lead to the sum of the
correlations between input and output (for Hebb's law) components
and between input and desired output (for correlation law)
components, respectively. But in order to achieve this, the starting
initial weight values should be small random values near zero. The
learning rate parameter q should be close to one. Typically, the set
of patterns are applied only once in the training process. In some
variations of these (as in the principal component learning to be
discussed in Chapter 61, the learning rate parameter is set to a small
value (< 1) and the training patterns are applied several times to
achieve convergence.

The perceptron, delta and LMS learning laws lead to h a 1 steady
state values (provided they converge), only when the weight
adjustments are small. Since the correction depends on the error
between the desired output and the actual output, only a small
portion of the error is used for adjustment of the weights each time.
Thus the learning rate parameter q << 1. The initial weights could
be set to random values. The set of training patterns need to be
applied several times to achieve convergence, if it exists. The
convergence will naturally be faster if the starting weights are close
to the final steady values.

The weights indhe instar and outstar learning laws converge to
the mean values of a set of input and desired output patterns,
respectively. In these cases the learning rate parameter is typically
set to a value less than one (q < 1). The weights in the case of instar
can be initialized to any random values, and in the case of outstar
to small random values near zero. The set of training patterns are
applied several times to achieve convergence.

Besides these basic learning laws there are many other learning
laws evolved primarily for application in different situations
[:Aassoun, 1995, Ch. 31. Some of them will be discussed at appropriate
places in the later chapters.

1.7 Summary
In this chapter we have seen the motivation and background for the
current interest in the study of problems based on models using
artificial neural networks. We have reviewed the features of the
biological neural network and discussed the feasibility of realizing

Review Questions 37

some of these features through parallel and distributed processing
(PDP) models (Appendix A). In particular, the associative memory,
fault tolerance and concept learning features could be demonstrated
through these PDP models. Some key developments in artificial
neural networks were presented to show how the field has evolved
to the present state of understanding.

An artificial neural network is built using a few basic building
blocks. The building blocks were introduced starting with the models
of artificial neurons and the topology of a few basic structures. While
developing artificial neural networks for specific applications, the
weights are adjusted in a systematic manner using learning laws.
We have discussed some basic learning laws and their characteristics.
But the full potential of a neural network can be exploited if we can
incorporate in its operation the neuronal activation and synaptic
dynamics of a biological neural network. Some features of these
dynamics are discussed in the next chapter.

Review Questions
1. Describe some attractive features of the biological neural

network that make it superior to the most sophisticated Artificial
Intelligence computer system for pattern recognition tasks.

2. Explain briefly the terms cell body, axon, synapse, dendrite and
neuron with reference to a biological neural network.

3. Explain briefly the operation of a biological neural network.

4. Compare the performance of a computer and that of a biological
neural network in terms of speed of processing, size and
complexity, storage, fault tolerance and control mechanism.

5. Give two examples of pattern recognition tasks to illustrate the
superiority of the biological neural network over a conventional
computer system.

6. What are the main differences among the three models of artificial
neuron, namely, McCulloch-Pitts, perceptron and adaline?

7. What is meant by topology of artificial neural networks? Give a
few basic topological structures of artificial neural networks.

8. What is the distinction between learning equation and learning
law?

9. What are the basic learning laws?

10. Explain the significance of the initial values of weights and the
learning rate parameter in the seven basic learning laws.

11. Identify supervised and unsupervised basic learning laws.

12. Compare LMS, perceptron and delta learning laws.

Basics of Artificial Neural Networks

Problems

1. Explain the logic functions (using truth tables) performed by the
following networks with MP neurons given in Figure P1.l.

Figure P1.l Three networks using MP neurons.

2. Design networks using M-P neurons to realize the following logic
functions using f 1 for the weights.

(a) s(a,, a2, a,) = alas +a+, +zla3

(b) s(al, a,, a,) = a1a2a3
(c) s(al, a2, a ,) = zla27E3

3. Give the output of the network in Figure P1.2 for the input
[l l l lT.

Figure P1.2 A feedforward network with MP neurons.

4. Determine the weights of the network in Figure P1.3a after one
iteration using Hebb's law for the following set of input vectors
for two different types of output fundions shown in Figures P1.3b
and P1.3~. Use suitable values for the initial weights and learning
rate parameter. Input: [llOOIT, [lOO1lT, [OO1llTand [OllOIT. Choose
f (x) = 141 + e-X) for Figure P1.3~.

Problems

Output

Input vedor a, a4

Figure P1.3 (a) A neuron with four inputs and one output, (b) Hard-limiting
output function and (c) Sigmoid output function.

5. Determine the weights of a network with 4 input and 2 output
units using (a) Perceptron learning law and (b) Delta learning
law with f l x) = ll(1 +e-*) for the following inputroutput pairs:

Input: [1100IT [1001IT [0011IT [0ll0IT

Output: [11IT [10IT [01IT [00IT

Discuss your results for different choices of the learning rate
parameters. Use suitable values for the initial weights.
(Hint: Write a program to implement the learning laws.)

6. Using the Instar learning law, group all the sixteen possible
binary vectors of length 4 into four different groups. Use suitable
values for the initial weights and for the learning rate parameter.
Use a 4-unit input and 4-unit output network. Select random
initial weights in the range [O, 11.
(Hint: Write a program to implement the learning law.)

Chapter 2

Activation and Synaptic
Dynamics

2.1 Introduction

An artificial neural network consists of several processing units (or
artificial neurons) interconnected in a predetermined manner to
accomplish a desired pattern recognition task. In the previous chapter
we have seen some models of neurons and some basic topologies,
using which it is possible to build complex structures. However, the
structure of an artificial neural network is not useful, unless the rules
governing the changes of the activation values and connection weight
values are also specified. These rules are implied or specified in the
activation and synaptic dynamics equations governing the behaviour
of the network structure to accomplish the desired task.

In a neural network with N processing units, the set of activation
values of the units at any given instant defines the activation state of
the network. Typically, a problem is specified by a point in the
activation state space. The trajectory of the activation states, leading
to a solution state, reflects the dynamics of the network. The
trajectory depends upon the activation dynamics built into the
network. The activation dynamics is prescribed by a set of equations,
which can be used to determine the activation state of the network
at the next instant, given the activation state at the current instant.

For a given input data, the weights of the connecting links in a
network are adjusted to enable the network to learn the pattern in
the given input data. The set of weight values of all the links in a
network at any given instant defines the weight state, which can be
viewed as a point in the weight space. The trajectory of the weight
states in the weight space is determined by the synaptic dynamics of
the network.

A network is led to one of its steady activation states by the
activation dynamics and the input pattern. Since the steady activation
state depends on the input pattern, it is referred to as short term
memory. The state will change if the input pattern changes. On the

Introduction 41

other hand, the steady weight state of a network is determined by
the synaptic dynamics for a given set of training inputs, and it does
not change. Hence this steady weight state is referred to as long term
memory.

Activation dynamics relates to the fluctuations a t the neuronal
level in a biological neural network. Typically, these fluctuations take
place in average intervals of the order of a few milliseconds. Thus
the neuronal level dynamics is signific&tly fastef than the dynamics
at the synaptic level, where significant changes in the synaptic
weights take place at intervals of the order of a few seconds.
Therefore, it can be assumed that during activation dynamics the
synaptic weights do not change significantly, i.e., the weights can be
assumed to be constants of the network.

The objective of this chapter is to discuss models for activation
and synaptic dynamics. We must distinguish two situations here.
Models of neural networks normally refer to the mathematical
representation of our understanding and observed behaviour of the
biological neural network. The purpose in this case is to capture the
knowledge by the model. The model is not intended for detailed
analysis of the network. Therefore a model of the neural network
could be very complex, involving first and higher order derivatives of
activations and weights, as well as several nonlinear interactions. In
contrast, the purpose of neural network models is to provide a
representation for the dynamics of an artificial network, incorporating
features inspired by our understanding of the operation of the
biological neural network. In other words, the neural network model
is a mathematical model for analysis of gross characteristics of an
artificial network. Typically, these models are described by an
expression for the first order time derivative of the activation state
for activation dynamics and an expression for the first order time
derivative of the weight state for synaptic dynamics. These
expressions are usually simple enough (although nonlinear) to enable
us to predict the global characteristics of the network. An expression
for the first derivative may contain time parameter explicitly, in
which case such systems become nonautonomous dynamical systems.
If the expression does not contain the time parameter explicitly, then
the systems become autonomous dynamical systems, which are
relatively easier to analyze. Throughout this chapter we use the terms
models of neural networks and neural network models inter-
changeably, although they refer to the autonomous dynarnical system
models represented by an expression for the first derivative of the
activation value of each unit in the network.

We discuss activation dynamics and synaptic dynamics,
separately. The discussion on the activation and synaptic dynamics
is adapted from [Kosko, 19921. In Section 2.2 on the activation
dynamics models we consider . the additive, shunting (or

42 Activation and Synaptic Dynamics

multiplicative) and stochastic models. We also discuss the equilibrium
states of the networks with a specified activation dynamics. Since
synaptic dynamics models lead to learning laws, in Section 2.3 we
first consider the requirements of the learning laws for effective
implementation. In this section we also discuss the distinction
between the activation and synaptic dynamics models. In Section 2.4
several categories of learning are discussed, which include Hebbian,
competitive, error correcting and stochastic learning. A brief
discussion is included on the equilibrium of synaptic dynamics. In
Section 2.5 we discuss the issues of stability and convergence in
activation and synaptic dynamics, respectively. We shall review the
general stability theorems and discuss briefly the issues of global and
structural stability in neural networks. In Section 2.6 we discuss
methods for neural network recall for both feedforward and feedback
networks. In the final section we provide a brief summary of the
issues discussed in this chapter.

2.2 Activation Dynamics Models

2.2.1 Issues in the Development of Activation Dynamics Models

Activation dynamics is described by the first derivative of the
activation value of a neuron [Kosko, 19921. For the ith neuron, it is
expressed as

where h(.) is a function of the activation state and synaptic weights
of the network. Let us consider a network of N interconnected
processing units, where the variables and constants of each unit are
shown in Figure 2.1. The activation value is generally associated with

Input Weights ~ctivation Output
value signal

Summing Output
part function

Figure 2.1 A typical processing unit i with associated parameters.

the cell membrane potential. The output function fl.) determines the
output signal generated at the axon hillock due to a given membrane
potential. This function bounds the output signal, and it is normally

Activation Dynamics Models 43

a nondecreasing function of the activation value. Thus the output is
bounded as shown in Figure 2.2a for a typical output function.
Although the activation value is shown to have a large range, in
practice the membrane potential has to be bounded due to limitation
of the current carrying capacity of a membrane. Thus there is a limit
to the operating range of a processing unit, which corresponds to the
difference between the maximum and minimum activation values.

The input values to a processing unit coming from external
sources, especially through sensory inputs, may have a large dynamic
range, as for example, the reflections &om an object in a dim light
and the same in a bright light. Thus the dynamic range of the
external input values could be vely large, and usually not in our
control. If the neuron is made sensitive to smaller values of inputs,
as in Figure 2.2b, its output signal will saturate for large input
values, i.e., for x > x, in the figure. Moreover, even a noisy input
could produce some output signal, which is not desirable. On the
other hand, if the neuron is made sensitive to large values of the
input by making the threshold 8 large, as in Figure 2.2c, its activation
value becomes insensitive to small values of the input. This is the
familiar noise-saturation dilemma [Grossberg, 19821. The problem is
how a neuron with limited operating range for the activation values
can be made sensitive to nearly unlimited range of the input values.

Figure 2.2 Output functions for three different bias values (8).

44 Activation and Synaptic Dynamics

The input to a processing unit may come from the outputs of the
other neurons connected to it through synaptic weights, or from an
external source such as a sensory input. Both of these types of inputs
may have excitatory components which tend to increase the activation
of the unit, or inhibitory components which tend to decrease the
activation of the unit. The input, the activation value and the output
could fall into one or more of the following categories of data
depending on the nature of the external input and the nature of the
output function: deterministic or stochastic, crisp or fuzzy and discrete
or continuous.

In developing models for activation dynamics, i t is necessary to
take into account the known behaviour from the studies on biological
neuronal dynamics, but a t the same time, the models must be
tractable for analysis to examine the global behaviour of a network
consisting of a large number of interconnecting processing units. In
particular, the model should be such that it should be possible to
study the behaviour of the equilibrium states of the network to
determine whether the network is globally and structurally stable.
Structural stability refers to the state equilibrium situation where
small perturbations of the state around the equilibrium brings the
network back to the equilibrium state. This depends on the behaviour
of the network in the neighbourhood of the equilibrium state, which
in turn depends on the activation dynamics and the connection
weights of the network. The model also should be able to learn (adjust
the weights) while satisfymg the requirements of storage capacity
and stability characteristics. Global stability refers to the state equili-
brium condition when both the synaptic and activation dynamics are
simultaneously used. In the following discussion we will assume that
the weights do not change while examining the activation dynamics.

We discuss models for activation dynamics starting from simple
additive models and then moving to more general shunting or
multiplicative models. Initially, we consider only the deterministic
models and then extend the models to stochastic versions. We also
provide a discussion on the equilibrium behaviour for different models
of the network. It should be noted that each model takes into account
a few features of the neuronal dynamics, which may be relevant for
a particularllimited application.

2.2.2 Additive Activation Models

As mentioned before, the activation value xi of the ith neuron can be
interpreted as the cell membrane potential, and i t is a function of
time, i.e., xi = xi(t). The activation models are described by an
expression for the first derivative of the activation value of a neuron.
Thus xi(t) gives the rate of change of the activation value of the ith
neuron of a neural network.

Activation Dynamics Models 45

For the simplest case of a passive decay situation,

where Ai (> 0) is a constant for the membrane and can be interpreted
as the passive decay rate. The solution of this equation is given by

In electrical circuit analogy, Ai can be interpreted as membrane
conductance, which is inverse of the membrane resistance (Ri). The
initial value of xi is xi(0). The steady state value of xi is given by
xi(-) = 0, which is also called the resting potential.

The passive decay time constant is altered by the membrane
capacitance C, which can also be viewed as a time scaling parameter.
With Ci, the passive decay model is given by

and the solution is given by

Without loss of generality, we can assume Ci = 1 throughout the
following discussion. If we assume a nonzero resting potential, then
the activation model can be expressed by adding a constant Pi to the
passive decay term as

xi(t) = - Ai xi(t) + Pi, (2.6)

whose solution is given by

The steady state activation value is given by xi(-) = PjAi, the resting
potential.

Assuming the resting potential to be zero (Pi = 0), if there is a
constant external excitatory input Ii, then the additive activation
model is given by

Xi(t) = - A, xi(t) + Bi Ii, (2.8)

where Bi (> 0) is the weight given to Ii. The solution of this equation
is given by

Bi Ii
xi@) = xi@) e-Af + --- (1 - e-Af)

4 (2.9)

The steady state activation value is given by xi(-) = B,Ii/Ai, which
shows that the activation value directly depends on the external
input, and thus it is unbounded.

46 Activation and Synaptic Dynamics

In addition to the external input, if there is an input from the
outputs of the units, then the model becomes an additive '

autoassociative model, and is given by

j= 1

where 64.) is the output function of the jth unit. For inhibitory
feedback connections or for inhibitory external input, the equations
will be similar to the above except for the signs of the second and
third terms in the above equation. The classical neural circuit
described by Perkel is a special case of the additive autoassociative
model, and is given by [Perkel et al, 19811

where R, is the resistance between the neurons i and j, and

Perkel's model assumes a linear output function f(z) = x, thus
resulting in a signal which is unbounded. If the output function
f(z) is strictly an increasing but bounded function, as in Figure 2.2,
and the connection weights are symmetric, i.e., wii = wji, then the
resulting model is called Hopfield model [Hopfield, 19821. The
Hopfield model belongs to the class of feedback neural network
models,' called autoassociative memory, that are globally stable. We
will discuss further on this point in a later section.

A network consisting of two layers of processing units, where each
unit in one layer (say layer 1) is connected to every unit in the other
layer (say layer 2) and vice versa, is called a heteroassociative
network. The additive activation model for a heteroassociative
network is given by

N
ii(t) = - A, xi(t) + C fj(yj(t)) vii + I, , i = 1, 2, ,,,, M

j=l

where Ii and 4 are the net external inputs to the units i and j,
respectively. Note that Ai and A(.) could be different for each unit and

Activation Dynamics Models 47

for each layer. In the above equations V = [vii] is the matrix of
weights from the units in the layer 2 to the units in the layer 1, and
W = [wjil is the matrix of weights from the units in the layer 1 to
the units in the layer 2. These are coupled first order differential
equations. Under special conditions, such as the weights in both the
directions being identical, i.e., W = p, and the output function being
bounded, the resulting hetroassociative model reduces to a
bidirectional associative memory [Kosko, 19881. Analogous to the
Hopfield autoassociative memory, the bidirectional associative
memory can also be proved to be globally stable. Table 2.1 gives a
summary of the development of activation dynamics models discussed
in this section.

Table 2.1 Summary of Development of Additive Activation Dynamics
Models

General form:
xi(t) = h(.), i = 1 , 2 ,..., N

Passive decay term:
Ci xi(t) = -Ai xi(t),

where Ai is the membrane conductance and Ci is the membrane
capacitance
Nonzero resting potential (PiIAi):

With external input (BJi):

where Bi is a positive constant
Additive autoassociative model:

j = 1

Perkel's model:

Hetroassociative model:

Bidirectional associative memory:

48 Activation and Synaptic Dynamics

2.2.3 Shunting Activation Models

Grossberg has proposed a shunting activation model to restrict the
range of the activation values to a specified operating range irrespec-
tive of the dynamic range of the external inputs [Grossberg, 1982;
Grossberg, 19881. We will first consider the saturation model, where
the activation value is bounded to an upper limit. For an excitatory
external input Ii, the shunting activation model is given by

xi(t) = - Ai xi(t) + [Bi - xi(t)] Ii (2.14)

The steady state activation value is obtained by setting xi(t) = 0, and
solving for xi. The result is

As the input Ii + m, then xi(=) + Bi. That is, the steady state value
of xi saturates at Bi. In other words, if the initial value xi(0) I Bi,
then xi(t) I Bi for all t. If the input value refers to an intensity of
reflected light Ii = pJ, where I is the background intensity value,
and p, is the fraction of the background intensity that is input to the
ith unit, then the above saturation model is insensitive to pi for large
background intensities.

In order to make the steady state activation value sensitive to
reflectance, irrespective of the background intensity, Grossberg
suggested an on-centre off-surround shunting activation model by
providing inhibitory inputs from other input elements to the ith unit
along with the excitatory input from the ith input element to ith unit
as shown in Figure 2.3. Throughout the following discussion we

Processing units

11 1 3 Ii 1 Input intensities
Figure 2.3 An on-center and off-surround configuration for shunting

activation model.
assume a hard-limiting threshold function for the output function.
That is, fix) = 0, for x I 0 and, fix) = 1, for x > 0. Assuming
N
X Ii = I and Ii = piI, for convenience, the shunting activation model

i = l

with on-centre off-surround configuration is given by

Activation Dynamics Models 49

The steady state activation value is obtained by setting xi(t) = 0, and
is given by

From this we can see that, even if Ii + =, as I + =, the steady
state activation value xi(=) does not saturate. Instead, xi(-) will still
be sensitive to pi, the input reflection. It can be seen that, since
pi < 1, the steady activation value is always less than Bi, the
saturation limit, i.e., xi(t) < Bi for all t.

In order to make a unit insensitive to small positive inputs, may
be due to noise, the shunting activation model can be modified to
incorporate a lower limit (< 0) to the activation value. The following
is the resulting model:

The steady state activation value is obtained by setting xi(t) = 0, and
is given by

Note that xi(=) + pi (Bi + Ei) - Ei as I + =. This steady state
activation value is negative as long as the input reflectance value to
the ith unit, pi < EiI(Bi + Ei). In that case the output signal of the
unit will be zero, since we assume that fix) = 0, for x 5 0. That is,
the ith processing unit will be sensitive to the input only if its input
reflectance value is above a threshold. Thus it is possible to make
the unit insensitive to random noise input within a specified threshold
limit value. The above shunting activation model has therefore an
operating range of [- Ei, Bi] for the activation value, since the lowest
value for xi(-) = - Ei, which occurs when pi = 0.

A shunting activation model with excitatory feedback from the
same unit and inhibitory feedback from other units is given by

where Ji is the inhibitory component of the external input. Note that,
on the right hand side of Eq. (2.20) xi(t) is replaced by xi for
convenience. The inhibitory sign is taken out of the weights wy, and

50 Activation and Synaptic Dynamics

hence wu > 0. The shunting model of (2.20) is a special case of
Hodgkin-Huxley membrane equations [Hodgkin and Huxley, 19521.

Equation (2.20) can be written in the most general form as

xi@) = - A, xi + (B, - Ci x,) [I, +f;.(~,)]

where all the constants are positive. The first term' oh the right hand
side corresponds to the passive decay tenh, the second term
corresponds to the excitatory term and the third term corresponds to
the inhibitory term. If we consider the excitatory term
(B, - C, x,) [Iz + f,(x,)l, it shows the contribution of the excitatory
(external and feedback) input in increasing the activation value
(x,(t)) of the input. If C, = 0, then the contribution of this input
reduces to an additive effect, as in the additive activation model. 'If
C, > 0, then the contribution of the excitatory input reduces to zero
when the activation x,(t) = B,IC,. This can be viewed as shunting
effect in an equivalent electrical circuit, and hence the name shunting
activation model. If the initial value x,(O) 5 B/C,, then the model
ensures that x,(t) I BjC,, for all t > 0, thus showing the boundedness
of the activation value within an upper limit. This can be proved by
the following argument: If x,(t) > BjC,, then the second term becomes
negative, since we assume that f(x) = 1, for all x > 0 and I, > 0.
Since the contribution due to the inhibitory third term is negative, if
the excitatory second term is also negative, then the steady activation
value, obtained by setting x,(t) = 0, will be negative. Thus there is a
contradiction, since we started with the assumption that
x,(t) > B,IC,, which is positive. Hence x,(t) < B/C, for all t.

Likewise, the inhibitory term (E, + D, xi) [J, +jzi fi(x,) W B] shows

the contribution of the inhibitory (external and feedback) input in
decreasing the activation value xi(t) of the unit. In this case, if
Di = 0, then the contribution of this input reduces to an additive effect,
as in the additive activation model. If Di > 0, then the contribution
of the inhibitory input reduces to zero when the activation
xi(t) = - EilDi . This can be viewed as a shunting effect in an
equivalent electrical circuit. If the initial value xi(0) 2 - E{Di , then
the model ensures that xi(t) 2 - EjDi , for all t > 0. This can be proved
by the following argument: For xi(t) < - EilDi, the contribution of the
inhibitory third term will be positive, since fix) > 0, for all x. Since
the excitatory second term is always positive, the steady state
activation value obtained by setting xi (t) = 0 is always positive. But
we assumed that xi(t) < - EjDi, which is negative. Thus there is a
contradiction. Hence xi(t) 2 - E{Di. Table 2.2 gives a summary of

Activation Dynamics Models 51

the development of shunting activation models discussed in this
section.

Table 2.2 Summary of Development of Shunting Activation Dynamics
Models

Goal: To keep the operating range of activation value to a specified range
General form:

Saturation model: To restrict to an upper limit

On-centre off-surround configuration: To make it sensitive to changes in
the external input

i i (t) = -Ai xi(t) + [B, - x,(t)l Zi - xi(t) x I j
j # i

Setting noise limit:

i i (t) = -Ai x,(t) + [Bi - xi(t)l Ii - [Ei + xi(t)l x Zj
j t i

With excitatory feedback from the same unit and inhibitory feedback
from other units:

i i (t) = -A, xi + (B, - xi) [I, + fi(xi)l - (Ei +xi) J, + fj(xj) wij I j * i I
2.2.4 Stochastic Models

The activation models considered so far are deterministic models. In
practice, the inputloutput patterns and the activation values may be
considered as sample functions of random processes. The output
signal of each processing unit may be a random function of the unit's
activation value. In such cases the network activation state and
output signal state can be viewed as vector stochastic processes. Each
unit in turn behaves as a scalar stochastic process.

Stochastic activation models are represented in a simplified
fashion by adding an additional noise component to the right side of
the expression for xi(t) for each of the deterministic activation models.
The probability distribution of the noise component is assumed for
analyzing the vector stochastic processes of the activation states. In
particular, in stochastic equilibrium, the activation state vector
hovers in a random fashion about a fixed (deterministic) equilibrium
state, representing the average.

2.2.5 Discussion on Equilibrium

Normally the term equilibrium is used to denote the state of a
network at which the network settles when small perturbations are

52 Activation and Synaptic Dynamics

made to the state. In the deterministic models, the equilibrium states
are also steady states. Hence these states satisfy the equations
xi(t) = 0, for i = 1,2, ..., N. Note that xi(t) = 0 is a necessary
condition for a state to be an equilibrium state, but not a sufficient
condition. In stochastic models, the equilibrium states are defined by
the equations xi(t) = ni(t), for i = 1, 2, ..., N, where ni(t) is the
additive noise process. Note that in both the deterministic and
stochastic models the transient due to the passive decay term is
absent in the equilibrium state.

Equilibrium of a network depends on several other factors also
besides the activation models. The most important among these is
the update of the state change at each stage. The update could be
synchronous, which means that the update of all the units is done
at the same time. On the other hand, in an asynchronous update the
change of state of any one unit changes the overall state of the
network. Another factor is that the state update could be
deterministic or stochastic. The equilibrium behaviour also depends
on whether we are adopting a continuous time update or a discrete
time update. A major issue in the study of equilibrium behaviour of
a network is the speed at which the feedback signals from other units
are received by the current unit.

2.3 Synaptic Dynamics Models

2.3.1 Learning

Synaptic dynamics is attributed to learning in a biological neural
network. The synaptic weights are adjusted to learn the pattern
information in the input samples. Typically, learning is a slow
process, and the samples containing a pattern may have to be
presented to the network several times before the pattern information
is captured by the weights of the network. A large number of samples
are normally needed for the network to learn the pattern implicit in
the samples. Pattern information is distributed across all the weights,
and it is difficult to relate the weights directly to the training samples.
The only way to demonstrate the evidence of learning pattern
information is that, given another sample from the same pattern
source, the network would classify the new sample into the pattern
class of the earlier trained samples. Another interesting feature of
learning is that the pattern information is slowly acquired by the
network from the training samples, and the training samples
themselves are never stored in the network. That is why we say that
we learn from examples, not store the examples themselves.

The adjustment of the synaptic weights is represented by a set
of learning equations, which describe the synaptic dynamics of the
network. The learning equation describing a synaptic dynamics model

Synaptic Dynamics Models 53

is given as an expression for the first derivative of the synaptic weight
wi,. connecting the unit j to the unit i. The set of equations for all the
weights in the network determine the trajectory of the weight states
in the weight space from a given initial weight state.

Learning laws refer to the specific manners in which the learning
equations are implemented. Depending on the synaptic dynamics
model and the manner of implementation, several learning laws have
been proposed in the literature. The following are some of the
requirements of the learning laws for effective implementation:

Requirements of learning laws:

(a) The learning law should lead to convergence of weights.

(b) The learning or training time for capturing the pattern
information fiom samples should be as small as possible.

(c) An on-line learning is preferable to an off-line learning. That
is, the weights should be adjusted on presentation of each sample
containing the pattern information.

(d) Learning should use only the local information as far as
possible. That is, the change in the weight on a connecting link
between two units should depend on the states of these two units
only. In such a case, it is possible to implement the learning law in
parallel for all the weights, thus speeding up the learning process.

(el Learning should be able to capture complex nonlinear
mapping between input-output pattern pairs, as well as between
adjacent patterns in a temporal sequence of patterns.

(0 Learning should be able to capture as many patterns as
possible into the network. That is, the pattern information storage
capacity should be as large as possible for a given network.

Categories of learning: Learning can be viewed as searching
through the weight space in a systematic manner to determine the
weight vector that leads to an optimum (minimum or maximum)
value of an objective function. The search depends on the criterion
used for learning. There are several criteria which include minimiza-
tion of mean squared error, relative entropy, maximum likelihood,
gradient descent, etc. [Hassoun, 19951. There are several learning
laws in use, and new laws are being proposed to suit a given applica-
tion and architecture. Some of these will be discussed at appropriate
places throughout the book, but there are some general categories
that these laws fall into, based on the characteristics they are
expected to possess. In the first place, the learning or weight
adjustment could be supervised or unsupervised. In supervised
learning the weight adjustment is determined based on the deviation

54 Activation and Synaptic Dynamics

of the desired output from the actual output. Supervised learning
may be used for structural learning or for temporal learning.
Structural learning is concerned with capturing in the weights the
relationship between the given input-output pattern pairs. Temporal
learning is concerned with capturing in the weights the relationship
between neighbouring patterns in a sequence of patterns.

Unsupervised learning discovers features in a given set of
patterns, and organizes the patterns accordingly. There is no exter-
nally specified desired output in this case. Unsupervised learning uses
mostly local information to update the weights. The local information
consists of signal or activation values of the units at either end of
the connection for which the weight update is being made.

Learning methods may be off-line or on-line. In an off-line
learning all the given patterns are used together to determine the
weights. On the other hand, in an on-line learning the information
in each new pattern is incorporated into the network by incrementally
adjusting the weights. Thus an on-line learning allows the neural
network to update the information continuously. However, an off-line
learning provides solutions better than an on-line learning since the
information is extracted using all the training samples in the case of
off-line learning.

In practice, the training patterns can be considered as samples
of random processes. Accordingly, the activation and output states
could also be considered as samples of random processes. Randomness
in the output state could also result if the output function is
implemented in a probabilistic manner rather than in a deterministic
manner. These input, activation and output variables may also be
viewed as fuzzy quantities instead of crisp quantities. Thus we can
view the learning process as deterministic or stochastic or fuzzy or a
combination of these characteristics.

Finally, in the implementation of the learning methods the
variables may be discrete or continuous. Likewise the update of
weight values may be in discrete steps or in continuous time. All
these factors influence not only the convergence of weights, but also
the ability of the network to learn from the training samples.

2.3.2 Distinction between Activation and Synaptic Dynamics
Models

In order to appreciate the issues in evolving and implementing
learning, it is necessary to clearly understand the distinction between
the functions of the activation and synaptic dynamics models. This
is discussed in this section. Both activation dynamics and synaptic
dynamics models are expressed in terms of expressions for the first
derivatives of the activation value of each unit and the strength of
the connection between the ith unit and the jth unit, respectively.
However, the purpose of invoking activation dynamics model is to

Synaptic Dynamics Models 55

determine the equilibrium state that the network would reach for a
given input. In this case, the input to the network is fixed throughout
the dynamics. The dynamics model may have terms corresponding to
passive decay, excitatory input (external and feedback) and inhibitory
input (external and feedback). The passive decay term contributes to
transients, which may eventually die, leaving only the steady state
part. The transient part is due to the components representing the
capacitance and resistance of the cell membrane. The steady
state activation equations can be obtained by setting xi(t) = 0,
i = 1,2, ..., N. This results in a set of N coupled nonlinear equations,
the solution of which will give the steady activation state as a function
of time. This assumes that the transients decay faster than the
signals coming from feedback, and the feedback signals do not
produce any transients. I t is in the movement of the steady activation
state that we would be interested in the study of activation dynamics.
Note that even a single unit network without feedback may have
transient and steady parts, and the steady part in this case describes
the stable state also. But in a network with feedback fiom other units,
the steady activation states may eventually reach an equilibrium or
a stable state, provided the conditions for the existence of stable
states are satisfied by the parameters (especially the weights) in the
activation dynamics model. Thus, in these cases we are not interested
in the transient part of the solutions. We are only interested in the
equilibrium stable states reached by the steady state activation values
for a given input. The equilibrium states (x) correspond to the
locations of the minima of the Lyapunov energy function V(x), and
are given by dV(x(t))ldt = 0, whereas the steady states are given by
x(t) = 0, where x(t) is the activation vector with components x,(t),
i = 1,2, ..., N. The equilibrium behaviour of the activation state of a
neural network will be discussed in detail in Section 2.5.

The case of synaptic dynamics model is different from the activa-
tion dynamics model. The objective in synaptic dynamics is to capture
the pattern information in the examples by incrementally adjusting
the weights. Here the weights change due to input. If there is no
input, the weights also do not change. Note that providing the same
input at another instant again causes the weights to change, as it
can be viewed as a sample given for further reinforcement of the
weights. If the model contains a passive decay term in addition to
the terms due to the varying external input, the network not only
learns continuously, but also forgets what it had learnt initially. In
discrete implementation, i.e., determining the weight change a t each
discrete time step, suitable assumptions are made regarding the
contribution of the initial weight state and also the contributions due
to the samples given in the past. As an example, let us consider the
following synaptic dynamics model, consisting of a passive decay term
and a correlation term:

Activation and Synaptic Dynamics

wii(t) = - wii(t) + f;.(xi(t)) f;(3CJ(t)) (2.22)

The solution to the equation is given by
t

wV(t) = ~ ~ (0) e f + it I f;.(xi(r)) t;(x,(r)) eT dr , (2.23)
0

where wy(0) is a constant initial value of the weight. The above
solution shows that the weight accumulates the correlation of the
output signals, i.e., fi(xi(t))fi(xj(t)). Note that the activation values
xi(t) and xj(t) depend on the external input given in the form of
samples, continuous in time in this case. This is because the
activation dynamics depends on the external input besides the
network parameters like membrane capacitance and the connection
topology like feedback. The activation values considered here are
steady and stable, since it is assumed that the transients due to
membrane parameters like capacitances have decayed down, and the
steady activation state of the network has reached the stable state.
This assumption is reasonable, since the adjustment of synaptic
weights takes place at a much slower rate compared to the changes
in the activation states.

The initial weight wii(0) can be viewed as a priori knowledge. The
term wy(0) e" can be considered as a forgetting term. As t + m, the
contribution due to this term to the weight will be zero, i.e., the
system would not remember the knowledge in the network at
t = 0 . The second term reflects recency effect. It shows the
accumulation of the correlation term with time. There is an
exponential weightage to this accumulation, which shows that recent
correlation value is given more weight than the correlation values in
the past. As mentioned above, these correlations depend on the input
samples. The weights are expected to capture the patterns in the
input samples as determined by the synaptic dynamics model.

Most of the time the learning laws ignore the passive decay term.
Then the initial weight w..(O) receives importance as can be seen
below fmm the solution ot the equation without the passive decay
term. Let

wG(t) = f;.(xi(t)> fi(xj(t)) (2.24)

The solution is given by
t

ws(t) = ~ ~ (0) + j- ff(xi(7)) fi(x,(~)) d7 (2.25)
0

Note that the recency effect also disappears, once the passive decay
term is absent. That is, there is no exponential weighting on the
accumulation of the correlation term.

In discrete-time implementation, the integral is replaced by

Learning Methods 57

summation of the correlation terms, where each term is due to the
application of one sample input pattern. That is

t

ub(t) = ~ ~ (0) ' + C fi(xi(7)) 6(xj(7)) (2.26)
.r= 1

The initial weight at time t = 0 also influences the weight at any
instant t . It does not decay with time. The change in the weight due
to an input pattern at the time instant t is given by

In summary, the distinction between the activation dynamics and
synaptic dynamics models is highlighted by the following statements:
For activation dynamics our interest is in the equilibrium states (x)
given by V(x(t)) = 0, which in turn uses the solution of equations for
the steady activation states given by x(t) = 0, i.e., xi(t) = 0, for
i = 1,2, ..., N. For synaptic dynamics, on the other hand, learning
takes place when wii(t) + 0.

2.4 Learning Methods
There are several methods of learning. For the purpose of discussion,
the learning methods are organized into different groups. Table 2.3
gives a summary of the learning methods discussed in this section.
The table also lists the categories of learning discussed in Section 2.3.1.

Table 2.3 Summaly of Learning Methods
-

1. Categories of learning

Supervised, reinforcement and unsupervised
Off-line and on-line
Deterministic, stochastic and fuzzy
Discrete and continuous

' Criteria for learning

2. Hebbian learning

Basic Hebbian learning
Differential Hebbian learning
Stochastic versions

3. Competitive learning-leaniing without a teacher

Linear competitive learning
Differential competitive learning
Linear differential competitive learning
Stochastic versions

58 Activation and Synaptic Dynamics

Table 2.3 Summary of Learning Methods (Cont.)

4. Error correction learning-learning with a teacher
Perceptron learning
Delta learning
LMS learning

5. Reinforcement learning-learning with a critic
Fixed credit assignment
Probabilistic credit assignment
Temporal credit assignment

6. Stochastic learning
In multilayer perceptron
In Roltzmann machine

7. Other learning methods
Sparse coding
Min-max learning
Principal component learning
Drive-reinforcement learning

Details of implementation of some learning methods will be discussed
at appropriate contexts in the later chapters.

2.4.1 Hebbian Learning

The basis for the class of Hebbian learning is that the changes in
the synaptic strength is proportional to the correlation between the
firing of the post- and pre-synaptic neurons [Hebb, 19491. Figure 2.4

Figure 2.4 Topology for Hebbian learning, where i and j represent processing
units.

shows the topology for Hebbian learning [Simpson, 19901. The
synaptic dynamics equation is given by a decay term (- wii(t)) and a
correlation term (si sj) as

w Y . .(t) = - wy(t) + sisj (2.28)

where sisj is the product of the post-synaptic and pre-synaptic
neuronal variables for the ith unit. These variables could be activation
values (sisj = xi(t) x,(t)), or an activation value and an external input
(sisj = xi (t) a, (t)) , or an output signal and an external input (sisj =
f i (xi (t)) a, (t)) , or output signals from two units (sisj = f i (xi (t))
fi (x, (t))) , or some other parameters related to the post-synaptic and
pre-synaptic activity. If si and sj represent variables which are
deviations from their respective mean values (Zi, Zj) , then the resulting

Learning Methods 59

correlation term (si - ifi) (sj - Sj) is called covariance correlation term.
Throught our discussion we will assume that si = si(t) = fi(xi(t)) and
sj = sJ{t) = 6{xj(t)), unless otherwise specified.

The solution of Eq. (2.28) is given by

where wb{O) is the initial value of the weight at time t = .O. The,first
term shows that the past knowledge will decay exponentially to zero,
which is equivalent to forgetting. The second term corresponds to
correlation encoding with fading memory due to the exponential
weight factor in the integral term. The Hebbian learning thus
accumulates the correlation terms, giving more weightage to the
recent terms.

Some variations of the Hebbian learning are as follows [Simpson,
19901:

- -
w,(t) = - w&t) + (si - si) (sj - sj) [Sejnowski, 19771 (2.30)

w,(t) = - w,(t) + (si - Si) sj [Sutton and Barto, 19811 (2.31)

w,(t) = - w,(t) + w,(t) sisj [Cheung and Omidvar, 19881 (2.32)

The stochastic version of the Hebbian learning given in Eq. (2.28)
is approximated to the following stochastic differential equation:

where {nb{t)) is assumed to be a zero-mean Gaussian white noise
process [Papoulis, 19911, independent of the signal process - wdt)
+ sisj.

Synaptic equilibrium in the deterministic case is given by the
steady state condition:

That is, there is no further change of weights. In the stochastic case,
the weights reach stochastic equilibrium when the weight changes
are only due to the noise component. That is

In these cases the synaptic processes fluctuate randomly at stochastic
equilibrium as the weights approach the asymptotic values. Note that
the stochastic equilibrium corresponds to the deterministic equilib-
rium on the average. That is the average or expectation
E[w,(t)l = 0, for all t aRer wii reaches equilibrium.

60 Activation and Synaptic Dynamics

2.4.2 Differential Hebbian Learning

The deterministic differential Hebbian learning is described by

wy(t) = - wy(t) + sisj + 8.8. I J (2.36)

or in a simpler classical version, it is given by [Klopf, 19861
. .

w,(t) = - wy(t) + sisj (2.37)

That is, the differential equation consists of a passive decay term
- wy(t) and a correlation term si sj, which is a result of the changes
in the post- and pre-synaptic neuronal activations.

The stochastic versions of these laws are approximated by adding
a noise term to the right hand side of these differential Hebbian
learning equations.

2.4.3 Competftive Learning

Learning laws which modulate the difference between the output
signal and the synaptic weight belong to the category of competitive
learning. The general form of competitive learning is given by the
following expression for the synaptic dynamics [Grossberg, 19691:

where, si = fi(xi(t)) is the output signal of the unit i, and sj =
fi{xj(t)) is the output signal of the unit j. This is also called the
deterministic competitive learning law. It can be written as

w . .(t) = - si wy(t) ,+ sip, v (2.39)

The above expression is similar to the deterministic Hebbian learning
(see Eq. (2.28)), except that the forgetting term (-si wii(t)), is
nonlinear in this case, whereas it was linear in the Hebbian case.
Here learning or adjustment of weights takes place only when there
is a nonzero post-synaptic signal (si). If si = 0, then the synaptic
weights do not change. It is also interesting to note that, unlike in
the Hebbian case, in the competitive learning case the system does
not forget the past learning when the post-synaptic signal is zero. In
the Hebbian case, for si = 0, wy(t) = - wij(t), which results in
forgetting the knowledge already acquired.

The competitive learning works in a situation where an external
input is presented to an input layer of units and these units feed
signals to each of the units in the output layer. The signals from the
units in the output layer compete with each other, leaving eventually
one of the units (say i) as the winner. The weights leading to this
unit are adjusted according to the learning law. This is also called
the 'winner take-all' situation, since only one unit in the output layer
will have a nonzero output eventually. The corresponding weights wy

Learning Methods 61

from all the input units (j) are adjusted to match the input vector.
While the Hebbian learning is generally distributed, i.e., all the
weights are adjusted for every input pattern, the competitive learning
is not distributed. In fact the input vectors leading to the same winning
unit in the competitive layer will produce a weight vector for that unit
which is an ave age of all the corresponding input vedom.

If the inputkyer units are linear, i.e., s, = x,, then the resulting
learning is called linear competitive learning, and is given by

The stochastic versions of the competitive learning are approximated
to the following stochastic differential equations [Kosko, 19921:

Random competitive learning

w,(t) = si [s, - wii(t)1 + no@)

Random linear competitive learning

w,(t) = si [xi - w"(t)I + n"(t)

where In&)) is assumed to be a zero-mean Gaussian white noise
process, independent of the signal process.

If the input space is partitioned into K different nonoverlapping
subspaces, Dl, Dz, ..., DK, i.e.,

Di n D, = 0, for i # j, (2.43)

then a reinforcement function for an input pattern a is defmed as

a = 1, if a E D, (2.44)

Using this reinforcement function, the following supervised learning
laws are defined:

Random supervised competitive learning

w v . .(t) = ri(a) s, [s, - wo(t)l + nii(t) (2.46)

Random supervised linear competitive learning

wU(t) = r,(a) si [xj - wii(t)] + n"(t) (2.47)

2.4.4 Differentla1 Competitive Learning

Differential competition means that learning takes place only if there
is a change in the post-synaptic neuronal activation. The
deterministic differential competitive learning is described by

wJt) = 8, [sj - wij(t)] (2.48)

62 Activation and Synaptic Dynamics

This combines the competitive learning and differential Hebbian
learning.

Linear differential competitive learning law is described by

w,(t) = si [x, - wir(t)] (2.49)

The stochastic versions of the above learning equations are obtained
by adding a noise term to the right hand side of these differential
competitive leaning equations.

Random differential competitive learning

Random linear differential competitive learning

2.4.5 Error Correction Learning

Error correction learning uses the error between the desired output
and the actual output for a given input pattern to adjust the weights.
These are supervised learning laws, as they depend on the availability
of the desired output for a given input. Let (a, b) be a sample of the
input-output pair of vectors for which a network has to be designed
by adjusting its weights so as to obtain minimum error between the
desired and actual outputs. Let E be the error function and E(E) be
the expected value of the error function for all the training data
consisting of several input-output pairs. Since the joint probability
density function of the pairs of random input-output vectors is not
known, it is not possible to obtain the desired expectation &[El.
Stochastic approximation estimates the expectation using the
obsemed random input-output pairs of vectors (a, b). These estimates
are used in a discrete approximation algorithm like a stochastic
gradient descent algorithm to adjust the weights of the network. This
type of adjustment may not always result in the optimum set of
weights, in the sense of minimizing &[El. It may result in some local
minima of the expected error function. Stochastic gradient descent
algorithms are discussed in detail in Chapter 4.

Most error correction learning methods use the instantaneous
error (b - b3 to adjust the weights, where b' is the actual output
vector of the network for the input vector a.

Rosenblatt's perceptron learning uses the instantaneous mis-
classification error to adjust the weights. It is given by

where bi is the desired output from the ith output unit for an input
pattern a = (al, a2, ..., aM), a, is the jth component of the input

Learning Methods 63

pattern to the ith unit, and q is a small positive learning constant.
Here si is the actual output of the ith unit given by
si = sgn (f: w" aj). Perceptron learning for a bipolar (* 1) output unit
produces an error value bi - si = f 2. Note that bi - si = 0 when there
is no error. Thus the discrete perceptron learning adjusts weights
only when there is misclassiiication.

The continuous perceptron learning uses a monotonically
increasing nonlinear output function f l .) for each unit. The weights
are adjusted so as to minimize the squared error between the desired
and actual output at every instant. The corresponding learning
equation is given by

M
where si = f;:(xi) and xi = , gl we ai. Continuous perceptron learning

is also called delta learning, and it can be generalized for a network
consisting of several layers of feedforward units. The resulting
learning method is called the generalized delta rule.

Widrow's least mean squared error (LMS) algorithm uses the
instantaneous squared error between the desired and the actual
output of a unit, assuming a linear output function for each unit, i.e.,
flx) = x. The corresponding learning equation is given by

w&t) = q (bi -x i) a, (2.54)

Note that in all of the above error correction learning methods, we
have assumed that the passive decay term to be zero. These methods
require that the learning constant (q) is made as small as possible,
and that the training samples are applied several times to the
network until the weights lead to a minimum error. As stated earlier,
the resulting weights may not correspond to a global minimum of the
expected error function.

2.4.6 Reinforcement Learning

In error correction learning the desired output for a given input is
known, and therefore the learning is based on the error between the
desired output and the actual output. This supervised learning is
called learning with teacher. On the other hand, there are many
situations where the desired output for a given input is not known.
Only the binary result that the output is right or wrong may be
available. This output is called reinforcement signal. This signal only
evaluates the output. The learning based on this evaluative signal is
called reinforcement learning [Sutton, 19921. Since this is evaluative
and not instructive, it is also called learning with critic as opposed
to learning with teacher in the supervised learning.

64 Activation and Synaptic Dynamics

The reinforcement learning can be viewed as a credit assignment
problem [Sutton, 19841. Depending on the reinforcement signal, the
credit or blame for the overall outcome is assigned to different units
or weights of the network. This is called structural credit assignment,
since it assigns credit to the internal structures of the system, whose
actions generated the outcome. On the other hand, if the credit is
assigned to the outcomes of series of actions based on the reinforce-
ment signal received for the overall outcome, it is called temporal
credit assignment. This happens for example in a game like chess,
where the reinforcement signal (win or lose) is received only after a
sequence of moves. The assignment of credit or blame in this case is
to each of the moves in the sequence that led to the final outcome.
The combined temporal and structural credit assignment problem is
also relevant in situations involving temporally extended distributed
learning systems [Williams, 1988; Williams, 19921.

The reinforcement signal can also be viewed as a feedback from
the environment which provides input to the network and observes
the output of the network. There are three types of reinforcement
learning depending on the nature of the environment. If the
reinforcement signal from the environment is the same for a given
input-output pair, and if it does not change with time, it is called a
fixed credit assignment problem. This is like supervised learning in
classification problems. On the other hand, if the given input-output
pair determines only the probability of positive reinforcement, then
the network can be viewed as operating in a stochastic environment.
In such a case it is called probabilistic credit assignment. Here the
probabilities are assumed stationary. In both the fixed and
probabilistic credit assignments the input patterns are chosen
randomly and independently by the environment. That is, the input
pattern does not depend on the past inputs or outputs. But in the
general case where the environment itself is changing, then both the
reinforcement signals and the input patterns may depend on the past
history of the network outputs. In such cases temporal credit
assignment is more appropriate.

The associative reward-penalty reinforcement learning by Barto
and Anandan is applicable for a processing unit with probabilistic
update (see Chapter 5), and is given by [Barto and Anandan, 19851

where (si) is the expected value of the output si for the ith unit, 71'
is the learning rate parameter for positive reinforcement (reward)
and 71- is the learning rate parameter for negative reinforcement
(penalty). Typically 71' >> 71- > 0. The term (1 - (s ~) ~) is a derivative
term, which can be ignored without affecting the general behaviour

Learning Methods 65

of this learning rule [Hassoun, 1995, p. 891. The above learning rule
is apfilicable for units in a single layer only. In a multilayer network
with hidden layer units, the error from the output layer units is
propagated back to adjust the weights leading to the hidden layer
units (see Chapter 4).

2.4.7 Stochastic Learning

Stochastic learning involves adjustment of weights of a neural
network in a probabilistic manner [Ackley et al, 19851. The
adjustment uses a probability law, which in turn depends on the
error. The error for a network is a positive scalar defined in terms
of the external input, desired output and the weights connecting the
units. In the learning process, a random weight change is made and
the resulting change in the error is determined. If the resulting error
is lower, then accept the random weight change. If the resulting error
is not lower, then accept the random weight change with a predecided
probability distribution. The acceptance of random change of weights
despite increase in the error from the network allows the network to
escape local minima in the search for the global minimum of the error
surface.

Boltzmann learning uses stochastic learning along with simulated
annealing to determine the weights of a feedback network to store a
given set of patterns [Ackley et al, 1985; Szu, 19861. Stochastic
learning is also used in determining the optimum weights of a
multilayer feedforward neural network to amve at a set of weight
values corresponding to the global minimum of the error surface,
since stochastic learning helps to overcome the local minima problem
Wasserman, 19881. However, all stochastic learning methods are
slow in convergence and hence are time consuming.

2.4.8 Other Learning Methods

Sparse encoding: If (a,, b,), I = 0, 1, 2, ..., L - 1 are the given set
of input-output binary vector pairs, then the sparse encoding learning
is given by the following logical OR and AND operations:

wU(I + 1) = (ay AND bli) OR w,(l) (2.56)

with ~ " (0) = 0. This type of learning is used to store information in
an associative memory [Steinbuch and Piske, 1963; Simpson, 19921.

Min-Max learning: This learning is used in the special case of
providing connections to each processing unit from an input unit, one
connection weight (vy) corresponds to the minimum of 'the inputs and
the other connection weight (w ~) corresponds to the maximum of the

66 Activation and Synaptic Dynamics

inputs. The weight adjustments are made as follows [Simpson, 19911:

vii(l + 1) = min (aG, ~ ~ (1)) (2.57)
and

wC(l + 1) = max (ao, ~ ~ (1)) (2.58)

with ~ ~ (0) = wii(0) = 0, where a~ is the jth component of the input
vector al. The minimum and maximum values are treated as bounds
for a given membership function, providing a mechanism to adjust and
analyze classes being formed in a neural network [Simpson, 19921.

Principal component learning: Principal components of a set of
input vectors are a minimal set of orthogonal vectors that span the
space of the covariance matrix of the input data. Once these basis
vectors are found, it is possible to express any vector as a linear
combination of these basis vectors. Oja's principal component learning
is given by [Oja, 19821:

where ami is the ith component of the given input vector, y(m) is the
actual output for the mth input vector. This learning extracts only
the first principal component, and the output function of the unit is
assumed to be linear. Note that the index m is used to indicate that
a given input vector can be presented several times, even though
there may be only a fixed number of vectors for training. The details
of principal component learning are discusssed in Chapter 6.

Drlve-reinforcement learning: This law is given by

where a (t - 2) is a decreasing function of time and A f indicates the
change in the output values of the units from the previous instant.
The change in the weight uses a weighted sum of the changes in the
past input values, multiplied by the current change in the output.
The pre-synaptic changes 4,(xj(t - 2)), 2 = 1,2, ..., t are referred to as
drives, and the post-synaptic change qi(xi(t)) as the reinforcement,
and hence the name drive-reinforcement learning. This learning law
was proposed for control applications due to its ability to optimize
temporal actions [Klopf, 19861.

2.4.9 Learning Functions

Learning laws are merely implementation methods for synaptic
dynamics models. Typically, a synaptic dynamics model is described

Learning Methods 67

in terms of expressions for the first derivative of the weights. They
are called learning equations. One general way of expressing the
learning feature in neural network studies is the following:

The change in the weight is proportional to the product of the
input a(t) and a learning function g(:), and it is given by [Zurada,
19921

wj(t) = V &wi(t), a(t), bi(t)) a(t) (2.61)
where,

q is the learning rate parameter
wi = (wil, wi2, ..., wiMIT is the weight vector for the ith unit with

components wii

wii is the weight on the link connecting the jth input unit to
the ith processing unit

a = (a,, a2, ..., aMIT is the input vector with components aj ,
j = 1, 2, ..., M

b = (bl, b,, ..., bN)T is the desired output vector with components
bi,i = 1 ,2 ,..., N

Input units are assumed linear. Hence a = x (activation) = s
(output). Output units are in general nonlinear. Hence si = f(wTa).

The function g(.) may be viewed as a learning function that
depends on the type of learning. The increment in the weight vector
in unit time interval is given by (see Eq. (2.27))

so that the weight at the time instant (t + 1) in terms of the weight
at the time instant t is given by

wi(t + 1) = w,(t) + Awi(t) (2.63)

There are different methods for implementing the learning feature of a
neural network, leading to several learning laws. The different basic
learning laws described in Section 1.6 differ in the expression for the
learning function. All these learning laws use only local information for
adjusting the weight of the connection between two units. The expression
for the learning function for each of the basic learning laws is given
below. The corresponding expression for the learning law is also given.

The learning function for Hebb's law is given by

where A.) is the output function. Therefore the change in the weight
is given by

Awi = ~$8) a = q si a (2.65)

where si is the output signal of the ith unit.

68 Activation and Synaptic Dynamics

In perceptron learning the learning function assumes the form
T g(.) = bi - si = bi - sgn(wi a) (2.66)

which is the difference between the desired output and the actual
output at the ith unit. The change in the weight is given by

Aw, = q [b, - sgn(w,'a)l a (2.67)

The learning function in delta learning law is given by

Therefore the resulting weight change is given by

Awi = q [b, - f(wTa)l f(wTa) a (2.69)

The learning function in Widrow and Hoff learning law is given by

T g(.) = [b, - wi a] = [b, -xi] (2.70)

Therefore the change in the weight is given by

Aw, = q [b, - wTa1 a

In correlation learning the learning function is given by

g(.) = bi (2.72)

and the weight change is given by

Aw, = q bi a (2.73)

2.5 Stability and Convergence

Stability refers to the equilibrium behaviour of the activation state
of a neural network, whereas convergence refers to the adjustment
behaviour of the weights during learning, which will eventually lead
to minimization of error between the desired and actual outputs. Thus
convergence is typically associated with supervised learning, although
it is relevant in all cases of learning, both supervised and unsuper-
vised. The objective of any learning law is that it should eventually
lead to a set of weights which will capture the pattern information
in the training set data.

In this section we will discuss the global behaviour of artificial
neural networks whose activation dynamics is described by the
following set of equations [Cohen and Grossberg, 19831:

where xi = xi(t) and the coefficients [cik] form a symmetric matrix.

Stability and Convergence 69

These equations represent a class of N-dimensional competitive
dynamical systems. All the previous activation models including the
general shunting activation model form special cases of this system.
In general, the activation state of the network starts from an initial
state and follows a trajectory dictated by the dynamics of the
equations. A network will be useful only if a trajectory leads
eventually to an equilibrium state at which point there is no further
change in the state. Such a state is also called a stable state, when
a small perturbation of the state settles to the same state. Different
initial states may follow different trajectories, all of which should
terminate at some equilibrium states. There may be several
trajectories that may terminate at the same equilibrium state.

The existence of such equilibrium states enables global pattern
formation possible in a network. That is, an input pattern
corresponding to a starting state will eventually lead to one of the
global patterns, which can be interpreted as storage of the input
pattern in long term memory. The global pattern thus formed will
only change if there is a different external input. In some cases the
network parameters such as weights may slowly change due to
learning or self-organization. If the global pattern formation still
occurs for any choice of these parameters, then the resulting pattern
is said to be absolutely stable or globally stable.

Under certain conditions, which will be discussed later, the set
of equations (2.74) describing activation dynamics do exhibit stable
states which are also called h d point equilibrium states. Such a
network then can form global patterns at those states, and hence can
be used for pattern storage. One of the conditions is that the weights
{cik) should be symmetric (cik = cki). If the weights are not exactly
symmetric, then the network may exhibit periodic oscillations of
states in certain regions of the state space. These oscillatory regions
are also stable, and hence can be used for pattern storage. Oscillatory
stable states may also arise when there is some delay in the feedback
of the outputs from other processing units to the current unit, even
though the weights are exactly symmetric.

For some other conditions, the network may display chaotic
changes of states in the regions of equilibrium, also called basins of
attraction. Such a network is said to exhibit chaotic stability. Thus
pattern storage is possible in any network that exhibits either fixed
point stability or oscillatory stability or chaotic stability. However, it
is difEcult to analyze and design a network suitable for the oscillatory
and chaotic types of stabilities [Cohen and Grossberg, 1983; Hertz, 19951.

A general network is more likely to exhibit random chaotic
changes of states throughout due to nonlinearly coupled set of
equations with delayed feedback. One has to carefully choose the
parameters of the activation dynamics models for ensuring stable
points. In general, it is difficult to know whether a network will have

70 Activation and Symptic Dymmics

stable points, and if so, how many. It is even more difficult to
determine the behaviour of the network near the stable points to
examine the nature of stability. However, in a few cases it is possible
to predict the global pattern behaviour, if it is possible to show the
existence of an energy function called Lyapunov function [Arnari,
19771. It is a scalar function of the parameters of the network,
denoted by V(x), where x is the activation state vector of the network.
V(x) is said to be a Lyapunov function if V(x) I 0 for all x. It is
sufficient if we can find a Lyapunov function for a network in order
to demonstrate the existence of stable equilibrium states. It is not a
necessary condition, as the network may still have stable points, even
though a Lyapunov function could not be found. The existence of
Lyapunov function makes it easy to analyze the stability of the
network.

If the Lyapunov function is interpreted as an energy function,
then the condition that V(x) I 0 means that any change in the energy
due to change in the state of the network results in lowering the total
energy. In other words, any change of the state of the network results
in the trajectory of the state sliding along the energy surface in the
state space towards lower energy. Eventually the trajectory leads to
a state from where there is no further decrease in the energy due to
changes in the state. Such a state corresponds to the energy
minimum, at which V(x) = 0. Normally there will be many states at
which V(x) = 0. All such states correspond to equilibrium points or
stable states. All trajectories in the state space will eventually lead
to one of these stable states.

In the following, three general theorems are given that describe
the stability of a set of nonlinear dynamical systems. The first
theorem, the Cohen-Grossberg theorem, is useful to show the stability
of fixed weight autoassociative networks. The second theorem, the
Cohen-Grossberg-Kosko theorem, is useful to show the stability of
adaptive autoassociative networks. The third theorem, the adaptive
bidirectional-associative memory theorem, is useful to show the
stability of adaptive heteroassociative networks.

Cohen-Grossberg theorem: For a system of equations given by

a global Lyapunov function is given by

Stability and Convergence

Since

i = 1 L k = 1 J
we have

v S 0, (2.81)

if ai(xi) 2 0, (i.e., ai(xi) is nonnegative), di(xi) 1 0 (i.e., di(xi) is mono-
tonically nondecreasing function), cn are constant and do not change
with time, and En] is symmetric. This last property was used to
obtain the simplified expression for the derivative of the second tern
of V(x) in Eq. (2.78).

Note that the function bi(xi) could be arbitrary, except that it should
ensure the integrability of the fimt tern in V(x). Thus V(x) is a global
Lyapunov function, provided these conditions are satisfied.

Cohen-Grossberg-Kosko theorem: For a dynarnical system where
both the activation state and the synaptic weights are changing
simultaneously, the equations describing the dynamics may be
expressed as follows [Kosko, 19881:

where [cu] is assumed to be a symmetric matrix. For such a system
the following V(x) is a Lyapunov function.

Adaptive bldirectlonal associatlve memory theorem: The system of
equations describing the activation and synaptic dynamics of a neural
network consisting of two layers of processing units, a unit in each
layer feeding its output to all the units in the other layer, is given
as follows [Kosko, 19881:

Activation and Synaptic Dynamics

The following is a Lyapunov function for the above system:

2.6 Recall in Neural Networks

During learning, the weights are adjusted to store the information in
a given pattern or a pattein pair. However, during performance, the
weight changes are suppressed, and the input to the network
determines the output activation xi or the signal value si. This
operation is called recall of the stored information. The recall
techniques are different for feedforward and feedback networks.

The simplest feedforward network uses the following equation to
compute the output signal from the input data vector a.

where A(.) is the output function of the ith unit.
A recall equation for a network with feedback connections is given

by the following additive model for activation dynamics:
N

xi(t + 1) = - (1 - a) xi(t) + p x wii fi{x,(t)) + ai (2.90)
j = 1

where xi(t + 1) is the activation of the ith unit in a single layer
feedback network at time (t -t 1). The function c(.) is the nonlinear
output function of the jth unit, a (< 1) is a positive constant that
regulates the amount of decay the unit has during the update
interval, p is a positive constant that regulates the amount of
feedback the other units provide to the ith unit, and ai is the external
input to the ith unit. This equation is same as the Eq. (2.10) except
for a change of a few symbols. In general, stability is the main issue
in feedback networks. If the network reaches a stable state in a finite
number of iterations, then the resulting output signal vector
represents the nearest neighbour stored pattern of the system for the
approximate input pattern a.

Summary 73

Cohen and Grossberg (1983) have shown that for a wide class of
neural networks with certain constraints, the network with fixed weights
reaches a stable state in a finite period of time from any initial condition.
Later Kosko showed that a neural network could learn and recall at
the same time, and yet remains stable Kosko, 19881.

The response of a network due to recall could be the nearest neighbour
or interpolative. In the nearest neighbour case, the stored pattern closest
to the input pattern is recalled. This typically happens in the feedfornard
pattern chsifiation or in the feedback pattern rndching netwbrks. In
the interpolative case, the recalled pattern is a combination of the outputs
corresponding to the input training patterns nearest to the given input
test pattern. This happens in the feedfornard pattern mapping networks,

2.7 Summary
In this chapter we have considered the issues in developing activation
and synaptic dynamics models for artificial neural networks. The
activation models of both additive and multiplication types are
discussed in detail. The multiplicative or shunting type models are
developed to limit the operating range of the activation value of a
neuron. The synaptic dynamics model equationi form the basis for
learning in neural networks. Several learning methods are presented
to indicate the variety of methods developed for different applications.
The activation and synaptic dynamics models are useful only if global
pattern formation is possible with these models. The global pattern
formation is linked with stability and convergence of these models.
The conditions to be met by a dynamical system for stability and
convergence are discussed through stability theorems. Finally the
issues in the recall of stored information are discussed briefly.

Having understood the basics of artificial neural networks, the next
task is to determine what kind of problems these structures and models
can solve. The next four chapters deal with pattern recognition tasks
that can be solved by some basic structures of artificial neural networks.

Review Questions
1. Explain the following:

(a) Activation and synaptic dynamics

(b) Models of neural networks vs neural network models
(c) Autonomous and nonautonomous dynamical systems
(dl Additive and shunting models of activation models
(el Stochastic models vs stochastic versions of models
(0 Stability and convergence
(g) Structural vs global stability

74 Activation and Synaptic Dynamics

2. What is meant by each of the following:
(a) Transient state
(b) Steady state
(c) Equilibrium state
(d) Stable states

3. What is the noise-saturation dilemma in activation dynamics?

4. Explain the differences among the three different types of
stability in neural networks: fixed-point, oscillatory and chaotic.

5. What is meant by global pattern formation in neural networks?

6. What are the requirements of learning laws for effective
implementation?

7. What are forgetting and recency effects in learning?

8. What are the different categories of learning?

9. Explain the difference between short-term memory and long-
terms memory with reference to dynamics models.

10. What is meant by operating range of a neuron?

11. What are the different types of Hebbian learning?

12. What are the different types of competitive learning?

13. What is reinforcement learning? In what way it is different from
supervised learning?

14. Explain some criteria used for neural network learning.

15. Explain the distinction between stability and convergence.

16. What is meant by global stability?

17. Distinguish between an equilibrium state and a stable state.

18. What is the significance of Lyapunov function in neural networks?

19. Explain the significance of each of the following theorems:
(a) Cohen-Grossberg theorem
(b) Cohen-Grossberg-Kosko theorem
(c) Adaptive bidirectional associative memory theorem

20. What are the two general methods of recall of information in
neural networks?

21. Explain with an example the distinction between nearest
neighbour and interpolative recall of information.

Problems

1. Show that the Perkel's model given in Eq. (2.11) is a special case
of the additive autoassociative model given by Eq. (2.10).

Problems 75

2. Show from Eq. (2.16) that if xi(0) 5 B,, then xi(t) 5 B, for all
t > 0.

3. Show from Eq. (2.21) that if x,(O) 5 B, I C,, then xi(t) I Bi I C,
for all t > 0.

4. Show from Eq. (2.21) that if x,(O) > - Ei I Di, then xi(t) 2 - E, I Di
for all t > 0.

5. Explain the meaning of 'shunting' with reference to the shunting
model of Eq. (2.21).

6. Explain the significance of the following:
(a) xi = 0, for all i
(b) ~ (x) I 0
(c) V(X) = 0
(d) W~ # 0, for all i, j.

7. Give the expressions for the general functions ai(xi), bi(xi) and
di(xi) in Eq. (2.74) with reference to specific activation models
given in Eqs. (2.10) and (2.21).

8. Show that the Lyapunov function represents some form of energy
of an electrical circuit.

9. Show that ~ (x) 2 0 for Eq. (2.84).

10. Show that V(X, y) I 0 for Eq. (2.88).

11. Consider a stochastic unit with a bipolar I-1, 11 output function.
The probability distribution for the unit is given by

P(s = 1 Jx) = l/(1+ exp (-2 hx))

If the learning of the stochastic unit is based on gradient descent
on the error between the desired and the average output, show
that the resulting learning law is the same as the learning law
obtained using delta learning for a deterministic unit with
hyperbolic tangent as the output function.

12. Determine the weights and the threshold of a stochastic unit
with bipolar (-1, 11 output function to classify the following
2-class problem using reinforcement learning equation given in
Eq. (2.55). Assume P(s = 1 I x) = U(1+ exp(- 2 x)) and q+ = 0.1 and
q- = 0.01. Start with suitable values of initial weights and
threshold. Use positive reinforcement when the classification is
correct and negative reinforcement when the classification is
wrong. Show the final decision surface. (Hint: Write a program
to implement the learning.)

Class c,: [O 0lT, [I o]', [O i lT, and l l T
Class C,: [- 1 - l l T , [- 1 - 21T, [- 2 - l lT, and [-2 -21T

Chapter 3

Functional Units of ANN for
Pattern Recognition Tasks

So far we have considered issues in pattern recognition, and
introduced the basics of artificial neural networks. In this chapter we
discuss some functional units of artificial neural networks that can
solve simple pattern recognition tasks. These functional units form
building blocks for developing neural architectures to solve complex
pattern recognition problems.

The pattern recognition problem to be addressed by a system is
discussed in Section 3.1. Three fundamental functional units are
identified to deal with the basic pattern association problem and some
variations of this problem. These units are described in Section 3.2.
The specific pattern recognition tasks that the various functional
units can solve are discussed in Section 3.3. Table 3.1 gives the
organization of the networks and the pattern recognition tasks to be
discussed in this chapter.

Table 3.1 Basic Artificial Neural Network Models for Pattern Recognition
Problems

1. Feedforward ANN
(a) Pattern association
(b) Pattern classification
(c) Pattern mapping/classification

2. Feedback ANN

(a) Autoassociation
(b) Pattern storage (LTM)
(c) Pattern environment storage (LTM)

3. Feedforward and Feedback (Competitive Learning) ANN

(a) Pattern storage (STM)
(b) Pattern clustering
(c) Feature mapping

Pattern Recognition Problem

3.1 Pattern Recognition Problem

In any pattern recognition task we have a set of input patterns and
the corresponding output patterns. Depending on the nature of the
output patterns and the nature of the task environment, the problem
could be identified as one of association or classification or mapping.
The given set of input-output pattern pairs form only a few samples
of an unknown system. From these samples the pattern recognition
model should capture the characteristics of the system. Without
looking into the details of the system, let us assume that the
input-output patterns are available or given to us. Without loss of
generality, let us also assume that the patterns could be represented
as vectors in multidimensional spaces. We first state the most
straightforward pattern recognition problem, namely, the pattern
association problem, and discuss its characteristics.

Pattern Association Problem: Given a set of input-output pattern
pairs (a,, bl), (a,, b,), ..., (al, bl), ..., (aL, bL) where al = (al1, alz, ...,
alM) and bl = (bll, biz, ..., bw) are M and N dimensional vectors,
respectively, design a neural network to associate each input pattern
with the corresponding output pattern.

If al and bl are distinct, then the problem is called heteroassocia-
tion. On the other hand, if bl = al, then the problem is called
autoassociation. In the latter case the input and the corresponding
output patterns refer to the same point in an N-dimensional space,
s i n c e M = N a n d a l , = bl,, i = 1, 2, ..., N, 1 = 1, 2, ..., L.

The problem of storing the association of the input-output pattern
pairs (al, bl), I = 1,2, ..., L, involves determining the weights of a
network to accomplish the task. This is the training part. Once stored,
the problem of recall involves determining the output pattern for a
given input pattern by applying the operations of the network on the
input pattern.

The recalled output pattern depends on the nature of the input
and the design of the network. If the input pattern is the same as
one of those used in the training, then the recalled output pattern is
the same as the associated pattern in the training. If the input
pattern is a noisy version of the trained input pattern, then the
pattern may not be identical to any of the patterns used in training
the network. Let the input pattern is 4 = al + E, where E is a (small
amplitude) noise vector. Let us assume that 4 is closer (according to
some distance measure) to al than any other ak, k # I. If the output of
the network for this input & is still bl, then the network is designed
to exhibit an accretive behaviour. On the other hand, if the network
produces an output 6 = bl + 6, such that 1 6 1 + 0 as 1 E I 0, then
the network is designed to exhibit an interpolative behaviour.

Depending on the interpretation of the problem, several pattern

78 Functional Units of ANN for Pattern Recognition Tasks

recognition tasks can be viewed as variants of the pattern association
problem. We will describe these tasks in Section 3.3. First we will
consider three basic functional units of neural networks which
perform the pattern association and related pattern recognition tasks.

3.2 Basic Functional Units

There are three types of artificial neural networks. They are: (i) feed-
forward, (ii) feedback and (iii) a combination of both. The simplest
networks of each of these types form the basic functional units. They
are functional because they can perform by themselves some simple
pattern recognition tasks. They are basic because they form building
blocks for developing neural network architectures for complex ,

pattern recognition tasks to be described later in Chapter 7.
The simplest feedforward network (Figure 3.1) is a two layer

network with M input units and N output units. Each input unit is

Output vector = b f b '
A'

b'
A' AN

Output units

Input units
(Fan-out units)

Input vector a = a1 4

Figure 3.1 Basic feedforward neural network.

connected to each of the output units, and each connection is
associated with a weight or strength of the connection. The input
units are all linear, and they merely perform the task of fan-out, i.e,
each unit is providing N outputs, one to each output unit. The output
units are either linear or nonlinear depending on the task that the
network should perform. Typically, feedforward networks are used
for pattern association or pattern classification or pattern mapping.

The simplest feedback network, shown in Figure 3.2, consists of
a set of N processing units, each connected to all other units. The
connection strengths or weights are assumed to be symmetric, i.e.,
wii = wji, for i * j. Depending on the task, the units of the network
could be linear or nonlinear. Typically feedback networks are used
for autoassociation or pattern storage.

Pattern Recognition Tasks by the Functional Units

Output vector b' = b:

Input vector a = a,

Figure 3.2 Basic feedback neural network.

The simplest combination network is called a competitive learning
network, shown in Figure 3.3. It consists of an input layer of units

Output vector

Output units

Input units
(Fan-out units)

Input vector a = a, a, a,

Figure 3.3 Basic competitive learning network.

feeding to the units in the output layer in a feedforward manner, and
a feedback connection among the units in the output layer, including
self-feedback. Usually the connection strengths or weights of the
feedforward path are adjustable by training the network for a given
pattern recognition task. The feedback connection strengths or
weights in the output layer are usually fixed to specific values
depending on the problem. The input units are all linear, and they
merely perform the task of fan-out, i.e., each unit providing N outputs,
one to each output unit. The output units are either linear or
nonlinear depending on the task the network should perform.
Typically the competitive learning network is used for pattern
grouping/clus tering.

3.3 Pattern Recognition Tasks by the Functional Units

Table 3.1 gives a summary of the pattern recognition tasks that can
be performed by the three functional units described in the previous

80 Functional Units of ANN for Pattern Recognition Tasks

section. All the pattern recognition tasks listed are simple, and can
be viewed as variants of the pattern association problem. Each of
these tasks can be described in terms of mapping of points from one
multidimensional space onto another multidimensional space. In this
section the geometrical interpretations of the pattern recognition
tasks are given to obtain a clear understanding of the problems.

The input pattern space is an M-dimensional space, and the
input patterns are points in this space. Likewise the output pattern
space $ is an N-dimensional space, and the output patterns are
points in this space. The pattern spaces are shown as circles in the
figures used to illustrate the pattern recognition tasks.

3.3.1 Pattern Recognltlon Tasks by Feedforward Neural Networks

In this section we will discuss three pattern recognition tasks that
can be performed by the basic feedforward neural network.

Pattern association problem: The pattern association problem is
illustrated in Figure 3.4. The input patterns are shown as a,, a,, a3

Input pattern space Output pattern space

Association

Figure 3.4 Illustration of pattern association task.

and the corresponding output patterns as b,, b,, b3. The objective of
designing a neural network is to capture the association between
input-output pattern pairs in the given set of training data, so that
when any of the inputs al is given, the corresponding output bl is
retrieved. Suppose an input pattern ai not used in the training set
is given. If the training input pattern al is the closest to ai, then the
pattern association network should retrieve the output pattern b, for
the input pattern ai. Thus the network should display accretive
behaviour. The pattern ai can be viewed as a noisy version of the
pattern a,. That is ai = a, + E, where E is a noise vector.' If the
amplitude of the noise added to a, is so large that the noisy input
pattern is closer to some pattern (say ak) other than the correct one
(a,), then the network produces an incorrect output pattern

Pattern Recognition Tasks by the Functional Units 81

bk, k ;f I . Thus an incorrect output pattern would be retrieved for
the given noisy input.

An example of a pattern association problem is associating a
unique binary code to a printed alphabet character, say [OOOOOIT for
A, [OOOO1lT for B, etc. (See Figure 3.5). The input patterns A, B, etc.,

Figure 3.6 An example of pattern association problem.

could be represented as black and white pixels in a grid of size, say
16 x 16 points. Then the input pattern space is a binary
256-dimensiollal space, and the output pattern space is a binary
5-dimensional space. Noisy versions of the input patterns are obtained
when some of the pixels in the grid containing a character are
transformed from black to white or vice versa.

Note that the performance of a network for the pattern association
problem is mainly dictated by the distribution of the training patterns
in the input space. This point will be discussed in detail in Chapter 4.

Pattern classification problem: In the pattern association problem
if a group of input patterns correspond to the same output pattern,
then typically there will be far fewer output patterns compared to
the number of input patterns. In other words, if some of the output
patterns in the pattern association problem are identicd, then the
number of distinct output patterns can be viewed as class labels, and
the input patterns corresponding to each class can be viewed as
samples of that class. The problem then becomes a pattern
classification problem as illustrated in Figure 3.6.

In this case whenever a pattern belonging to a class is given as
input, the network identifies the class label. During training, only a

Functional Units of ANN for Pattern Recognition Tasks

Input pattern space Output pattern space

Classification

Figure 3.6 Illustration of pattern classification task.

few samples of patterns for each class are given. In testing, the input
pattern is usually different from the patterns used in the training set
for the class. The network displays an accretive behaviour in this case.

An example of pattern classification problem could be labelling
hand printed characters within a specified grid into the corresponding
printed character. Note that the printed character patterns are
unique and fixed in number, and serve as class labels. These labels
could be a unique 5-bit code as shown in Figure 3.7. For a given

Figure 3.7 An example of pattern classification problem.

character, the samples of hand-printed versions of the character are
not identical. In fact the dimensionality of the input pattern space
will have to be very large in order to represent the hand-printed
characters accurately. An input pattern not belonging to any class
may be forced into one of the predetermined class labels by the
network.

Note that the performance of a network for the pattern
classification problem depends on the characteristics of the samples
associated with each class. Thus grouping of the input patterns by

Pattern Recognition Tasks by the Functional Units 83

the class label dictates the performance. This point will be discussed
in detail in Chapters 4 and 7.

Pattern mapplng: Given a set of input-output pattern pairs as in
the pattern association problem, if the objective is to capture the
implied mapping, instead of association, then the problem becomes a
pattern mapping problem (Figure 3.8). In a pattern mapping problem

Input pattern apace Output pattern space

Figure~ 3.8 Illustration of pattern mapping task.

both the input and the output patterns are only samples from the
mapping system. Once the system behaviour is captured by the
network, the network would produce a possible output pattern for a
new input pattern, not used in the training set. The possible output
pattern would be appro&ately an interpolated version of the output
patterns corresponding to the input training patterns close to the
given test input pattern. Thus the network displays an interpolative
behaviour. Typically the input and output pattern spaces are
continuous in this case, and the mapping function must be smooth
for the interpolation to work satisfactorily.

An example of the data for a pattern mapping problem could be
the input data given to a complex physical system and the
corresponding output data from the system for a number of trials.
The objective is to capture the unknown system behaviour from the
samples of the input-output pair data.

A pattern mapping problem is the most general case, from which
the pattern classification and pattern association problems can be
derived as special cases. The network for pattern mapping is expected
to perform generalization. The details of how well a given network
can do generalization will be discussed in Chapter 7.

3.3.2 Pattern Recognition Tasks by Feedback Neural Networks

In this section we will discuss three pattern recognition tasks that
can be performed by the basic feedback neural networks.

Autoassoclatlon problem: If each of the output patterns bl in a

84 Functional Units of ANN fir Pattern Recognition Tasks

pattern association problem is identical to the corresponding input
patterns al , then the output pattern space is identical to the input
pattern space (Figure 3.9). In such a case the problem becomes an

Input pattern space Output pattern space
(same as input and the
points are also same)

Figure 3.9 Illustration of autoassociation task.

autoassociation problem. This is a trivial case where the network
merely stores the given set of input patterns. When a noisy input
pattern is given, the network retrieves the same noisy pattern. Thus
there is an absence of accretive behaviour.

A detailed analysis of the autoassociation problem is given in
Chapter 5. Note that the special case of bl = al , 1 = 1, 2, ..., L in the
pattern association task is considered as a problem of heteroassociation
task to be addressed by a feedforward network The term autoassociation
task is thus used exclusively in the context of feedback networks.

Pattern storage problem: In the autoassociation problem, if a given
input pattern is stored in a network for later recall by an approximate
input pattern, then the problem becomes a pattern storage problem
(Figure 3.10). Any input vector close to a stored input pattern will

Input pattern space
Output pattern space

(same as input but the points
could be different from the
input patterns to be stored)

Figure 3.10 Illustration of pattern storage task.

recall that input pattern exactly from the network, and thus the
network displays accretive behaviour. The stored patterns could be

Pattern Recognition Tasks by the Functional Units 85

the same as the input patterns given during training. In such a case
the input pattern space is a continuous one, and the output space
consists of a fixed finite set of (stored) patterns corresponding to some
of the points in the input pattern space. The stored patterns could
also be some transformed versions of the input patterns, but of the
same dimension as the input space. In such a case the stored patterns
may correspond to different points in the input space.

Due to its accretive behaviour, the pattern storage network is
very useful in practice. A detailed analysis of this network is given
in Chapter 5.

Pattern environment storage probiem: If a set of patterns together
with their probabilities of occurrence are specified, then the resulting
specification is called pattern environment. The design of a network ,
to store a given pattern environment aims at recall of the stored
patterns with the lowest probability of error. This is called a pattern
environment storage problem. A detailed analysis of this problem
together with the network design is given in Chapter 5.

3.3.3 Pattern Recognition Tasks by Competitive Learning Neural
Networks

In this section we will discuss three pattern recognition tasks that
can be performed by a combination neural network consisting of
feedforward and feedback parts. The network is also called the
competitive learning network.

Temporary pattern storage: If a given input pattern is stored in a
network, even in a transformed form, in such a way that the pattern
remains only until a new pattern input is given, then the problem
becomes that of a short term memory or temporary storage problem.
This is only of academic interest. However, a detailed analysis of this
problem is given in Chapter 6.

Pattern clustering problem: Given a set of patterns, if they are
grouped according to similarity of the patterns, then the resulting
problem is called pattern clustering. It is illustrated in Figure 3.11.
There are two types of problems here. In one case the network
displays an accretive behaviour (Figure 3.11a). That is, if an input
pattern not belonging to any group is presented, then the network
will force it into one of the groups. The input pattern space is typically
a continuous space. The test input patterns could be the same as the
ones used in the training or could be different. The output pattern
space consists of a set of cluster centres or labels.

The second type of problem displays interpolative behaviour as
shown in Figure 3.11b. In this case, a test input pattern not belonging

86 Functional Units of ANN for Pattern Recognition Tasks

Input pattern apace Output pattern apace

(b) Interpolative
Figure 3.11 Illustration of two types of pattern clustering tasks.

to any group produces an output which is some form of interpolation
of the output patterns or cluster centers, depending on the proximity
of the test input pattern to the input pattern groups formed during
training.

Pattern clustering also leads to the problem of vector quantiza-
tion. A detailed analysis of these problems is given in Chapter 6.

Feature mapplng problem: In the pattern clustering problem a
group of approximately similar input patterns are identified with a
fixed output pattern or a group label. On the other hand, if
similarities of the features of the input patterns have to be retained
in the output, the problem becomes one of feature mapping. In this,
a given set of input patterns are mapped onto output patterns in such
a way that the proximity of the output patterns reflect the similarity
of the features of the corresponding input patterns. When a test input
pattern is given, it will generate an output which is in the
neighbourhood of the outputs for similar patterns. Note that typically
the number of output patterns are fixed, but they are much larger
than in the pattern clustering case, and they are organized physically
in the network in such a way that the neighbourhood pattern labels
reflect closeness of features. A detailed analysis of the feature
mapping problem is given in Chapter 6.

In summary, this chapter dealt with some basic functional units
of neural networks and a description of the pattern recognition tasks
that these units can perform. In particular, we have identified three

Review Questions 87

basic networks: feedforward, feedback and competitive learning
networks. We have defined the pattern association problem as a basic
problem, and we have seen how several other pattern recognition
tasks could be interpreted as varianta of this problem. We have
discussed each of the pattern recognition tasks in the form of a
mapping problem. What we have not discussed is how the basic
functional units perform the corresponding pattern recognition tasks
mentioned in this chapter. The next three chapters deal with a
detailed analysis of these tasks by the networks.

Revlew Questions
1. What are the three functional units? Why are they called

functional units?

2. Explain the meaning of (a) accretive behaviour and (b) inter-
polative behaviour.

3. Distinguish between pattern association, pattern classification
and pattern mapping tasks.

4. Give a real life example of a pattern mapping problem.

5. Explain the difference between autoassociation problem and
heteroassociation problem.

6. What is meant by a pattern environment storage problem? Give
a real life example to illustrate the problem.

7. Explain the difference between the accretive and interpolative
type of clustering problems.

8. Explain what is meant by feature mapping? Explain the problem
with a real life example from speech production.

9. Explain how recognition of handwritten digit8 is closer to a
classification type problem, whereas recognition of vowel sounds
in continuous speech is closer to a feature mapping type of problem.

Chapter 4

Feedforward Neural Networks

4.1 Introduction

This chapter presents a detailed analysis of the pattern recognition
tasks that can be performed by a feedforward artificial neural net-
work. As mentioned earlier, a feedforward artificial neural network
consists of layers of processing units, each layer feeding input to the
next layer in a feedforward manner through a set of connection
strengths or weights. The simplest such network is a two layer network.

By a suitable choice of architecture for a feedforward network, it
is possible to perform several pattern recognition tasks. The simplest
task is a pattern association task, which can be realized by a two
layer feedforward network with linear processing units. A detailed
analysis of the linear association network shows that the network is
limited in its capabilities. In particular, the number of input-output
pattern pairs to be associated are limited to the dimensionality of the
input pattern, and also the set of input patterns must be linearly
independent. The constraint on the number of input patterns is
overcome by using a two layer feedforward network with nonlinear
processing units in the output layer. This modification automatically
leads to the consideration of pattern classification problems. While
this modification overcomes the constraints of number and linear
independence on the input patterns, it introduces the limitations of
linear separability of the functional relation between input and output
patterns. Classification problems which are not linearly separable are
called hard problems. In order to overcome the constraint of linear
separability for pattern classification problems, a multilayer
feedforward network with nonlinear processing units in all the
intermediate hidden layers and in the output layer is proposed. While
a multilayer feedforward architecture could solve representation of
the hard problems in a network, it introduces the problem of hard
learning, i.e., the difficulty in adjusting the weights of the network
to capture the implied functional relationship between the given
input-output pattern pairs. The hard learning problem is solved by
using thc backpropagation learning algorithm. The resulting network
provides a solution to the pattern mapping problems. The generaliza-

Introduction 89

tion (ability to learn a mapping function) feature of a multilayer
feedforward network with the backpropagation learning law depends
on several factors such as the architectural details of the network,
the learning rate parameter of the training process and the training
samples themselves.

Table 4.1 shows the summary of the topics to be discussed in this
chapter. The pattern association problem is discussed in Section 4.2.

Table 4.1 Pattern Recognition Tasks by Feedfoward Neural Networks

Pattern association
Architecture: Two layers, linear processing units, single set of weights
Learning: Hebb's (orthogonal) rule, Delta (linearly independent)

rule
Recall: Direct
Limitation: Linear independence, number of patterns restricted to

input dimensionality
To overcome: Nonlinear processing units, leads to a pattern

classification problem

Pattern classification
Architecture: Two layers, nonlinear processing units, -geometrical

interpretation
Learning: Perceptron learning
Recall: Direct
Limitation: Linearly separable functions, cannot handle hard

problems
To overcome: More layers, leads to a hard learning problem

Pattern mapping or classification
Archztecture: Multilayer (hidden), nonlinear processing units, geometri-

cal interpretation
Learning: Generalized delta rule (backpropagation)
Recall: Direct
Limitation: Slow learning, does not guarantee convergence
To overcome: More complex architecture

This section gives a detailed analysis of a linear associative network,
and shows the limitations of the network for pattern association
problems. Section 4.3 describes the pattern classification problem. An
analysis of a two layer feedforward network with nonlinear processing
units in the output layer brings out the limitations of the network
for pattern classification task. The section also discusses the problems
of classification, representation, learning and convergence in the
context of perceptron networks. In Section 4.4 the problem of pattern
mapping by a multilayer neural network is discussed. The chapter
concludes with a discussion on the backpropagation learning law and
its implications for generalization in a pattern mapping problem.

90 Feedforward Neural Networks

4.2 Analysis of Pattern Association Networks

4.2.1 Linear Associative Network

The objective in pattern association is to design a network that can
represent the association in the pairs of vectors (q, b[), 1 = 1, 2, ...,
L, through a set of weights to be determined by a learning law. The
given set of input-output pattern pairs is called training data. The
input patterns are typically generated synthetically, like machine
printed characters. The input patterns used for recall may be
corrupted by external noise.

The following vector and matrix notations are used for the
analysis of a linear associative network:

Input vector T a1 = [all, a12, ...,a,M]
Activation vector of input
layer x = [xl, x2, ..., xMIT
Activation vector of
output layer Y = bl , yz , ... ,YN] T

Output vector b1 = [bll, biz, ..., bwl T

Input matrix A = [ala2 ... aJ is an M x L matrix

Output matrix B = b1bz ... bL] is an N x L matrix
Weight matrix W = [~ ~ ~ ~ . . . ~ ~] ~ i s a n ~ x ~ m a t r i x
Weight vector for jth
unit of output layer w. = [wjl, wJ2, ..., w . 1 T

I JM

The network consists of a set of weights connecting two layers of
processing units as shown in Figure 4.1. The output function of each

Output vector

Activation vector
of output layer

Activation vector
of input layer

Input vector QI = 41 Cr,

Figum 4.1 Linear associative network.

Analysis of Pattern Association Networks 9 1

unit in these layers is linear. Each output unit receivesinputs from
the M input units corresponding to the M-dimensional input vectors.
The number (N) of output units corresponds to the dimensionality of
the output vectors. Due to linearity of the output function, the
activation values (xi) and the signal values of the units in the input
layer are the same as the input data values ali. The activation value
of the jth unit in the output layer is given by

M
T

yj = x wji ali = wj ail j = 1,2, ..., N. (4.1)
i = l

The output (bl;.) of the jth unit is the same as its activation value
yj, since the output function of the unit is linear, i.e., bl;. = yj. The
network is called linear since the output of the network is simply a
linear weighted sum of the component values of the input pattern.

The objective is to determine a set of weights Iwji) in such a way
that the actual output bS, is equal to the desired output blj for all the
given L pattern pairs. The weights are determined by using the
criterion that the total mean squared error between the desired
output and the actual output is to be minimized. The weights can be
determined either by computing them from the training data set or
by learning. Computation of weights makes use of all the training
set data together. On the other hand, in learning, the weights are
updated after presentation of each of the input-output pattern pairs
in the training set.

4.2.2 Determination of Weights by Computation

For a linear associative network Mecht-Nielsen, 19901,

xi = ali , i = 1 , 2 ,..., M (4.2)

Actual output vector
b; = y = Wx = Wal

Error in the output is given by the distance between the desired
output vector and the actual output vector. The total error E(W) over
all the L input-output pattern pairs is given by

92 Feedforward Neural Networks

We can write

where the square norm

Using the definition that the trace of a square matrix S is the
sum of the main diagonal entries of S, it is easy to see that

where the matrix S is given by

and tr(S) is the trace of the matrix.S.
Using the definition for pseudoinverse of a matrix [Penrose, 19551,

i.e., A+ = AT(AAT)-l, we get the matrix identities A+AAT = AT and
AAT(A+lT = A. Using these matrix identities we get

It can be seen that the trace of the first term in Eq. (4.11) is always
nonnegative, as it is in a quadratic form of the real symmetric matrix
AAT. It becomes zero for W = BA+. The trace of the second term is a
constant, independent of W. Since the trace of sum of matrices is the
sum of traces of the individual matrices, the error E(W) is minimum
when W = BA+. The minimum error is obtained by substituting W =
BA+ in Eq. (4.7), and is given by

where Z is an L x L identity matrix. The above simplification is
obtained by using the following matrix identities: (A+A)~ = AT(A+lT
and A A ~ (A +) ~ = A.

The following singular value decomposition (SVD) of an M x L
matrix A is used to compute the pseudoinverse and to evaluate the
minimum error. Assuming L I M, the SVD of a matrix A is given by
[Strang, 19801

Analysis of Pattern Association Networks 93

where = hipi, ATAqi = hiqi, and the sets (ply p2, ..., pM) and
{q,, q2, ..., q,) are each orthogonal. The eigenvalues hi of the matrices
AA ' and A ~ A will be real and nonnegative, since the matrices are
symmetric. The eigenvalues are ordered, i.e., I, 2 hi+ 1. Note that the
pi's are M-dimensional vectors and q/s are L-dimensional vectors.

The pseudoinverse A+ of A is given by

where r is the rank (maximum number of linearly independent
columns) of A. Also r turns out to be the number of nonzero
eigenvalues I,. Note that if r = L, then all the L column vectors are
linearly independent.

Using the SVD, it can be shown that A+A = ILxL, if L is the
number of linearly independent columns of A. In such a case
I-A'A = 0 (null vector), and hence Em, = 0 (See Eq. (4.12)).
Therefore, for a linearly independent set of input pattern vectors, the
error in the recall of the associated output pattern vector is zero, if
the optimum choice of W = BA' is used.

If the rank r of the matrix A is less than L, then the input vectors
are linearly dependent. In this case also the choice of the weight
matrix as W = BA+ still results in the least error E-. But this least
error is not zero in this case. The value of the error depends on the
rank r of the matrix. The matrix A'A will have a sub-matrix I,,,,
and all the other four sub-matrices will be zero. That is

The expression for minimum error is given from Eq. (4.12) as

The next issue is how to achieve the minimum error retrieval
from the linear associative network, when there is noise nl added to
the input vectors. The noisy input vectors are

It is assumed that each component of the noise vector nl is
uncorrelated with the other components and also with the components
of the pattern vectors, and has the same standard deviation o. Let
C be an M x L matrix of the noisy input vectors. The objective is to
find a W that minimizes

Feedforward Neural Networks

Murakami has shown that, if W = BA', then the expression for
error E(W) is given by [Murakami and Aibara, 19871

The first term in the square brackets can be attributed to the linear
dependency part of the column vectors of A. If the rank of the matrix
A is L, then r = L, and the first term will be zero. Therefore, the
error is determined by the noise power 2. If in addition, there is no
noise, i.e., o = 0, then the error E(W) = 0. In that case error-free
recall is possible.

To minimize E(WAin the presence of noise in the input pattern
vectors, choose W = B A+, where

The value of s is determined in such a way that

That is, the noise power 2 will decide how many terms should be
considered in the SVD expression for the pseudoinverse. If the
eigenvalue A, is so small that the noise power dominates, then that
eigenvector could as well be included in the first term of the
expression in Eq. (4.19) for the error corresponding to the linear
dependence. This will reduce the error.

Note that this analysis is valid only if the legal inputs are
corrupted by noise. It is not valid if the input consists of only noise.
The expression for the error E(W) is applicable for the closed set of
the column vectors in A Murakami and Aibara, 19871.

4.23 Determination of Weights by Learning

It is desirable to determine the weights of a network in an
incremental manner, as and when a new training input-output
pattern pair is available. This is called learning. Each update of the
weights with a new input data can be interpreted as network
learning. Computationally also learning is preferable because it does
not require information of all the training set data at the same time.
As will be seen later in this section, it is also preferable to have
learning confined to a local operation. That is, the update of a weight
connecting two processing units depends only on the connection

Analysis of Pattern Association Networks 95

weight and the activations of the units on either side of the
connection. Two learning laws and their variations, as applicable to
a linear associative network, are discussed in this section.

Hebb's law: Let the input pattern vector al and the corresponding
desired output pattern vector bl be applied to the linear associative
network. According to the Hebb's law, the updated weight value of a
connection depends only on the activations of the processing units on
either side of the connecting link. That is

Note that the computation of the increment xi yj = aliblj is purely
local for the processor unit and the input-output pattern pair. The
updated weight matrix for the application of the lth pair (al, bl) is
given by

W(1) = W(1- 1) + b,a:, (4.23)

where W(1- 1) refers to the weight matrix after presentation of the
first (1 - 1) pattern pairs, and W(1) refers to the weight matrix after
presentation of the first 1 pattern pairs. Note that blar is the outer
product of the two vectors, which results in an N x M matrix. Each
element of this matrix is an increment of the corresponding element
in the weight matrix.

If the initial values of the elements of the weight matrix are
assumed to be zero, then the weight matrix resulting after application
of the L input-output pattern vector pairs (al, bl), 1 = 1, 2, ..., L, is
given by

L
W = bla; = BAT,

1-1

where the element wji of W is given by

To verify whether the network has learnt the association of the
given set of input-output pattern vector pairs, apply the input pattern
ak and determine the actual output vector b; .

96 Feedforward Neural Networks

It is obvious from the above equation that the actual output b;
is not the same as the desired output bk. Only if some restrictions
are imposed on the set of input pattern vectors {al, %, ..., aLl, we
can get the recall of the correct output pattern bk for the input pattern
ak. The restriction is that the set of input vectors must be ortho-
normal. That is

In such a case the first term in the expression for b; in Eq. (4.26)
becomes bk, and the second term becomes zero, as each of the
products aTak is zero for I # k. The restriction of orthogonality limits
the total number (L) of the input patterns in the set A to M, i.e., the
dimensionality of the input vectors, as there can be only M or less
than M mutually orthogonal vectors in an M-dimensional space.

If the restriction of orthogonality on the set of input vectors is
relaxed to mere linear independence, then the expression in Eq. (4.26)
for recall reduces to

where it is assumed that the vectors are of unit magnitude, so that
aiak = 1. This leaves an error. term e indicating that the recall is
not perfect, if the weight matrix is derived using the Hebb's law.

However, it was shown in the previous Section 4.2.2 that, for
linearly independent set of input vectors, exact recall can be achieved
if the weight matrix W is chosen as W = BA', where A+ is the
pseudoinverse of the matrix A. If the set of input vectors are not
linearly independent, then still the best choice of W is BA+, as this
yields, on the average, the least squared error in the recall of the
associated pattern. The error is defined as the difference between the
desired and the actual output patterns from the associative network.
If th%re is noiseAin the input, the best choice of the weight matrix W
is BA', whereA+ includes fewer (s) terms in the singular value
decomposition expansion of A than the rank (r) of the matrix, the
choice of s being dictated by the level of the noise (See Eq. (4.21)).

For all these best choices of W, the weight values have to be
computed from the knowledge of the complete input pattern matrix
A, since all of them need the SVD of A to compute the pseudoinverse
A+. However, it is possible, at least in some cases, to develop learning
algorithms which can approach the best choices for the weight
matrices. The purpose of these learning algorithms is to provide a
procedure for incremental update of the weight matrix when an
input-output pattern pair is presented to the network. Most of these
learning algorithms are based on gradient descent along an error
surface (See Appendix C) . The most basic among them is Widrow and

Analysis of Pattern Association Networks 97

Hoffs least mean square (LMS) algorithm [Widrow and Hoff, 19601.
The gradient descent algorithms are discussed in detail later in the
section on pattern mapping tasks.

Widrow's law: A form of Widrow learning can be used to obtain W =
BA+ recursively. Let W(l - 1) be the weight matrix after presentation
of (1 - 1) samples. Then W(1- 1) = B(1- 1)A+(I - I), where the matrices
B(1 - 1) and A(1 - 1) are composed of the first (1 - 1) vectors of bk
and the first (1 - 1) vectors of ah, respectively. When the pair (al, bl)
is given to the network, then the updated matrix is given by (See
[Hecht-Nielsen, 19901)

W(Z) = W(Z- 1) + (bl - WQ- l)al)pr (4.29)
where

[I - A(1 - l)A+(l- I)] al
Pl = if the denominator is # 0 I [I - A(1- 1)A+(E - l)lal 1 '

- - ~ ~ (1 - l)A+(l - l)al
otherwise

1 + IA+(l- l)al 1 '

By starting with zero initial values for all the weights, and
successively adding the pairs (al, bl), (a2, b2), ..., (aL, bL), we can
obtain the final pseudoinverse-based weight matrix W = BA+. The
problem with this approach is that the recursive procedure cannot be
implemented locally because of the need to calculate pl in Eq. (4.29).

The same eventual effect can be approximately realized using the
following variation of the above learning law,

where q is a small positive constant called the learning rate
parameter. This Widrow's learning law can be implemented locally
by means of the following equation,

where wj(l - 1) is the weight vector associated with the jth processing
unit in the output layer of the linear associative network at
the (1 - 1)th iteration. With this scheme, it is often necessary to apply
the pairs (al, bl) of the training set data several times, with each
pair chosen at random.

The convergence of the Widrow's learning law in Eq. (4.32)
depends on the choice of the learning rate parameter q. For
sufficiently low values of q, a linear associative network can
adaptively form only an approximation to the desired weight matrix
W = BA+. There is no known method for adaptively learning the best

98 Feedforward Neural Networks

choice of the weight matrix W = BA+. Note also that no method is
known to adaptively learn even an approximation to the best choice
of the weight matrix W = B& in the case of additive noise in the
input pattern vectors. Therefore, in the case of noisy patterns, t$e
best weight matrix has to be computed using the expressions for A+
in terms of the components of the singular value decomposition of A,
depending on the estimated noise level in the input patterns. This is
obvious from the fact that noise effects can be reduced only when its
statistics are observed over several patterns.

4.2.4 Discussion on Pattern Association Problem

Table 4.2 gives a summary of the results of linear associative networks.

Table 4.2 Summary of Results of Linear Associative Networks

Pat te rn association problem

Given a set {(a!, b,)) of L pattern pairs, the objective is to determine the
weights of a linear associative network so as to minimize the error between
the desired and actual outputs. If A = [al a2 ... aL], B = (bl b2 ... bL] and Ware
the input, output and weight matrices, respectively, then the optimum weights
are given by

(a) W = B A ~ for orthogonal set of input vectors

(b) W = BA-' for linearly independent set of input vectors (full rank
square matrix: r = L = M)

(c) W = BA' for linearly independent set of input vectors (full rank
matrix: r = L < M)

(d) W = BA' for linearly dependent set of input vectors (reduced rank:
r < L l M

(e) W = BA+ for noisy input vectors

For the cases (a), (b) and (c), the minimum error is zero. For the case (d)
the minimum error is determined by the rank of the input matrix. For the
case (e) the minimum error is determined by both the rank of the input
matrix and the noise power.

Determination of weights by learning

(a) For orthogonal input vectors the optimum weights W = B A ~ can be
obtained using Hebb's learning law.

(b) For linearly independent or dependent input vectors an approximation
to the optimum weights W = BA+ can be learnt using a form of Widrow's
learning law.

(c) For noisy input vectors there is no known learning law that can provide
even an approximation to the optimum weights W = BA +.

Analysis of Pattern Classification Networks 99

It is often useful to allow the processing units in the output layer of
the network to have a bias input. In such a case the input matrix A
to this layer is augmented with an additional column vector, whose
values are always -1. Addition of this bias term results in a weight
matrix W that performs an afine transformation. With the affine
transformation, any arbitrary rotation, scaling and translation
operation on patterns can be handled, whereas linear transformations
of the previous associative network can carry out only arbitrary rotation
and scaling operations on the input patterns [HechbNielsen, 19901.

In many applications the linkage between the dimensionality (M)
of the input data and the number (L) of data items that can be
associated and recalled is an unacceptable restriction. By means of
coding schemes, the dimeriionality of the input data can sometimes
be increased artificially, thus allowing more (L > M) pairs of items
to be associated Pao, 19891.

But, as we will see in the next section, the dependence of the
number of input patterns on the dimensionality of the pattern vector
can be removed completely by using nonlinear processing units in the
output layer. Thus the artificial neural networks can capture the
association among the pairs (al, bl), 1 = 1, 2, ..., L, even when the
number of input patterns is greater than the dimensionality of the
input vectors, i.e., L > M. While the constraint of dimensionality on
the number of input patterns is removed in the artificial neural
networks, some other restrictions will be placed which involve the
functional relation between an input and the corresponding output.
In particular, the implied mapping between the input and output
pattern pairs can be captured by a two layer artificial neural network,
provided the mapping function belongs to a linearly separable class.
But the number of linearly separable functions decrease rapidly as
the dimensionality of the input and output pattern vectors increases.
These issues will be discussed in the following section.

4.3 Analysis of Pattern Classification Networks

In an M-dimensional space if a set of points could be considered as
input patterns, and if an output pattern, not necessarily distinct from
one another, is assigned to each of the input patterns, then the
number of distinct output patterns can be viewed as distinct classes
or class labels for the input patterns. There is no restriction on the
number of input patterns. The input-output pattern vector pairs
(al, bl), 1 = 1, 2, ..., L, in this case can be considered as a training
set for a pattern classification problem. Typically, for pattern
classification problems, the output patterns are points in a discrete
(normally binary) N-dimensional space. The input patterns are
usually from natural sources like speech and hand-printed characters.
The input patterns may be corrupted by external noise. Even a noisy

100 Feedforward Neural Networks

input will be mapped onto one of the distinct pattern classes, and
hence the recall displays an accretive behaviour.

4.3.1 Pattern Classification Network: Perceptron

A two layer feedforward network with nonlinear (hard-limiting) output
functions for the units in the output layer can be used to perform the
task of pattern classification. The number of units in the input layer
corresponds to the dimensionality of the input pattern vectors. The units
in the input layer are all linear, as the input layer merely contributes
to fan out the input to each of the output units. The number of output
units depends on the number of distinct classes in the pattern
classification task. We assume for this discussion that the output units
are binary. Each output unit is connected to all the input units, and a
weight is associated with each connection. Since the output function of
a unit is a hard-limiting threshold function, for a given set of
input-output patterns, the weighted sum of the input values is compared
with the threshold for the unit to determine whether the sum is greater
or less than the threshold. Thus in this case a set of inequalities are
generated with the given data. Thus there is no unique solution for the
weights in this case, as in the case of linear associative network. It is
necessary to determine a set of weights to satisfy all the inequalities.
Determination of such weights is usually. accompanied by means of
incremental adjustment of the weights using a learning law.

A detailed analysis of pattern classification networks is presented
here assuming M input units and a single binary output unit. The
output unit uses a hard-limiting threshold function to decide whether
the output signal should be 1 or 0. Typically, if the weighted sum of
the input values to the output unit exceeds the threshold, the output
signal is labelled as 1, otherwise as 0. Extension of the analysis for
a network consisting of multiple binary units in the output layer is
trivial [Zurada, 19921. Multiple binary output units are needed if the
number of pattern classes exceeds 2.

Pattern classification problem: If a subset of the input patterns
belong to one class (say class A,) and the remaining subset of the
input patterns to another class (say class A,), then the objective in
a pattern classification problem is to determine a set of weights
wl, w,, ..., WM such that if the weighted sum

M x wiai > 8, then a = (al, a,, ..., aM)T belongs to class A, (4.33)
i = l

and if

M x wiai I 8, then a = (al, a,, ..., aM)T belongs to class A, (4.34)
i = 1

Analysis of Pattern Classification Networks 10 1

Note that the dividing surface between the two classes is given by

This equation represents a linear hyperplane in the M-dimensional
space. The hyperplane becomes a point if M = 1, a straight line if M = 2,
and a plane if M = 3.

Since the solution of the classification problem involves
determining the weights and the threshold value, the classification
network can be depicted as shown in Figure 4.2, where the input a.

Figure 4.2 A single unit pattern classification network (perceptron).

to the connection involving the threshold value w,, = 8 is always
-1. Defining the augmented input and weight vectors as
a = (-1, a,, ..., aMIT and w = (wo, w,, ..., wMIT, respectively, the per-
ceptron classification problem can be stated as follows:

If wTa > 0, then a belongs to class A,, and
if wTa I 0, then a belongs to class A,.

The equation for the dividing linear hyperplane is wTa = 0.

Perceptron learning law: In the above perceptron classification
problem, the input space is an M-dimensional space and the number
of output patterns are two, corresponding to the two classes. Note
that we use the (M + 1)-dimensional vector to denote a point in the
M-dimensional space, as the a. component of the vector is always -1.
Suppose the subsets A, and Ap of points in the M-dimensional space
contain the sample patterns belonging to the classes A, and A,,
respectively. The objective in the perceptron learning is to
systematically adjust the weights for each presentation of an input
vector belonging to A, or A, along with its class identification. The
perceptron learning law for the two-class problem may be stated as
follows:

w(m + 1) = w(m) + q a, if a E Al and wT(m)a S O

= w(m) - q a, if a E Aq and wT(m)a > 0 (4.36)

102 Feedforward Neural Networks

where the index m is used to denote the learning process at the mth
step. The vectors a and w(m) are the input and weight vectors,
respectively, at the mth step, and 17 is a positive learning rate
parameter. can be varying at each learning step, although it is
assumed as constant in the perceptron learning. Note that no
adjustment of weights is made when the input vector is correctly
classified. That is,

w(m + 1) = w(m), if a E Al and wT(m)a > 0

= w(m), if a E A2 and wT(m)a I 0 (4.37)

The initial value of the weight vector w(0) could be random.
Figure 4.3 shows an example of the decision boundaries at different

Figure 4.3 Illustration of decision boundaries formed during implementation
of perceptron learning for linearly separable classes.

times for a 2-dimensional input vector. The equation of the straight
line is given by

wlal + w2a2 = 8 (4.38)

For different values of the weights during learning, the position
of the line changes. Note that in this example the two classes can be
separated by a straight line, and hence they are called linearly
separable classes. On the other hand consider the example of the
pattern classification problem in Figure 4.4. In this case the straight
line wanders in the plane during learning, and the weights do not
converge to a final stable value, as the two classes cannot be
separated by a single straight line.

Perceptron convergence theorem: This theorem states that the
perceptron learning law converges to a final set of weight values in
a finite number of steps, if the classes are linearly separable. The
proof of this theorem is as follows:

Analysis of Pattern Classification Networks

Figure 4.4 Illustration of decision boundaries formed during implementation
of perceptron learning for linearly inseparable classes.

Let a and w be the augmented input and weight vectors,
respectively. Assuming that there exists a solution w* for the
classification problem, we have to show that w* can be approached
in a finite number of steps, starting from some initial random weight
values. We know that the solution w* satisfies the following
inequality as per the Eq. (4.37):

> a > 0, for each a E Al (4.39)
where

a = min (~ * ~ a \
a € Al

The weight vector is updated if wT(m)a I 0, for a E Al. That is,

w (m + 1) = w (m) +r\ a(m), for a(m) = a E Al, (4.40)

where a(m) is used to denote the input vector a t step m. If we start
with w (0) = 0 , where 0 is an all zero column vector, then

r n - 1

w (m) = 11 z a(i> (4.41)
i = O

Multiplying both sides of Eq. (4.41) by w * ~ , we get

rn-1
w * ~ w (~) = q z ~ * ~ a (i) > qma (4.42)

r = O

since ~ * ~ a (i) > a according to Eq. (4.39). Using the Cauchy-Schwartz
inequality

*T 2 11 w 11 . 1 1 w (m) 1 1 2 2 [~ * ~ w (m) l ~ (4.43)

we get from Eq. (4.42)

104 Feedforward Neural Networks

We also have from Eq. (4.40)

since for learning wT(m)a(m) SO when a (m) E A,. Therefore, starting
from w (0) = 0, we get from Eq. (4.45)

where p = max I1 a(i) /I2. Combining Eqs. (4.44) and (4.46), we obtain
a(i) E A1

the optimum value of m by solving

Since p is positive, Eq. (4.48) shows that the optimum weight value
can be approached in a finite number of steps using the perceptron
learning law.

Alternate proof of the convergence theorem: Assume that a
solution vector w* exists. Then using the following perceptron behaviour

> cx > 0 for a E Al
and

< - a < 0 for a E A2

we can show that the magnitude of the cosine of the angle i$ between
the weight vectors w* and w (m) is given by

where

and

a = min I weTal
a

p = max 1 1 a 112
a

Using the perceptron learning law in Eq. (4.36), and Eqs. (4.49)
and (4.52), we get the following:

Analysis of Pattern Classification Networks 105

wbTw(m + 1) = wbT(w(m) + q N m))

> wbTw(m) + qa , for wT(m)a(m) 5 0 (4.54)

Starting &om w (0) = 0, we get

wbTw(m) > mqa, for wT(m)a(m) SO, and a(m) E Al (4.55)

Likewise, using the perceptron learning law in Eq. (4.36), and Eqs.
(4.50) and (4.52), we get

< w*Tw(m) - q a , for #(m)a(m) > 0

Starting from w(0) = 0, we get

w * ~ w (~) < - mqa, for d (m) a (m) > 0, and a(m) E A2 (4.56)

That is

(~ * ~ w (m) (> mqa, for wT(m)a(m) > 0 , and a(m) E A2 (4.57)

Therefore from Eqs. (4.55) and (4.5'71, we get

I wbTw(m) (> mqa, for all a (4.58)

Similarly, using Eq. (4.36), we get

< I I w(m) 1 1 2 + 2 q &(m)a(m) + 112 P
< 11 w (m) 1 1 2 + q 2 P, for #(m)a(m) SO (4.59)

and

< 11 w(m) 112 + q2 P, for &(m)a(m) > 0 (4.60)

Starting from w (0) = 0, we get for both (4.59) and (4.60)

II w(m> ti2 < mq2P (4.61)

Therefore, from Eqs. (4.51), (4.58) and (4.61), we get

106 Feedforward Neural Networks

Discussion on the convergence theorem: The number of iterations
for convergence depends on the relation between w(0) and w*. Normally
the initial value w(0) is set to 0. The initial setting of the weight
values does not affect the proof of the perceptron convergence theorem.

The working of the perceptron learning can be viewed as follows:
At the (m + 1)th iteration we have

w (m + 1) = w(m) + q a(m), for wT(m)a(m) S O

and a(m) E Al
From this we get

Notice that if wT(m)a(m) < 0, then wT(m + l)a(m) > 0, provided 7 is
chosen as the smallest positive real number (< 1) such that

Thus the given pattern a(m) is classified correctly if it is presented
to the perceptron with the new weight vector w(m + 1). The weight
vector is adjusted to enable the pattern to be classified correctly.

The perceptron convergence theorem for the two class problem is
applicable for both binary (0, 1) and bipolar (-1, + I) input and output
data. By considering a two-class problem each time, the perceptron
convergence theorem can be proved for a multiclass problem as well.
The perceptron learning law and its proof of convergence are
applicable for a single layer of nonlinear processing units, also called
a single layer perceptron. Note that convergence takes place provided
an optimal solution w* exists. Such a solution exists for a single layer
perceptron, only if the given classification problem is linearly
separable. In other words, the perceptron learning law converges to
a solution only if the class boundaries are separable by linear
hyperplanes in the M-dimensional input pattern space.

Perceptron learning as gradient descent: The perceptron learning
law in Eq. (4.36) can also be written as

where b(m) is the desired output, which for the binary case is given by

b(m) = 1, for a (m) € A l , (4.69)

= 0, for a(m) E A2 i4.70)

and s(m) is the actual output for the input vector a(m) to the
perceptron. The actual output is given by

s(m) = 1, if wT(m)a(m) > 0 (4.71)

= 0, if wT(m)a(m) 2 0 (4.72)

Analysis of Pattern Clussifiation Networks 107

From Eq. (4.68) we note that if s(m) = b(m), then w(m+l) = w(m),
i.e., no correction takes place. On the other hand, if there is an error,
s(m) # b(m), then the update rule given by (4.68) is same as the
update rule given in Eq. (4.36).

Note that Eq. (4.68) is also valid for a bipolar output function,
i.e., when s(m) = flwT(m)a(m)) = k 1. Therefore Eq. (4.68) can be
written as

where e(m) = b(m) - s(m) is the error signal. If we use the
instantaneous correlation (product) between the output error e(m) and
the activation value r(m) = wT(m)a(m) as a measure of performance
E(m), then

The negative derivative of E(m) with respect to the weight vector
w(m) can be defined as the negative gradient of E(m) and is given by

Thus the weight update q e(m) a(m) in the perceptron learning irA
Eq. (4.73) is proportional to the negative gradient of the performance
measure E(m).

Perceptron representatlon problem: Convergence in the perceptron
learning takes place only if the pattern classes are linearly separable
in the pattern space. Linear separability requires that the convex
hulls of the pattern sets of the classes are disjoint. A convex hull of
a pattern set A. is the smallest convex set in that contains Ao. A
convex set is a set of points in the M-dimensional space such that a
line joining any two points in the set lies entirely in the region
enclosed by the set. For linearly separable classes, the perceptron
convergence theorem ensures that the final set of weights will be
reached in a finite number of steps. These weights define a linear
hyperplane separating the two classes. But in practice the number
of linearly separable functions will decrease rapidly as the dimension
of the input pattern space is increased [Cameron, 1960; Muroga,
19711. Table 4.3 shows the number of linearly separable functions for
a two-class problem with binary input patterns for different
dimensions of the input pattern space. For binary pattern classifica-
tion problems (M = 2), there are 14 functions which are linearly
separable. The problem in Figure 4.5a is one of the linearly separable
functions. There are two functions which are linearly inseparable, one
of which is shown in Figure 4.5b. These linearly inseparable problems
do not lead to convergence of weights through the perceptron learning

108 Feedforward Neural Networks

law, indicating that these problems are not representable by a single
layer of perceptron discussed so far.

Table 4.3 . Number of Linearly Separable Functions for a Two-class Problem

Dimension of input Number of possible Number of linearly
data M functions 22M separable functions

1 4 4
2 16 14
3 256 104
4 65536 1882
5 - 4.3 lo9 94572
6 - 1.8 x lo1' 15028134

Figure 4.5 Examples of (a) linearly separable and (b) linearly inseparable
classification problems. The classes are indicated by 'x' and '0'.

4.3.2 Linear Inseparability: Hard Problems

A two-layer feedforward network with hard-limiting threshold units
in the output layer can solve linearly separable pattern classification
problems. This is also called a single layer perceptron, as there is
only one layer of nonlinear units. There are many problems which
are not linearly separable, and hence are not representable by a single
layer perceptron. These unrepresentable problems are called hard
problems. Some of these problems are illustrated using the perceptron
model consisting of sensory units, association units and the output
layer as shown in Figure 4.6. The output unit of the perceptron
computes a logical predicate, based on the information fed to it by
the association units connected to it. The association units form a
family of local predicates, computing a set of local properties or
features. The family of local predicates are looking a t a 'retina', which
consists of points on a plane, which in the figure corresponds to the
sensory input. In the simple 'linear' perceptron the output unit looks
at the local predicates from the association units, takes their weighted
sum, compares with a threshold, and then responds with a value for
the overall logical predicate, which is either true or false. If it were

Analysis of Pattern Classification Networks

Weights
Input (adjustable)

Sensory Association Summing Output
units units unit unit

Figure 4.6 Rosenblatt's perceptron model of a neuron.

possible for the local predicates to look at every point in the entire
retina, any possible logical predicate could be computed. This would
be impractical, since the number of possible patterns on the retina
grows exponentially with the size of the retina [Minsky and Papert,
19901. Two important limitations on the local predicates are:
order-limited, where only a certain maximum order of retinal points
could be connected to the local decision unit computing the local
predicate, and diameter-limited, where only a geometrically restricted
region of retina could be connected to the local predicate. The
order-limited perceptron cannot compute the parity problem examples
shown in Figure 4.7, where images with an even number of distinct

Figure 4.7 A parity problem illustrating the order-limited perceptron: (a)
Even parity and (b) Odd parity.

110 Feedforward Neural Networks

unconnected patterns (Figure 4.7a) should produce an output 1,
otherwise the output for the odd number of patterns in Figure 4.7b
should be 0. Likewise the diameter-limited perceptron cannot handle
the connectedness problem examples shown in Figure 4.8, where to
detect connectedness the output of the perceptron should be 1 if there
is only one conneded pattern as in Figure 4.8a, otherwise it should be
0 for patterns shown in F'igure 4.8b [Aleksander and Morton, 19901.

@)
Figure4.8 A connectedness problem illustrating the diameter-limited

perceptron: (a) Connected class and (b) Disconnected class.

4.3.3 Geometrical Interpretation of Hard Problems:
Multllayer Perceptron

In this section the problem of pattern classification and the
performance of feedforward neural networks are discussed in
geometric terms. A pattern classification problem can be viewed as
determining the l~ypersurfaces separating the multidimensional
patterns belonging to different classes. For convenience throughout
this section we consider a Bdimensional pattern space. If the pattern
classes are linearly separable then the hypersurfaces reduce to
straight lines as shown in Figure 4.9. A two-layer network consisting
of two input units and N output units can produce N distinct lines
in the pattern space. These lines can be used to separate different
classes, provided the regions formed by the pattern classification
problem are linearly separable. As mentioned earlier (See Table 4.3),
linearly separable problems are in general far fewer among all
possible problems, especially as the dimensionality of the input space
increases. If the outputs of the second layer are combined by a set
of units forming another layer, then it can be shown that any convex
region can be formed by the separating surfaces [Lippmann, 1987;
Wasseman, 19891. A convex region is one in which a line joining any

Analysis of Pattern Classification Networks

Output layer
(hard-limiting unite)

Input layer
(hear units)

Figure 4.9 An example of linearly separable classes: (a) Network and (b)
Linearly separable classes.

two points is entirely confined to the region itself. Figure 4.10b
illustrates the regions that can be created by a three layer network.
In this case the number of units in the second layer determines the
shape of the dividing surface. The number of units in the third layer
decides the number of classes. It can be seen that the three-layer
network (Fig. 4.10b) is not general enough, as it is not guaranteed
that the class regions in the pattern space form convex regions in all
cases. In fad one could have a situation as shown for the classes with
meshed regions, where the desired classes are enclosed by complicated
nonconvex regions. Note that intersection of linear hyperplanes in the
three layer network can only produce convex surfaces.

However, intersection of the convex regions may produce any
nonconvex region also. Thus adding one more layer of units to
combine the outputs of the third layer can yield surfaces which can
separate even the nonconvex regions of the type shown in Figure
4.10~. In fad it can be shown that a four-layer network with the
input layer consisting of linear units, and the other three layers
consisting of hard-limiting nonlinear units, can perform any complex
pattern classification tasks. Thus all the hard problems mentioned
earlier can be handled by a multilayer feedforward neural network,
with nonlinear units. Such a network is also called a multilayer
perceptron. Note that the two-layer network in Figure 4.10a is a

112 Feedforward Neural Networks

single-layer perceptron, and the three-layer and four-layer networks
in the Figures 4.10b and 4.10~ are two-layer and three-layer
perceptrons, respectively.

Figure 4.10 Geometrical interpretation of pattern classification. The figure
shows decision regions for different layers of perceptron
networks. [Adapted from Lippmann, 19871.

The above discussion is focussed primarily on a multilayer
perceptron network with units having hard-limiting nonlinear output
functions. Similar behaviour is expected from a multilayer feed-
forward neural network when the output functions of the units are
continuous nonlinear functions, such as sigmoid functions. In these
cases the decision regions are typically bounded by smooth surfaces
instead of linear hyperplanes, and hence geometrical visualization
and interpretation is difficult.

Table 4.4 gives a summary of the discussion on the perceptron
network. The main difficulty with a multilayer perceptron network
is that it is not straightforward to adjust the weights leading to the
units in the intermediate layers, since the desired output values of
the units in these layers are not known. The perceptron learning uses
the knowledge of the error between the desired output and the actual
output to adjust the weights. From the given data only the desired

Analysis of Pattern Mapping Networks

Table 4.4 Summary of Issues in Perceptron Learning

1. Perceptron network
Weighted sum of the input to a unit with hard-limiting output function

2. Perceptron classification problem
For a two class (A, and A,) problem, determine the weights (w) and
threshold (8) such that

&a-9>0 , for a € A l and w Ta- 850 , for ~ E A , .

3. Perceptron learning law
The weights are determined in an iterative manner using the following
learning law at the (m + l)& iteration:

w(m + 1) = w(m) + q a(m), for wT(m)a(m) 5 8 and a(m) E Al

= w(m) -q a(m), for wT(m)a(m) > 8 and a(m) E A,
where T(is a (positive) learning rate parameter.

4. Perceptron learning as gradient descent
The perceptron learning law can be rewritten as a single equation:

w(m + 1) = w(m) + q e(m) a(m), where e(m) = b(m) - s(m).
Denoting

Aw(m) = e(m) a h) ,
we have

- aE(m)
Aw(m) = rl-

aw(m)
where E(m) = - e(m) wT(m)a(m:

5. Perceptron convergence theorem
The perceptron learning law converges in a finite number of steps,
provided that the given classification problem is representable.

6. Perceptron representation problem
A classification problem is representable by a single layer perceptron if
the classes are linearly separable, i.e., separable by linear hyperplanes in
the input feature space. Classification problems that are not linearly
separable are called hard problems.

7. Multilayer perceptron
Any pattern classification prohlem, including the hard problems, can be
represented by a multilayer perceptron network.

output values of the units in the final output layer are known. Thus,
although a multilayer perceptron network can handle hard problems,
the problem of learning or training such a network, called hard
learning problem, remains. This problem is discussed in detail in the
following section.

4.4 Analysis of Pattern Mapping Networks

4.4.1 Pattern Mapping Problem

If a set of input-output pattern pairs is given corresponding to an

114 Feedforward Neural Networks

arbitrary function transforming a point in the M-dimensional input
pattern space to a point in the N-dimensional output pattern space,
then the problem of capturing the implied functional relationship is
called a mapping problem. The network that accomplishes this task
is cdled a mapping network. Since no restriction such as linear
separability is placed on the set of input-output pattern pairs, the
pattern mapping problem is a more general case of pattern
classification problem.

Note that the objective in the pattern mapping problem is to
capture the implied function, i.e., the generalization implied in the
given input-output pattern pairs. This can also be viewed as an
approximation of the function from a given data. For a complex
system with multiple (M) inputs and multiple 0 outputs,' if several
input-output pattern pairs are collected during experimentation, then
the objective in the pattern mapping problem is to capture the system
characteristics from the observed data. For a new input, the captured
system is expected to produce an output close to the one that would
have been obtained by the real system. In terms of function
approximation, the approximate mapping system should give an
output which is close to the values of the real function for inputs
close to the current input used during learning. Note that the
approximate system does not produce strictly an interpolated output,
as the function finally captured during learning may not fit any of
the points given in the training set. This is illustrated in Figure 4.11.

1 *
input X

Fig- 4.11 Function approximation in pattern mapping problem.

4.4.2 Pattern Mapping Network

Earlier we have seen that a multilayer feedforward neural network
with at least two intermediate layers in addition to the input and
output layers can perform any pattern classification task. Such a
network can also perform a pattern mapping task. The additional
layers are called hidden layers, and the number of units in the hidden
layers depends on the nature of the mapping problem. For any

Analysis of Pattern Mapping Networks 115

arbitrary problem, generalization may be difficult. With a sufficiently
large size of the network, it is possible to (virtually) store all the
input-output pattern pairs given in the training set. Then the network
will not be performing the desired mapping, because it will not be
capturing the implied functional relationship between the given
input-output pattern pairs.

Except in the input layer, the units in the other layers must be
nonlinear in order to provide generalization capability for the
network. In fact it can be shown that, if all the units are linear, then
a multilayer network can be reduced to an equivalent two-layer
network with a set of N x M weights.

Let W,, W, and W3 be the weight matrices of appropriate sizes
between the input layer and the first hidden layer, the first hidden
layer and the second hidden layer, and the second hidden layer and
the output layer, respectively. Then if all the units are linear, the
output and input patterns are related by the weight matrix containing
N x M weight elements. That is,

WN X M = W3W2w1 (4.76)

As can be seen easily, such a network reduces to a linear associative
network. But if the units in the output layer are nonlinear, then the
network is limited by the linear separability constraint on the
function relating the input-output pattern pairs. If the units in the
hidden layers and in the output layer are nonlinear, then the number
of unknown weights depend on the number of units in the hidden
layers, besides the number of units in the input and output layers.
The pattern mapping problem involves determining these weights,
given a training set consisting of input-output pattern pairs. We need
a systematic way of updating these weights when each input-output
pattern pair is presented to the network. In order to do this updating
of weights in a supervisory mode, it is necessary to know the desired
output for each unit in the hidden and output layers. Once the desired
output is known, the error, i.e., the difference between the desired
and actual outputs from each unit may be used to guide the updating
of the weights leading to the unit from the units in the previous layer.
We know the desired output only for the units in the final output
layer, and not for the units in the hidden layers. Therefore a
straightforward application of a learning rule, that depends on the
difference between the desired and the actual outputs, is not feasible
in this case. The problem of updating the weights in this case is called
a hard learning problem.

The hard learning problem is solved by using a differentiable
nonlinear output function for each unit in the hidden and output
layers. The corresponding learning law is based on propagating the
error from the output layer to the hidden layers for updating the
weights. This is an error correcting learning law, also called the

116 Feedforward Neural Networks

generalized delta rule. It is based on the principle of gradient descent
along the error surface.

Appendix C gives the background information needed for under-
standing the gradient descent methods. Table 4.5 gives a summary
of the gradient search methods discussed in the Appendix C. In the
following section we derive the generalized delta rule applicable for
a multilayer feedforward network with nonlinear units.

Table 45 Summary of Basic Gradient Search Methods

1. Objective

Determine the optimal set of weights for which the expected error E(w)
between the desired and actual outputs is minimum.
For a linear network the error surface is a quadratic function of the
weights

The optimumweight vector w* is given by

w' = w -i R-'v, where V = dE/dw
2

and R is the autocorrelation matrix of the input data.

2. Gradient Search Methods

We can write the equation for adjustment of weights as

If R and V, are known exactly, then the above adjustment gives w' in
one step starting from any initial weights d m) .
If R and V, are known only approximately, then the optimum weight
vector can be obtained in an iterative manner by writing

where q < 112 for convergence. This is Newton's method. The error
moves approximately along the path from w(m) to w*. Here q is a
dimensionless quantity.
If the weights are adjusted in the direction of the negative gradient at
each step, it becomes method of steepest descent.

w(m + 1) = w(m) + CL (- V,),
where p < 1 4 2 A,-) for convergence and A,- i s the largest
eigenvalue of R. The learning rate parameter CI, has the dimensions of
inverse of signal power. Here convergence is slower than in the
Newton's method.
In general, the gradient cannot be computed, but can only be estimated.
Hence convergence of the gradient descent methods is not guaranteed.
The estimate depends on our knowledge of the error surface.

Analysis of Pattern Mapping Networks 117

Table 4.6 (Cont.)

3. Nature of error d a c e
Error surface may not be quadratic if R ie to be estimated from a small
eet of samples.
Error surface ie not quadratic for instantaneous measurement of error.
Error eurface is also not quadratic if the processing units are nonlinear.
Error eurface is not predictable for nonstationary input data, eince R
will be varying with time.

4. Estimation of gradient
Derivative measurement: Uses general ,howledge of the error surface.
Inetantaneous measurement (linear units): Uses epecific knowledge of
the error eurface.
LMS algorithm. Leads to convergence in the mean (stachaetic gradient
descent).
Instantaneous measurement (nonlinear units): Usee specific knowledge
of the error surface.
Delta rule. No guarantee of convegence even in the mean as in the
LMS algorithm.

4.4.3 Generalized Delta Rule: Backpropagation learning

The objective is to develop a learning algorithm for a multilayer ,

feedforward neural network, so that the network can be trained to
capture the mapping implicit in the given set of input-output pattern
pairs. The approach to be followed is basically a gradient descent
along the error surface to arrive at the optimum set of weights. The
error is defined as the squared difference between the desired output
(i.e., given output pattern) and the actual output obtained at the
output layer of the network due to application of an input pattern
from the given input-output pattern pair. The output is calculated
using the current setting of the weights in all the layers. The optimum
weights may be obtained if the weights are adjusted in such a way
that the gradient descent is made along the total error surface. But
$he desirable characteristic of any learning law is to specify the
incremental update of the weights of the network for each
presentation of an input-output pattern pair. While this may result
in a suboptimal solution, in most cases of practical significance the
result is acceptable.

A learning law, called generalized delta rule or backpropagation
law, is derived in this section [Werbos, 1974; Rumelhart et al, 1986al.
Let (%, b,), 1 = 1,2, ..., L be the set of training pattern pairs. It is
not necessary to have all the training data set at one time, nor the
training data set to be a finite set. The objective is to determine the
weight update for each presentation of an input-output pattern pair.

118 Feedforward Neural Networks

Since the given data may be used several times during training, let
us use the index m to indicate the presentation step for the training
pair at step m.

For training a multilayer feedforward neural network, we use the
following estimate of the gradient descent along the error surface to
determine the increment in the weight connecting the units j and i:

where q > 0 is a learning rate parameter, which may also vary for
each presentation of the training pair. The weight update is given by

The generalized delta rule to be derived below consists of
deriving expressions for hii for the connections at different layers.
Let us consider the multilayer feedforward neural network given in
Figure 4.12. The network consist of three layers of units, the first

Figure 4.12 A three layer feedforward neural network.

layer has I linear input units indexed by i, the second layer has J
nonlinear units indexed by j, and the third layer has K nonlinear
units indexed by k . For simplicity only one layer (the second layer)
of hidden units is considered here. Extension of learning to a network
consisting of several hidden layers is trivial.

Since the input vector a(m) is given at the input layer and the
desired output b(m) is available only at the output layer, the error
between the desired output vector b(m) and the actual output vector
b'(m) is available only at the output layer. Using this error it is
necessary to adjust the weights (wt) from the input units to the
hidden units, and the weights (w ~ j from the hidden units to the
output units.

Let (a(m), b(m)) be the current sample of the function mapping
the input space to the output space $! + $. Let b'(m) be the actual
output of the network for the input a(m) at the step m. The mean
squared error at the mth step is given by

Analysis of Pattern Mapping Networks 119

where

The superscript '0' refers to the output units quantities, the
superscript 'h' refers to the hidden units quantities, and ai , xi , and
si refer to the input, activation and output values for the unit i,
respectively. For the weights leading to the units in the output layer:

where 6i = (bk - e. Here the iteration index is omitted in all the
functions and variables on the right hand side for convenience.
Therefore

h h y (m) = qQsj (4.89)

and

= w,(m) + 11%~:. (4.91)

For the weights leading to the units in the hidden layer:

Feedforward Neural Networks

K ash

= - Z (b k - f ;) c w,'
k = l

awh '
Jr

Since sjh = fih(xjh), we get

Since xjh = Z W; si , we get
i = l - ax;

7 = Si awji
Therefore

K -- aE(m) - - (bk - f f) h W , $' si a4 & = I

= -6hs.
J r

where

Hence
~ w ; (m) = q 6; si = q 6; ai(m)

since si = xi = ai(m). Therefore

K
where 6: = $' kz lw, 6; represents the error propagated back to the

output of the hidden units from the next layer, hence the name
backpropagation for this learning algorithm. Table 4.6 gives a
summary of the backpropagation learning algorithm.

4.4.4 Discussion on Backpropagation Law

There are several issues which are important for understanding and
implementing the backpropagation learning in practice [Haykin,
1994; Russo, 1991; Guyon, 1991; Hush and Horne, 1993; Werbos,
19941. A summary of the issues is given in Table 4.7. A few of these
issues will be discussed in this section.

Analysis of Pattern Mapping Networks 121

Table 4.6 Backpropagation Algorithm (Generalized Delta Rule)

Given a set of input-output patterns (al, bl), I = 1, 2, ... L,
where the lth input vector al = (all, al,, ..., all)T and the lth output vector
bl = (bll, b12, a * . , QT.

Assume only one hidden layer and initial setting of weights to be arbitrary.
Assume input layer with only linear units.
Then the output signal is equal to the input activation value for each of these
units. Let q be the learning rate parameter.
Let a = a(m) = a1 and b = b(m) = bl.
Activation of unit i in the input layer, xi = ai(m)

I

Activation of unit j in the hidden layer, < = C wi xi

Output signal from the jth unit in the hidde; iAyer, s: = l'jh($)
J

h Activation of unit k in the output layer, xi = C wU sj
j = 1

Output signal from unit k in the output layer, si = c(xi)
Error term for the kth output unit, 6'; = (bk - s';) c
Update weights on output layer, wh(m + 1) = w,&m) +q6i s;

K
Error term for the jth hidden unit, 6; = C 6: wU

k = l
Update the weights on the hidden layer, wi(m + 1) = wi(m) +@ ai

1
Calculate the error for the lth pattern, El = 2 (b, - s;)'

L k = l

Total error for all patterns, E = C El
1 = 1

Apply the given patterns one by one, may be several times, in some random
order and update the weights until the total error reduces to an acceptable
value.

Table 47 Issues in Backpropagation Leanung

Description and features of backpropagation

Significance of error backpropagation
Forward computation (inner product and nonlinear fundion)
Backward operation (error calculation and derivative of output function)
'Nature of output function (semilinear)
Stochastic gradient descent
Local computations
Stopping criterion

Performance of backpropagation learning

Initialization of weights
Presentation of training patterns: Pattern and batch modes

Feedforward Neural Networks

Table 4.7 Issues in Backpropagation Learning (Cont.)

Learning rate parametqr q
- Range and value of q for stability and convergence
- Learning rate adaptation for better convergence
Momentum term for faster convergence
Second order methods for better and faster convergence

Refinement of backpropagation learning
Stochastic gradient descent, not an optimization lpethod
Nonlinear system identification: Extended Kalman-type algorithm
Unconstrained optimization: Conjugate-gradient methods
Asymptotic estimation of a posteriori class probabilities
Fuzzy backpropagation learning

Interpretation of results of learning
Ill-posed nature of solution
Approximation of functions
Good estimation of decision surfaces
Nonlinear feature detector followed by linearly separable classification
Estimation of a posteriori class probabilities

Generalization
VC dimension
Cross-validation
Loading problem
Size and efficiency of training set data
Architectures of network
Complexity of problem

Tasks with backpropagation network
Logic function
Pattern classification
Pattern mapping
Function approximation
Probability estimation
Prediction

Limitations of backpropagation learning
Slow convergence (no proof of convergence)
Local minima problem

' 0 Scaling
Need for teacher: Supervised learning

Extensions to backpropagation

Learning with critic
Regularization
Radial basis functions
Probabilistic neural networks
Fuzzy neural networks

Analysis of Pattern Mapping Networks 123

Description and features of backpropagation: The training patterns
are applied in some random order one by one, and the weights are
adjusted using the backpropagation learning law. Each application of
the training set patterns is called a cycle. The patterns may have to
be applied for several training cycles to obtain the output error to an
acceptable low value. Once the network is trained, it can be used to
recall the appropriate pattern (in this case some interpolated output
pattern) for a new input pattern. The computation for recall is
straightforward, in the sense that the weights and the output
functions of the units in different layers are used to compute the
activation values and the output signals. The signals from the output
layer correspond to the output.

Backpropagation learning emerged as the most significant result
in the field of artificial neural networks. In fact it is this learning
law that led to the resurgence of interest in neural networks, nearly
aRer 15 years period of lull due to exposition of limitations of the
perceptron learning by Minsky and Papert (1969). In this section we
will discuss various features including limitations of the backpre
pagation learning. We will also discuss the issues that determine the
performance of the network resulting from the learning law. We will
discuss these issues with reference to specific applications, and also
with reference to some potential applications of the multilayer
feedforward neural networks.

As noted earlier, the backpropagation learning involves
propagation of 'the error backwards from the output layer to the
hidden layers in order to determine the update for the weights leading
to the units in a hidden layer. The error at the output layer itself is
computed using the difference between the desired output and the
actual output at each of the output units. The actual output for a
given input training pattern is determined by computing the outputs
of units for each hidden layer in the forward pass of the input data.
Note that the error in the output is propagated backwards only to
determine the weight updates. There is no feedback of the signal
itself at any stage, as it is a feedforward neural network.

Since the backpropagation learning is exactly the same as the
delta learning (see Section 1.6.3) at the output layer and is similar
to the delta learning with the propagated error at the hidden layers,
it is also called generalized delta rule. The term 'generalized' is used
because the delta learning could be extended to the hidden layer
units. Backpropagation of error is possible only if the output functions
of the nonlinear processing units are differentiable. Note that if these
output functions are linear, then we cannot realize the advantage of
a multilayer network to generate complex decision boundaries for a
nonlinearly separable (hard) classification problems. In fact a multi-
layer feedforward network with linear processing units is equivalent
to a linear associative network, as discussed in Eq. (4.76), which, in

124 Feedforward Neural Networks

turn, is limited to solving simple pattern association problems. On
the other hand, hard-limiting output function as in a multilayer
perceptron cannot be used for learning the weights. A common
differentiable output function used in the backpropagation learning
is one which possesses a sigmoid nonlinearity. Two examples of
sigrnoidal nonlinear function are the logistic function and hyperbolic
tangent function (See Figure 4.13):

(a) Logistic function and its derivative

f(x) = tanh px 2
f (4 = PO - f (x))

(b) Hyperbolic tangent function and its derivative

Figure 4.13 Logistic and hyperbolic tangent functions and their derivatives
for p = 0.5.

Logistic function

1
fix) = -- , - w < x < m (4.100)

1 +ez

Hyperbolic function

For the logistic function the limits are 0 I Ax) I 1, and for the
hyperbolic tangent function the limits are - 1 I Ax) I 1.

Analysis of Pattern Mapping Networks

Let us consider the derivative of the logistic function

It can be seen from Eq. (4.102) that Ax) has the maximum value
of 0.25 when f(x) = 0.5, and has the minimum value of 0 when f i x)
= 0 or 1. Since the amount of change in the weight value leading to
any unit i in the network is proportional to fi(x), the change is
maximum in the midrange of the activation value. This feature of
the learning law contributes to its stability [Rumelhart et al, 1986al.

Note that the hyperbolic tangent function can be viewed as a
biased and scaled version of the logistic function. That is

The asymmetry of the hyperbolic tangent function seems to make the
learning faster by reducing the number of iterations required for
training [Guyon, 19911.

The backpropagation learning is based on the gradient descent
along the error surface. That is, the weight adjustment is proportional
to the negative gradient of the error with respect to the weight. The
error is the instantaneous error between the desired and the actual
values of the output of the network. This instantaneous error is due
to a given training pattern, which can be assumed to be a sample
function of a random process. Thus the error can be assumed to be
a random variable. Therefore this gradient descent method is a
stochastic gradient learning method. Due to this stochastic nature,
the path to the minimum of the error surface will be zigzag. The
error surface itself will be an approximation to the true error surface
determined by the entire training set of patterns. Moreover, even the
true error surface is not a smooth quadratic surface as in the case
of the Adaline. In fact the error surface may contain several local
minima besides the global minimum. Hence the stochastic approxima-
tion of the gradient descent used in the backpropagation learning
need not converge. There is no proof of convergence even in the mean
as in the case of the LMS algorithm. The issues in the convergence
of gradient descent methods are summarized in Table 4.8.

Since there is no proof of convergence, some heuristic criteria are
used to stop the process of learning. They are based on the values of
the gradient and the error in successive iterations and also on the
total number of iterations. The average gradient value over each
training cycle (presentation of all the training patterns once) is
observed, and if this average value is below a preset threshold value
for successive cycles, then the training process may be stopped.
Likewise, the training process may be stopped using a threshold for
the average error and observing the average error in successive cycles.

Feedforward Neural Networks

Table 4.8 Gradient Descent and Convergence

1. Let the input-output vector pair (a, b) be the sample function of a random
process.
True ensemble average of the error

where e(m) is the instantaneous error for a given sample function. For
linear units the error surface E(w) is a smooth bowl-shaped in the weight
space and hence the gradient descent dE/dWii converges to the optimal
weight vector w*.

2. Estimation of the error from a finite set of input-output pairs:
M

E(w) = C e2(m)
m = l

For linear units, this error surface is an approximation to the bowl-shape
in the weight space and hence convergence of the gradient descent is only
approximate.

3. Instantaneous error (Linear units):

For linear units, the gradient descent converges only in the mean
(stochastic convergence)

4. Instantaneous error (Nonlinear units):

For nonlinear units, there is no proof of convergence even in the stochastic
sense.

Sometimes both the average gradient as well as the average error
may be used in the stopping criterion. But the main objective is to
capture the implicit pattern behaviour in the training set data so that
adequate generalization takes place in the network. The
generalization feature is verified by testing the performance of the
network for several new (test) patterns.

Performance of the backpropagatlon leamlng law: The performance
of the backpropagation learning law depends on the initial setting of
the weights, learning rate parameter, output functions of the units,
presentation of the training data, besides the specific pattern
recognition task (like classification, mapping, etc.) or specific
application (like function approximation, probability estimation,
prediction, logic function, etc.). It is important to initialize the weight
values properly before applying the learning law for a given training
set [Hush et al, 1991; Lee et al, 19911. Initial weights cmespond to
a priori knowledge. If we have the knowledge and also if we know
how to present the knowledge in the form of initial weights, then the
overall performance of the resulting trained network in terms of speed

Analysis of Pattern Mapping Networks 127

of learning and generalization would improve significantly. In general
it is not known how to collect the relevant knowledge a priori. The
more difficult part is to know how to include it in the form of weighta.
Therefore all the weights in the network are initialized to random
numbers that are unifo~mly distributed in a small range of values.
The range is typically [- a I@, + a I Kl where Ni is the number of
inputs to the ith unit. Thus the range can be different for each unit.
The value of a is typically in the range (1 to 3) [Weasels and Barnard,
19921. Initial weighta that are in very small range will result in long
learning times. On the other hand, large initial weight values may
result in the network output values in the saturation region of the
output function. In the saturation region the gradient value is small.
If the saturation is at the incorrect level, it may result in slow
learning due to small changes made in the weighta in each iteration.
Incorrect saturation rarely occurs if the unit operates in the linear
range of the output function.

Adjustment of the weights using backpropagation learning law is
done by presenting the given set of training patterns several times.
Randomizing the presentation of these patterns tends to make the
search in the weight space stochastic, and thus reduces the possibility
of limit cycles' in the trajectory in the weight space during learning
[.Baykin, 1994, p. 1511. Presentation of the training data pattern by
pattern for a4ustment of the weights makes it possible to have the
learning online. This pattern mode also reduces the problem of local
minima. But to speed up the learning process it is preferable to
update the weights in a batch mode, in which the gradient of the
error, computed over all the training patterns, is used. The batch.
mode gives a better estimation of the gradient of the overall error
surface.

Learning rate parameter q plays a crucial role in the
backpropagation learning. The order of values for q depends on the
variance of the input data. For the case of Adaline, the learning rate
parameter q < 11 (Zh,,), where &,, is the largest eigenvalue of the
autocorrelation matrix of the input data. This gives an indication for
the choice of q, since the derivation in the backpropagation does not
suggeat any clue for this choice. Since it is a stochastic gradient
descent learning, too small an q will result in a smooth trajectory in
the weight space, but takes long time to converge. On the other hand,
too large an q may increase the speed of learning, but will result in
large random fluctuations in the weight space, which in turn may
lead to an unstable situation in the sense that the network weights
may not converge.

It is desirable to adjust the weights in such a way that all the
units learn nearly at the same rate. That is, the net change in all
the weights leading to a unit should be nearly the same. To
accomplish this, the learning rate parameters should be different for

128 Feedforward Neural Networks

different weights. The weights leading to a unit with many inputs
should have smaller compared to the 11 for the weights leading to
a unit with fewer inputs. Also, the gradient of the error with respect
to the weights leading to the output layer will be laEger than the
gradient of the error with respect to the weights leading to the hidden
layers. Therefore the learning rate parameters 11 should be typically
smaller for the weights at the output layer and larger for the weights
leading to the units in the hidden layers. This will ensure that the
net change in the weights remains nearly the same for all layers.

Better convergence in learning can be achieved by adapting the
learning rate parameter 11 suitably for each iteration. For this the
change in is made proportional to the negative gradient of the
instantapeous error with respect to 11 [Haykin, 1994, p. 1951. That is

\

where y is a proportionality constant.
It was shown in [Haykin, 19941 that

This is called delta-delta learning rule [Jacobs, 19881. The change
in the learning rate parameter depends on the instantaneous
gradients at the previous two iterations. In this learning it is difficult
to chmse suitable values for the proportionality constant y if the
magnitudes of the two gradients in the product are either too small
or too large. To overcome this limitation a modification of the above
learning rule, namely, delta-bar-delta learning rule was proposed
[Jacobs, 1988; Minai and Williams, 19901.

The adaptation of the learning rate parameter using the
delta-delta learning rule or the delta-bar-delta learning rule slows
down the backpropagation learning significantly due to additional
complexity in computation at each iteration. It is possible to reduce
this complexity by using the idea of the gradient reuse method, in
which the gradient estimate is obtained by averaging the gradient
values corresponding to several training patterns. Thus

where 1 is the index for training pattern and $(m) is the propagated
error. The learning rate parameter %i(m) is also computed using the
averaged gradient for several training patterns.

The values of the learning rate parameters computed using any
of the above methods are very low, thus resulting in slow learning.

Analysis of Pattern Mapping Networks 129

One way to increase the rate of learning is by using a momentum
term in the weight change as follows [:Plaut et al, 1986; Fahlman,
1989; Rumelhart et al, 1986al:

where 0 I a < 1 is the momentum constant. The use of the momentum
term accelerates the descent to the minimum of the error surface. It
will also help in reducing the effects of local minima of the error surface.

The expression for the updated weight which includes momentum
term as well as the learning rate adaptation is given by

L
+ rl,i(m) a+) sf(m) (4.108)

1 = 1

Normally the backpropagation learning uses the weight change
proportional to the negative gradient of the instantaneous error. Thus
it uses only the first derivative of the instantaneous error with respect
t o the weight. If the weight change is made using the information in
the second derivative of the error, then a better estimate of the
optimum weight change towards the minimum may be obtained. The
momentum method is one such method where both the weight change
at the previous step and the gradient at the current step are used to
determine the weight change for the current step.

More effective methods [Battiti, 19921 can be derived starting
with the following Taylor series expression of the error as a function
of the weight vector

aE a2E
where g = - is the gradient vector, and H = - aw M the Hessian

matrix. For small Aw, the higher order terms can be neglected, so
that we get

AE = E(w + Aw) - E(w) (4.110)

Taking the derivative of E with respect to w gives the pdient . That is

On the other hand, taking the derivative of AE with respect to Aw
gives

130 Feedforward Neural Networks

Setting this to zero gives an optimum value of Aw, taking upto the
second order term into account. Therefore

Thus the new weight vedor taking the optimal value of Aw is given by

This is the Newton's method. Note that this is similar to the
expression (C. 17) in Appendix-C.

For the quadratic error function E(w), the optimal step Aw* will
lead to the final weight value w* starting from any initial weight
vector ~ (0) . That is

provided H-'g is known at w = w(0). For a nonquadratic error
surface, as in the network with nonlinear units, the Newton's method
gives the optimal weight change if the variation of the error is
considered only upto the second derivative. Note that the Newton's
method is different from the gradient descent. Since the Newton's
method uses more information of the error surface than the gradient
descent, it is expected to converge faster. But there is no guarantee
that this choice of the weight change will converge.

Implementation of Newton's method is cumbersome due to the
need for computation of the Hessian matrix. Methods were proposed
which will avoid the need for the computation of the Hessian matrix.
The conjugate gradient method is one such method, where the
increment in the weight at the mth step is given by

where the direction of the increment d(m) in the weight is a linear
combination of the current gradient vector and the previous direction
of the increment in the weight. That is

where the value of a(m) is obtained in terms of the gradient by one
of the following formulae Fletcher and Reeves, 1964; Polak and
Ribiere, 19691.

Computation of the learning rate parameters q(m) in Eq. (4.117)
requires line minimization for each iteration [Johansson et al, 19901.

Analysis of Pattern Mapping Networks 131

The objective is to determine the value of q for which the error
E[w(m) +q d(m)l is minimized for given values of w(m) and d(m).
Performance of the conjugate-gradient method depends critically on
the choice of q(m) and hence on the line minimization. But generally
the conjugate-gradient method converges much faster than the
standard backpropagation learning, although there is no proof of
convergence in this case also due to the nonquadratic nature of the
error surface [Kramer and Sangiovanni-Vincentelli, 19891.

Refinements of the backpropagation learning: The backpropagation
learning is based on the steepest descent along the surface of the
instantaneous error in the weight space. It is only a first order
approximation of the descent as the weight change is assumed to be
proportional to the negative gradient. The instantaneous error is a
result of a single training pattern, which can be viewed as a sample
function of a random process. The search for the global minimum of
the error surface is stochastic in nature as it uses only the
instantaneous error at each step. The stochastic nature of the
gradient descent results in a zig-zag path of the trajectory in the
weight space in our search for the global minimum of the error
surface. Note that the zig-zag path is also due to the nonquadratic
nature of the error surface, which in turn is due to the nonlinear
output functions of the units. Note also that the backpropagation
learning is based only on the gradient descent and not on any
optimization criterion.

A better learning in terms of convergence towards the global
minimum may be achieved if the information from the given training
patterns are used more effectively. One such approach is based on
posing the supervised learning problem as a nonlinear system
identification problem [Haykin, 19911. The resulting learning
algorithm is called an extended Kalman-type learning [Singhal and
Wu, 19891 which uses piecewise linear approximation to the nonlinear
optimal filtering problem.

Better learning can also be achieved if the supervised learning is
posed as an unconstrained optimization problem, where the cost
function is the error function E(w) [Battiti, 19921. In this case the
optimal value of the increment in the weight is obtained by
considering only upto second order derivatives of the error function.
The resulting expression for the optimal Aw requires computation of
the second derivatives of E(w) with respect to all the weights, namely,
the Hessian matrix. The convergence will be faster than the gradient
descent, but there is no guarantee for convergence in this case also.

A multilayer feedforward neural network with backpropagation
learning on a finite set of independent and identically distributed
samples leads to an asymptotic approximation of the underlying a
posteriori class probabilities provided that the size of the training set

132 Feedfornard Neural Networks

data is large, and the learning algorithm does not get struck in a
local minima [Hampshire and Pearlmutter, 19901.

If the a posteriori conditional probabilities are used as the desired
response in a learning algorithm based on an information theoretic
measure for the cost function [Kullback, 1968; Haykin, 1994, Sec.
6.201, then the network captures these conditional probability
distributions. In particular, the output of the network can be
interpreted as estimates of the a posteriori conditional probabilities
for the underlying distributions in the given training data.

Yet another way of formulating the learning problem for a
multilayer neural network is by using the fuzzy representation for
input or output or for both. This results in a fuzzy backpropagation
learning law [Ishibuchi et al, 19931. The convergence of the fuzzy
backpropagation learning is significantly faster, and the resulting
minimum mean squared error is also significantly lower than the
usual backpropagation learning.

Interpretation of the result of learning: A trained multilayer feed-
forward neural network is expected to capture the functional
relationship between the input-output pattern pairs in the given
training data. It is implicitly assumed that the mapping function
corresponding to the data is a smooth one. But due to limited number
of training samples, the problem becomes an ill-posed problem, in the
sense that there will be many solutions satisfying the given data, but
none of them may be the desired/conect one [Tikhonov and Arsenin,
1977; Wieland and Leighton, 19871. Figure 4.14 illustrates the basic

Input

Output

Figure 4.14 Illustration of an ill-pwd problem for a function of one variable.

Training
data points Function realized

due to overtraining

X

idea of an ill-posed problem for a function of one variable. Given the
samples marked 'x', the objective is to capture the function
represented by the solid curve. But depending on the size of the
network, several solutions are possible, including the overtraining
situations (shown by dotted curve) in which for all the training data

Analysis of Pattern Mapping Networks 133

the error is zero. In fact there could be several functions passing
through the given set of points, none of which is the desired one. This
happens if the number of free parameters (weights) of the network
is very large. Such a situation results in a large error when some
other (test) samples are given to validate the network model for the
function. This is called 'poor generalization' by the network. On the
other hand, fewer number of the free parameters may result in a
large error even for the training data, and hence a poor approximation
to the desired function. The function approximation interpretation of
a multilayer feedforward neural network enables us to view different
hidden layers of the network performing different functions. For
example, the first hidden layer can be interpreted as capturing some
local features in the input space. The second hidden layer can be
interpreted as capturing some global features. This two-stage
approximation has been shown to realize any continuous
vector-valued function [Sontag, 1992bl. The universal approximation
theorem of Cybenko seems to suggest that even a single layer of
nonlinear units would suffice to realize any continuous function
[Cybenko, 19891. But this result assumes that a hidden layer of
unlimited size is available, and that the continuous function to be
approximated is also available. Thus Cybenko's theorem gives only
an existence proof, but it is not useful to realize the function by
training a single hidden layer network.

A trained multilayer neural network can be interpreted as a
classifier, with complex decision surfaces separating the classes.
These decision surfaces are due to multiple layers of nonlinear units.
In the limiting case of hard-limiting nonlinear units, the geometrical
arguments for the creation of the complex decision surfaces in a
multilayer perceptron discussed in Section 4.3.3 are applicable.

It is also possible to view that the hidden layers perform a
nonlinear feature extraction to map the input data into linearly
separable classes in the feature space. At the output layer the unit
with the largest output is considered as the class to which the input
belongs.

As mentioned earlier, the output of a trained multilayer neural
network can also be considered as an approximation to the a
posteriori class probabilities.

Generalization: A backpropagation learning network is expected to
generalize from the training set data, so that the network can be
used to determine the output for a new test input. As mentioned
earlier, 'generalization' is different from 'interpolation', since in
generalization the network is expected to model the unknown system
or function from which the training set data has been obtained. The
problem of determination of weights from the training set data is
called the loading' problem [Judd, 1990; Blum and Rivest, 19921. The

134 Feedforward Neural Networks

generalization performance depends on the size and efficiency of the
training set, besides the architecture of the network and the
complexity of the problem [Hush and Horne, 19931. Testing the
performance of the network with new data is called cross-validation.
If the performance for the test data is as good as for the training
data, then the network is said to have generalized from the training
data. Further discussion on generalization is given later in Section
7.3 and in Appendix D.

Tasks with backpropagation network: A backpropagation network
can be used for several applications such as realization of logic
functions, pattern classification, pattern mapping, function approxi-
mation, estimation of probability distribution and prediction [Hush
and Horne, 19931. These tasks were demonstrated in several real
world applications such as in speech, character recognition, system
identification, passive sonar detection/classification, speech synthesis,
etc. [Sejnowski and Rosenberg, 1987; Cohen et al, 1993; LeCun et al,
1990; Narendra and Parthasarathy, 1990; Casselman et al, 19911.

Limitations of backpropagation: The major limitation of the back-
propagation learning is its slow convergence. Moreover, there is no
proof of convergence, although it seems to perform well in practice.
Due to stochastic gradient descent on a nonlinear error surface, it is
likely that most of the time the result may converge to some local
minimum on the error surface [Gori and Tesi, 19921. There is no easy
way to eliminate this effect completely, although stochastic learning
algorithms were proposed to reduce the effects of local minima
[Wasserman, 19881. Another major problem is the problem of scaling.
When the complexity of the problem is increased, there is no
guarantee that a given network would converge, and even if it
converges, there is no guarantee that good generalization would
result. The complexity of a problem can be defined in terms of its
size or its predicate order [Minsky and Papert, 1990; Hush and Horne,
19931. Effects of scaling can be handled by using the prior information
of the problem, if possible. Also, modular architectures can also
reduce the effects of the scaling problem [Ballard, 1990; Jacobs et al,
1991; Haykin, 19941.

For many applications, the desired output may not be known
precisely. In such a case the backpropagation learning cannot be used
directly. Other learning laws have been developed based on the
information whether the response is correct or wrong. This mode of
learning is called reinforcement learning or learning with critic
[Sutton et al, 1991; Barto, 19921 as discussed in Section 2.4.6.

Extensions of backpropagation: Principles analogous to the ones
used in the backpropagation network have been applied to extend the

Summary and Discussion 135

scope of the network in several directions as in the case of probabi-
listic neural networks, fuzzy backpropagation networks, regularization
networks and radial basis function networks [Wasserman, 19931.

4.5 Summary and Discussion

We have presented a detailed analysis of feedforward networks in
this chapter with emphasis on the pattern recognition tasks that can
be realized using these networks. A network with linear units
(Adaline units) performs a pattern association task provided the input
patterns are linearly independent. Linear independence of input
patterns also limits the number of patterns to the dimensionality of
the input pattern space. We have seen that this limitation is overcome
by using hard-limiting threshold units (perceptron units) in the
feedforward network. Since threshold units in the output layer results
in a discrete set of states, the resulting network performs pattern
classification task. The hard-limiting threshold units provide a set of
inequalities to be satisfied by the network. Thus the weights of the
network are not unique any more and hence they are determined by
means of the perceptron learning law.

A single layer perceptron is limited to linearly separable classes
only. For an arbitrary pattern classification problem, a multilayer
perceptron (MLP) is needed. But due to absence of desired output at
the units in the intermediate layers of units, the MLP network cannot
be trained by the simple perceptron learning law. This hard learning
problem can be solved by using nonlinear units with differentiable
output functions. Since the output functions are now continuous, the
multilayer feedforward neural network can perform pattern mapping
task. The output error backpro~\agation is used in the learning
algorithm for these multilayer networks.

Since the backpropagation learning is based on stochastic
gradient descent along a rough error surface, there is no guarantee
that the learning law converges towards the desired solution for a
given pattern mapping task. Several variations of the back-
propagation learning have been suggested to improve the convergence
as well as the result of convergence. Although there is no proof of
convergence, the backpropagation learning algorithm seems to
perform effectively for many tasks such as pattern classification,
function approximation, time series prediction, etc.

How well a trained feedforward network performs a given task
is discussed both theoretically and experimentally in the literature
on generalization. The issue of generalization is an important topic,
but it is not discussed in this book. There are excellent treatments
of this topic in Widyasagar, 1997; Valiant, 19941. Appendix D gives
an overview of generalization in neural networks.

Some of the limitations of backpropagation such as convergence

136 Feedforward Neural Networks

can be addressed with reference to specific tasks, exploiting the know-
ledge of the task domain. Thus architectures developed for specific
tasks are more useful than the general feedforward neural networks.
Some of these architectures will be discussed in Chapter 7.

Review Questions
1. What is a linear associative network?
2. What is pseudoinverse of a matrix?
3. Explain the significance of (a) determination of weights by

computation and (b) determination of weights by learning.
4. What is the difference between linearly independent set and

orthogonal set of vectors?
5. What does the rank of an input matrix indicate?
6. Explain the nature of the input vectors in each of the following

cases of the optimal choice of weight matrix. (a) W = B A ~ ,
(b) W = BA-' and (c) W = BA'.

7. Explain the choice of W = BA' for linearly independent and
linearly dependent cases of input vectors.

8. Why the choice of W = BA' need not be the best choice for noisy
input vectors? Discuss your answer with reference to the
Murakami result given in Eq. (4.19).

9. What is the significance of the Widrow's learning for linear
associative networks?

10. Why is it that there is no learning law for obtaining the best
choice of the weights for the case of noisy input vectors?

11. Why is it that the number of input patterns are linked to the
dimensionality of the input vectors in the case of linear
associative network?

12. Why learning is essential for a network with nonlinear units?
13. What is perceptron learning for pattern classification?
14. Explain the significance of perceptron convergence theorem.
15. Explain how to interpret perceptron learning as a gradient

descent algorithm. What is the gradient term here?
16. What is meant by perceptron representation problem?
17. Distinguish between linearly separable and linearly inseparable

problems.
18. Why a single layer of perceptron cannot be used to solve linearly

inseparable problems?
19. Give two examples of linearly inseparable problems.

20. Show by geometrical arguments that with 3 layers of nonlinear
units, any hard classification problem can be solved.

Review Questions 13 7

Distinguish between multilayer perceptron and a general
multilayer feedforward neural network.

Explain how a multilayer feedforward neural network with linear
units in all the layers is equivalent to a linear associative
network.

What is meant by gradient descent methods?

Explain the difference between method of steepest descent and
Newton's method.

Explain the difference between LMS learning and delta learning.

Why LMS learning is called a stochastic gradient descent method?

Comment on the nature of the error surface for a multilayer
feedforward neural network.

Why backpropagation learning is also called generalized delta
rule?

Why convergence is not guaranteed for the backpropagation
learning algorithm?

Discuss the significance of semilinear function in the backpro-
pagation learning.

How 'pattern' mode and 'batch' mode of training affect the result
of backpropagation learning?

Explain why it is preferable to have gifferent values for q for
weights leading to the units in different layers in a feedforward
neural network.

What is the significance of momentum term in backpropagation
learning?

What is conjugate gradient method?

Discuss various interpretations of the results of backpropagation
learning.

What is an ill-posed problem in the context of training a
multilayer feedforward network?

What is meant by generalization in feedforward networks?

Why should generalization depend on the size and efficiency of
the training set, architecture of the network and the complexity
of the problem?

Discuss a few tasks that can be performed by a backpropagation
network.

How can we interpret the results of backpropagation learning as
an estimation of a posteriori class probabilities?

Explain the limitations of backpropagation learning.

Feedforward Neural Networks

Problems

1. A pth order polynomial threshold function is defined as
[Hassoun, 1995, p. 81

1 0 , otherwise

Show that the-number of weights is given by

and

r = for a qM

where (M , is the number of combinations of M different items
l i l

taken i at a time without repetition. (Hint: Count the number of
weights in each case. Note that for the binary case a E (0, l l M the
indices in the summation are ip > ip -, for p 2 2.)

2. In the equation in Problem 1 above p = 1 corresponds to the case
of linear threshold function, and p = 2 for a quadratic threshold
function. Larger values of p gives higher flexibility to realize a
Boolean function by threshold gates. In fact it can be shown that
any Boolean function of M variables can be realized using a
polynomial threshold function of order p l M [Hassoun, 1995, p.
91. Show that the most difficult M-variable Boolean function to
implement by a polynomial threshold function requires 2M
parameters in the worst case. (Hint: Use the result of Problem
1 for p = M.)

3. A set of N points in KM is said to be in 'general position' if every
subset of M or fewer points is linearly dependent. A 'dichotomy'
is labelling of N points into two distinct categories. The number
of linearly separable dichotomies of N points in general position
in R~ is given by [:Hassoun, 1995, p. 181

Problems 139

Derive the above result using repeated iteration of the recursive
relation

C(N + 1, M) = C(N, M) + C(N, M - 1)

and noting that C(l, M) = 2. (Hint: See [Hertz, 1991, p. 113-1141.)

4. A pth order polynodal threshold function with labeled inputs
a E may be viewed as a linear threshold function
with (r - 1) preprocessed inputs, where

The mapping $(a) from the input space, RM to the $-space
R r - 1 is called '$-mapping'. A dichotomy of N points is '+separ-

able' if there exist a (r - 2)-dimensional hyperplane in the
'$-space' which correctly classifies the N points [Hassoun, 1995,
p. 201. Show that the number of Boolean functions of M-variables
that can be realized by an M-input pth order polynomial
threshold function is less than C(N, r - 1).

5. Using the matrix identities A = A A ~ u +) ~ and AT = A+ A A ~ , derive
the expression given in Eq. (4.11) from the definition of the
matrix S given in Eq. (4.10).

6. Derive the expression for Emi, given in Eq. (4.16) using the
expression for the pseudoinverse given in Eq. (4.14).

7. Compute the weight matrix for the following pattern association task

8. Using the perceptron learning law design a classifier for the
following problem:

Class C,: 1- 2 21T, 1- 2 1.51T, [- 2 OIT, 11 OIT, and [3 OIT

Class C,: [l 31T, [3 31T, [l 21T, [3 21T, and r10 OIT

9. Design and train a feedforward network for the following
problems:
(a) Parity: Consider a 4-input and 1-output problem, where the

output should be 'one' if there are odd number of 1s in the
input pattern and 'zero' otherwise. The difficulty of the
problem is due to the fad that the input patterns differing
in only one bit require opposite oatputs.

140 Feedforward Neural Networks

(b) Encoding: Consider an 8-input and 8-output problem, where
the output should be equal to the input for any of the 8
combinations of seven 0s and one 1.

(c) Symmetry: Consider a 4-input and 1-output problem where
the output is required to be 'one' if the input configuration
is symmetrical and 'zero' otherwise.

(d) Addition: Consider a 4-input and 3-output problem, where
the output should be the result of the sum of two 2-bit input
numbers.

(Hint: Write a program to implement the algorithm. In all the
cases start with a hidden layer of 8 units and progressively
reduce the number of units.)

10. Generalize the XOR problem to a parity problem for N (> 2)
variables by considering a network for the two variables first
and then extending the network considering the output of the
first network as one variable and the third variable as another.
Repeat this for N = 4 and design a network for solving the parity
problem for 4 variables. (See [Bose and Liang, 1996, p. 2141.)

11. For the following 2-class problem determine the decision
boundaries obtained by LMS and perceptron learning laws.
Comment on the results.

Class C,: [-2 21T, [-2 31T, [-1 llT, [-1 41T [O OIT,

[O llT, [O 21T, [O 31T and [l l lT

Class C,: 11 OIT, [2 llT, [3 -llT, 13 llT, [3 21T,

12. Study the classification performance of a MLFFNN for a 2-class
problem, where the 2-dimensional data for each class is derived
from the Gaussian distributions with the following means and
variances, and the class probabilities:

Class C,: = [3 OIT, 4 = 4, and P(C,) = 0.6

Assume a single hidden layer and a sigmoid output function for
the units in the hidden and output layers. Study the performance
for different number of hidden units (say 2, 4, and 6), and for
different learning rate parameters (say 0.01, 0.1, and 0.9). Study
also the effect of momentum term by considering two different
values for the momentum parameter (say 0.1 and 0.5).

Problems 14 1

Compare the classification performance of the best network in
Problem 12 above with the performance of the Bayesian
classification result. The Bayes classification result is obtained
by computing the probability of error for optimum Bayes
classifier for the given distributions. The Bayes classifier is
defined as follows:

For a given input x, decide C1 if

othemise decide C,, where

and
2

P (X) = P(X I c& P(ck)-
k = 1

Chapter 5

Feedback Neural Networks

5.1 Introduction

This chapter presents a detailed analysis of the pattern recognition
tasks that can be performed by feedback artificial neural networks.
In its most general form a feedback network consists of a set of
processing units, the output of each unit is fed as input to all
other units including the same unit. With each link connecting any
two units, a weight is associated which determines the amount of
output a unit feeds as input to the other unit. A general feedback
network does not have any structure, and hence is not likely to be
useful for solving any pattern recognition task.

However, by appropriate choice of the parameters of a feedback
network, it is possible to perform several pattern recognition tasks.
The simplest one is an autoassociation task, which can be performed
by a feedback network consisting of linear processing units. A detailed
analysis of the linear autoassociative network shows that the network
is severely limited in its capabilities. In particular, a linear
autoassociative network merely gives out what is given to it as input.
That is, if the input is noisy, it comes out as noisy output, thus giving
an error in recall even with optimal setting of weights. Therefore a
linear autoassociative network does not have any practical use. By
using a nonlinear output function for each processing unit, a feedback
network can be used for pattern storage. The function of a feedback
network with nonlinear units can be described in terms of the
trajectory of the state of the network with time. By associating an
energy with each state, the trajectory describes a traversal along the
energy landscape. The minima of the energy landscape correspond to
stable states, which can be used, to store the given input patterns.
The number of patterns that can be stored in a given network depends
on the number of units and the strengths of the connecting links. It
is quite possible that the number of available energy minima is less
than the number of patterns to be stored. In such a case the given
pattern storage problem becomes a hard problem for the network. If
on the other hand, the number of energy minima in the energy
landscape of a network is greater than the required number of

Introduction 143

patterns to be stored, then there is likely to be an error in the recall
of the stored patterns due to the additional false minima. The hard
problem can be solved by providing additional (hidden) units in a
feedback network, and the errors in recall of the stored patterns due
to false minima can be reduced using probabilistic update for the
output function of a unit. A feedback network with hidden units and
probabilistic update is called a Boltzmann machine. It can be used to
store a pattern environment, described by a set of patterns to be stored,
together with the probability of occurrence of each of these patterns.

Table 5.1 shows the organization of the topics to be discussed in
this chapter. A detailed analysis of linear autoassociative feedforward
networks is considered first in Section 5.2. The pattern storage problem
is analyzed in detail in Section 5.3. In particular, the Hopfield energy
analysis, and the issues of hard problem and false minima are discussed
in this section. The Boltzmann machine is introduced in Section 5.4.
This section also deals with the details of the pattern environment
storage problem and the Boltzmann learning law. Some practical
issues in the implementation of learning laws for feedback networks
including simulated annealing are discussed in Section 5.5.

Table 5.1 Pattern Recognition Tasks by Feedback Neural Networks

Autoassociation

Architecture: Single layer with feedback, linear processing units

Learning: Not important
Recall: Activation dynamics until stable states are reached
Limitution: No accretive behaviour
To overcome: Nonlinear processing units, leads to a pattern storage
problem

Pattern Storage

Architecture: Feedback neural network, nonlinear processing units,
states, Hopfield energy analysis
Learning: Not important
Recall: Activation dynamics until stable states are reached
Limitation: Hard problems, limited number of patterns, false minima
To overcome: Stochastic update, hidden units

Pattern Environment Storage

Architecture: Boltzmann machine, nonlinear processing units, hidden
units, stochastic update
Learning: Boltzmann learning law, simulated annealing
Recall: Activation dynamics, simulated annealing
Limitation: Slow learning
To Overcome: Different architecture

144 Feedback Neural Networks

5.2 Analysis of Linear Autoassociative FF Networks

First we censider the realization of an autoassociative task with a
feedforward network as shown in Figure 5.1. Analogous to the hetero-

Figuw 5.1 Linear autoassociative feedforward network.

association, in autoassociation the objective is to associate a given
pattern with itself during training, and then to recall the associated
pattern when an approximatelnoisy version of the same pattern is
given during testing. In other words, in autoassociation the associated
output pattern bl is same as the input pattern al for the Ith pattern.
That is, with reference to the pattern association task, bl = nl, 1 = 1,
2, ..., L in the case of autoassociation. In recall it is desired to obtain
bl as output for an approximate input al + E. The weight matrix
W = [wijl of a linear autoassociative network (Figure 5.1) can be
determined as in the case of the linear heteroassociator, for a fixed
set of input pattern vectors {al). Since we want WA= A, the optimal
weights are given by (see Section 4.2.2)

W=AA+ (5.1)

where A+ is the pseudoinverse of the M x L matrix A consisting of
the input vectors {al). The pseudoinverse is given in tern af the
components of singular value decomposition of the matrix A as follows:

where hi are the eigenvalues, and pi and q, are the eigenvectors of
the matrices AAT and A ~ A , respectively. That is,

and

Analysis of Linear Autoassociative FF Networks 145

The sets of eigenvectors {pi] and (9,) are orthonormal sets. The
ei envalues are real and nonnegative, since the matrices AAT and F A A are symmetric. The eigenvalues hi are ordered, i.e., hi 2 hi+ l. If
the rank of the matrix A is r (I L), then the eigenvalues hi, i > r will
be zero. Therefore

i = l

and the pseudoinverse

The minimum error for the choice of the optimum weight matrix
W = AA+ is given from Eq. (4.16) as

But since hi = 0 for i > r, Emin = 0. Thus in the case of linear
autoassociative network there is no error in the recall due to linear
dependency of the input patterns, unlike in the case of linear
heteroassociative network. In other words, in this case the input
comes out as output without any error.

When noise is added to the input vector, the noisy input vectors
are given by

c, = a,+&, 1 = 1 ,2 ,..., L (5.8)

where the noise vedor E is uncorrelated with the input vector al, and
has the average power or variance c?. For the choice of W = AA', the
error in recall is given &om Eq. (4.19) as [Murakami and Aibara, 19871

Thus the error in the recall is mainly due to noise, as the linear
dependence component of the error is zero in the case of auto-
association. Note that this is because a noisy input vector comes out

146 Feedback Neural Networks

as a noisy output and hence its difference from the true vector in the
recall is only due to noise.

The error in recall due to noise can be reduced by the choice of
W = A&, where

where s is given by

That is, for a given noise power 2 , the error can be reduced by
moving the error into the linear dependency term, which is realized
by an appropriate choice of the number of terms in.the expression
for the seudoinverse. The resulting error for the optimal choice of
w = A is

The linear autoassociation task can also be realized by a single layer
feedback network with linear processing units shown in Figure 5.2. The

w lj WIN

Figure 5.2 Linear autoassociation by a feedback network.

condition for autoassociation, namely, Wal = al, is satisified if
W = I, an identity matrix. This trivial choice of the weight matrix is
realized if the input vectors are linearly independent, so that
W=AA-~ = I. For this choice of W, the output for a noisy input
al + E is given by W(a, + E) = a, + E, which is the noisy input itself. This
is due to lack of accretive behaviour during recall, and such a
feedback network is not useful for storing information. It is possible
to make a feedback network useful, especially for pattern storage, if
the linear processing units are replaced with processing units having
nonlinear output functions. We discuss this case in the next section
and give a detailed analysis of pattern storage networks.

5.3 Analysis of Pattern Storage Networks

5.3.1 Pattern Storage Networks

The objective in a pattern storage task is to store a given set of

Analysis of Pattern Storage Networks 147

patterns, so that any of them can be recalled exactly when an
approximate version of the corresponding pattern is presented to the
network. For this purpose, the features and their spatial relations in
the patterns need to be stored. The pattern recall should take place
even when the features and their spatial relations are slightly
disturbed due to noise and distortion or due to natural variation of
the pattern generating process. The approximation of a pattern refers
to the closeness of the features and their spatial relations to the
original stored pattern.

Sometimes the data itself is actually stored through the weights,
as in the case of binary patterns. In this case the approximation can
be measured in terms of some distance, like Hamming distance,
between the patterns. The distance is automatically captured by the
threshold feature of the output functions of the processing units in a
feedback network Freeman and Skapura, 19911.

Pattern storage is generally accomplished by a feedback network
consisting of processing units with nonlinear output functions. The
outputs of the processing units at any instant of time define the
output state of the network at that instant. Likewise, the activation
values of the units at any instant determine the activation state of
the network at that instant.

The state of the network at successive instants of time, i.e., the
trajectory of the state, is determined by the activation dynamics
model used for the network. Recall of a stored pattern involves
starting at some initial state of the network depending on the input,
and applying the activation dynamics until the trajectory reaches an
equilibrium state. The final equilibrium state is the stored pattern
resulting *om the network for the given input.

Associated with each output state is an energy (to be defined
later) which depends on the network parameters like the weights and
bias, besides the state of the network. The energy as a function of
the state of the network corresponds to something like an energy
landscape. The shape of the energy landscape is determined by the
network parameters and states. The feedback among the units and
the nonlinear processing in the units may create basins of attraction
in the energy landscape, when the weights satisfy certain constraints.
Figure 5.3 shows energy landscapes as a function of the output state
for the two cases of with and without the basins of attraction. In the
latter case the energy fluctuates quickly and randomly from one state
to another as shown in Figure 5.3b. But in the energy landscape with
basins of attraction as in Figure 5.3a, the states around the stable
state correspond to small deviations from the stable state. The
deviation can be measured in some suitable distance measure, such
as Hamming distance for binary patterns. The Hamming distance
between two binary patterns each of length N is defined as the
number of bit positions in which the patterns differ. Thus the states

148 Feedback Neural Networks

Energy Energy

State State
(a) (b)

Figure 5.3 Energy landscapes (a) with basins of attraction and (b) without
basins of attraction.

closer to the stable states correspond to patterns with smaller
Hamming distance.

The basins of attraction in the energy landscape tend to be the
regions of stable equilibrium states [Cohen and Grossberg, 19831. If
there is a fixed state in each of the basins where the energy is
minimum, then that state corresponds to a fixed point of equilibrium.
The basins could also be periodic (oscillatory) regions or chaotic
regions of equilibria. For an oscillatory region, the state of the
network changes continuously in a periodic manner. For a chaotic
region, the state of the network is not predictable, but it is confined
to the equilibrium region. Throughout the subsequent discussion we
consider only the fixed points of equilibrium in the energy landscape.

It is the existence of the basins of attraction or regions of
equilibrium states that is exploited for the pattern storage task. The
fixed points in these regions correspond to the states of the energy
minima, and they are used to store the desired patterns. These stored
patterns can be recalled even with approximate patterns as inputs.
An erroneous pattern is more likely to be closer to the corresponding
true pattern than to the other stored patterns according to some
distance measure. Each input pattern results in an initial state of
the network, which may be closer to the desired true state in the
sense that it may lie near the basin of attraction corresponding to
the true state. An arbitrary state may not correspond to an
equilibrium or a stable state. As the dynamics of the network evolves,
the network may eventually settle at a stable state, from which the
pattern may be read or derived.

~ i v e n a network specified by the number of processing units, their
connection strengths and the activation dynamics, it is not normally
possible to determine exactly the number of basins of attraction in
the energy landscape as well as their relative spacings and depths
in the state space of the network. The spacing between two states
can be measured .by a suitable distance measure, such as the Hamm-
ing distance for binary patterns. The number of patterns that can be
stored is called the capacity of the network. It i s possible to estimate

Analysis of Pdttern ,Storage Networks 149

the capacity of the network and also the average probability of error
in recall. The probability of error in recall can be reduced by adjusting
the weights in such a way that the resulting energy landscape is
matched to the probability distribution of the desired patterns.

Typically the capacity of a fully connected network is of the order
of N, the number of processing units. Although there are 2N different
states for a network with binary state units, the network can be used
to store only of the order of N binary patterns, as there will be only
that many fixed points or energy minima in the energy landscape.

In general, the number of desired patterns is independent of the
number of basins of attractions. The latter depends only on the
network units and their interconnections. If the number of patterns
is more than the number of basins of attraction, then the pattern
storage problem becomes a hard problem, in the sense that the
patterns cannot be stored in the given network. On the other hand,
if the number of patterns is less than the number of basins of
attraction, then there will be the so called false wells or minima due
to the additional basins of attraction. During recall, it is likely that
the state of the network, as it evolves from the initial state
corresponding to the input pattern, may settle in a false well. The
recalled pattern corresponding to the false well may not be the desired
pattern, thus resulting in an error in the recall.

In the next subsection we will consider the Hopfield model of a
feedback network for the pattern storage and discuss the working of
a discrete Hopfield model. The Hopfield model is a fully connected
feedback network with symmetric weights. In the discrete Hopfield
network the state update is asynchronous and the units have
binaryhipolar output functions. In the continuous Hopfield model the
state update is dictated by the activation dynamics, and the units
have continuous nonlinear output functions.

5.3.2 The Hopfleld Model

Consider the McCulloch-Pitts neuron model for the units of a feedback
network, where the output of each unit is fed to all the other units
with weights wij, for all i and j. Let the output function of each of
the units be bipolar (k 1) so that

and

where €li is the threshold for the unit i. We will assume ei = 0 for
convenience. The state of each unit is either +1 or -1 at any given
instant of time. Due to feedback, the state of a unit depends on the

150 Feedback Neural Networks

states of the other units. The updating of the state of a unit can be
done synchronously or asynchronously. In the synchronous update all
the units are simultaneously updated at each time instant, assuming
that the state of the network is frozen until update is made for all
the units. In the asynchronous update a unit is selected at random
and its new state is computed. Another unit is selected at random
and its state is updated using the current state of the network. The
updatingrusing the random choice of a unit is continued until no
further change in the state takes place for all the units. That is, the
state at time (t + 1) is the same as the state at time t for all the
units. That is

si(t + 1) = s,(t), for all i (5.15)

In this situation we can say that the network activation dynamics
reached a stable state. We assume asyn-nous update throughout the
following discussion. Note that the asynchronous update ensures that
$he next state is at most unit Hamming distance from the current state.

If the network is to store a pattern a = (a l , a,, ..., aNIT, then in
a stable state we must have the updated state value to be the same
as the current state value. That is

This can happen if wo = (1IN) ai aj, because

where a; = 1 for bipolar (f 1) states.
For storing L patterns, we could choose a general Hebbian rule given

by the summation of the Hebbian terms for each pattern. That is,

Then the state ak will be stable if

N L

s, [+ z z ali a , akj = a,,, for all i I (5.19)
J = 1 1 = 1

Taking out the 1 = k term in the summation and simplifying it using
a$ = 1, we get

C a , ab a~ = ski, for all i (5.20) 1
Since ski = f 1, the above is true for all aki, provided the crossterm

Analysis of Pattern Stomge Networks 151

in Eq. (5.20) does not change the sign of ahi plus the crossterm.
Table 5.2 gives an algorithm for storing and recall of patterns in a
Hopfield network.

Table 6.2 Hopfield Network Algorithm to Store and Recall a Set of Bipolar
Patterns

Let the network coneiat of N fully connected unita with each unit having
hard-limiting bipolar threshold output function. Let al, 1 = 1, 2, ..., L be the
vectors to be stored. The vedore (4) are assumed to have bipolar components,
i.e,,ali = f 1, i=1,2 ,..., N.

1. h i g n the connection weights

= O , f o r i = j , l < i , j < N
2. Initialize the network output with the given unknown input pattern a

si(0) = ai, for i = 1, 2, ..., N

where si(0) is the output of the unit i at time t = 0
3. Iterate until convergence

si(t + 1) = sgn wii sj(t) , for i = 1, 2, ..., N 1,"]
The process is repeated until the outputs remain unchanged with
further iteration. The steady outputa of the unite represent the stored
pattern that best matches the given input.

In general, the crosstern in Eq. (5.20) is negligible if LIN << 1.
Eq. (5.20) is satisfied if the number of patterns L is limited to the
storage capacity of the network, i.e., the maximum number of
patterns that can be stored in the network.

5.3.3 Capaclty of Hopfleld Model

We consider the discrete Hopfield model to derive the capacity of the
network. Let us consider the following quantity [Hertz et al, 19911

If cf is negative then the cross term and aki have the same sign in
Eq. (5.20) and hence the pattern ak is stable. On the other hand, if
cf is positive and greater than 1, then the sign of the cross term
changes the sign of abi plus the cross term in Eq. (5.20). The result
is that the pattern a k turns out to be unstable, and hence the desired
pattern cannot be stored.

152 Feedback Neural Networks

Therefore the probability of error is given by

Pe = Prob (4 > 1) (5.22)

To compute this probability, let us assume that the probability of
ali equal to +1 or -1 is 0.5. For random patterns, the cross term
corresponds to 1/N times the sum of about NZ independent random
numbers, each of which is +1 or -1. Thus cl is a sum of random
variables having a binomial distribution with zero mean and
variance 4 = UN. I f NL is assumed large, then the distribution of
cf can be approximated by a Gaussian distribution with zero mean
and 4 variance Papoulis, 19911. Therefore,

where eflx) is error function given by

This gives a value of L,,IN = 0.105 for Pe = 0.001. Thus the
maximum number of patterns that can be stored for a probability of
error of 0.001 is L,, = 0.105 N.

A more sophisticated calculation [Amit et al, 1987; Amit, 19891
using probabilistic update leads to a capacity of L,, = 0.138 N.

5.3.4 Energy Analysis of Hoptield Network

Discrete Hoptleld model: Associated with each state of the network,
Hopfield proposed an energy function whose value always either
reduces or remains the same as the state of the network changes.
Assuming the threshold value of the unit i to be Bi, the energy
function is given by [Hopfield, 19821

The energy V(s) as a function of the state s of the network describes
the energy landscape in the state space. The energy landscape is
determined only by the network architecture, i.e., the number of
units, their output functions, threshold values, connections between
units and the strengths of the connections. Hopfield has shown that
for symmetric weights with no self-feedback, i.e., wV = wji , and with
bipolar I-1, +1) or binary (0, 1) output functions, the dynamics of the

Analysis of Pattern Storage Networks 153

network using the asynchronous update always leads towards energy
minima at equilibrium. The states corresponding to these energy
minima turn out to be stable states, which means that small
perturbations around it lead to unstable states. Hence the dynamics
of the network takes the network back to a stable state again. It is
the existence of these stable states that enables us to store patterns,
one at each of these states.

To show that AV 5 0, let us consider the change of state due to
update of one unit, say k, at some instant. All other units remain
unchanged. We can write the expressions for energy before and after
the change as fhllows [Freeman and Skapura, 19911:

1 void = - - old old + C 0. Sold 2 C C wiist . sj I I

i j i

The change in energy due to update of the kth unit is given by

AV = Vnew - vOld

1

i t k j + k i + k

Since sfew = s;ld, for i + k, the first two terms on the right hand
side of Eq. (5.27) will be zero. Hence,

If the weights are assumed symmetric, i.e., wu = wji, then we get

If, in addition, wkk = 0, then since sFw = sPld for i * k, the terms
in both the parentheses are equal. Therefore,

AV = (aild - sim) (5.30)

154 Feedback Neural Networks

The update rule for each unit k is as follows:

Case A: If x wki sfd - Elk > 0, then srw = + 1
1

Case B: If x wki s;ld - ek < 0, then srw = - 1
1

Case C: If x wki s;ld - C& = 0, then ST = sold k

1

For case A, if s;ld = + 1, then AV = 0, and if s;ld = - 1, then AV 5 0.
For case B, if s;ld = + 1, then AV< 0, and if s;ld = - 1, then AV= 0.
For case C, irrespective of the value of s;ld , AV = 0.

Thus we have AVS 0. Therefore the energy decreases or remains
the same when a unit, selected at random, is updated, provided the
weights are symmetric, and the self-feedback is zero. This is the
energy analysis for discrete Hopfield model.

That the expression for V in Eq. (5.25) does indeed represent
some form of energy can be seen from the following arguments based
on Hebb's law:

If a given pattern vector al is to be stored in the network state
vector s, then the match will be perfect if both the vectors coincide.
That is, the magnitude of their inner product is maximum.
Alternatively, the negative of the magnitude of their inner product
is minimum. Thus we can choose a quantity [Hertz et al, 19911

to be minimized for storing a pattern vector al in the network. For
storing L pattern vectors we can write the resulting V as a summation
of the contributions due to each pattern vector. That is

If we identify the weights wi with the term (UN) ali ab, then we get
1 = 1

which is same as the first term in the Hopfield energy expression
given in Eq. (5.25).

Analysis of Pattern Storage Networks 155

This method of identifying wq from an energy function is useful,
especially to solve several optimization problems. Given an energy
function or a cost function or an objective function for a problem in
terms of its variables and constraints, if we can identify the
coefficients associated with si s . si and constant terms in the function,
then a feedback network can 6e built with weights corresponding to
these coefficients. Then using an activation dynamics for the network,
the equilibrium state or states can be found. These states correspond
to the minima or maxima of the energy function. Higher order terms
consisting of product of three (si sj sk) or more variables cannot be
handled by the feedback model with pairwise connections.

Continuous Hopfield model. In this subsection we will consider the
energy analysis for a continuous Hopfield model [Hopfield, 1984;
Hertz et al, 1991; Freeman and Skapura, 19911. A continuous model is
a fully connected feedback network with a continuous nonlinear output
function in each unit. The output function is typically a sigmoid

' e-k which is shown in Figure 5.4 for different function flk) = -
1 + e-k

1 - e- 'x
figure 5.4 (a) Sigmoid function f (z) = - for different values of gain

1 + e-"
parameter 1. (b) The inverse function. (c) Contribution of fl.) to
the energy function.

156 Feedback Neural Networks

values of the gain parameter A. In the continuous model all the units
will change their output signals (si) continuously and sihultaneously
towards values determined by the output function. The activation
values (xi) will also change continuously according to xi = 'S w.. s..

J V J

This is reflected in the following equation for the activation dynamics:

where zi is the time constant and s, = fixj).
Consider the following energy function [Hopfield, 19841:

We can show that in this case (dVldt) I 0.

1 'a = -- C C w..-s.-- ds. ds .
dt 2 i j v d t J 2 . 'xCw,si-$+Zfl(si)& 1 J 1 (5.36)

Assuming symmetry of weights, i.e., w, = wji, we get

Using the relation in Eq. (5.34), we get

Since Ax) is a monotonically increasing function, f(x) > 0. Hence
dVldt I 0.

Note that dVldt = 0 when &jdt = 0, for all i. This shows that
the activation dynamics eventually leads to a state where the energy
h e t i o n has a local minimum value, i.e., dVldt = 0. This happens
when the activation state reaches an equilibrium steady state at
which there is no further change in the activation values, i.e.,
&jdt = 0. The above result, namely, dVldt I 0, shows that the
energy always decreases as the state of the network changes.

Let us examine the differences between the continuous model and
the discrete model. In the discrete model only one unit is considered

Analysis of Pattern Storage Networks 157

at a time for update. The choice of the unit for update is random and
the dynamics is that of the steady activation values (xi = 0), since
the transients are assumed to have died down at each update of the
state of the unit. Hence in the discrete case xi = 0 and V(x) = 0 are
different conditions. In the continuous case the states of all the units
and hence the state of the network change continuously, as dictated
by the differential equations for the activation dynamics. Hence, in
this case xi = 0 for all i implies that V = 0. The energy function V
is also called the Lyapunw function of the dynamical system.

The difference in the energy functions for the discrete and
'i

continuous case is due to the extra term j f '(s) ds in Eq. (5.35).
' 0

This expression is for a gain value h = 1. For a general gain value
'1

this term is given by (l/h) & j f-'(s) ds. The integral term is 0 for
' 0

si = 0 and becomes very large as si approaches f 1 (see Figure 5.4~).
But for high gain values (h >> I), this term in the energy function
becomes negligibly small, and hence the energy function approaches
that of the discrete case. In fact when h + m, the output function
becomes a bipolar function, and hence is equal to the discrete case.
In the discrete case the energy minima are at some of the corners of
the hypercube in the N-dimensional space, since all the states are at
the corners of the hypercube. On the other hand, for moderate or
small values of h, the integral term contributes to large positive
values near the surfaces, edges and corners of the hypercube, and it
contributes small values interior to the hypercube. This is because
the value of s, is 1 at the surfaces, edges and corners. Thus the energy
minima will be displacgd to the interior of the hypercube. As
h + 0, the minima of the energy function disappear one by one, since
all the states will tend to have the same energy value.

The energy analysis so far shows that, for symmetric weights on
the connections, there exist basins of attraction with a fixed point or
a stable point for each basin corresponding to an energy minimum.
If the connections are not symmetric, then the basins of attraction
may correspond to oscillatory or chaotic states regions. In the case
of purely random connections, with mean 0 and variance cf, there
will be a transition from stable to chaotic behaviour as 3 is ipcreased
[Sompolinsky et al, 1988; Hertz, 1995; Hertz et al, 19911.

We can summarize the behaviour of feedback networks in relation
to the complexity of the network as follows: To make a network useful
for pattern storage, the output functions of the units are made hard-
limiting nonlinear units. For analysis in terms of storage capacity,
as well as for the recall of information from the stable states, we
have imposed Hopfield conditions of symmetry of weights and asyn-
chronous update. A more natural situation will be to use continuous

158 Feedback Neural Networks

output functions, so that any type of pattern can be stored. But the
analysis of the performance of the network will be more difficult. In
addition, if we relax the conditions on the symmetry of weights, we may
still get stable regions, but it is not possible to analyse the network in
terms of its storage capacity and retrieval of information. If we further
relax the constraints to make the feedback system more closer to the
natural biological system, then we may be able to get better
functionality, but it is almost impossible to analyse such complex
networks. For example it is not possible to predict the global pattern
behaviour of a feedback network with random weights. Thus, although
the networks may get more and more powerful by relaxing the
constraints on the network, they become less useful, if we cannot predict
and control the pattern storage and recall of the desired information.

5.3.5 State Transition Diagram

Derivation of state transition diagram: The energy analysis of the
Hopfield network in the previous section shows that the energy of
the network at each state either decreases or remains the same as
the network dynamics evolves. In other words, the network either
remains in the same state or moves to a state having a lower energy.
This can also be demonstrated by means of a state transition diagram
which gives the states of the network and their energies, together
with the probability of transition from one state to another. In this
section we will illustrate the state transition diagram (adapted from
[Aleksander and Morton, 19901) for a 3-unit feedback network with
symmetric weights wy = wji. The units have a threshold value of
8,, i = 1, 2, 3 and a binary (0, 1) output function. A binary output
function is assumed for convenience, although the conclusions are
equally valid for the bipolar (-1, +1) case.

Figure 5.5 shows a 3-unit feedback network. The state update for
the unit i is governed by the following equation:

Figure 5.5 A 3-unit feedback network with symmetric weights wy, threshold
values 8i and the output states si, i = l ,2 ,3 .

Analysis of Pattern Storage Networks

The energy at any state sl s2 s3 of the network is given by

There are eight different states for the 3-unit network, as each
of the si may assume a value either 0 or 1. Thus the states are: 000,
001, 010, 100, 011, 101, 110 and 111. Assuming the values

we get the following energy values,for each state.

V(OO0) = 0.0, V(00l) = 0.7, V(O10) = - 0.2, V(1OO) = - 0.1,
V(Ol1) = 0.1, V(101) = 0.1, V(110) = 0.2, and V(111) = 0.0.

The transition from any state to the next state can be computed using
the state update Eq. (5.39). For example, if the current state is
000, by selecting any one unit, say unit 2, at random, we can find

3
its next state by computing the activation value x2 = .E w2, sj and

1 = 1

comparing it with the threshold 02. Since x2 (= 0) > O2 (= - 0.2) the
state of the unit 2 changes from 0 to 1. Thus if we select this unit,
there will be a transition from the state 000 to 010. Since we can
select any one of the three units with equal probability, i.e., U3, the
probability of making a transition from 000 to 010 is thus U3.
hikewise by selecting the unit 1 for update, the network makes a
transition from 000 to 100 with a probability U3. Selecting the unit
3 for update results in a transition from 000 to itself, since the
activation x3 (= 0) < O3 (= 0.7). By computing the transition probabili-
ties for all the states, we get the state transition diagram shown in
Figure 5.6. Note that while computing the transitions, only asynchro-
nous update of each unit selected at random was used. Table 5.3
shows the computation of the state transitions by comparing the
weighted inputs with the threshold value for each unit. The entries
in the parenthesis are ?L wu sj < > Oi .

(J 1
F'rom the state transition diagram we observe the following points:

The diagram is drawn in such a way that the higher energy states are
shown abwe the lower energy states. The transition is always from a
higher energy state to a state with equal or lower energy. Thus the
Hopfield result AV I 0 is satisfied. There are some states 010, 100
and 111 which have a self-transition probability of 1. That means, once
these states are reached, the network remains in these states, which is
equivalent to saying that the activation dynamics equation is such that

160 Feedback Neural Networks

0
0 1

(a) A 3-unit network

1 -
3

- 0.2

3 -
3

(b) State transition diagram

Figure 5.6 A 3-unit network and the corresponding state transition
diagram. (Adapted from [Aleksander and Morton, 19901).

where fl.) is the binary output function, i.e., flx) = 0, for x I 0 and
flx) -= 1, for x > 0. Since there is no transition kom these states to
other states, these are stable states. Note that only three out of the
total eight are stable states. As per the approximate capacity
calculations made in Section 5.3.3 for a Hopfield network, the number

Analysis of Pattern Storage Networks 161

Table 6.3 Computation of State Transitions for Figure 5.6

Unit 1 Unit 2 Unit 3

of stable states will be much fewer than the number of possible states,
and in fact the number of stable states are of the order N. The stable
states are always at the energy minima, so that the transition to any
of these states is always from a state with a higher energy value
than the energy value of the stable state.

Computatlon of welghts for pattern storage: So far we have consi-
dered the analysis of a given feedback network and studied its
characteristics. But patterns can be stored at the stable states by
design. That is, it is possible to determine the weights of a network
by calculation in order to store a given set of patterns in the network.
Let 010 and 111 be the two patterns to be stored in a 3-unit binary
network. Then at each of these states the following activation
dynamics equations must be satisfied:

This will result in the following inequalities for each of the states:
For the state sl s2 s3 = 010

and for the state sl s2 s3 = 111

162 Feedback Neural Networks

Since we assume symmetry of the weights (wi = wji) and wii = 0, the
above inequalities reduce to

The following choice of the thresholds and weights, namely,

satisfies the above inequalities and hence the resulting network given
in Figure 5.7a stores the given two patterns. These two patterns
correspond to the stable states 010 and 111 in the network as can
be seen from the state transition diagram in Figure 5.7b. The energy
values for different states are as follows:

(a) A 3-unit network

@) State transition diagram

Figure 5.7 A 3-unit network and the corresponding state transition
diagram. (Adapted from [Aleksander and Morton, 19901).

Analysis of Pattern Storage Networks

The energies of different states are:

Table 5.4 shows the computation of the state transitions by comp
aring the weighted inputs with the threshold values for each unit in
each state. The entries in the parenthesis are wU sj < = > €Ii . [J I

Table 6.4 Computation of State Transitions for Figure 5.7

unit 1 Unit 2 Unit 3

5.3.6 Pattern Storage by Computation of Weights-Problem of False
Energy Minima

For another choice of the values of €Ii and w~ which satisfies all the
inequalities for the above problem of storage of the patterns 010 and
111 in a 3-unit network, there may be more than two energy minima
or stable states in the network. Two of them correspond to the desired
patterns and the other extra states correspond to false minima. This
is illustrated for the choice of the thresholds and weights shown in
Figure 5.6a. The corresponding state transition diagram is given in
the Figure 5.6b. Here there are three energy minima corresponding
to the three stable states 010, 100, 111.

The presence of the extra stable state may result in recalling a
pattern not in the set of the desired patterns to be stored. If an
approximate input is given to the units in the network, so that the
network is forced into the state, say s , s2 s3 = 000 initially, then since
this state is unstable, the dynamics of the network will eventually
lead to either the state 010 (the desired pattern) or to the state 100

164 Feedback Neural Networks

(See the state transition diagram in Figure 5.6b). Both these states
are stable states and have equal probability of transition from the
initial state 000. While the state 010 is the desirable pattern to be
recalled, there is an equal chance that the pattern 100 may be
recalled. Likewise, if the initial state is 110, then there is an equal
chance that any one of the stable states 010, 100 and 111 may be
recalled. The recall of the pattern 111 results in an undetectable
error, as the desired pattern is 010 for the approximate input 110.
The recall of the pattern 100 at any time will give as output a pattern
which was not stored in the network intentionally, since in our
pattern storage task we have specified only 010 and 111 as the
desired patterns to be stored in the network. The stable state 100 in
this case corresponds to a false (undesirable) energy minimum.

Errors in recall due to false minima can be reduced in two ways:

1. By designing the energy minima for the given patterns in an
optimal way, so that the given patterns correspond to the
lowest energy minima in the network.

2. By using a stochastic update of the state for each unit, instead
of the deterministic update dictated by the activation values
and the output function.

The issue of stochastic update will be discussed in Section 5.4, and the
issue of designing energy wells by learning in Section 5.5.

Pattern storag-Hard problems: In the previous subsection we
have discussed the effect of having more minima in the energy
landscape than the number required to store the given patterns. In
this section we consider the case of the so called hard problems of
pattern storage. Let us consider the problem of storing the patterns
say 000, 011, 101 and 110. By using the condition
f (S w, s, - 0,) = si for each unit i, the inequalities to be satisfied to

make these states stable in a 3-unit feedback network can be derived.
In this case no choice of thresholds and weights can satisfy all the
constraints in the inequalities. The reason is that the number of desired
patterns is more than the capacity of the network, and hence they cannot
be representedfstored in a feedback network with 3 units. In some cases,
even if the number of desired patterns is within the capacity limit of a
network, the s p e d c patterns may not be representable in a given type
(binary) of a feedback network For example, for storing the patterns
000 and 100, the following inequalities have to be satisfied by the type
of network we have been considering so far.

812 0, e2 2 0, e3 2 0, and el < 0, wzl S e2, wI3 5 0, (5.43)

The conditions on el c 0 and el 2 0 cannot obviously be satisfied
simultaneously by any choice of 81. In fact any pair of patterns within
a Hamming distance of 1 cannot be stored in a 3-unit network.

Stochastic Networks and Simulated Annealing 165

Pattern storage problems which cannot be represented by a
feedback network of a given size, can be called hard problems. This
is analogous to the hard problems in the pattern classification task
for a single layer perceptron network. Hard problems in the pattern
storage task are handled by introducing additional units in the
feedback network. These units are called hidden units. But with
hidden units it is difficult to write a set of inequalities as before to
make the given patterns correspond to stable states in the feedback
network. Thus the design of a network with hidden units becomes
difficult due to lack of a straightforward approach for determining
the weights of the network. In other words, this may be viewed as
hard learning problems. We will see in Section 5.5 how this problem
is addressed in Boltzmann learning law. To store a given number of
patterns, a network with sufliciently large number of units may have
to be considered. But in general it is difficult to know the required
number of units exactly for a given number of patterns to be stored.

5.4 Stochastic Networks and Simulated Annealing

5.4.1 Stochastic Update

Error in pattern recall due to false minima can be reduced
significantly if initially the desired patterns are stored (by careful
training) at the lowest energy minima of a network. The error can
be reduced further by using suitable activation dynamics. Let us
assume that by training we have achieved a set of weights which will
enable the desired patterns to be stored at the lowest energy minima.
The activation dynamics is modified so that the network can also
move to a state of higher energy value initially, and then to the
nearest deep energy minimum. This way errors in recall due to false
minima can be reduced.

It is possible to realize a transition to a higher energy state from
a lower energy state by using a stochastic update in each unit instead
of the deterministic update of the output function as in the Hopfield
model. In a stochastic update the activation value of a unit does n4t
decide the next output state of the unit by directly using the output
function f(x) as shown in Figure 5.8a. Instead, the update is expressed
in probabilistic terms, like the probability of firing by the unit being
greater than 0.5 if the activation value exceeds a threshold, and less
than 0.5 if the activation value is less than the threshold. Note that
the output function f i) is still a nonlinear function, either a
hard-limiting threshold logic function or a semilinear sigmoidal
function, but the function itself is applied in a stochastic manner.

Figure 5.8b shows a typical probability function that can be used
for stochastic update of units. The output function itself is the binary
logic function f(x) shown in Figure 5.8a.

166 Feedback Neural Networks

Figure 5.8 Stochastic update of a unit using the probability law P (s =
11~) = ll(1 + e - (z - e Y T). (a) Binary output function and (b) Pro-
bability function for stochastic update for different values of T.

The probability of firing for an activation value of x can be
expressed as

The probability function is defined in terms of a parameter called
temperature T. At T = 0, the probability function is sharp with a
discontinuity at x = 8. In this case the stochastic update reduces to
the deterministic update used in the Hopfield analysis. As the
temperature is increased, the uncertainty in making the update
according to A x) increases, giving thus a chance for the network to
go to a higher energy state. Therefore the result of the Hopfield

Stochastic Networks and Simulated Annealing 167

energy analysis, namely AVI 0, will be no longer true for nonzero
temperatures. Finally, when T = m, then the update of the unit does
not depend on the activation value (x) any more. The state of a unit
changes randomly from 1 to 0 or vice versa. It is impotant to note
that the stochastic update for different T does not change the energy
landscape itself, since the shape of the landscape depends on the
network, its weights and the output function, which are fixed. Only
the traversal in the landscape will be changing. In contrast, in the
continuous Hopfield model, the output function is different for
different values of the gain parameter h, and hence the energy
landscape itself is different for different h (See Sec. 5.3.4).

5.4.2 Equilibrium of Stochastic Networks

A feedback neural network with N binary units and stochastic update
of the units is described by the following set of equations:

Assuming the threshold value ei = 0,

xi = wGsj, i = 1 , 2 ,..., N (5.45)
j

Axi) = 0, for xi 5 0

= 1, for xi > 0 (5.46)

A unit i is selected at random for updating. The output is updated
according to the stochastic update law, specified by the probability
that the output si = 1 given the activation xi. It is given by

1 P(si = 1 I xi) =
1 + exp (-xilT)

A network with the above dynamics is called a stochastic network.
A stochastic network will evolve differently each time it is run,

in the sense that the trajectory, of the state of the network becomes
a sample function of a random process. In the case of deterministic
update the trajectories will eventually reach an equilibrium corres-
ponding to a stable state. The equilibrium is a static equilibrium. In
contrast, there will never be a static stable state for a stochastic
network, as the state of the network is always changing due to
stochastic update for each unit. However, one could talk of a dynamic
equilibrium for stochastic networks, if the ensemble average state of
the network does not change with time Papoulis, 19911. By ensemble
average we mean that for several (infinitely large) runs of the network
the average value of the state ((s)) of the network is computed. The
average value of the state is described in terms of the average value
((si)) of the output of each unit (i) of the network. That is

168 Feedback Neural Networks

where p(s) = p(sl, s2, ..., si, ..., sN) is the joint probability density
function of the components of the state vector s.

First of all, the probability distribution of states should be
stationary or independent of time for a network state to be in a
stochastic equilibrium. If stationarity of the probability distribution
of states is achieved at a given temperature, then the network is said
to be in thermal equilibrium [Muller and Reinhardt, 1990, p. 1471.
At thermal equilibrium the average value of the output of the ith unit
is given by

where p(si) the probability density function for the ith unit. For binary
units

(si) = 1 x P(si = 1 I xi) + 0 X P(si = 0 (xi)

= q s i = 1 I xi)

- - 1
1 + exp (-xln

Thus for a given temperature, the average value of the output unit is
a continuous function of the activation value of the unit. Figure 5.9

I
(a) Discrete output (b) Continuous output

Figure 5.9 Instantaneous (discrete) and average (continuous) outputs of a
unit in a stochastic network.

shows the discrete output and the average continuous output of a
unit.

At stochastic equilibrium the average value of the output state
of a unit does not change due to stationarity of probability distribution
of the state of the network. For the average value to remain constant,
the flow of activity of a d t i between the active (si = 1) to the
inactive (si = 0) state should be balanced by the corresponding flow
of activity from the inactive (si = 0) to the active (si = 1) state. This
will ensure that the average value of the state due to state transitions
over a period of time remains constant. In other words, for a binary

Stochastic Networks and Simulated Annealing 169

unit, the probability of a unit that is currently active (si = 1) to become
inactive (sC= 0) muat be equal to the probability of the unit when it
is inactive (si = 0) to become active (si = 1). That is

Since the stochastic update rule for each unit is assumed to be
independent of the state of the unit, we have from Eq. (5.47)

P(si 4 lIs i=o) = P (si= 1 l X i) =
1

1 + exp(-x Jr)
(5.52)

and

P (s i 4 0 (s i = 1) = P(s i=0Ixi) = 1- 1
1 + em- JT)

- - 1 (5.53)
1 + exp(xJT)

Therefore from Eqs. (5.51), (5.52) and (5.53), we get

From the Hopfield analysis we have the global energy for the state
s as

Difference in the energy for change of state in the kth unit from
sk = 0 to sk = 1 is given by

AEk = E(sk = 1) - E(sk = 0) = - x wkj sj = -xk . (5.56)
j

Note that this is true only if the weights are symmetric, i.e.,
wu = wji. The ratio of probabilities of the states of the network before
and after an update in the ith unit is then given by (see Eq. (5.54))

Let Mi = Ep-E, where Ep is the energy for the state
sp = (sl, s2, ..., si = 1, ..., sN), and E, is the energy for the state
s, = (sl, s2, ..., si = 0, ..., sN). Therefore we get

Feedback Neural Networks

From Eq. (5.58) we find that the probability of a state at thermal
equilibrium is inversely proportional to the exponential of the energy
of the state. That is

P(s,) = e-EdT (5.59)

where Ea is the energy of the network in any state s,, and is given
by the Hopfield energy equation (5.55).

Since C P(sJ = 1, we get
a

where 112 is the proportionality constant. Therefore,

Therefore the probability of a state at thermal equilibrium is given by

This is called the Boltzmann-Gibb's probability distribution. The
normalization factor Z is called the partition function in statistical
mechanics [Hertz et al, 1991; Muller and Reinhardt, 19901. The
partition function plays a central role in statistical mechanics, as it
can be used to compute averages at thermal equilibrium. At high
temperature (T + m), the stationary probabilities of the states are
nearly equal and are independent of the energies of the states. On
the other hand, at low temperatures (T+ 0), the stationary
probabilities are dictated by the energies of the states, and the states
with lower energy will have higher probabilities.

5.4.3 Thermal Averages

From the stationary probabilities P(sa) of the states at thermal
equilibrium at a given temperature, the average (A) of any quantity
A pertaining to the states can be computed as follows:

(A) = C AaP(sJ (5.64)
a

where A, is the value of the quantity for the state s,. This is called
thermal average of the quantity A.

Stochastic Networks and Simulated Annealing 171

In many cases the thermal averages can be computed from the
partition function itself, instead of using the stationary probabilities.
But, in practice, obtaining the partition function becomes the main
issue. Assuming that the partition function Z is known, the averages
of some relevant quantities are computed as follows:

In order to compute the averages, it is convenient to define a
term, called free energy of the system, given by [Hertz et al, 1991,
Appendix].

F = - T log Z = - T log C e-Ea'T
(a 1 (5.65)

where log stands for the natural logarithm. Then

The average energy (E) of the states is given by

aF la az
(E) = C P(sJEa = -2'- = --

a aT Z aT
To compute the averages (s,) and (si si), let us consider the

expression for the Hopfield energy with the bias term as in Eq. (5.25)
[Muller and Reinhardt, 1990, p. 1491.

Taking the derivative with respect to Oi, we get

We can show using Eqs. (5.65) and (5.69) that

If we take - aF/awij, then we get

172 Feedback Nqural Networks

Thus.

Equations (5.67), (5.70) and (5.72) are three thermal average
expressions in terms of the free energy F and partition function Z.
The free energy F can be interpreted as follows:

Since e-F'T = Z = C e-EdT , we have
a

e - FIT
- -
z - C P(sa>

a

The sum of probabilities over all possible states is 1, and hence the
left hand side of Eq. (5.73) above is equal to 1. But the above equation
applies even if the summation is taken over a subset of the states.
Then the lef't hand side gives the probability of finding the system
in that subset.

5.4.4 Stability in Stochastic Networks

In stochastic networks, equilibrium refers to the thermal equilibrium
at which the averages over all possible realizations of the states are
independent of time. This is because the probability distribution of
the states does not change with time. It can be proved that networks
with symmetric weights do indeed reach thermal equilibrium at a
given temperature. Since the state of the network changes due to
stochastic update, it is not possible to talk about absolutely stable
states in the sense that, once such a state is reached, it should remain
there. On the other hand, one can still study stability of states at
thermal equilibrium in which the average values do not change in
time. Like in the deterministic case, for a stable state in the stochastic
case we invoke the condition that the average value of the o u t ~ u t is
proportional to one of the stored patterns, say the kth one (ak). That
is, for each component of the vector,

(si) = maki , i = 1, 2, ..., N (5.74)

where m is the proportionally constant. In the deterministic (T = 0)
case, these stable states exist for m = 1 as seen in Section 5.3.2. In
the stochastic case we have from Eq. (5.50)

where AEi = -xi = -Z wii(sj). Here the activation value is
I

determined using the average of the fluctuations of the outputs from
the other units. This is called the mean-field approximation by which

Stochastic Networks and Simulated Annealing 173

the actual variables are replaced by their averaged quantities
ISoukoulis et al, 1983; Bilbro et al, 19921.

We can obtain an approximate solution of Eq. (5.74) by
substituting for (si) in Eq. (5.74) and simplifying. In doing this
analysis it is convenient to assume units with bipolar {-I, +1} outputs.
Then the average value (si) is given by

(s,) = ~ x P (s ~ = ~ I x ~) - ~ x P (s ~ = - ~ ~ x ~) (5.76)

Assuming for convenience the probability of update in this case as

we get
1

('i) = 1 + exp(- 2 xi/n - [- 1 + exH- 2 x,/T) I
= tanh [:)

. ,

where xi is given by
xi = C wij(sj)

using the mean-field approximation. From the Hebb's law given in
Eq. (5.181, we have

1 L
wij = - a, a,! N

1 = 1

Therefore from Eqs. (5.74), (5.78) and (5.79), we have

Ignoring the cross terms, which is valid if the number of patterns
stored (L) is much less than N, we get

Since aki = f 1, and tanh(-x) = -tan&), we get

Solutions of this equation are shown in Figure 5.10. It shows that
the solutions for m are the points of intersection of the straight line
y = Tx and the sigmoid curve y = tanh(x). If T 2 1, there is only one
solution at y = 0. For T < 1, there are three solutions.

From Figure 5.10 we can obtain the values of y for different

Feedback Neural Networks

Figure 5.10 Solution of the equation y = tanh (m/T) as points of intersection
of y =Tx and y = tanh (x) .

temperatures. Figure 5.11 shows the positive value of (s) of Eq. (5.78)
as a function of the temperature T. It shows that nonzero solutions
to (s) exist only when T < Tc. As T -+ 0, (s) approaches + 1. The critical
temperature Tc = 1 for stochastic networks with L << N, since &he
crossterms in Eq. (5.80) are negligible under this condition.

Figure 5.11 The positive solution (s) as a function of temperature.

The above analysis shows that a stochastic network with
symmetric weights will have stable equilibrium states, i.e., will satisfy
Eq. (5.81), only at temperatures below a critical temperature,
provided L<<N. The number of such states is very small compared
to N, and the actual number depends on the temperature. But the
maximum value of L will be less than 0.138 N, which is the limit for
the deterministic case, i.e., for T = 0 [Amit et al, 19871.

Stochastic Networks and Simulated Annealing 175

The maximum number of stable states for a stochastic network
is referred to as the capacity of the network. The capacity will be
different for different temperatures. Above a critical temperature for
any given LIN (See Figure 5.121, the network will not have any stable

0.138
Figure 5.12 The region (shaded) for the existence of stable states for a

stochastic network.

equilibrium state and hence cannot be used as memory. The critical
temperature is lower for higher values of LIN. For LIN > 0.138,
however, there are no stable states for any temperature, including T
= 0 [Amit et al, 1987; Hertz et al, 1991, p. 391.

5.4.5 Operatlon of a Stochastic Network

Having seen that a stochastic network exhibits stable states for temp
eratures below a critical temperature, we shall discuss the operation
of a stochastic network for memorizing a given set of patterns.
Throughout we assume that L cc N, and that we are operating at
temperatures lower than the critical temperature, so that the network
has stable states at thermal equilibrium at a given temperature.

Given a feedback network with symmetric connections, there exists
an energy landscape with a unique value of energy for each state of the
network. There are two aspects of the network when used as memory:
Designing a network to store a given set of patterns (training) and
recalling a pattern stored in the network (recall). To understand these
aspects, let us f i s t discuss the operation of a stochastic network in
detail. The operation involves monitoring the trajectory of the states
of the feedback network and studying the characteristics of the
resulting random process in terms of probability distributions of
states and the relation of these distributions with the energy.

176 Feedback Neural Networks

Note that the energy landscape is fixed for a given network, as
the energy depends only on the output state si of each unit i and on
the weights wij on the connecting link between units j and i. The
activation dynamics including the asynchronous or synchronous
operation and the stochastic update decide the trajectory of the states
and hence the traversal along the energy landscape. Since provision
for stochastic update is available, the trajectory may move along a
path which may include movement to states with higher energies in
the energy landscape.

Figure 5.13 illustrates the regions for trajectories of states at
different temperatures. Note that at T = 0, the trajectory can only

Figure 5.13 Regions of traversal in the energy landscape. The shaded area
indicates region of traversal for a temperature of T,.

slide along the downward slope of the energy and reach a fixed point
equilibrium state. Thus at T = 0, there are as many stable states as
there are energy minima in the landscape. At higher temperatures
there is greater mobility, thus resulting sometimes in a movement
towards higher energy states. In such a case all the energy minima
regions covered in the region of movement cease to be stable regions.
Only regions with deep energy minima are likely to be stable. Thus
the number of stable regions decreases with increase in temperature.
At a given temperature several trajectories are possible depending
on the update at each unit. These trajectories may be viewed as
sample functions of a random process. When the temperature is
changed, the trajectories correspond to the transient phenomenon
during which the random process is nonstationary. Consequently the
probability distribution of states changes with time as shown in
Figure 5.14 for three time instants (to, t,, t2), where to is the instant
at which the temperature parameter is changed, t, is an instant in
the transient region and t , is an instant in the steady region after
the random process became stationary. Note that the probability
distributions may not be related to the energy landscape during the
transient phenomenon. But once the thermal equilibrium is reached,

Stochastic Networks and Simulated Annealing

state - state -
Figure 5.14 Probability distribution

of states at a given new
temperature during
transient phenomenon
at three instants of
time (t2 > tl > to) (a)
Energy landscape. (b),
(c) and (d) are proba-
bility distributions at
times to, tl and t2,
respectively.

Figure 5.15 Stationary probability
distribution at three
different temperatures
for a stochastic network
(To < Tl <Tz). (a) Energy
landscape. (b), (c) and
(d) are stationary
probability distri-
butions at temperatures
T2, Tl and To, res-
pectively, with To = 0.

the stationary probability distribution shows some relation to the
energy landscape. In particular, the peaks in the probability
distribution correspond typically to deeper valleys of the energy
landscape.

Figure 5.15 shows the stationary probability distributions a t

178 Feedback Neural Networks

different temperatures. At higher temperatures the probability
distribution is more flat, indicating that several higher energy states
are also likely with high probability. At T = 0, the probability
distribution shows impulses at the states which are fixed stable points
and at which the energy is minimum. Probabilities of nonminimum
energy states are zero. Moreover, the probability of a state is inversely
proportional to the energy at that state. Hence the average energy
at T = 0 is minimum. The average energy at thermal equilibrium at
T + 0 is higher for higher temperatures. This is because the energy
landscape is fixed, but the probability distribution of states is flatter
at.higher temperatures than at lower temperatures.

5.4.6 Simulated Annealing

From the above analysis we can see that the matching probability
distribution of states for a given network gives the lowest average
energy at T = 0. When the network is used as a memory to store a
given set of patterns, the average error in the recall will be minimum
if the probability distribution of the given patterns matches the
optimal probability distribution of the stable states of the network at
T = 0. This can happen only by determining an optimal size of the
network and the connection weights. Determination of a suitable
architecture and adjustment of the weights are discussed in
Section 5.5. But the adjustment of weights or learning involves
determining the probability distribution at T = 0 for each presentation
of a pattern input, by going through a sequence of temperature values
starting from a high temperature to finally T = 0. Thus for each
application of a training pattern the network is said to be annealed
to obtain the probability distribution matching the energy landscape.
To reinforce the given pattern, the weights are adjusted in accordance
with the statistics of the outputs of the units collected at the end of
the annealing process. The objective is to ultimately shape the energy
landscape for the given distribution of the input patterns so as to
obtain a low probability of error in the recall. But if the number of
patterns to be stored is smaller than the number of energy minima,
then during recall the network may settle in a state corresponding
to an energy minimum not used for storage. This is called the local
minima problem.

The existence of local minima may result in an error in the recall,
even though the training attempts to match the given distribution of
patterns with the energy landscape of tihe network. For recall, when
an approximate input is given, the network is allowed to reach an
equilibrium state near T = 0, following an annealing process starting
from a high temperature. Thia will reduce the effects of local minima
and thus reducea the probability of error in the recall. Using the
given approximate input as a constraint, we want to arrive at a state

Stochastic Networks and Simulated Annealing 179

that corresponds to a minimum energy of the given network. The
information corresponding to the state gives the desired pattern to
be recalled.

Both training and recall of patterns in a stochastic network use the
process of annealing controlled by the temperature parameter. The rate
of change of temperature, called annealing schedule, becomes critical in
realizing the desired probability distribution of states near T = 0. This
process is called simulated annealing CKirkpatrick et al, 19831.

5.4.7 Example of Simulated Annealing

In this section we consider an example to illustrate the ideas of
stochastic update, thermal equilibrium and simulated annealing. The
example is adapted from [Aleksander and Morton, 19901. For this we
take the three unit binary network with symmetric weights shown
in Figure 5.7. For each unit, the probability of firing for an activation
x is assumed to be

Foreach temperature T a separate state transition diagram can be
derived, which indicates the transition from each state to other states.
Let us illustrate the calculation of the transition probabilities for one
state, say s1ss3 = 011. Assuming only one unit is allowed to change
at a time, for each unit we can compute the activation value (x - 8)
using 5 wy sj - 8, . For a temperature T = 0.25, the values of P(l 1 x)

for units 1, 2 and 3 are 0.6, 0.92 and 0.23, respectively. The corres-
ponding probabilities for not firing P(O I x) = 1 - P(ll x) are 0.4, 0.08
and 0.77, respectively for the units 1, 2 and 3. A change of state from
011 to 111 occurs if the first unit fires. Since each unit can be chosen
with a probability of 113, and the probability of unit 1 firing is 0.6,
the transition probability from 011 to 111 is 0.613. Likewise the
transition probability from 011 to 001 is 0.0813 and from 011 to
010 is 0.7713. Since only these transitions are possible from
011, besides self-transition, the probability of self-transition is given
by 1 - 0.613 - 0.0813 - 0.7713. The transition probabilities for the
state 011 for three different temperatures (T = 0.0, 0.25 and 0.5) are
shown in Figure 5.16. It can be seen that in the deterministic case
(T = 0) the transitions to the state 001 are not possible because it is
at a higher energy level. For nonzero temperature there is a nonzero
probability of transition to all possible states including to a state with
higher energy value. These transition probabilities get distributed
more evenly at higher temperatures.

The complete state transition diagram for T = 0.25 shows a tran-
sition with nonzero probability from every state to its neighbouring
(Hamming distance = 1) states. The transition probabilities for all

Feedback Neural Networks

(a) T = 0.0 (b) T = 0.25 (c) T= 1.0

Figure 5.16 State transition probabilitiea for the state 011 at different
temperatures. (a) T = 0, (b) T = 0.25 and (c) T = 1.0.

the eight states for T = 0.25 case are shown in the form of a matrix
in Table 5.5. Note there are four nonzero entries in each row,
indicating the four possible transitions for each state, and these
entries in each row add up to 1.

Table 5.5 State Transition Probabilities P(i I J) at T = 0.25 for the 3-unit
Network in Figure 5.7(a)

For a given state transition probability matrix, it is possible to
determine the probability distribution of the states (Pi(t)) a t each
instant of time t, starting with some assumed distribution at time
t = 0. Let us assume equal probability for each state as the initial
state probability distribution. That is Pi(0) = l/8 = 0.125, as there
are eight states.

Let P(i I j) be the probability of transition from the state j to the
state i. Since each state j occurs with probability Pj(t), the probability
of reaching state i in the next ins tad from the state j at the current

Stochastic Networks and Simulated Annealing 181

instant is Pj(t) P(i (J). Summing this over all states will give the
probability of the state i at the next instant and is given by

P i (t+ l) = P,(t)P(iIj), f o r i = 0,1, ..., 7 (5.84)
j

In matrix notation the probability distribution of states at time
t + 1 is given by

~ (t + 1) = P P@),

where p(t) = [pi(t)lT is a column matrix with the state probabilities
as elements, and P = [P(i 1 j]lT, is the transition probability matrix
with P(i IJ) as elements. Therefore,

P(t) = P ' ~(01, (5.85)

where P i denotes matrix multiplication t times. From Eq. (5.85) the
steady probability distribution can be obtained when t + m. Note that
the time to reach the steady state depends on the initial state
probabilities and the state transition probability matrix.

The state transition probability matrix P depends on the temper-
ature T. As the temperature is varied, these transition probabilities
also will change. Therefore the steady state probability distribution
depends on the temperature, and hence the corresponding steady
state is called thermal equilibrium. When the temperature is changed
say from T2 to T,, then the network moves from one thermal
equilibrium condition to another thermal equilibrium condition after
going through a transient phase during which the state probability
distribution will be changing. This is illustrated in Table 5.6 for the
three unit network example in Fig. 5.7(a). In the table, the notation
Pi(t) indicates the probability of the state i (the integer value of the
corresponding binary state) at time t. Starting with equal initial
probabilities for all the states at T = 1, the probabilities during
transient phase are calculated until thermal equilibrium is reached.
Thermal equilibrium is indicated when there is no change in the state
probabilities for subsequent updating instants. At this stage the
temperature is changed to T = 0.25, and the state probabilities are
again calculated until thermal equilibrium is reached again. Finally
the temperature is set to zero, i.e., T = 0, and the state probabilities
are updated until thermal equilibrium is reached. At this stage, we
notice that there are only two states with nonzero probabilities, and
these probabilities are inversely related to their state energies. These
states correspond to the stable states of the network.

In general the rate of change of the temperature parameter is
critical to arrive at the final stable states after passing through
several stages of thermal equilibrium. This rate of change of
temperature is called annealing schedule.

182 Feedback Neural Networks

Table 5.6 Illustration of State Probabilities during Simulated Annealing
for the 3-unit Network in Figure 5.7(a). (Adapted from
[Aleksander and Morton, 19901)

State Probability P,,(t) P,(t)
Temp. Time t

Boltzmann Machine

5.5 Boltzmann Machine

5.5.1 Problem of Pattern Environment Storage

The relation between probabilities and energies of the stable states
suggests that the probability of error in the recall of stored patterns
in a feedback neural network can be reduced if the weights are chosen
appropriately. If the probability distribution of the given (desired)
patterns, called pattern environment, is known, then this knowledge
can be used for determining the weights of the network while storing
the patterns. The training procedure should try to capture the pattern
environment in the network in an optimal way. Boltzmann learning
law to be discussed in Section 5.5.3 gives a procedure to accomplish
this pattern environment storage in an optimal way for a given
feedback network. But first we shall discuss considerations in the
choice of a suitable feedback network for the pattern environment
storage problem.

5.5.2 Architecture of a Boltzmann Machine

Given a set of L patterns, each pattern described by a point in an
N-dimensional space, it is not clear how many processing units would
be needed for a feedback network. It may not be possible to store
them in a network consisting of N units, if the resulting number of
stable states (for a given set of weights) is less than the number of
patterns L. That is, the capacity of the network is less than L. Such
problems are called hard problems. In general it is difficult to say
whether a given pattern storage problem is a hard problem or not
for a given network. To be on the safe side, one can add extra units
to the feedback network. These extra units are called hidden units,
whereas the remaining N units, to which the input patterns are
applied during training, are called visible units. A fully connected
network consisting of both hidden and visible units (Figure 5.17) and
operating asynchronously with stochastic update for each unit is
called a Boltzmann machine. Since the steady state probabilities at
thermal equilibrium follow the Boltzmann-Gibb's distribution, the
network architecture is called a Boltzmann machine [Ackley et al,
19851.

Since the network architecture is so chosen that the number of
stable states is more than the desired number of patterns, the
additional stable states become spurious stable states. Existence of
the spurious stable states results in a nonzero probability of error in
the recall, even though the network is trained to capture the pattern
environment in an optimal way. Pattern recall from a Boltzmann
machine uses simulated annealing to reduce the effects of these
additional stable states, which correspond to local minima in the
energy landscape of the network.

Feedback Neural Networks

0 Visible units: 1, 2, 3 are input units
6, 7 are output units

0 Hidden units: 4 , 5

Figure 5.17 Illustration of a Boltzmann machine.

A Boltzmann machine can also be used for a pattern association
task. This is accomplished by identifying a subset of the visible units
with the inputs and the remaining visible units with the outputs of
the given pattern pairs. In other words, each input-output pair is
considered as a pattern, and these patterns are stored as in the
pattern environment storage problem. For recall, the input is
presented only to the input subset of the visible units. The output is
read out fiom the output subset of the visible units, after the network
reached thermal equilibrium at T = 0 using a simulated annealing
schedule to reduce the local minima effects.

In general a Boltzmann machine architecture can be used for any
pattern completion task, in which the stored (input-output) pattern
can be recalled by providing a partial information about the pattern.

5.5.3 Boltzmann Learning Law

The Boltzmann learning law gives a procedure to represent a given
pattern environment by a Boltzmann machine. The law uses an
information theoretic measure to evaluate how well the environment
is represented by the network. If a perfect representation is obtained,
then there will be as many energy minima as there are desired
patterns in the environment. Moreover, these energy minima are
inversely related to the probabilities of occurrence of the
corresponding patterns in the environment. Normally since only an
approximate representation of the environment is accomplished after
training, there will be a residual mismatch of the probabilities of the
patterns in the environment with the probabilities of the stable states
of the resulting network. This mismatch, together with the inevitable
existence of spurious stable states, results in some nonzero probability

Boltzrnann Machine 185

of error in recalling the stored patterns. In this section we will derive
the Boltzmann learning law based on an information theoretic
measure [Gray, 19901. We will discuss the implementation issues in
the next section.

Let P +(Va) , a = 1,2, ..., L be the probability distribution of the
set of given L patterns {Val, where Va is a point in the N-dimensional
space. The superscript '+' denotes the desired states and their
probabilities for the visible units of the network. Note that
Z P+(Va) = 1. During recall it is desirable to have the network settle

at one of the Gaining patterns only. Let P-(V,) be the actual
probability distribution of the desired patterns at the visible units at
equilibrium for a given network. The objective of training is to adjust
the weights of the network so that the differencelin the network
behaviour for these two probability distributions is negligible. Ideally
one would like to have P +(Va) = P -(Va) , a = 1,2, ..., L.

The distribution P+(Va) corresponds to the desired situation of
the states at the visible units and the distribution P-(V,) corresponds
to the probability of occurrence of these states when the network is
running freely. The difference between these conditions is represented
by an error criterion derived based on information theoretic measure
[Gray, 19901. The error function is given by

It is easy to show that G 2 0, using the relation log x 2 1 - (Ux). The
error function G = 0, only when P+(Va) = P-(VJ. In other words,
when G = 0 the given pattern environment is represented by the
network exactly. Using the gradient descent along the error surface
G in the weight space to adjust the weights, we have

To compute the gradient aGlawij, we will use the following relations
for the probabilities and energies of the states:

where Hb is a vector of states of the hidden units, Va is a vector of
states of the visible units and (V, A Hb) represents the state of the entire
network. P-(.) represents the probabilities of the states when the
network is free running.

Likewise

P '(V,) = C P+(Va A Hb) (5.89)
b

186 Feedback Neural Networks

where Hb is a vector of states of the hidden units. P+(.) represent the
probabilities of the states when the network is forced or clamped with
the given patterns as states of the visible units.

The energy of the network in the state Va A Hb is given by

where sqb is the output of the unit i when the network is in the state
V, A Hh.

Since P-(V, A Hb) represents the probability distribution of states
a t thermal equilibrium at some temperature T, the probability of the
state (V, A Hb) at equilibrium is related to the energy Eab through
Boltzmann-Gibbs law as follows:

Therefore,
1 P-(VJ = Z e-

b

The gradient &lawY is given by

since P+(Va) is constant for a given pattern environment. We have

From Eq. (5.90) we have

Therefore we get
az

Boltzmann Machine

Therefore,

and

a + T P7Vm A Hn) ST ST (5.98)
mn

We have the following relations:

Also we know that the probability that the state Hb will occur on the
hidden units should not depend on whether the state Va on the visible
units got there by being forced by environment or by free running.
That is

+ (Hb I Va) = -(Hb I (5.100)

Hence from Eq. (5.991, we get

Therefore,

where

is the average of the product of the outputs of the units i and j, when
the network is clamped and

pij = C P-(Vm A H,) s" syn

188 Feedback Neural Networks

is the average value of the product of the outputs of the units i and
j when the network is free running. The change in the weight is given
from Eqs. (5.87) and (5.102) as

where q is a learning rate parameter and T is the temperature at
which the equilibrium statistics are computed. This is called
Boltzmann learning.

5.5.4 Issues In Implementation of Boltzmann Learning

Discussion on Boltzmann learning: The Boltzmann learning law in
Eq. (5.103) is a result of using three principles: (a) Hopfield model
with symmetric weights, no self-feedback and asynchronous update,
(b) Boltzmann-Gibb's distribution for probability of states at thermal
equilibrium under stochastic update of the neurons, and (c) an
information theoretic measure for error criterion for matching the
probability distribution of the states a t thermal equilibrium with the '
distribution specified for the pattern environment. In the derivation
of the law we have implicitly used the features of the Boltzmann
machine, namely, the concept of hidden and visible units, stochastic
update of the units, thermal equilibrium of the network at each
temperature and simulated annealing with a specified schedule for
annealing. The final objective is to adjust the weights in a systematic
way so that the feedback network will have stable states at the
desired input patterns. These states will have energies related to the
probabilities of the input patterns through the Gibb's law. Table 5.7
gives a summary of Boltzmann learning law. Table 5.8 lists some of
the issues in Boltzmann learning which will be discussed in some
detail in this section.

The expression in Eq. (5.103) for Boltzmann learning shows that
the learning has the local property, namely, the change in the weight
connecting the units i and j depends on the values of the variables
associated with those units only. It is interesting that the gradient
descent along the information-theoretic based error surface leads to
this desirable property of a learning law. The terms p; and p i
correspond to the terms in a Hebb's learning law. The term p; is the
average of the product of the output state values for the units i and
j, averaged over all possible states of the network when the visible
units of the network are clamped with the patterns to be stored. Thus
p+. can be interpreted as correlation between the output values of the
itk and jth units. Likewise p j is the correlation between the units
when the network is in free running condition. The contribution to
the weight change due to p+. can be viewed as Hebbian learning and
that due to p i can be viewei as Hebbian unlearning. The second term

Boltzmann Machine 189

Table 5.7 Summary of Boltzmann Learning Law

The objective is to adjust the weights of a Boltzmann machine so as to
store a pattern environment described by the set of vectors (Val and their
probabilities of occurrence. These vectors should appear as outputs of the
visible units. Let (H,) be the set of vectors appearing on the hidden units.

Let P+(Va) be the probability that the outputs of the visible units will
be clamped (indicated by '+' superscript) to the vector Va. Then,
P+(Va) = C P+(Va A Hb), where P+(Va A Hb) is the probability of the state

b

of the network when the outputs of the visible units are clamped to the
vector Va, and the outputs of the hidden units are H&

w Likewise the probability that V, will appear on the visible units when none
of the visible units are clamped (indicated by '-' superscript) is given by

Note that P+(Va) is given by the pattern environment description, and
P-(V,) depends on the network dynamics and is given by

p-(va) = z ~ x P (- E ~ ~ / z .x~(-~,,,,,m,
b mn

where the total energy of the system in the state Va A Hb is given by

s:b refers to the output of the ith unit in the state Va A Hb.

w The Boltzmann learning law is derived using the negative gradient
descent of the functional

G = Z P'(Va) log [P'(Va)I(P-(Va)l
a

w It can be shown that

where

p i = ZP'(Va AH^) s : ~ s ~ ~ , p i = xP-(Va A H ~) s ~ ~ s ; ~
ab ab

The weight updates are calculated according to

The Boltzmann learning law is implemented using an annealing schedule
for the network during clamped and unclamped phases of the visible
units of the network to determine p: and pi, respectively.

can also be interpreted as a forgetting term. When the two correlations
are equal, then we can interpret that the resulting network with the
learned weights has absorbed the given pattern environment.

190 Feedback Neural Networks

Table 5.8 Issues in Boltzmann Learning

"l Expression for Boltzmann learning: Aw, = - [p ; - p i] T
Significance of p; and p i
Learning and unlearning
Local property
Choice of q and initial weights

Implementation. of Boltzmann learning
Algorithm for learning a pattern environment
Algorithm for recall of a pattern
Implementation of simulated annealing
Annealing schedule

Pattern recognition tasks by Boltzmann machine
Pattern completion
Pattern association
Recall from noisy or partial input

Interpretation of Boltzmann learning
Markw property of simulated annealing
Clamped-free energy and full-free energy

Variations of Boltzmann learning
Deterministic Boltzmann machine
Mean-field approximation

In the implementation of the Boltzmann learning law, there are
two distinct phases, one for determining pt. by clamping the input
pattern to the visible units and the ode r for determining p i
corresponding to the free running condition. In each phase the
network is subjected to an annealing process, starting with some high
temperature and using an annealing schedule. At each temperature
in the schedule the network is allowed to reach thermal equilibrium.
The Metropolis algorithm [Metropolis et al, 19531 may be used to
arrive at the thermal equilibrium of states at each temperature. The
algorithm uses the probability law given in Eq. (5.47) for updating
the state of a unit based on the activation value (net input to the
unit). The probability law is implemented using a random number
uniformly distributed in the interval 0 to 1, and comparing the
number with the probability [Binder and Heerman, 19881. If the
difference between the generated random number and the computed
probability is positive, then the state of the unit is updated to the
new value. Otherwise the state is unaltered. This is repeated for each
unit selected at random, and for several cycles. Each cycle consists
of N iterations, where N is the number of units in the network. After
a certain number of cycles the network reaches thermal equilibrium
at that temperature. At that stage the temperature is lowered to the
next value in the schedule.

Boltzmann Machine 191

At the thermal equilibrium, achieved at the lowest value of the
temperature in the annealing schedule, the products sisj are computed
for all i and j. This process is repeated for each presentation of an
input pattern in the clamped phase. The input patterns are presented
one by one several times according to their frequency of occurrence
in the pattern environment. find the average of the sis. from all these
trials. The resulting average value is an estimate 04~;. The same
operations are repeated on the network in the free running condition
for the same number of trials with the same number of cycles at each
stage in each trial. The resulting average of sisj gives pi.

To start with, the weights are set to some random initial values
in the range -1 to +1, assuming that the state of each unit in the
network is either 0 or 1 (binary units). The value of the learning rate
parameter q is chosen in the range of 0 to 1, preferably a small value
of 0.1. The range of temperatures for annealing also could be from
T = 1 to T = 0.1. The weights are adjusted according to Eq. (5.103).
The algorithm for implementing the Boltzmann learning law is given
in Table 5.9.

Table 6 9 Boltzmann Machine Learning Algorithm for Binary Units

Clamp one training vector to the visible units.
Anneal until equilibrium is reached at desired minimum temperature.
Continue to run the network for several processing cycles. ARer each
cycle determine the connected units whose states are '1' simultaneously.
Average the cooccurrence results from Step 3.
Repeat Steps 1 to 4 for all training vectors to get p;.
Unclamp the visible units, and anneal until equilibrium at the desired
minimum temperature
Continue to run the network for several processing cycles. ARer each
cycle determine the connected units whose states are '1' simultaneously.
Average the cooccurrence results from Step 7.
Repeat Steps 6 to 8 for the same number of times as in Step 5 to get -
Pw
Calculate and apply the appropriate weight changes.
Repeat Steps 1 to 10 until p: - p i is sufficiently small.

To recall a stored pattern, the given partial input is clamped to
the appropriate visible units, and the network is subjected to an anne-
aling process according to a schedule to reach thermal equilibrium
at the minimum temperature. The output state of the visible units
at this stage corresponds to the pattern to be recalled. Table 5.10
gives an algorithm for recalling a stored pattern.

The Boltzmann learning is a very slow process, since a large
number of cycles are needed to obtain suflticient amount of data to
estimate the desired averages p; and p i reasonably well. The learning

192 Feedback Neural Networks

Table 5.10 Boltzmann Machine: Recall from Partial Input

1. Force outputs of visible units to specified initial input binary vector.
2. Assign unknown visible units and hidden units to random value (0, 1).
3. Select a unit k at random and calculate the activation value xk.
4. Assign the output sk = 1 with probability V(l +e-*hR) .

5 . Repeat Steps 3 and 4 until all units have a chance to update (one
processing cycle).

6 . Repeat Step 5 for several processing cycles until thermal equilibrium is
reached at the temperature T.

7. Lower T and repeat Steps 3 to 6.
8. Once the temperature has been reduced to a small value, the network

will stabilize.
9. The final result will be the outputs of the visible units.

rate parameter 7 should be small in order to take care of the inaccura-
cies in the estimates of these averages. If 7 is large, then there is a
possibility of taking a large step along a wrong direction due to a p
proximation in the computation of the gradient of the error measure.
But a small value of 7 further slows down the learning process.

Success of annealing in the learning process critically depends on
the annealing schedule. The probability distribution of the states
converges asymptotically to the distribution corresponding to the
minimum average energy value, pro~ided the temperature at the kth
step in the annealing schedule satisfies the followi~ig inequality [Geman
and Geman, 1984; Aarts and Korst, 1989; Salamon et al, 19881:

'T'

where T, is the initial high temperature. This annealing schedule is
too slow for implementation in practice. Several ad hoc schedules
were suggested to speed up the process of annealing. One such
method uses Tk = T J 1 + k),\ which is known as fast annealing schedule
or a Cauchy machine [Szu, 19861. But there is no proof of convergence
towards the minimum average energy value in these ad hoc methods.

Boltzmann machine can be used for recalling a stored pattern
from partial input, by clamping the known input at the corresponding
visible units. This is called pattern completion task. Boltzmann
machine can also be used for pattern association task. In this case
the visible units are split into two parts, one part corresponding to
the input pattern and the other to the output pattern. During training
both the input and output patterns are given as a pair to the visible
units. Thus all the given pattern pairs are used in the training. While
recalling, the input part of the visible units are clamped and the
recall is implemented as in the pattern completion task. The state at
the output part of the visible units gives the associated pattern.

Boltzmann Machine 193

It is also possible to recall a pattern from a noisy version of it.
In this case the noisy input pattern is presented initially to the visible
units and subsequently the network is allowed to anneal as in a free
running condition. The initial presentation of the noisy input pattern
will bias the state of the network towards the true state and the
annealing process will be helpful to overcome the local minima states
to reach the deep minimum corresponding to the stored pattern.

In the operation of the Boltzmann machine the state of the
network due to a transition depends on the previous state only and
not on the states prior to the previous state (See Eq. (5.84)). This is
called Markov property of the simulated annealing [van Laarhoven
and Aarts, 1988; Haykin, 1994, p. 3161. Note that the transition
probabilities are derived assuming a probability distribution for the
update of the state of a unit and using an asynchronous update in
which only one unit is considered at a time for updating. The
probability distribution of the states of the network at a given instant
together with the transition probabilities will enable us to determine
the probability distribution of the states at the next instant in the
simulated annealing process (See Eq. (5.84)). This Markov property
will eventually lead to a stationary probability distribution of the
states at thermal equilibrium. Moreover, the stationary probability
distribution in turn is related to the energy distribution of the states
through the Boltzmann-Gibb's law.

The Boltzmann learning law can be interpreted in terms of the
energy and probability distribution of the states as follows: Let the
partition function Z be expressed as

where F is the free energy of the system. Then we have from
Eqs. (5.65) and (5.72)

F = - T log2
and

Let Zadamped = Z e- and Zunclamped = 2 e- Then
b ab

194 Feedback Neural Networks

where Fa is the clamped free energy, i.e., the free energy when the
visible units are clamped with the state Va.

The error function G of Eq. (5.86) can be written as

G = Go - C P +(Va) log P -(Va)
a

where Go = C P+(Va) logP+(Va) is independent of the network
parameters su%h as weights. Therefore, from Eqs. (5.108) and (5.109)
we get

where F a is the average clamped free energy and F is the full free
energy [Hertz et al, 1991, Appendix]. We can show that (See Problem
5 in Ch. 5)

Therefore.

where p i and p i are given by Eqs. (5.111) and (5.107), respectively.
Thus we can view the error function (G - Go) as the difference
between the average clamped free energy and the full free energy.
The full free energy will be lower since under free running condition
the energy landscape is perfectly matched to the probability
distribution of states at thermal equilibrium through the Gibb's law.
In the clamped condition the stationary probabilities do not match
the energy landscape perfectly due to the constraint of the clamping.
Note that the energy landscape depends on the connection weights
and states of the network.

Computation of the average values of the correlations requires a
very large number of iterations in the Boltzmann learning law. The
implementation of the Metropolis algorithm by Monte Carlo method
[Binder et al, 19881 for state update, together with the simulated
annealing according to an annealing schedule, results in an extremely
slow learning of the Boltzmann machine. A fast learning procedure
is to simply run the machine only at zero temperature. This is called
deterministic Boltzmann machine [LeCun, 19861. This has the

Boltzmann Machine 195

disadvantage of getting stuck in shallow minima. Consequently, the
pattern environment cannot be exactly matched with the network.

A better approach for learning which retains some of the
advantages of the stochastic nature of the network is called
mean-field annealing [Peterson and Anderson, 19871. In the
mean-field annealing the stochastic nature of the neurons is replaced
by mean values of the outputs of the units. That is, according to the
Eq. (5.78) for bipolar units we have

(si) = tanh (ZIT)

= tanh -c ui, (s j) r i i I
We get one such nonlinear equation for each unit i. These equations
are solved using iterative methods. This, combined with the annealing
process, can be used to obtain the average correlation values at
thermal equilibrium at the minimum temperature. The average
correlation values become the product of the individual average
values. That is,

The mean-field approximation minimizes the mean-field free energy,
given by [Hinton, 19891

where F t f is the mean-field energy when the visible units are clamped
and Fmf is the mean-field free energy under unclamped conditions.
Using gradient descent, the weight update using the mean-field
approximation is given by

which is the Boltzmann learning law with the average correlations
replaced by the average values for each unit. Table 5.11 gives an
algorithm for implementing the mean-field approximation to
Boltzmann learning. The mean-field approximation results in 10-30
times speed up of the Boltzmann learning, besides providing
somewhat better results [Peterson and Apderson, 19871.

196 Feedback Neural Networks

Table 5.11 Algorithm for Mean-field Approximation fbr Boltzmann Learning

1. Initialize the weights to some random values uniformly distributed in the
range f 1.

2. Clamp the units with a given pattern. Starting at some high temperature,
the network is subjected to an annealing process using each time the
mean-field values (s,). The mean-field value is computed using the
recursive formula

3. At the final minimum temperature compute the correlations

4. Likewise compute the correlations p i in the free running case

5. Compute the weight update using the Boltzmann learning law:

where q is learning rate parameter.
6. Repeat Steps 2 to 5 until convergence of weights.

5.6 Summary
Feedback neural networks are used mainly for pattern storage tasks.
In this chapter we have given a detailed analysis of simple feedback
networks for storing a set of patterns. Associated with each state of
the network is an energy value. The key idea in pattern storage by
feedback networks is the formation of basins of attraction in the
energy landscape in the activation or output state space. The Hopfield
conditions for formation of suitable energy landscape are discussed.
In order to store a set of patterns in a feedback network with
hard-limiting threshold units, a set of inequalities have to be satisfied
by the weights connecting the units. Thus there may be several
solutions for the weights satisfying the inequalities. The resulting
energy landscape may have additional false minima corresponding to
patterns not designed for storage. This happens if the storage capacity
of the network is higher than the number of patterns required to be
stored. The presence of false minima will increase the probability of
error in recall of the stored pattern.

The effect of false minima is reduced using stochastic units
instead of deterministic units. Analysis of stochastic neural network
is based on the concepts of thermal equilibrium and simulated
annealing. These concepts are used for traversal along an energy

Review Questions 197

landscape to reduce the effects of false minima during recall of stored
patterns. To reduce the probability of error in recall, the weights of
a feedback network are adjusted using the knowledge of the patterns
as well the probability distribution of these patterns. Loading of the
pattern environment is accomplished in a feedback network with
stochastic units using Boltzmann learning law. The learning law,
derived based on an information theoretic criterion, involves only local
computations, and is implemented using simulated annealing accord-
ing to a temperature schedule.

Boltzmann learning law is too slow for implementation in any
practical situations involving pattern environment storage. For
practical implementation, an approximation in the form of mean-field
annealing is used. While there is no guarantee for solution, mean-field
annealing has been applied in several applications, especially in
optimization problems. Some of these applications will be discussed
in Chapter 8.

Review Questions
1. Distinguish between autoassociation, pattern storage and pattern

environment storage tasks. Give examples for each task.

2. What is the significance of the nonlinear output function of the
units in feedback neural networks?

3. Explain the meaning of activation state and energy landscape of
a feedback network.

4. What is meant by capacity of a feedback network?

5. What is the Hopfield model of a neural network?

6. Explain the differences between discrete and continuous Hopfield
models in terms of energy landscape and stable states.

7. What is a state transition diagram for a feedback network?
Explain how to derive it for a given network.

8. What are hard problems in pattern storage task?

9. How to solve the hard pattern storage problems?

10. Explain with the help of a state transition diagram the meaning
of stable states and false minima.

11. Eow to overcome the effects of false minima?
12. What is the significance of hidden units in a feedback network?
13. What is meant by stochastic update of a neuron?
14. Explain the concept of equilibrium in stochastic neural networks.
15. Explain the meaning of stationary probability distribution at

thermal equilibrium.
16. What is the significance of Gibb's distribution?

198 Feedback Neural Networks

17. What is meant by stability in the case of stochastic neural
networks?

18. Show the probability function for update of a neuron for different
temperatures. Explain the significance of the temperature
parameter.

19. Discuss the behaviour of trajectories of the states during the
transient portion when temperature is changed.

20. Discuss the behaviour of stationary probability distributions of the
states at different temperatures in relation to the energy landscape.

21. Explain the behaviour of a stochastic neural network at thermal
equilibrium with reference to Brownian particle motion.

22. Explain how to derive the state transition diagram for a
stochastic neural network.

23. What differences will you observe in the state transition
diagrams at two different temperatures?

24. Describe a bouncing ball analogy for the dynamics of a stochastic
neural network.

25. What is meant by capacity of a stochastic neural network? How
does it vary for different temperatures?

26. What is meant by simulated annealing? What is annealing
schedule?

27. Describe the Boltzmann machine.

28. What is the basis for Boltzmann learning law?

29. What is the significance of the Boltzmann learning law given by
Eq. (5.103)?

30. Distinguish between clamped and free running conditions in a
Boltzmann machine during learning.

31. Explain the implementation details of the Boltzmann learning law.

32. Explain the implementation details of recall of patterns in a
Boltzmann machine.

33. How to perform the following tasks by a Boltzmann machine?

(a) Pattern completion
(b) Pattern association
(c) Pattern recall from noisy input.

34. What are the limitations of the Boltzmann learning?

35. What is a Cauchy machine?

36. What is the Markov property of the simulated annealing process?

37. What is meant by full free energy and clamped free energy in a
Boltzmann machine?

Problems 199

38. How do you interpret the Boltzmann learning in terms of full
free energy and clamped free energy?

39. What is mean-field approximation to Boltzmann learning?
40. What is meant by deterministic Boltzmann machine?

Problems
1. Derive the Murakami result in Eq. (5.12) for autoassociation

task.
2. Show the result of Hopfield analysis, i.e., AV I 0, for a feedback

network with binary (0, 1) units.
3. Draw a state transition diagram for a 3-unit model with bipolar

(-1, +1) units.
4. Using the Eqs. (5.65) and (5.69), derive the result in Eq. (5.70).
5. Show that (See Eqs. (5.72), (5.107), (5.108) and (5.111))

where F and Fa are the full free energy and the clamped free
energy of the Boltzmann machine.

6. Derive the expression for hi. for the mean-field approximation
of the Boltzmann learning. (dee Bertz et al, 1991, p. 1721.)

7. ' Show that the information theoretic measure G 2 0. (See Eq. (5.86))
8. Derive the complete state transition diagram for the 3-unit

network given in the Figure 5.7(a) for a temperature of T = 1.0.
9. For a 5-unit feedback network the weight matrix is given by

Assuming that the bias and input of each of the units to be zero,
compute the energy at the following states.

10. A 3-unit feedback network has the weight vector given by

Compute the gradient vector VV and the Hessian matrix V2v
for the energy function of the network.

200 Feedback Neural Networks

11. Consider the representation of each of the ten digits (0, 1, ..., 9)
by a matrix of 10 x 10 elements, where each element is either 1
or -1. Design a Hopfield network of 100 units to store these
digits. Study the performance of the network for recall of digits
if 10% of the elements are randomly switched.
(See [Haykin, 1994, p. 2971.)

12. Comment on the capacities of the following networks:

(a) Feedforward neural network

(i) linear units C 5 M (dimensionality of the input)

(ii) nonlinear units C = 2M for large M (See per tz et al,
1991, pp. 111-1141).

(b) Feedback neural network with N units (See Hertz et al, 1991,
p. 39)

C = 0.138N for large N

(c) Hamming network (See Hint for Problem 3 in Chapter 8 and
[:F(ung, 1993, p. 611)

c = 2 p M , p 5 1 .

Chapter 6

Competitive Learning
Neural Networks.

6.1 Introduction
In this chapter we consider pattern recognition tasks that a network
of the type shown in Figure 6.1 can perform. The network consists
of an input layer of linear units. The output of each of these units is
given to all the units in the second layer (output layer) with adaptive
(adjustable) feedforward weights. The output functions of the units
in the second layer are either linear or nonlinear depending on the
task for which the network is to be designed. The output of each unit
in the second layer is fed back to itself in a self-excitatory manner
and to the other units in the layer in an excitatory or inhibitory
manner depending on the task. Generally the weights on the
connections in the feedback layer are nonadaptive or fixed. Such a
combination of both feedforward and feedback connection layers
results in some kind of competition among the activations of the units
in the output layer, and hence such networks are called competitive
learning neural networks. Different choices of the output functions

Output layer with
on-centre and
off-surround
connections

Input layer

Figure 6.1 A feedforward and feedback structure. The feedforward weights
are adaptive and the weights in the feedback layer are fixed.

201

202 Competitive Learning Neural Networks

and interconnections in the feedback layer of the network can be used
to perform different pattern recognition tasks. For example, if the
output functions are linear, and the feedback connections are made
in an on-centre off-surround fashion, the network performs the task
of storing an input pattern temporarily. In an on-centre off-surround
connection there is an excitatory connection to the same unit and
inhibitory connections to the other units in the layer. But such a
network is of theoretical interest only, as there are few occasions
where one needs to store a pattern temporarily in this manner. On
the other hand, if the output functions of the units in the feedback
layer are made nonlinear, with fixed weight on-centre off-surround
connections, the network can be used for pattern clustering. The
objective in pattern clustering is to group the given input patterns
in an unsupervised manner, and the group for a pattern is indicated
by the output unit that has a nonzero output at equilibrium. The
network is called a pattern clustering network, and the feedback layer
is called a competitive layer. The unit that gives the nonzero output
at equilibrium is said to be the winner. Learning in a pattern
clustering network involves adjustment of weights in the feedforward
path so as to orient the weights (leading to the winning unit) towards
the input pattern.

If the output functions of the units in the feedback layer are
nonlinear and the units are connected in such a way that connections
to the neighbouring units are all made excitatoly and to the farther
units inhibitory, the network then can perform the task of feature
mapping. The resulting network is called a self-organization network.
In the self-organization, at equilibrium the output signals from the
nearby units in the feedback layer indicate the proximity of the
corresponding input patterns in the feature space. A self-organization
network can be used to obtain mapping of features in the input
patterns onto a one-dimensional or a two-dimensional feature space.

Table 6.1 shows the organization of the topics to be discussed in
this chapter. First a detailed discussion on the components of a
competitive learning network is given in Section 6.2. In particular,
we will discuss the input layer, a single instar network and a group
of instars. We will also discuss the learning laws for an instar and
the activation dynamics of the feedback network. We will show that,
with some variation of the learning for the instar networks, one can
obtain the principal component analysis learning networks. In Section
6.3 an analysis of the combination network with linear units in the
feedback layer is presented to show the short time memory nature
of the pattern recognition task performed by such a network. In this
section the significance of different nonlinear output functions of the
units in the feedback layer is also discussed. An analysis of the
competitive learning network for pattern clustering is given in
Section 6.4. Some applications of the pattern clustering networks are

Components of a Competitive Learning Network 203

Table 6.1 Pattern Recognition Tasks by Feedforward (FF) and Feedback
(FB) ANN (Competitive Learning Neural Networks)

Pattern storage (STM)
Architecture: Two layers (input and competitive), linear processing units
Learning: No learning in FF stage, fixed weights in FB layer
Recall: Not relevant
Limitation: STM, no application, theoretical interest
To overcome: Nonlinear output function in FB stage, learning in FF
stage

Pattern clustering (grouping)

Architecture: Two layers (input and competitive), nonlinear processing
anits in the competitive layer
Learning: Only in FF stage, Competitive learning
Recall: Direct in FF stage, activation dynamics until stable state is
reached in FB layer
Limitation: Fixed (rigid) grouping of patterns
To overcome: Train neighbourhood units in competition layer

Feature map

Architecture: Self-organization network, two layers, nonlinear processing
units, excitatory neighbourhood units
Learning: Weights leading to the neighbourhood units in the competitive
layer
Recall: Apply input, determine winner
Limitation: Only visual features, not quantitative
To overcome: More complex architecture

also discussed briefly in this section. A detailed analysis of the
self-organization network is given in Section 6.5. Several examples
of feature mapping are given in this section to illustrate the
significance of the concept of self-organization.

6.2 Components of a Competitive Learning Network

A competitive learning network consists of an input layer with linear
units, a group of instars forming a feedforward portion of the network
and a feedback layer with linear or nonlinear units. In this section
we discuss each of these components in some detail.

6.2.1 The Input Layer

The purpose of this layer is to distribute the given external input
pattern vector to the feedforward portion of the network. But in
general the input vectors may be of varying magnitude, even though
they may contain the same pattern information. Moreover, for any
processing by a unit, it is necessary to have the inputs bounded to

204 Competitive Learning Neural Networks

some limits. In an on-line situation, the input layer should not feed
background noise to the feedforward portion of the competitive
learning network. The so called noise-saturation dilemma (discussed
in Chapter 2) for input vectors can be handled by feeding the actual
inputs from the environment to a layer of input processing units as
shown in Figure 6.2. A shunting activation model with on-centre

Input layer

External input

Figure 6.2 Input layer with M processing units, showing a few connections
with external inputs.

off-surround configuration takes care of the noise-saturation. problem
of the input layer, and is given by (see Eq. 2.18)

As shown in Chapter 2, the steady s';ate activation value of the ith
unit is given by

where
M

and all the inputs (Ii) are nonnegative. The above equations show
that in the steady state the activation value of the ith unit is confined
to the range [-C, Bl. The output function of these units is assumed
to be linear for x > 0. That is

The output of the units will be zero as long as the inputs Ii c
CII(B + C). That is, the input should be greater than some minimum

Components of a Competitive Learning Network 205

value before it can make the activation of the unit positive. Thus the
units in the input layers do not respond to noise input, if the noise
amplitude is below some threshold value. Therefore the input to the
feedforward portion is always positive and is limited to a maximum
value of B. Thus this input layer not only normalizes the input data
valdes, but also takes care of the noise-saturation problem with an
on-line input data.

6.2.2 The lnstar

Each unit in the feedback layer receives inputs from all the input
units. A configuration where a unit receives weighted inputs from
several units of another layer i s . called an instar, as shown in
Figure 6.3. Let x = (x l , x2, ..., xM)~ and w = (wl, w2, ..., wM)~ be the

n

Figure 6.3 An instar configuration.

input and weight vectors, respectively. The net input to the instar
processing unit is given by wTx. The activation dynamics of the instar
processing unit is given by the following additive model with a passive
decay term and the net input term:

where we have assumed the decay constant to be 1. The solution of
this equation is

y(t) = y(0) e-' + s x (1 -e-t) (6.5)

The steady state activation value is given by

which will be zero when the external input x is removed.

6.2.3 Basic Competitive Learning

The steady activation value with an external input depends on the
angle between the input and weight vectors as shown in Figure 6.4.
For the instar to respond maximally for a given input vector x, the
weight vector is moved towards the input vector. The adjustment of

Competitive Learning Neural Networks

Figure 6.4 Illustration of adjustments of weights in instar

the weight vedor is governed by the following synaptic dynamics
equation (see Eq. 2.40)

where fly) is the output of the instar processing unit. In discrete
implementation the change in the weight Aw(t) is given by

where 7 is a learning rate parameter. For binary output function,
f i) = 1 or 0. Therefore the weights in the instar are adjusted only
when the output of the instar processing unit is 1. The increment in
the weight is given by

Aw(t) = 7 [X - w(t)I (6.9)
The updated weight is given by

This shows that the weight vector is adjusted in such a way that it
is moved towards the input vector to reduce the angle between them
as shown in Figure 6.4. This adjustment is repeated several times
for a given set of input patterns. When the weight vector reaches an
average position, the weight adjustment will be such that the average
movement around the weight vedor will be zero. That is

Therefore the weight vector w will be equal to the average of the set
of input vectors.

An individual instar responds to a set of input vectors, if it is
trained to capture the average behaviour .of the set. Generally the
input patterns may fall into different categories. More than one
instar, i.e., a group of instars (Figure 6.5), can be used to capture the
average behaviour of each of the different categories of the input
patterns. One instar may 'be trained to each category of the input
patterns, so that the corresponding processing unit responds maxi-

Components of a Competitive Learning Network

Figure 6.5 A group of N instars.

mally when an input vector belonging to that category is given to the
common input layer of the group of instars. Typically, the number
(N) of instars corresponds to the number of different categories of the
input patterns. The category of an input vector can be identified by
obselving the instar processing unit with maximum response.

Plain Hebbian learning: With linear output function for the instar
processing unit, i.e., f i) = y, one possibility is to make the output y
to be a scalar measure of similarity. That is, for the given input vector
x, the weights should be adjusted to give a large output y, on the
average. For this, if we use the plain Hebbian learning, we get

Awi = 11 y xi (6.12)

where 11 is the learning rate parameter. In this case the weights keep
growing without bound. That is, the weights never converge, which
is equivalent to saying that on the average the weight change will
not be zero. This can be proved as follows:

Taking the expectation to compute the average, we get

where it is assumed that the weight vector is statistically independent
of the input vector. Therefore the average change in the weight vector
is given by

&[Awl = 11 R w (6.14)

where Aw = (Awl, Aw2, . .., AwMIT, and R = &[xxT] is the auto-
correlation matrix of the input vectors.

R is positive semidefinite, since for any vector a, we have

Therefore R will have only positive eigenvalues. The weight vector
converges if &(Aw) = 0. Then Eq. (6.14) states that for convergence
R w = 0. This means that the resulting weight vector is an eigenvector

208 Competitive Learning Neural Networks

with zero eigenvalue, which is not a stable situation, since R has
positive eigenvalues. Any fluctuation of the weight vector with a
component along an eigenvector of R will result in a weight vector
which would grow eventually, and the component along the
eigenvector with the largest eigenvalue will dominate.

This can be shown as follows: Taking the projection of the
average change of the weight vector onto one of the eigenvectors qi
of R, we get

~ ; & [A W] = q ~ T R W (6.16)

This will be nonzero if w is the eigenvector q,, since Rq, = hi q, and
the eigenvedors (q,) are orthonormal. Therefore we have

This projection in turn is maximum when qi is the eigenvedor wo
corresponding to the maximum eigenvalue La,. Therefore we have

&[Awl = q Rw, = q &, wo (6.17)

According to Eq. (6.17) the average change of the weight will be
dominated by the component along the eigenvector with maximum
eigenvalue. The norm of w will increase without bound, because

Starting with an initial value of the weight w (0) = 0, and determining
the value of the weight at each time instant, we get from Eq. (6.18)

w (m) = m rl Lax w0 (6.19)

Thus, with plain Hebbian learning, there will be only unstable weight
values.

Oja's rule: The divergence of the plain Hebbian learning can be
prevented by constraining the growth of the weight vector w. One
way of doing this is by normalizing the weight 1) w (1 = 1 at every stage
after adjustment. Another method, called Oja's rule, uses a decay
term proportional to y2 in the synaptii dynamics equation. Then the
weight update in Eq. (6.12) is modified as

In this case the change in the weight depends on the difference
between the actual input and the back propagated output (ywi). The
weight vector will eventually align with the eigenvector of R
corresponding to the largest eigenvalue [Oja, 19821.

If R is a covariance matrix, i.e., R = E [(x - p)(x - p)?,
u = &[XI, then the final weight vedor will be along the largest

Components of a Competitive Learning Network 209

principal component passing through the origin (Figure 6.6a) [Hertz
et al, 1991; Haykin, 19941. See Appendix E for details of principal
component analysis. If R is only an autocorrelation matrix, the final
weight vector will still be along the largest principal eigenvector,
passing through the origin (Figure 6.6b). But in the later case the
choice will not be optimal in the sense that the projection of the set
of input vectors on the weight vector will not be the least as in the
case of the covariance matrix. In both cases the weight vector will
settle to the normalized value II w 11 = 1.

w(-)% .. .

. 2 w(0)
. . o... . . XI

(a) 03)
Figure 6.6 Illustration of @a's rule for training instar. The training data

consists of vectors in 2-D space, represented as dots. The line
from w(-) to w(-) is the trajectory of the weight values. The
final weight represents direction of maximum variance of the
input data as shown in (a). But in (b) the direction of maximum
variance is the average of the input data vectors [Adapted from
Hertz et al, 1991, p. 2011.

Oja's rule finds a unit weight vector which maximizes the mean
squared output E[y21. For zero-mean input data, this becomes the
first principal component. In order to obtain the first p principal com-
ponents, one can have a network with p instars. Two learning laws
for this feedforward network are given by [Sanger, 1989; Oja, 19891

Sanger's rule:
i

, i = 1 , 2 ,..., p (6.21)

Oja's p-unit rule:

In both the cases the weight vectors wi converge to orthogonal unit
vectors. With Sanger's rule, the weight vectors become exactly the

210 Competitive Learning Neural Networks

first p-principal component directions in order, whereas with Oja's
p-unit rule, the p weight vectors converge to span the same subspace
as the first p eigenvectors, but the weight vectors do not correspond
to the eigenvectors themselves. Table 6.2 gives a summary of the
learning algorithms for the principal component analysis.

Table 6.2 Summary of Learning Algorithms for Principal Component
Analysis Networks

Consider a group ofp instara, with all the units having linear output function.
Let R be the covariance matrix of the input vectors. That is R =
&[(x - p) (x - p)T, p = & [X I . Output of each unit

M

y , (m) - x zuo(rn)xj(m), i = l , 2 ,..., p
i = l

a Plain Hebbian learning for ith instar

AWiJ@) = rl u,(m) nJ@)

Weight vector wi converges to the direction of the first principal
component but is unbounded.
Oja's rule for ith instar

AW,(m) = rl Yi(m) [n,(m) -yi(m) ~$41
Weight vector wi converges to the direction of the first principal
component of R.
Oja's p-unit rule for p instars

Weight vectors converge to p orthogonal vectors which span the same
space as the fvst p principal components of R.
Sanger's rule or Generalized Hebbian rule for p instara

Weight vectors converge to the first p principal component directions
of R.

6.2.4 Feedback Layer

As mentioned earlier, in the arrangement of a group of instars, the
category of an input vector can be identified by observing the instar
processing unit with maximum response. The maximum response unit
can be determined by the system itself if the outputs of the instar
processing units are fed back to each other.

Analysis of Feedback Layer for Different Output Functions 211

If the processing units of a group of instars are connected as an
on-centre off-surround feedback network, as shown in Figure 6.7, then

Feedback layer

Input layer

Figure 6.7 Arrangement of group of instara with output units connected in
an on-centre off-surround manner.

the feedback layer is called a competitive layer. In this layer there is
an excitatory self-feedback to each unit, and an inhibitory feedback
from a given unit to all other units. The excitatory feedback is
indicated by a positive (+) weight, and the inhibitory feedback is
indicated by a negative (-1 weight. Generally these weights are fixed
a priori. The nature of the output function of the instar processing
units will determine the behaviour expected from such a competitive
layer. The pattern recognition tasks for different output functions will
be discussed in the next section. Figure 6.8 shows the complete
competitive learning network we have discussed so far in this section.

Feedback layer

Input layer

Input vector

Figure 6.8 The complete competitive learning network structure.

6.3 Analysis of Feedback Layer for Different Output
Functions

6.3.1 Pattern Storage (STM) Networks

Earlier in Chapter 5 we have discussed the pattern storage networks

212 Competitive Learning Neural Networks

which are fully connected feedback networks with symmetric weights.
The pattern information is captured in the weights of the network,
and the pattern storage is due to the existence of stable activation
states in the feedback network. The pattern storage in such cases is
permanent, in the sense that the patterns are available, and they
can be recalled from the network as long as the weights are fixed.
This type of storage can be viewed as long-term memory (LTM). In
contrast, we have seen in Section 6.2.1 that in an on-centre
off-surround feedforward network connection (Figure 6.2), the output
disappears when the input is removed. The pattern is present in the
activation values of the units, and the pattern disappears once the
input is removed. Thus the availability of the pattern is purely
temporary in such a case.

In this section we will study a pattern storage network where the
pattern is present even if the input pattern is removed, as long as
the network is not disturbed by another external input. Note that in
this case the pattern is stored in the activation valuesef a feedback
layer, and the activation values remain stable due to feedback. This
type of storage is called short-term memory (STM). The existing
pattern information disappears if there is an external input due to
another pattern, since the new input changes the stable activation
values to the ones corresponding to the new pattern. The three types
of pattern storage networks are illustrated in Figure 6.9.

Figure 6.9 Different pattern storage networks: (a) Temporary storage, (b) Short-
term memory and (c) Long-term memory.

6.3.2 Analysis with Linear Output Functions

To analyze the pattern storage network corresponding to the short-
term memory, we will use the notation shown in Figure 6.10 for the
feedback network. The input is fed in an on-centre off-surround type

Analysis of Feedback4 Layer for Difirent Output Functions 213

1, 1, ZY

Figure 6.10 Pattern storage network with linear units in the feedback layer.

connection to provide normalized input to the units in the feedback
layer. The units in the feedback layers are all linear. That is the
output functions of the feedback units are given by f (x) = x.

The analysis presented in this section is adapted fmm [Freeman
and Skapura, 19911. The activation dynamics is described by the follow-
ing shunting model within an operating range [O, Bl (See Eq. (2.20)):

The passive decay term is given by - Axi and the quantity Hzi) + Iil
is the total excitatory input to the ith unit, and the quantity

Z .fixk) + Z . I,] is the total inhibitory input to the ith unit. Summing
[, # I J + 1 M
the expression for xi over i and using x =iXlxi , we get

Let xi = x Xi. Then

xi = % X i + % X i
Using the Eq. (6.23) to (6.25) we get

x x i = x i -%Xi

2 14 Competitive Learning Neural Networks

Therefore,
flXxi)-x,xfixk) + B I ~ - B ~ ~ G (6.26)

k I j

Let f(y) = y g(y). Substituting this for f(y) in Eq. (6.26), we get

= B x & x X k [g (x X i) - g (x X k)] + B I i - B X i x 1, (6.27)
k j

since Xk g(x Xi) = g(x Xi) 5 Xk = g(x Xi).
For a linear output function, i,e., fCy) = y, we get g(y) = 1. The

first term in the expression for xXi will become zero. Therefore

x x i = B 1 , - B q x I,
j

In the steady state xi = 0, and hence

Thus the steady normalized activation values of the units in the feed-
back layer correspond to the normalized input patterns. Figure 6.11
shows the performance of the feedback layer with linear processing
units. Figure 6.11a shows the linear output function and Figure 6.11b
shows the steady normalized activation values. If the inp.ut is
removed, i.e., Ii = 0 for all i, then from Eq. (6.28) we get xXi = 0.
This shows that for nonzero x, Xi = 0. That is Xi = xjx = constant,
and the activation values are determined by x alone.

When Ii = 0, for all i, we also get from Eq. (6.24),

In the steady state and for nonzero x, since x = 0, we get

x = B-A = constant (6.31)

Thus both x and Xi are constant. That means xis are constant. That
is, the steady state activation values will remain at some fixed,
nonzero values even after removal of the input. The steady state
values remain until they are disturbed by another set of input values.
Thus the pattern stored can be viewed as short-term memory.
Figure 6 .11~ illustrates the performance of the feedback layer with
linear processing units, when the input values are set to zero.

Analysis of Feedback Layer fir Difirent Output Functions 215

(a) Linear output function f i) = z

21 XI 32

Output I I I I I I

11 Zi ZU 11 = 0 Zi = 0 ZU = 0

input Ex"rnd I I I
(b) Steady state pattern (c) Steady state pattern after

with external input setting the external input
to zero

Figure 6.11 Performance of feedback layer with linear processing units
[Adapted from Freeman and Skapura, 19911.

6.3.3 Anaiysls with Quadratic Output Functlons

The analysis presented in this section is adapted from [Freeman and
Skapura, 19911. In this section we will discuss the behaviour of the
competitive learning network of the type .in Figure 6.10 with
nonlinear processing units in the feedback layer. In particular, let us
consider the quadratic output function f i) =. y2. Then substituting
for g(y) = f i) l y = y in the expression for xXi in Eq. (6.27), we get

= B X X ~ ~ X X ~ C Y , - X ~) + B I ~ - B X , ~ 4 (6.32)
k j

If Xi > Xk for k + i, then the h t term is always positive, and hence

216 Competitive Learning Neuml Networks

it becomes an excitatory term. In this case the network tries to
enhance the activity Xi. If Xi cXk , for k + i, then the first term is
negative and hence it becomes an inhibitory term. In this case the
network tries to suppress the activity Xi. Thus the largest Xi, say
when i = j, will get enhanced in the steady state as shown in Figure
6.12b. For the intermediate cases, where (Xi - Xk) is greater than
zero in some cases and less than zero & some other cases, the steady
state values will be in between the maximum and zero values. When
the input is removed, i.e., Ii = 0 for all i, the steady state value of

' Xi is given by setting xXi = 0 in Eq. (6.32) and x = 0 in Eq. (6.24).
That is

C x xk (xi -xk) = 0 (6.33)
k

and
- ~ + (B - x) ~ (x x ~) ~ = 0 (6.34)

k

Eq. (6.33) gives

Xi = CX; = q 2 + X x f (6.35)
k k # i

since $Xk = 1. From Eq. (6.35) the only nonzero solution for Xi is

Xi = 1, and Xk = 0, for k + i .
Likewise from Eq. (6.34) above, we get

This shows that the total activation x is bounded by B, since A and
B are positive.

The above analysis shows that when the input is zero, in the
steady state only one of the units is activated to the maximum value
of xi, which is equal to the total activation value x, as shown in
Figure 6.12~. The maximum value is bounded by B. Thus we may
say that only one unit in the feedback layer wins the competition for
a given input pattern, even after the pattern is removed. Therefore
the feedback layer is called a competitive layer in this case. Note that
the result is valid for any function of the type fix) = xn , n > 1. In all
of these cases only one of the units will have maximum activation
and all others will have zero activation values. This may be viewed
as noise suppression, in the sense that al l activation values lower
than the maximum will be reduced to zero in the competition.

Analysis of Feedback Layer for Different Output Functions 217

(a) Quadratic output function fix) = f

output 1

(b) Steady state pattern (c) Steady state pattern after
withexternal input setting the external input

to zero

Figure 6.12 Performance of feedback layer with units having quadratic
output functions [Adapted from Freeman and Skapura, 19911.

From the analysis in the previous section, we notice that pattern
storage is achieved by using feedback units with linear output
functions. Analysis in this section shows that noise suppression can
be achieved by using quadratic output functions. Thus by using a
quadratic output function for low activation and linear output
function for high activation, both noise suppression and pattern
storage (STM) tasks can be accomplished. In addition, if the output
function increases at a rate less than linear for large activation, then
the output is bounded all the time. The resulting output function is
like a semilinear function as shown in Figure 6.13a. In such a case,
in the steady state more than one of the units may have large
activation values when the input is present (Figure 6.13b). Likewise,
when the input is removed, in the steady state more than one unit

218 Competitive Learning Neural Networks

may reach maximum activation and all other units will have zero
activation. This is illustrated in Figure 6.13~.

(a) Semilinear output function

XI 5 0 B

Output 1
I I

I, Ii Il = 0 Ii = 0 I-= 0

I External
input 1 I

(b) Steady state pattern (c) Steady state pattern after
with external input setting the external input

to zero

Figure 6.13 Performance of feedback layer with units having semilinear
output functions.

6.4 Analysis of Pattern Clustering Networks
In the previous section we have seen that a competitive learning
network with nonlinear output functions for units in the feedback
layer can produce at equilibrium larger activation on a single unit
and small activations on other units. This behaviour leads to a
winner-take all situation, where, when the input pattern is removed,
only one unit in the feedback layer will have nonzero activation. That
unit may be designated as the winner for the input pattern. If the
feedforward weights are suitably adjusted, each of the units in the
feedback layer can be made to win for a group of similar input pat-
terns. The corresponding learning is called competitive learning. The

Analysis of Pattern Clustering Networks 2 19

units in the feedback layer have nonlinear Ax) = xn , n > 1 output
functions. Other nonlinear output functions such as hard-limiting
threshold function or semilinear sigmoid function can also be used.
These units are connected among themselves with fked weights in
an on-centre off-surround manner. Such networks are called competi-
tive learning networks. Since they are used for clustering or grouping
of input patterns, they can also be called pattern clustering networks.

In the pattern clustering task, the pattern classes are formed on
unlabelled input data, and hence the corresponding learning is
unsupervised. In the competitive learning the weights in the
feedforward path are adjusted only aRer the winner unit in the
feedback layer is identified for a given input pattern. There are three
different methods of implementing the competitive learning as
illustrated in Figure 6.14. In the figure, it is assumed that the input

Output

Input

Figure 6.14 Illustration of basic competitive learning laws: (1) Minimal
learning-nly connections of type A (solid lines) are trained.
(2) Malsburg learning-nly connections of type A and B
(dashed lines) are trained. (3) Leaky learning4onnections of
all the three types A, B and C (dotted lines) are trained
[Adapted from Kung, 19931.

is a binary (0, 1) vector. The activation of the ith unit in the feedback - .
M

layer for an input vector x = (x,, x,, ..., xM)T is given by yi =,I;,wu xj,

where wy is the (i, j)th element of the weight matrix W, connecting
the jth input to the ith unit. Let i = k be the unit in the feedback
layer such that

Yk = max b'i) (6.38)
1

then
T wkx 2 WTE, for all i

Assume that the weight vectors to all the units are normalized, i.e.,

220 Competitive Learning Neural Networks

(1 wi) 1 = 1, for all i. Geometrically, the above result means that the input
vector x is closest to the weight vector wk among all wi. That is

11 x- wk 11 5 11 x- wi 11, for all i (6.40)

Start with some initial random values for the weights. The given set
of input vectors are applied one by one in a random order. For each
input the winner unit in the feedback layer is identified, and the
weights leading to the unit are adjusted in such a way that the weight
vector wk moves towards the input vector x by a small amount,
determined by a learning rate parameter q. Note that by doing this
we are making that unit to respond more for that input. A straight
forward implementation of the weight adjustment is to make

hkj = q (x j - w ~) ,
so that

wk(m + 1) = wk(m) + Awk(m)

This looks more like Hebb's learning with a decay term if the output
of the winning unit is assumed to be 1. It works best for
prenormalized input vectors. This is called the standard competitive
learning. Figure 6.15 shows the performance of the competitive

(a) (b)
Figure 6.15 Illustration of competitive learning. The circles ('0') represent

input vectors and crosses ('x') represent weight vectors: (a)
before learning, and (b) after leaming.

learning law for normalized input and weight vettors for a set of 3
dimensional input vector clusters. If the input vectors are not
normalized, then they are normalized in the weight . adjustment
formula as follows:

Awkj = q [+$ - wkj] , only for those j for which xj = 1. (6.43)

Analysis of Pattern Clustering Networks 221

This can be called minimal learning Bung, 19931. In the case of
binary input vectors, for the winner unit, only the weights which have
nonzero input would be adjusted. That is

= 0, for xj = 0 (6.44)

Thus in this case only the connections which have both 1 at either
end will be adjusted as shown in Figure 6.14 for the minimal learning
case.

In the minimal learning there is no automatic normalization of -
M

weights after each adjustment. That is .Zpy # 1. In order to
I =

overcome this problem, Malsburg suggest& the following learning
law, in which all the weights leading to the winner unit will be
adjusted [von der Malsburg, 19731:

In this law if a unit wins the competition, then each of its input lines
gives up some portion of its weights, and that weight is distributed
equally among the active connections for which xj = 1.

The unit i with an initial weight vector wi far from any input
vector, may never win the competition. Since a unit will never learn
unless it wins the competition, another method called leaky learning
law is proposed [Rumelhart and Zipser, 19851. In this case, the
weights leading to the units which do not win also are adjusted for
each update as follows:

if i wins the competition, i.e., i = k

if i loses the competition, i.e., i # k (6.46)

where qw and ql are the learning rate parameters for the winning
and losing units, respectively (qw >> Q). In this case the weights of the
losing units ape also slightly moved for each presentation of an input.

222 Competitive Learning Neural Networks

Basic competitive learning and its variations are used for adaptive
vector quantization [Nasrabadi and King, 19881, in which the input
vectors are grouped based on the Euclidean distance between vectors.
Both unsupervised vector quantization (VQ) and supervised or learn-
ing vector quantization (LVQ) algorithms are available [Kohonen,
1988; Kohonen, 19891. The basic learning laws for competitive
learning and vector quantization are summarized in Table 6.3.

Table 6.3 Summary of Competitive Learning Methods

Basic competitive learning

Assume prenormalized input vectors and weight vectors normalization.

Let x be the input vector and wi be the weight vector for ith unit in the
competitive layer. Thus if W% 2 WTX, for all i, then k is the winning unit.

Minimal learning (for binary input vectors)

hM = - w ~] , only for those j for which x, = 1.
C xi

Malsburg learning (for 'binary input vectors)

L i J
Leaky learning (for binary input vectors)

if i wins the competition, i.e., i = k

L m _I

if i loses the competition, i.e., i # k

Vector Quantization (unsupervised)

For input vector x and weight vector for the ith unit wi, if
I x - w, 1 s I x - wi 1 , for all i, then k is the winning unit. The vector

quantization learning law is given by

Analysis of Feature Mapping Network

Table 6.3 (Cont.)

Learning Vector Quantization (LVQ1) (supervised)
If the clam of the input vector x is given, then

Aw, = 11 (X - w,), if the winning class k is correct

= - q (x - w,), if the winning clam K is incorrect

Learning Vector Quantization (LVQ2) (supervised)
If the input vector x is misclassified by the winning unit k, and if the
nearestcneighbour unit i has the correct class, then

Aw, = - q (x - w,), for incorrect winning unit

Awi = q (x - wi), for correct neighbouring unit

If the units in the feedback layer are arranged in a geometrical
fashion, like a 1-D or a 2-D array, then the update of weights could
be confined to the neighbouring losing units only. This is called
Kohonen's learning or feature mapping which will be discussed in the
next section.

6.5 Analysis of Feature Mapping Network
In the pattern clustering network using competitive learning, only
one unit in the feedback layer is made to win by appropriate choice
of the connections of the units in the feedback layer. The number of
units corresponds to the number of possible clusters into which the
set of input pattern vectors are likely to form. Each unit is identified
with one cluster or a group. The units otherwise have nothing in
common among themselves. Even the physical location of a unit
relative to the other units in the output layer has no significance.

On the other hand, there are many situations where it is difficult
to group the input patterns into distinct groups. The patterns may
form a continuum in some feature space, and it is this kind of
information that may be needed in some applications. For example,
it may be of interest to know how close a given input is to some of
the other patterns for which the feedforward path has already been
trained. In other words, it is of interest to have some order in the
activation of a unit in the feedback layer in relation to the activations
of its neighbouring units. This is called feature mapping. The network
that achieves this is called feature mapping network.

A feature mapping network is also a competitive learning network
with nonlinear output functions for units in the feedback layer, as in
the networks used for pattern clustering. But the main distinction is
in the geometrical arrangement of the output units, and the signifi-
cance attached to the ne ighbou~g units during training.

224 Competitive Learning Neural Networks

During recall of information the activations of the neighbouring
units in the output feedback layer suggest that the input patterns
corresponding to these units are similar. Thus feature mapping could
also be viewed as topology preserving map kom the space of possible
input values to a line or a plane of the output units [Kohonen, 198213;
Kohonen, 19891.

The inputs to a feature mapping network could be N-dimensional
patterns (See Figure 6.16a for a 3-D input), applied one at a time,
and the network is to be trained to map the similarities in the set
of input patterns. Another type of input is shown in Figure 6.16b, where

(a) 3-D input apace to (b) 2-D input space to
2-D output space 2-D output space

Figure6.16 Feature mapping networks where the layers are fully
connected although only a few connections are shown.

the inputs are arranged in a 2-D array so that the array represents
the input pattern space as in the case of a textured image. At any
given time only a few of the input units may be turned on. That is,
only the corresponding links are activated. The objective is to capture
the features in the space of input patterns, and the connections are
like s o M g dictated by the unsupervised learning mode in which
the network is expected to work. This second type is more common
in topological mappings in the brain [Hertz et al, 1991, p. 2331.

There are several ways of implementing the feature mapping
process. In one method the output layer is organized into predefined
receptive fields, and the unsupervised learning should perform the
feature mapping by activating appropriate connections. This can also
be viewed as orientational selectivity [Hubel and Weisel, 1962;
Linsker, 1986; Linsker, 19881. Another method is to modify the
feedback connections in the output layer of Figure 6.16a. Instead of
connecting them in an oncentre off-surround manner, the connections
can be made as indicated by a Mexican hat type function, a 1-D
version of which is shown in Figure 6.17. The function gives the

Analysis of Feature Mapping Network

Figure 6.17 A Mexican hat function in ldimension.

lateral connection weight value for a neighbouring unit k at a distance
1 i - k 1 from the current unit i. The unit i and its immediate neigh-
bours are connected in an excitatory (+ve weights) manner. The unit
i is connected in an inhibitory (-ve weights) manner to far off units.

A third method of implementing the feature mapping process is
to use an architecture of a competitive learning network with on-
centre off-sul'round type of connections among units, but at each stage
the weights are updated not only for the winning unit, but also for
the units in its neighbourhood. The neighbourhood region may be
progressively reduced during learning. This is called self-organization
network with Kohonen's learning [Kohonen, 1982al. Figure 6.18 shows
an example of a feature mapping using a self-organization network. It
shows a 2-D input vector and a feedback layer with units arranged as
a 2-D grid. The input and the output layers are fully connected.

Output layer

Input layer

(a) Network Structure (b) Neighbourhood regions at diffe-
rent times in the output layer

Figure6.18 Illustration of a self-organizing network. In the network
structure in (a) the input units are connected to all the units
in the output layer, although only a few connections are shown.
In the output layer all the units are connected to each other,
although the connections are not shown in the figure.

226 Competitive Learning Neural Networks

The self-organization network is trained as follows: The weights
are set to random initial values. When an input vector x is applied,
the winning unit k in the output layer is identified such that

IIx-wkIII)Ix-wi)I,for dl i (6.47)

The weights associated with the winning unit k and its neighbouring
units m, identified by a neighbourhood function h(k, m), are updated
using the expression

Aw, = q h(k, m) (X - w,) (6.48)

The neighbourhood function h(k, m) is maximum for m =k. A suitable
choice for h(k, m) is a Gaussian function of the type

where rk refers to the position of the kth unit in the 2-D plane of the
output units. The width of the Gaussian function, described by o, is
gradually decreased to reduce the neighbourhood region in successive
iterations of the training process. Even the learning rate parameter
q can be changed as a function of time during the training phase. The
weights are renormalized each time aRer the update. Table 6.4 gives
an algorithm for implementing the self-organizing feature map learning.

Table 6.4 An Algorithm for Self-organizing Feature Map Learning

1. Initialize the weights from M inputs to the N output units to small
random values. Initialize the size of the neighbourhood region q(0).

2. Present a new input a.

3. Compute the distance di between the input and the weight on each output
unit i :

M

di = [aj(t) - wiAt)12, for i = 1,2, ..., N
j = 1

where a.(t) is the input to the j th input unit at time t and w,(t) is the
weight horn the jth input unit to the ith output unit.

4. Select the output unit k with minimum distance

5. Update weight to node k and its neighbours

w,(t + 1) = wii(t) + q(t) (aj@) - w,$t))

for i E q(t) and j = 1, 2, ..., M, where ~ (t) is the learning rate parameter
(0 <q(t) .< 1) that decreases with time. q(t) gives the neighbourhood
region around the node k at time t.

6. Repeat Steps 2 through 5 for all inputs several times.

Analysis of Feature Mapping Network 227

Figure 6.19 illustrates the result of Kohonen's learning for feature
mapping. In the figure the mapping is from a 2-D input to a 2-D

+ 10, + lo1

(a) initial weights (b) after 25 cycles

+ W I + Wl

(c) after 50 cycles (d) aftor 1000 cycles

Figure 6.19 An illustration of Kohonen's learning for self-organizing networks.

feature space. The input consists of a point chosen at random from
the input space defined by the region of interest, a square in this
case. The feature map is displayed by the weight values of the
connections leading to each unit in the output layer aRer training.
The weights for each unit is a point in the (w,, w2) space, and the
points corresponding to adjacent units in the output layer are joined
in the figure. Initially the weights are set to some random values
around the mean. As training proceeds, the weights are m o ~ e d to
span the space in the (w,, w2) plane. The shape of the spanned space
is dictated by the shape of the region (a unit square in this case)
from which the input values are selected at random. Figure 6.20
illustrates the feature mapping from a 2-D input space to a 1-D layer
of output units. The space filling characteristic of the feature mapping
can be seen from the figure.

Finally, Figure 6.21 illustrates the feature mapping from a 1-D
input space to a 1-D layer of output units. Here the input data is
uniformly distributed random numbers in the interval [O, 11. The
initial weights for all the units in the 1-D output layer are shown in
Figure 6.21a. The feature mapping in Figure 6 .21~ shows that the
weights are organized along a line. The line could have a positive or
a negative slope depending on how the feature mapping evolves.

Competitive Learning Neural Networks

+ Wl

(a) initial weights

+ Wl

(c) after 75 cycles

+ Wl

(b) after 25 cycles

+ Wl

(d) after 100 cycles

Figure 6.20 An illustration of Kohonen's learning for feature mapping from
2-D input to 1-D feature mapping.

(a) initial weights (b) after 50 cycles (c) aRer 500 cycles
Figure 6.21 An illustration of Kohonen's feature mapping h m 1-D input

to 1-D feature mapping.

6.6 Summary
In this chapter simple networks to perform the task of pattern
clustering have been analyzed in detail. The components of a competi-
tive learning network were discussed individually. In particular, the
principal component analysis feature of the instar layer with linear
output units is useful for feature extraction and data compression.

Review Questions 229

A competitive learning network consists of a feedforward part and
a feedback part. Use of nonlinear units in the feedback layer of the
competitive learning network leads to the concept of pattern clus-
tering. Different choices of competitive learning are available for
adjusting the weights of the feedforward part of the network. Basic
competitive learning and its variations are useful for adaptive vector
quantization. Supervised form of vector quantization, called Learning
Vector Quantization, was also described briefly.

The competitive learning networks can be modified to perform
the task of feature mapping. Kohonen's self-organization learning law
enables us to interpret the outputs of the units in the second layer
as features in the input data. Illustrations of feature mapping from
2-D data to 2-D space, 2-D data to l-D space and l-D data to l-D
space were given. These illustrations demonstrate the significance of
SOM .feature of the competitive learning networks. Combination of
SOM and classification networks have been used effectively for
pattern classification applications in speech and images [:Huang et al,
1992; Raghu et al, 19951.

Review Questions
1. What are the components of a competitive learning network?

2. Describe the operation of an input layer when it is directly
connected to the environment.

3. What is an instar network?

4. Describe the basic learning feature of an instar and discuss its
application.

5. What is the main difference between an instar network with
competitive learning and an instar network with Hebbian learning?

6. Explain how pattern clustering can be achieved by a group of
instars with binary output functions.

7. What are principal components of an autocorrelation matrix?
8. Explain the distinction between eigenvectors of autocorrelation

and covariance matrices.
9. What is the Oja's learning law for a single instar? How is it

different from plain Hebbian learning?
10. Explain the difference between Sabger's rule and Oja's p-unit rule.
11. What is meant by on-centre off-smound feedback network?
12. Give a diagram of the complete competitive learning network.
13. Distinguish among temporary storage, short-time memory and

long-term memory.
14. Explain how a competitive learning network with linear units

performs a short-term memory task.

230 Competitive Learning Neural Networks

15. Explain the noise suppression property of the quadratic output
function in the feedback layer of a competitive learning network.

16. Discuss the performance of a competitive learning network for
semilinear output function in the feedback layer.

17. What is a pattern clustering network?

18. What are the three basic competitive learning laws?

19. What is adaptive vector quantization? What is learning vector
quantization?

20. Explain the difference between pattern clustering and feature
mapping.

21. Explain the three different methods of implementing the feature
mapping process.

22. What is a self-organization network?

23. What are the salient features of the Kohonen's self-organizing
learning algorithm?

24. Illustrate the concept of feature mapping with the help of an
example of mapping 2-D input onto a 2-D feature space.

25. Explain the feature mapping of 2-D input onto 1-D feature space.

26. Explain the build up of the 1-D feature map of 1-D input values
selected at random from an interval 0 to 1.

Problems

1. Show how a single unit instar with Hebbian learning results in
a weight vector that will increase without bound. (See [Hertz et
al, 1991, p. 200; Hassoun, 1995, p. 901)

2. Show that for the competitive network of Figure 6.12, in the
steady state when the inputs are removed, only one of the units
will have maximum output value for any output function
f i) = I f , n 2 1. Also show that the activation value is bounded.
(See [Freeman and Skapura, 19911)

3. Show that the weight vector in the Oja's rule aligns with the
eigenvector of the autocorrelation matrix corresponding to the
largest eigenvalue. (See [Hertz et al, 1991, pp. 202-204; Haykin,
1994, p. 3741)

4. Find the eigenvedor corresponding to the first principal component
of the following correlation matrix of a stochastic process (See
Appendix E and [Kung, 1993, p. 3051):

Summary 23 1

5. The following is the cross-correlation matrix of two stochastic
processes (See [Kung, 1993, p. 3061):

Find the leR and the right eigenvedors corresponding to the k t
asymmetric principal component.

6. For feature extraction Linsker used a modified Hebbian rule for
a single unit given by (See [Hertz et al, 1991, p. 211; Hassoun,
1995, pp. 95-97]]

Awi = q(ap+aai+ppC+y)
where

and a , p and y are the parameters that can be tuned to produce
the desired behaviour. Assuming that all the input components
a, have the same mean 5, so that ai = ?i + ci, Show that

where h and p are some combination of the constants 8, a , p, y
and a, and CU = (E~E,).

7. Show that the Linsker's rule can be defined by computing
average of the gradient descent learning hi = - qaEt"wi on the
cost function

(J)
where C = [C"]. Linsker's rule t i e s to maximize the output
variance subjected to the constraint that 3; w, = p.

8. Show that Linsker rule is unstable, i.e., (AW,) does not tend to
zero unless the weights are subjected to the boundary constraint
w- 5 wi 5 w,. Note that in contrast, the Oja's rule maximizes the
output variance subjected to w; = 1 and hence does not need a
boundary constraint on the 'weights. (See [Hertz et al, 1991,
p.213; Hassoun, 1995, p. 97; Haykin, 1994, pp.357-3621)

M
9. Substituting yi =,f lwi, a, in the Sanger's rule

i 1
and taking the average, show'that

232 Competitive Learning Neural Networks

where wi = [wil, wi2, ..., wNIT, and R = [(aiai)l. Also show by
induction that it leads to ith eigenvalue of R (see [Hertz et al,
1991, p. 2081).

10. Nonlinear PCA neural networks can capture higher order
statistics of the input data. One way of introducing nonlinearity
into a PCANN is by using higher order units whose output is
given by [Hassoun, 1995, p.1011

Show that this can be interpreted as the output of a linear unit
with the input vector as

and the weight vector as

That is, y = &z

Also show that the principal component resulting from this
network corresponds to the principal eigenvector of the matrix
(22'3.

11. Show that the Malsburg learning Eq. (6.45) for competition layer
M

results in.Z wii = 1, if initially the weights are normalized.
~ = 1

12. Generate a set of random points in 2-dimensional space using
four Gaussian distributions with the following means and
variances.
Mean: [-5 -5IT [-5 5IT [5 -2IT [5 5IT
Variance: 4 3 2 2

Starting with four random initial weight vectors, determine the
cluster centres formed by using the competitive learning law
given in Eq. (6.42). Study the effect of different values of the
learning rate parameter.

13. Determine the cluster centres for the data in the Problem 12
above using the LVQ1 algorithm given in Table 6.3.

14. Determine the self-organizing map generated by points selected
at random from an annular ring formed by two concentric circles.
Consider the following two cases:

(a) The units in the SOM are arranged in a 2-dimensional plane.
(b) The units in the SOM are arranged'in a 1-D layer.

Chapter 7

Architectures for Complex
Pattern Recognition Tasks

7.1 Introduction
In the previous chapters the principles of artificial neural networks
and some basic hctional units were presented. These hctional
units are basic structures of neural networks capable of performing
simple pattern recognition tasks. In practice the pattern recognition
tasks are much more complex, and each task may require evolving
a new structure based on the principles discussed in the previous
chapters. In fact, designing an architecture for a given task involves
developing a suitable structure of the neural network and defining
appropriate activation and synaptic dynamics.

The pattern recognition tasks perfmed by human beings are
several orders of magnitude more complex than the simple tasks like
pattern association, classification, storage and clustering discussed
earlier. For example, the associative memory function of the biological
neural network is highly sophisticated in terms of its ability to perform
the learning, storing and recall operations. Likewise, the abilities of the
biological network in dealing with pattern variability as in the hand-
written characters, or with temporal pattern recognition as in speech
and image sequence are at present impossible to realize by an &cial
system. However, these features of the biological system motivate people
to develop new architectures of artificial neural networks.

While the urge is to develop an architecture to solve a real world
problem, such as involving pattern variability, the structure of the
network is still based on the well understood principles (which are
very few) of models of neurons, connections and the network
dynamics. In all these cases the real world problems are simplified
or tailored to satisfy the constraints of the architecture, rather than
developing suitable phitectures for the problems. Thus an
architecture is restricted to a class of simplified problems or to a
specific problem, but not universal.

One way to organize the networks at architectural level is as
proposed by Simpson [19901. They are organized along the broad

234 Architectures for Complex Pattern Recognition Tasks

categories of learning (supervised and unsupervised) and along the
broad categories of s t r u c t m (feedforward and feedback). In
supervised learning the weight adjustment at each step is based on
the given input and the desired output. The adjustment may be of
correlation type, perceptron learning, delta learning, reinforcement
learning, etc. In supervised learning, the weights of the network are
determined either by learning or by computation from the given input
patterns. In feedforward structures the pattern recall is a
straightforward application of the computations involved for each unit
once. But in feedback structures the pattern recall involves several
cycles of computations, each cycle consisting of computations by all
the processing units on the average. The cycles are repeated until an
equilibrium state is reached. The architectures in each category are
described in a common format consisting of description of the task,
description of the topology of the network, the encoding scheme (i.e.,
determination of weights), the decoding scheme (i.e., recall of pattern
information), stability, performance of the network in terms of
capacity and some applications of the architecture [Simpson, 19901.

We adopt a different approach in this chapter. We consider a few
issues in pattern recognition tasks and discuss evolution of
architectures for addressing these issues. This chapter presents five
different classes of architecture, to address five different classes of
complex pattern recognition tasks. While these architectures may not
solve the real world problems completely, their descriptions do help
in understanding the issues better and also in developing new
architectures, once the issues for new classes of problems are clear.

Table 7.1 gives the organization of topics for this chapter. We
consider associative memories in Section 7.2, where we discuss
bidirectional associative memory in some detail. Pattern mapping
architectures are considered in Section 7.3. In particular, we discuss
the radial basis function networks for pattern classification and
function approximation problems. We also consider the counter-
propagation network which can capture both forward mapping as well
as inverse mapping (if it exists) between a pair of patterns. In
Section 7.4 the issue of stability-plasticity dilemma is addressed using
the class of Adaptive Resonance Theory (ART) models. Architectures
for temporal pattern recognition and generation are described in
Section 7.5. In particular, we discuss the Avalanche architecture and
Time Delay Neural Networks (TDNN) for recognition of sequences of
patterns. The issue of pattern variability is discussed in Section 7.5
through the neocognitron architecture. While the pattern recognition
issues of memory, mapping, stability-plasticity, temporal patterns and
pattern variability are easily handled by human beings, the
developments of architectures in this chapter clearly bring out the
advantages and limitations of ANN models to deal with these
issues.

Associative Memory 235

Table 7.1 Organization of Neural Network Architectures based on Pattern
Recognition Tasks

Associative memories
Linear associative memories (Hetero and Autoassociative)
Autoassociative memories (Hopfield network and Boltzmann machine)
Bidirectional associative memories
Multidirectional associative memoriea
Temporal associative memories

Pattern mapping networks
Multilayer feedforward networks
Radial basis function networks for

(a) Classification
(b) Mapping or function approximation

Generalized regression neural networks
Probabilistic neural networks
Counterpropagation network

Pattern classification: Stability-plasticity dilemma
Adaptive Resonance Theory (ART)

ART1, ART2 and ART3
ARTMAP

. Fuzzy ARTMAP

Temporal patterns

Avalanche
Kohonen's phonetic typewriter
Associative memory based network
Partially recurrent network
Fully recurrent network
Backpropagation through time
Real-time recurrent learning network

Pattern variability

Neocognitron

7.2 Associative Memory

Pattern storage is an obvious pattern recognition task that one would
like to realize using an artificial neural network. This is a memory
function, where the network is expected to store the pattern informa-
tion (not data) for later recall. The patterns to be stored may be of
spatial type or spatio-temporal (pattern sequence) type. Typically, an
artificial neural network behaves like an associative memory, in
which a pattern is associated with another pattern, or with itself.
This is in contrast with the random access memory which maps an

236 Architectures for Complex Pattern Recognition Tasks

address to a data. An artificial neural network can also function as
a content addressable memory where data is mapped onto an address.

The pattern information is stored in the weight matrix of a
feedback neural network. The stable states of the network represent
the stored patterns, which can be recalled by providing an external
stimulus in the form of partial input. If the weight matrix stores the
given patterns, then the network becomes an autoassociative memory.
If the weight matrix stores the association between a pair of patterns,
the network becomes a bidirectional associative memory. This is
called heteroassociation between the two patterns. If the weight
matrix stores multiple associations among several (> 2) patterns, then
the network becomes a multidirectional associative memory. If the
weights store the associations between adjacent pairs of patterns in
a sequence of patterns, then the network is called a temporal
associative memory.

Some desirable characteristics of associative memories are: (a) The
network should have a large capacity, i.e., ability to store a large
number of patterns or pattern associations. (b) The network should
be fault tolerant in the sense that damage to a few units or
connections should not affect the performance in recall significantly.
(c) The network should be able to recall the stored pattern or the
desired associated pattern even if the input pattern is distorted or
noisy. (d) The network performance as an associative memory should
degrade only gracefully due to damage to some units or connections,
or due to noise or distortion in the input. (e) Finally, the network
should be flexible to accommodate new patterns or associations
(within the limits of its capacity) and to be able to eliminate
unnecessary patterns or associations.

Linear associative memory and autoassociative memory were
discussed in detail in Chapter 5. In this section the discrete
Bidirectional Associative Memory (BAM) is discussed in some detail.
Extensions of the BAM concepts to multidirectional and temporal
associative memories are discussed briefly.

7.2.1 Bidirectional Associative Memory (BAM)

The objective is to store a set of pattern pairs in such a way that
any stored pattern pair can be recalled by giving either of the patterns
as input. The network is a two-layer heteroassociative neural network
(Figure 7.1) that encod9 binary or bipolar pattern pairs (al, bl) using
the Hebbian learning. It can learn on-line and it operates in discrete
time steps. The BAM weight matrix from the first layer to the second
layer is given by

Associative Memory

Figure 7.1 Bidirectional associative memory.

where 04 E I - 1, + l lM and bl E I - 1, + l lN for bipolar patterns, and L
is the number of training patterns. For binary patterns pl E (0, l lM
and q E (0, llN, the bipolar values ali = 2pli - 1 and bli = 2 qzi - 1
corresponding to the binary elements pzi and qk, respectively, are used
in the computation of the weight matrix. The weight matrix from the
second layer to the first layer is given by

The activation equations for the bipolar case are as foHows:

1, ify, > 0

M
where yj = , C w .. a.(m), and

g = l Ji

N
where xi = ,C wii bj(m). In the above equations a(m) = [al(m), a2(m),

J = 1

..., aM(m)lT is the output of the first layer at the mth iteration, and
b(m) = [bl(m), b2(m), ..., bN(m)lT is the output of the second layer at
the mth iteration.

For recall, the given input ai(0), i = 1,2, ..., M, is applied to the
first layer and the activation equations are used in the forward and
backward passes several times until equilibrium is reached. The
stable values b,(=), j = 1,2, ..., N are read out as the pattern
associated with the given input. Likewise the pattern at the first
layer can be recalled given the pattern at the second layer.

The updates in the BAM are synchronous in the sense that the
units in each layer are updated simultaneously. BAM can be shown

238 Architectures for Complex Pattern Recognition Tasks

to be unconditionally stable using the Lyapunov energy function given
by [Kosko, 19921

Therefore,

The change in energy due to change Aai in ai is given by

Avai = -[i w p j] b i , i = 1.2 , , M (7.7)
j= 1

Likewise the change in energy due to change Abj in bj is given by

For bipolar units,
2 or 0, ifxi > 0

hi = { 0, if xi = 0
- 2 or 0, ifxi<O

N
where xi = , Z; wiibj. Similarly,

~ = 1

M
where yj = ,X wj,ai. From these relations, it is obvious that

r = l

AV4 5 0, for i = 1,2 ,..., M,

and
AVbj 5 0, for j = 1,2, ..., N,

which means that the energy either decreases or remains the same
in each iteration. Therefore the BAM reaches a stable state for any
weight matrix derived from the given pattern pairs.

The BAM is limited to binary or bipolar valued pattern pairs.
The upper limit on the number (L) of pattern pairs that can be stored
is min (M, N) [Kosko, 19881. The performance of BAM depends on
the nature of the pattern pairs and their number. As the number of
pattern pairs increases, the probability of error in recall will also

Associative Memory 239

increase. The error in the recall will be large if the memory is filled
to its capacity. Improved methods of encoding (determination of
weights) were proposed through the use of matrix transformations
[Wang et al, 1990a; 1990b; 19911.

Extensions of the discrete BAM have been proposed to deal with
analog pattern pairs in continuous time. The resulting network is
called Adaptive BAM (ABAM) [Kosko, 19871. In this case the pattern
pairs are encoded using Hebbian learning with a passive decay term
in learning. For recall of the patterns, the additive model of the
activation dynamics is used for units in each layer separately.
According to the ABAM theorem the memory is globally stable.

7.2.2 Multidirectional Assoclatlve Memory

The bidirectional associative memory concept can be generalized to
store associations among more than two patterns. The multiple
association memory is also called multidirectional associative memory
(MAM) [Hagiwara, 19901. As an illustration, the architecture of MAM
is shown in Figure 7.2 for the case of associations among three

Figure 7.2 Illustration of multidirectional associative memory for three layers
of units.

patterns (al, bl, cl). The three layers of units are denoted as A, B, C
in the figure. The dimensions of the three vectors al, bl and q are
Nl, N2 and N3, respectively. The weight matrices for the pairs of
layers are given by

and

For recall, the activation equations for the bipolar case are
computed as shown below for the layer B

Architectures for Complex Pattern Recognition Tasks

for j = 1, 2, ..., N2, where

where wuji is the jith element of the weight matrix WAB, and wcBji
is the jith element of the weight matrix WCB.

The outputs c,(m + 1) and a,(m + 1) are likewise computed. Each
unit in a layer is updated independently and syn&ronously based on
the net input from units in the other two layers. The updating is
performed until a multidirectionally stable state is reached.

The BAM is only a special case of MAM. Due to associations among
several layers to be satisfied simultaneously, the information recovery
for the partial input is better in MAM than in BAM [Hagiwara, 19901.

7.2.3 Temporal Associative Memory (TAM)

The BAM can be used to store a sequence of temporal pattern vectors,
and recall the sequence of patterns [Zurada, 1992, Sec. 6.61. The basic
idea is that the adjacent overlapping pattern pairs are to be stored
in a BAM. Let al, a2, ..., aL be a sequence of L patterns, each with a
dimensionality of M. Then (al, a2), (&, a3) ,..., (ai, a, + 1), ..., (aL - 1, aL)
and (aL, a,) form the pattern pairs to be stored in the BAM. Note
that the last pattern in the sequence is paired with the first pattern.
The weight matrix in the forward direction is given by

The weight matrix for the reverse direction is given by the transpose
of the forward weight matrix, i.e., by w*.

The recall steps are exactly the same as for BAM. When stable
conditions are reached, then it is possible to recall the entire sequence
of patterns from any one pattern in the sequence. The TAM has the
same kind of limitations as those of BAM in its error performance in
recall and also in its capacity for storing a given length (L) of a
sequence of patterns.

7.3 Pattern Mapping

7.3.1 Background for Pattern Mapping Networks

The multilayer feedforward neural network with error backpropaga-

Pattern Mapping 241

tion learning was primarily developed to overcome the limitation of
a single layer perceptron for classification of hard problems (non-
linearly separable classes) and to overcome the problem of training
a multilayer perceptron (due to hard-limiting output function) for
these hard problems. In this so called backpropagation network the
objective is to capture (in the weights) the complex nonlinear
hypersurfaces separating the classes. The complexity of the surface
is determined by the number of hidden units in the network. Strictly
speaking, any classification problem specified by the training set of
examples can be solved using a network with sufficient number of
hidden units. In such a case, the problem is more of a pattern
association type than of a classification type, with no restrictions on
the associated patterns as in the case of a linear associative network.

In a classification pr~blem the input patterns belonging to a class
are expected to have some common features which are different for
patterns belonging to another class. The idea is that, for a pattern
belonging to any of the trained classes, the network is supposed to
give the correct classification. In other words, for a classification
problem, the trained neural network is expected to perform some kind
of generalization, which is possible only if there are some features
common among the input patterns belonging to each class, and these
features are captured by the network during training. Generalization
has no meaning for arbitrary association of one pattern to another
as in the case of arbitrary Boolean functions. Generalization also has
no meaning if the training set consists of all possible input patterns
as in the XOR problem.

Some special association tasks may have common features hidden
too deep in the input, like in the parity problem [Minsb and Papert,
19901. In this case the feature characterizing the similarity of
patterns belonging to the same class is not reflected directly in the
bit pattern of the input vector. For example, 00110000 and 00001111
both belong to the same class of even parity, and 01110000 and
00000111 both belong to the class of odd parity, although the odd
parity pattern 01110000 is closer to the even parity pattern 00110000
in the Hamming distance sense. In these cases the representation of
the input patterns is crucial to achieve generalization by a network.
Preprocessing of the input vectors is to be performed separately to
extract the desired features for feeding the features to a neural
network. A neural network by itself may not be able to extract
automatically the desired features due to limitations of operations it
can perform on the input data, and more importantly, due to masking
of the desired features by the other undesirable, but dominating
features in the input.

Therefore a trained neural network is expected to exhibit the
generalization property for the classification problems in which
groups of the input patterns belonging to a class possess some

242 Architectures for Complex Pattern Recognition Tasks

common features within each group. Another way of looking at this
problem is that there should be some redundancy among the patterns
in each group in order to develop a system for classification. Note
that the class label that is assigned to a group or a collection of
groups could be quite arbitrary. In other words, the mapping of a
group of input patterns to an output or a class label need not have
any restrictions.

Another class of problems deals with capturing the mapping
function implied in the given training set of input-output pattern
pairs. Here the mapping function represents the system that produced
the output for a given input for each pair of patterns. A trained neural
network is expected to capture the system characteristics in their
weights. The network is supposed to have generalized from the
training data, if for a new input the network produces the same
output which the system would have produced. The generalization of
this mapping function in the network can be tested by a set of test
input-output pattern pairs. Note that in this case the mapping
function must exhibit some smoothness or redundancy, as the given
training data is usually not adequate to sample the function a t all
points. Note also that the set of input patterns themselves could be
quite arbitrary. So generalization in these cases is possible only if
the mapping function satisfies certain constraints. Otherwise, the
problem of capturing the mapping function from the training data
set will be an ill-posed problem [Tikhonov and Arsenin, 19771.
Assuming that the constraints are satisfied by the mapping function,
they are forced on the approximating function using regularization
methods, so that the ill-posed problem becomes well-posed [Poggio et al,
19851. Finally, generalization by a network is also possible in situations
where both the input patterns in a group and the mapping function
have redundancies displayed in the form of common features among the
patterns in a group and smoothness in the function, respectively.

A multilayer perceptron (MLP) architecture is suggested to
address arbitrary pattern association tasks which could not be solved
by either a linear associative network due to restriction on the type
and number of input patterns or by a single layer perceptron due to
linear separability constraint on the classification task specified by
the input-output mapping.

A multilayer feedfolward neural network (MLFFNN) can be used
to realize an approximation to a multilayer perceptron (MLP) for
complex (arbitrary) pattern association tasks. It is not intended
specifically to solve a pattern classification or pattern mapping
problem, as both require generalization based on 'closeness' property
in classification and 'smoothness' property in mapping, respectively.
In other words, a MLFFNN trained with backpropagation learning
is neither designed to exploit the property of 'closeness' for
generalizing a classification task, nor is it designed to exploit the

Pattern Mapping 243

property of 'smoothness' to generalize a function approximation task.
It is designed mainly to provide discrimination between patterns
belonging to different classes.

The distinction between what is being achieved by a MLFFNN
and what is needed to be achieved for classification and function
approximation tasks is illustrated in Figure 7.3 [Lowe, 1995l.&lere

Data space

Classification Data closeness
(MLP result) (Desired result)

(a) Classification problem

Function approximation Function smoothness
(MLFFNN result) (Desired result)

(b) Function approximation problem

Figure 7.3 Distinction between two pattern recognition tasks as realized by
a trained MLFFNN and the desired results: (a) Classification
problem and (b) Function approximation problem.

manipulation of the structure of a neural network and learning of a
MLFFNN are not likely to achieve the generalization required for a
given problem. Even if the generalization behaviour of a trained
MLFFNN is confirmed by cross-validation, it is only an ad hoc
solution. There is no guarantee of obtaining the desired result. This
is because, the network is not designed specifically to address the
generalization problem. Moreover, it is not generally possible to
analyze a MLFFNN to understand the task each layer is performing.

In fact, if the given problem is known to be a classification
problem based on the closeness of data in the input vectors, then
specific architectures can be evolved to achieve generalization. Such
architectures tend to be much simpler than a general MLFFNN, ~d

244 Architectures for Complex Pattern Recognition Tasks

training also is likely to be simpler than the backpropagation
learning. It is also possible to improve the genezalization capability
by incorporating a priori knowledge about the patterns in the
classification task. However, developing architectures will be much
more difficult if the classification is based on deep features present
in the data, and if preprocessing needed to extract these features is
not explicitly included as part of the network.

Likewise, if the given problem is a function approximation based
on the smoothness of the mapping function of the given input-output
data, then specific architectures can be evolved to achieve
generalization in such cases. Here again these architectures tend to
be much simpler than the MLFFNN, and the training involved also
will be trivial in most cases. It is possible to improve the generaliza-
tion capability using regularization which involves imposing some
smoothness constraints explicitly on the mapping function. The
smoothness constraint is intended to reflect the a priori knowledge
of the function. However, developing architectures for proper
generalization is much more difficult if the mapping function is not
smooth at the given data level. Even if smoothness of the mapping
function is present at some deep feature level, it is not possible for
the network to generalize, unless preprocessing of the data to obtain
the features is explicitly known and implemented in the network.

For discussion, we assume that the training set data consists of
pairs of input-output vectors represented by (al, bl), I = 1,2, ..., L.
For a classification task, bl is an N-dimensional.vector of zeros and
ones, with a 1 in the jth position if the input vector al belongs to the
jth class. This is called 'hard' classification. There may be several
input vectors, which are close to each other, and hence may have the
same bl associated with them. In many situations, it may be desirable
to have the N-dimensional output vector to represent an estimate of
the probability distribution of the classes for the given input. That
is, the jth component of bl corresponds to the probability that the
input vector belongs to the class j. In this case the sum of all the
components in bl will add upto 1. The input vector al could be an
M-dimensional vector of ones and zeros or a vector of real numbers.

In the function estimation or pattern mapping the output vector
bl is an N-dimensional vector of real values. The function estimation
can also be viewed as a nonpararnetric regression problem, as we are
trying to determine a network that realizes the best fit function for
the given input-output pairs of data.

In this section we will consider the tasks of pattern classification
and multivariate function approximation (or pattern mapping). In
both cases the learned network should generalize well, which means
that the network should give the correct classification for a new (test)
data input in the case of a classification task and a reasonable
approximation to the true function value for a new (test) data input

Pattern Mapping 245

in the case of a function approximation task. We will discuss
architectures of the Radial Basis Function (RBF) network suitable
for these tasks. We assume that the 'closeness' property for the
classification tasks and the 'smoothness' property for the function
approximation tasks are satisfied in the given training set data.

7.3.2 Architecture of Radial Basis Function (RBF) Networks

The architecture of a radial basis function network is shown in
Figure 7.4. It consists of a single hidden layer with nonlinear units,
followed by an output layer with linear units.

I 7.4 General form of a radial basis function network. The nonlinear
basis function of the jth hidden unit is a function of the normal-
ized radial distance (11 a- pj l i lq) between the input vector
a = 1a1, a2, ..., a d T and the weight vector pj = [Pj,, pj2, ...,

associated with the unit. Normalization factor oj decides
the range of influence of the jth unit around its centre pj.

The output of the kth unit in the output layer of the network is
given by

where hj = +,,([I a - b IVq) , j = 1,2, ..., J and ho (= - 1) is the output
of the bias unit, so that wko corresponds to the bias on the kth output
unit. The nonlinear basis function $,,(.) of the jth hidden unit is a
function of the normalized radial distance between the input vector
a= (al, a2, ..., aMIT and the weight vector & = (pjl, b2, ..., &M)T

246 Architectures for Complex Pattern Recognition Tasks

associated with the unit. The normalizing factor oj decides the range
of influence of the jth unit. If the basis function is a Gaussian function
of the type $(x) = exp(- x2/2), then the weight vector CI, corresponds
to the mean value of the function and oj corresponds to the standard
deviation. For a multidimensional vector x with zero mean, the
Gaussian function is given by $(x) = exp(- X~R-'x), where R is the
covariance matrix of the input vectors, namely, expectation of xxT.
The significance of the radial basis function is that the output of the
unit is a function of the radial distance, i.e., hj = $,(I] a - Lj(I/oj). On
the other hand, in a multilayer feedforward neural network,
hj = $j(aTwj), i.e., the output is a nonlinear function of the scalar product
of the input vedor and the weight vedor.

7.3.3 Theorems for Functlon Approxlmation

Before we discuss RBF networks for function approximation, it is
worthwhile noting the following two theorems for function approxi-
mation, one based on the linear basis function and the other based
on the radial basis function [Kung, 19931.

Theorem 1: Functlon approximation by llnear basis function.
[Cybenko, 1989; Funahashi, 19891. Let A be a compact subset of
R~ and F(x) be a continuous function on A. Then for any E > 0, there
ees t an integer N and real constants ci, wii and 8, such that
I F(x) - F(z) 1 < E for all x E A, where

and fl.) is any nonconstant, bounded and monotonically increasing
continuous function. The argument of the function fl.) is a linear
weighted sum of the component values, i.e., $, woxj + ei. Therefore

I

fl.) is called linear basis function. In this approximation the function
fl.) could be like the semilinear output function of a MLFFNN. Thus
this function approximation, in principle, can be realized by a
MLFFNN with a single layer of hidden units and an output layer of
linear units.

Theorem 2: Function approximation by radiai basis function. Let
A be a compact subset of and F(x) be a continuous function on A.
Then for any E.> 0, there exist an integer N and parameters wi and
ci such that (F(x) - F(x) I < E for all x E A, where wis are M-dimen-
sional parameter vectors corresponding to the centroids of clusters,
so that

Pattern Mapping 247

where g(.) is a nonlinear function with unique maximum centered at
wi [Powell, 1988; Broomhead and Lowe, 1988; Moody and Darken,
19891. The argument of the function g(.) forms the basis of the
function. Since the argument is the radial distance between the
variable vector x from the centroid vector wi, the function g(.) is called
the radial basis function. The function approximation itself is called
the radial basis function approximation. Gaussian function is one of
the commonly used nonlinear functions for g(.).

The above theorems are called universal approximation theorems.
They show the existence of the parameters to approximate a given
function. In the context of neural networks, both the theorems suggest
that a feedforward network with a single hidden layer with nonlinear
units can approximate any arbitrary function. But the theorems do
not suggest any method of determining the parameters, such as the
number of hidden units and weights in order to achieve a given
accuracy for the approximation of the function.

7.3.4 RBF Networks for Function Approximation

In the RBF networks the weights (b, aj) of the hidden layer units are
determined directly from the data. No learning is involved. The
weights wb of the output layer are determined by supervised learning
[Broomhead and Lowe, 1988; Moody and Darken, 19891. For function
approximation task the error to be minimized in the supervised
learning is given by

where ED is the error due to the given data in the form of inputi
output pair (al, bl), ER is the contribution due to regularization, and
h is the regularization parameter. The error term ED is given by

Note that bik is a function of the input data and the parameters of
the network, i.e., bfk = F(al, wk). The regularization term ER depends
on the prior knowledge of the function or some global knowledge
derived from the given data. This knowledge is normally represented
in the form of a smoothness constraint on the mapping function
between the input and the output. In one form of smoothing, the
weights of the network are constrained using the following expression
for the regularization term [Hergert et al, 19921.

Inclusion of this term favours small values of the weights. It can also

248 Architectures for Compbz Pattern Recognition Tasks

be viewed as a 'weight decay' term, since the weight change is
proportional to the negative gradient of the error (See Eq. (4.77)),
and the negative gradient of ER(F) gives a decay term in the learning
equation (See Eq. (2.22)).

Smoothing constraint is also expressed in the form of the square
of the derivatives of the mapping function, namely,

where P is a linear differential operator, and 11 .I1 is the L2 norm. For
example, P could be a simple second derivative of F with respect to
w. Then minimization of the square of the derivative restricts the
discontinuous jumps in the function [Poggio and Girosi, 19901.

In the expression for E(F) in (7.21), if h = 0, then the error is
dictated by the given training data. For a sufliciently large (in terms
of number of hidden units) network, it is possible to determine the
weights of the network so that we can get an approximate
interpolating function as shown by the solid line in Figure 7.5a for
a 1-D case, whereas what is desired is the function shown by the
dashed line [Wahba, 19951. Thus the network fails to generalize from
the data due to overfitting of the data. This is not desirable, as the
given training data can be usually noisy. In order to improve the
generalization capability, the h parameter is made nonzero. For a
suitable choice of A, we get a reasonable estimation of the function
as shown by the solid line in Figure 7.5b, where the dashed line
shows the desired function. For large h, if the smoothing function is
restricted to small value E, i.e., 11 PF 112 < E, then the resulting function
is a poor estimate of the desired function as shown in Figure 7.5c,
because the error term due to data does not play a significant role.
Thus the parameter h controls the performance of the pattern
mapping network. The value of the parameter h can be inferred from
the given data using probability theory and Bayes theorem for
conditional probability [Mackay, 19951.

Figure 7.5 Function approximation for different values of regularization
parameter h: (a) h too small, (b) h near optimal and (c) h too
large. 'x' indicates actual points. Dashed line is the desired
function. Solid line is the realized function.

Pattern Mapping 249

The regularization problem is to find the function F(.) that
minimizes the error given by Eq. (7.21), where the second term due
to regularization is a constraint on the desired level of smoothness
of the function. The smoothness constraint is usually in the form of
a differential operator, as noted before.

Let us consider one dimensional case, i.e., the function F(.) is a
scalar function and hence there is only one output unit for the
network. Then

1
We have En(F) = 11 PF 112, where P is a linear differential operator.
The minimization problem reduces to solving the following differential
equation [Poggio and Girosi, 19901:

where P* is the adjoint of the differential operator P [Haykin, 19941
and &.) is a delta function.

Let G denote the Green's function for the operator P*P, so that

P*PG(a : al) = 6(a - al) (7.27)
Then the solution of the regularization problem is given by [Haykin,
19941

where

G is the Green's function for the lth input pattern. The Green's
function is a result of the smoothness constraint expressed in the
form of a differential operator. If the differential operator P*P is
invariant to rotation and translation, then the Green's function is a
function of the magnitude of the difference of its arguments, i.e.,
G (a : al) = G (11 a - al 11). In such a case G is called a radial basis
function. For some special cases of the differential operator P, the
radial basis function becomes a multivariate Gaussian function
[Haykin, 19941.

Thus the solution of the regularization problem leads to a radial
basis function as shown in Figure 7.6 for the l-D case, where the
Green's function is shown by $ (.). The weights are determined by
minimizing the error E in Eq. (7.21) which consists of the squared
error between the desired and actual output values, and the
regularization term, the extent of which is determined by the

250 Architectures for Complex Pattern Recognition Tasks

Figure 7.6 Radial basis function network for function approximation, with
one output unit and L hidden units.

parameter h. In the above formulation the number of hidden units is
equal to the number of training samples (L) and the centres of the
basis function are located at the sample values al.

A suboptimal solution to the function approximation is obtained
using fewer basis functions. That is, using the radial basis functions,
the function F is given by

where H < L, and are the centres of the basis functions to be
determined from the given data. The weights of the output units and
the centres of the radial basis function can be determined by
computation using all the training set data [Haykin, 19941.

For a 1-D output function, the desired output dl is a scalar for
the given input vector al. That is,

Minimizing the error in Eq. (7.21) without regularization (h = O), the
optimum weight vector w = [wl, w2, ..., wHIT is given by

where d = [dl, 4, ..., dLIT, and @+ is the pseudoinverse of the matrix

Pattern Mapping 25 1

The elements of the matrix are given by

The pseudoinverse of a+ is given by

a+ = (aT a) - aT
If regularization (h + 0) is used in the error function, then the

corresponding expression for the optimal weight vector is given by
[Haykin, 19941

w = (aT@ + h a0)-bTd (7.36)

where Qo is ap H x H matrix whose jith element is ((11 pj - CI, I)).
The weights can also be determined by using supervised learning

methods like LMS algorithm, in which the weight adjustment a t each
stage is given by (See Chapter 1)

where 11 is the learning rate parameter.

7.3.5 RBF Networks tor Pattern Classification

Given a set of training samples in the form of input pattern vectors
al, 1 = 1, 2, ..., L and the associated class labels, the objective in
pattern classification is to design a system which can classify any
new input vector a correctly by assigning the correct class label to
it. Note that in a classification problem there will be fewer classes
than the number of training patterns, and hence all the class labels
are not distinct. In the training set there may be many pattern vectors
associated with each of the distinct classes in the problem.

The pattern classification problem can be posed as follows [Lowe,
19951: Given an input pattern a , determine the class label Ci such
that the a posteriori probability P(Ci (a) of the class Ci is maximum
among all classes. This probability can be computed using the
probabilities p(a I Ci) and p(a), since

where p(a (Ci) gives the probability distribution of the data generated
for the class Ci and p(a) is the probability distribution of the data
vector irrespective of the class. These probability distributions can be
expressed in terms of a linear combination of some standard
distribution Ma), say Gaussian, in order to reflect the possible
multimodal nature of the distribution of the data a belonging to any
class. These mixture distributions can be written as Lowe, 19951

Architectures for Complex Pattern Recognition Tasks

and
p(a 1 ci) = C flj %(a).

j

where ak and flj are coefficients of the standard distribution functions.
Therefore,

where $,(a) is the normalized basis function and wii = P(Ci) fli/aj is
the contribution of the output of the basis function to the output unit
corresponding to the ith class Ci. Thus the expression for P(Ci I a) can
be viewed as a basis function formulation of the classification
problem, and the corresponding radial basis function network is
shown in Figure 7.7.

Basis function

Class
labels

C,

C N

Figure 7.7 Radial basis function network for pattern classification. The
number of input nodes depends on the dimensionality of the input
vector. The number of output nodes is equal to the number of
distinct classes. The number of hidden nodes is equal to the number
of basis functions used in the network The number and shapes of
the basis functions depend on the closeness of the input data in
the training set.

Pattern Mapping 253

The basis functions for classification tasks are determined from
the input data in the training set. The number and shapes of the
basis functions depend on the 'closeness' property of the input data
in the training set. This can be determined using an unsupervised
clustering of the input data. The representation of the clusters is
somewhat simplified if the basis functions are assumed to be of
Gaussian type, so that the parameters of each cluster can be
determined by computing the first (mean) and second (covariance
matrix) order statistics of the input data for each cluster. In other
words, the probability distribution of each cluster is assumed to be
elliptical. Note that in the classification task the basis fundions are
solely determined by the distribution of points in the training set in
the input space. It involves determination of clusters first and then
fitting a distribution to each cluster. The number of clusters and the
parameters of the basis functions can be either computed using the
entire training set data or can be learned using learning techniques
[Haykin, 19941.

Once the basis functions are determined, then the weights in the
output layer can be obtained from the training data either by
computation using matrix inversion or by supervised learning using
gradient descent methods.

To illustrate the steps involved in a pattern classification task,
let us consider the 2-D cluster points given in Figure 7.8, where each
class is indicated by a separate symbol like '2, 'O', etc. The first step
is to determine the clusters using any standard clustering algorithm
[Haykin, 19941 or by any of the unsupervised learning methods

Figure 7.8 2-D data points belonging to three classes.

254 - Architectures for CompLex Pattern Recognition Tasks

described in Chapter 6. The umber of clusters can be fixed a priori,
or a criterion may be used to determine the optimum number of
clusters [Dubes, 19871. Thm a basis function is derived for each
cluster. If a 2-D Gaussian function is assumed, then the mean and
covariance matrix are deriv;?d for each cluster to represent the
corresponding Gaussian bmls function $(a). That is

where p is the mean vector of the cluster points and R is the
covariance matrix of the cluster. The i$h element of the matrix R is
given by

Ro. = x (ali - CL,) (aU - k,), i, j = 1 ,2 (7.42)
1

where I is the index for the sample pattern in the cluster, and
= SEi and k, = G, are the mean values of the ith andjth components

of the input vectors. They are given by 6 = Fa,i, for all i . For the

kth cluster, $ = qk and the mean vector and covariance matrix can
be indicated by p = pk and R = Rk, respectively.

The basis functions specified by the mean vector and the
covariance matrix for each cluster determine the computations to be
performed at the hidden units. The number (H) of hidden units is
equal to the total number of clusters:

The number (N) of the output units is equal to the number of
distinct classes. The desired response for the classification task is
represented by an N-dimensional vector, with a 1 at the output of
the unit corresponding to the correct class, and a 0 at the output
of all other units. That is, the desired output vector is given by d =
[O 0 1 0, ..., OIT for an input pattern a belonging to the class 3.

Using the training set data, which consists of a set of input
vectors and the desired class labels, the output weights wo. can be
determined by any of the following methods:

1. Determination of weights by matrix inversion:
For the Ith pattern pair, the error between the desired and
actual outputs is given by

The total error E = ?El is minimized to determine the
optimum weight matrix. This requires computation of
pseudoinverse of a matrix and uses all the training data in
the computation of the matrix.

Pattern Mapping 255

2. Determination of weights by learning using LMS algorithm:
Since the output units are assumed linear, the instantaneous
error can be used to adjust the weights as in the LMS
algorithm. That is,

[
H

Aw, = - q dli - w, $j(al)
j = 1 I

where q is the learning rate parameter.

For the optimum weight matrix, the network output Fi(a) from
the ith unit is an approximation to the conditional expectation
E[di (a] in the mean squared error minimizing sense. The conditional
expectation &Idi I a1 in turn is equal to the probability P(Ci 1 a) [White,
1989; Richard and Lippmann, 19911.

Thus a trained radial basis function for classification gives as
output the a posteriori probabilities P(Ci 1 a), i = 1,2, ..., N, for a
given input vector. The class Ck for which P(Ci 1 a) is maximum for
all i, is the class to which the input vector a belongs.

We have noted that the basis function networks provide several
advantages over the multilayer feedforward neural networks. The
main advantage is that the training of the basis function networks
is much faster than the MLFFNN. This is because the basis function
networks are developed specifically for the tasks such as function
approximation or pattern classification, instead of arbitrary mapping
that is sought to be achieved by the MLFFNN. The first layer of the
basis function network involves computation of the nonlinear basis
function values for each new input vector in order to determine the
outputs of the hidden units. These computations generally take much
more time than for the linear basis function (inner product)
computations in a MLFFNN. Thus the pattern recall takes more time
for the basis function networks.

There are other types of networks where the training is
completely avoided. They are called Generalized Regression Neural
Networks (GRNN) for function approximation tasks and Probabilistic
Neural Network (PNN) for pattern classification tasks [Specht, 1991;
Specht, 1988; Specht, 1990; Wasserman, 19931. Both of them typically
use as many hidden units as there are training input patterns. These
networks are similar to the basis function networks, except that there
is no training<nvolved. GRNN is based on nonlinear regression theory
and can be designed to approximate any continuous function [Specht,
19911. On the other hand, PNN is based on Bayesian classification
theory and uses Parzen windows to approximate the probability
distribution of the input pattern [Parzen, 19621. GRNN finds the
regression estimate, i.e., the expected value of the output of the
network given the input vector. This can be shown to be an optimal
estimate in the mean squared sense. Any estimate that is optimal in

256 Architectures for Complex Pattern Recognition Tasks

the mean squared sense also approximates a Bayesian classifier
[Geman et al, 1992; Richard and Lippmann, 19911. Thus GRNN and
the PNN can be related.

The effectiveness of all the basis function networks depends on
the choice of suitable windows or basis functions with appropriate
values for the spreads. This is because of the dependence of the
networks on the local nature of the input space. In contrast, the
MLFFNN captures the global information. Any attempt to make the
choices of the windows optimal increases the training time due to the
optimization process involved in determining the number of clusters,
cluster centres and their spreads.

7.3.6 Counterpropagatlon Network

In a multilayer feedforward neural network the training process is
slow, and its ability to generalize a pattern mapping task depends
on the learning rate and the number of units in the hidden layer. In
the use of radial basis functions the unsupervised part of the learning
involves determination of the local receptive field centres and the
spread in the input data corresponding to each hidden unit. The
centres are determined using a vector quantization approach. This
could be done either by computation or by learning from the input
data. On the other hand, a different pattern mapping strategy,
namely counterpropagation, uses winner-take-all instar learning for
the weights from the units in the input layer to the units in the
hidden layer. The counterpropagation network (CPN) provides a
practical approach for implementing a pattern mapping task, since
learning is fast in this network [Hecht-Nielsen, 1987; HechbNielsen,
19881. The network (Figure 7.9) consists of two feedforward networks
with a common hidden layer. The feedforward network formed by

w
Layers 1 2 3 4 5

Figure 7.9 Counterpropagation network.

Pattern Mapping 257

layers 1,3 and 2 is used for forward mapping and the network formed
by layers 5, 3 and 4 is used for inverse mapping (if it exists) between
the given input-output pattern pairs. Each feedforward netwrok uses
a combination of instar and outstar topologies. The first and second
(hidden) layers of a feedforward network form a competitive learning
system and the second (hidden) and third layers form an outstar
structure. Learning takes place in the instar structure of the
competitive learning system to code the input patterns a, and in the
outstar structure to represent the output patterns bl. The training of
the instar and outstar structures are as follows:

Tralning instars of CPN:
1. Select an input vector a, from the given training set

(al, bl), Z = 1, 2, ..., L.
2. Normalize the input vector and apply it to the CPN

competitive layer.

3. Determine the unit that wins the competition by determining
the unit k whose vector wk is closest to the given input.

4. Update the winning unit's weight vector as

5. Repeat Steps 1 through 4 until all input vectors are grouped
properly by applying the training vectors several times.

After successful training the weight vector lea* to each hidden
unit represents the average of the input vectors corresponding to the
group represented by the unit.

Tralnlng outstars of CPN:

1. After training the instars apply a normalized input vector a,
to the input layer and the corresponding desired output vector
b, to the output layer.

2. Determine the winning unit k in the competitive layer.

3. Update the weights on the connections from the winning
competitive unit to the output units

4. Repeat Steps 1 through 3 until all the vector pairs in the
training data are mapped satisfactorily.

After successful training the outstar weight vector for each unit
in the hidden competitive layer represents the average of the subset
of the output vectors corresponding to the input vectors belonging to
that unit.

Depending on the number of units in , the hidden layer, the

258 Architectures for Complex Pattern Recognition Tasks

network can perform any desired &apping function. In the extreme
case, if a unit is provided in the hidden layer for each input pattern,
then any arbitrary mapping (al, bl) can be realized. But in such a
case the network fails to generalize. It merely stores the pattern pair.
By using a small number of units in the hidden layer, the network
can accomplish data compression. Note also that the network can be
trained to capture the inverse mapping as well, i.e., al = +-'(bl),
provided such a mapping exists and it is unique. The name
counterpropagation is given to this architecture due to the network's
ability to learn both forward and inverse mapping functions.

7.4 Stability-Plasticity Dilemma: ART

Many pattern mapping networks can be transformed to perform pattern
classification or category learning tasks. However these networks have
the disadvantage that during learning the weight vectors tend to encode
the presently active pattern, thus weakening the traces of patterns it
had already learnt. Moreover, any new pattern that does not belong
to the categories already learnt is still forced into one of them using
the best match strategy, without taking into account how good even
the best match is. The lack of stability of weights as well the inability
to accommodate patterns belonging to new categories, led to the
proposal of new architectures for pattern classification. These
architectures are based on adaptive resonance theory (ART) and dre
specially designed to take care of the so called stability-plasticity
dilemma in pattern classification [Carpenter and Grossberg, 19881.

ART also uses a combination of instar-outstar networks as in the
CPN, but with the output layer merged with the input layer, thus
forming a two-layer network with feedback as shown in Figure 7.10.
The minimal ART network includes a bottom-up competitive learning

F, Layer

"1 a; a,

Figure 7.10 ART network.

I I

[w,J

[U$ F, Layer

. . .
a

P

. . .

Stability-Plasticity Dilemma: ART 259

system (F1 to F,) combined with a top-down (F, to F,) outstar
pattern learning system. The number of units in the F2 layer
determines the number of possible categories of the input patterns.
When an input pattern a* is presented to the Fl layer, the system
dynamics initially follows the course of competitive learning, leading
to a winning unit in the competitive F2 layer depending on the past
learning of the adaptive weights of the bottom-up connections from
F, to F,. The signals sent back h m the winning unit in the F, layer
down to F, via a topdown outstar network correspond to a prototype
vector. This prototype vector is compared to the input pattern vector
at the F, layer. If the two vectors match well, then the winning unit
ip the F2 layer determines the category of the input pattern. If the
match is poor, as determined by a vigilance parameter, then the
winning unit in the F, layer does not represent the proper class for
the input pattern a. That unit is removed from the set of allowable
winners in the F2 layer. The other units in the F, layer are likewise
skipped until a suitable match is obtained at the F, layer between
the top-down prototype vector and the input vector. When a match
is obtained, then both the bottom-up and top-down network weights
are adjusted to reinforce the input pattern. If no match is obtained,
then an uncommitted unit (whose category is not identified during
training) in the F2 layer is committed to this input pattern, and the
corresponding weights are adjusted to reinforce the input. The above
sequence of events conducts a search through the encoded patterns
associated with each category, trying to find a s6ciently close match
with the input pattern. If no category exists, a new category is made.
The search process is controlled by two subsystems, namely the
orienting subsystem and the attentional subsystem. The orienting
subsystem uses the dimensionless vigilance parameter that establishes
the criterion for deciding whether the match is good enough to accept
the input pattern as an exemplar of the chosen category. The gain
control process in the attentional subsystem allows the units in the
F, layer to be engaged only when an input pattern is present, and it
also actively regulates the learning Freeman and Skapura, 19911.

Stability is achieved in the ART network due to dynamic matching
and control in learning. Plasticity is achieved in the ART due to its ability
to commit an uncommitted unit in the F2 layer for an input pattern
belonging to a category different h m the categories already learnt.

In ART information from units reverberates back and forth
between two layers. Once the proper patterns develop, the neural
network can be said to be in resonance. During this resonance period
the adaptive weights are adjusted. No learning takes place before the
network reaches a resonant state.

ARTl network was proposed to deal with binary input patterns
[Carpenter and Grossberg, 19881. The algorithm for binary valued
ARTl is as follows [Bose and Liang, 19961:

260 Architectures for Complex Pattern Recognition Tasks

wji is the weight from the ith unit in the F1 layer to the j th unit
in the F2 layer.

wj is the weight vector leading to the jth unit in the F2 layer
from all units in the F1 layer.

uG is the weight from the jth unit in the F2 layer to the ith unit
in the F1 layer.

vj is the weight vector (prototype vector) emanating from the jth
unit in the F2 layer to all the units in the F, layer.

Initially set all the components of all the prototype vectors to 1.
That is uG = 1, for all i and j. This will enable the uncommitted units
in the F2 layer also to compete in the same way as the learned units.

Initialize all wUs to random values in the range 0 to 1.

1. Enable all the units in the F2 layer.

2. For an input binary pattern a to the F1 layer, determine the
winner unit k in the F2 layer by computing

T k = arg [max wj a1 .
j

3. A similarity measure between the winning prototype vk and
the input a is computed and compared with a vigilance
parameter (0 < p c 1). The similarity measure gives the
fi-action of bits of a that are also present in vk. That is

-

i = l

Once the prototype associated with the winner unit k passes
the vigilance test, then go to Step 4 to adjust the weight
vectors associated with the kth unit both in the forward and
backward directions.

If the vigilance test fails, then the output unit k is disabled
and another winner is selected by repeating Steps 2 and 3.

If none of the committed units in the F2 layer passes the
vigilance test, then an uncommitted unit is committed to the
input pattern and the corresponding prototype vector vk is set
equal to the input pattern a. That is vk = a.

4. The weights are adjusted as follows:

where A is the logical AND operation and

i = l

wk(m + 1) can be viewed as normalized version of vk(m + I),

Stability-Plasticity Dilemma: ART 261

normalized with the number of 1's in the vector. The factor
0.5 in the denominator is used to avoid division by zero. With
this choice of wk the inner product wTa computed in Step 2
can be interpreted as the fraction of bits of the prototype vector
v. that are in the input vector a also. Thus the winner-take-all
decision selects the winner unit that corresponds to a
prototype vector that has maximum number of bits matching
with the bits in the input vector a.

In implementation the ART1 network operates automatically through
the use of the gain parameter (G) and the reset parameter (R).

The gain control unit operates as follows: If all the units in the
F2 layer are OFF, then G = 1. If one of the units in the F2 layer is
ON, then G = 0. The gain parameter G is generated using the function

where fix) = 1, if x > 0, and fix) = 0, if x I 0. The quantity y, is the
output of the jth unit in the F2 layer and is either 1 or 0 depending
on whether the unit j is a winner or not. If all units in the F2 layer
are OFF, then y, = 0, for j = 1,2, ..., N. Assuming that there is at
most one nonzero component in the input vector a, the argument of
fl.) is greater than 0. Hence G = 1.

For any winning unit in the F2 layer, one of the y,5 will be 1.
Then the argument of fl.) is less than 0. Hence G = 0.

The output of the ith unit in the Fl layer is given by

This computes the output of the ith unit in the Fl layer as
xi = ai A v& if the unit k is the winner, since yk = 1 and y, = 0, for
j ;t k, and also G = 0. If none of the units in the F2 layer are ON,
then y, = 0, for all j and G = 1, and hence xi = ai, for all i. Thus
equation (7.46) represents a 213 rule since xi = 1 if any two out of
the three variables in the argument are 1.

The reset value R is computed as follows:

M M
R = f p C a i - C x i [i i = 1]

If the vigilance test

Architectures for Complex Pattern Recognition Tasks

succeeds, then the argument of f(.) will be negative, and hence
R = 0. That is there is no reset. On the other hand, if the vigilance
test fails, then the argument off (.) is positive and hence R = 1. Then
the current winning unit is disabled and all the units in the F2 layer
are reset to OFF. Hence G = 1. Therefore another winning unit will
be selected.

Figure 7.11 illustrates the clustering performance of ART1 for 24
binary patterns each having 4 x 4 pixels. It can be seen that lower
vigilance p = 0.5 case produces fewer clusters than the larger
vigilance p = 0.7 case. ART2 network was developed to self-organize
recognition categories for analog as well as binary input patterns
[Carpenter and Grossberg, 1987; Carpenter et al, 1991bl. Figure 7.12
illustrates the clustering of analog signals by an ART2 network. Here
50 patterns, each of 25-dimensional vector of analog values are
clustered for two values of the vigilance parameter p. As expected
smaller vigilance value produces fewer clusters.

A minimal ART network can be embedded in a larger system to
realize an associate memory. A system like CPN or multilayer
feedforward network directly maps pairs of patterns (al, bl) during
learning. If an ART system replaces the CPN, the resulting system
becomes self-stabilizing. Two ART systems can be used to pair
sequences of the categories self-organized by the input sequences. The
pattern recall can occur in either direction during performance as in
BAM. This scheme brings to the associate memory paradigm the code
compression capabilities, as well as the stability properties of ART
[Carpenter, 19891.

ART3 network was developed for parallel search of distributed
recognition codes in a multilevel network hierarchy [Carpenter and
Grossberg, 19901. All these three ART models are based on unsuper-
vised learning for adaptive clustering. On the other hand, ARTMAP
architecture performs supervised learning by mapping categories of
one input space onto categories of another input space, and both the
sets of categories are determined by two separate ART systems
[Carpenter et al, 1991al. Fuzzy ARTMAP extends the ideas of
ARTMAP to include additional knowledge in the form of production
rules and fuzzy logic [Carpenter et al, 1991c; Carpenter and
Grossberg, 19961.

Note that ART models belong to the class of match-based learning
as opposed to error-based learning of the backpropagation networks.
In match-based lealiiing the weights are adjusted only when the
external input matches one of the stored prototypes, whereas in
error-based learning the weights are adjusted only if there is an error
between the actual output and the desired output. Thus match-based
learning tends to group similar patterns whereas error-based learning
tends to discriminate dissimilar patterns.

Figure 7.11 Clustering of random binary pattens by ARTl network for two different values of the vigilance parameter. (a) p = 0.5
and (b) p = 0.7. The top row in each case shows the prototype patterns extracted by the ARTl network [Adapted from
Hassoun, 19951.

Architectures for Complen Pattern Recognition Tasks

Temporal Patterns 265

7.5 Temporal Patterns

The ANN architectures described so far are applicable for recognition
of patterns on the basis of information contained within the pattern
itself. Even if a sequence of patterns with temporal correlations is
presented, the previous or subsequent patterns have no effect on the
classification of the current input pattern. But there are many
applications (for example, speech recognition) where it is necessary
to encode the information relating to the time correlation of spatial
patterns, as well as the spatial pattern information itself.

In a temporal pattern the ordering among the components in the
sequence is important. The components themselvea may be fixedtrigid
like printed text symbols, or they may be varying naturally due to
production and context as in the case of sound units in speech or
symbols in a cursive script. Temporal patterns could be very complex
depending on the extent of influence of the context and the inherent
variability of each component. In this section we consider simple
temfioral pattern sequences in which each component is of fixed
duration, and it depends only on the components adjacent to it.

There are three types of problems involving temporal sequences
[Hertz et al, 19911:

(a) Sequence recognition in which the objective is to determine
the class label of a given temporal pattern. This is like the standard
pattern classification task performed by a multilayer feedforward
neural network.

(b) Sequence reproduction in which the desired temporal pattern
is generated from a partial input of the pattern. This is like an
autoassociation task in the feedback neural networks. This can also
be viewed as a pattern completion task. One can also interpret
prediction of time-series data as a sequence reproduction task.

(c) Temporal association in which the desired sequence is generated
as an output in response to a given input sequence. This can be viewed
as generalization of the hetmassociation task for temporal sequences.

Architectures for temporal pattern recognition tasks have evolved
from the well-understood principles of multilayer feedforward and
feedback neural networks. In order to use models based on these
known architectures, it is necessary to represent the temporal pattern
as a static spatial pattern. For this representation, delay units are
used to store a fixed number of components belonging to the preceding
instants. Thus a temporal pattern is represented using a tapped delay
line as shown in the input layer in Figure 7.13. The figure illustrates
an architecture for temporal pattern recognition using a multilayer
feedforward neural network. The disadvantage of this approach is
that the length of the sequence has to be fixed a priori. Also, a large
number of training sample sequences are required for learning and

Architectures for Complex Pattern Recognition Tasks

Figure 7.13 A tapped delay neural network with one input and M delays
in the input layer, one hidden layer and a single unit output
layer.

generalization. Moreover, the input signal must have precise time
registration. Many natural signals like speech do not conform to these
restrictions.

One of the early architectures proposed for classification of spatio-
temporal patterns (STP) is based on the Grossberg formal avalanche
structure [Grossberg, 19691. The structure of the network shown in
Figure 7.14 resembles the top two layers of the CPN, and both use
multiple outstars [Freeman and Skapura, 19911. The avalanche
architecture shows how a complex spatio-temporal pattern can be
learned and recalled. Let a(t) = (a,(t), a2(t), ..., aM(t)) be the spatial
pattern required at time t. The sequence of a(t) at time intervals of
At in the range to I t I t, correspond to the desired spatio-temporal
pattern. The unit labelled to is activated and a(to) is applied, which

Figure 7.14 Avalanche architecture.

Temporal Patterns 267

is to be learned by the outstar's output units. The second pattern
a(to+At) is applied while activating the second outstar, labelled
to + At. This process is continued by activating successive outstam
until all the patterns in the sequence have been learned. Replay of
the learned sequence can be initialized by stimulating the to unit,
while a zero vector is applied to the a inputs. The output sequence
b(t) = a(t), for to I t I t,, is the learned sequence.

More sophisticated time delay neural network architectures were
proposed for recognition of speech patterns [Waibel, 19891. These will
be discussed in Chapter 8. Once the temporal pattern is represented
as a static pattern, a recognition system can be developed by template
matching using principles of competitive learning or self-organiza-
tion. Kohonen's phonetic typewriter is an example of such an
architecture, which will be described in Chapter 8 [Kohonen, 19881.

Tank and Hopfield [1987a; 1987131 proposed an associative
memory based approach for temporal pattern recognition using the
exponential kernels representation of temporal patterns. This
representation replaces the h e d delays with filters that broaden the
signal duration in time as well as delaying it. Figure 7.15 shows four

Figure 7.15 Four time reversed exponential kernel functions which are
used to window the time signal x(t). The network input at time
t for a four delay network are averages of the past signal
weighted by these functions.

typical exponential kernels for four delays. The network inputs at
time t for a four delay network are averages of the past signal
weighted by these functions. This representation is more robust and
can handle speech-like signals.

Recurrent network models are more natural models to deal with
temporal patterns. But training will be a problem with these models.
Several partially recurrent models were proposed in the literature
[Elman, 1990; Jordan, 1986; Stornetta et al, 1988; Mozer, 19891. The
connections are mostly feedforward with a few selected fixed feedback

268 Architectures for Complex Pattern Recogmtmdh&

connections so as to keep the training within manageable complexity.
Thus the recurrent part is realized with context units in different
configurations. The context units receive the feedback signals as
shown in Figure 7.16 for the configuration proposed by Jordan [19861.

Figure 7.16 Architecture with context unita to receive feedback signals.
Only two unita are considered for each of the input, feedback,
hidden and output layers for illustration.

The input layer consists of two parts. One part (input units)
receives external inputs and the other part (context units) receives
feedback from output units with unit gain. There is also a
self-feedback with gain a < 1 on the context units so that the inputs
to the hidden layer units from the context units have exponentially
decaying memory of the past. Therefore the output of the ith context
unit Ci(t) is given by

where oi(t) is the output of the ith unit in the output layer a t time
t. Thus the context units accumulate the weighted average of the past
o u t ~ u t values. With a fixed input pattern the network can be trained
using backpropagation learning to generate a desired output
sequence. Thus different fixed input patterns can be associated with
different output sequences [Jordan, 1986; Jordan, 19891. By applying
a sequence of patterns at the input, one at a time, and a fixed output
for each sequence of the inputs, the network can be trained to
distinguish different input sequences. Thus temporal pattern

Temporal Patterns 269

recognition can be achieved. Anderson et al, [I9891 have studied the
problem of recognizing a class of English syllables using this network.

Partially recurrent networks have been proposed for time-series
prediction which involves prediction of the future patterns based on
the patterns learnt fiom the past data. In these cases the network
is designed to capture the pattern behaviour embedded in the past
data. These ideas have been applied in several forecasting situations
such as in the case of financial markets [Weigend and Gershenfeld,
1993; Lapedes and Farber, 1988; Weigend et al, 19911.

Ideas based on time-series prediction have also been exploited for
identification of nonlinear dynamical systems using partially recur-
rent networks [Narendra and Parthasarathy, 19901. The nonlinear
plant dynamics is given by

x(t + 1) = g[x(t), x(t - I), ..., x(t - n); u(t), u(t - I), ..., u(t - m)]

where m I n, and u(t) and x(t) are the input and output signals of
the plant at t, respectively. The function g(.) is a nonlinear function
representing the dynamics of the plant. The network shown in
Figure 7.17 is trained with backpropagation learning using the actual

Desired
Actual output output

plant Lf'
Feedforward neural network rn

I I

t
.(t)

Figure 7.17 Partially recurrent neural network for identification of
nonlinear dynamical system.

output from the plant. During training the same input is given to
the plant as well as to the network. If the network has generalized
from the training data, then for an input u(t) it produces an output
4(t + 1) which is almost close to the actual output, thus predicting the
plant's output.

Fully recurrent networks are more efficient in terms of number

270 Architectures for Complex Pattern Recognition Tasks

of units, in order to realize temporal association tasks. Here the
individual units may represent input units, output units or both. The
desired outputs are specified on some units at some predetermined
time instants. A two-unit fully recurrent network is shown in Figure
7.18 with the unit 1 as input unit and the unit 2 as the oMput unit.
The desired output is specified on the unit 2.

Figure 7.18 A two unit recurrent network.

If sequences of small lengths (P) (measured in time units)
are involved, then the recurrent network p a y be unfolded into a
feedforward network with P layers as shown in Figure 7.19 for

Figure 7.19 Feedforward network generated by unfolding a recurrent
network in time by four time units.

P = 4. In this case the desired outputs are specified for units in the
hidden layers also. Moreover, the errors are propagated not only from
the outputs of the final layer but also from the outputs of the hidden
layers as well. It should also be noted that the weights are copied
for different layers. The average increment of all the corresponding
weights is used for updating. This is called backpropagation-
through-time learning method [Rumelhart et al, 19861. This is not a
very efficient method for long sequences. One interesting application
of backpropagation-through-time is the truck backer-upper problem

Pattern Variability: Neocognitron 271

deshbed in [Rumelhart et al, 19861, in which the goal is to design
a controller that successfully backs up a truck so that the back of
the trailor designated by the (x, y) coordinates ends at (0, 0) with the
trailer perpendicular to the dock, when only backward movements of
the truck are allowed.

Williams and Zipser [I9891 proposed a real time recurrent learning
method for on-line learning of the time sequences. It can thus deal with
sequences of arbitrary length. It was shown that the real time recurrent
network can be imined to be a flip-flop or even a finite state machine.
F'inally, Pearlmutter [I9891 developed an algorithm for training a
continuous time recurrent network. It can be viewed as a continuous
time extension of backpropagation-through-time learning.

7.6 Pattern Variability: Neocognitron
Visual pattern recognition, such as recognition of handwritten charac-
ters or hand-drawn figures, is done effortlessly by human beings
despite variability of features in different realizations of the pattern
of the same character or figure. The patterns considered in the
architectures described so far assume that the objects in the training
and test patterns are identical in size, shape and position, except that
in some cases there may be some noise added or some portions of
the pattern missing. Models of associative memory can recover
complete patterns from such imperfections, but normally cannot work
if there is variability or deformation in the patterns of the test input.

Neural network models based on our understanding of human
visual pattern recognition tend to perform well even for shifted and
deformed patterns. In the visual area of the cerebrum, neurons
respond selectively to local features of a visual pattern such as lines
and edges. In areas higher than the visual context, cells exist that
respond selectively to certain figures like circles, triangles, squares,
human faces, etc [Fukushima, 19751. Thus the human visual system
seems to have a hierarchical structure in which simple features are
first extracted from the stimulus pattern, then integrated into more
complicated ones. A cell at a higher stage generally receives signals
from a wider area of the retina and is less sensitive to the position
of the stimulus. Within the hierarchical structure of the visual system
are forward (afferent or bottom-up) and backward (efferent or
top-down) propagation of signals. This kind of physiological evidence
suggests a neural network structure for modelling the phenomenon
of visual pattern recognition.

The objective is to synthesize a 'neural network model for pattern
recognition for shifted and deformed patterns. The network model
learns with a teacher (supervised learning) for reinforcement of the
adaptive weights. The network model is called neocognitron. It is a
hierarchical network (Figure 7.20) consisting of many layers of cells,

Architectures for Complex Pattern Recognition Tasks

Figure 7.20 Neocognitron architecture. A hierarchical structure of neo-
cognitron for recognition of alphanumeric characters. The first
stage of the network consists of a 2-dimensional array of
receptor cells. Each succeeding stage has layers consisting of S
cells and C cells alternatively. Each layer is organized into
groups of these cells, each group responding to a particular
geometrical position. The numbers show the total numbers of
S and C cells in individual layers of the network S cells are
feature extracting cells. The C cells are inserted to allow for
positional errors in the feature. [Adapted fmm Fukushima
et al, 19911.

and has variable connections between cells in adjoining layers. It can
be trained to recognize any set of patterns. ARer training, pattern
recognition is performed on the basis of similarity in shape between
patterns, and the recognition is not affected by deformation, or
changes in size, or shifts in the positions of the input patterns
[Fukushima, 19881.

In the hierarchical network of the neocognitron, local features of
the input pattern are extracted by the cells of the lower stage, and
they are gradually integrated into more global features. Finally, each
cell of the highest stage integrates all the information of the input
pattern, and responds only to one specific pattern. During the process
of extracting and integrating features, errors in the relative positions
of the local features are gradually tolerated. The operation of
tolerating positional error a little at a time at each stage, rather than
all in one step, plays an important role in endowing the network with
the ability to recognize even distorted patterns [Fukushima et al, 19911.

Neocognitron also provides backward connections which will
enable it to realize the selective attention feature of the visual pattern
recognition system. The selective attention feature relates to two or
more patterns simultaneously present in the data, and our ability to
focus on the desired one.

Neocognitron was developed for recognition of handwritten char-
acters, although the ideas used in the architecture may be extended
to other situations of pattern variability [Fukushima et al, 19911.

Summary

7.7 Summary
The objective of this chapter is to highlight the need for evolving
architectures specific to particular tasks. In this context we have
discussed neural network architectures for five classes of pattern
recognition tasks, namely, associative memory, pattern mapping,
stability-plasticity dilemma, temporal patterns and pattern
variability. These architectures use the well understood principles of
models of neurons, their interconnections and network dynamics. The
bidirectional associative memory is similar in principle to the Hopfield
model. The extension of these principles to multidirectional and
temporal associative memories is straightforward. Pattern mapping
task is one of the well studied pattern recognition tasks in neural
network studies.. We have also highlighted the fact that all pattern
mapping problems are not generalizable by a neural network
architecture. The specific characteristics of generalizable problems
are exploited for developing suitable architectures as in the radial
basis function networks. It is interesting to note that pattern
classification and function approximation tasks automatically lead to
radial basis function network architectures.

The adaptive resonance theory networks for stability-plasticity
dilemma have evolved over a long period of nearly 20 years, with
different networks addressing different situations, such as discrete,
analog and fuzzy data situations. It is one of the most sophisticated
architectures developed for a variety of problems [Carpenter and
Grossberg, 1996; Grossberg, 19961. We have considered a few simple
neural network architectures for temporal pattern recognition as well
as generation. More sophisticated architectures are needed to exploit
the temporal pattern behaviour directly without processing individual
frames of data. Finally, the neocognitron architecture for pattern
variability task has been discussed briefly. Development of
neocognitron structure clearly demonstrates how issues specific to a
given task need to be addressed.

Review Questions

1. Explain the following with reference to memory in artificial
neural networks:
(a) Transient memory, (b) Temporary memory, (c) Short-time
memory, and (d) Long-term memory.

2. Distinguish between content-addressable and address-address-
able memories.

3. What is an associative memory?

4. What are the requirements of an associate memory?

5. Distinguish between static and dynamic memories.

274 Architectures for Complex Pattern Recognition Tasks

6. Distinguish between heteroassociative and autoassociative
memories.

7. What is a linear association? What are its limitations as an
associative memory?

8. What is a recurrent autoassociative memory?

9. How is noise suppression achieved in a recurrent autoassociative
memory?

10. What is a Bidirectional Associative Memory? What is meant by
'BAM is unconditionally stable'?

11. Explain the following terms with reference to an autoassociative
memory:

(a) Storage, (b) Encoding, (c) Retrieval, (d) Stability, and
(e) Performance

12. What is meant by synchronous and asynchronous update in
BAM?

13. What is an adaptive BAM?

14. What is a MAM? Explain why MAM will have superior
performance over BAII for pattern retrieval.

15. What is a temporal associative memory ? What are its limitations
in recalling a sequence of temporal patterns?

16. Explain the distinction between

(a) pattern association and pattern classification tasks.
(b) pattern classification and function approximation tasks.

17. What is meant by generalization in the context of (a) pattern
classification and (b) function approximation tasks? Illustrate
with examples.

18. Why is it that any arbitrary pattern association task does not
fall under the category of generalizable problems?

19. What is meant by (a) surface features and (b) deep features?

20. Why a general MLFFNN is not likely to generalize a problem
always?

21. Explain the concept of 'closeness' of data and 'smoothness' of a
mapping function.

22. Explain why is it that an MLFFNN does not take closeness of
data into account.

23. Give the architecture of a basis function network.

24. What is the significance of the regularization term in the cost
function for a function approximation problem?

Review Questions 275

25. Explain the significance of regularization using constraints on
the weights.

26. Explain how the constraint of smoothness is realized by the
square integrable derivatives of the mapping function.

27. What is the significance of Green's function?

28. Explain the behaviour of a radial basis function method for function
approximation for different values of the regularization parameter.

29. Explain how a pattern classification problem leads to a radial
basis function network.

30. What decides the basis functions in a pattern classification
problem?

31. Explain the basis for the statement:
A trained radial basis function for classification gives as output
the a posteriori probabilities P(Cil x) of each class for a given
input vector x.

32. How do you determine the basis fUndions for a given pattern
classification task?

33. How do you determine the weights of the output layer of a radial
basis fundion network for a given pattern classification problem?

34. Discuss the significance of the number and distribution of
clusters on the performance of a pattern classification task.

36. What is a probabilistic neural network? In what way it is
different from a basis fundion network?

36. What is a generalized regression neural network? In what way
it is different from a basis function network for function
approximation?

37. What is a counterpropagation network?

38. Explain the differences in the performance of multilayer
feedforward neural network and counterpropagation network for
a pattern mapping task.

39. What is the significance of 'resonance' in ART network?

40. Explain briefly the operation of an ART for binary patterns?

41. Explain the 'gain control' mechanism in ART.

42. Explain how the orienting subsystem works in ART network.

43. What are some extensions of the ART concept?
44. What is a temporal pattern, and in what way it is different from

a static pattern?

45. Explain the three categories of problems involving temporal
patterns.

276 Architectures for Complex Pattern Recognition Tasks

46. What is an 'avalanche' architecture?
47. What is the disadvantage of fixed delay neural networks for

temporal pattern classification and how is it overcome in an
associative memory based approach?

48. What are partially recurrent neural networks?
49. What is meant by backpropagation-through-time?
50. Explain the principle of neocognitron for pattern variability task.

Problems

1. Prove that BAM is unconditionally stable for any binary units.
2. Prove that BAM for binary or bipolar units is stable for

asynchronous update of units. (Hint: Convert BAM into a
feedback network of Hopfield type.)

3. Construcl-dlllexample to show that pattern recall is superior in
a tridirectional associative memory compared to a bidirectional
associative memory. (See [Zurada, 1992, , p. 3681)

4. Show that the weight vector for a radial basis function network
for function approximation task is given by (Eq. (7.36)). (See
[Haykin, 1994, p. 2581)

5. Generate training data for the following two functions:
fix) = logx, 1 l x l l O and fix) = exp(-x), ISxS lO. Design a
suitable MLFFNN with one hidden layer to capture the mapping
function from the training data. Explain the complexity (in terms
of number of hidden units of the network) to the function being
mapped. (See Haykin, 1994, p.2311)

6. Cluster all the 5-bit binary vectors except the all zero vector,
.10 0 . . . 0IT, using ART1 algorithm. Study the effect of vigilance
parameter on the resulting clusters.

7. Study the classification performance of a RBFNN for the 2-class
problem given in the Problem 4.12. Study the performance for
two sets of clusters with H = 20 and H = 10. Choose the centres
(ti) arbitrarily and the variance of the Gaussian distribution for
each cluster as a2/M, where o is the maximum distance between
the chosen cluster centres. That is

fo r i = 1 , 2 ,..., N.
The weight matrix of the output layer of the network is given by

Problems 277

where G is an M x H matrix of the basis function and Go is an
H x H matrix whose elements are given by gii = G((1 ti - ti 1 1 2).
Examine the performance of the network for different values of
the regularization parameter X = 0.01, X = 1.0 and X = 100.

8. For binary {O, 11 patterns, the weight vectors are obtained by
using (2aU - 1) in place of aU, and the threshold of a unit is given

1 M by 8, = - 2 ,f 1 ~ " , where ws is the weight leading to the ith unit

from the jth input and aU is the jth component of the
M-dimensional input pattern.

Determine the weights and discuss retrieval of patterns for
the following pattern recognition tasks with binary patterns

(a) Feedforward neural network (pattern association)

input a, = [l l l l O 1 l l l T a, = [: L 0 1 0 1 0 1 0] ~

output b, = [l o 1 0IT b, = [l 11 l l T

Test pattern t = [1 1 0 1 1 0 0 l l T

(b) Feedback neural network (pattern storage)

a, = [l l l l O 11 l lT and a, = [l o 1 0 1 0 10IT

Test pattern t = [110 11 0 0 l l T

(c) Hamming network (pattern storage) using the data given in
(b) (see Section 8.2.1)

(d) Bidirectional associative memoly using the input-output
pattern given in (a).

9. Ti-ain a MLFFNN to capture the nonlinear dynamical system
given by [Narendra and Parthasarathy, 19901

using inputs u(t) generated using samples uniformly distributed
in the range [- 1, + 11. Consider a network with two hidden
layers of 20 and 10 units with bipolar output functions. The
inputs to the network during training are x(t),x(t - 1),
x(t - 2), u(t) and u(t - 1). Study the perfoxl~lance of the dystem
for two learning rates 7 = 0.1 and 7 = 0.3. Compare the outputs
of the model and the system by plotting the outputa for the
following input:

u(t) = sin (2d250) for 0 S t I 500
0.8 sin (2nt1250) + 0.2 sin (2d25) for t > 500

Chapter 8

Applications of ANN

8.1 Introduction
This chapter is devoted to applications of artificial neural network
models and some research issues that are being currently addressed
in this field. In the applications two different situations exist: (a)
where the known neural networks concepts and models are directly
applicable, and (b) where there appears to be potential for using the
neural networks ideas, but it is not yet clear how to formulate the
real world problems to evolve a suitable neural network architecture.
Apart from the attempts to apply some existing models for real world
problems, several fundamental issues are also being addressed to
understand the basic operations and dynamics of the biological neural
network in order to derive suitable models of artificial neural \
networks.

In problems such as pattern classification, associative memories,
optimization, vector quantization and control applications, the
principles of neural networks are directly applicable. Many real world
problems are first formulated as one of these problems, identifying
the relation between the parameters from the physical data with the
input/output data and other parameters describing a neural network.
Note that in these cases the ingenuity of the problem solver lies in
the formulation part, and several compromises may have to be made
in arriving at the formulation. These direct applications are discussed
in Section 8.2.

While neural network concepts and models appear to have great
potential for solving problems arising in practice, for many such
problems the solution by neural networks is not obvious. This is
because the problems cannot be mapped directly onto an existing
(known) neural network architecture. In fact there are no principles
guiding us to this mapping. As human beings we seem to perform
effortlessly many pattern recognition tasks in speech, vision, natural
language processing and decision making, although we do not
understand how we do it. For example, in speech our auditory
mechanism processes the signal directly in a manner suitable for later

Introduction 279

neural processing. To prepare input to an artificial neural network,
the speech signal is normally processed in fixed frames of 10-20 msec
duration to extract a fixed number of spectral or related parameters.
In this process the temporal and spectral features with proper
resolution needed for recognition may not have been captured. There
is as yet no neural network architecture which could perform the
speech pattern recognition task with the same effectiveness as human
beings do. Similar comments apply to problems in the visual pattern
recognition also. Some of the other areas where human performance
could not be matched by the existing neural network architectures
are in motor control and decision making. Despite realization of these
issues, there are several situations where neural principles have been

I used successfully. Some of these applications are discussed in
Section 8.3.

The most important issue for solving practical problems using the
principles of artificial neural networks is still in evolving a suitable
architecture to solve a given problem. Neural network research is
expanding in its scope to take into account the fuzzy nature of the
real world data and reasoning, and the complex (and largely
unknown) processing performed by the human perceptual mechanism
through the biological neural networks. Some of the current research
issues *are discussed in Section 8.4. Table 8.1 gives an organization
of the topics to be discussed in this chapter.

Table 8.1 Organization of Topics on Applications of Artificial Neural
Networks

%at applications

Pattern classification
Recognition of Olympic symbols
Recognition of printed characters
Making an opening bid in Contract Bridge game

Associative memories
Image pattern recall
Content addressable memory
Information retrieval

Optimization
Graph bipartition problem
Linear programming problem
'i'ravelling salesman problem
Smoothing images with discontinuities

Vector quantization
Control applications

280 Applications of ANN

Table 8.1 Organization of Topics on Applications of Artificial Neural
Networks (Cont.)

Application areas

Applications in Speech
NETtalk
Phonetic typewriter
Vowel classification
Recognition of consonant-vowel (CV) segments
Recognition of stop CV utterances in Indian languages

Applications in Image Proceasing
Recognition of handwritten digits
Image segmentation
Texture classification and segmentation

Applications in decision makmg

8.2 Direct Applications

8.2.1 Pattern Classlflcatlon

Pattern classification is the most direct among all applications of
neural networks. In fact, neural networks became very popular
because of the ability of a multilayer feedforward neural network to
form complex decision regions in the pattern space for classification.
Many pattern recognition problems, especially character or other
symbol recognition and vowel recognition, have been implemented
using a multilayer neural network. Note, however, that these
networks are not directly applicable for situations where the patterns
are deformed or modified due to transformations such as translation,
rotation and scale change, although some of them may work well
even with large additive uncorrelated noise in the data.

Direct applications are successful, if the data is directly
presentable to the classification network. Three such cases are
considered for detailed discussion in this section. They are: (a) Re-
cognition of Olympic games symbols, (b) Recognition of characters,
and (c) Making an opening bid from a dealt hand in the card game
of Contract Bridge. As can be seen below, in e'ach of these cases there
is no difficulty in presenting the input data to a multilayer neural
network. Limits of classification performance will be reached if the
symbols are degraded due to 'deformations' in the case of Olympic
symbols, or if the input corresponds to casually 'handwritten'
characters in the case of character recognition, or if the 'knowledge'
of the bidding sequence and the 'reasoning' power of human players
have to be used in the bridge bidding problem.

Direct Applications

Recognition of Olympic Games Symbols: We consider a set of 20
Olympic games symbols shown in Figure 8.1 for illustrating a pattern

Archery Athletics Baseball Basketball Boxing

Gymnastics Handball Hockey Pentathalon Rowing

-. Swimming Shooting Syncswim Tennis
1*1
Volleyball

Figure 8.1 Olympic games symbols (20) used for studies on recognition of
objects from degraded images.

classification task by a neural network [Ravichandran and
Yegnanarayana, 19951. The symbols are all represented as black and
white pixels on a 128 x 128 points grid. Although the symbols appear
complex in terms of detail, each symbol represents a rigid-object-like
behaviour. This behaviour ensures that the relative pixel positions of
a symbol do not change even under severe degradation, such as
translation, rotation and scaling. For such objects the performance of
a neural network classifier is always satisfactory. We discuss the
results of classification studies for various types of degradation. The
type of degradation studied in this case corresponds to the poor
resolution of the image obtained when the image is reconstructed
using a sparse set of elements as in a sensor array imaging situation
Wegnanarayana et al, 19901. For example, the reconstructed
(128 x 128 pt) images from a 16 x 16 element array are shown in
Figure 8.2. In this case a Hamming network which performs template
matching using neural principles is suitable for classification. The
Hamming network is a maximum likelihood classifier for binary
inputs, and it performs correlation matching between the input and
the stored templates [Lippmann, 19871. It consists of two subnets as
shown in Figure 8.3. The lower subnet consists of M (128 x 128) input

Applications of ANN

Archery 46 Athletics 53 Bascball 85 Basket 133 Boxing 141

Canoe 123 Cycling 50 Diving 161 Fence 64 Football 64

Shoot 94 Swim 77 Syncswim 134 Tennis 84 VoUey 95
Figure 86 Recognition results for images reconstructed from data collected

from a 16 x 16 element sensor array. The class decision of the
network is given along with the activation value of the winning
pattern. In this case, all of the 20 images were correctly
identified.

units, each corresponding to a pixel in the given pattern, and N output
units corresponding to the N pattern classes, which in this case is 20.

In the lower subnet the connection weights between the input
and output units are fixed in such a way that the network calculates
the distance from the input pattern to each of the N stored pattern
classes. The weights are given by [Lippmann, 19871

where w, is the connection weight from the input unit j to the output
unit i in the lower subnet, €Ii is the threshold for the ith output unit
and ai, is the element j of the pattern for the ith symbol. The values
of a@ are -1 or 1.

In the upper subnet, the weights are fixed in such a way that
the output units inhibit each other. That is

vkl = 1, for k = l
= - E , f o r k # l

where vkl is the connection weight between the units K and I in the
upper net, and E is a small positive number, say E = 0.1.

When a bipolar pattern is presented for classification, the lower
subnet calculates its matching score (si) with the stored pattern for

Direct Applications 283

the ith class as follows:
si = s,(O) = f [X W,X,- ei 1 (8.3)

j

where fl.) is the output function, x, is the jth element of the input
pattem and ei is the threshold value for the ith unit.

The output of the lower subnet is presented to the upper subnet,
where a competitive interaction takes place among the units. The
dynamics of the upper subnet is given by

The competition continues until the output of only one unit remains
positive, and the outputs of all other units become negative. The
positive unit corresponds to the class of the input pattem.

For the set of degraded symbols given in Figure 8.2, the correct
classification performance is 100%. The performance ie impressive,

Figure 8.3 The Hamming network. The input and output units are
represented by x and y vectors, respectively.

since it is diiEcult even for us to identify visually the discriminating
features in many of these images. When the degradation is increased
by reducing the resolution using an array of 8 x 8 elements, the
recognition performance is only 13 out of 20. Figure 8.4 gives a
summary of the recognition performance with different sparse arrays
[Ravichandran, 19931. The figure shows the number of patterns
correctly classified out of 20. The abwe experiment illustrates the
following points: (a) It is interesting to note that many images for

284 Applications of ANN

Array size
Correct Incorrect

Figure 8.4 Summary of recognition performance with different sparse
arrays (64 x 64, 32 x 32, 16 x 16 and 8 x 8 sensors). Graph
shows the number of patterns correctly classified out of twenty
patterns in each case.

the 16 x 16 sensor array size case seem to have very few visual clues
(Figure 8.2) for us to recognize, but were recognized correctly by the
network. (b) The performance of the classifier degrades gradually with
increasing image degradation due to sparsity and noise. (c) The
activation values of the winner units are indicative of the level of the
image degradation, i.e., greater the degradation the lower is the
activation of the winning units. (d) The matching scores obtained at
the first layer are measures of similarity of the input pattern with
each of the patterns stored in the network. But the activation level
of each unit in the second layer is affected by the activation values
of all other units. Hence when an output unit becomes positive, its
activation level not only reflects how close the input image is to the
identified pattern, but also gives an idea of the degree of confidence
given to this decision relative to other patterns stored in the network.
Thus the activation value also reflects the complexity of the symbol
set in terms of how close in shape the symbols are.

Thus this study indicates that if the set of expected objects is
known, then it is possible to design a neural network for object
recognition, where the network performs a simple correlation
matching only. In this study only direct pixel-wise description of the
object was used, and hence the network may not function well if the
objects are deformed due to transformation and scaling.

If the images are clean and noise-free, then there exist methods
to overcome the effects of metric transformations of the objects. Sev-
eral neural network models have been proposed for invahant pattern

Direct Applications 285

recognition [Barnard and Casasent, 19911. In the case of networks
which achieve invariance by structure, the structure of the network
is designed such that the output is invariant to the transformations
of interest. In the case of invariance by training, representative
samples of various transformations are presented during training so
that the network learns equivalent transformations.

Invariance by structure or by training assumes the existence of
a fixed set of weights which provide invariance over the continuum
of transformations. I t also assumes that a network can be trained to
estimate this set of weights from examples. But invariances cannot
be built as static functions in the structure. They have to be
dynamically estimated from the data. Alternatively, one can first
address the transformation invariance by feature extraction, and then
use these features as input to a classifier [Ravichandran and
Yegnanarayana, 19911.

Methods based on the theory of geometric moments have been
used for normalization and invariant feature extraction mu, 19621.
If the object is compact and has only a few details, these invariant
measures, which are stable over a wide range of spatial trans-
formations can be designed. In this study the six moment values
proposed by Hu [I9621 are used as features invariant with respect to
scale, position and orientation. Since these features values vary over
a wide range, logarithm of the absolute values of these moments are
used as features representing an image.

For classification, a feedforward neural network with 6 units in
the input layer, corresponding to the input features, and 20 units in
the output layer corresponding to the number of different symbols,
are used. The network has one hidden layer with 8 units. The number
of units in the hidden layer in this case appears to be not very critical
as long as it is above a certain minimum value, which in this case
is 8. The network was trained with eight different transformed images
for each of the twenty symbols. Some samples of the transformed
images used in the training are shown in Figure 8.5 for six different
symbols. Since reduction in the size of the image causes loss of detail,
100% classification accuracies were obtained only for images reduced
upto l/3 of the linear dimension of its original, i.e., when the
128 x 128 pt image was reduced to a 40 x 40 pt image. Further
reduction in scale decreases the classification accuracy as shown in
Figure 8.6.

When sparse data reconstruction is used on the transformed
images, the reconstructed images are not only transformed, but also
noisy as shown in Figure 8.7 for images reconstructed from a
32 x 32 element sensor array. In this case the computation of moment
features had to be done after preprocessing the noisy image. A neural
network-based method proposed in bvichandran, 19931 for
preprocessing the noisy images is used to derive the preprocessed

-paanpar s! aSloury aqq JO az!s ayq so payyssqa
Lp3auoa (~ZT x 8~1 az!s mpur) spafqo JO (suxa~qed qsaq
OZT JO qas e JO qno) iaqurnu aqq smoqs ydo.19 .s~oqds sauroSl
a!dd10 ioj aaueulropad uoyqp1803ai quep~u! uoyqour.10~su13y, gg am%r~

qend m pqum eqq jo qme1 ep!s euo
0 Or 02 06 OP 09

I I I I I

O9 " oz ; g
%

-0P

oor q.

:::[OZI OPI [6i g

-~)=fqo
JO uoyqyu.80m queuo~v uo9otaro~s~iq Lpnqs pasn spqds
sarueSl a!dd10 JO sa%smy pqo~su13q puo palo3s 'paqeqar amos gg

Direct Applications

Tcnnis

Athletics Baseball

(a) (b) (c) (a) @) (c)
F'igum 8.7 Some examplea of transformed imam. (a) Transformed images

of four Olympic games symbols, tennis, archer, athletics and
baseball. (b) Corresponding images obtained by reconstruction
from data collected by a sparse 32 x 32 sensor array. (c) Images
in @I) after noise suppression.

images of the objects as shown in Figure 8.7(c) for a few cases of
transformation. In this case some features are lost even when there
is a scale change of less than l/2 along linear dimensions, and hence
there is loss of recognition accuracy as shown in Figure 8.8.

Recognition of prlnted characters: Similar results were obtained

288 Applications of ANN

70 60 50 40 30 20 10 0

One side length of the scaled image in pixels

Figure 8.8 Transformation invariant recognition of olympic game symbols
from degraded images obtained by reconstruction from data
collected by a 32 x 32 array. Graph shows the n u b r (out of a
set of 60 test patterns) of objects (maximum size 128 x 128)
correctly classified as the size of the image is reduced.

when images (128 x 128 pts) of ten characters of alphabet were used
in the study of transformation invariant object recognition. The ten
characters and some transformed versions of these characters used
in the study are shown in Figure 8.9. In this case 100% classification
accuracies could be obtained for all the test data upto a scale
reduction of 1/12 of the linear dimension of the original, i.e., the
reduced image is about 10 x 10 pts. Thus the moment feature approach
gives better transformation invariant recognition in this case than in
the case of the Olympic games symbols, since the objects are simpler
in detail in the case of the printed characters of the alphabet.

The above studies illustrate that pattern classifications can be
accomplished using neural network models for objects whose images
are severely degraded by transformations and noise. But in all these
cases the objects were assumed to be rigid, in the sense that there
was no relative displacement in different parts of the object. Note
that the above illustrations differ fiom the handwritten characters in
which different parts of a character are deformed differently in each
sample. Thus the classification methods based on correlation matching
or training a feedforward network using moment features are not useful
for problems such as recognition of handwritten characters.

Direct Applications 305

where q is the learning rate parameter.
Kohonen suggested a supervised version of the vector

quantization called Learning Vector Quantization (LVQ) Kohonen,
19891. This learning law is applicable when labelled sets of input data
are given. The algorithm is given by

w(m + 1) = w(m) + q (a(m) - w(m)), if the input is classified
correctly.

w(m + 1) = w(m) - q (a(m) - w(m)), if the input is classified
incorrectly.

w(m + 1) = w(m), if the input does aot
belong to the class
corresponding to w(m).

8.2.5 Control Applications

There are several situations in control applications where the
principles of neural networks can be directly applied. The applications
include process control, robotics, industrial manufacturing, aerospace
and several others [Zurada, 19921. The main task in a control
situation is to generate an appropriate input signal to the physical
process (plant) to obtain the dpshd response h m the plant
[Narendra and Parthasarathy, 1990; Nguyen and Widrow, 19901.

The controller generates the actuating signal when the external
input is given. The design of a controller depends on the nature of
the plant and the way the input is derived for the controller in the
operation of the plant. The plant may be static or dynamic. For a
static plant, th8, transfer function is given by a constant. For a
dynarnical plant, the transfer function is given by the ratio of the
Laplace transform of the plant's output to the Laplace transform of
the plant's input [Zurada, 19921.

There are two ways of controlling a plant: open-loop control and
feedback control. In an open-loop control the controller consists of
cascade of a system and the inverse of the plant. The system is used
to achieve the desired response for the input. The controller thus
generates an actuating signal to the plant to obtain the desired
response a t the output of the plant. This needs inverse transfer
function of the plant, and the plant should not change its
characteristics during its operation. Both these problems are
overcome in a feedback control mechanism where the controller is
designed in such a way that the output becomes independent of the
plant transfer function.

Multilayer feedforward networks can be used to capture the
characteristics of the plant transfer function or the plant's inverse

306 Applications of ANN

transfer function. The neural network is then used to design a
controller. A detailed discussion on the use of neural networks for
control applications can be found in [Hunt et al, 1992; Narendra and
Mukhopadhyay, 19921.

8.3 Application Areas

The excitement in neural networks started mainly due to difficulties
in dealing with problems in the field of speech, image, natural
language and decision making using known methods of pattern
recognition and artificial intelligence. Several of these problems have
been attempted using the principles of neural networks, and some of
these attempts will be discussed in this section.

The main issue in all these problems is the representation of the
real world problem in a system. The power of a neural network can
be exploited provided the problem can be well represented in the
network as discussed in Sec. 8.2 on direct applications. But in the
application areas to be discussed in this section, the poor and fragile
performance of the neural network based system may be attributed
to the weakness in the input processing and the mapping of the
problem onto the neural network model. Since problems in speech,
image, natural language and decision making seem to be solved
effortlessly by human beings, our expectations from an artificial
system are also high [:Reddy, 1996; Dreyfus, 19921. In this context,
it is worth remembering that the human pattern recognition
processing is an integrated system of data acquisition, input
preprocessing, feature extraction, recognition and understanding. It
is not feasible to assess the performance of each of these processes
in isolation.

In this section some problems in the, application areas of speech
and image processing are discussed. A brief discussion on the use of
neural networks for expert decision making is also given.

8.3.1 Applications in Speech

Speech signal is the output of a time-varying vocal tract system
excited by a time-varying excitation signal. The vocal tract system,
including the coupling of the nasal tract, can be accurately described
in terms of the positions of the articulators such as tongue, lips, jaw,
velum, etc. Generally the vocal tract system is approximately
described in terms of the acoustic features such as the frequency
response or the resonances (formants) and anti-resonances
(anti-formants) of the system. These features are easier to extract
from the signal than the articulatory parameters. The excitation of
the vocal tract system consists of broadly three categories: (a) Voiced
source (the quasiperiodic excitation due to the vibrating vocal folds),

Application Areas 307

(b) Unvoiced source (the turbulent flow of air at a narrow constriction
created in the vocal tract during production), and (c) Plosive source
(the abrupt release of the pressure built up behind a closure in the
vocal tract system). The voiced source is characterized by the
periodicity (pitch period), and the change of the pitch period with
time (intonation). In Igeneral the short-time characteristics of the
speech signal are represented by the short-time (10-20 ms) spectral
features of the vocal tract system as well as the nature of excitation
in the short-time segment. These are called segmental features. Supra-
segmental features of speech are represented by the variation of the
pitch period (intonation), the durations of different sound units, and
the coarticulation reflecting the dependence of characteristics of one
sound unit on the neighbouring sound units during speech production.

Speech is a sequence of sound units corresponding to a linguistic
message. Important applications in speech area are:

(a) Speech Recognition: The objective is to determine the sequence
of sound unita from the speech signal so that the linguistic message
in the form of text can be decoded from the speech signal.

(b) Speech Synthesis: The objective is to determine the sequence
of sound units corresponding to a text so that the given text message
can be encoded into a speech signal.

(c) Speaker Identification: The objective is to determine the
identity of the speaker from the speech signal.

The main problem in these speech applications is processing of
the speech signal in a manner similar to human auditory processing
mechanism, so that features relevant to a particular task can be
extracted. The speech problem is further complicated by the fact that
the message is conveyed not only through the segmental features but
also by the suprasegmental features. It is our lack of understanding
of these segmental and suprasegmental features and their extraction
mechanism that makes the speech tasks extremely difficult for
implementation by machines [Flanagan, 1972; Rabiner and Juang,
19931. In this section we will briefly discuss neural network models
for some speech tasks. We will discuss in detail the development of
neural network architectures for recognition of consonant-vowel (CV)
segments. Other interesting applications in speech can be found in
[Lippmann, 1989; Narendranath et al, 1995; Cole et al, 1992; Pal and
Mitra, 19921.

NETtalk: The NETtalk is a multilayer fbedforward neural network
(Figure 8.15) developed to generate pronunciation units or phoneme
code from an input text [Sejnowsky and Rosenberg, 19871. The
phoneme code is presented as input to a speech synthesizer to produce
speech corresponding to the text. The network consists of an input

uayods aqq oq Squodsauo3 paq aqq oqu! amanbas sgq q.1a~uo3 pm
sqpn ayrl-amauoqd jo amanbas e oqu! a~mraqqn uaa? e ~ojsmq
oq s! uo!q@o3ar rpaads u! aa!qaa[qo a% :lat!l~ad& qtauoqd

.smoq-~aj e ugq~ ueal oq
paupq aq ue3 syroqau pmau searaqM 'wga jo aread praaas sayeq
smaqsbs paseq-ap jo quamdo~aaap qna '[~66~. 'p qa euebmueuSa~
f186T '~F133a f086~ '??em] maqsbs aw paW~odJoau!
61q13f1dxa s! aspal~oq aau,u!s paads bqpnb raqqaq b~qm~y@!s
aanpord smaqds paads-oq-pal paseq-apq .rood s! qaaads jo
bqyenb aqq q%noqq uaaa 'qndu! pa3 Mau roj qaaads alq@qlaqu! aanpord
pm saldmexa mog weal oq alqe sy yroqau a% .syroqau pnau jo
amqsaj uo!qezfpraua2 aqq aqegsnllr oq a~dmexa poo8 e SF ypa3~
.qaaads 3!qaq@s %upunos p3mqeu Supnpord q 1e;quassa am q3yq~
sarnqeaj 1equadaserdns qm~y@!s aqq amqdea qom3 q! se 'rood
blsno!~qo aq 11y bqpnb a% .eqep qndqno-qndu! mog sap punos
oq raqqaI aq amqdea oq yroqau Iernau e jo 4!l!qe aqq paqeqsuomap
blaram maqsbs a% .uogdu~swq qauoqd u! %8~ JO hemme
uo!qez!1eraua% e pa~a93e yroqau aqq paq Mau e uo .sqmuosuo:,
pue slaMoa uaaqaq %u~qspi3u!qsp jo alqedea seM yroqau au
.rood seM bqpnb aqq qsnoqqp 'alq@!l~ar)u! SEM qndu! se samauoqd jo
&lugs asaqq %u!sn raz!saqquLs 8 bq paanpord paads a% 'pal qndu!
ua~p e roj samauoqd jo lilupqs B sampord mqsLs au .sa3uaquas
pa? quaragp %u!sn paqsaq sea pw 'spro~ jo uo!qvpunuord aqq %u!A?

smldmaxa amauoqd qs!@ug jo qas o mog spro~ PZOT uo pauyq SRM

yroqau -8uys q!q-6z o se paquasardar s! qndu! aqq jo rapemy3
q3e3 '%u~qs qndu! atp jo aqua3 aqq qe raqqal aqq jo uo!qepunuazd
aqq oq %upuodsauo:, amauoqd aq sampord pue am!q e qe maq~snqr,
a~!qnaasuoa L qndu! se sayeq qroqau a% .sqpn qqauoqd ro
samauoqd quaragp gz oq 2upuodsauo3 sqpn gz qq+ raLq qndqno auo
PUB sqpn 08 qq~ rabq uappg auo 'uo!qsnpund %upnlau! s~aq~ewq:,
paq qndu! L ") 2u!puodsauoa sqvn qndu! Lmu!q 62 x L JO rabel

Application Areas 309

utterance. A block diagram of the phonetic typewriter developed by
Kohonen [Kohonen, 1988; Torkkola et al, 19911 is given in
Figure 8.16. The input speech signal to the phonetic typewriter is

Mel-cep. Quaei-phoneme Phoneme
vectors sequence sequence

(every 10 ms) (every 10 ms)

Figure 8.16 Block diagram of a phonetic typewriter.

spGz

processed to obtain a spectral representation using 20 mel-scale
cepstral coefficients for every 10 ms segments of data [Davis and
Mermelstein, 19801. The sequence of coefficient vectors is given as
input to a phoneme classifier, one vector at a time, to obtain the
quasi-phoneme sequence as output. The phoneme classification is
achieved by using either LVQ or SOM learning [Kohonen, 1990a;
Kohonen, 1990bl. The sequence of phoneme-like units is converted to
the phonetic transcription using a multiple codebook Hidden Markov
Model (HMM) technique [Rabiner, 19891. The errors in the phonetic
decoding by the HMM are corrected using the Dynamically Expanding
Context (DEC) algorithm [Kohonen, 19861, and then converted into
the text corresponding to the input utterance. The phonetic typewriter
was able to produce letter accuracies of 95% for the Finnish language.
The approach was reported to have worked well for languages whose
orthography and phonemic transcriptions have simple
correspondence.

input

Mel-cep.
by D m

Vowel classlflcatlon: The classic Peterson and Barney [I9521
formant data for 10 vowels is a good test case for a real-world
classification problem. It consists of the first two form* collected
from spectrographic analysis of the vowel data. The vowel data was
collected for a total of 67 men, women and children. The data was
collected in the constant-vowel-consonant context of hVd. Figure 8.17
shows the distribution of the first two formants data for the vowels
in the following ten words: heed, head, had, hud, M, hawed, who'd,
hood, heard and hid. The available vowel data was split into two
sets, one set was used for training the classification network and the
other set for testing the performance. Using a radial basis k c t i o n
network for classification, Nowlan obtained a recognition accuracy of
87% Wowlan, 19901. Considering the fact that there is significant
overlap among the classes, the classification performance of the
network is indeed significant.

Error
correction
~ Y D E C

- Phoneme
cheification by
SOM or LVQ

- Deco*

310 Applications of AMV

Figure 8.17 Vowel data from Peterson and Barney [19521. The lines are
the class boundaries obtained by a two-layer feedforward
network. [Adapted from Huang and Lippmann, 19881.

Recognition of Consonant-Vowel (CV) segments: Consonant-Vowel
(CV) utterance typically forms a production unit (syllable) in speech,
and hence several attempts have been reported for recognition of CV
utterances ['Barrington, 19881. Since these are dynamic sounds, the
spectral patterns change with time. Each utterance of a CV unit is
represented as a temporal sequence of spectral vectors. Each spectral
vector corresponding to a fixed 10 ms segment may be represented
using 16 log spectral coefficients on a mel-frequency scale or using the
corresponding mel-scale cepstral coefficients [Davis and Mermelstein,
19801. The number of spectral vectors per CV utterance generally
varies. But usually a k e d duration (50-200 ma) segment of CV
enclosing the vowel onset, the transition to vowel and some steady
part of the vowel, is used to represent a CV unit. The CV units are
thus temporal sequence patterns and hence static pattern recognition
networks like multilayer feedforward neural network (MLFFNN) are
not suitable for recognition of these units. Moreover, discriminability
among these CV units is low due to domination of the vowel context.

Application Areas 311

An obvious method to perform sequence recognition is to view the
temporal sequence of the spectral vectors as a two-dimensional spatial
input pattern for a MLFTNN. The conventional backpropagation
learning can then be used to train the network. A better approach
for CV recognition is through timedelay neural networks (TDNN)
[Waibel, 1989; Waibel et al, 19891. TDNN is a MLFFNN with its
input consisting of tim'e-delayed input frames of data. The input to
the intermediate hidden layers also consists of time-delayed outputs
of the preceding layer. Figure 8.18 illustrates the idea of a time-delay

Output
layer

Second hidden
layer

Firet bidden
layer

Input
layer

Time

Figure 8.18 Architecture of a Time Delay Neural Network CTDNN) for
classification of three CV units. Multiple copies of the TDNN
are aligned with adjacent spectral vectors. The first TDNN is
shown in boxes marked by thick lines.

neural network applied for classification of three CV units lbl, Id ,
and Igl. The time sequence is reflected in ,the computation of block
of three frames of data at a time, with two fiames overlapping for

3 12 Applications of ANN

successive blocks. In other words, Figure 8.18 shows multiple copies
of the TDNN aligned with adjacent input spectral vectors. The first
TDNN is shown in the boxes marked by thick lines. In this case each
utterance has 15 frames of data, each frame consisting of 16 spectral
components. For this, 13 different copies of TDNN are created. These
include 13 copies of the input layer, nine copies of the first hidden
layer, and only one second hidden layer aqd one output layer. The
output layer has three units corresponding to the three classes Ibl,
/dl, and Igl. For each TDNN, each unit in a layer is connected to all
the units in the layer below it. For each TDNN there are 16 x 3 units
in the input layer, 8 x 5 units in the first hidden layer and 9 x 3 units
in the second hidden layer and 3 units in the output layer. Multiple
copies of the TDNN as shown in the Figure 8.18 enable the entire
history of the network activity to be present a t the same time. This
allows the use of the backpropagation learning algorithm to train the
network.

The 16 log spectral coefficients for each 10 ms frame are
normalized using the average of each coefficient for an the 15 frames
in the utterance, and the coefficients are mapped into the range [-I,
11. The normalized values are given as input to the TDNN network.
The speech data for the three classes was excised from continuous
speech in Japanese, and a database of about 800 CV units was
collected for a given speaker. The TDNN was able to discriminate
the three classes with an accuracy of 98.5%. Considering the fact that
the data for each class has significant variation due to contextual
effects, this result is impressive.

Extending this network model for large number of CV classes
requires modular approach, where it is necessary to distinguish the
groups of CV classes first before the individual classes can be
identified [Waibel, 19891. Moreover, because of the large size of the
network, the training of the network will be slow. It will also be
difficult to collect sufficient data to obtain good generalization
performance from such a large network.

Recognition of stopconsonant vowei utterances in indian languages:
For the development of a recognition system for large number of CV
classes, recognition of Stop-Consonant-Vowel (SCV) utterances in
Indian languages is considered [Chandrasekhar, 19961. In particular,
we consider the SCV classes of the Indian language, Hindi. The 80
SCV classes considered in this study are given in Table 8.3, where
the classes are organized according to the 4 manners of articulation,
namely, Unvoiced-UnAspirated (UWA), Unvoiced-Aspirated (UVA),
Voiced-UnAspirated (VUA) and Voiced-Aspirated (VA). These are
highly confusable set of sound classes. A modular network approach
followed by a Constraint Satisfaction Model (CSM) approach is
proposed for recognition of isolated utterances of the 80 SCV classes.

Application Areas 313

Table 8.3 Arrangement of SCV Classes into Subgroups using Manner of
Articulation for Grouping

Subgroup SCV Classea
U W A ka ki ku ke ko

t a ti tu te to
ta ti tu ta to
Pa pi PU P PO
kha khi khu khe kho
tha thi thu the tho
tha thi. thu the tho
pha phi P ~ U phe pho

VA gha ghi ghu ghe gh0
aha dhi ahu *e *o
dha dhi dhu dhe dho
bha bhi bhu bhe bho

When the number of classes is large and the similarity amongst
the classes is high, it is difiicult to train a monolithic neural network
classifier based on the All-Class-One-Network (ACON) architecture
to form the necessary decision surfaces in the input pattern space
[Kung, 19931. An attempt has been made to train a multilayer
feedforward neural network for all the 80 SCV classes. It was
observed that even after a large number of epochs, the sum of the
squared error remained high and it did not change significantly from
one epoch to another. It shows that a single network could not be
trained for these large number of classes. It is possible to develop a
classifier based on the One-Class-One-Network (OCON) architecture
in which a separate network is trained for each class [Kung, 19931.
But the discriminatory capability of the OCON classifiers was found
to be poor [Chandrasekhar and Yegnanarayana, 19961.

Modular approaches [Haykin, 19941 can be used to overcome the
limitations of the ACON and OCON architectures. In modular appro-
aches large number of classes are grouped into smaller subgroups,
and a separate neural network (subnet) is trained for each subgroup.
A post-processor can be used to combine the outputs of the subnets.

Criteria guided by the phonetic descriptions of the SCV classes
can be used to form subgroups. Such criteria are useful in analyzing
the performance of the classifiers and determining the sources of
errors in classification. A unique phonetic description can be given
for each of the 80 SCV classes in terms of three features, namely,
(a) the manner of articulation (MOA) of the stop consonant, (b) the

5 14 Applications ~f ANN

place of articulation (POA) of the stop consonant, and (c) the identity
of the vowel in the SCV. For example, the class /ka/ is described as
unvoiced unaspirated velar stop consonant followed by the vowel /a/.
The phonetic descriptions of the SCV classes suggest that grouping can
be done in such a way that one of the three features is common to the
classes in a subgroup. This gives 3 different criteria for grouping.

Grouping based on MOA leads to 4 subgroups given in Table 8.3.
Grouping based on POA leads to 4 subgroups: Velar (eg. M, h a / ,
/gal, g h d , Alveolar (eg. It a/ , It ha/, Id a/, Id ha/), Dental (eg. Itd, Itha/,
Ida/, d h d , and Bilabial (eg. /pa/, /pha/, ha/, hhaf). Each POA
subgroup cbnsists of 20 classes, and the stop consonants in these
classes have the same place of articulation. Grouping based on the
vowel lea* to five subgroups with one subgroup for each of the five
vowels: /a / , /i/, /u/, /el and 101. Each vowel subgroup consists of 16
classes, and these classes have the same vowel.

We consider each of the three grouping criteria to develop a
modular network for all the SCV classes. The classification
performance of the modular network depends on the performance of
its subnets ahd on the way the outputs of the subnets are combined.
A simple way of combining the outputs of the subnets is t o assign to
the test input the class corresponding to the largest value among the
outputs of all the subnets. Better performance can be obtained by
combining the evidence &om the output values of each subnet in an
effective way [Chandrasekhar, 19961.

Data from isolated utterances of all the 80 SCV classes was
collected from three male speakers. For each class, 12 tokens were
collected from each speaker. The training data for a class consists of
4 tokena from each speaker. The remaining 8 tokens from each
speaker are used as the test data.

A fixed duration portion of the signal around the Vowel Onset
Point (VQP) of an SCV utterance is processed to derive a pattern
vector. A 200 -ms portion of the signal with 60 ms before and 140 ms
after the VOP is considered for analysis. This fixed duration signal
is processed (using a frame size of 20 ms and a frame shift of 5 ms)
to obtain 40 frames of parameter data consisting of 12 weighted
cepstral coefficients in each frame. The size of the pattern vector is
reduced using the average of the coefficients for every two adjacent
frames. Thus a 20 x 12 = 240 dimensional pattern vector is used to
represent an SCV utterance. A multilayer feedfornard neural network
(MLFFNN) is used to build the subnets. The network has 70 units in
the first hidden layer and 50 units in the second hidden layer.

The training and test data sets for each subnet consists of pattern
vectors belonging to the classes in that subgroup only. Performance
of the subnets for different subgroups is given in Table 8.4. The
performance is given as percentage of the total number of pattern
vectors in the data set that are correctly classified by the subnet.

ammopad 8% wu.~aqq~d qsq aq JO %g-g~ ~OJ sasmp moj qarg ay?
tqqpi s!, ss8p aq 'uopqp ikqdnar% vod aq acy 'a~d-e
ao,g .sqauqns ay? jo wqndqno qsa&rq y qary ay? q s!, 88813 pauo:,
aq $By? WB3!pV y-am=) S'8 alqBJ,, aq? nI 'slauqns ay? Jo qndlno
ay? uo pamq pammam ammopad au -9-8 alqq q ua~? s!
~qp Bqdnar% quaram no pamq qaowau mppom aq aoj sasm~:,
MS 08 aq. p aoj 8qvp qsq aq no am8mopad M8JaA8 aqJ,

O'Z9 O'P6 Pl
8'89 Z'Z6 PI
9'99 Z'E6 I!!
9'19 L'Z6 PI

Wap ?=,I, Wap ~T!W dnmns

ednar%qne IafioA JOJ qauqns JO aawauapd (a)

Z'PL 6'E6 aSaia~v
0'08 L'16 18!98I?€I
6'LL 1'16 P3-a
Z'P8 0'96 SIWW
9P9 9'96 18 IaA

B?BP ?=A W8e B~!-u dndqns

ednowns vod JOJ qauqne jo aatmmopad (9

9'99 P'96 e%aia~v
1'99 0'16 VA
639 Z'P6 VM
O'OL 1'86 VM
I'LL 1'86 Vllhn

BWP 78aL WaP BWBV, dndqns

sdn-ns vo~ JOJ qauqne JO eauermqtrad (a)

3 16 Applications of ANN

is significant considering the fad that there are 80 different classes,
and that they are confusable. The modular network for the POA
grouping criterion gives a better performance compared to the other
two grouping criteria. It is important to develop techniques to reduce
the errors in classification at the level of subnets in order to improve
the over all performance of the modular networks.

It is also possible to improve the classXcation performance by
properly combining the evidence available at the outputs of the
subnets. Confusability among the classes can be resolved to some
extent by using the acoustic-phonetics knowledge of the classes. This
knowledge can be incorporated as constraints to be met by the classes.
A constraint satisfaction model McClelland and Rumelhart, 19861 that
tries to satisfy as many of these constraints as possible can be used to
process the outputs of the subnets (see Appendix A). The advantage is
that it may work even if some of the constraints derived from the
acoustic-phonetic knowledge are weak, conflicting and erroneous.

For the constraint satisfaction model, a feedback neural network
is used with one unit for each of the 80 SCV classes. The weight on
the connection between a pair of units is determined based on the
similarity between the classes represented by the units. The
similarity between two SCV classes is determined from the knowledge
of speech production features and also from the confusability between
them indicated by the outputs of the subnets.

There are 3 different feedback networks, one for each of the 3
grouping criteria. Since the SCV classes within a subgroup are
designed to compete among themselves during training, excitatory
connections are provided between the units in the subgroup. The
connections across the subgroups are made inhibitory. The weights
for the excitatory and inhibitory connections are derived from the
similarity matrices derived from the classification performance of
subnets on test data. The similarity matrix for different manners of
articulation is given in Table 8.6(a). The matrices for different places
of articulation and for different vowels in SCVs are given in
Tables 8.6(b) and 8.6(c), respectively. An excitatory connection is
provided between units of two SCV classes within a subgroup if they
differ in only MOA or POA or vowel. The weight of an excitatory
connection is equal to the similarity measure between the production
features of the two classes. An inhibitory connection is provided
between classes in different subgroups only if the two classes differ
in MOA or POA or vowel. The weight for the inhibitory connection
is inversely proportional to the similarity measure between the
production features of the two classes. If the similarity measure is C
(in the range 0.0 to 1.0), then the inhibitory weight w is assigned as

Application Areas 317

Table 8.6 Similarity Matrices for (a) Different Manners of Articulation of
Stop Consonante, (b) Different Plabs of Articulation of Stop
Consonants and (c) m r e n t Vowels in SCVs

(a) Similarity matrix for manners of articulation

MOA U W A W A W A VA
U W A 0.87 0.03 0.06 0.02
W A 0.03 0.84 0.04 0.08
W A 0.06 0.04 0.78 0.12
VA 0.02 0.08 0.12 0.82

(b) Similarity matrix for places of articulation

POA Velar Alveolar Dental Bilabial

Velar 0.72 0.08 0.08 0.08
Alveolar 0.08 0.75 0.10 0.09
Dental 0.08 0.10 0.68 0.10
Bilabial 0.08 0.09 0.10 0.80

(c) Similarity matrix for vowels

Vowel /a/ /i/ N /el 101

/a/ 0.89 0.01 0.02 0.01 0.05
/i/ 0.01 0.86 0.02 0.08 0.00
Id 0.02 0.02 0.82 0.01 0.16
/el 0.01 0.08 0.01 0.90 0.00
101 0.05 0.00 0.16 0.00 0.77

If the similarity measure C is less than 0.01, then the corresponding
inhibitory weight is assigned as -1.0.

The connections in the feedback network for the POA grouping
criterion are illustrated in Figure 8.19. The excitatory connections for
the class /ka/ in the 'Velar' subgroup are shown in Figure 8.19a
and the inhibitory connections for the same class accross the
subgroups are shown in Figure 8.19b.

The feedback networks for different grouping criteria interact
with each other through a pool of units, called instance pool
[McClleland and Rumelhart, 19881 (see Appendix A). There are as
many (80) units in the instance pool as the number of SCV classes.
Each unit in the instance pool (for example, the unit corresponding
to the class k 4 has a bidirectional excitatory connection with the
corresponding units in the feedback networks (for example, units
corresponding to ka/ in the MOA group, ka/ in the POA group and
/ka/ in the Vowel group). Units within the instance pool compete with
one another and hence are connected by a fixed negative weight
(-0.2). The 3 feedback networks along with the instance pool

Applications df ANN

Velar

(a) Excitatory connectione for the class Ral in the POA feedback network

Alveolar Dental

-0.126 : -0.126 .:'

-0.125 .

Velar Bilabial

(b) Inhibitory connectione for the class flra/ in the POA feedback network

Figure 8.19 Connections for the class /ka/ in the POA feedback network.
The excitatory connections for the clam /'a/ in the 'Velar'
subgroup are shown in (a). The inhibitory connections for the
class /ka/ are shown in (b).

constitute the constraint satisfaction model reflecting the known
speech production knowledge of the SCVs as well as the knowledge
derived from the trained subnets. The complete constraint satisfaction
model developed for classikation of SCVs is shown in Figure 8.20.

A Multilayer Feedforward Neural Network (MLFFNN) trained for
a subgroup of classes can be considered as a set of nonlinear filters
designed to provide d i sh ina t ion among the classes. There are 16
or 20 filtprs in each subgroup and a total of 80 filters for each
grouping criterion. It may be noted that each SCV class occurs in a
different subgroup for each of the three grouping criteria. The outputs

Application Area

POA
1 Alveolar Dental I

Figure 6.20 A constraint eatiafaction model for classification of SCV utter-
ances. Connections for /ka/ are ahown for illustration.

Inetance pool

MOA 1.0 Vowel

of the filters for each subgroup for a given training sample is
considered as a feature v h r . The distribution of the feature vectors
for each class is obtained from a second set of training data. The
distribution is represented in terme of a mean vector p and a
covariance matrix R derived from the feature vectors for the class.

The operation of the constraint satisfaction model is as follows:
Each unit j in the constraint satisfaction model computes the
weighted sum of the inputs from the other units (sj) in the model.
An external input for each of the units in the feedback networks is
provided as bias. The bias is derived from the 16- or 20-dimensional
feature vector x of the subgroup to which the unit belongs. The bias
for the unit j is given by

UWA do"*

where M is the dimension of the feature vector, ~r j is the mean feature
vector of the class associated with thejth unit and Rj is the covariance
matrix associated with the class of thej th unit.

la/ b 0 I i /

VA

320 Applications of ANN

The net input to the unit j is given by

where a , p and y are constants in the range 0.0 to 1.0, chosen
empirically by trial and error. The output function for each unit is a
sigmoid function.

The constraint satisfaction model is initialized as follows: For a
new input pattern, the feature vectors (x) are obtained h m all the
MLFFNNs. The outputs of the unita in the feedback networks for
which the corresponding feature vector component value is above a
threshold 6 (= 0.3) are initialized to +1.0, and the outputs of all other
units in the feedback networks are initialized to 0.0. The bias for a
unit in the instance pool is computed from the net input to the unit
aRer the feedback networks are initialized. The output of a unit in
the instance pool is initialized to +1.0, if the net input to the unit is
greater than 0.0. The constraint satisfaction model is then allowed
to relax until a stable state is reached for a given input using a
deterministic relaxation method. In this method a unit in the model
is chosen at random and its output is computed. This is continued
until there is no significant change in the outputs of all the units.
When a stable state is reached, then the outputs of the instance pool
units can be interpreted to determine the class of the input pattern.

The class of the instance pool unit with the largest output value
is assigned as the class of the input utterance. Because of similarity
among the SCV classes, we consider the cases (Cased) in which the
correct class is among the classes corresponding to the k largest
output values. The classification performance of the constraint
satisfaction model (CSM) for different cases is given in Table 8.7. The
performance of the modular network is also given in the table for
comparison. Here the performance of the modular network based on
POA grouping is given, as it gave the best classification performance
among the three grouping criterion.

Table 8.7 Classification Performance of the Constraint Satisfaction Model
using Test Data for all the 80 SCV Classes

Model Case-1 Cask2 Case-3 Case-4

CSM 65.6 75.0 80.8 82.6
Modular Network 35.1 56.9 69.5 76.6

It can be seen that the performance of the CSM is significantly
better than the performance of the modular networks. The performance
of the CSM for Case-1 is as high as 65% indicating that the instance
pool unit with the largest output value gives the class of the input
utterance correctly for 65% of the total number of test utterances. This
result is significant considering the fact that the classification is

Application Areas 32 1

performed by the CSM by discriminating among 80 SCV classes and
that many of these classes are similar. The performance of the CSM
increases to 82% for the Case-4 of the decision criterion.

The ability of the CSM to combine evidence from multiple sources
may be useful for performing wen speaker independent classification.
The subnets are trained using the data collected from multiple
speakers. Since the operation of the CSM is speaker independent, it
is expected that the CSM would show a distinct improvement for
speaker independent classification over the modular networks
[Chandrasekhar, 19961.

The description of the recognition system for the SCV units given
above clearly demonstrates the need to evolve an architecture suitable
for a given problem. For example, the acoustic-phonetic knowledge
has been used effectively in the form of constraints to improve the
performance of the 80 class network for the confusable set of SCV
units. It is obvious that ultimately the recognition performance is
limited primarily by the features derived from the signal.

8.3.2 Appllcatlons In Image Processing

An image is represented as a two-dimensional array of pixels, with
some gray value or colour associated with each pixel. Characteristics
of an images are: (a) the local structure, dictated by the spatial
correlations among nearby pixels, and (b) the global structure,
conveying the semantics of the image. These local and global features
are used in interpreting an image for recognition. Standard neural
network models accept the input data in an unstructured manner, in
the sense that the input to each unit in the input layer is considered
independent. Thus when an image is fed as an input to a neural
network the gray value of each pixel is provided as input, and the
input units have no spatial structure reflecting the spatial
correlations among the pixel values. Before feeding an image to a
network, the image is size-normalized, since the dimensionality of the
input to the network is fixed. In some cases like handwriting, the
normalization may be carried out at word level, in which case the
size, slant and position variations of the individual characters will
cause difficulty for recognition by the neural network. Thus the main
difficulty of the unstructured natbre of the input units of neural
network architectures is that there is no built-in invariance to
translation, rotation, scaling and distortion at local or global features
levels [LeCun and Bengio, 1995a and 1995bl.

In this section we describe the development of some neural
network models for three applications in image processing, namely,
handwritten character recognition, image segmentation and texture
classification.

322 Applications of ANN

Recognltlon of handwrltten digits: The objective is to develop a
recognition system for binary images consisting of handwritten
characters or digits. Even after an overall size-normalization of each
character before inputting, the system still has to take care of the
variations due to s h i h and local distortions. Convolutional network
architectures are proposed for such images [LeCun and Bengio,
1995a; Sackinger et al, 1992; LeCun et al, 19901. These architectures
use three key ideas, namely, local receptive field, weight sharing and
spatial subsampling. The images are applied directly to the network
after some size-normalization and centering. The network
architecture for an optical character recognition for a digits task is
shown in Figure 8.21 [Sackingex- et al, 19921. It is a multilayer feed-

Input Feature Feature Feature Feature Output
20x20 maps maps maps maps 10~1x1

4~16x16 4x8~8 12X4X4 12~2x2

Convolution Subsampling Convolution Subsampling Convolution

Figure 891 A convolutional network for optical character recognition.

forward neural network with one input layer, four hidden layers and
one output layer. The input layer consists of 400 units corresponding
to a 20 x 20 normalized binary image of each digit. The first hidden
layer consists of 4 feature maps, each unit in the feature map is
connected to a local receptive field of 5 x 5 pixel neighbourhood in the
input layer. Two adjacent units in a feature map have their local
receptive fields displaced by one unit shift in the input layer.

Weight sharing is achieved by assuming the same set of weights
to each unit in the feature map. Thus there are 25 free parameters
only for each of the 4 feature maps in the first hidden layer. From
each local receptive field, each unit extracts some elementary features
such as oriented edges, corners, etc. Each of the feature maps extracts
different features from the same rece~tive field. The first hidden layer
thus performs four separate, 2-D nonlinear convolutions of the feature
map with the input image.

The features extracted in the first hidden layer are combined in
the second hidden layer to take care of shifts in the features. A shift
of the input of a convolutional layer will shift only the features but
the output remains the same. Therefore once the feature has been
detected, its location is not very critical, as long as its position relative

Application Areas 323

to other features does not change. Therefore the second hidden layer
is used to reduce the resolution by subsampling. Each unit in a
feature map in the second hidden layer computes the average of the
outputs of four (2 x 2) neighbouring qnits in the corresponding feature
map in the h t layer. The local receptive fields for adjacent units in
this case do not overlap.

The third and fourth hidden layers perform feature extraction
and subsampling as in the case of the first and second hidden layers,
respectively. Each unit in each feature map of the third hidden layer
extracts features form 5 x 5 units receptive field in the output of the
second hidden layer. But each unit this time is connected to the
outputs of more than one feature map in the second hidden layer.
For example, 5 x 5 units h m each of the two feature maps in the
second hidden layer may be combined by connecting outputs of all
the 50 units to each unit in the third layer. The weight sharing is
done for each unit as in the case of the first hidden layer. The number
of feature maps in the third layer are 12 corresponding to 4C,
combinations of features h m the lower layer. The fourth hidden
layer performs averaging and subsampling as in the case of the
second hidden layer.

The outputs of all the units in the hurth hidden layer are
connected to each of the units in the output layer. The output layer
has 10 units corresponding to the 10 digits to be recognized. The
classification is indicated by the maximum output among the 10 units
in the output layer.

m e network is trained using samples of handwritten digits
collected from real life situation such as the digits in the postal
addresses on the envelopes. Note that the weights h m the hidden
layers 1 to 2 and from the hidden layers 3 to 4 are fixed, as they
perform only averaging. All other weights are adjusted using the
standard backpropagation learning algorithm. The results reported
in [Sackinger et al, 19921 are impressive as the network achieved an
error rate of 4.9% compared to human performance of 2.5%.

The architecture implementing the convolution and subsampling
operations in these networks is similar to the neocognitron developed
by Fukushima [1975, 19881 (see Sec. 7.6). But neocognitron uses
self-organization learning, thus it is unsupervised, whereas the
backpropagation learning in convolutional networks is supervised.

Image segmentation: LeCun has described an architecture for
recognition of handwritten characters [LeCun et al, 19901. But when
the characters form a portion of a cursive script, then it is necessary
to segment the word or sentence in cursive writing into individual
characters, size-normalize, and then feed to the convolutional network
for recognition. Automatic segmentation of cursive writing into
characters is not normally possible. But convolutional networks can

324 Applications of ANN

be used to scan over large, variable size input fields. Convolutional
networks can also be replicated to scan a cursive writing. This is
because the output of a network will be high when the input encloses
most part of a character, and then the adjacent replicated network
produces a low output. The outputs of such replicated convolutional
networks have to be interpreted further. Two-dimensional replicated
convolutional networks are called Space Displacement Neural
Networks [SDNNI Wolf and Platt, 1994; Burges, 19951. These
SDNNs together with Hidden Markov Models (HMM) have been
proposed for segmentation of handwritten word recognition [Keeler
et al, 19911.

Texture classlficatlon and segmentatlon: Intensity-based methods
for segmentation of an image into different regions depend on the
distributions of gray values of the pixels in each region. But images
of many natural scenes appear as distribution of spatial patterns
consisting of repetition or a quasi-repetition of some fundamental
image features. Such image regions may be hypothesized as
texture-like. Intensity-based methods do not perform well on such
images. One has to adopt a texture-based scheme which involves
identification and extraction of some local features which can
efficiently characterize different textures in the image.

Neural networks have been successfully applied to texture
classification and segmentation [Visa, 1990; Chellappa et al, 1992;
Schurnacher and Zhang, 1994; Hwang, 1995; Raghu et al, 1993,
1997al. In some methods the neural network itself was used to sort
out the unknown and complicated neighbouring-pixel interaction,
whereas in some other methods these interactions were explicitly
captured by extracting features using deterministic or stochastic
modelling of textures. Among the stochastic models, the Markov
random field models have been studied extensively [Rangarajan and
Chellappa, 19951. Among the deterministic models, feature extraction
by multiresolution filters like Gabor filters and wavelets have been
explored [Greenspan et al, 1991; Schumacher and Zhang, 19941.

Image segmentation can be posed as an optimization problem,
the optimality criterion involving maximizing a posterior probability
(MAP) distribution of the intensity field given the label field [Richard
and Lippmann, 19911. The a posteriori distribution is derived using
Markov random fields. An approximate solution to the MAP estimate
can be realized by mapping the optimization problem as relaxation
of a Hopfield neural network model. The relaxation could be
implemented either in a deterministic manner or in a stochastic
manner. In these cases the neural network can be viewed as a
constraint satisfaction model, where each unit represents a
hypothesis and the connection between two units as a constraint
[Rangarajan et al, 1991; McClelland and Rumelhart, 19861.

Application Area 325

Constraint satisfaction models for texture classification and
segmentation based on Markov random fields assume a fixed
resolution of the neighbourhood, whereas real images contain textures
with large variations in the texture sizes. Moreover, the texture
properties in real images are not stationary.

A texture classification scheme using a constraint satisfaction
model was proposed in [Raghu, 1995; Raghu and Yegnanarayana,
19961. The textual features are extracted using a set of Gabor filter$
[Bovik et al, 19901. Image-specific constraints are used to represent
domain-specific knowledge. The classifier uses two kinds of
image-specific constraints, namely, feature-label interaction and
label-label interaction. These constraints are defined using three
random processes: feature formation, partition and label competition.
The a posteriori probability of the label of each pixel is modelled
based on these constraints in the form of Gibb's distribution. The
corresponding posterior energy is used to derive a Hopfield network.
The details of the texture classification scheme are described below.

A 2-D Gabor filter is an oriented complex sinusoidal grating
modulated by a 2-D Gauslsian function, and is given by

- e-(l/Zaz) (ra + yz) + ju, (x cos 0 + y ain 0) f (x, Y , w, 8,o) - (8.33)

where o is the spatialwidth, 8 is the orientation and w is the radial
frequency of the Gabor filter [Daugman, 19851.

Gabor-filtered output of the image is obtained by convolution of
the image with the Gabor function. The power spectrum of the filtered
image at each pixel position is used as a feature to characterize that
pixel. If T is the textured image, the feature vector at each spatial
location (i, j) is specified as,

gii = (gii(w9 8, ~)) , , 0 ~

where

where * denotes 2-D convolution operation.
Let us assume that M Gabor filters (defined by different sets of

w, 8 and a) are used for feature extraction. The M-dimensional vector
gii constitutes the feature vector to characterize the pixel (i, j) in the
image.

Consider the domain R = ((i, J] , 0 5 i c I, 0 I j c J) designating the
pixel positions of the given textured image Tn. Each pixel s E R in
the image Tn is characterized by an Mdimensional feature vector
g, which is generated by Gabor filtering the image. Assume each g,
as the realization of an Mdimensional random process G,, called the

326 Applications of ANN

feature process. Let us assume that the image Tn consists of K
different textures, so that each pixel s can take any texture label 0
to K- 1. The corresponding texture classes are denoted by
C,, ..., CK-l. Also, let Rk, a subset of f2, be the training site for the
class Ck. The Gabor features of the training site of a given class are
used to estimate the model parameters for that class. We use the
notation La to denote the random variable describing the texture label
of the pixel s.

The feature formation process is defined by the probability of
assigning a value g, E R M to the feature process G, of the pixel s,
given the model parameters of each texture label k. It is given by
the conditional probability of G, = g,, given the label of the pixel s
as k. Writing the feature formation process as a Gibb's distribution,
we get

Here Zt(L,= k) is the normalization factor. One may use any of the
three standard statistical distributions (namely, Gaussian,
multivariate Gaussian and Gaussian mixture models) to model
P(G, = g, I Ls = k) [Raghu, 19951.

Assuming a Gaussian model to describe the feature formation
process, the energy function Ek.) is given by

The normalization factor ZAL, = k) for this Gaussian process is given
by

Z,(La = k) = (8.38)

The model parameters, mean and variance oh, are defined for each
class Ck as,

where Sk = card(Qk) is the cardinality of the subset.
We can write the conditional probability distribution of the

feature formation process as,

The label-label interaction constraint is defined using two
random processes: partition and label competition. The partition

Application Amas 327

process describes the probability of the label of each pixel s given the
labels of pixels in a uniform pth order neighbourhood Nt of s. The
neighbourhood of any pixel 8 is defined as the set of pixels 8 + r, Vr
E NL. The operator + is defined as follows: For any pixel
s = (i, J) E Q and for any displacement r = (k, I) E NPL, s + r = (i + k,
j + I).

The partition process is expressed as a pth order Markw random
field model defined by [Raghu, 1995, Appendix Cl

This relation is alsa a Gibb's distribution.
We define the energy function Ep as follows:

where p is a positive constant,, and 6(.) is the Kronecker delta
function, defined by

The normalization factor Zp for the partition process is given as,

" 4
which is independent of s and k. The importance of partition process
is that it acts as a mechanism for partitioning an image into its
texture boundaries. It also smoothens the classification output at each
step of relaxation.

The label competition process is based on the fact that any pixel .
in an image can belong to only one class, and hence a pixel can have
only one label. It is expressed as the conditional probability of
assigning a new label to an already labelled pixel.

Assuming that the current label of a pixel s is I, let us define the
probability of assigning a new label k to that pixel as,

e - a & h - ~
P(L,=kIL,=l) = (8.46)

Zc,l
where a is a positive constant. The function 8 is the inverse of
Kronecker delta function given by,

-
6(1) = 0, i f I = O

1, otherwise

ZcC is a local normalization factor, where c denotes that it is for the
competition process.

328 Applications of ANN

We define the label competition process using a conditional
probability P(L, = k I L, = , where k is the new label for pixel s and
1 stands for any label already assigned to s. This probability can be
expressed in the following form,

where the energy function E,(.) is,

Ec(L,=kIL,=l)w = C & k - l) (8.49)
Vl

and Zc = ? Z c , l , independent of s and k. The energy function E, is

such that it reduces the probability of having another label when the
pixel is already labelled. The competition process controls the
labelling of each pixel by shutting off other possible labels for that
pixel.

The objective is to find the label of each pixel in the image such
that the constraints defined above are satisfied to a maximum extent.
We can model the a posteriori probability P(L, = k 1 Gs , L, +, , Vr
E NL, L, = l)vl of the label of each pixel s based on these constraints.

Using Bayes theorem, this probability can be written as,

where the processes described by P(G,) and P(L, = k) are assumed
independent of each other. See [Raghu, 1995, Appendix A] for details
of the derivation leading to Eq. (8.50).

The a posteriori probability can be expressed as a Gibbs distribution,

where the energy function E(.) is given by

Application Areas 329

and Z =Z#J'(L, = k) P (G is a normalization constant. The total
energy of the system is given by

ptal = ' C E (L , = ~ I G , , L , + , , V r ~ N , f , L , = l) ~ (8.53)
8. k

Substituting Eqs. (8.37), (8.43) and (8.49) in Eq. (8.52), the total Gibbs
energy in Eq. (8.53) can be written as

This energy function can be considered as a set of feature and
label constraints acting on each pixel and the corresponding possible
labels. Estimation of a state configuration L, for all pixels s which
minimizes the energy will yield an optimal classification of the
textured image. This is the maximum a posteriori (MAP) estimate of
the pixel labels since minimization of this energy maximizes the a
posteriori probability given in Eq. (8.50). To evolve such an optimal
state one can use a Hopfield neural network model whose energy
function is matched with the energy expression in Eq. (8.54). This
can be interpreted as a constraint satisfaction neural network with
a suitable relaxation method.

The neural network consists of a 3-dimensional lattice of units.
For an image T, of size I x J with K possible labels for each pixel,
the size of the network is I x J x K units. Each unit in the network
is designated as (i, j, k) , where (i , J) = s is the pixel position and k
is the label index of the pixel. The network can also be interpreted
as having K layers of units. Each layer is a label layer. For a given
pixel (i, j), the corresponding units in different label layers constitute
a column of units, which we can call a label column.

Each unit (i, j, k) in the network represents a hypothesis giving
the label status of the pixel (i, j) . The a priori knowledge about the
truth value of each hypothesis is represented by providing a bias
B,, ,, to the unit. Constraints among the hypotheses are indicated by
the symmetric weights WL, ,, ,,, ,,, k , between the units (i, j, k) and
(i l , j l , kl).

Let A,,,, E (0, I) denote the output state of the unit (i, j, k). Let
the state of the unit at the nth iteration is (n). The energy
function of the network is given by

330 Applications of AMV

The bias values and the weights of the neural network are determined
by comparing the energy expression in Eq. (8.55) with the expression
in Eq. (8.54). The feature formation term in Eq. (8.54) is active only
if L, = k, i.e., 4, j, = 1, where s = (i, J). The instantiation k for the label
random variable L, of the pixel s = (i , ~) denotes the truth value
Ai, j , = 1 of the hypothesis corresponding to the unit (i, j, k). Similarly,
eke instantiation LSi , = k, s + r = (i,, jl) indicates that k , , j l , k = 1 for
the hypothesis corresponding to the unit (i,, jl, k). So the term
6(k - L, + ,) in Eq. (8.54) is equivalent to the product AiBj, k 4 , j,, k , and
it is active only if (il, jl) is in the pth order neighbourhood of (i, j).
The label competition term q k - I) is 1 only if k # I. Therefore

-
6(k - I) = { j k i j if if k k = I # 1

So the energy function in Eq. (8.54) can be written as,

Comparing Eqs. (8.55) and (8.571, the bias B i S j , k and the weight
W i , j, k; i , , j,, k , can be written as

and
20, if (i-i,,j-j,) E Nf and k = kl

- 2a, if (i,, j,) = (i, J) and k # k, (8.59)
0, otherwise

The expression for the weight shows the connections in the
network. Any unit (i, j, k) at a pixel position (i, j) has excitatory
connections with strength 2f3 fiom all nodes in a neighbourhood
defined by the displacement vector set in the same label layer k.
The - 2a term denotes inhibitory connections from all nodes in the
label column for each pixel (i, JI in the image. The structure of the
3-D Hopfield neural network is given in Figure 8.22.

In order to obtain a minimum energy state of the network, one can
use either deterministic or stochastic relaxation strategies lRaghu,
19951. Figure 8.23a shows a textured image of 256 x 256 pixels. The
image has four different types of textures, two of them are nearly
deterministic (dots and diamonds: upper left and lower right tiles)

'Application Areas 331

(a) (b) (4

Figure 822 Structure of 3-D hopfield network: (a) 3-D lattice of size
I x J x K. (b) Connections among nodes in the label column of
each pixel. Each connection is of strength - 2a. (c) Connections
from a set of neighbouring nodes to each node in a label layer.
Each connection has a strength 2P.

(a) (b)

Figure 8223 Image classification using the constraint satisfaction network
for an image with four texture tiles. (a) Original image
containing four textures. (b) Final segmentation result.

and the other two are stochastic (sand and pebbles: upper right and
lower leR tiles). A 16-dimensional feature vector is used to represent
each pixel in the image. The 16 dimensions correspond to 16 different
Gabor filters with 2 spatialwidths, 2 frequencies and 4 orientations.

A training site consisting of 1000 pixels per class is used for
parameter estimation for each class. For this image, a simple
Gaussian model is used for feature formation process. A deterministic
relaxation strategy is applied for obtaining the maximum a posteriori
probability state. Figure 8.23b shows the result of classification.

The approach was also proved to be successful for classification
of multispectral band imagery from remote sensing. For illustration,
an image obtained by the NASA Jet Propulsion Laboratory using

332 Applications of ANN

their Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar
(SIR-C/X-SAR) setup [Jordan et al, 19911 is considered. The
SIR-C/X-SAR setup acquires images in three microwave bands with
four linear polarization states. Figure 8.24a is a gray level representa-
tion of one such image with three spectral components. The texture-
like image is known to have four classes. The image is represented
using 8 Gabor filters for each of the three spectral bands, giving a
24-dimension feature vector for each pixel. The feature formation
process is described in terms of a multivariate Gaussian distribution
in which the covariance matrix characterizes the interband
correlation as well as the intraband correlation of the Gabor-filtered
multispectral imagery. Stochastic relaxation using simulated anneal-

(4 (dl
Figure 8.24 Multispectral classification of SAR imagery using constraint

satisfaction network with multivariate Gaussian model for
feature formation. (a) Gray level representation of the image.
(b) Classification based on multispectral textural information.
(c) Classification using textural information in one band. (d)
Classification based on gray level information in multispectral
data.

Application Areas 333

ing can be used to obtain the minimum energy state of the Hopfield
model [Raghu and Yegnanarayana, 19971. Figure 8.24b shows the
classification based on multispectral-textural information. For com-
parison, Figure 8 .24~ gives the result of classification using textural

. information in one band only. Figure 8.24d shows the result of
classification using only the pixel intensities of the multispectral data
in all the three bands. That means the textural features of the image
are not used. It can be seen from these results that incorporation of
multispectral and textural knowledge in the classification process
improves the performance much better than a scheme based only on
the textural information or only on the multispectral information.

- 8.3.3 Application in Decision Making

Like speech and image processing, decision making is also a purely
human attribute. Just as the feature extraction process is in-built
into our biological system, decision making also seems to be in-built
into our system. We anive at an intelligent decision based on partial,
noisy and sometimes inconsistent data mainly because we seem to
invoke our acquired knowledge over a period of time. It is difficult
to articulate the acquired knowledge, although expert systems have
been developed to represent the articulated knowledge by a domain
expert to arrive at a decision [Duda and Shortliffe, 1983; Gallant,
19931. The knowledge in an expert system is represented in the form
of if-then rules, and the rules are fired in a desired manner. Since
expert systems require this knowledge explicitly, there is a basic
limitation on the utility of expert systems in many decision making
situations.

Due to the inherent nonlinearity and also due to the learning
ability, neural networks appear to be promising in some decision
making applications [Baxt, 1990; Tan et al, 19961. The nonlinear
regression capability of feedforward neural networks and the
constraint satisfaction property of feedback neural networks are
exploited in medical diagnosis, investment management and
automated inspection of industrial parts [Chen, 19961. The threshold
output function of the nonlinear processing unit in a neural network
can be effectively used for decision making [Gallant, 19951. For
example, the symptoms and parameters of a patient can be given as
input to a MLFFNN, and the corresponding diseases as output of the
network. The network can be trained using the known data from
medical records. The trained network can now be used as an
automated medical diagnosis tool, so that any new test input will
give an idea of the disease. Such a network is called connectionist
expert system [Gallant, 19881. The network can be continuously
updated with additional knowledge acquired in the form of input and
output parameters. The main disadvantage of these systems is that

334 Applications of ANN

it does not provide an explanation or justification for the decision
arrived at by the system as in the case of a rule-based expert system.
Neural network-based systems were developed, for example, for skin
diseases diagnosis and for low back pain diagnosis [Yoon et al, 1989;
Bounds et al, 19881. The scope of these neural network expert systems
could be enhanced significantly using fuzzy logic to represent the
linguistic form of input and output variables [Chen, 1996, Ch. 71.
Many other useful applications of neural networks-based decision
systems have been implemented, such as investment management,
credit scoring, fraud detection and fault detection [Burke, 1992;
McGough, 19921.

A MLFFNN for pattern mapping can be viewed as a nonpara-
metric nonlinear regression analysis. This property has been exploited
for forecasting applications, especially in exchange rate forecasting
and stock prices [Ungar, 1995; Zapranis and Refenes, 19951.

8.4 Summary
The field of artificial neural networks came into prominence mainly
because of our inability to deal with natural tasks such as in speech,
image processing, decision making and natural language processing.
Our discussion on some tasks in these areas suggests that we still
have not succeeded in realizing the natural human-like preprocessing
of speech and images for feature extraction and in modelling the
higher levels of cognition for decision making and for natural
language processing [Morgan and Scofield, 19911. It is likely that new
models may evolve to deal with issues such as invariant pattern
recognition, interaction of local and global knowledge,
stability-plasticity, feature extraction from temporal sequences like
image sequences and matching patterns at semantic levels.

Some recent trends in ANN research are briefly discussed in this
section. Appendix F gives a more detailed discussion on some of the
trends.

The learning laws in ANN basically optimize certain objective
functions which reflect the constraints associated with the given task.
Most of the learning laws utilize gradient based approach for this
optimization purpose. However, due to its deterministic nature,
gradient based methods frequently get stuck at local optima or saddle
points. This is because the step size and step direction of the
optimization process are dictated by the local information supplied
by the gradient. We try to overcome this drawback by choosing the
step size and step direction stochastically in a controlled manner. The
efficiency of the search for global optimum can be enhanced further
if it is carried out in parallel. Evolutionary Computation is one such
(biologically inspired) method, where a population of solutions are
explored over a sequence of generations to reach globally optimal

Summary 335

solution. The integration of evolutionary computational technique into
ANN models is called Neuro-Evolutionary technique, which can be
used to enhance the learning capability of the model. The technique
is also useful to determine suitable topology of the network and to
select proper learning rule [Fogel, 19941.

In a classification task an ANN is used to find the decision regions
in the input pattern space. But if the patterm from different classes
are overlapping, then it is difficult for an ANN to find the class
boundaries. In pattern mapping also similar problems may arise when
the inputs or target outputs are ill-defined or fuzzy. These situations
are common in many pattern recognition tasks because of inherent
fuzziness associated with human reasoning. The pattern recognition
capability of an ANN can be made powerful, if fuzzy logic is
incorporated into the conventional ANN models. The resulting
systems are called Neuro-Fuzzy systems [Lin and Lee, 19961.

In some cases an ANN training may end up finding a
boundary when the same input pattern belongs to one class in som y
examples, and to another class in some other examples. This scenario
is due to the presence of rough uncertainty, which arises fram
indiscernibility of the objects based on input features. The
classification ability of an ANN can be sigmficantly improved if the
input data set is processed to reduce the rough uncertainty. Motivated
by this idea, a new promising area based on Neuro-Rough synergism
is emerging. It has already been employed to reduce the size of the
input data set, to determine the number of input units needed and
to accelerate networks training ['Pawlak, 1991; Pawlak et al, 1995;
Sarkar and Yegnanarayana, 1997~1.

The ability of a feedback network to store patterns can be
improved, if we can exploit the chaotic nature of the networks
dynamics. This observation has resulted in proposing hybrid neurons,
known as chaotic neurons. Different models of chaotic neurons are
studied, and initial results are quite promising [Andreyev et al, 19961.

There are several other attractive paradigms which can be fused
with the current ANN techniques. For example, Artificial Ant System
[Dorigo et al, 19961, Cultural Evolution [Belew, 19891, DNA
Computing [Adleman, 19941, and Immunity Net [Hunt and Cooke,
19961, seem to be attractive and viable approaches that can be
amalgamated with ANN.

One key advantage of ANN is that it is adaptive. Many existing
paradigms can be fused into it easily. Although, as of now there are
no guidelines for developing hybrid paradigms, the urge to develop
models to perform human cognition tasks will continue to motivate
researchers to explore new directions in this field.

The most important issue for solving practical problems using the
principles of ANN is still in developing a suitable architecture to solve
a problem. This continues to dominate this research area. ANN

336 Applications of ANN

research has to expand its scope to take into account the fuzzy nature
of real data and reasoning, and the complex (unknown) processing
performed by the human perceptual mechanism.

It is possible to view research in ANN along the following directions:

Problem level: This involves issues in mapping the real world
problems as pattern processors. This may require good understanding
of human information processing both from the psychological and the
biological angles.

Basics level: It is necessary to evolve better models for neurons as
processing units, their interconnections, dynamics (activation and
synaptic), learning laws and recall procedures.

Functional level: This involves development of basic structures
which can solve a class of pattern recognition problems. These form
building blocks for development of new architectures.

Architectural level: This requires ideas to evolve new architectures
from known principles, components and structures to solve complex
pattern recognition problems. It is possible that the problems may be
tailored somewhat to suit the architectural principles.

Application level: The objective is to solve a given practical problem
using generally the principles of ANN, but with ideas from other
areas such as physics and signal processing.

Review Questions

1. What are some direct applications of the' principles of neural
networks? Why are they called 'direct' applications?

2. Under what conditions mere correlation matching can be
successfully applied for pattern classification?

3. What is meant by complexity of a set of objeds for classification?
Explain this in relation to Olympic symbols and printed characters.

4. Why is it that mere correlation matching cannot be used for
classification of deformed patterns?

5. Discuss the significance of backpropagation learning in situations
like 'Contract Bridge Bidding'.

6. Explain why information retrieval can be viewed as a direct
application of neural network principles.

7. How is an optimization problem formulated for solution using a
neural network model?

8. Explain the steps in the solution of a general optimization
problem by a neural network.

Review Questions 337

9. What is a local minima problem in optimization?

10. How is mean-field annealing applied in the solution of
optimization problems?

11. Explain the formulation of the graph bipartition problem as an
optimization problem.

12. Explain the difficulties in the solution of travelling salesman
problem by a feedback neural network.

13. Explain how an image smoothing problem can be solved by
principles of neural networks.

14. What is the problem in vector quantization?

15. Explain how neural network principles are useful in control
applications.

16. Explain why a speech recognition problem is not a direct
application of neural network principles.

17. What is the significance of neural networks in the NETtalk
application?

18. What neural network ideas are used in the development of
phonetic typewriter?

19. Why is the problem of vowel classification based on Peterson and
Barney formant data a difficult one for neural networks?

20. Discuss some neural network methods for classification of
consonant-vowel (CV) segments of speech.

21. What is a time-delay neural network architecture? How is i t .
suitable for classification of CV segments?

22. What is a modular architecture in neural networks?

23. What is the problem in the classification of large (20 or more)
number of CV segments?

24. How is a modular architecture useful for classification of large
number of CV segments?

25. Discuss the significance of a constraint satisfaction model for
combining multiple evidences for large number of classes.

26. Explain how a constraint satisfaction model can be exploited for
improving the recognition accuracy for. CV units.

27. What is the problem in the recognition of handwritten digits?

28. What is a convolutional network architecture and how is it useful
for the problem of handwritten digit recognition?

29. What is image segmentation problem?
30. How are convolutional networks used for segmentation of

handwritten characters in a cursive script?

338 Applications of ANN

31. Explain how neural network principles are useful for a texture
classification problem.

32. Explain the constraints in a texture classification problem that
can be used as a priori knowledge for a network formulation.

33. Discuss the feature formation process in texture analysis as
Gibbs distribution.

34. Discuss the partition process in texture analysis as Gibbs
distribution.

35. Discuss the label competition process in texture analysis as Gibbs
distribution.

36. Show the formulation of maximum a posteriori probability esti-
mation for texture analysis as an energy minimization problem.

37. Discuss a neural network model for energy minimization in a
texture classification problem.

38. Discuss the relaxation strategies (deterministic and stochastic)
for texture classification.

39. What are the issues in decision making problems?
40. Discuss the application of neural network principles for decision

making.
41. What are some recent trends in neural networks?

Problems

1. For the Hamming net given in Figure 8.3, the input to the unit
i in the upper subnet is given by

j = 1

where ay is the jth component of the input vector al. Show that

where HD(al, ai) refers to the Hamming distance between
the input vector al and the vector ai corresponding to the ith
unit. (See [Zurada, 1992, p. 3921)

2. Compute the weight matrix of a Hamming network for the
following three prototype vectors

Find the output of each unit for the input vector al =
[l 1 1 1 1 1lT. Verify that the Hamming distance computed by the

Problems 339

network agrees with the actual Hamming distance. Find the
steady state output of the upper subnet of the Hamming network.

3. Explain why the capacity of the Hamming network to store patterns
is higher than the Hopfield network. (See Kung, 1993, p. 591)
(Hint: The number of connections increase linearly for the
Hamming network as the number of bits in the input patterns
increase. o n the other hand, the number of connections increase
quadratically with the number of bits for the Hopfield network.)

4. Study the performance of the graph bipartition problem for the
example shown in Figure 8.10.

5. Study the performance of the Travelling Salesman problem for
ten cities, using the formulation given in Eq. (8.22). Assume the
distances between the cities. Examine the effect of the
parameters a, p, y on the performance.

8

6. Implement the image smoothing algorithm for an image with
discontinuities in a 1-D case as' shown in Figure 8.13.

7. Weighted matching problem [& ~ z et al, 1991, p.721 : Suppose
there are N (even) points in a, !&dimensional space with known
distances between each pair of points. The problem is to link the
points together in pairs, with each point linked to exactly one
other point, so as to maxinii$ the total length of the links. Let
du be the distance between the points i and j. Let n.. be a unit
in a Hopfield network, such thqk the state n, = 1 inchates that
the points are linked and the state n, = 0 indicates that the
points are not linked. The optimization problem involves
minimizing the total length of links L = .X.du n, subjected to the
constraint that C n, = 1 for all i. r < J

Assuming h.. = nji and nii = 0, solve the problem for
N = 4. Assume four random points in a unit square in the
2-dimensional space.

Discuss the solutions of the problem obtained by using
(a) Deterministic relaxation algorithm.
(b) Stochastic relaxation using simulated annealing (use

suitable stochastic update and annealing schedule).
(c) Mean-field annealing.

8. Study the solution of the Travelling Salesman problem using
SOM for the following different cases:
(a) 30 cities, 30 units
(b) 30 cities, 100 units
(c) 30 cities, 500 units
(d) 100 cities, 100 units
(e) 100 cities, 500 units

Appendix A

Features of Biological Neural
Networks through Parallel
and Distributed Processing
Models

Some of the features of the biological neural networks were
demonstrated using parallel and distributed processing (PDP) models
in [Rumelhart and McClelland, 1986; McClelland and Rumelhart,
1986; McClelland and Rumelhart, 19881. We will consider two of those
models for illustration, namely, the Interactive Activation and
Competition (IAC) model and the Constraint Satisfaction (CS) model.

A.l Interactive Activation and Competition Model

The objective of the IAC model is to illustrate the process of retrieving
general and specific knowledge from stored knowledge of specifics
[.McClelland and Rumelhart, 1988, p. 391. Some of the features of
human memory that are illustrated through this model are: Retrieval
by key (name) and by context, retrieval with noisy clues, assignment
of default values and spontaneous generalization. The model is
illustrated through the example of Jets 'and Sharks database
described in [McClelland, 19811 and given in Table A.1. Information
in such a data, if stored in a computer memory, can be a~cessed by
name or by any other set of items, provided the method of access is
preprogrammed into the system. Moreover, certain characteristics of
the data like the distribution of persons in different age groups, or
the nearly 'common' characteristics among some persons, etc., can be
obtained only by explicitly programming to derive the information
embedded in the data. In other words, any information in the data
has to be sought explicitly. Whereas human memory stores the data
in terms of the patterns implicit in the data automatically, and these
patterns can be recalled even with partial clues. These features of
human memory can be demonstrated through a parallel and distri-

341

342 Features of BNN through PDP Models

Table A1 The Jets and the Sharks Data for IAC Model [Adapted from
McClelland and Rumelhart, 1988, Ch. 2; with permission from
MIT Press].

Name Gang Age Edu Mar Occupation
Art Jets 40's J.H. Sing. Pusher
A1 Jets 30's J.H. Mar. Burglar
Sam Jets 20's Col. Sing. Bookie
Clyde Jets 40's J.H. Sing. Bookie
Mike Jets 30's J.H. Sing. Bookie
Jim Jets 20's J.H. Div. Burglar
Greg Jets 20's H.S. Mar. Pusher
John Jets 20's J.H. Mar. Burglar
Doug Jets 30's H.S. Sing. Bookie
Lance Jets 20's J.H. Mar. Burglar
George Jets 20's J.H. Div. Burglar
Pete Jets 20's H.S. Sing. Bookie
Fred Jets 20's H.S. Sing. Pusher
Gene Jets 20's Col. Sing. Pusher
Ralph Jets 30's J.H. Sing. Pusher

Phil
Ike
Nick
Don
Ned
Karl
Ken
Earl
Rick
01
Neal
Dave

Sharks
Sharks
Sharks
Sharks
Sharks
Sharks
Sharks
Sharks
Sharks
Sharks
Sharks
Sharks

Col.
J.H.
H.S
Col.
Col.
H.S.
H.S.
H.S.
H.S.
Col.
H.S.
H.S

Mar.
Sing.
Sing.
Mar.
Mar.
Mar.
Sing.
Mar.
Div.
Mar.
Sing.
Div.

Pusher
Bookie
Pusher
Burglar
Bookie
Bookie
Burglar
Burglar
Burglar
Pusher
Bookie
Pusher

buted processing model shown in Figure A.1. In the figure the units
are organized in different pools, such as 'names' pool, 'age' pool, etc.
The number of units in each pool corresponds to different possibilities
in that category, as for example, 27 units in 'names' pool and 3 units
in 'age' pool, etc. There are as many pools as there are categories (6
in this case), plus one additional pool called 'instance' pool. Units
within each pool are conneded in an 'inhibitory' manner, i.e., the
output of each unit is fed with a negative weight to all other units
in the same pool. The units in each pool are conneded to the
corresponding units in the instance pool in an 'excitatory' manner,
i.e., the connection weight is positive. For example, the 'Ralph' unit
in the 'names' pool, 'Jets' units in the 'gang' pool, '30' unit in the 'age'

Interactive Activation and Competition Model

[Adapted from McClelland and Rumelhart, 1988, Ch. 2; with
permission from MIT Ress].

pool, 'JH' unit in the 'education' and the 'pusher' unit in the
'occupation' pool are all connected to the 'Ralph' unit in the 'instance'
pool with positive weights. The units in the 'instance' pool are called
'hidden' units, since by design they are not accessible for external
input or output. The units in all other pools are called 'visible' units.
Only 5 of the 27 units are shown in the 'names' pool and 'instance'
pool for illustration. Also the inhibitory connections within the pools
are not shown in the figure.

There are a total of 68 units in the model. Each unit computes
a weighted sum of the input values to the unit, fed from other units
as well as from external inputs, if any. The weighted sum or the
activation value is passed through a nonlinear output function, which
gives as output the activation value itself, if the sum lies between
some prespecified minimum and maximum values. Otherwise, the
function gives either the minimum value at the lower limit or
maximum value at the upper limit. The state of the model is described
as the outputs of all the 68 units at any given instant of time. Starting
from any state, the next state can be computed by selecting a unit
at random and computing the weighted sum of its inputs first and
then the output of the unit. Due to change in the value of the output
of this unit, the model goes to a different state. Then another unit
is selected at random, and the new state for that unit is determined.

344 Features of BNN through PDP Models

All the units are updated by selecting the units in a random sequence,
to compute one 'cycle' of activation dynamics. After several cycles, the
model is guaranteed to reach a stable equilibrium state, when there
will not be any further change in the state of the model.

For each set of external inputs, the model reaches a stable state
eventually. From the stable state the stored data can be read out.
For example, if we want the data about 'Ralph', an external input is
given to the input of the 'Ralph' unit in the 'names' pool. Starting
with some initial state, the network activations are computed for
several cycles, until an equilibrium state is reached. At equilibrium,
there will be one unit in each pool having large positive value. Those
units correspond to the data that belongs to 'Ralph'. The details of
implementation are discussed in [McClelland and Rumelhart, 19881.

The model demonstrates several features of the functioning of the
biological neural network in human memory. Some of the features
are: (a) Retrieving an individual's data from his name, (b) Retrieval
from a partial description, (c) Graceful degradation, (d) Default
assignment, and (e) Spontaneous generalization for novel inputs. The
most important point is that the model stores the patterns embedded
in the given data. Therefore one could get from the model even such
illformation for which the model was not explicitly designed. For
example, in the feature of default assignment, the model gives
possible good guess about missing information, even though we do
not know certain things about an individual. It evaluates the relative
strengths of the attributes from the given data in a complex manner,
which is difficult to describe explicitly. Thus this model clearly brings
out the distinction between computer memory and human memory
for storage and retrieval of information. The model also brings out
the features of content-addressable memories and associative
memories for information retrieval. Note the distributed nature of the
memory in this model in the sense that the information is distributed
in the weights throughout the network. Also note the parallel and
distributed nature of the activation dynamics when the model is
realized in hardware, and when i t is allowed to relax naturally
changing from one state to another until an equilibrium state is
reached from the given initial state and external input. There will
be several equilibrium states, some of them correspond to the desired
information about the data in the Table A.l [McClelland and
Rumelhart, 1988, p. 641.

A.2 Constraint Satisfaction Model

We consider another PDP model, namely the constraint satisfaction
model, to illustrate how we attempt to build concepts or arrive at
conclusions based on some limited, partial, and sometimes partially
erroneous knowledge. The key idea in this model is that a large

Constraint Satisfaction Model 345

number of weak constraints together will evolve into a definitive
conclusion. For example, even in an apparently simple task of
recognition of handwritten characters, it is difficult to articulate
precisely what we capture as features in the patterns of several
samples of each character. But when we are presented with a new
sample of a handwritten character, most of the time we have no
difficulty in recognizing it correctly. It is likely that &om the samples
of a handwritten character we may have captured a large number of
weak evidence of features in our memory, so that with a new sample
as input, the memory relaxes to a state that satisfies as many
constraints as possible to the maximum extent.

The above idea of constraint satisfaction can be captured in a
PDP model consisting of several units and connections among the
units. In this model the units represent hypotheses and the
connections represent the knowledge in the form of constraints
between any two hypotheses. It is obvious that the knowledge cannot
be precise and hence the representation of the knowledge in the form
of constraints may not also be precise. So the solution being sought
is to satisfy simultaneously as many constraints as possible. Note
that the constraints usually are weak constraints and hence all of
them need not be satisfied fully as in the normal constrained
optimization problems. The degree of satisfaction is evaluated using
a goodnesg-of-fit function, defined in terms of the output values of
the units as well as the weights on the connections between units.

The constraint satisfaction PDP model is illustrated here with an
example of how our concepts of various types of rooms can be captured
by the model &om samples of description of these rooms [McClelland
and Rumelhart, 1986, Ch. 141. Let us assume that we collect data
from subjects about their understanding of the following five types
of rooms: Living room, kitchen, bedroom, office and bathroom. In
order to elicit information from the subjects, 40 descriptors are
provided to them, in terms of which each subject can be asked to give
his~her view of the above room types. The descriptors are shown in
Table A.2.

Table A2 The 40 Room Descriptors used in the Constraint Satisfaction
Model [From McClelland and Rumelhart, 1988, p. 64; with
permission fmm MIT Press].

ceiling walls door windows very-large
large medium small very-small desk
telephone bed typewriter bo

o

kshelf carpet
books desk-chair clock picture floor-lamp
sofa easy~hair coffee-cup ashtray fireplace
drapes stove coffeepot refrigerator toaster
cupboard sink dresser television bathtub
toilet scale wen computer clothes-hanger

346 Features of BNN through PDP Models

Each subject can be asked to mark which of these descriptors are
valid for each room type. F'rom the data collected from a number of
subjects, the weights between units are captured. Here the units
represent the descriptors. The output of a unit is binary indicating
whether the description is present or not. The connection weights
between units are derived fiom the co-occurrence patterns of the
descriptors in the responses of the subjects for all the room types.
One method of describing the weights is as follows:

P(xi = 0 and xj = 1) P(xi = 1 and x, = 0)
w, = -log P(xi = 0 and x, = 0) P(xi = 1 and x, = 1) (A. 1)

where wij represents the symmetric weight connecting the unit j and
unit i. The numerator represents the product of probabilities that the
hypotheses of the units i and j are competing with each other, i.e.,
one unit has the value xi = 1 and the other has the value x, = 0.
The denominator represents the product of probabilities that the
hypotheses of units i and j support each other. Thus if the evidence
is greater for sup~orting the hypotheses, then the weight w d will be
positive, otherwise it is negative. Note that the probabilities can be
replaced by the relative frequencies in the data. In addition, each
unit can have a bias reflecting the prior information about the
hypothesis the unit represents. In this case the bias is given by

There can be direct evidence for a hypothesis through an external
input. The corresponding input unit could be clamped indicating that
the hypothesis is either always 'on' or always 'off. Other types of
external input could be a graded one indicating a weak constraint.

A constraint satisfaction model can be displayed by means of a
Hinton diagram as shown in Figure A.2 [McClelland and Rumelhart,
1988, p. 661. Each larger square in the figure represents a unit. There
are 40 units corresponding to 40 descriptors. Within the square of
each unit a replica of all the 40 units are displayed as dots, each dot
representing the unit in its relative position in the diagram. Around
each dot, a white square indicates a positive weight connecting the
unit representing the dot and the unit enclosing the dot. Thus for
example, the white square on the second dot in the unit for 'ceiling'
indicates that the 'walls' unit is connected to the ceiling unit with a
positive weight. The size of the small white square indicates the
strength of the positive connection. Likewise in the last unit
corresponding to 'oven', the small dark square around the last but
one dot indicates that the units 'oven' and 'computer' are connected
with a negative weight. There are many units which have no
conlnections at all.

Constraint Satisfaction Model 347

mmyjao I..... 0aa OL1. "'.. 'I.

Ceiling Walls Door Window Very-larize

.

Large Medium Small Very-small Desk Telephone Bed
. . 0 '

Typewriter

1:;;; ! ::I
Bookshelf

..... U Carpet
Books

..... ...*... u Clock

.....

Picture

.......

.-a.
......

Floor-lamp Sofa . Easy-chair Coffee-cup Ash-tray Fire-place Drapes

Stove Sink Refrigerator Toaster Cupboard Coffee-pot Dresser

.... 0 : .
8.. .=. 0 I...

Television

..... =. i=; :
j=g::
Toilet

.....
8 . . - 8 .
m.. ' .I
..I) 0 .

- 0 ..
Scale Computer

.

Oven

Figure A2 The figure uses the method of Hinton and Sejnowski [I9861 to
display the weights. Each unit is represented by a square. The
name below the square is the descriptor represented by each
s q m . Within each unit, the small black and white squares
represent the negative or positive weights, respectively, from that
unit to each of the other units in the system. The relajhve position
of the small squares within each unit indicates the unit with which
the unit is connected [Adapted from McClelland and Rumelhart,
1988, Ch. 3; with permission from MIT Preas].

The model is allowed to relax by computing the next state for
each unit selected at random, computing sum of its weighted inputs
and thresholding the weighted sum using a hard-limiting output
function. For a given external evidence, say like 'oven' and 'ceiling'
in Figure A.3, the state of the network aRer each cycle is shown in
the figure. ARer 17 cycles the model settles down to an equilibrium
state closest to the given external evidence, and the state description
gives a description of the concept of the room satisfying the external
evidence, namely ?kitchen', in this case. Thus the.PDP model clearly
demonstrates the concepts of rooms captured by the weak constraints
derived from the data given by the subjects. The model captures the
concepts of the five room types at the equilibrium states
corresponding to the description that best fits each room type. A
goodness-of-fit function (g) is defined for each state (x,, x,, ..., xN) ,
where xi = 1 or 0, as

348 Features of BNN through PDP Models

u0u00uu000[7000000uuo then . Computer . Coat-hanger . Scale . Toilet . Bathtub . Television . Dresser
000000000000000000 Coffee-pot . . . 00000nCIonu00n000 Cupboard
u0000uu00u0000u000 Toaster

000 000000l~l7170unu1717 Refrigerator non 00l3n[IIuI~l~nOunun0 sink B
OOUOOOOU0 ~ ~ v e . . . 0000000000000 Drapes - F~re-place - . Ash-tray

q o000u000000uunu0 Coffee-cup . Easy-chair . Sofa . Floor-lamp . Picture n q q q nOOODOUUO Clock . Desk-chair . Books . Carpet . Bookshelf . m e w r i t e r
. a Bed o LI o n u ~ B C l ~ Telephone . Desk . Very-smaJl

u o u LI q o 00al J l Small . Medium . Lage . Very-large
LI 0 o 00[7U0[700[700[70 Window . Door

0000u000000u00u0000 Walls
00000000000u00000000 Ceiling

Figure A3 The state of the CS model after each cycle, starting with an
initial state where the units 'ceiling' and 'oven' are clamped. The
system settles down to a prototype for the type of room most
closely related to the clamped units, which in this case is
'kitchen' [Adapted from Rumelhart et al., 1986b; with permission
from MIT Press].

where ei is the external input to the ith unit and bi is the bias of the
unit i. At each of the equilibrium states the goodness-of-fit function
is maximum.

The model not only captures the concepts of the room types, but
it also gives an idea of their relative separation in the 40 dimensional
space. In order to visualize the shape of the goodness-of-fit surface

Constraint Satisfaction Model 349

as a function of the state of the model, the goodness-of-fit surface for
states lying on a plane passing through the three equilibrium states
corresponding to 'kitchen', 'office' and bedroom is shown in Figure A.4
[McClelland and Rumelhart, 19861. Note that the x-y plane

Office
1
t C

Kitchen, Bedroom

Figure A4 The value of the goodness-of-fit function for the states on the
plane passing through the three goodness maxima corresponding
to the prototypes for 'kitchen', 'bedroom' and 'office'. [Adapted
from Rumelhart et al., 1986b; with permission from MIT Press].

corresponds to the plane passing through the selected equilibrium
states. The shaded curve gives values of goodness-of-fit function for
all states on this plane. Obviously, the function is maximum at each
of the three equilibrium states. The figure shows that the concepts
of 'office' and bedroom have more in common than that of kitchen,
since the peak for the kitchen is far off fiom the other two.

The model will have several other equilibrium states
corresponding to some local peaks of the goodness-of-fit function.
These peaks do not correspond to the room types intended to be
captured by the model fiom the data. In general the model is allowed
to relax in order to reach some global peak overcoming the
insignificant local peaks. This is generally accomplished using the
method of simulated annealing.

Note that this constraint satisfaction model is a good illustration
of learning or capturing the concepts fiom examples. The derived
constraints will be more representative of theknowledge if the
examples are large in number. It is also interesting to note that there
is no uniqueness about the model in terms of descriptors, weights,
etc. The objective is to represent somehow the knowledge of the
problem domain in the form of weights. Obviously the model will
function better if the number of hypotheses or units and the

350 Features of BhW through PDP Models

constraints are large, and the number of concepts is much smaller
compared to the dimensionality of the state of the model. The model
clearly illustrates the pattern behaviour in human cognition, which
we cannot articulate precisely, but we use effectively in classifying
correctly when a new sample is presented.

Appendix B

Mathematical Preliminaries

B.l MDimensional Euclidean Geometry

To appreciate the problems in representation and recall of
information in artificial neural networks, concepts of higher
dimensional geometry are useful. In this section we will describe some
basic principles of N-dimensional Euclidean geometry that will help
visualise the behaviour of the state of a neural network
[:Hecht-Nielsen, 19901. Let us consider a network with N processing
units. Let the output signal of each unit be one of the following four
types:

Binary: (0, 1)
Bipolar: (-1, 1)
Continuous in the range [O, 11
Continuous in the range [-I, 11

The output signal vector of the network can be represented as
9 = (sl, s2, . . . , sN).

The domains of the signal vectors for the four types of output in
the N-dimensional space RN are hypercubes defined as follows:

The points in the discrete binary cube (0, l lN are located at
varying distances from the origin in the range (0 to m). On the other
hand, the points in the discrete bipolar cube (-1, l lN are all of length
m. Therefore, the hypercube (-1, l lN is enclosed in the sphere of
radius in RN.

The volumes and areas of the hypersphere (radius r) and
hypercube (side length I) in RN are given by the following expressions:

Mathematical Preliminaries

Volume of hypersphere:

(N/2)!
if N is even

v, (NY r) =
l2 [N - 11/2)! p

if N is odd

Area of hypersphere:

I (N Z) ~ ' ~ p - 1

(N/2)!
if N is even

As (NY r) =
2N (Z)w- (IN - lIL?)! p - 1 if is odd

(N - I)!

Volume of hypercube: Vc(N, 1) = lN

Area of hypercube: Ac(N, 1) = f l - '
Therefore we notice the following interesting properties:

Volume of a unit side length cube is a constant, since Vc(N, 1) = 1

Volume of a sphere inscribed in a cube is V,(N, 0.5) + 0, as N +
The distance from the centre to the vertices of a unit cube in iN is
m12, which is a function of N.

The distance from the centre of the sphere inscribed in the unit cube
to any point on its surface is 112.

8.2 Linear Algebra

Some Deflnitlons

Llnear dependence: A set of M-dimensional vectors {xl, q, ..., q,,] is
said to be linearly dependent if there exist numbers {c,, c,, ..., c,] not
all zero such that

CIXl +C2X, + ... + CN+ = O (B.1)

If the vectors are not linearly dependent, they are said to be linearly
independent.

Rank: The rank of a matrix A E iNxM is defined as the number of
linearly independent rows or columns of A. If A is full rank, then its
rank is N or My whichever is lower.

Inner product: The inner product of two vectors x, Y E iM, x = [X I ,

x2, ... , xM1 and y = [yl, y2, ..., y M ~ T , is defined as

Linear Algebm 353

When the inner product of the two vectors (x, y) is zero, the vectors
are said to be orthogonal.

Outer product: The outer product of two vectors x, y is defined as

Norm: The 4 norm of the vector x is deked as

4=

(i = l)
The L~ norm is called Euclidean norm and is given by (18x)"

Gradlent: The g d i e n t of a multivariable function $(x) w.r.t. x is
defined as

The rank of the outer product is one. The outer product is a symmetric
matrix when y = x.

- "0'1 X0'2 ... X ~ ' M -

If x is a time varying vector (denoted as x(t)), then the derivative of
$(x(t)) w.r.t. time t is

"a35 X a Y 2 X a Y ~

. . . .

" ~ l "ddY2 - . . -

d@(x (t)) a(=) &1(t) - + ... + & A t)
dt axl dt ax,. dt

T&XO
= I dt (B.6)

03.3)

Jacoblan: For a vector function of a vector given by

the Jacobian matrix is defined as

354 Mathematical Preliminaries

Quadratic forms. A quadratic form is a scalar valued function of
the vector x, defined through a symmetric matrix A E R ~ ~ ~ . The
quadratic form is given by

Q(x) = &4x

i = l j = 1

Note that since A is symmetric, a , = aji.
If Q(x) 2 0, then A is called a positive semidefinite matrix. If

Q(x) > 0 then A is called a positive definite matrix.. If Q(x) 5 0, then
A is called a negative semidefinite matrix. If Q(x) c 0, then A is called
a negative definite matrix.

The gradient of the quadratic form is given by

VQ(x) = 2Ax (B.9)

Multidimensional Taylor series:

A multivariable continuous function $(x), whose derivatives of all
orders exist, can be expressed in Taylor series as

where 6x = [6al, 6az, ..., 6aM lT is an incremental vector, V$(x) is the
gradient of $(x) w.r.t. x and v2((x) is the Hessian matrix defined as

Linear Algebm 355

If $(x) has an extremum at x = q , then V$(q) = 0. Neglecting higher
order terms in the Taylor series in Eq. (B.10), we have at x = xo

Since the last term in the above expression has a quadratic form,
$(x) exhibits a minimum at x = % if the Hessian matrix v2$(q) is
positive definite. If the Hessian is negative definite, $(x) exhibits a
maximum at x = q.

Elgenvalues and Elgenvectors:

Consider minimization of the quadratic form ~ A V subjected to the
constraint g v = 1, where A E RMxM. That is, taking the derivative
of 1. ~ A V - h g v w.r.t. v and setting it to zero, we get

(2 I
Av = hv (B.12)

where A is called the Lagrange multiplier. The set of all vectors
V E R~ which satisfy equation (B.12) are called the eigenvectors of A
and the corresponding scalars h are its eigenvalues.

If A has M nonzero distinct eigenvalues, A can be expressed as

where V = [vl v2 ... VM I is the matrix having the eigenvectors as its
C O ~ U ~ ~ S and A = diag [hl & . . . hM] is the diagonal matrix of
eigenvalues. The representation of A in Eq. (B.13) is called the
eigendecomposition of A.

Slngular Value Decomposltlon:

The Singular Value Decomposition (SVD) can be viewed as a
generalization of the eigendecomposition. For a matrix A E RN M,
there exist orthogonal matrices U = [ul q . . . I E RNx and
v = [v, v2 . . . vM] E R~ such that

VAV = diag [a, 0, . . . or I (B.14)

where a, 2 a2 2 ... a, 2 0, and r I min(N,M) is the rank of the
matrix A. The ais are the singular values of A and the vectors q,
v, are the ith lefi singular vector and the ith right singular vector,
respectively.

Therefore the matrix A can be written as

356

where

Mathematical Pmliminaries

It can be shown that ui and vi are the eigenvedors of the square
matrices AAT and ATA, respectively. That is

(M T) ~ = oi2y
and

(A~A)v, = a,2vi

c$ are the eigenvalues in both the cases.

Solutlon of Linear Equatlons:

Let A is an N x M matrix, x is an M x 1 column vedor, and b is an
N x 1 column vector. Then for solving a set of N linear equations
given by

A x = b (B. 17)
three cases arise:

Case I: N = M. For this case of square matrix the solution to Eq. (B.17)
is given by x = A-'b, provided A-' exists, i.e., A is a full rank matrix.

Case 11: N > M. The solution for this overdetermined case is obtained
by solving the following least squares problem

T
min (b-Ax) (b-Ax) (B.18)

x

The solution to Eq. (B.18) is given by

X, = (A~A)-~A% = ~ + b (B . I ~)

where A+ is called the pseudoinv&se of A. The vector

gives the projection of b onto the space spanned by the columns of
A. Hence, the matrix P is called the projection matrix.

Case 111: N N M. There are infinite solutions for this undetermined
case. The Minimum Norm Least Squares (MNLS) solution is obtained
by minimising (xTx) subjected to the constraint that Ax = b. That is,
the solution is obtained by minimising [xTx - A ~ (A ~ - b)] w.r.t. x. The

vector A is the set of Lagrange multipliers [XI, h, ..., hNIT. The
solution to the above constrained optimization problem is given by

Projection Matrix

Consider the vectors al, a2, b E R ~ .

a1
The scalar projection of b onto al = (b, -)

Ila1llz

a1 a1 The vector projection of b onto al = (b, -) -
IIalll2 llall12

Let 6 be a projection of vector b onto the subspace spanned by al
and %. The subspace is giv n by the linear combination of al and
a2, i.e., qal + x2% =Ax. Let 1 =AS. Then the vector b - 6 = b -Axp
is orthogonal to all the vectors in the subspace Ax. Therefore

Since this should be true for all x, we have

X, = (A~A)-~A%

Note that the solution in Eq. (B.22), which has been derived using a
geometrical approach, is identical to the least squares solution given
in Eq. (B.19). Thus the projection of b onto the space spanned by the
columns of A can be written as

A

b = % = A(A~A)-~A% = n,

where P is the projection matrix.

B.3 Probability

Sample Set

A set U which consists of all possible outcomes of a random
experiment is called sample space. The sample space corresponds to
the universal set.

Event

An event A E U is a set of possible outcomes. If the events A and B
do not have any element in common, then they are called mutually
exclusive events.

Mathematical Preliminaries

Random Variable

A random variable Xis a function that maps the outcome of a random
event, i.e., each point of a sample space into real scalar values. A
random variable which takes discrete values is called a discrete
random variable, and the one which assumes continuous values is
called a continuous random variable. A vector random variable X is
a vector whose components Xi are random variables.

Definition of Probabllity

Classical or a prioriapproach: If an event A can occur in h
different ways out of a total number of n possible ways, all of which
are equally likely, then the probability P(A) of the event A is defined

Frequency or a posteriori approach: If aRer n repetitions of an
experiment, where n is very large, an event A is observed to occur in

h
h of these, then the probability PtA) of the event A is defined as ; .

Axioms of Probabllity

P(A) is defined as the probability of an event A if it satisfies the
following three axioms:

Al: 0 I P(A) I 1

A3: For any sequence of mutually exclusive events Al, A2, ...

Important Properties of Probablllty

1. If g denotes an empty set, then

P($) = 0 ,

2. If A is the complement of A, then

P(Z) = 1 7 P(A)

3. If A and B are any two events, then

P(A u B) = P(A) + P(B) - P(A n B)

Probability 359

Condltlonal Probablllty

Let A, B s X be two events such that P(A) > 0. Then the probability
of B given that A has o c c m d , i.e., conditional probability of B given
A, is defined as

P(A n B)
P(BIA) - p(A) (B.26)

Independent Events

The event A s X is called independent of the event B s X if and only
if P(A I B) = P(A).

Bayes Theorem

Let Al, A2, ..., An are mutually exclusive events such that
dk, Ak = U. If one of the events must occur, then

Probablllty Dlstrlbutlon

For the discrete case, the function p(x) = P(X=x) is a probability
distribution of the random variable X if p(x) 1 0 and Z p(x) = 1. For a
continuous case p(x) is called a probability density function, if
p(x) 1 0 and Ip(x)& = 1.

Expectation or Mean

For a discrete random variable X with the possible values xl, x2, ...,
x,, the expectation or mean is defined as

provided the series converges absolutely.
For a continuous case

Variance

The variance of a random variable X is

360 Mathematical Preliminaries

The positive square root of the variance is called standard deviation
and is given by

Uniform Distribution

A uniform probability distribution between a and b for a random
variable X is defined as

for a l x l b
u(x) = (B.32)

otherwise

The mean and variance of the uniform probability distribution are

1 1 Em = 5 (a + b) and Var(X) = - (b - a12 (B.33)
12

~inomlai Distribution

If each experiment is identical, i.e., each experiment has the same
sample space and same probability distribution on its events, then
the experiments are called trials. Repeated independent trials are
called Bentoulli trials if there are only two possible outcomes for each
trial and their probabilities remain the same throughout the trials.
Let q be the probability that an event will occur in a single Bernoulli
trial. Then (1 - q) is the probability that the event will fail to occur
in any single trial. The probability that the event will happen exactly x
times in n 2 0 trials is given by the binomial distribution of order n

b(x; n, q) = P(X= x) = q"(1- 9)"- for x = 0,1, ..., n [i I
where the random variable X denotes the number of successes in n
trials.

The mean and variance of the binomial distribution are

Univariate Gaussian Distribution

The function defined by

N(x, CL, 0) =
1

is known as the Gaussian distribution of the random variabie X with
mean p and variance $.

.Aqpqp!s
uraqqod jo samseam warm amos aqpsap 11p eM uopas sryl UI

'tzqtzp qndu! ay? y rmraqqtzd aq jo Aqqpuqs ayq uo spuadap urqqpoSp
%u!u.mal o jo aouwnuopad ay? 'a~dma JOJ .qxaquoo quaJaBq u!
qso*au Iomau 1tzpgg.m u! sloaddo amstzam Aqp~p~s jo uopou aq,

-3 xyom aouwp~oo puw fl ioqzia~ uwam yqp
quanodmoo qq ay? jo uopnqpqsq Aqg'qoqmd ay? s! (9 'M 'x)!~ a.rayM

se pauyap s~ squauodmoo mzrssntzy)
aqtzq~ypm I y?~ uopnqysq ampv uwlssntq) ayq jo uorqmba aq,

aiayM '2 sqqilla~ amqxy yqp novodard
amos u! suopnqysp uw!ssnoy) qoqA!qpm jo Aos) Jaqmnu
aqpy jo ampp tz aAoy aM uovquqsq am- mzrssntzy) B UI

se pangap x xyom aouwpnoo
aq, *x xgwm awq~oo puw JIPYT1 '-.-- 'W '1111 = fl mpaA wam qqp
uopnqgsq wpsno~ aqopAwm w 1oj uo~qoqou o 81 (x 'rl k)~ aiayM

362 Mathematical Preliminaries

A broad class of measures of similarity between two patterns is
based on metric distance measures. A distance measure d between two
M-dimensional pattern vectors x and y is called a metric if it satisfies

(a) d(x, y) 2 0 and d(- y) = 0 iff X= y (positivity)

(b) 4- Y) = d (~ , X) (symmetry)

(4 4- Y) + d(Y, 2) 2 4 2 , X) (triangle inequality)

The most common example of this kind of distance measure is
Minkowski r-metric, which is given as follows:

The particular cases of the above distance measure are:

(a) When r = 1 and xi, yi E (0, I), dr refers to Hamming distance.

(b) When r = 2, dr refers to Euclidean distance.

(c) When r = =, dr refers to Chebyshev distance.

Two other metrics that are useful in the ANN context are:

(d) Absolute value distance or city block distance or 4 m n n

(e) Maximum value distance or L, norm

The distance between a pattern vector (x) and its mean vector
(p) of a Gaussian distribution is described in terms of the following
Mahalambis distance.

where C is the covariance matrix of the distribution. This distance is
also used in Eq. (B.37) of the multivariate Gaussian distribution.
When C is a diagonal matrix, dM becomes the weighted inner product.

A similarity measure between two pattern vedors need not be a
distance measure. For example, the cosine of the angle 8 subtended
between the vectors x and y can serve as a similarity measure. That is

The inner product 2 y alone can serve as a similarity measure. This
is also called cross correlation.

Similarity Measures 363

In some cases, we need to have a similarity measure between two
probability distributions {p .) and {qj) for discrete random variables.
Cross entropy or ~ullback-teibler measure is one such measure. The
cross entropy is defined as

The first term of Se, i.e. x p j log , is also used as a similarity ($1
J \ - /

measure. It is known as cross entropy of the distribution (pi) with
respect to the distribution {q,).

Appendix C

Basics of Gradient Descent
Methods

C.l Mean Squared Error

Gradient descent methods form the basis for many supervised
learning laws in artificial neural networks. We introduce the basics
of the gradient descent methods [widrow and Stearns, 19851 by consi-
dering a single layer, single unit network with linear output function,
namely the Adaline, 'as shown in Figure C.1. The error in the actual

Desired output

Activation Act

0 1
Wl m-

w, 4 w, 4

au wkl - Linear function

Figure C.l A single layer single linear unit network (Adaline).

T output for a given input vector a = (al, %, ..., aM) is given by
M

The squared error is given by

The input vector can be considered as a sample function of a
stationary random process [Papoulis, 19901. Then the mean squared
error is given by the expected value of e2 as follows:

Properties of the Autocorrelation Matrix R 365

where R = &[aaT is an M x M autocorrelation matrix with &[a,ai] as
its (i, j]th element, and pT = &[baT] = &[bal, baz, ..., baM lT. To find the
weights for minimum E, we take the gradient of the mean squared
error E(w). That is

aE(w) v = -
awT

Note that even though E is a scalar, ~ E I ~ W ~ is a vector with
components of gradient along each wi axis in the weight space. Setting
the gradient equal to zero, and solving the resulting normal equations
for the optimal set of weights w*, we get

V = 0 = 2Rw* - 2p
Therefore

w* = R 1 p

provided that R1 exists. The minimum error is obtained by substituting
w* for w in the Eq. ((3.3) for E. Therefore, we get after simplification

We can show that the mean squared error in Equation ((3.3) is given
by

E(w) = E,, + (W - w*lTR(w - w*)

= E,, + vTRv
where

V = W - W* = [vl, v2, . .a , vM] T

is a translated weight vector with origin at w = w*. This can be proved
by using the property that R is a symmetric matrix, i.e., RT = R.

C.2 Properties of the Autocorrelation Matrix R

The following properties of the autocorrelation matrix are useful for
studying the properties of the error function E(w) [Widrow and
Stearns, 19851.

(a) RT = R, RR-I =I and (R-')~ = R-l.

(b) Using the eigenvalues and eigenfunctions of R, we can get the
normal form representation of R as R = &A&-', where A is a
diagonal matrix consisting of the eigenvalues hi of R, and Q
is a matrix consisting of the eigenvectors of R. That is
Q = [ql, qZ, ..., %I. We also have Q-'RQ = A.

366 Basics of Gradient Descent Method9

(c) The eigenvectors corresponding to the distinct eigenvalues are
orthogonal to each other. That is qYqj= 0, for all i and j, and
i + j .

(d) Since R is a real and symmetric matrix, all its eigenvalues
are real, and each eigenvalue is greater than or equal to zero.

(e) If all the eigenvectors are normalized to unit magnitude, then
the resulting set of eigenvedors are orthonormal. That is
QQT = I = QQ-'. Hence QT = &'.

C.3 Prooerties of the Mean Squared Error q w)
E(w) is a quadratic function of the components of the vedor w. That
is, in E(w), when expanded, the elements of w will appear in first
and second degrees only. Thus the error surface E(w) is a hyperboloid
in the weight space. Since E(w) is a squared error, Emh is the
minimum value of the squared error. Therefore we have

E(w) 2 E,, 2 0
and

vTRv = E(w) - Emh 2 0

Note that vTRv is also quadratic function of the components of the
vector v. The error surface E(w) is a bowl-shaped surface. F'igure C.2

Figure C.2 Constant error contour^ for the quadratic error Burface.

shows constant error contours of an error surface for a two
dimensional case. The term V ~ R V represents a hyperellipse, which in
the two dimensional weight space is an ellipse with two principal
axes as shown in Figure C.2, for different values of the constant in
the equation

vTRv = constant (C.10)

Newton's Gradient Search Method 367

Any increase in the radius from the v = 0 point increases the error.
Therefore, the gradient of E(w) with respect to v is always positive.

Expressing R as &AQT in Eq. (C.8)) and using d = QTv, we get

With the transformed coordinates v', the axes are along the two
principal axes of the ellipses in the weight space as shown in
Figure C.2. It can be shown that the eigenvectors of the matrix R
define these principal axes of the hyperellipses formed by the error
surface. Since

the eigenvalues of R are given by the second derivative of the error
surface with respect to the principal axes, i.e.,

We want to find w for which E(w) is minimum. For a quadratic error
surface the minimum of E(w) occurs at a point w* in the weight space
at which the gradient of the error surface is zero. Therefore the
gradient of

E(w) = E,, + (W - w*)~R(w - w*) (C. 14)
is given by

Multiplying both sides with R1 and rearranging, we get

Note that 2~ w 1 - = 2R. Thus R 'V can be interpreted as the ratio
dW2

of the first derivative to the second derivative of the error with respect
to the weight in 1-D case. From Equation (C.16), we note that,
starting fiom any initial value of the weight vector w, the optimum
weight vector w* can be obtained in one step, provided the first and
the second derivatives of the error surface are known at that initial
point in the weight space.

C.4 Newton's Gradient Search Method

The optimum weight value can also be captured in an iterative
manner by writing

w (~ + 1) = ~ (m) - rl R ~ V , (c.17)

368 Basics of Gradient Descent Methods

where q is a positive constant. This is called Newton's gradient search
method. This is useful only when the approximate values of the first
and second derivatives of the error surface are available at each point.

We can show that the Newton's method converges to the optimal
weight w*. Let us rewrite Eq. ((3.16) as

where V, = V a t w = w(m) . Therefore from Eqs. (C.17) and ((2.18) we
get

w (m + 1) = w (m) - 2q(w(m) - w*). = w (m) (l - 2q) + 2qw' ((2.19)

Starting with an initial weight of w(O), we get

w (m) = w* + (1 - 2 q) m (~ (0) - w*) (C.20)

Since w (0) - w* is fixed, w (m) converges to w*, provided
0 < 2n 1, i.e., 0 < 11 5 l12. The one step solution is obtained for
q = &2 as shown in Eq. ((2.16).

For a known quadratic error surface E(w), the first and second
derivatives are known exactly for all values of w. Hence the optimum
weight vector can be obtained in one step as in Eq. (C.16). But if the
error surface E(w), though quadratic, is not known exactly, then'the
computation needs to be iterative as in Eq. (C.17). If the error surface
is not quadratic, then the Newton's method is not guaranteed to
converge to the final value, starting from any arbitrary weight value.
In the Newton's method the steps do not proceed along the direction
of the gradient.

C.5 Method of Steepest Descent

If the weights are adjusted in the direction of the negative gradient
at each step, as shown in Figure C.3, then the method is called
steepest descent. For the method of steepest descent, the weight
update is given by

w (m + 1) = w (m) + p (- V,) (C.21)

where p regulates the step size, and V , is the gradient of the error
surface at w = w (m) . Substituting for V , from Eq. (C.18) we get

Method of Steepest Descent

Newton's method
(the path is approxi-
mately along the

+
w,

Figure C.3 Illustration of trajectories in the weight space for different
gradient descent methods.

w(m + 1) = w(m) - 2@(w(m) - w*)

In terms of v = w - w* (translation), we get

If we rotate the principal axes by substituting v = Qv' in Eq. (C.231,
we get

Qv'(m + 1) = (I - 2pR) Qv'(m) (C.24)

Multiplying both sides by Q-', we get

Therefore, starting with m = 0, we get

This result will be stable and convergent if

lim (I - 2pA)m = 0
m + -

The convergence condition is satisfied by choosing

where ha, is the largest eigenvalue of R. After convergence

370 Basics of Gradient Descent Methods

lim v'(m) = 0
m - + -

Hence
lim w(m) = w'

m - + -

Figure C.3 shows the trajectory of the path for the method of steepest
descent. The Newton's method converges faster because it uses the
information in the R matrix to find a path close to the direct path on
the error surface towards Emh. Note that only the first derivative of
E(w) is required for the steepest descent, whereas both the first and
the second derivatives of E(w) are needed for the Newton's method.

C.6 The LMS Algorithm

Since the gradient of the error surface is not available in general, it
needs to be estimated from the available data. If we assume that the
input vector a(m) and the desired output b(m) are the realization of
a random process at the mth instant, then the error e(m) =
b(m) - aT(m)w(m) is also a random variable.

One method of estimating the gradient is to use an estimate of
the gradient of the error by taking differences between short-term
averages of e2(m). But in the LMS algorithm we use each realization
e2(m) itself instead of &[e2(m)1 as in Eq..(C.3). The estimate of the
gradient a t each realization is given by

Using this estimate, the steepest descent algorithm is given by

This is called the LMS algorithm. Each component of the gradient
vector is obtained from a single data sample. Without averaging, the
gradient components do contain a large component of noise, but noise
is attenuated with time by the weight adaptation process, which acts
as a low-pass filter in this respect.

By taking expectation on both sides of Eq. (C.31), it can be shown
1

that the weight vector converges in the mean provided 0 < p < -
2 L '

The LMS Algorithm 37 1

where &, is the largest eigenvalue of R [Widrow and Stearns, 19851.
But we know that &,I tr[Al= tr[Rl. If the input is considered as a
signal vector, then tr[Rl gives sum of the diagonal elements of R.
Each element is of the type E[aa, which can be viewed as signal
power. Therefore, tr[R] is equal to the signal power. Hence

o < p < 1 1
I-

2 (signal poweo 2 A,,,,

This gives an idea for the choice of p based on the input data. The
LMS algorithm is a stochastic gradient descent algorithm. Although
the algorithm converges in the mean, the trajectory in the weight
space is random.

Table 4.5 in Chapter 4 gives a summary of the gradient search
methods discussed in this Appendix.

Appendix D

Generalization in Neural
Networks: An overview

In this Appendix we present an overview of the issues of generaliza-
tion in neural networks. The material in this section is collected from
[Neeharika, 19961.

D.1 Concept of Generalization
Generalization is an intuitive concept unique to human learning. For
example, we learn the concept of addition of numbers by looking at
several examples of addition along with some explanation provided
by the teacher. Likewise, we learn the pattern embedded in the
written character by observing and by writing several examples of
the same character. Thus learning from examples with additional
knowledge forms the basis of the concept of generalization.

Generalization by learning fimm examples is possible because of
some inherent features ,in the input patterns or because of some
constraints inherent in the mapping function. Learning, and hence
generalization, is not possible if we are presented with a set of random
data as examples. Therefore all problem situations are not generalizable.

Atter learning we are capable of dealing with new situations such
as a new addition problem or a new sample of a character. Our ability
to deal with new situations can be evaluated by testing ourselves
with several new examples for which we know the answers for
comparison. If our performance with this so called test data is better,
then we can say that our ability to generalize is also better.
Performance of a pattern recognition system depends on its ability
to generalize from the training examples. Generalization concept is
involved in all pattern recognition tasks, such as classification,
mapping, storage and clustering. For example, in pattern mapping,
it is the smoothness of the mapping function that makes
generalization by a network possible. Likewise, in pattern clustering,
it is the common feature in each cluster that enables the network to
generalize the concept in a given cluster.

Some Measures of Generalization
1*

D.2 Some Measures of Generallzatlon
Analytical studies on generalization use models for the learning
machine [Blumer et al, 1989; Haussler, 1992; Amari, 1995; Seung
et al, 19921. Various methods of measuring generalization are used
in practice [Liu, 1995; Musavi et al, 19941. We discuss some of the
methods in this section.

D.2.1 Kullback-Lelbler Measure

The Kullback-Leibler measure (Ern) is given by the following
equation:

where p(y 1 x) is the class conditional probability distribution of the
sample space and f d y (x) is the function approximated by the neural
network after training using the training set Tk = ((xl, yl), ..., (xk,
y,)) consisting of k examples. The integral in Eq. (D.1) is over the
input-output space. The Eq. (D.1) can be written as

where E is the expectation operator with respect to the random
variables (x, y).

The value of Ern is equal to zero when the function approximated
by the neural network is equal to the actual function, i.e.,
fw(y I x) = p(y (x). Since the second term in Eq. (D.2) is independent
of the weights, the first term can be used to define the generalization
error. That is

E, = - EDog(f,(y Ix))l (D.3)

The Kullback-Leibler measure is useful for the networks designed for
classification purpose. The measure requires the knowledge of the
underlying probability distribution p(x, y), which is not known in many
cases. Therefore an alternative method of measuring generalization
ability is needed. One such measure is the cross-validation measure.

D.2.2 Cross-Valldatlon and Error Rate Measures

Cross-validation is a method of estimating the generalization error by
making use of the training and test data [Liu, 19951. In this method,
the generalization e m r E, in Eq. (D.3) can be estimated using

1 4 = -- log Giej I xj))
j r i

In the above equation (xj, yj) E Tk and is the weight vector

374 Genemlization in Neuml Networks: An overview
*I

obtained by using the training set Tk with its ith sample deleted. The
method of cross-validation to estimate the generalization error
involves training the network several times, each time by deleting a
different example from the training set. This is a computationally
expensive procedure.

The most commonly used measure of generalization for pattern
classification task is the percentage misclassification of the test
samples or the error rate. This measure is extensively used because
it is simple and easy to implement. It can be viewed as a variation
of the cross-validation measure.

D.2.3 Other Measures of Generallzatlon

Generalization error can also be measured by the probability that the
output far the (k + 1)th sample is misclass3ed after the network is
trained on k examples of the training set [Anthony and Holden, 1994;
Holden and Rayner, 19951. It is given by

where fw (.) is the output of the neural network with weights w.
Another measure of generalization is based on the entropic error

[Ammi, 19931. It is defined as the negative logarithm of the
pmbability of correct classification of the (k + 1)th pattern. The
entropic error is given by

ei(w, k) = - log (1 - eg(w, k)) (D.6)

It i a clear that when the probability of correct classification is one,
the value of the entropic error is zero.

D.3 Theoretical Studies on Generalization

D.3.t Learning Models

Theoretical studies on generalization make use of a model of learning.
The key idea is to compute the probability that the neural network
gives the correct output for new samples after learning from a
training set.

Let z = (x, y) be a sample from the input-output space, so that
p(z) = p(x, y). The goal in learning is to minimize the risk functional

R(w) = Q(z, w) ~ P (z) 0 7)
where Q(z, w) represents a measure of the loss or discrepancy
between the desired response y and the actual response produced by
the learning machine (defined by the weights w) for the input x. If
the probability measure p(z) is unknown, the minimization can be
carried out on the training set drawn from the input-output space.

Theoretical Studies on Generalization 375

All learning problem are particular cases of this general problem
of minimizing the risk functional based on empirical data. Learning
theory addresses the issues of consistency, convergence, generaliza-
tion and learning algorithm [Vapnik, 19951.

D.3.2 VC Dlmenslon

We consider the issue of generalization of a learning process in some
detail [Holden, 19941. Consider a network which has been trained
using a set of training examples for a particular problem. If there is
a !high enough' probability that the a c t d error from the network
for future samples drawn from the same problem is 'small enough',
then we say that the network generalizes.

This idea of the concept of generalization is used in the Probably
Approximately Correct (PAC) learning theory [Haussler, 19921, which
is based on the learning model introduced by Valiant [Valiant, 19841.
We detine some terms that are essential to understand the theoretical
results obtained in the PAC theory in the context of neural networks.
In the following definitions, Fdenotes the class of functions that can
be implemented by a neural network, fw represents one of the
members of this class for a particular value of weight vector w and
S is the input space.

Definition 1 (Dichotomy): Given a finite set S s RN and some
function fw E 2 we define the dichotomy (Sf, S-) of-S, where Sf and
S- are disjoint subsets of S. Here S US- = S and x E S+ if
fw(x) = 1, whereas x E S- if fw = 0.

Definition 2: The hypothesis hw associated with the function fw is
the subset of RN for which fw(x) = 1, that is,

The hypothesis space H computed by the neural network is the set
given by

H = { h w l w ~ $ w l } (D.9)

where I w 1 is the total number of weights in the network.

Definition 3: Given a hypothesis space H and a finite set S E R ~ ,
we define AH@) as the set

We say that S is shattemd by H, if AH@) = 21sl where IS (is the
number of elements of the set S.

376 Generalization in Neural Networks: An overview

Deflnltlon 4: Growth tunctlon. The growth function, A&), is
defined on the set of positive integers as,

A&) = max (I AH@) I
s s e , 1st =i

The growth function gives the maximum number of distinct
dichotomies induced by H for any set of i points.

Detlnltlon 5 (Vapnlk-Chervonenkls dlmenslon): The Vapnik-
Chervonenkis dimension or VC dimension of the hypothesis space
H, denoted by VCdim(H), is the largest integer i such that
A&) = 2'. In the case when no such i exists, VC dim(H) is infinity.

Figure D.l illustrates the shattering of 3 noncollinear points by
straight lines. A set of 3 noncollinear points is the largest set of pointa

Figure D.l Shattering of three noncollinear points by straight lines. The VC
dimension is three for straight linea in 2dimensional space on
a set of noncollinear pointe.

that can be shattered in a 2-dimensional space by straight lines.
Therefore the VC, dimension of the set of straight lines with respect
to a set of noncollinear pointa in a 2-dimensional space is 3.

VC dimension is a combinatorial parameter which measures the
expressive power of a network. VC dimension has been used
extensively to obtain the generalization ability of a trained network
[Blumer et al, 1989; Baum and Haussler, 1989; Sontag, 1992al. It
has been shown that it is not the size of the set of computable
functions but the VC dimension of the function that is crucial for
good generalization in the context of PAC learning model [Blumer
et al, 19891. The following key result on the bound of the
generalization error is given in [Haussler et al, 19941:

(D. 12)

where E is the expectation operator, L is the class of target functions
(like straight lines in 2-D plane) and k is the number of training
patterns.

Experiments conducted by Holden and Niranjan [I9941 on real data
have shown that the above bound is a moderately good approximation

Generalization in the Context of Feedforward Neural Networks 377

for the worst case generalization error. The results of bounds based
on the VC dimension cannot be used most of the time since it is
difficult to calculate the VC dimension. However the calculation of
VC dimensions for some classes of functions are reported in [Anthony
and Holden, 1994; Sontag, 1992a; Wenocur and Dudley, 19811.

D.3.3 Asymptotic Behavlour of Learning Curves

When the generalization error of a neural network is plotted against
the number of training patterns, then the resulting curve is called a
learning curve. The behaviour of the learning curve gives an idea about
the generalization capability of the trained network [Amari, 19951.

A universal result on the dependence of the entropic error
eJw, k) on the number of training samples is given by b a r i , 19931

where I w 1 stands for the number of weights, k for the number of
training samples and (ei(w, k)) indicates the average over all the
training data. This result is independent of the architecture of the
neural network and the learning algorithm used for training.

D.3.4 Dlscusslon

The VC dimension of a network can be regarded as a measure of
capacity or expressive power of a neural network. The number of
weights also indicates the capacity of a neural network. The genera-
lization error is directly proportional to the capacity of the network
and is inversely proportional to the number of training pattern.

In the case of Radial Basis Function Neural Networks (RBFNN),
I w I - 1 I VC dim (F) 5 1 w 1 , where Fis the family of functions that
a network can approximate and I w 1 is the number of weights
[Anthony and Holden, 19941. In the case of polynomial basis
networks, VC dim (F) = I w I . The bounds on the generalization error
obtained from computational learning and the behaviour of the
learning curves give essentially similar results. But in the
computational learning the worst case behaviour of the error is
studied, whereas in the learning curves case the average behaviour
is analyzed [Holden, 19941. Relationship between these theoretical
methods is discussed in [Seung et all 19921.

D.4 Generalization in the Context of Feedforward Neural
Networks

Pattern recognition tasks are usually complex, and cannot be solved
by designing a single algorithm to take care of all the variations in
the patterns [Lecun and Bengio, 1995bl. Generalization of a network

378 Generalization in Neuml Networks: An overview

depends on the features used for training, whereas the theoretical
learning models do not take into account the issue of feature
extraction. This is one of the major limitations of the neural networks
for the study of generalization.

Despite the above limitation, neural networks perform reasonably
well for pattern association problems because of their ability to learn
complex mappings in the higher dimensional space. In some cases
the generalization performance of a neural network can be improved
by manipulating the parameters of the network as follows:

Architecture of neural networks: Choice of an optimum architec-
ture is one of the methods to improve generalization. One way of
optimizing the architecture is by pruning, which is discussed in detail
in the survey paper by Reed [19931.

Size and quality of the training set: A large number of training
samples are useful for improving the generalization by a network.
One method of increasing the training set data is by introducing noise
into the training samples to generate new training examples
[Holmstrom and Koistnen, 19931. A good representation of the
training data also improves the generalization [Narendranath, 19951.

Learning algorithm: Methods to accelerate learning are proposed in
an effort to train a network with large number of examples [Jean
and Wang, 19941.

Criterlon for stopplng training: Figure D.2 gives plots showing the
behaviour of training and test error with number of training
iterations. Overtraining occurs due to memorization of the training
samples by the neural network. There is an increase in the
generalizationltest error even though the error on the training set
decreases with increase in the number of training iterations. Finding
a criterion for stopping the training is a key issue in the
generalization in feedforward neural networks.

A

Error

Number of training iterations

Figure D.2 Graph depicting overtraining. Generalization error is shown as
a function of number of iterations. There is an increase in the
generalizationltest error even though the error on the training
set decreases as the number of training iterations is increased.

Appendix E

Principal Component Neural
Networks: An overview

Neural networks have the ability to discover significant features in
the input data using self-organized unsupervised learning [Haykin,
1994; Linsker, 19881. The principal component neural network is a
self-organizing network which can perform principal component
analysis [Matsuoka and Kawamoto, 19941. In this Appendix we
present an overview of the principal component neural networks. The
material for this section is obtained from [Sudha, 19961.

E.l Basics of Principal Component Analysis

From statistical point of view, Principal Component Analysis (PCA)
is a method of representing the data points in a compact form [Jolliffe,
1986; Hotelling, 19331. Let us consider a data set D = {x lx E ~ ~ 1 .
This data set can be represented as points distributed in an
N-dimensional space. The first principal component is the direction
along which the points have maximum variance. The second principal
component is the direction orthogonal to the first component along
whidh' the variance is maximum for the data points, and so on for
the third, fourth, etc. For example, Figure E.l shows the directions
(PC1 and PC2) of the first and second principal components of the
data points distributed in a 2-dimensional plane.

-
XI

Figure E.l Directions of the principal components of the data points
distributed in a 2-dimensional space.

379

380 Principal Component Neural Network: An overview

It is possible to have an effective transformation x + y, where
x E !&N, y E Rp and p < N, when there is redundancy in the data
points. This is done by projecting the data points onto the principal
subspace formed by the &st p principal components, also called G j o r
components which capture the maximum variations among the points.
This forms the basis for dimensionality reduction, and the method of
data representation is commonly referred to as subspace decomposi-
tion. Approximation to the data point x reconstructed with minimum
error from the projections y onto the p largest principal component
directiom q s is given by

A N
The error vector e = x- x = Z yiqi is orthogonal to the

i=ptl

approximating data vector k, wGch is called the principle of
orthogonality. PCA is similar to the Karhunen+eve transformation
[Devijver and Kittler, 19881 in communication theory. The principal
component analysis is a data dependent transformation.

Extraction of the principal components can be done using the
covariance matrix, C = E[(x - Z) (X - @'PI of the data set, where
ii = Eb] is mean of the data set. The principal components are the
eigenvectors of the data covariance matrix C arranged in the
descending order of the eigenvalues [Haykin, 1994; Preisendorfer,
1988; Leon, 19901.

E.2 Need for Neural Networks in PCA

In practice we have only an estimate of the covariance matrix due to
limited data, whereaa the true covariance matrix is the ensemble
average of the stochastic process generating the data. Moreover, for
a nonstationary process, the principal components may vary with
time. Therefore direct computation of the principal components is
H c u l t , and is also not likely to be accurate.

On the other hand, a neural network can extract the principal
components directly from the data, by incrementally adjusting its
weights. Moreover, it is possible to extract the required number of
principal components by a neural network, instead of extracting all
the components as in the direct computation. For nonstationary
processes, the principal components are incrementally adjusted based
on the new input to the neural network.

With a single linear unit the simple unsupervised Hebbian
learning performs variance maximization, and hence gives the
direction of the f i s t principal component [Hebb, 1949; Palmieri and
Zhu, 19951. The supervised mean squared error learning for a linear

Principal Component Neural Networks (PCNN) 381

network can be interpreted as a sum of Hebbian and anti-Hebbian
learning components [Wang et al, 19951.

The main feature of the linear network is that the energy
landscape has a unique global minimum, and the principal component
learning converges to the global minimum. Both the gradient descent
and the Newton's type methods may get stuck in the saddle points
[Haykin, 1994; Hertz et al, 19911, Thus the principal component
learning is the best learning [Baldi and Hornik, 19891 for a linear
feedforward neural network.

E.3 Principal Component Neural Networks (PCNN)

E.3.1 Oja's Learning

The drawback of the Hebbian learning for principal component
analysis is that the weights may grow indefinitely with training or
they may tend to zero. This can be avoided by adding a stabilizing'
term. Oja modified the Hebbian learning rule which incorporates the
normalization of weights.

For a single linear unit shown in Figure E.2, the weight update
according to the Hebbian learning is given by

Figure E.2 Single linear unit model as a maximum eigefilter.

where q is the learning rate parameter, y(m) is the output of the
linear neuron and xj(m) is the jth component of the input pattern vector
at the mth iteration. After incorporating the normalization term in the
learning rule, the above equation leads to the following Oja's learning
rule [Oja, 1982; Yan et al, 1994; Zhang and Leung, 19951:

382 Principal Component Neural Network: An overview

The Oja's learning has two feedback terms: (a) The positive feed-
back or self-amplification term for the growth of the synaptic weight
wj(m) according to the external input xJ{m). (b) The negative feed-
back term due to the term -y(m) wj(m) for controlling the growth,
thereby resulting in the stabilization of the synaptic weight wj(m).

The weights converge to the first principal component of the input
distribution as shown below:

Substituting y(m) = g(m)w(m) = wT(m)x(m) in Eq. (E.21, we get

Taking statistical expectation on both sides, for large m, we should
get &[Awl = 0. Therefore,

where w(m) + qo as m + m and R = &[x(m)xT(m)]. qo is the
eigenvector of the correlation matrix R corresponding to the largest
eigenvalue [Haykin, 19941.

E.3.2 Learnlng Principal Subspace

Oja extended the single unit case to multiple units to extract the
principal subspace [Oja, 19891. The learning algorithm is given by

where wii is the weight connecting the jth input with the ith unit.
Here the weights will not tend to the eigenvectors but only to a set
of rotated basis vectors which span the principal subspace
corresponding to the first p principal components.

E.3.3 Multiple Principal Component Extraction: Generalized
Hebblan Algorithm

By combining the Oja's rule and the Gram-Schmidt orthonorma-
lization process, Sanger modified the subspace network learning
algorithm to compute the first p principal components of a stationary
process simultaneously [Sanger, 19891. A feedforward neural network
with a single layer of linear units (M inputs and p outputs) as shown
in the Figure E.3 performs the principal component analysis of the
input data. The Generalized Hebbian learning Algorithm (GHA) is
given by - -,

i

AwQ(m) = q yi(m) wh(m)yb(m) , for j = 1,2, . .., M l
and i = 1,2, . . ., p

Principal Component Neuml Networks (PCNN)

XI =I x,

Figure E.3 Single layer of linear unita for multiple principal component
extraction.

and the output yi(m) of the ith unit is

j = 1

In the GHA the modified form of the input vector is given by

(a) For the first unit, i = 1 and f ,(m) = x(m). The GHA reduces
to the Oja's learning rule. So it extracts the first principal
component.

(b) For the second unit, i = 2 and %(m) = x(m) - wl(m)yl(m). The
second unit sees an input vector %(m) in which the component
corresponding to the first eigenvector of the correlation matrix
R has been removed. So the second unit extracts the first
principal component of %(m) which is equivalent to the second
principal component of x(m).

(c) Proceeding in this fashion, the outputs of the units extract the
principal components of x(m) in the decreasing order of the
eigenvalues.

E.3.4 Adaptive Principal Component Extraction

Principal components can be extracted one by one recursively. By
including anti-Hebbian feedback connections [Palmieri et al., 19931 in
the network, the outputs of the units define a coordinate system in
which there are no correlations even when the incoming signals have
strong correlations. Foldiak [Foldiak, 19891 developed a procedure
which uses anti-Hebbian connections between every pair of network

384 Principal Component Neural Network: An overview

outputs to orthogonalize the weight vectors. Kung and Diamantaras
developed an algorithm called Adaptive Principal Component
Extraction (APEX) for recursive computation of the principal
components based on a sequential training scheme which uses anti-
Hebbian weights from the already trained units to the unit that is
currently being trained Kung and Diamantaras, 1990; Kung and
Diamantaras, 19941. Using this scheme, one can adaptively increase
the number of units needed for the principal component extraction.
The architecture of the APEX network is shown in the F'igure E.4.

Figure E.4 APEX network architecture for multiple principal component
extraction.

There are two kinds of synaptic connections in the network:

(a) Feedforward connections from the input to each of the units
which operate in accordance with the Hebbian learning rule.
They are excitatory and therefore provide self-amplification.

(b) Lateral connections to a unit from the outputs of the previous
units, which operate in accordance with anti-Hebbian learning
rule, which has the effect of making them inhibitory.

The output of the ith unit is given by

where the feedforward weight vector wi(m) = [wil(m), ..., wN(m)lT,
the feedback weight vector vi(m) = [vil(m), ..., vici-l,(m)lT and the
feedback signal vector yi(m) = b1(m), . . ., yi-l(m)lT.

The feedforward and lateral connection weights are updated as
follows :

where the term yi(m)x(m) represents the Hebbian learning, and the
term -yi(m)yi-,(m) represents the anti-Hebbian learning. The

Principal Component Neunzl Networks (PCNN) 385

remaining terms are included for the stability of the algorithm. In
the following sections some PCNNs designed for specific situations
are discussed.

E.3.5 Crosscorrelatlon Neural Network Model

The neural network models discussed in the previous sections extract
the principal components of the autocorrelation matrix of the input
data. A crosscorrelation neural network model [Diamantaras and
Kung, 19941 performs Singular Value Decomposition (SVD) [Leon,
19901 of the crosscorrelation matrix of two signals generated by two
different stochastic processes which are related to each other. The
principal singular vectors of the crosscorrelation matrix encode the
directions in both the spaces of the stochastic procesBes, that support
the major common features of both the signals. The learning rule is
an extension of the Hebbian rule called the mutual or cross-coupled
Hebbian rule, and it can be considered as a crosscorrelation
asymmetric PCA problem [Kung, 19931.

The SVD of the crosscorrelation matrix C = E [~ X T] of two
stochastic signals, x and y is given by C = U X p, where U is the
matrix containing left singular vectors which span the column space
of the matrix C (eigenvectors of C C ~) and V contains the right
singular vectors which span the row space of the matrix C (eigen-
vectors of cTC). The mutual Hebbian rule extracts both the left and
right singular subspaces.

Consider two linear units as shown in the Figure E.5 with inputs
x E $M, y E $N, and outputs

Figure E.5 Crosscorrelation neural network model for performing SVD of
crosscorrelation matrix of two stochastic signals x and y.

386 Principal Component Neural Network: An overview

a = WTx and b = Ty
The cross-coupled Hebbian rule that updates the weights of any one
of the two units is based on the correlation between the input of this
unit and &e output of the other unit and hence the name of the rule.

where q is the learning rate parameter. In order to maintain stability,
the weights are normalized and the resultant update rule becomes

Ax(m) = ~ (m + 1) - w(m) = q [x(m) - w(m)a(m)l b(m)

By maximizing the crosscorrelation cost

where R, is the crosscorrelation matrix, the solution for the weight
vectors converges to the principal singular vectors [Leon, 19901.

E.3.6 Hlgher Order Correlation Learning Network

The Oja's learning does not capture the higher order statistics in the
input data. A higher order unit Paylor and Coombes, 19931, which
accepts inputs from more than one channel, is capable of capturing
the higher order statistics of the input. Figure E.6 shows a higher

Figure E.6 Higher order neuron model for learning higher order statistics
of the input.

Principal Component Neural Networks (PCNN) 387

order unit consisting of a set of higher order connection weights,
wi, wc, W U ~ , . .., such that the output of the unit is given by

where

xi denotes the ith component of an M-dimensional input vector x, K
is called the order of the unit, Q, is a nonlinear function such as
sigmoid.

E.3.7 Noniinear PCNN and Independent Component Anaiysis

Normally the PCNN is a single layer linear feedforward neural
network. Nonlinear units in the network introduces higher order
statistics into computation. The weight vectors become independent
of each other and they need not be orthogonal. The network thus
performs an Independent Component Analysis (ICA) [Comon, 1994;
Cardoso, 1989; Karhunen and Joutsensalo, 19951. This helps in
separating the independent subsignals from their mixture. The
nonlinear learning algorithm of ICA may get caught easily in a local
minimum.

ICA provides independence, whereas PCA provides only
decorre2ation [Jutten and Herault, 19881. The principal component
basis vectors are orthogonal, whereas the ICA basis vedors may not
be orthogonal. Principal components can be ordered according to their
eigenvalues. But in the case of ICA, the coordinates are independent
of each other. ICA involves higher order statistical moments while
PCA considers only the second order moments. PCA is useful for data
compression applications, whereas ICA is useful for signal separation
problems.

A simple illustration of the difference between PCA and ICA is
given in Figure E.7. Consider a 2-dimensional plane where the data
points are distributed inside a parallelogram [Burel, 19921. PCA finds
orthogonal coordinate axes (PC1 and PC2) where the maximum
dispersion is obtained on the first axis. The coordinate axes of ICA
(IC1 and IC2) are fully independent. Knowledge of IC1 does not give
any information about IC2.

Principal Component Neural Network: An overview

Figure E.7 Comparison of principal component analysis and independent
component analysis.

A summary of the principal component neural networks is given
in Table E.1.

Table E.1 Summary of Principal Component Neural Networks

1; A linear unit model as a maximum eigedter
Oja's learning rule: A normalized Hebbian learning algorithm.
Extracts the first Principal Component (PC).

2. Principal subspace extraction with a layer of neurona
Oja's p-unit learning algorithm
Extracts pdimensional subspace with p units.

3. Multiple principal component extraction
Generalized Hebbian learning algorithm: Sanger's rule.
Extracts the first p PCs using a single layer linear feedforward neural
network with p units.

4. Adaptive principal component extraction
Computes PCs one by one recursively.
Anti-Hebbian lateral connections in the output.

5. Crosscorrelation neural network model
Crosscoupled Hebbian rule.
Performs SVD of the crosscorrelation matrix of two stochastic signals.

6. Higher order correlation learning network

Learns the higher order statistics of the input data.

7. Nonliuear PCNN
Nonlinear learning algorithm.
Performs Independent Component Analysis.
Used for blind separation of independent source signals from their
mixture in the received signal.

Applications of PCNN

E.4 Applications of PCNN
Applications of PCNN are based on two kinds of data: (a) Statistical
data in which the data vector is considered as a point in an
N-dimensional space. (b) Temporal data in which the data vector is
a segment of sampled signal.

E.4.1 General Appllcatlons

These applications consider the statistical data.

Data compression: The dimensionality reduction property of PCA
forms the basis for data compression.

Compensatlon of mlsallgnment of an Image. The misalignment of
an image due to rotation andlor translation is compensated by finding
the principal eigenvector of the image and aligning it with the new
coordinate system.

PCA as a preprocessor: The projections of a data vector onto the
principal components are uncorrelated to each other. When these
components are given as input to a neural network classifier, the
convergence of the network improves [Veckovnik et al, 19901.

Evaluatlon of feature extraction technlques: If the data set is
made up of aggregate of several clusters, the separability of the
clusters can be improved using t,he projections of the clusters onto
the principal axes.

Subspace-based classification: Different classes of patterns have
different sets of principal components. The patterns of a class tend
to have larger projections on their own class components than any
other class components.

Generallzatlon measure: Generalization here means how well a new
pattern can be reconstructed [Baldi and Homik, 19891. The amount
of distortion in the new pattern can be interpreted as the distance of
the pattern point to the principal subspace.

Curve and surface fitting:Conventional total least square curve
fitting problem can be reduced to finding the minimum eigenvalue
and its corresponding normalized eigenvector of the input covariance
matrix [Xu and Suen, 19921. Higher order neural networks can
implement nonlinear decision boundaries [Taylor and Coombes, 19931.

Nolse cancellation by crosscorrelatlon neural network: In some
adaptive control applications, the crosscorrelation matrix represents
the unknown plant transfer function from inputs to outputs. The

390 Principal Component Neural Network: An overview

crosscorrelation neural network model can be potentially used for
filtering applications [Diamantaras and Kung, 19941 if we have a
priori knowledge of noise present in a signal.

E.4.2 Appllcatlons Specific to Signal Processing

In signal processing applications the data is a temporal data. Many
of the frequency estimation algorithms are based on the
eigendecomposition of the signals [Kay, 1988; Marple, 19871. PCNN
finds application in the problem of frequency estimation. The signal
and noise subspaces of the observed signal space can be estimated
by eigendecomposition of the autocorrelation matrix of observed
signal [Lee, 1992; Kung, 19931. In the eigendecomposition of the
autocorrelation of a signal with M complex sinusoids, the first M
eigenvectors corresponding to the large eigenvalues span the signal
subspace and the remaining span the noise subspace [Lee, 1992;
Kung, 1993; TuRs and Kumaresan, 1982; van der Veen, 19931.
Methods for estimating the frequencies by signal subspace are called
principal component frequency estimation. In the noise subspace
frequency estimation, the property that the noise subspace is
perpendicular to the signal subspace is applied Kay, 1988; Marple,
19871. By reconstructing the signal from the projections of the signal
onto the signal subspace eigenvectors, the noise in the signal is
considerably reduced. Thus PCNN can be applied for noise
suppression.

We can estimate the principal components of the input signal
using PCNN, and these estimated components can then be used for
frequency estimation algorithms such as MUSIC, Bartlett or
Pisarenko harmonic decomposition [Kay, 1988; Marple, 1987;
Karhunen and Joutsensalo, 19911. Recently, it was found that the
PCNN can be made to perform independent component analysis by
introducing nonlinearity in the learning algorithm [Karhunen and
Joutsensalo, 19941. The resultant network can be used for blind
separation of independent sources from an observed signal. This is
useful in sonar and speech for extracting different frequency
components present in the signal and hence tracking the changes in
these frequencies [Sudha, 19961.

Appendix F

Current Trends in Neural
Networks

Over the past few years there are attempts to combine ANN models
with other well-established paradigms, like evolutionary computation,
fuzzy logic, rough sets and chaos. In this Appendix, we briefly discuss
how these paradigms are being fused with the existing ANN models.

F. 1 Evolutionary Computation

Evolutionary Computation (EC) [Fogel, 19941 is a methodology that
encompasses a variety of population-based problem solving techniques
which mimic the natural process of Darwinian evolution. Current
research in the evolutionary computation has resulted in powerful
and versatile problem-solving mechanisms for global searching,
adaptation, learning and optimization for a variety of pattern
recognition tasks. The main techniques in evolutionary computation
are genetic algorithms ['Holland, 1975; Goldberg, 19891, genetic
programming [Koza, 19921, evolutionary strategies [Schwefel, 19811
and evolutionary programming [Fogel et al, 1966; Fogel, 1991; Fogel,
19951. Genetic algorithms deal with chromosomal operators, genetic
programming stresses on operators on general hierarchical
structures, evolution strategies emphasize on the behavioural changes
at the individual level, and evolutionary programming focusses on
the behavioural changes at the level of species. The common factor
underlying all these techniques is the emphasis on an ensemble of
solution structures, and on the evaluation and evolution of these
structures via specialized operators similar to a biological system in
response to an ever changing environment. Specifically, all the
techniques maintain a population of trial solutions, impose random
changes to those solutions, and incorporate selection to determine
which solutions are to be retained for future generation and which
are to be removed h m the pool of trial solutions. From a
mathematical point of view, all the EC techniques can be considered
as controlled, parallel, stochastic search, optimization techniques.

392 Current Trends in Neural Networks

Since the learning methods used in ANN depend on the optimization
of some objective function, it is possible to employ the methodology
of EC for learning the weights, for evolving the network architecture,
for developing a learning rule, for selection of an input feature and
so on lYao, 1993; Bornholdt and Graudenz, 19921. For instance, in a
MLFFNN the gradient-based local search methods can be substituted
by EC for determining the weights Porto et al, 1995; Saravanan and
Fogel, 1995; Miller et al, 19891. In some cases it may be possible to
exploit both the local search methods (like the gradient descent) and
the global search methods (like EC) simultaneously [Renders and
Flasse, 19961. The advantages of the local search methods are better
accuracy and fast computation. The disadvantages of the local search
methods are stagnation at some suboptimal solutions and sensitivity
to the initialization of weights. On the other hand EC is a global
search method which can avoid the local optima and the initialization
problems [Sarkar and Yegnanarayana, 1997al. However, EC can be
extremely slow in convergence to a good solution. This is because EC
uses minimal a priori knowledge, and does not exploit available local
information [Renders and Flasse, 19961. In fact EC is good for
exploration, whereas the gradient descent methods are good for
exploitation. Yao and Liu [Yao and Liu, 19971 have proposed a method
to evolve the topology (architecture and weights) of a MLFFNN by
using both the evolutionary programming and backpropagation
algorithm simultaneously.

EC-based techniques are successfully applied to configure RBF
networks for improving generalization [Whitehead, 1996; Billings and
Zheng, 19951. In [Angeline et al, 19941 the authors have used EC to
configure recurrent neural networks. Jockusch and Ritter [Jockusch
and Ritter, 19941 have introduced a training strategy to determine
the number of units for a SOM network automatically. EC has also
been used to find the optimal number of clusters present in the input
data [Sarkar and Yegnanarayana, 1996; Sarkar et al, 1997el. The
clustered output can be used to construct a probabilistic neural
network [Sarkar and Yegnanarayana, 1997bl. Attempts are being
made to explore the EC approach for simultaneously learning the
weights and evolving the architecture of a neural network Wao, 19931.
The problem of large search space for this type of problem can be
addressed by using parallel machines to implement the search
operation [Bhattacharya and Roysam, 19941. The search operation
can also be made more efficient and less time consuming by using
adaptive EC operators [Sarkar and Yegnanarayana, 1997al.

For some ANN related problems, EC appears to be a more
powerful optimization tool than the simulated annealing (SA), since
SA is a sequential search operation whereas EC is a parallel search
algorithm. In fact, we can say that EC is more than a parallel search.
Parallel search starts with a number of different paths and continues

Fuzzy Logic 393

until all the search paths get stuck in blind alleys or any one of them
finds the solution. EC also starts with P different paths, but it tries
to generate new paths that are better than the current paths. Thus
the EC-based search may be more efficient than the SA-based search
[Porto et al, 19951.

F.2 Fuzzy Logic
The concept of fuzzy sets was first introduced by L. Zadeh in 1965
[Zadeh, 19651 to represent vagueness present in human reasoning.
Fuzzy sets can be considered as a generalization of the classical set
theory. In a classical set an element of the universe either belongs
to or does not belong to the set. Thus the belongingness of an element
is crisp. In a fuzzy set the belongingness of an element can be a
continuous variable. Mathematically, a fuzzy set is a mapping (known
as membership function) from the universe of discourse to [O, 11. The
higher the membership value of an input pattern to a class, the more
is the belongingness of the pattern to the class. The membership
function is usually designed by taking into consideration the
requirements and constraints of the problem. One may obtain the
membership function from an expert (subjective computation) or from
the data (objective computation) [Bezdek and Pal, 19921. Fuzzy logic
deals with reasoning with fuzzy sets and fuzzy numbers. It is to be
noted that fuzzy uncertainty is different from probabilistic
uncertainty Wir and Folger, 1993; Klir and Yuan, 19951.

ANNs adopt numerical computations for learning. But numerical
quantities lack representative power in situations where the
information is expressed in linguistic terms only Lin and Lu, 19951.
The linguistic information can be incorporated using the membership
function values of the fuzzy sets. Use of the concepts of fuzzy sets in
ANNs is also supported by the fad that human reasoning does not
employ precise mathematical formulation [Pal and Majumder, 19861.
Spe&cally, the fuzzy set theory can be used in ANN at various levels
such as the input, output and target, and also for the weights, basis
functions and the output functions. Introduction of fuzzy set theory
into the perceptron learning algorithm makes the decision boundary
a soft one, so that the class labels of the input patterns can change
slowly from one class to another class, rather than abruptly [Keller
and Hunt, 19851.

In [Sarkar et al, 1998; Pal and Mitra, 19921 the network outputs
are interpreted as fizzy membership values. Learning laws are derived
by minimizing a fuzzy objective function in a gradient descent manner.
In [Sarkar and Yegnanarayana, 1997dl the concept of cross entropy was
extended to incorporate fuzzy set theory. Incorporation of fuzziness in
the objective functions led to better classiiication in many cases.

A neural network reinforcement learning algorithm, with

394 Current Trends in Neural Networks

linguistic critic signals like good, bad, is proposed in [Lin and Lu,
19951. The network was able to process and learn numerical
information as well as linguistic information in a control application.

In [Chung and Lee, 19941, three existing competitive learning
algorithms, namely the unsupervised competitive learning, learning
vector quantization, and frequency sensitive competitive learning, are
fuzzified to form a class of fuzzy competitive learning algorithms.
Unlike the crisp counterpart, where only one output unit wins, here
all the output units win with different degrees. Thus the concept of
win has been formulated as a fuzzy membership function. It has been
observed that this scheme leads to better convergence and better
classification performance.

In [Tsao et al, 19941 Kohonen's clustering network has been
generalized to its fuzzy counterpart. One advantage of this approach
is that the final weight vectors do not depend on the sequence of
presentation of the input vectors. Moreover, the method uses a
systematic approach to determine the learning rate parameter and
size of the neighbourhwd.

A fuzzy adaptive resonance theory model capable of rapid learning
of recognition categories in response to arbitrary sequence of binary
input patterns is proposed in [Carpenter et al, 1991~1. This
upgradation from binary ART1 to fuzzy ART is achieved by converting
the crisp logical operators used in the binary ART to the
corresponding fuzzy logical operators. As a result of this upgradation,
learning becomes fast and also the previously learned memories are
not erased rapidly in response to fluctuations in the input.

In Wang and Mendel, 19921 the authors have proposed fuzzy
basis functions to design an RBF network which can accept both
numerical inputs as well as fuzzy linguistic inputs. In [Pedrycz, 19921
Pedrycz has proposed a neural network model based on fuzzy logical
connectives. Instead of using linear basis function, he has utilized
fuzzy aggregation operators. This technique has been extended to a
more general case where the inhibitory and excitatory characteristics
of the inputs are captured using direct and complemented (i.e.,
negated) input signals ['Pedrycz and Rocha, 1993; Hirota and Pedrycz,
19941. The advantage of this approach is that the problem specific a
priori knowledge can be incorporated into the network.

In another development, Ishibuchi et al have proposed a learning
algorithm where the a priori knowledge in terms of fuzzy if-then rules
can be incorporated along with the information supplied by the
numerical data [Ishibuchi et al, 19931. This type of approach has been
used for both function approximation and classification. Fuzzy set
theory has also been employed to speed up the training of an ANN.
In [Choi et al, 19921, a fuzzy rule base is used to dynamically adapt
the learning rate and momentum parameters of a MLFFNN with
backpropagation learning algorithm.

Rough Sets 395

F.3 Rough Sets

In many classification tasks the aim is to form classes of objects which
may not be significantly different. These indiscernible or
indistinguishable objects are useful to build knowledge base
pertaining to the task. For example, if the objects are classified
according to colour (red, black) and shape (triangle, square and circle),
then the indiscernible classes are: red triangles, black squares, red
circles, etc. Thus these two attributes make a partition in the set of
objeds. Now if two red triangles with different areas belong to
different classes, then it is impossible for anyone to classify these two
red triangles based on the given two attributes. This kind of
uncertainty is referred to as rough uncertainty [Pawlak, 1982; Pawlak
et al, 19951. Pawlak formulated the rough uncertainty in terms of
rough sets. The rough uncertainty is completely avoided if we can
successfully extract all the essential features to represent different
objeds. But it may not be possible to guarantee this as our knowledge
about the system generating the data is limited. It must be noted
that rough uncertainty is different fiom fuzzy uncertainty [Dubois
and Prade, 19921.

In this section we briefly describe the formulation of rough sets.
In any classification problem, two input training patterns q and x,
(where q , x, E X) are indiscernible with respect to the 9th feature
when the 9th component of these two patterns have the same value.
Mathematically, it can be stated as x, Rq x, iff x, =xSq, where R

q
is

a binary relation over X x X . Obviously, R
q

is an equivalence relation
that partitions the universal set X into different equivalence classes.
Instead of taking only one feature, if we consider any two features
(say p th and qth), then we obtain some other equivalence relation
RPq and a new set of equivalence classes. This idea can be generalized
to take all known features into consideration. Let R be an equivalence
relation on the universal set X and XIR denote the family of all
equivalence classes induced on X by R. One such equivalence class
in XIR that contains x E X is designated by [x] ~ . In any classification
problem the objective is to approximate the given class A G X by XI R.
For the class A, we can define the lower R(A) and upper R_(A)
approximations, which approach A as closely as possibly from inside
and outside, respectively [Klir and Yuan, 19951. Here, R_(A) =
uI[xl, I [x] ~ EA, x E XI is the union of all equivalence classes in X (R
that are contained in A, and g(A) = u I[xIR I [xIR n A # $, x E Xj is the
union of all equivalence classes in X (R that overlap with A. A rough
set R(A) ~ R (A) , &A)) is a representation of the given set A by
R(A) - and R(A). The set difference R(A) -&A) is a rough description
of the boundary of A by the equivalence classes of XJR. The
approximation is free of rough uncertainty if R(A) =&(A). When all
the patterns from an equivalence class do not have the same class

396 Current Trends in Neural Networks

label, rough ambiguity is generated as a manifestation of the
one-to-many relationship between that equivalent class and the class
labels to which the patterns belong.

In ANN design one critical problem is to determine how many
input units are essential. Obviously, it depends on the number of
features present in the input data. Using rough sets it may be possible
to decrease the dimensionality of the input without losing any
information. A set of features is sufficient to classi. all the input
patterns if the rough ambiguity, i.e., the quantity (R@) -R_(A)), for
this set of features is equal to zero. Using this quantity it is possible
to select a proper set of features from the given data [Pawlak et al,
19881.

In a classiiication task all the features need not carry equal
weightage. Hence to facilitate the training as well as to improve the
accuracy of classification, it is better to give different weightage or
importance for each input feature. Suitable weightage can be derived
using the ideas of rough sets [Sarkar and Yegnanarayana, 1997~1.

The training of an ANN can be accelerated if the weights of the
networks are initially close to the desired ones. For this purpose
knowledge extracted from the training data through rough sets can be
used to initialize the ANN [Banejee et al, 19971. In [Pawlak et al, 19951
it was shown that for a classification task the number of lidden units
needed in a MLFFNN is equal to the minimal number of features needed
to represent the data set without increasing the rough uncertainty.

F.4 Chaos
In many physical systems there appears to be no relationship between
cause and effects. In these cases the uncertainty of the system
behaviour cannot be predicted using the standard statistical methods.
The apparent randomness may in fact be generated by small
differences in the initial values of the physical systems. Since the
whole process is absolutely deterministic, this type of uncertainty is
termed as deterministic chaos or simply chaos [Crubchfield et al, 19861.

Chaotic dynamics is known to exist in biological neural neb
works due to nonlinear processing units and their interaction due to
complex feedback mechanism [Harth, 19831. The stability-plasticity
phenomenon in the biological neural network is attributed to its
ability to convert the neural dynamics fiom highly ordered state to
chaotic state and vice versa. In order to realize some form of human
reasoning capability on machines it may be necessary to exploit the
phenomenon of chaos existing in the artificial neural networks. But
the sensitivity of feedback networks to initial input conditions makes
it difficult to come with any long term predictions about the behaviour
of the networks [Parker and Chua, 19871.

The dynamics of a feedback neural network is studied in terms

Chaos

of the equilibrium states that the network reaches starting from some
initial states. The equilibrium states can be characterized in term of
fixed point stability, oscillatory stability and chaotic stability. The
regions of oscillatory stability are termed as attractors. There can be
several other types of attractors like quasi-periodic and strange
attractors. The strange attractor is an example of chaotic attractor
Wasserman, 19931. In the state space the orbits of the strange
attractors sometimes diverge. But, the divergence cannot continue
forever as the state space is finite. So the attractors fold over onto
themselves. These stretching and folding operations continue
repeatedly, creating folds within folds. Consequently, chaotic
attractors generate a fractal-like' structure that reveals more and
more as it is increasingly magnified [Mandlebrot, 19831. This
stretching operation systematica,lly removes the initial information
and makes small scale uncertainty large. The folding operation also
removes the initial information. Jf we know the initial state of the
network with some uncertainty (due to measurement error), after a
short period of time the initial uncertainty covers the entire attractor
and all predictive power is lost. Thus there exists no relationship
between the past and the future, or the cause and the effects.

There are several avenues to exploit chaos under the ANN
paradigm. It is claimed that several limitations of ANNs are due to
its grossly oversimplified structure. For example, the output of an
artificial neuron is smooth, whereas the output of a biological neuron
forms a train of pulses. Hence, using Hodgkin-Huxley type cell
equations, attempts are being made to create complex artificial
neuron models to exploit the chaos generated by the cell equations.
Freeman and his co-workers have demonstrated that different kinds
of stimuli in animal cortex can be represented as chaotic attractors
Wao et al, 19901. They have successfully developed an artificial
olfactory model, where the artificial neurons exploit chaos for its
functioning misenberg et al, 19891.

Attempts are also being made to control the chaotic behaviour of
an artificial neuron [Hsu et al, 1996; Sompolinsky et al, 1988;
Hayashi, 1994; Ott et al, 1990; Hunt, 19911. The chaotic variables
may be neuron output activities and the control parameters may be
synaptic weights or external inputs [Blondeau et al, 19921. In many
cases the proposed models do not have any direct physiological
interpretation [Blondeau and Rivest, 19921.

Scientists are recently analyzing the chaotic dynamics of feedback
networks Wang, 19961. They are employing the periodic attractors
embedded in each chaotic attractor to store input patterns. Following
this strategy, in [Adachi and Aihara, 19971 a chaotic associative
memory was constructed. It has been observed that this type of model
has the possibility to store a large number of spatio-temporal patterns
[Andreyev et al, 19961.

Bibliography

IEEE Computer, Oct. 1996.

E. Aarts and J. Korst, Simulated Annealing and Boltzmann
Machines, New York: John Wiley, 1989.

D.H. Ackley, G.E. Hinton, and T.J. Sejnowski, "A learning
algorithm for Boltzmann machines", Cognitive Sci., vol. 9,
pp. 147-169, 1985.

M. Adachi and K. Aihara, "Associative dynamics in a chaotic
neural network", Neural Networks, vol. 10, no. 1, pp. 83-98,
Jan. 1997.

L. Adleman, "Molecular computation of solutions to
combinatorial problems", Science, no. 266, pp. 1021-1024,
1994.

I. Aleksander and H. Morton, An Introduction to Neural
Computing, London: Chapman and Hall, 1990.

S. Amari, "A theory of adaptive pattern classifiers", IEEE nuns .
Electronic Computers, vol. EC-16, pp. 299-307, 1967.

S. Amari, "Neural theory of association and concept-formation",
Biol. Cybernet., vol. 26, pp. 175-185, 1977.

S. Amari, "A universal theorem on learning curves", Neural
Networks, vol. 6, no. 2, pp. 161-166, 1993.

S. Amari, "Learning and statistical inference", in The Handbook
of Brain Theory a n d Neural Networks (M.A. Arbib, ed.),
Cambridge, MA: MIT Press, pp. 522-526, 1995.

D.J. Amit, H. Gutfreund, and H. Sompolinsky, "Spin-glass
models of neural networks", Physical Review Letters A, vol. 32,
pp. 1007-1018, 1985.

D.J. Amit, Modeling Brain Function: The World of Attractor
Neural Networks, Cambridge: Cambridge University Press,
1989.

D.J. Amit, H. Gutfreund, and H. Sompolinsky, "Statistical
mechanics of neural networks near saturation", Annals of
Physics, vol. 173, pp. 30-67, 1987.

400 Bibliography

S. Anderson, J.W.L. Merrill, and R. Port, "Dynamic speech
categorization with recurrent networksn, in Proceedings of the
1988 Connectionist Models Summer School (D.S; Touretzky,
G.E. Hinton, and T.J. Sejnowski, eds.), Morgan Kaufmann,
San Mateo, CA, pp. 398-406, 1989.

J. Anderson, J. Silverstein, S. Ritz, and R. Jones, "Distinctive
features, categorical perception, and probability learning: Some
applications of a neural modeln, Psychological Review, vol. 84,
pp. 413-451, 1977.

Y.V. Andreyev, Y.L. Belsky, A.S. Dmitriev, and D.A. Kuminov,
"Information processing using dynamic chaos: Neural network
implementationn, IEEE Trans. Neural Networks, vol. 7,
pp. 290-299, Mar. 1996.

P.J. Angeline, G.M. Saunders, and J.B. Pollack, "An evolutionary
algorithm that constructs recurrent neural networksn, IEEE
Dans. Neural Networks, vol. 5, pp. 54-65, Jan. 1994.

M. Anthony and S.B. Holden, "Quantifying generalization in
linearly weighted neural networksn, Complex Systems, vol. 8,
pp. 91-144, 1994.

W. Ashby, Design for a Brain, New York: Wiley & Sons, 1952.

P. Baldi and K. Hornik, "Neural networks and principal
component analysis: Learning from examples without local
miniman, Neural Networks, vol. 2, no. 1, pp. 53-58, 1989.

D.H. Ballard, "Modular learning in hierarchical neural
networksw, in Computational Neuroscience (E.L. Schwartz, ed.),
Cambridge, MA: MIT Press, pp. 139-153, 1990.

[221 M. Banejee, S. Mitra, and S.K. Pal, "Knowledge-based fizzy
MLP with rough setsn, in IEEE International Conference on
Neural Networks (Houston, USA), June 9-12, 1997.

[23] E. Barnard and D. Casasent, "Invariance and neural netsn,
IEEE Dans. Neural Networks, vol. 2, pp. 498-508, Sept. 1991.

[24] J.A. Barnden, "Artificial intelligence and neural networksn,
in The Handbook of Brain Theory and Neural Networks,
(M.A. Arbib, ed.), Cambridge, MA: MIT Press, pp. 98-102,
1995.

[25] A.G. Barto, "Reinforcement learning and adaptive critic
methodsn, in Handbook of Intelligent Control (D.A. White and
D.A. Sofge, eds.), New York: Van Nostrand-Reinhold, pp. 469-
491, 1992.

[26] A.G. Barto and P. Anandan, "Pattern recognizing stochastic
learning automatan, IEEE Trans. Systems, Man a n d
Cybernetics, vol. 15, no. 3, pp. 360-375, 1985.

Bibliography 4(n

A.G. Barto, R. Sutton, and C. Anderson, "Neuron-like adaptive
elements that can solve difficult learning control problems",
IEEE Duns. Systems, Man and Cybernetics, vol. SMC-13,
pp. 834-846, 1983.

R. Battiti, "First- and second-order methods for learning:
Between steepest descent and Newton's method", Neural
Computation, vol. 4, no. 2, pp. 141-166, 1992.

E. Baum and D. Haussler, "What size net gives valid
generalization?", Neural Computation, vol. 1, no. 1, pp. 151-
160, 1989.

W.G. Baxt, "Use of artificial neural network for data analysis
in clinical decision-making: The diagnosis of acute coronary
occlusion", Neural Computation, vol. 2, no. 4, pp. 480-489,
1990.

R.K Belew, 'When both individuals and populations search:
Adding simple learning to genetic algorithm", in Proceedings
of third International Conference on GA (George Mason
University), pp. 34-41, June 1989.

J.C. Bezdek, "A review of probabilistic, fuzzy and neural models
for pattern recognition", in Fuzzy Logic and Neural Network
Handbook (C.H. Chen, ed.), U.S.A., McGraw-Hill, pp. 2.1-2.33,
1996.

J.C. Bezdek and S.K Pal, Fuzzy Models for Pattern Recognition,
Eds., New York: IEEE Press, 1992.

A.K. Bhattacharya and B. Roysam, "Joint solution of low,
intermediate, and high level vision tasks by evolutionary
optimization: Application to computkr vision a t low SNR",
IEEE Duns. Neural Networks, vol. 5, pp. 83-95, Jan. 1994.

G.L. Bilbro, W.E. Snyder, S.J. Garnier, and J.W. Gault, "Mean
field annealing: A formalism for constructing GNC-
like algorithms", IEEE !Pans. Neural Networks, vol. 3, no. 1,
pp. 131-138, 1992.

S.A. Billings and G.L. Zheng, "Radial basis function network
configuration using genetic algorithms", Neural Networks,
vol. 8, no. 6, pp. 877-890, 1995.

K. Binder and D.W. Heerman, Monte Carlo Simulation in
Statistical Mechanics, Berlin: Springer-Verlag, 1988.

F.C. Blondeau and G. Chauvet, "Stable, oscillatory and chaotic
regimes in the dynamics of small neural networks with
delay", Neural Networks, vol. 5, no. 5, pp. 735-744, 1992.

A.L. Blum and R. Rivest, "Training a 3-node neural network
is NP-complete", Neural Networks, vol. 5, no. 1, pp. 117-128,
1992.

402 Bibliography

A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. Warmuth,
"Learnability and Vapnik-Chervonenkis dimensionw, Journal
of the American Computing Machinery, vol. 36, no. 4, pp. 929-
965, Oct. 1989.

S. Bornholdt and D. Graudenz, "General asymmetric neural
networks and structure design by genetic algorithmsw, Neural
Networks, vol. 5, no. 2, pp. 327-334, 1992.

N.K. Bose and F? Liang, Neural Network Fundamentals with
Graphs, Algorithms and Applications, McGraw-Hill, Int.
Editions, 1996.

D.G. Bounds, P.J. Lloyd, B. Mathew, and G. Wadell, "A
multilayer perceptron network for the diagnosis of low back
painw, in Proceedings of IEEE International Conference on
Neural Networks, vol. I1 (San Diego, CA), pp. 481-489, IEEE,
New York, 1988.

A.C. Bovik, M. Clark, and W.S. Geisler, "Multichannel texture
analysis using localized spatial filtersw, IEEE Duns. Pattern
Analysis and Machine Intelligence, vol. 12, pp. 55-73,
Jan. 1990.

D.S. Broomhead and D. Lowe, "Multivariate functional
interpolation and adaptive networksw, Complex Systems, vol. 2,
pp. 321-355, 1988.

G. Burel, "Blind separation of sources: A nonlinear neural
algorithmw, Neural Networks, vol. 5, no. 6, pp. 937-948, 1992.

C.J.C. Burges, ''Handwritten digit string recognitionw, in The
Handbook of Brain Theory and Neural Networks (M.A. Arbib,
ed.), Cambridge, MA: MIT Press, pp. 447-450, 1995.

G. Burke, "Neural networks: Brainy way to trade?", Futures,
pp. 34-36, Aug. 1992.

E.R. Caianiello, "Outline of a theory of thought-processes and
thinking machinesw, J. Theor. Biology, vol. 1, pp. 204-235, 1961.

J.F. Cardoso, 'Source separation using higher order momentsw,
Proceedings of IEEE Int. Conf Acoust., Speech, and Signal
Processing, vol. 4, pp. 2109-2112, 1989.

S.H. Cameron, "An estimate of the complexity requisite in a
universal decision network", Wright Air Development Division,
Report 60-600, 1960.

G.A. Carpenter, "Neural network models for pattern recognition
and associative memoryw, Neural Networks, vol. 2, pp. 243-
257, 1989.

G.A. Carpenter and S. Grossberg, "ART2: Self-organization of
stable category recognition codes for analog input patternsw,
Applied Optics, vol. 26, no. 23, pp. 4919-4930, 1987.

G.A. Carpenter and S. Grossberg, "The ART of adaptive pattern
recognition by a self-organization neural network", ZEEE
Computer, vol. 21, no. 3, pp. 77-88, 1988.

G.A. Carpenter and S. Grossberg, "ART3: Hierarchical search
using chemical transmitters in self-organis\ing pattern
recognition architectures", Neural Networks, vol. 3, no. 2,
pp. 129-152, 1990.

G.A. Carpenter and S. Grossberg, "Learning, categorization,
rule formation, and prediction by fuzzy neural networks", in
Fuzzy Logic and Neural Network Handbook (C.H. Chen, ed.),
New York, McGraw-Hill Inc., pp. 1.3-1.45, 1996.

G.A. Carpenter, S. Grossberg, and J.H. Reynolds, "ARTMAP:
Supervised real-time learning and classification of non-
stationary data by a self-organising neural network", Neural
Networks, vol. 4, no. 5, pp. 565-588, 1991a.

G.A. Carpenter, S. Grossberg, and D.B. Rosen, "ART2-A: An
adaptive resonance algorithm for rapid category learning and
recognition", Neural Networks, vol. 4, no. 4, pp. 493-504, 1991b.

G.A. Carpenter, S. Grossberg, and D.B. Rosen, "Fuzzy ART
Fast stable learning and categorization of analog patterns by
an adaptive resonance system", Neural Networks, vol. 4,
pp. 759-771, 1991c.

EL. Casselman, D.E Freeman, D.A. Kerringan, S.E. Lane, N.H.
Millstrom, and W.G. Nichols, Jr., "A neural network-based /

passive sonar detection and classification design with a low
false alarm rate", in ZEEE Conference on Neural Networks for
Ocean Engineering (Washington, DC), pp. 49-55, 1991.

C. Chandrasekhar, Neural Network Models for Recognition of
Stop-Consonant-Vowel (SCV) Segments in Continuous Speech,
PhD thesis, Department of Computer Science and Engineering,
Indian Institute of Technology, Madras, India, Apr. 1996.

C. Chandrasekhar and B. Yegnanarayana, "Recognition of stop-
consonant-vowel (SCV) segments in continuous speech using
neural network models", Journal of Institution of Electronics
and lklecornrnunication Engineers (ZETE), vol. 42, pp. 269-
280, July-October 1996.

R. Chellappa, B.S. Manjunath, and T. Simchony, "Texture
segmentation with neural networks", in Neural Networks for
Signal Processing (B. Kosko, ed.), Englewood Cliffs, NJ:
Prentice-Hall, 1992.

C.H. Chen, Fuzzy Logic and Neural Network Handbook, New
York: McGraw-Hill Inc, 1996.

Bibliography

V. Cherkassky and N. Vassilas, "Performance of back
propagation netwarks for associative database retrieval", in
Proceedings of International Joint Conference on Neural
Networks, Washington D.C., vol. I, pp. 77-84, 1989.

J. Cheung and M. Omidvar, "Mathematical analysis of learning
behaviour of neuronal models", in Proceedings of the 1987 IEEE
Confirence on Neural Information Processing Systems-Natural
and Synthetic (D.Z. Anderson, ed.), New York, American
Institute of Physics, pp. 165-173, 1988.

J.J. Choi, R.J. Arabshahi, R.J. Marks, and T.P. Caudell, "Fuzzy
parameter adaptation in neural systems", in Proceedings of
IEEE International Joint Conference on Neural Networks,
vol. 1 (Baltimore, MD), pp. 232-238, 1992.

F.L. Chung and T. Lee, "Fuzzy competitive learning", Neural
Networks, vol. 7, no. 3, pp. 539-552, 1994.

M.A. Cohen, H. Franco, N. Morgan, D. Rumelhart, and
V. Abrash, "Context-dependent multiple distribution phonetic
modeling with MLPsn, in Advances in Neural Information
Processing Systems (S.J. Hanson, J.D. Cowan, and C.L. Giles,
eds.), (San Mateo, CAI, Morgan Kaufmann, pp. 649-657,
1993.

M.A. Cohen and S. Grossberg, "Absolute stability of global
pattern formation and parallel memory storage by competitive
neural networks", IEEE Duns. Systems, Man and Cybernetics,
vol. 13, no. 5, pp. 815-826, 1983.

R. Cole, M. Fanty, Y. Muthuswamy, and M. Gopalakrishna,
"Speaker-independent recognition of spoken English letters",
in Proceedings of the International Joint Conference on Neural
Networks (San Diego, CA), 1992.

P. Comon, "Independent component analysis: A new concept?",
Signal Processing, vol. 36, no. 3, pp. 287-314, 1994.

F.S. Cooper, "Acoustics in human communication: Evolving
ideas about the nature of speech", J. Acoust. Soc. Amer.,
vol. 68, pp. 18-21, 1980.

C. Cortes and J.A. Hertz, "A network system for image
segmentation", in International Joint Conference on Neural
Networks, vol. I (Washington), IEEE, New York, pp. 121-127,
1989.

J.D. Cowan and D.H. Sharp, "Neural nets", Quarterly Reviews
of Biophysics, vol. 21, pp. 365427, 1988.

J.P. Crutchfield, J.D. Farmer, N.H. Packard, and R.S. Shaw,
"Chaos", Scientific American, vol. 225, no. 6, pp. 38-49, 1986.

G. Cybenko, "Approximation by superpositions of a sigmoidal
function", Mathematics of Control, Signals and Systems, vol. 2,
pp. 303-314, 1989.

J.G. Daugman, "Uncertainty relation for resolution in space,
spatial-frequency, and orientation optimized by two-dimensional
visual cortical filters", J. Opt. Soc. Amex, vol. 2, pp. 1160-
1169, July 1985.

J.G. Daugman, "Complete discrete 2-D Gabor transforms by
neural network for image analysis and compression", IEEE
nuns . Acoust., Speech, Signal Processing, vol. 36, pp. 1169-
1179, July 1988.

S.B. Davis and P. Mermelstein, "Comparison of parametric
representat ions of monosyllabic word recognition i n
continuously spoken sentencesn, IEEE nuns . Acoust., Speech,
Signal Processing, vol. 28, pp. 357-366, Aug. 1980.

"DECtalk DTCOln, Programmer's reference manual, Digital
Equipment Corporation, 1983.

P.A. Devijver and J. Kittler, Pattern Recognition, A Statistical
Approach, NJ: Prentice Hall Inc., 1982.

PA. Devijver and J. Kittler, "Feature extraction based on the
Karhunen-Loeve expansion", in Pattern Recognition-A
Statistical Approach, NJ: Prentice-Hall, Inc., ch. 9, pp. 301-
341, 1982.

K.I. Diamantaras and S.Y. Kung, "Cross-correlation neural
network models", IEEE Tkans. Signal Processing, vol. 42,
pp. 3218-3223, Nov. 1994.

K.I. Diamantaras and S.Y. Kung, Principal Component Neural
Networks: Theory and Applications, John Wiley & Sons, 1996.

M. Dorigo, V. Maniezzo, and A. Colorni, "Ant system:
Optimization by a colony of cooperating agents", IEEE nuns .
Systems, Man and Cybernetics, vol. 26, no. 1, pp. 29-41, 1996.

H.L. Dreyfus, What Computers Can't Do: A Critique ofArtificia1
Reason, New York: Harper and Row, 1972.

H.L. Dreyfus, What Computers Still Can't Do, Cambridge, MA.
MIT Press, 1992.

S.E. Dreyfus, "Expert system: How far can they go?", Artificial
Intelligence Magazine, vol. 10, no. 2, pp. 65-76, 1989.

R.C. Dubes, "How many clusters are best? An ex$eriment9',
Pattern Recognition, vol. 20, no. 6, pp. 645-663, 1,987.

D. Dubois and H. Prade, "Putting rough sets and fuzzy s ~ t s
together", in Intelligent Decision Support. Handbook of
Applications and Advances of the Rough Set Theory (R.
Slowinski, ed.), Dordrecht: Kluwer Academic Publishers, 1992.

406 Bibliography

R.O. Duda and P.E. Hart , Pattern Classification and
Scene Analysis, New York: John Wiley and Sons, 1973.

R.O. Duda and E.H. Shortliffe, "Expert systems research",
Science, vol. 220, pp. 261-268, 1983.

R. Durbin and D. Willshaw, "An analogue approach to the
traveling salesman problem using an elastic net method",
Nature, vol. 326, pp. 689-691, April 1987.

J. Eisenberg, W.J. Freeman, and B. Burke, "Hardware
architecture of a neural network model simulating pattern
recognition by the olfactory bulb", Neural Networks, vol. 2,
no. 4, pp. 315325, 1989.

J.L. Elman, "Finding structure in time", Cognitive Sci.,
vol. 14, pp. 179-211, 1990.

S.E. Fahlman, "Fast learning variations on backpropagation:
An empirical study", in Proc. 1988 Connectionist Models
Summer School (D.S. Touretzky, G.E. Hinton, and T.J.
Sejnowski, eds.), San Mateo, CA: Morgan Kaufmann, pp. 38-
51, 1989.

E.A. Feigenbaum, P. McCorduck, and H.P. Nii, The Rise of the
Expert Company, New York: Times Books, 1988.

J.L. Flanagan, Speech Analysis, Synthesis and Perception,
2nd ed., New York: Springer-Verlag, 1972.

R. Fletcher and C.M. Reeves, "Function minimization by
conjugate gradients", IEEE Computer, vol. 7, pp. 149-154,1964.

D.B. Fogel, System Identification through Simulated Evolution:
A Machine Learning Approach to Modeling, Needham, MA:
Ginn Press, 1991.

D.B. Fogel, "An introduction to simulated evolutionary
optimization", IEEE fians. Neural Networks, vol. 5, pp. 3-14,
Jan. 1994.

D.B. Fogel, Evolutionary Computation: Toward a New
Philosophy of Machind Learning, Piscataway, IEEE Press,
1995.

L.J. Fogel, A.J. Owners, and M.J. Walsh, Artificial Intelligence
through Simulated Evolution, New York: John Wiley, 1966.

P. Foldiak, "Adaptive network for optimal linear feature
extraction", IEEE Proceedings of the International Joint
Conference on Neural Networks, vol. 1, pp. 401-405, 1989.

J.A. Freeman and D.M. Skapura, Neural Networks: Algorithms,
Applications and Programming Techniques, Reading, MA:
Addison-Wesley, 1991.

Bibliography 407

K. Fukushima, "Cognitron: A self-organizing multilayered
neural networkn, Biol. Cybernet., vol. 20, pp. 121-136, 1975.

K. Fukushima, "Neocognitron: A self-organizing neural network
for a mechanism of pattern recognition unaffected by a shift in
positionn, Biol. Cybernet., vol. 36, pp. 193-202, 1980.

K. Fukushima, "A neural network for visual pattern
recognitionn, IEEE Computer, vol. 21, pp. 65-75, March 1988.

K. Fukushima and N. Wake, "Handwritten alphanumeric
character recognition by the neocognitronn, IEEE Pans. Neural
Networks, vol. 2, pp. 355-365, May 1991.

K. Funahashi, "On the approximate realization of continuous
mappings by neural networksn, Neural Networks, vol. 2, no. 3,
pp. 183-192, 1989.

D. Gabor, "Communication theory and cyberneticsn, IRE Pans.
on Circuit Theory, vol. CT-1, pp. 19-31, 1954.

S.I. Gallant, "Connectionist expert systemsn, J. Assoc. Comput.
Machinery, vol. 31, no. 2, pp. 152-169, 1988.

S.I. Gallant, Neural Network Learning and Expert Systems,
Cambridge, Mfk MIT Press, 1993.

S.I. Gallant, "Expert systems and decision systems using
neural networksn, in The Handbook of Brain Theory and
Neural Networks (M.A. Arbib, ed.), Cambridge, MA: MIT Press,
pp. 377-380, 1995.

S. Geman and D. Geman, "Stochastic relaxation, Gibbs
distributions, and the Bayesian restoration of imagesn, IEEE
Pans. Pattern Analysis and Machine Intelligence, vol. 6,
pp. 721-741, 1984.

S. Geman, E. Bienenstock, and R. Doursat, "Neural networks
and the biashrariance dilemman, Neural Computation, vol. 4,
pp. 1-58, 1992.

R.J. Glauber, "Time-dependent statistics of the Ising modeln,
J. Math. Phys., vol. 4, pp. 294-307, 1963.

D.E. Goldberg, Genetic Algorithms in Search, Optimization,
and Machine Learning, Reading MA: Addison Wesley, 1989.

M. Gori and A. Tesi, "On the problem of local minima in
backpropagationn, IEEE Pans. Pattern Analysis and Machine
Intelligence, vol. 14, pp. 76-86, 1992.

R.M. Gray, "Vector Quantization", IEEE ASSP Magazine,
vol. 1, pp. 4-29, Apr. 1984.

R.M. Gray, Entropy and Information Theory, New York:
Springer-Verlag, 1990.

408 Bibliography

[I231 M. Greenberger, Computers and the World of the Future,
Cambridge: MIT Press, 1962.

[I241 H. Greenspan, R. Goodman, and R. Chellappa, "I'exture analysis
via unsupervised and supervised learning", in Proceedings of
the International Joint Conference on Neural Networks, vol. 1
(Piscataway, NJ), IEEE, pp. 639-644, 1991.

[I251 S. Grossberg, "Some networks that can learn, remember, and
reproduce any number of complicated space-time patterns",
J. Math. Mech., vol. I, no. 19, pp. 53-91, 1969.

[I261 S. Grossberg, "Adaptive pattern classification and universal
recoding-1. Parallel development and coding of neural detectors",
Biol. Cybernet., vol. 23, pp. 121-134, 1976a.

[I271 S. Grossberg, "Adaptive pattern classification and universal
recoding-11. Feedback, oscillation, olfaction, and illusions",
Efiol. Cybernet., vol. 23, pp. 187-207, 197613.

[i281 S. Grossberg, Studies of Mind and Brain: Neural Principles of
Learning, Perception, Development, Cognitron and Motor
Control, Boston, MA: Reidel, 1982.

[I291 S. Grossberg, "Nonlinear neural networks: Principles,
mechanisms, and architectures", Neural Networks, vol. 1,
pp. 17-61, 1988.

[I301 S. Grossberg, "Are there universal principles of brain
computation?", in International Conference on Neuml Networks,
(Washington, DC), pp. 49-55, IEEE, 1996.

[I311 I. Guyon, "Applications of neural networks to character
recognition", Int. J. Pattern Recognition and Artificial
Intelligence, vol. 5, pp. 353-382, 1991.

[I321 M. Hagiwara, "Multidimensional associative memory", in
Proceedings of the International Joint Conference on Neural
Networks, vol. I (Washington, DC), pp. 3-6, 1990.

[I331 H. Haken, Synergetic Computers and Cognition, Berlin and
New York: Springer, 1991.

[I341 H. Haken, "Cooperative phenomena", in The Handbook ofBrain
Theory and Neural Networks (M.A. Arbib, ed.), Cambridge,
MA: MIT Press, pp. 261-266, 1995.

[I351 J.B. Hampshire and B. Pearlmutter, "Equivalence proofs for
multilayer perceptron classifiers and the Bayesian discri-
minant function", in Connectionist models summer school (D.S.
lburetzky, J.L. Elman, T.J. Sejnowski, and G.E. Hinton, eds.),
San Mateo, CA: Morgan Kaufmann, 1990.

[I361 J. Harrington, "Acoustic cues for automatic recognition of
English consonants", in Aspects of Speech Zkchnology (M. Jack
and J.' Laver, eds.), Edinburgh: Edinburgh University Press,
pp. 69-143, 1988.

Bibliography 409

E. Harth, 'Order and chaos in neural system: An approach to
the dynamics of higher brain function", IEEE Duns. Systems,
-Man and Cybernetics, vol. 13, pp. 782-798, Sept.-Oct., 1983.

M.H. Hassoun, Fundamentals of Artificial Neural Networks,
Cambridge, MA: MIT Press, 1995.

D. Haussler, "Decision theoretic generalizations of the PAC
model for neural net and other learning applications",
Information and Computation, vol. 100, pp. 78-150, 1992.

D. Haussler, M. Kearns, and R. Schapire, "Bounds on the sample
complexity using information theory", Machine Learning,
V O ~ . 14, pp. 83-113, 1994.

Y. Hayashi, 'Oscillatory neural network and learning of
continuously transformed patterns", Neural Networks, vol. 7,
no. 2, pp. 219-232, 1994.

S. Haykin, Adaptive Filter Theory, 2nd ed., Englewood Cliffs,
NJ: Prentice-Hall, 1991.

S. Haykin, Neural Networks: A Comprehensive Foundation,
New York: Macmillan College Publishing Company Inc.,
1994.

D.O. Hebb, The Organization of Behaviour: A Neuropsycho-
logical Theory, New York: Wiley, 1949.

R. Hecht-Nielsen, "Counterpropagation networks", Applied
Optics, vol. 26, pp. 4979-4984, 1987.

R. Hecht-Nielsen, "Applications of counterpropagation
networks", Neural Networks, vol. 1, pp. 131-139, 1988.

R. Hecht-Nielsen, Neuro Computing, Reading, MA: Addison-
Wesley, 1990.

F. Hergert, W. Finnoff, and H.G. Zimmermann, "A comparison
of weight elimination methods for reducing complexity in
neural networks", in Proceedings of the International Joint
Conference on Neural Networks, vol. I11 (Baltimore), IEEE,
New York, pp. 980-987, 1992.

J.A. Hertz, A. Krogh, and G.I. Thorbergsson, "Phase transitions
in simple learning", J. Phys. A, vol. 22, pp. 2133-2150,
1989.

J.A. Hertz, A. Krogh, and R.G. Palmer, Introduction to the
Theory of Neural Computation, New York: Addison-Wesley,
1991.

J.A. Hertz, "Computing with attractors", in The Handbook
of Brain Theory and Neural Networks (M.A. Arbib, ed.),
Cambridge, MA: MIT Press, pp. 230-234, 1995.

410 Bibliography

G.E. Hinton and T.J. Sejnowski, "Learning and relearning in
Boltzmann machinesn, in Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, vol. I (D.E.
Rumelhart, J.L. McClelland, and the PDP Research Group,
eds.), Cambridge, MA, MIT Press, pp. 282-317, 1986.

G.E. Hinton, "Deterministic Boltzmann learning performs
steepest descent in weight space", Neural Computation,
vol. 1, pp. 143-150, 1989.

K. Hirota and W. Pedrycz, "ORAND neurons in modeling
fuzzy set connectivesn, IEEE Dans. Neural Networks, vol. 2,
pp. 151-161, May 1994.

A.L. Hodgkin and A.F. Hwley, "A quantitative description of
m

e

mbrane current and its application to conduction and
excitation in nerven, J. Physiology, vol. 117, pp. 500-544, 1952.

S.B. Holden, On the Theory of Generalization and Self-
Structuring in Linearly Weighted Connectionist Networks, PhD
thesis, Corpus Christi College, Cambridge University
Engineering Department, Trumpington Street, Cambridge
CB2 lPZ, Jan. 1994.

S.B. Holden and M. Niranjan, "On the practical applicability of
VC dimension bounds", Tech. Rep. CUED/F-INFENGnR.155,
University of Cambridge, Cambridge University Engineering
Department, Trumpington Street, Cambridge CB2 lPZ, Oct.
1994.

S.B. Holden and P.J.W. Rayner, "Generalization and PAC
learning: Some new results for the class of generalized single
layer networksn, IEEE Dans. Neural Networks, vol. 6, pp. 368-
380, Mar. 1995.

J.H. Holland, Adaptation in Natural and Artificial Systems,
University of Michigan Press, 1975.

J.H. Holland, "Escaping brittleness: The possibilities of general-
purpose learning algorithms applied to parallel rule based
systemsn, in Machine Learning: An Artificial Intelligence
Approach, (R. Michalski, J. Carbonell, and T. Michell, eds.),
vol. 2 (San Mateo, CA), Morgan Kaufmann, pp. 593-623, 1986.

L. Holmstrom and P. Koistnen, "Using additive noise in back
propagation training", IEEE Dans. Neural Networks, vol. 3,
pp. 24-38, Jan. 1993.

J.J. Hopfield, "Neural networks and physical systems with
emergent collective computational capabilitiesn, in Proceedings
of the National Academy of Sciences (US&, vol. 79, pp. 2554-
2558, Nov. 1982.

Bibliography 411

J.J. Hopfield, "Neurons with graded respons 9s have collective
computational properties like those of two-state neurons", in
Proceedings of the National Academy of Sciences (USA),
vol. 81, pp. 3088-3092, 1984.

J.J. Hopfield and D.W. Tank, "Neural computation of decisions
in optimization problems", Biol. Cybernet., vol. 52, pp. 141-
152, 1985.

H. Hotelling, "Analysis of a complex of statistical variables
into principal components", J. Educational Psychology, vol. 24,
pp. 4 1 7 4 1 , 498-520, 1933.

C.C. Hsu, D. Gobovic, M.E. Zaghloul, and H.H. Szu, "Chaotic
neuron models and their VLSI circuit implementation", IEEE
Dans. Neural Networks, vol. 7, pp. 1339-1350, Nov. 1996.

M. Hu, "Visual pattern recognition by moment invariants",
IRE Dansactions on Information Theory, vol. IT-8, pp. 179-
187, Feb. 1962.

Z. Huang and A. Kuh, "A combined self-organizing feature
map and multilayer perceptron for isolated word recognition",
IEEE Dans. Signal Processing, vol. 40, pp. 2651-2657, Nov.
1992.

W.Y. Huang and R.P. Lippmann, "Neural nets and traditional
classifiers", in Neural Information Processing Systems
(D.Z. Anderson, ed.), (Denver, 1987), American Institute of
Physics, New York, pp. 387-396, 1988.

D.H. Hubel and T.N. Wiesel, "Receptive fields, binocular
interaction, and functional architecture in the cat's visual
cortex", J. Physiology, vol. 160, pp. 106-154, 1962.

E.R. Hunt, "Stabilizing high period in a chaotic systems: The
diode resonator", Physical Review Letters, vol. 67, pp. 1953-
1955, 1991.

J.E. Hunt and D.E. Cooke, "Learning using an artificial immune
systemn, J. Networks and Computer Applications, vol. 19,
pp. 189-212, 1996.

K.J. Hunt, D. Sbarbaro, R. Zbikowski, and P.J. Gawthrop,
"Neural networks for control systems-A surveyn, Automatica,
V O ~ . 28, pp. 1083-1112, 1992.

D.R. Hush and B.G. Home, "Progress in s u p e ~ s e d neural
networks: Whats new since Lipmam", IEEE Signal Processing
Magazine, vol. 10, pp. 8-39, Jan. 1993.

D.R. Hush, J.M. Salas, and B. Horne, "Error surfaces for
multilayer perceptronsn, in International Joint Conference on
Neural Networks, vol. 1 (Seattle), IEEE, New York, pp. 759-
764, 1991.

412 Bibliography

J.N. Hwang, '"lkxtured images: Modeling and segmentation*,
in The Handbook of Brain Theory and Neural Networks,
(M.A. Arbib, ed.) Cambridge, MA: MIT Press, pp. 971-976,
1995.

H. Ishibuchi, R. Fujioka, and H. Tanaka, "Neural networks
that learn from fuzzy if-then .rulesv, IEEE Duns. Fuzzy
Systems, vol. 1, pp. 85-97, May 1993.

R.A. Jacobs, "Increased rates of convergence through learning
rate adaptation*, Neural Networks, vol. 1, no. 4, pp. 295407,
1988.

R.A. Jacobs and M.I. Jordan, "A competitive modular
connectionist architecture*, in Advances in Neural Information
Processing Systems, vol. 3 (R.P. Lippmann, J.E. Moody, and
D.J. Touretzky, eds.), San Mateo, CA: Morgan Kaufmann,
pp. 767-773, 1991.

J.S.N. Jean and J. Wang, "Weight smoothing to improve
network generalization", IEEE nuns . Neural Networks,
vol. 5, pp. 752-763, Sept. 1994.

S. Jockusch and H. Ritter, "Self-organizing maps: Local
competition and evolutionary optimization*, Neural Networks,
vol. 7, no. 8, pp. 1229-1240, 1994.

E.M. Johansson, F.U. Dowla, and D.M. Goodman, "Back-
propagation learning for multilayer feedforward neural
networks using. the conjugate gradient method*, Report
UCRL-JC-104850, Lawrence Livermore National Laboratory,
Livermore, CA, 1990.

I.T. Jolliffe, Principal Component Analysis, New York: Springer-
Verlag, 1986.

M.I. Jordan, "Attractor dynamics and parallelism in a
connectionist sequential machine*, in Proceedings of the Eighth
Annual Conference of the Cognitive Science Society (Amherst,
MA), Erlbaum, Hillsdale, pp. 531-546, 1986.

M.I. Jordan, "Serial order: A parallel, distributed processing
approach*, in Advances in Connectionist theory: Speech
(J.L. Elman and D.E. Rumelhart, eds.), (New Jersey), Erlbaum,
Hillsdale, 1989.

R.L. Jordan, B.L. Huneycutt, and M. Werner, "The SIR-CIX-
SAR synthetic aperture radar system*, Proc. IEEE, vol. 79,
pp. 827-838, June 1991.

J.S. Judd, Neural Network Design and the Complexity of
Learning, Cambridge, MA: MIT Press, 1990.

'9867 '~gz~69~~ 'dd '€8 'IOA 'vsn 'sXJU~?~~ JO LUlapV3~
~VUO?~VN ayr Jo sBu?paaao~d u! ',uo!s!~ Al~ea u! syJoMqau
,~suo~nau, %o~leq, 'a11!n~ 'v pule 'u!nbo~~le~ -p 'y:,ox '3

'986'1 'oLz-992 'dd '(m 'PJ!~MOUS) .rndwoa SyJomraN
IvJnaN :sa?slCyd Jo a)nr?puI uwapazuy ayr Jo s%u?paaaoq
u! ',~apoux ~leuo~nau ule!qqaH ayq oq a~ylemaqp q :uo!q:,q
uoanau a~Su!s jo laponr quanraaaoju!a.~-a~up v, 'Jdo~ 'H'V
-966'1 'llle~-aa!quaq :p~ 'sg13 poo~alSu3 'suo?rva?yddy pun

L1oayj-a?Bo7 rCzzn,g pun sras cCzzn,g 'ulen~ '8 pule J!M 'p-3

'€667 'IIWH-~~!~U~J~ :fN 'S3J!l3 p00Ma1~~3 'UO?)WWJO&

pun Su?w)~aaun 'sras rCzzn,g '~aS1o~ 'V;L pule .I!I~ 'p.3

'6861 '089-1~9 'dd 'OZZ '10~ 'a3ua?3~ '2u!lleauule pqleInm!s
Aq uo!qsz!ux!?do, '!y:,:,a~ xw PUB 'qqle~w '(1.3 'y:,uqledyr~ -S

'9861
qsn%nv/dpp '669-669 'dd 'aaua%?llaru~ au?ymH puv s?s~wuy
u~arrvd 'suwu 3331 ',suxq~uoSp uo~qdaxad ayl qu! suo!pmy
dgs~aqnranr Azzy Su!q~aoclro:,u~, 'qun~ 'p-a pm .raIIax -wp

"166'1 '699-L99 'dd '~3 '0alleK '~ule~~nq ~SJOK '(06
Jahuaa) 6 '10" '('spa 'Aqzqaanq 's'a pule (APOOW -3-p 'uut3nrdd!q
'a-8) swarsks %u?ssaao~d uo?pww~oJul lwJnaN u? saauwnpy
u! ',s1le~amnu pqupd-puey jo uo!q!@oaaa pule uo!qlequaudas
paqleaaqu~, '~oa? 'X'M pule 'qmy1atun8 -3-a '~alaax 'a'p

'P66'1 'LZT-€TT 'dd ''1 'ou 'L 'loA
'sy~om~a~ 1v~na~ '2uyma1 acLCq v3d mayou Spsn sp-S!s jo
uoglemdas prnz uogquasa~da& 'opsuaqnop .p pule uaunyq 'p

'766'1 '0966
-~cjgg .dd '9 'IOA '%u?ssaamd ~WU@S puw 'yaaads "pnoay Yuo3
-)UI 3331 JO s&?paaao.id ',uoglem!qsa aaledsqns lle@!s paxp
uo pasleq 31sm qsnqw, 'ollesuasqnop .p pule uaunyJq .p

'PL6'1 XON 'ZZL-L~~ 'dd 'OZ-J,~ 'IOA '~O~YJ 'WJO& 'SUVU

3331 ',~L67-8967 :uo!?!@oaaa UJalVd u! SUJaWBd, 'Prrrz)~ '7

'8867
'9~6~9 'dd '(pule~~o~ WON) '~8 sJaysqqnd aauagg Jayas13
'61-3 '('spa 'soq~le~,~ 'p puo 'U!~.IBJU 'N 'uleg!yay3 'v
'amnoale? -7-p) suo?yw3?lddw puw sapoayj :N Bu?ssaao~d
lvu%?s u! ',s~s~~leule squauodnro:, ~led!:,u!~d snsJaA (~3~1)
s!sApule quauodnrm quapuadapu~, 'q1nle~a~ 'p pule uqqnp -3

414 Bibliography

T. Kohonen, "A class of randomly organized associative
memoriesw, Acta Polytechnic Scandanavica, vol. El 25, 1971.

T. Kohonen, "Analysis of simple self-organizing processw, Biol.
Cybernet., vol. 44, pp. 135-140, 1982a.

T. Kohonen, "Self-organized formation of topologically correct
feature mapsw, Biol. Cybernet., vol. 43, pp. 59-69, 1982b.

T. Kohonen, "Dynamically expanding context, with application
to , the correction of symbol strings in the recognition of
continuous speechw, in Proceedings of the 8th International
Conference on Pattern Recognition, (Washington, DC), IEEE
Computer Society Press, pp. 1148-1151, 1986.

T. Kohonen, T h e 'neural' phonetic typewriterw, IEEE Computer,
vol. 27, pp. 11-22, Mar. 1988.

T. Kohonen, Self-organization and Associative Memory, 3rd ed.,
Berlin: Springer-Verlag, 1989.

T. Kohonen, "Improved versions of learning vector quantizationw,
in Proceedings of the International Joint Conference on
Neural Networks (San Diego), IEEE Neural Networks Council,
pp. 545-550, 1990a.

T. Kohonen, "The self-organizing mapw, Proc. IEEE, vol. 78,
pp. 1464-1480, 1990b.

T. Kohonen, "New developmen.ts of learning vector quantization
and the self-organizing mapw, in Symposium on Neural
Networks: Alliances and Perspectives in Senri 1992 (SYNAPSE
'92), (Osaka, Japan), 1992.

T. Kohonen, "Learning vector quantizationw, in The Handbook
of Brain Theory and Neural Networks (M.A. Arbib, ed.),
Cambridge, MA: MIT Press, pp. 537-540, 1995.

T. Kohonen, Self-Organizing Maps, 2nd ed., Berlin: Springer-
Verlag, 1997.

B. Kosko, "Adaptive bidirectional associative memoriesw, Applied
Optics, vol. 26, no. 23, pp. 4947-4960, 1987.

B. Kosko, "Bidirectional associative memoriesw, IEEE Duns.
Systems, Man and Cybernetics, vol. 18, no. 1, pp. 49-60,
1988.

B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical
Systems Approach to Machine Intelligence, Englewood Cliffs,
NJ: Prentice-Hall, 1992.

J.R. Koza, Genetic Programming: On the Programming of
Computers by Means of Natural Selection, Cambridge,
Massachusetts: MIT Press, 1992.

Bibliography 415

A.H. Kramer and A. Sangiovanni-Vincentelli, "Efficient parallel
learning algorithms for neural networks", in Advances in
Neural Information Processing Systems (D.S. Touretzky, ed.),
vol. 1 (San Mateo, CA), pp. 40-48, 1989.

S. Kullback, Znformation Theory and Statistics, New York:
Dover, 1968.

S.Y. Kung, Digital Neural Networks, New Jersey: Prentice-
Hall, 1993.

S.Y. Kung and K.I. Diamantaras, "A neural network learning
algorithm for adaptive principal component extraction
(APEX)", in Proceedings of ZEEE Znt. Conf Acoust., Speech,
and Signal Processing, Albuquerque, NM, USA, vol. 3, pp. 861-
864, Apr. 1990.
S.Y. Kung and KI. Diamantaras, 'Adaptive principal component
extraction (APEX) and applications", ZEEE Dans. Signal
Processing, vol. 42, pp. 1202-1217, May 1994.

A. Lapedes and R. Farber, "How neural networks works", in
Neural Znformation Processing Systems (D.Z. Anderson, ed.),
(Denver), American Institute of Physics, New York, pp. 442-
456, 1988.

Y. LeCun, "Learning process in an asymmetric threshold
network", in Disordered systems and biological organization,
(E. Bienenstock, F.F. Soulie, and G. Weisbuch, eds.), Berlin,
Heidelberg: Springer, pp. 233-240, 1986.

Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard,
W. Hubbard, and L.D. Jackel, "Handwritten digit recognition
with a back-propagation network", in Advances in Neural
Znformation Processing Systems (D.S. Touretzky, ed.), vol. 2
(Denver), Morgan Kaufmann, San Mateo, CAY pp. 396-404,1990.

Y. LeCun and Y. Bengio, 'Convolution networks for images,
speech, and time series", in The Handbook of Brain Theory
and Neural Networks (M.A. Arbib, ed.), Cambridge, MA: MIT
Press, pp. 255-258, 1995a.
Y. LeCun and Y. Bengio, "Pattern recognition", in The Handbook
of Brain Theory and Neural Networks (M.A. Arbib, ed.),
Cambridge, MA: MIT Press, pp. 711-715, 1995b.

Y. Lee, S.H. Oh, and M.W. Kim, "The effect of initial weights
on premature saturation in backpropagation learning", in
International Joint Conference on Neural Networks, vol. 1
(Seattle), IEEE, New ~ork, 'pp. 765-770, 1991.

H.B. Lee, "Eigenvalues and eigenvectors of covariance matrices
for signals closely spaced in frequency", ZEEE Dans. Signal
Processing, vol. 4, pp. 2518-2535, Oct. 1992.

4 16 Bibliography

S.J. Leon, Linear Algebra with Applications, New York:
Macmillan Publishing Company, 1990.

C.T. Lin and C.S.G. Lee, Neural Fuzzy Systems: A Neuro-Fuzzy
Synergism to Intelligent Systems, New Jersey: Prentice-Hall
Inc., 1996.

C.T. Lin and Y.C. Lu, "A neural fuzzy system with linguistic
teaching signals", IEEE Dans. Fuzzy Systems, vol. 3, pp. 169-
189, May 1995.

R. Linsker, "From basic network principles to neural
architecture", in Proceedings of the National Academy of
Sciences, vol. 83 (USA), pp. 7508-7512,8390-8394,877943783,
1986.

R. Linsker, "Self-organization in a perceptual network", IEEE
Computer, vol. 21, pp. 105-117, Mar. 1988.

R.P. Lippmann, "An introduction to computing with neural
nets", IEEE ASSP Magazine, vol. 4, pp. 4-22, Apr. 1987.

R.P. Lippmann, "Review of neural networks for speech
recognition", Neural Computation, vol. 1, no. 1, pp. 1-38, 1989.

W. Little, "The existence of persistent states in the brain",
Math. Biosciences, vol. 19, pp. 101-120, 1974.

W. Little and G. Shaw, "Analytical study of the memory storage
capacity of a neural network", Math. Biosciences, vol. 39,
pp. 281-290, 1978.

Y. Liu, "Unbiased estimate of generalization error and model
selection in neural network", Neural Networks, vol. 8, no. 2,
pp. 215-219, 1995.

[238] D. Lowe, "Radial basis function networks", in The Handbook of
Brain Theory and Neural Networks (M.A. Arbib, ed.),
Cambridge, MA: MIT Press, pp. 779-782, 1995.

[239] D.J.C. MacKay, "Bayesian methods for supervised neural
networks", in The Handbook of Brain Theory and Neural
Networks (M.A. Arbib, ed.), Cambridge, MA: MIT Press,
pp. 144-149, 1995.

[240] B. Mandlebrot, The Fractal Geometry of Nature, Sanfrancisco:
Freeman, 1983.

[2411 J. Mantas, "Methodologies in pattern recognition and image
analysis: A brief survey", Pattern Recognition, vol. 20, no. 1,
pp. 1-6, 1987.

[2421 A. Marcus and A.V. Dam, "User-interface developments for the
nineties", IEEE Dans. Comput., vol. 24, pp. 49-57, 1991.

Bibliography 417

S.L. Marple, Digital Spectral Analysis with Applications,
Prentice-Hall, 1987.

K. Matsuoka and M. Kawamoto, "A neural network that self-
organizes to perform three operations related to principal
component analysisn, Neural Networks, vol. 7, no. 5, pp. 753-
765, 1994.

J.L. McClelland, "Retrieving general and specific information
from stored knowledge of specificsn, in Proceedings of the Third
Annual Meeting of the Cognitive Science Society, pp. 170-172,
1981.

J.L. McClelland and D.E. Rumelhart, Parallel Distributed
Processing, vol. 2, Cambridge, MA: MIT Press, 1986.

J.L. McClelland and D.E. Rumelhart, Explorations in Parallel
Distributed Processing, Cambridge MA: MIT Press, 1988.

W.S. McCulloch and W. Pitts, "A logical calculus of the ideas
immanent in nervous activity", Bull. Math. Biophy., vol. 5,
pp. 115-133, 1943.

R. McGough, "Fidelity's Bradford Lewis takes aim at indexes
with his 'neural network' computer programn, The Wall Street
Journal, Oct. 1992.

C. Mead, "A sensitive electronic photoreceptorn, in 1985 Chapel
Hill Conference on Very Large Scale Integration, pp. 463-471,
Mar. 1985.

N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller,
and E. Teller, "Equation of state calculations by fast computing
<machinesn, J. Chem. Phy., vol. 21, no. 6, pp. 1087-1092, 1953.

P.K. Mhaswade, "A neural network approach for information
retrieval from spelled namesn, Master's thesis, Department of
Computer Science and Engineering, Indian Insti tute of
Technology, Madras, Jan. 1997.

G.F. Miller, P.M. Todd, and S.U. Hegde, "Designing neural
networks using genetic algorithms", in Proceedings of the Third
International Conference on Genetic Algorithms and their
Applications (J.D. Schaffer, ed.), San Mateo, CA: Morgan
Kaufmann, pp. 379-384, 1989.

A.A. Minai and R.J. Williams, "Backpropagation heuristics: A
s tudy of t he extended delta-bar-delta algorithmn, i n
International Joint Conference on Neural Networks, vol. 1
(San Diego, CAI, pp. 595-600, 1990.

M.L. Minsky, Theory of neural-analog reinforcement systems
and its application to the brain-model problem, PhD thesis,
Princeton University, Princeton, -NJ, 1954.

4 18 Bibliography

M. Minsky, "Steps toward artificial intelligencen, in Proceedings
of the IRE, vol. 49, pp. 5-30, 1961.

M. Minsky and 0. Selfridge, "Learning in random nets*, in
Information Theory: Fourth London Symposium, (C. Cherry,
ed.), (London), Butterworths, 1961.

M.L. Minsky and S.A. Papert, Perceptrons, Cambridge, MA:
MIT Press, 1969.

M.L. Minsky and S.A. Papert, Perceptrons, expanded ed.,
Cambridge, MA: MIT Press, 1990.

J. Moody and C. Darken, "Fast learning in networks of
locally-tuned processing units*, Neural Computation, vol. 1,
pp. 281-294, 1989.

D.P. Morgan and C.L. Scofield, Neural Networks and Speech
Processing, Boston: Kluwer Academic Publishers, 1991.

M.C. Mozer, "A focused back-propagation algorithm for temporal
pattern recognition", Complex Systems, vol. 3, pp. 349-381,
1989.

B. Muller and J. Reinhardt, Neural Networks, New York:
Springer-Verlag, 1990.

B. Muller and J. Reinhardt, Neural Networks: An Introduction,
Physics of Neural Networks, New York: Springer-Verlag, 1991.

K. Murakami and T. Aibara, "An improvement on the Moore-
Penrose generalized inverse associative memoryn, IEEE Dans.
Systems, Man and Cybernetics, vol. SMC 17, pp. 699-706, July-
August 1987.

S. Muroga, Threshold Logic and its Applications, New York:
Wiley Interscience, 1971.

M.T. Musavi, K.H. Chan, D.M. Hummels, and K. Kalantri, "On
the generalization ability of neural network classifiersn, IEEE
Dans. Pattern Analysis and Machine Intelligence, vol. 16,
pp. 659-663, June 1994.

K.S. Narendra and S. Mukhopadhyay, "Intelligent control
using neural networks", IEEE Control Systems Magazine,
vol. 12, no. 2, pp. 11-18, 1992.

K.S. Narendra and K. Parthasarathy, "Identification and control
of dynamical systems using neural networksn, IEEE Duns.
Neural Networks, vol. 1, no. 1, pp. 4-27, 1990.

M. Narendranath, "Transformation of vocal tract characteristics
for voice conversion using artificial neural networks", Master's
thesis, Department of Computer Science and Engineering,
Indian Institute of Technology, Madras, Nov. 1995.

Bibliography 419

M. Narendranath, H.A. Murthy, S. Rajendran, and B.
Yegnanarayana, Transformation of formants for voice conver-
sion using artificial neural networks", Speech Communication,
vol. 16, pp. 206-216, Feb. 1995.

N.M. Nasrabadi and R.A. King, "Image coding using Vector
Quantization: A Review", ZEEE Bans. Communications,
V O ~ . 36, pp. 957-971, 1988.

A. Neeharika, "Generalization capability of feedforward neural
networks for pattern recognition tasks", Master's thesis,
Department of Computer Science and Engineering, Indian
Institute of Technology, Madras, 1996.

D.H. Nguyen and B. Widrow, "Neural networks for self-learning
control systems", ZEEE Control Systems Magazine, pp. 18-23,
Apr. 1990.

N. Nilsson, Learning Machines, New York: McGraw-Hill, 1965.

S.J. Nowlan, "Maximum likelihood competitive learning", in
Advances in Neural Information Processing Systems, vol. 2,
(D.S. Touretzky, ed.) (Denver), Morgan Kaufmann, San Mateo,
CA, pp. 574-582, 1990.

E. Oja, "A simplified neuron model as a principal component
analyzer", J. Math. Biology, vol. 15, pp. 267-273, 1902.

E. Oja, "Neural networks, principal components, and
subspaces", Znt. J. Neural Systems, vol. 1, no. 1, pp. 61-68,
1989.

E. Ott, C. Grebogi, and J.A. Yorke, "Controlling chaos", Physical
Review Letters, vol. 64, pp. 1196-1199, 1990.

S.K. Pal and D.D. Majumder, Fuzzy Mathematical Approach
to Pattern Recognition, New York: Wiley (Halsted Press), 1986.

S.K. Pal and S. Mitra, "Multilayer perceptron, fuzzy sets, and
classification", ZEEE Bans. Neural Networks, vol. 3, no. 5,
pp. 683-697, 1992.

F. Palmieri, J. Zhu, and C. Chang, "Anti-Hebbian learning in
topologically constrained linear networks: A tutorial", ZEEE
Duns. Neural Networks, vol. 4, pp. 748-761, Sept. 1993.

F. Palmieri and J. Zhu, "Self-association and Hebbian learning
in linear neural networks", ZEEE Bans. Neural Networks,
vol. 6, pp. 1165-1184, Sept. 1995.

Y.H. Pao, Adaptive Pattern Recognition and Neural Networks,
Reading, MA: Addison-Wesley, 1989.

A. Papoulis, Probability, Random Variables, and Stochastic
Processes, 3rd ed., New York: McGraw-Hill, 1991.

Bibliography

T.S. Parker and L.O. Chua, "Chaos: A tutorial for engineers",
Proceedings of IEEE, vol. 75, pp. 982-1008, Aug. 1987.

D. Partridge, "The case for inductive programmingn, IEEE
Computer, pp. 36-41, Jan. 1997.

E. Parzen, "On estimation of a probability density function
and mode", Annals of Mathematical Statistics, vol. 33,
pp. 1065-1076, 1962.

Z. Pawlak, "Rough setsn, Int. J. Comput. Infom. Sci., vol. 11,
pp. 341-356, 1982.

Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about
Data, Dordrecht: Kluwer, 1991.

Z. Pawlak, J.G. Busse, R. Slowinsky, and W. Ziarko, "Rough
sets", Communications of the ACM, vol. 38, pp. 89-95,
Nov. 1995.

Z. Pawlak, S.K.M. Wong, and W. Ziarko, "Rough sets:
Probabilistic verses deterministic approach", Int. J. Man-
Machine Studies, vol. 29, pp. 81-95, 1988.

J. Pearl, Heuristics: Intelligent Search Strategies for Computer
Problem Solving, Reading, MA. Addison-Wesley, 1984.

B.A. Pearlmutter, "Learning state space trajectories in recurrent
neural networks", Neural Computation, vol. 1, pp. 263-269,
1989.
W. Pedrycz, "Fuzzy neural networks with reference neurons
as pattern classifiers", IEEE Dans. Neural Networks, vol. 3,
pp. 770-775, Sept. 1992.

W. Pedrycz and A.F. Rocha, "Fuzzy-set based models of neurons
and knowledge-based networks", IEEE Dans. Fuzzy Systems,
vol. 1, pp. 254-266, Nov. 1993.

R. Penrose, "A generalized inverse for matrices", in Proceedings
of the Cambridge Philosophical Society, vol. 51, pp. 406-413,
1955.
I? Peretto, "Collective properties of neural networks: A statistical
physics approach", Biol. Cybernet., vol. 50, pp. 51-62, 1984.

D.H. Perkel, B. Mulloney, and R.W. Budelli, "Quantitative
methods for predicting neuronal behaviour", Neuroscience,
vol. 6, no. 5, pp. 823-837, 1981.

C. Peterson, "Parallel distributed approaches to combinatorial
optimization: Benchmark studies on travelling salesman
problemn, Neural Computation, vol. 2, pp. 261-269, April 1990.

C. Peterson and J.R. Anderson, "A mean field theory learning
algorithm for neural networksn, Complex Systems, .vol. 1,
pp. 995-1019, 1987.

Bibliography 42 1

G.E. Peterson and H.L. Barney, "Control methods used in a
study of vowels", J. Acoust. Soc. Amez, vol. 24, no. 2, pp. 175-
184, 1952.

C. Peterson and B. Soderberg, "A new method of mapping
optimization problems onto neural networks", Znt. J. Neural
Systems, vol. 1, pp. 3-22, April 1989.

C. Peterson and B. Soderberg, "Neural optimizationn, in The
Handbook of Brain Theory and Neural Networks (M.A. Arbib,
ed.), Cambridge, MA: MIT Press, pp. 617-621, 1995.

D.S. Plaut, S.J. Nowlan, and G.E. Hinton, "Experiments on
learning by back propagation", Technical Report CMU-CS-86-
126, Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, PA, 1986.

T. Poggio and F. Girosi, "Networks for approximation and
leaning", Proc. ZEEE, vol. 78, no. 9, pp. 1481-1497, 1990.

T. Poggio, V. Torre, and C. Koch, "Computational vision and
regularization theory", Nature, vol. 317, pp. 314319, Sept.
1985.

E. Polak and G. Ribiere, "Note sur la convergence de methods
de directions conjures", Revue Francaise Information Recherche
Operationnelle, vol. 16, pp. 35-43, 1969.

W. Porto, D.B. Fogel, and L.J. Fogel, "Alternative neural
network training methods", ZEEE Expert, pp. 16-22, June 1995.

M.J.D. Powell, "Radial basis function approximations to
polynomials", in Numerical Analysis 1987 Proceedings (Dundee,
UK), pp. 223-241, 1988.

R.W. Preisendorfer, Principal Component Analysis in
Meteorology and Oceanography, New York: Elsevier, 1988.

L.R. Rabiner, "A tutorial on Hidden Markov Models and
selected applications in speech recognition", Proc. ZEEE,
vol. 77, pp. 257-286, Feb. 1989.

L.R. Rabiner and B.H. Juang, Fundamentals of Speech
Recognition, Englewood Cliffs, New Jersey: Prentice-Hall, 1993.

P.P. Raghu, H.M. Chouhan, and B. Yegnanarayana, "Multi-
spectral texture classification using neural .networkn, in
Proceedings of the National Conference on Neural Networks,
(Anna University, Madras, India), pp. 1-10, Nov.' 1993.

P.P. Raghu, Artificial Neural Network Models for Texture
Analysis, PhD thesis, Department of Computer Science and
Engineering, Indian Institute of Technology, Madras, India,
Nov. 1995.

422 Bibliography

[3161 P.P. Raghu, R. Poongodi, and B. Yegnanarayana, "A combined
neural network approach for texture classificationn, Neural
Networks, vol. 8, no. 5, pp. 975-987, 1995.

[317] P.P. Raghu and B. Yegnanarayana, "Segmentation of gabor-
filtered textures using deterministic relaxationn, IEEE Dans.
Image Processing, vol. 5, pp. 1625-1636, Dec. 1996.

[318] P.P. Raghu and B. Yegnanarayana, "Multispectral image
classification using gabor filters and stochastic relaxation
neural networkn, Neural Networks, vol. 10, pp. 561-572,
Apr. 1997.

[3191 P.P. Raghu, R. Poongodi, and B. Yegnanarayana, "Unsupervised
texture classification using vector quantization and
deterministic relaxation neural networkn, IEEE Dans. Image
Processing, Oct. 1997a.

[3201 A. Rangarajan, R. Chellappa, and B.S. Manjunath, "Markov
random fields and neural networks with applications to early
visionn, in Artificial Neural Networks and Statistical Pattern
Recognition: Old and New Connections (I.K. Sethi and A.K.
Jain, eds.), New York: Elsevier Science, 1991.

[3211 A. Rangarajan and R. Chellappa, "Markov random field models
in image processing", in The Handbook of Brain Theory and
Neural Networks (M.A. Arbib, ed.), Cambridge, MA. MIT Press,
pp. 564-567, 1995.

[3221 A. Ravichandran and B. Yegnanarayana, "A two stage neural
network for translation, rotation and size-invariant visual
pattern recognitionn, in Proceedings of IEEE Int. Conf Acoust.,
Speech, and Signal Processing, vol. 4, (Toronto, Canada),
pp. 2393-2396, May 1991.

[3231 A. Ravichandran, "Object recognition from degraded images
using neural networksn, Master's thesis, Department of
Computer Science and Engineering, Indian Institute of
nchnology, Madras, Mar. 1993.

[3241 A. Ravichandran and B. Yegnanarayana, "Studies on object
recognition from degraded images using neural networks",
Neural Networks, vol. 8, no. 3, pp. 481-488, 1995.

[325] R. Reddy, "Foundations and grand challenges of artificial
intelligencen, Artificial Intelligence Magazine, pp. 9-21, Winter
1988.

[326] R. Reddy, "The challenge of artificial intelligencen, IEEE
Computer, pp. 86-98, Oct. 1996.

[327] J.M. Renders and S.P. Flasse, "Hybrid methods using genetic
algorithms for global optimizationn, IEEE Dans. Systems,
Man and Cybernetics, .vol. 26, pp. 243-258, April 1996.

Bibliography 423

R. Reed, "Pruning algorithms-A survey", IEEE Bans. Neural
Networks, vol. 4, pp. 740-747, Sept. 1993.
E. Rich and K. Knight, Artificial Intelligence, New Delhi: Tata
McGraw-Hill Publishing Coinpany Limited, 1991.

M.D. Richard and R.P. Lippmann, "Neural network classifiers
estimate Bayesian a p'osteriori probabilities", Neural
Computation, vol. 3, pp. 461-483, 1991.

F. Rosenblatt, "The perceptron: A probabilistic model for
information storage and organization in the brain",
Psychological Review, vol. 65, pp. 386-408, 1958.

D.E. Rumelhart and D. Zipser, "Feature discovery by
competitive learning", Cognitive Sci., vol. 9, pp. 75-112, 1985.

D.E. Rumelhart and J.L. McClelland, Parallel Distributed
Processing: Explorations in the Microstructure of Cognition,
vol. 1, Cambridge, MA: MIT Press, 1986.

D.E. Rumelhart, G.E. Hinton, and R.J. Williams, "Learning
internal representations by error propagation", in Parallel
Distributed Processing: Explorations in the Microstructure of
Cognition, vol. 1 (D.E. Rumelhart, J.L. McClelland, a* the
PDP Research Group, eds.), Cambridge, MA: MIT Press,
pp. 318-362, 1986a.

D.E. Rumelhart, P. Smolensky, J.L. McClelland, and G.E.
Hinton, "Schemata and sequential thought processes in PDP
models", in Parallel Distributed Processing: Explorations in
Micr~structure of Cognition, vol. 2 (J.L. McClelland, D.E.
Rumelhart, and the PDP Research Group, eds.), Cambridge,
MA: MIT Press, pp. 7-57, 1986b.

A.P. Russo, "Neural networks for sonar signal processing", in
IEEE Conference on Neural Networks for Ocean Engineering,
vol. 51 (Washington, DC), 1991.

E. Sackinger, B.E. Boser, J. Bromely, Y. LeCun, and L.D. Jackel,
"Application of the ANNA neural network chip to high-speed
character recognition", IEEE Duns. Neural Networks, vol. 3,
pp. 498-505, May 1992.

P. Salamon, J.D. Nulton, J . Robinson, J. Petersen, G. Ruppeiner,
and L. Liao, "Simulated annealing with constant thermo-
dynamic speed", Computer Physics Communications, vol. 49,
pp. 423-428, 1988.

T.D. Sanger, "Optimal unsupervised learning in a single-layer
linear feedforward neural network", Neural Networks, vol. 2,
no. 12, pp. 459-473, 1989.
N. Saravanan and D.B. Fogel, "Evolving neural control
systems", IEEE Expert, pp. 23-27, June 1995.

424 Bibliography

M. Sarkar and B. Yegnanarayana, "A clustering algorithm using
evolutionary programming", in Proceedings of IEEE
International Conference on Neural Networks (Washington
D.C.), June 1996.

M. Sarkar and B. Yegnanarayana, "Feedforward neural
networks configuration using evolutionary programming", in
Proceedings of IEEE International Conference on Neural
Networks (Houston, USA), June 9-12, 1997a.

M. Sarkar and B. Yegnanarayana, "An evolutionary
programming-based probabilistic neural network construction
techniquen, in Proceedings of IEEE International Conference
on Neural Networks (Houston, USA), June 9-12, 1997b.

M. Sarkar and B. Yegnanarayana, "Rough-fuzzy set theoretic
approach to evaluate the importance of input features in
classificationn, in Proceedings of IEEE International Conference
on Neural Networks (Houston, USA), June 9-12, 1997c.

M. Sarkar and B. Yegnanarayana, "Incorporation of fuzzy
classification properties into backpropagation learning
algorithmn, in Proceedings of IEEE International Conference
on Fuzzy Systems (Barcelona, Spain), July 1-5, 1997d.

M. Sarkar, B. Yegnanarayana, and D. Khemani, "Evolutionary
programming based hard clusteringn, Pattern Recognition
Letters, vol. 18, pp. 975-986, 1997e.

M. Sarkar, B. Yegnanarayana, and D. Khemani, "Feedforward
neural networks with fuzzy backpropagation learning algorithm
for classificationn, to appear in Pattern Recognition Letters,
1998.

R. Schalkoff, Pattern Recognition: Statistical, Structural and
Neural Approaches, New York: John Wiley & Sons, 1992.

P. Schumacher and J. Zhang, "Texture classification using
neural networks and discrete wavelet transformn, in Proceedings
of the International Conference on Image Processing, vol. 3,
(Piscataway, NJ), IEEE, pp. 903-907, 1994.

H.P. Schwefel, Numerical Optimization of Computer Models,
Chichester: John Wiley, 1981.

T.J. Sejnowski, "Strong covariance with nonlinearly interacting
neuronsn, J. Math. Biology, vol. 4, pp. 303-321, 1977.

T.J. Sejnowski and C.R. Rosenberg, "Parallel networks that
learn to pronounce English textn, Complex Systems, vol. 1,
pp. 145-168, 1987.

H.S. Seung, H. Sompolinsky, and N. Tishby, "Statistical
mechanics of learning from examplesn, Physical Review A,
vol. 45, pp. 6056-6091, Apr. 1992.

Bibliography 425

[3541 C.E. Shannon, "A mathematical theory of communication", Bell
System Tbchnical Journal, vol. 27, pp. 379423,623-656,1948.

[355] P.K. Simpson, Artificial Neural Systems: Foundations,
Paradigms, Applications, and Implementations, Elmsford, NY:
Pergamon Press, 1990.

[3561 P.K. Simpson, "Fuzzy min-max classification with neural
networks", Heuristics Journal of Knowledge Engineering,
no. 4, pp. 1-9, 1991.

[3571 P.K. Simpson, "Foundations of neural networks", in Artificial
Neural Networks: Paradigms, Applications and Hardware
Zmplementations (E. Sanchez-Sinencio and C. Lau, eds.), New
York: IEEE Press, pp. 3-24, 1992.

[3581 S. Singhal and L. Wu, "Training feed-forward networks with
the extended Kalman algorithm", in ZEEE Znternational
Conference on Acoustics, Speech and Signal Processing, vol. 2
(Glasgow, Scotland), pp. 1187-1190, 1989.

[359] H. Sompolinsky, A. Crisanti, and H.J. Sommers, "Chaos in
random neural networks", Physical Review Letters, vol. 61, pp.
259-262, 1988.

[360] E.D. Sontag, "Feedforward nets for interpolation and
classification", J. Computing System Sciences, vol. 45, pp. 20-
48, 1992a.

[361] E.D. Sontag, "Feedback stabilization using two-hidden-layer
nets", ZEEE Zkans. Neural Networks, vol. 3, pp. 981-990,
Nov. 1992b.

[3621 C.M. Soukoulis, K. Levin, and G.S. Grest, "Irreversibility of
metastability in spin-glasses. I. Issing model", J. Physical
Review, vol. B28, pp. 1495-1509, 1983.

[363] D.F. Specht, "Probabilistic neural networks for classification,
mapping, or associative memory", in Proceedings of the ZEEE
Znternational Conference on Neural Networks, vol. 1, IEEE
Press, New York, pp. 525-532, June 1988.

[364] D.F. Specht, "Probabilistic neural networks", Neural Networks,
vol. 3, no. 1, pp. 109-118, 1990.

[3651 D.F. Specht, "A general regression neural network", ZEEE Zkans.
Neural Networks, vol. 2, pp. 568-576, Nov. 1991.

13661 K. Steinbuch, "Die lernmatrix", Kybernetik, vol. 1, pp. 36-45,
1961.

[3671 K. Steinbuch and U.A.W. Piske, "Learning matrices and their
applications": ZEEE Duns. Electronic Computers, vol. EC-12,
pp. 846-862, 1963.

426 Bibliography

[3681 W.S. Stornetta, T. Hogg, and B.A. Huberman, "A dynamical
approach to temporal pattern processing", in Neural Information
Processing Systems (D.Z. Anderson, ed.), (Denver), American
Institute of Physics, New York, pp. 750-759, 1988.

13691 G. Strang, Linear Algebra and its Applications, New York:
Academic Press, 1980.

[370] N. Sudha, "Principal component neural networks for appli-
cations in signal processing", Master's thesis, Department of
Computer Science and Engineering, Indian Institute of
Technology, Madras, 1996.

[371] R.S. Sutton, lkmporal Credit Assignment in Reinforcement
Learning, PhD thesis, University of Massachusetts, Amherst,
1984.

[3721 R.S. Sutton and A.G. Barto, "Towards a modern theory of c
adaptive networks: Expectation and prediction", Psychological
Review, vol. 88, pp. 135-170, 1981.

[3731 R.S. Sutton, A.G. Barto, and R.J. Williams, "Reinforcement
learning is direct adaptive optimal control", in Proceedings of
the American Control Conference (Boston, MA), pp. 2143-2146,
1991.

[3741 R.S. Sutton, A.G. Barto, and R.J. Williams, "Reinforcement
learning is direct adaptive optimal controln, IEEE Control
Systems Magazine, vol. 12, pp. 19-22, 1992.

[3751 H. Szu, "Fast simulated annealing", in Neural Networks for
Computing (J.S. Denker, ed.) American Institute of Physics,
New York: Snowbird, pp. 420425, 1986.

[376] C.L. Tan, T.S. Quah, and H.H. Teh, "An artificial neural network
that models human decision making", IEEE Computer, pp. 64-
70, Mar. 1996.

[377] D.W. Tank and J.J. Hopfield, "Neural computation by
concentrating information in timen, in Proceedings of the
National Academy of Sciences, vol. 84, (USA), pp. 1896-1900,
1987a.

[3781 D.W. Tank and J.J. Hopfield, "Concentrating information in
time: Analog neural networks with applications to speech
recognition problemsn, in IEEE First International Conference
on Neural Networks, vol. IV (M. Caudill and C. Butler, eds.)
(San Diego), IEEE, New York, pp. 455-468, 1987b.

[3791 J.G. Taylor and S. Coombes, "Learning higher order
correlations", Neural Networks, vol. 6, no. 3, pp. 423427, 1993.

[380] A.N. Tikhonov, "On regularization of Ill-Posed Problems",
Doklady Akademii Nauk USSR, vol. 153, pp. 49-52, 1973.

Bibliography 427

A.N. Tikhonov and V.Y. Arsenin, Solutions of Ill-Posed Problems,
Washington, DC: W.H.Winston, 1977.

K. l'brkkola, K. Kangas, J. Utela, S. Kaski, M. Kokkonen,
M. Kurimo, and T. Kohonen, "Status report of the finnish
phonetic typewriter projectn, in Proceedings of the International
Conference on Artificial Neural Networks, Amsterdam: Elsevier,
pp. 771-776, 1991.

E.C.K. Tsao, J.C. Bezdek, and N.R. Pal, "Fuzzy kohenen
clustering algorithm", Pattern Recognition, vol. 27, no. 5,
pp. 757-767, 1994.

D.W. TuRs and R. Kumaresan, "Singular value decomposition
and improved frequency estimation using linear prediction",
IEEE Dans. Acoust., Speech, Signal Processing, vol. 30,
pp. 6714375, Aug. 1982.

L.H. Ungar, "Forecasting", in The Handbook of Brain Theory
and Neural Networks (M.A. Arbib, ed.), Cambridge, MA: MIT
Press, pp. 399-403, 1995.

A. Uttley, "Conditional probability machines and conditioned
reflexes", in Automata Studies (C. Shannon and J. McCarthy,
eds.), Princeton: Princeton University Press, pp. 253-276,
1956a.

A. Uttley, "Temporal and spatial patterns in a conditional
probability machine", in Automata Studies (C. Shannon and
J. McCarthy, eds.), Princeton: Princeton University Press,
pp. 277-285, 1956b.

L.G. Valiant, "A theory of the learnablen, Communications of
the ACM, vol. 27, pp. 1134-1142, Nov. 1984.

L.G. Valiant, Circuits of the Mind, Oxford University Press,
1994.

A. van der Veen, E.F. Deprettere, and A.L. Swindlehurst,
"Subspace-based signal analysis using singular value
decompositionn, Proc. IEEE, vol. 81, pp. 1275-1308, Sept. 1993.

P.J.M. van Laarhoven and E.H.L. Aarts, Simulated Annealing:
Theory and Applications, Boston, MA: Kluwer Academic
Publishers, 1988.

V. Vapnik, "Learning and generalization: Theoretical boundsn,
in The Handbook of Brain Theory and Neural '~etworks (M.A.
Arbib, ed.), Cambridge, MA: MIT Press, pp. 516-522 1995.

M. Vidyasagar, A Theory of Learning and Generalization: With
Applications to Neural Networks a n d Control Systems
(Communications and Control Engineering), Springer-Verlag,
1997.

428 Bibliography

[394] A. Visa, "A texture classifier based on neural network
principles", in IEEE Proceedings of the International Joint
Conference on Neural Networks, vol. 1 (San Diego, CA), IEEE,
pp. 491496, 1990.

[3951 C. von der Malsburg, "Self-organization of orientation
sensitive cells in the striate cortex", Kybernetik, vol. 14,
pp. 85-100, 1973.

[3961 J. von Neumann, The Computer and the Brain, New Haven,
CT Yale University Press, 1958.

[3971 G. Vrckovnik, T. Chung, and C.R. Carter, "Classifying impulse
radar waveforms using principal components analysis and
neural networks", IEEE Proceedings of the International Joint
Conference on Neural Networks, vol. 1, pp. 69-74, 1990.

[3981 G. Wahba, "Generalization and regularization in nonlinear
learning systems", in The Handbook of Bmin Theory and Neural
Networks (M.A. Arbib, ed.), Cambridge, MA. MIT Press,
pp. 42-30, 1995.

[3991 A. Waibel, "Modular construction of time-delay neural networks
for speech recognition", Neural Computation, vol. 1, pp. 3946,
1989.

[4001 A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. Lang,
"Phoneme recognition using time-delay neural networks",
IEEE Dans. Acoust., Speech, Signal Processing, vol. 37,
pp. 328-339, March 1989.

[401] L.X. Wang, "Oscillatory and chaotic dynamics in neural
networks under varying operating conditions", IEEE Dans.
Neural Networks, vol. 7, pp. 1382-1388, Nov. 1996.

[402] Y.F. Wang, J.B. Cruz, and J.H. Mulligan, "%o coding strategies
for bidirectional associative memory", IEEE Dans. Neural
Networks, vol. 1, pp. 81-92, March 1990a.

[403] Y.F. Wang, J.B. Cruz, and J.H. Mulligan, "On multiple training
for bidirectional associative memories", IEEE Dans. Neural
Networks, vol. 1, pp. 275-276, Sept. 1990b.

[404] Y.F. Wang, J.B. Cruz, and J.H. Mulligan, "Guaranteed recall of
all training pairs for bidirectional associative memory", IEEE
Dans. Neural Networks, vol. 2, pp. 559-567, Nov. 1991.

[4051 C. Wang, J.M. Kuo, and J.C. Principe, &A relation between
Hebbian and MSE learning", in Proceedings of IEEE Int. Conf
Acoust., Speech, and Signal Processing, vol. 5, pp. 3363-3366,
1995.

[4061 L.X. Wang and J.M. Mendel, "Fuzzy basis functions, universal
approximation, and orthogonal least-squares learning", IEEE
Daqs. Neural Networks, vol. 3, pp. 807-814, Sept. 1992.

Bibliography 429

P.D. Wasseman, "Combined backpropagation/Cauchy machine",
Neur~ll Networks Suppliment: INNS Abstracts, vol. 1, p. 556,
1988.

P.D. Wasserman, Neural Computing, Theory and Practice,
New York: Van Nostrand Reinhold, 1989.

P.D. Wasserman, Advanced Methods in Neural Computing,
New York: Van Nostrand Reinhold, 1993.

A.S. Weigend and N.A. Gershenfeld, "Results of the time series
prediction competition at the Santa Fe Institute", in Pmeedings
of the IEEE International Conference on Neural Networks,
vol. I11 (San Francisco), IEEE, New York, pp. 1786-I793,1993.

A.S. Weigend, D.E. Rumelhar t , and B.A. Huberman,
"Generalization by weight-elimination with application to
forecasting", in Advances in Neural Znformation Processing
Systems (R.P. Lippmann, J.E. Moody, and D.S. Touretzky, eds.),
vol. 3 (Denver), Morgan Kaufmann, San Mateo, CA, pp. 875-
882, 1991.

N. Weiner, Cybernetics, New York: John Wiley & Sons, 1948.

R.S. Wenocur and M.R. Dudley, "Some special Vapnik-
Chervonenkis classes", Discrete Mathematics, vol. 33, pp. 313-
318, 1981.

P.J. Werbos, Beyond regression: New tools for prediction and
analysis in the behavioural sciences, PhD thesis, Harvard
University, Cambridge, MA, 1974.

P.J. Werbos, The Roots of Backpropagation: From Ordered
Derivatives to Neural Networks and Political Forecasting;
New York: John Wiley, 1994.

L.F.A. Weasels and E. Barnard, "Avoiding false local minima
by proper initialization of connections", ZEEE Dans. Neural
Networks, vol. 3, pp. 899-905, Nov. 1992.

H. White, "Learning in artificial neural networks: A statistical
perspective", Neural Computation, vol. 1, no. 4, pp. 425464,
1989.

B.A. Whitehead, "Genetic evolution of radial basis function
coverage using orthogonal niches", ZEEE Dans . Neural
Networks, vol. 7, pp. 1525-1528, Nov. 1996.

B. Widrow, "Generalization and information storage in networks
of Adaline 'neurons'", in Self-Organizing Systems (M.C. Yovitz,
G.T. Jacobi, and G. Goldstein, eds.), Washington, DC: Spartan
Books, pp. 435-461, 1962.

B. Widrow and M.E. Hoff, "Adaptive switching circuits", IRE
WESCON Convention Record, vol. 4, pp. 96-104, Aug. 1960.

430 Bibliography

B. Widrow and S.D. Stearns, Adaptive Signal Processing,
Englewood Cliffs, NJ: Prentice-Hall Inc., 1985.

A. Wieland and R. Leighton, "Geometric analysis of neural
network capabilities", in First IEEE International Conference
on Neural Networks, vol. 3 (San Diego, CA), IEEE, New York,
pp. 385-392, 1987.

R.J. Williams, "Toward a theory of reinforcement-learning
connectionist systems", Technical Report, NU-CCS-88-3, College
of Computer Science, Northeastern University, Boston, MA,
1988.

R.J. Williams, "Simple statistical gradient-following algorithms
for connectionist reinforcement learning", Machine Learning,
vol. 8, pp. 229-256, 1992.

R.J. Williams and D. Zipser, "Experimental analysis of the
real-time recurrent learning algorithm", Connection Science,
vol. 1, pp. 87-111, 1989.

D. Willshaw, Models of distributed associative memory, PhD
thesis, University of Edinburgh, 1971.

G.Y. Wilson and G.S. Pawley, "On the stability of the travelling
salesman problem algorithm of Hopfield and Tank", Biol.
Cybernet., vol. 58, pp. 63-70, 1988.

R. Wolf and J. Platt, "Postal address block location using a
convolutional locator network", in Advances in Neural
Information Processing Systems, vol. 6 (J. Cowan, G. Tesauro,
and J. Alspector, eds.), (San Mateo, CAI, Morgan Kaufmann,
pp. 745-752, 1994.

L. Xu, E. Oja, and C.Y. Suen, "Modified Hebbian learning for
curve and surface fitting", Neural ~etworks, vol. 5, no. 3,
pp. 441457, 1992.

W.Y. Yan, U. Helmke, and J. B. Moore, "Global analysis of
Oja's flow for neural networks*, IEEE Bans. Neural Networks,
vol. 5, pp. 674-683, Sept. 1994.

Y. Yao and W.J. Freeman, "Models of biological pattern
recognition with spatially chaotic dynamics", Neural Networks,
vol. 3, pp. 153-170, 1990.

X. Yao, "Evolutionary artificial neural networks", Int. J. Neural
Systems, vol. 4, no. 3, pp. 203-222, 1993.

X. Yao and Y. Liu, "A new evolutionary system for evolving
artificial neural networks", IEEE Bans. Neural Networks,
vol. 8, May 1997.

B. Yegnanarayana, "Artificial neural networks for pattern
recognitibn", Sadhana, vol. 19, pp. 189-238, Apr. 1994.

Bibliography 43 1

B. Yegnanarayana, D. Khemani, and M. Sarkar, "Neural
networks for contract bridge biddingn, Sadhana, vol. 21,
pp. 395-413, June 1996.

B. Yegnanarayana, C.P. Mariadassou, and P. Saini, "Signal
reconstruction from partial data for sensor array imaging
applicationsn, Signal Process, vol. 19, pp. 139-149, Feb. 1990.

B. Yegnanarayana, S. Rajendran, V.R. Ramachandran, and
A.S. Madhukumar, "Significance of knowledge sources for a
text-to-speech system for Indian languages", Sadhana, vol. 19,
pp. 147-169, Feb. 1994.

YO. Yoon, R.W. Brobst, P.R. Bergstresser, and L.L. Peterson,
"A desktop neural network for dermatology diagnosisn, J. Neural
Network Computing, pp. 43-52,' Summer 1989.

A.L. Yuille, "Constrained optimization and the elastic net", in
The Handbook of Brain Theory and Neural Networks (M.A.
Arbib, ed.), Cambridge, MA. MTT Press, pp. 250-255, 1995.

L.A. Zadeh, "Fuzzy setsn, Information and Control, vol. 8,
pp. 338-353, 1965.

A.D. Zapranis and A.N. Refenes, "Investment management:
Tactical asset allocationn, in The Handbook of Brain Theory
and Neural Networks (M.A. Arbib, ed.), Cambridge, MA: MIT
Press, pp. 491-495, 1995.

Q. Zhang and Y.W. Leung, "Energy function for the one-unit
Oja algorithmn, IEEE Duns. Neural Networks, vol. 6,
pp. 1291-1293, Sept. 1995.

J.M. Zurada, Introduction to Artificial Neural Systems,
Singapore: Info Access and Distribution, 1992.

Author Index

Aarts, E., 192, 193, 399, 427
Abrash, V., 404
Ackley, D.H., 22, 23, 65, 183, 399
Adachi, M., 397, 399
Adleman, L., 335, 399
Aibara. T., 94, 145, 418
Aihara, K., 397, 399
Aleksander, I., 110, 158, 160, 162,

179, 182, 399
Alspector, J., 430
Amari, S., 22, 70, 373, 374, 377, 399
Amit, D.J., 22, 152, 174, 175, 399
Anandan, P., 64, 400 .

Anderson, C., 195, 401
Anderson, D.Z., 404, 411, 415, 426
Anderson, J., 400
Anderson, J.R., 296, 420
Anderson, S., 22, 269, 400
Andreyev, Y.V., 335, 397, 400
Angeline, P.J., 392, 400
Anthony, M., 374, 377, 400
Arabshahi, R.J., 404
Arbib, Michael A., 399,400,402,407,

408, 409, 422, 427, 428, 431
Arsenin, V.Y., 132, 242, 427
Ashby, W., 22, 400

Baum, E., 376, 401
Baxt, W.G., 333, 401
Belew, R.K., 335, 401
Belsky, Y.L., 400
Bengio, Y., 321, 322, 377, 415
Bergstresser, P.R., 431
Bezdek, J.C., 9, 393, 401, 427
Bhattacharya, A.K., 392, 401
Bienenstock, E., 407, 415
Bilbro, G.L., 173, 401
Billings, S.A., 392, 401
Binder, K , 190, 194, 401
Blondeau, F.C., 397, 401
Blum, A.L., 133, 401
Blumer, A., 373, 376, 402
Bornholdt, S., 392, 402
Bose, N.K, 140, 259
Boser, B., 415, 423
Bounds, D.G., 334, 402
Bovik, A.C., 325, 402
Brobst, R.W., 431
Bromely, J., 423
Broomhead, D.S., 22, 247, 402
Budelli, R.W., 420
Burel, G., 387, 402
Burges, C.J.C., 324, 402
Burke, B., 406
Burke, G., 334, 402
Busse, J.G., 420
Butler, C., 426

Baldi, P., 381, 389, 400 C
Ballard, DS., 134, 400
Baneiee, M., 396, 400 Caianiello, E.R., 22, 402
Barnard, E., 127, 285, 400, 429 Cameron, S.H., 107, 402
Barnden, John A., 13, 400 Carbonell, J., 410
Barney, H.L., 309, 310, 421 Cardoso, J.F., 387, 402
Barto,A.G., 22,59,64,134,400,401, Carpenter, G.A., 258, 259, 262, 273,

426 394, 402, 403
Battiti, R., 129, 131, 401 Carter, C.R., 428

Author Index

Casasent, D., 285, 400
Casselman, F.L., 134, 403
Caudell, T.P., 404
Caudill, M., 426
Chan, K.H., 418
Chandrasekhar, C., 312, 314, 321,

403
Chang, C., 419
Chauvet, G., 401
Chehikian, A., 413
Chellappa, R., 292,324,403,408,422
Chen, C.H., 333, 334, 401, 403
Cherkassky, V., 293, 404
Cheny, C., 418
Cheung, J., 59, 404
Choi, J.J., 394, 404
Chouhan, H.M., 421
Chua, L.O., 396, 420
Chung, F.L., 394, 404
Chung, T., 428
Clark, M., 402
Cohen, MA., 68, 69, 73, 134, 148,

404
Cole, R., 307, 404
Colorni, A., 405
Comon, P., 387, 404
Cooke, D.E., 335, 411
Coombes, S., 386, 389, 426
Cooper, F.S., 5, 404
Cortes, C., 303, 404
Cowan, J., 13, 404, 430
Crisanti, A., 425
Clutchfield, J.P., 396, 404
Cluz, J.B., 428
Cybenko, G., 133, 246, 405

Dam, A. Van., 1, 416
Darken, C., 247, 418
Daugman, J.G., 292, 325, 405
Davis, S.B., 309, 310, 405
Denker, J.S., 415, 426
Deprettere, E.F., 427
Devijver, P.A., 9, 380, 405
Diamantaras, K.I., 384, 385, 390,

405, 415
Dmitriev, A.S., 400
Dorigo, M., 335, 405
Doursat, R., 407

Dowla, F.U., 412
Dreyfus, H.L., 1, 4, 306, 405
Dreyfus, S.E., 405
Dubes, R.C., 254, 405
Dubois, D., 395, 405
Duda, R.O., 6, 333, 406
Dudley, M.R., 377, 429
Durbin, R., 300, 406

Ehrenfeucht, A., 402
Eisenberg, J., 397, 406
Elman, J.L., 267, 406, 408, 412

Fahlman, S.E., 129, 406
Fanty, M., 404
Farber, R., 269, 415
Farmer, J.D., 404
Feigenbaum, E.A., 4, 406
Fimoff, W., 409
Flanagan, J.L., 307, 406
Flasse, S.P., 392, 422
Fletcher, R., 130, 406
Fogel, D.B., 335, 391, 392, 406, 423
Fogel, L.J., 406, 421
Foldiak, P., 383, 406, 421
Folger, T.A., 393, 413
Franco, H., 404
Freeman, D.F., 403
Freeman, J.A., 147, 153, 155, 213,

215, 217, 230, 259, 266, 406
Freeman, W.J., 406, 430
Fujioka, R., 412
Fukushima, K., 22,271,272,323,407
Funahashi, K., 246, 407

Gabor, D., 22, 407
Gallant, S.I., 333, 407
Gamier, S.J., 401
Gault, J.W., 401
Gawthrop, P.J., ,411
Geisler, W.S., 402
Gelatt, C.D., 413

Author Index

Geman, D., 192, 295, 407
Geman, S., 192, 256, 295, 407
Gershenfeld, N.A., 269, 429
Giles, C.L., 404
Girosi, E, 22, 248, 421
Glauber, R.J., 295, 407
Gobovic, D., 411
Goldberg, D.E., 391, 407
Goldstein, G., 429
Goodman, D.M., 412
Goodman, R., 408
Gopalakrishna, M.. 404
Gori, M., 134
Graudenz, D., 392. 402
Gray, R.M., 185, 304, 407
Grebogi, C., 419
Greenberger. M., 5, 408
Greenspan, H., 324, 408
Grest, G.S., 425
Grossberg, S., 30, 43, 48,60, 68,69,

73, 148, 258, 259, 262, 266, 273,
402, 403. 404. 408

Gutfieund, H., 399
Guyon, I., 120, 125, 408

Hagiwara. M., 239. 240. 408
Haken, H., 292, 408
Hampshire. J.B., 132. 408
Hanazawa, T., 428
Hanson, S.J., 404
Harrington, J., 310. 408
Hart, P.E., 6, 406
Harth, E., 396, 409
Hassoun, M.H., 31, 36, 53, 65, 138,

139, 231, 232, 409
Haussler, D., 373, 375,376,401,402,

409
Hayashi, Y., 397. 409
Haykin, S., 120, 127, 128, 131, 132,

134. 193,200,209.230, 231.249.
250,251,253,276,296,313,379,
380, 381, 382, 409

Hebb, D.O., 21, 22, 32, 58, 380, 409
HechbNielsen, R., 22,91,97,99,256,

351, 409
Heerman, D.W., 190, 401
Hegde, S.U., 417
Helmke, U., 430

Henderson, D., 415
Herault, J., 387, 413
Hergert, E, 409
Hertz, J.A., 69, 139, 151, 154, 155,

157, 170, 175, 194, 199,200,209,
224,230,231,232,266,293,296,
301,303,304, 339,381, 404,409

Hinton, G., 22,23,195,399,400,406,
408, 410, 421, 423, 428

Hirota, K., 394, 410
Hodgkin, A.L., 50. 397, 410
Hoff, M.E., 22, 23, 97, 429
Hogg, T., 426
Holden, S.B., 374,375,376,377,400
Holland, J.H., 1, 4, 391, 410
Holmstrom, L., 378, 410
Hopfield, J.J., 22, 23, 46, 152, 165,

156, 267, 299, 410, 411, 426
Home, B., 120, 134, 411
Hornik, K., 381, 389, 400
Hotelling, H., 379, 411
Howard, R.E., 415
Hsu, C.C., 397, 411
Hu, M., 205. 411
Huang, W.Y., 310, 411
Huang. Z., 229, 411
Hubbard, W., 415
Hubel, D.H., 224, 411
Huberman. B.A.. 426. 429
Hummels, D.M.. 418
Huneycutt, B.L., 412
Hunt, D.J., 393, 413
Hunt, E.R., 397, 411
Hunt, J.E.. 335. 411
Hunt, K.J., 306, 411
Hush. D.R., 120, 126. 134. 411
Huxley, A.F., 50, 397, 410
Hwang. J.N.. 324. 412

Ishibuchi, H., 132, 394, 412

Jack, M., 408
Jackel, L.D., 415, 423
Jacobi, G.T., 429
Jacobs, R.A., 128, 134, 412

Author Index

Jain, A.K., 422
Jean, J.S.N., 378, 412
Jockusch, S., 392, 412
Johansson, E.M., 412
Jolliffe, I.T., 379, 412
Jones, R., 400
Jordan, M.I., 267, 268, 412
Jordan, R.L., 332, 412
Joutsensalo, J., 387, 390, 413
Juang, B.H., 307, 421
Judd, J.S., 133, 412
Jutten, C., 387, 413

Kalantri, K., 418
Kanal, L., 8, 413
Kangas, K., 427
Karhunen, J., 387, 390, 413
Kaski, S., 427
Kawamoto, M., 379, 417
Kay, S.M., 390, 413
Kearns, M., 409
Keeler, J.D., 324, 413
Keller, J.M., 393, 413
Kerringan, D.A., 403
Khemani, D., 424, 431
Kim, M.W., 415
King, R.A., 222, 304, 419
Kirkpatrick, S., 22, 179, 293, 413
Kittler, J., 9, 380, 405
Klatt, D.H., 308, 413
Klir, G.J., 393, 395, 413
Klopf, A.H., 22, 60, 66, 413
Knight, K., 1, 423
Koch, C., 303, 413, 421
Kohonen, T., 22, 222, 224, 225, 267,

292, 293, 304, 305, 309, 414, 427
Koistnen, P., 378, 410
Kokkonen, M., 427
Korst, J., 192, 399
Kosko, B., 22, 41, 42, 47, 61, 71, 73,

238, 239, 403, 414
Koza, J.R., 391, 414
Kramer, A.H., 131, 415
Krogh, A., 409
Kuh, A., 411
Kullback, S., 132, 415
Kumaresan, R., 390, 427
Kuminov, D.A., 400

Kung, S.Y., 200, 219, 221, 230, 231,
246, 339, 384, 390, 405, 415

Kuo, J.M., 428
Kurimo, M., 427

Lacoume, J.L., 413
Lane, S.E., 403
Lang, R, 428
Lapedes, A., 269, 415
Lau, C., 425
Laver, J., 408
LeCun, Y., 134, 194, 321, 322, 323,

377, 415, 423
Lee, C.S.G., 24, 335, 416
Lee, H.B., 390, 415
Lee, T., 394, 404
Lee, Y., 126, 415
Leighton, R., 132, 430
Leon, S.J., 380, 385, 386, 416
Leow, W.K., 413
Leung, Y.W., 381, 431
Levin, K., 425
Liang, P., 140, 259, 402
Liao, L., 423
Lin, C.T., 24, 335, 393, 394, 416
Linsker, R., 22, 224, 379, 416
Lippmann, R.P., 112, 255, 256, 281,

282, 307, 310, 326, 411, 412, 413,
416, 423, 429

Little, W., 22, 416
Liu, Y., 373, 392, 416, 430
Lloyd, P.J., 402
Lowe, D., 243, 247, 251, 402, 416
Lu, Y.C., 393, 394, 416

MacKay, D.J.C., 248, 416
Madhukumar, A.S., 431
Majumder, D.D., 393, 419
Malbos, J., 413
Mandlebrot, B., 397, 416
Maniezzo, V., 405
Manjunath, B.S., 403, 422
Mantas, J., 8, 416
Marcus, A., 1, 416
Mariadassou, C.P., 431

Author Index

Marks, R.J., 404
Marple, S.L., 390, 417
Marrpquin, J., 413
Martin, N., 413
Mathew, B., 402
Matsuoka, K , 379, 417
McCarthy, J., 427
McClelland, J.L., 4,20,293,316,317,

324,341,342,343,344,345,346,
347, 349, 410, 417, 423

McCorduck, P., 406
McCulloch, W.S., 21, 22, 26.27, 417
McGough, R., 334, 417
Mead, C., 22, 417
Mendel, J.M., 394, 428
Mermelstein, P., 309, 310, 405
Merrill, J.W.L., 400
Metropolis, N., 190, 295, 417
Mhaswade, P.K, 292, 293, 417
Michalski, R., 410
Michell, T., 410
Miller, G.F., 392, 417
Millstrom, N.H., 403
Minai, A.A., 128, 417
Minsky, M., 21,22,23,109,123,134,

241, 417, 418
Mitra, S., 307, 400, 419
Moody, J., 247, 412, 413, 418, 429
Moore, J.B., 430
Morgan, D.P., 334, 418
Morgan, N., 404
Morton, H., 110, 158, 160, 162, 179,

182, 399
Mozer, M.C., 267, 418
Mukhopadhyay, S., 306, 418
Muller, B., 16, 168, 170, 171, 293,

296, 418
Mulligan, J.H., 428
Mulloney, B., 420
Murakami, K , 94, 145, 418
Muroga, S., 107, 418
Murthy, HA., 419
Musavi, M.T., 373, 418
Muthuswamy, Y., 404

Narendra, K.S., 134, 269, 277, 305,
306,418

Narendranath, M., 307,378,418,419

Nasrabadi, N.M., 222, 304, 419
Neeharika, A,, 372, 419
Nguyen, D.H., 305, 419
Nichols Jr., W.G., 403
Nii, H.P., 406
Nilsson, N., 22, 419
Niraqjan, M., 376, 410
Nowlan, S.J., 309, 419, 421
Nulton, J.D., 423

Oh, S.H., 415
Oja, E., 66, 208, 209, 381, 382, 419,

430
Ornidvar, M., 59, 404
Ott, E., 397, 419
Owners, A.J., 406

Packard, N.H., 404
Pal, N.R., 427
Pal, S.K, 307, 393, 400, 401, 419
Palmer, R.G., 409
Palrnieri, F., 380, 383, 419
Pao, Y.H., 99, 419
Papert, S.A., 22, 23, 109, 123, 134,

241, 418
Papoulis, A., 152, 167, 364, 419
Parker, T.S., 396, 420
ParthaSarathy, K, 134,269,277,305,

4 18
Partridge, D., 4, 420
Parzen, E., 255, 420
Pawlak, Z., 335, 395, 396, 420
Pawley, G.S., 299, 430
Pearl, J., 1, 420
Pearlmutter, B., 132, 271, 408, 420
Pedrycz, W., 394, 410, 420
Penrose, R., 92, 420
Peretto, P., 22, 420
Perkel, D.H., 46, 420
Petersen, J., 423
Peterson, C., 195,293,295,296,298,

420, 421
Peterson, G.E., 309, 310, 421
Peterson, L.L., 431
Piske, U.A.W., 65, 425

Author Index

Pitts, W., 21, 22, 26, 27, 417
Platt, J., 324, 430
Plaut, D.S., 129, 421
Poggio, T., 22, 242, 248, 421
Polak, E., 130, 421
Pollack, J.B., 400
Poongodi, R., 422
Port, R., 400
P o d , W., 392, 393, 421
Powell, M.J.D., 247, 421
Prade, H., 395, 405
Preisendorfer, R.W., 380, 421
Principe, J.C., 428

Quah, T.S., 426

Rabiner, L.R., 307, 309, 421
Raghu, P.P., 229, 324, 325, 326, 327,

328, 330, 333, 421, 422
Rajendran, S., 419
Ramachandran, V.R., 431
Rangarajan, A., 292, 324, 422
Ravichandran, A., 281, 283, 285,

422
Raper, P.J.W., 374, 410
Reddy, R., 4, 306, 422
Reed, R., 378, 423
Reeves, C.M., 130, 406
Refenes, A.N., 334, 431
Reinhardt, J., 16, 168, 170, 171,293,

296, 418
Renders, J.M., 392, 422
Reynolds, J.H., 403
Ribiere, G., 130, 421
Rich, E., 1, 423
Richard, M.D., 255, 256, 324, 423
Ritter, H., 392, 412
Ritz, S., 400
Rivest, R., 133, 397, 401
Robinson, J., 423
Rocha, A.F., 394, 420
Rosen, D.B., 403
Rosenberg, C.R., 134, 307, 424
Rosenblatt, F., 22, 23, 27, 423
Rosenbluth, A.W., 417

Rosenbluth, M.N., 417
Roysm, B., 392, 401
Rumelhart, D., 4,20,22,23,117,125,

129, 221, 270, 271, 293, 316, 317,
324, 341, 342, 343, 344, 345, 346,
347, 348, 349, 410, 412, 413,417,
423, 429

Ruppeiner, G., 423
Russo, A.P., 120, 423

Sackinger, E., 322, 323, 423
Saini, P., 431
Salmon, P., 192, 423
Salas, J.M., 411
Sanchez-Sinencio, E., 425
Sanger, T.D., 382, 409, 423
Sangiovanni-Vincentelli, A,, 131,

4 15
Saravanan, N., 392, 423
Sarkar, M., 335, 392, 393, 396, 424,

43 1
Saunders, G.M., 400
Sbarbaro, D., 411
Schaffer, J.D., 417
Schalkoff, R., 9, 424
Schapire, R., 409
Schumacher, P., 324, 424
Schwartz, E.L., 400
Schwefel, H.P., 391, 424
Scofield, C.L., 334, 418
Sejnowski, T.J., 22, 23, 59, 134, 307,

399, 400
Selfridge, O., 22, 418
Sethi, I.K., 422
Seung, H.S., 373, 377, 424
Shannon, C., 22, 425, 427
Sharp, D.H., 13, 404
Shaw, G., 416
Shaw, R.S., 404
Shikano, K., 428
Shortliffe, E.H., 333, 406
Silverstein, J., 400
Simchony, T., 403
Simpson, P.K, 19,29,58,65,66,233,

234, 425
Singhal, S., 131, 425
Skapura, D.M., 147, 153, 155, 213,

215, 217, 230, 259, 266, 406

Author Index

Slowinski, R., 405, 420
Smolensky, P., 423
Snyder, W.E., 401
Soderberg, B., 293, 298, 421
Sofge, D.A., 400
Sommers, H.J., 425
Sompolinsky, H., 157,397,399,424,

425
Sontag, E.D., 133, 376, 377, 425
Soukoulis, C.M., 173, 425
Soulie, F.F., 415
Specht, D.F., 255, 425
Steams, S.D., 364,371, 430
Steinbuch, K , 22, 65, 425
Stornetta, W.S., 267, 426
Strang, G., 92, 426
Sudha, N., 379, 390,426
Suen, C.Y., 389, 430
Sutton, R., 22, 59, 63, 64; 134, 401,

426
Swindlehurst, A.L., 427
Szu, H., 65, 411, 426

Tan, C.L., 333, 426
Tanaka, H., 412
k k , D.W., 267, 299, 411, 426
Taylor, J.G., 386, 389, 426
Teh, H.H., 426
Teller, A.H., 417
Teller, E., 417
Tesauro, G., 430
Tesi, A., 134, 407
Thorbergsson, G.I., 409
Tikhonw, A.N., 22,132,242,426,427
Tishby, N., 424
Todd, P.M., 417
'Ibrkkola, K, 309, 427
'Ibrre, V., 421
'Iburetzky, D.J., 412
'Iburetzky, D.S., 400, 406, 408, 413,

415, 419, 429
'lhao, E.C.K, 394, 427
Tufts, D.W., 390, 427

Ungar, L.H., 334, 427

Utela, J., 427
Uttley, A., 22, 427

Valiant, L.G., 135, 375, 427
van der Veen, A., 390, 427
van Laarhoven, P.J.M., 193, 427
Vapnik, V., 375, 427
Vassilas, N., 293, 404
Vecchi, M.P., 413
Vidyasagar, M., 135, 427
Visa, A., 324, 428
von der Malsburg, C., 22, 221+

428
von Neumann, J., 22, 428
Vrckovnik, G., 389, 428

Wadell, G., 402
Wahba, G., 248, 428
Waibel, A., 2 6 z 311, 312, 428
Wake, N., 407
Walsh, M.J., 406
Wang, C., 381, 428
Wang, J., 378, 412
Wang, L.X., 394, 397, 428
Wang, Y.F., 239, 428
Warmuth, M.K., 402
Wasserman, P.D., 65, 134, 135, 255,

397, 429
Weigend, A.S., 269, 429
Weiner, N., 22, 429
Weisbuch, G., 415
Wenocur, R.S., 377, 429
Werbos, P.J., 22, 117, 429
Werner, M., 412
Wessels, L.F.A., 127, 429
White, D.A., 400
White, H., 255, 429
Whitehead, B.A., 392, 429
Widrow, B., 22, 23, 28, 97, 305, 364,

371, 419, 429, 430
Wieland, A., 132, 430
Wiesel, T.N., 224, 411
Williams, R.J., 22, 64, 128,417, 423,

426, 430
Willshaw, D., 22, 300, 406, 430

Author Index

Wilson, G.V., 299, 430
Wolf, R., 324, 430
Wong, S.KM., 420
Wu, L., 131,425

Xu, L., 389, 430

Yan, W.Y., 381, 430
Yao, X., 392, 430
Yao, Y., 397, 430
Yegnanarayana, B., 6,281,286,290,

308, 313,326, 333,336, 392,393,
396, 403,419, 421, 422, 424,430,
48 1

Yoon, Y.O., 334, 431

Yorke, J A., 419
Yovitz, M.C., 429
Yuan, B., 393, 396, 413
Yuille, A., 293, 413, 431

Zadeh, L.A., 393, 431
Zaghloul, M.E., 411
Zapranis, A.D., 334, 431
Zbikmski, R., 411
Zhang, J., 324, 424
Zhang, Q., 381,431
Zheng, G.L., 392, 401
Zhu, J., 380, 419
Ziarko, W., 420
Zimmermann, H.G., 409
Zipser, D., 221, 423, 430
Zurada, J.M., 27,31,36,67,100,240,

271, 276, 306, 338, 431

Subject Index

2D convolution, 325

A posteriori probability, 122, 131,
133, 251, 324, 358

maximum (MAP), 329
A priori, 358
A priori knowledge, 244, 394
ABAM theorem, 71
Absolute value distance, 362
Absolutely stable, 69
Absolutely stable states, 172
Accretive, 6, 77, 85, 100, 146
Acoustic features, 306
Acoustic-phonetic knowledge, 316
Activation

state, 24, 40
value, 24
vector, 90

Activation and synaptic dynamics,
40-73

distinction, 54
Activation dynamics, 1, 25, 40, 143

additive models, 44-47
shunting models, 48-52
stochastic models, 51

Actual output, 91, 96
Adaline, 28

learning, 29
model, 23, 29

Adaptive
autoassociative network, 70
BAM (ABAM), 71, 239
clustering, 262
formation of desired weights, 97
heteroassociative network, 71
learning, 97

principal component extraction
(APEX), 383

resonance theory (ART) (see ART
models)

vector quantization (see Vector
Quantization)

Additive activation dynamic9 models,
44-47

autoassociative, 46
heteroassociative, 46
summary, 47

AGoint differential operator, 249
merent , 271
f f i n e transformation, 99
A1 (see Artificial Intelligence)
Algorithmic approach, 4
Alternate proof, 104
All-Class-One-Network (ACON), 313
Alveolar, 314
Analog patterns, 239, 262
Analog VLSI, 23
Analysis of

competitive learning network,
202-211

feature mapping network, 223-
228

feedback layer, 211-218
pattern association networks, 90-

99
pattern classification networks,

9%113
pattern clustering networks, 218
pattern mapping networks, 113-

135
self-organization network (see

feature mapping network)
Animal cortex, 397
ANN models (see basic ANN models)
Annealing

deterministic, 194, 330
fast, 192

891 '?nd?no JO anlea
8~1 'Biaua

961: 'B.raua aag padmsp
a%sxaav

ggz 'am?3qs aq3mpav
'mqsbs paysurlp snouxougnv

888 'uo!?3adsu! paqsmgnv
998 'sagiadoid

998 'LOZ 'sioq3a~ua%!a
998 'LOZ 'LZ~ 'san~saua%!a

998 'LOZ
'LZ~ '911 'x!qsm uo!qs~a.r.r03oqnv

PPI '9S87
a 88 'ma1qoid

g~ '~ogspossso~n~
g~z 's3!qsuq~smq~ a~qsi!sap

ggz '18 'fiomam aa!?spossso?nv
101 'io?oaa ?@!afi

101 'igaaa qndu!
pa?uamSnv

LOB 'msywq3am %u!ssa3o~d fioqpnv
L68 'SJo?3sJ7?V

69~ 'mqsLsqns ~suo!~ua~~v
091 'qvpdn snouorq3urlsv

1 €1: 'uo!qsm~oidds 3!?gdurLs y
988 'V3d 3!4amdsv

OPZ '1siodmaq
~gz '~uauma~

68Z '(IWHI) Isuo!?3aJFP41nm
9EZ '06 'maF1

98Z 'oJalaq
68~ Yqpsds:,

98Z 'LP '18 '(ma) Isuo!73aJFp!q
98Z '18 'olns

16Z '6LZ
'zgz '98~ '1~ Y~omam aa!?spossv

LZ 'q!un
LL 'OJaIaq

LL 'o?n'3
UO!?BpOSSV

P9
'%u!uisa1 b~~suad-preaai aa!?spossv

Z1 8 'PaqsJ!dsv
L66 'IaPom fi0?3~310 PI3Y13-W

9Z 'slapom
L66 '9Z 'UOmaU IBPYIVV

(slapom NNV 3!ssq aas) slapom
oz 'fluo!7B7!m!1

1 'sl!un PU0!73unJ
z 'sam~3a~g3.m

66 'OZ
'1 '(W) qJo4aN IsJnaN IVYl3-V

z 'smaqsbs
OZ 'suo!?B?!m!I

OZ '1 '(IV) a3ua%t[~?u1 I~!a%?W
988 'mqsbs ?Us IB!3Y!?W

908 'sia?ami~d fio?sp3!pv
908 'mnlaa

908 'asung
908 'sd!1
908 'fi@

908 'SJWW3!VV
Z9Z 'm,LMr ~ZZY

z9z 'm,Lw
Z9Z 'z,Lw

Z9Z '69Z '1LW
89Z 'ZZ 'SIaPom ,LW

9gz 'uogpSo3al uiq~sd Isiodmq
1 LZ '4!1!qsu~a ~alq-ed
EEZ 'sqsB7 Hd xa1dmo3

IOJ sam?c1qq3q~
988 '€8~ 'Z1 'PA91 am?Da?nlaW

118 'NN~L
682 'IWHI
98z 'ma
89Z ',Lw

Z 'NNY
8LE '881 'aJnVallrl3V

L6 '-7sm
$@!am pailsap 0% uo!qem!xoiddy

ZPZ 'dm JO uo!?smproiddv
ZZT. 'PIT 'uo!punj JO uo!qsmproiddv

~81 '$uamuoi
-yua JO uogquasa~da~ a?smproiddv

'%u!ddsm aqsmpro~ddy
6LZ '~3!dg JO UO~BZ!UB%O

08z 'GLZ 'uog~3!1dd~ 73a.q
908 '6LZ 'S8al8 uog83!1dd-e

8LZ 'NNV 30 SU0!?83!1ddv
988 '11 '11 'IaAaI suo!?s3!1ddv

908 'qaaads
~zg '%u!ssa3o~d aBsm!
€88 '8ugsm uo!spap

88-08 '6LZ 'S8aJ8 ~0!?83!1ddv
901 'sa3uuuosaigq

P88 "I88 '2u~mal us!qqaH-!?W
908 'S?u8~OJ!?V

86Z 'Z61
'061 "181 '6~1 'alnpaqas Budar~saw

8~1 'ssa~oid Bu!1sauuv
088 '3!7seqao7s

96Z '991 'Pa7Blnm!S
961 'PIa!J-ueam

Subject Index

Axon, 16
Axon hillock, 42
BAM, 236

Backpropagation, 117, 392
applications, 134
batch mode, 127
convergence, 122, 125
generalization, 122
gradient descent, 117
learning rate, 122, 127
local minimum, 122, 132
momentum, 122, 129
network, 134
output function, 124
pattern mode, 127
recurrent network, 270
scaling, 122
stopping criterion, 121, 126
through time, 270
weight change, 180
weight initialization, 181

Backpropagation learning, 23, 117,
121

algorithm, 121
description and features, 123
discussion, 120
issues, 121
summary, 121

Backward propagation, 271
Bandwidth, 325
Basic ANN models, 76
Basic competitive learning (see

competitive learning)
Basic learning laws, 31, 67

discussion, 35
summary, 35

Basics level, 11, 336
Basis of attraction, 69, 147, 157,

292
Basis function

Guassian, 254
linear, 246
nonlinear, 245
radial, 22, 245

Basis function formulation, 252
classification problem, 251
function approximation, 247

Bayes classification, 255
Bayes theorem, 248, 328, 359
Behavioural changes, 391
Bernoulli trials, 360
Bias input, 99, 245
Bias of unit, 319
Bibliographic information, 292
Bidding

card game, 290
problem, 280, 290
sequence, 280

Bidirectional associative memory
(BAM), 31, 47, 236

Bilabial, 314
Binary

input, 106, 281
output, 106
output function, 158, 206
pattern, 237
relation, 395

Binomial distribution, 152, 360
Biological neural network, 1, 15, 19,

233, 396
features, 15

Biological system, 391
Bipolar

output function, 107
patterns, 151, 237
states, 150, 294

Bit pattern, 241
Blind separation, 390
Boltzmann-Gibb's distribution. 170
Boltzmann-Gibb's law, 186
Boltzmann learning, 65, 184, 191

algorithm for implementation, 191
algorithm for recall from partial

input, 192
Boltzmann learning law, 143, 184

implementation. 188
issues, 190
summary, 189

Boltzmann Machine (BM), 22, 143,
183

architecture, 183
Boolean functions, 138, 241

linear threshold, 138
polynomial, 138
quadratic, 138

Bottom-up competitive learning, 258
Bottom-up connections, 259
Bounded output, 216

Subject Index

Bowl shape, 366
Brain State-in-Box (BSB), 22
Brain vs. computer, 19
Brittleness, 1
Building blocks, 76

C-cells, 272
CV units, 310
CV utterances, 280
Capacity, 148

BAM, 239
Hopfield model, 151
memory, 236
storage, 151

Categories, 63
input patterns, 207
learning, 53, 234
learning laws, 63

Category learning tasks, 258
Cauchy machine, 192
Cauchy-Schwartz inequality, 103
Cell body, 16
Centroids of clusters, 246
Cepstral coefficients, 310
Chaos, 391, 396
Chaotic

associative memory, 397
attractors, 397
behaviour, 157, 397
dynamics, 396
nature, 335
neurons, 335
regions of equilibrium, 148
stability, 69, 397
state regions, 157
variables, 397

Character recognition, 134
Chebyshev distance, 362
Chromosomal operators, 391
City block distance, 362
Clamped

free energy, 190, 194
input unit, 346
phase, 191
units, 186

Class label, 242, 251
Classical set theory, 393
Classification problem, 243, 251

Closeness of features, 147
Closeness property, 242, 252
Club in card game, 290
Cluster centres, 256
Cluster spread, 256
Clustering

algorithm, 253
analog signals, 262
binary patterns, 262
network, 394

Co-occurrence patterns, 346
Coarticulation, 307
Code compression, 262
Codebook, 304
Cohen-Grossberg theorem, 70
Cohen-Grossberg-Kosko theorem, 71
Collective computation, 16
Combination network, 202
Combination of SOM and classifi-

cation, 229
Combining evidence, 3 16
Combining multiple evidence, 321
Committed units, 260
Common features, 241
Common sense knowledge, 4
Communication theory, 380
Competitive dynamical systems, 69
Competitive layer, 202, 211
Competitive learning, 60, 201, 218

deterministic, 60
differential, 61
leaky learning, 221
linear, 61
linear differential, 62
methods of implementing, 219
minimal learning, 221
random differential, 62
random linear, 61
random linear differential, 62
standard, 220

Competitive learning algorithm, 220,
304

Competitive learning methods, 222
summary, 222

Competitive learning neural net-
works (CLNN), 76, 201, 219

components, 203
Complex

artificial neuron model, 397
decision surfaces, 133
nonlinear mapping, 53

Subject Index 445

Complexity of
problem, 122
surfaces, 241
symbol set, 284

Compression of data, 304
Computation of weights, 91, 161
Computational learning, 377
Computer and brain, 19

fault tolerance, 19
processing, 19
size and capacity, 19
speed, 19
storage of information, 19

Computer architecture
von Neumann, 4

Computer memory, 341
Computer technology, 1
Concepts of rooms, 347
Conditional

expectation, 255
probability, 248, 359
probability distribution, 132

Conductance, 18
Confusable set, 312
Conjugate gradient method, 121,130
Connectedness problem, 110
Connectionist expert system, 333
Connections

excitatory, 18, 317
feed forward, 384
inhibitory, 18, 317
lateral, 384

Connectivity of neurons, 18
number of synapses, 18

Consonant-Vowel (CV) segment, 279,
3 10

Constant error contours, 366
Constrained optimization problem,

357
Constrain satisfaction (CS) model,

312, 316, 344
initialization, 315
operation of, 315
performance, 315

Content addressable memory, 6, 31,
236, 291, 344

Context units, 268
Continuous

Hopfield model, 155
nonlinear function, 112
nonlinear output function, 155

perceptron learning, 33, 63
time recurrent network, 271

Contract Bridge, 280
Control application, 279, 305, 394
Control in learning, 259
Controller, 271
Convergence, 68
Convergence in the mean, 117, 371
Convex

hull, 107
region, 110
set, 107

Convolutional layer, 322
Convolutional networks, 322
Correlation, 188

learning law, 33, 68
matching, 281, 284
term, 55

Cost function. 131. 293
~ounterpro~agatioh, 22, 256
Counterpropagation networks (CPN),

256
Coupled nonlinear differential equa-

tions, 296
Covariance matrix, 66,208,253,319,

361, 380
Credit assignment, 22, 64

fixed, 64
probabilistic, 64
problem, 22
structural, 64
temporal, 64

Credit scoring, 334
Crisp logical operators, 394
Criteria for grouping, 314

SCV classes, 312, 314
Critical temperature, 174
Crosscorrelation, 362
Cross entropy measure, 363
Cross-validation, 122, 134, 243, 373
Crosscorrelation matrix, 385
Crosscorrelation neural networks,

385
Crosscoupled Hebbian rule, 385
Cultural evolution, 335
Current trends in NN, 391-397

chaos, 396
evolutionary computation, 391
fuzzy logic, 393
rough sets, 395

Cursive script, 8, 323

Subject Index

Cursive writing, 323
Curve fitting, 389
Cybenko theorem, 133
Cybernetics, 22
Cycle, 123, 190, 344

Darwinian evolution, 391
Data, 5
Data compression, 258, 389
Data-dependent transformation, 380
Decision

boundaries, 102
criterion, 321
regions, 112
surfaces, 121

Decision making, 279, 333
DECtalk, 308
Decay term, 45, 47, 55, 58, 205
Decoding scheme, 234
Decorrelation, 389
Deep energy minima, 176
Deep features, 244
Default assignment, 344
Deformation, 280
Deformed patterns, 271
Delay units, 265
Delta learning, 32, 63, 68, 117, 123
Delta-bar-delta learning, 128
Delta-delta learning, 128
Dendrites, 16
Dental, 314
Derivative measurement, 117
Designing energy minima, 164
Desired

input patterns, 188
mapping, 115
output, 91, 115

Determination of weights by
learning, 94
matrix inversion, 254

Deterministic
analog states, 295
Boltzmann machine, 190
case, 59, 172
chaos, 396
learning, 54
modelling, 324
relaxation, 299
update, 23, 164

Device technology, 2
Diameter-limited, 109
Diamond in card game, 290
Dichotomy, 138, 375

number of distinct dichotomies,
376

Differentiable nonlinear output func-
tion, 115

Differential Hebbian learning, 60
Differential operator, 248, 249
Dimensionality of input pattern, 88,

99
Dimensionality reduction, 380
Direct application, 279, 280
Discontinuities in images, 301

1-D case, 302
2-D case, 303

Discrete
BAM, 236
binary cube, 351
bipolar cube, 351
Hopfield model, 152
N-dimensional space, 99
perceptron learning, 32, 63

Discrimination between patterns,
243

Disjoint subsets, 375
Dissimilar patterns, 262
Distorted patterns, 272
Distributed memory, 344
Dividing surface, 111
Distribution

Binomial, 152, 360
Boltzmann-Gibbs, 170, 188
Gaussian, 152, 360

Domain expert, 333
Domain-specific knowledge, 325
Dominating features, 241
Drive-reinforcement learning, 23, 66
Dynamic

equilibrium, 167
matching, 259
sounds, 310

Dynamically expanding context algo-
rithm, 309

Dynamics
activation (see activation dynamics)
chaotic, 396
neural, 396
plant, 269
synaptic (see synaptic dynamics)

Subject Index

Effective enere, 296
Efferent, 271
Eigendecomposition, 355, 390
Eigenvalues, 93, 127, 144, 207,355,

365
Eigenvectors, 144,207,298,355,365
Elastic ring method, 300
Encoding scheme, 234
Energy

analysis, 23, 152
function, 152, 156
landscape, 152, 147, 176
minima, 153
of stable state, 161
of state, 142, 147

English phoneme, 308
English syllables, 269
Ensemble of solutions, 391
Entropic error, 374, 377
Equilibrium, 51

state, 23, 69
statistics, 188
stochastic networks, 167

Equivalence classes, 395
Equivalence relation, 395
Error

criterion, 185, 188
function, 131, 152
in pattern recall, 145, 165
rate measure, 373
second derivative, 367
signal, 107
surface, 116, 125, 366

Error backpropagation, 121
Error-based learning, 262
Error correction learning, 62, 115

stochastic approximation, 62
Estimate of desired function, 248
Estimated noise level, 98
Estimation of gradient, 117
Estimation of probability distri-

bution, 134, 244
Euclidean distance, 222, 362
Euclidean norm, 353
Even parity, 241
Event, 357
Evolutionary

computation, 334, 391
programming, 391
strategies, 391

Exchange rate forecasting, 334
Excitation signal, 306
Excitatory

connection, 317
feedback, 49
weights, 24

Expectation, 359
Expert system, 2, 333
Exploitation, 392
Exploration, 392
Exponential kernal representation,

267
Exponentially decaying memory, 268
Extended Kalman-type algorithm,

122
Extensions of backpropagation, 121,

134
External noise, 99

Fascimile, 304
False energy minima, 143, 163
Family of local predicates, 108
Fast annealing schedule, 192
Fast learning procedure, 194
Fault detection, 334
Fault tolerance, 5, 16, 19, 236
Feature

extraction, 285, 389
formation. 325, 326
mapping, 7, 76, 202, 223, 226

1D to ID, 226
2D to ID, 226
2D to 2D, 226

network, 223
problem, 86

Feature space, 133, 202, 223
Feature-label interaction, 325
Features for pattern recognition, 8
Features of biological NN, 15, 341
Feedback networks, 23,76,142,294,

3 16
control, 305,
desired information, 158
global pattern behaviour, 158
layer, 210
retrieval of information, 158
storage capacity, 53, 151, 157

Feedforward and feedback, 76, 201

Subject Index

Feedforward neural networks, 76,88
analysis, 88
summary of pattern recognition

tasks, 73, 89
Financial markets, 269
Finite state machine, 271
Finnish language, 309
Firing, 17
First order statistics, 253
Fixed

delays, 269
point, 157, 397
point equilibrium states, 69
points of equilibrium, 148

Flip-flop, 271
Folding operation, 397
Forced units, 186
Forecasting

applications, 334
situations, 269

Forgetting term, 56, 189
Formant contour, 8
Formant data, 309
Formants, 8, 306
Forward mapping, 258
Forward propagation, 271
Fractal-like structure, 397
Fraud detection, 334
Free energy of a system, 171
Free parameters of a network, 133
Free running, 185, 191
Frequency estimation

noise subspace, 390
principal components, 390

Full energy, 190
Full free energy, 194
Fully recurrent networks, 269
Function approximation, 114, 121,

133, 243, 246, 247
linear basis functions, 246
radial basis functions, 246

Function estimation, 244
Functional level, 12, 336
Functional relation, 88
Functional units, 76

pattern recognition tasks, 76
Fuzzy

adaptive resonance theory, 394
ARTMAP, 262
backpropagation learning law,

132

backpropagation networks, 135
learning, 54
logic, 23, 264, 334, 335, 391, 393
logic connectives, 394
logical operators, 394
nature of output, 291
neural networks, 122
numbers, 393
objective function, 393
representation, 132
sets, 393
uncertainty, 393

Gabor filter, 325
bandwidth, 325
complex sinusoidal grating, 325
Gaussian function, 325
oriented, 325

Gain control process, 259
Gain control unit, 261
Gain parameter, 156, 261
Games, 4
Gaussian basis function, 247, 254
Gaussian distribution, 152, 251, 360

mixture, 251, 361
mixture models, 326
multivariate, 249, 326
univariate, 360

Generalization, 7, 88, 121, 133, 241,
372

bound, 374
capability, 248
concept, 372
error, 374, 377
feature, 126, 308
in NN, 372, 377
in pattern recognition tasks,

372
measure, 389
studies, 373

Generalization for
classification, 241
mapping, 242

Generalization in FFNN, 377
architecture, 378
learning algorithm, 378
stopping criterion, 378
training set, 378

Subject Index

Generalized
delta rule, 23, 63, 117, 123
Hebbian law, 210, 382
regression NN, 255

Genetic
algorithms, 391
programming, 391

Geometric momenta, 285
Geometrical arrangement of units,

223
Geometric interpretation, 80
PR tasks by CLNN, 85
PR tasks by FBNN, 83
PR tasks by FFNN, 80

Geometrical interpretation of hard
problems, 110

Geometrically restricted regions, 109
Gibb's distribution, 325
Global

behaviour of ANN, 68
energy, 169
features, 272
knowledge, 247
Lyapunov function, 71
minimum, 125
pattern behaviour, 158
pattern formation, 69
searching, 391
stability, 44
structure, 321

Gobally stable, 69
Goodness-of-fit function, 346, 347
Goodness-of-fit surface, 348
Graceful degradation, 344
Gradient descent methods, 116,125,

364
convergence issues, 125
LMS algorithm, 117, 251, 371
Newton's method, 116, 130, 368
steepest descent, 368
summary, 116, 371

Gradient
error, 107
error measure, 192
mean-squared error, 365
quadratic form, 364
reuse method, 128
search, 116, 367

Gram-Schmidt orthogonalization, 382
Graph-bipartition problem, 279, 296
Graphs, 296

Green's function, 249
Group of instars, 30, 202, 206
Group similar patterns, 262
Grouping of SCV classes, 314
Growth function, 376

Hamming distance, 147, 150, 164,
241, 362

Hamming network, 281
Hand-drawn figures, 271
Hand-printed characters, 7, 86, 99
Hand-written characters, 271, 288,

321
Hard

classification, 244
leaning problem, 88, 113, 165
pattern storage problem, 164
problem, 88, 108, 142, 149, 164,

183, 241
Hard-limiting threshold function, 48,

100
Hard-limiting threshold units, 108
Harmonic decomposition, 390
Heart in card game, 290
Hebb's law, 18, 21, 32, 95, 150, 173
Hebbian learning, 57, 58, 188, 381,

384
stochastic version, 59

Hebbian unlearning, 188
Hessian matrix, 129, 355
Heteroassociation, 6
Heteroassociative memory, 236
Heteroassociative network, 31, 236
Heuristic search methods, 1
Hidden layer, 88, 114
Hidden Markov model, 309, 324
Hidden units, 23,143,165,183,260,

343
Hierarchical structure of visual

system, 271
Hierarchical structures, 391
Higher order

connections, 387
correlation learning network, 386
neuron model, 386
statistical momenta, 387
statistics, 386
terms, 129, 155
unit, 386

Subject Index

Hindi, 312
Hinton diagram, 346
Historical development, 21-24
History of neurocomputing, 15

Table 1.1, 22
Hodgkin-Hwley cell equations, 50,

397
Hopfield model, 23, 149, 188

algorithm, 151
continuous, 149
discrete, 152
energy analysis, 143
energy equation, 170
energy function, 294

Human
information processing, 11
memory, 341
players, 280
reasoning, 290

Hyperbolic tangent function, 124
Hypercube, 157, 351

area, 352
volume, 352

Hyperellipse, 366
Hypersphere, 352
Hypersurface, 110
Hypothesis, 345
Hypothesis space, 375

IAC model, 293, 341
Identity matrix, 92
If-then rules, 333
Ill-posed problem, 132, 242

solutions, 132
Image

degradation, 283
lattice, 303
pattern recall, 279, 292
segmentation, 280, 321, 323
smoothing, 279, 301

Image pixels, 303, 321
global structure, 321
local structure, 321

Image processing, 280, 321
Image-specific constraints, 325
Immunity net, 335
Implementation of Boltzmann learn-

ing, 188
issues, 188

Implicit pattern behaviour, 126
Independent component analysis,

387
Independent events, 359
Indian languages, 280, 312
Individual level, 391
Inferencing mechanism, 4
Information

access, 293
preservation, 22
retrieval, 279, 293
theoretic measure, 184, 188
theory, 22

Inhibitory, 18
connection, 317
external input, 46
feedback, 46, 49, 211
weights, 24

Initial state, 148
Initial weights, 126, 190, 191
Inner product, 154, 352
Input

dimensionality, 143
layer, 90, 203
matrix, 90
vector, 90

Input-output pattern pairs, 88, 242
Instance pool, 317, 343
Instantaneous error, 62, 126, 129,

255
Instar, 30

group of instars, 31, 202
learning law, 34
network, 202
processing, 206
steady activation value, 205
structure, 257

Integer programming problem, 298
Intelligence, 2, 4
Intelligent decision, 333
Intelligent tasks, 2
Intensity-based methods, 324
Interactive and competition (IAC),

293, 341
Intercity distances, 298
Interconnections, 24
Intermediate layers, 114
Interneuron, 17
Interpolating function, 248
Interpolative, 7, 77
Interpolative recall, 73

Subject Zndez

Interpretation of Boltzmann learn-
ing, 190

Intersection of convex regions, 111
Intonation, 307
Invariance

by structure, 285
by training, 285

Invariant
feature extraction, 285
measures, 285
pattern recognition, 284

Inverse Kronecker delta function, 327
Inverse mapping, 258
Investment management, 333
Ising model, 22
Issues in Boltzmann learning, 190

annealing schedule, 190, 192
implementation of simulated

annealing, 190
initial weights, 191
learning and unlearning, 190
learning pattern environment, 190
learning rate parameter, 191
local property, 190
recall of patterns, 191

Iteration index, 119

Jacobian matrix, 353
Jaw. 306

Kalman-type learning, '131
Karhunen-Loeve transformation, 380
Knowledge-based systems, 9
Kohonen learning, 223, 225

algorithm for implementation, 226
Kohonen mapping, 223
Kronecker delta function, 327
Kullback-Leibler measure, 363, 373

LMS algorithm, 370
convergence, 371
learning rate parameter, 371
trajectory of path, 371

Label competition, 325, 326
Label-label interaction, 326
Lagrange multipliers, 357
Laplace transform, 305
Layers of processing units, 29
Leaky learning law, 221
Learning laws, 31, 53

algorithm for multilayer FFNN,
117

algorithms for PCA, 210
anti-Hebbian, 384
associated reward and penalty, 64
asymptotic behaviour, 377
backpropagation, 121
Boltzmann, 189
competitive, 222
correlation, 33, 68
curve, 377
delta, 32, 68
equation, 31
from exaniples, 372
function, 66
Hebb's, 32, 67
leaky, 221
Linsker, 231
LMS, 33
machine, 22, 374
methods, 57
models, 374
Oja, 208
online, 271
pattern environment, 190
perceptron, 32, 68
principal subspace, 382
rate parameter, 89, 97, 127, 221
reinforcement, 63
Sanger, 209
supervised, 32
temporal, 54
theory, 3%
unsupervised, 32
Widrow-Hoff, 33, 68
with critic, 63
with teacher, 63

Learn matrix, 22
Learning vector quantization (LVQ),

222, 305
Learning with critic, 63, 122
Learning with teacher, 63
Least Mean Square (LMS) learning,

22

882 'L91
'OL '99 'uo!q3uy Blaua ~0undaLq

OLE 'JallY s=d-~o1
282 'lauqns JaMg

ZTZ '9Z '(rn?) 'h~=a= aal au01
PZT 'uo!73uy 3!79901
801 'alaa!p~d 183901

9 'aauaraju! 1a39oq
1 z 'uo!q~ndmo3 1a39g

PI1 'ZZ1 '88 'LZ 'su0!73mJ ago?
LZ 'sl!n=w 3901
1Z8 '~J~Pw?S

ZZB '99~ 'PIaY
881 'L!)ladold

801 'alm!Pad
8L1 'ZE1 '1Z1 'malqmd am!uF

€9 'uo!~BC~UOJU!
ZLZ 'sam?WaJ

1~1 'uo!qaqndrno3
18301

ZZT 'ma1qoJd %!pa01
~61 'quamum+iua wqqad JO %uypag

€6 '6Z 'Ma1 au!-a1 SNI
OLE 'T~z 'LIT '89 'mrlW081B SW?

908 'ad!?

€68 'smal
LOG '&assam

€68 'uo!~BUI~OJU!
PC8 'lndu! JO WOJ

P6E 's~~&!s 3!7E
3!.)6!nm?

011 'smalqo~d a~qamdas
801 '66 'sIIO!q3nn~ alqamdas

ZO~ '66 'sassap alqamdas
€6 's~gaa~ quapuadapu!

88 'szuwad quapuadapu!
mi 'qndu! quapuadapu!

611aauyq
16 'uo!q3uy qndqno JO 4!.1~au!q

908 'uo!qozy)mnb Joqoaa
Z~Z '~aLa1 y3aqpaaj U! qun

66 'SUO!~~ULIOJSUB~'J
LO1 '88 'L.1!1!qn.IBdas

6LZ 'malqo~d %u!mum~o~d
m1 '88 'W!U~ %~!6~~ld

801 'Lq!1!qa~Bdaasu!
~98 '€6 'aauapuadapu!
901 '101 'a~1adrl

991 'pau!malaPJapun
ggg 'pau!uuaqapaAo

998 'suo!qonba
8~z 'lga~ado p!quarag!p

Z~E 'auapuadap
9PZ 'uo!73rmJ s!s@q

laan!?
w1 'sqJowau
991 'TJowau ad

qowau a~~qa!mssagna mauyq
06 'y~ohqau aA!qa!oossa mauyq

Z96 'WJ~~W mau!?
081 'uo!qaz!m!u~ au!?

601 'W!m!l-JaPJO
601 'pal!m!I-Ja?am~!P

601 'sal83IpaId 18301 UO SUO!!J13q!m!?
W1 '1Z1 'm-a1

uo!qa%ado~dq3sq JO suo!qaq!m!q
06Z '%u!PP!~ JO SIaAq

911 '01 'Pa1 ma1qoJd
9E8 '11 'Ia~a1 18uo!'VuY

988 '01 'IaAaI m!saq
988 '11 '1aAaI PJnqW!rl3JB

ggg '11 '1a~a1 uo!qao!~dda
yxaasal JO sIaAaq

16~ 'sa!xxis jo IaAaq
9gz 'aouanbas JO q@uaq

998 'uxalqo~d amnbs qwaq

Subject Index

Mean of input data, 253
Mean squared error, 53, 91, 365
Mean-field

algorithm, 196
annealing, 195
approximation, 172, 195, 295
energy, 195
free energy, 195

Medical diagnosis, 333
Mel-scale, 310
Membership function, 393
Membrane

capacitance, 45
potential, 17, 42
resistance, 45

Memorizing, 7
Memory

content addressable, 21
long term, 25
short term. 21, 25

Memory function, 235
Meshed regions, 111
Metric distance measures, 362

absolute value distance, 362
Chebyshev distance, 362
city block distance, 362
Euclidean distance, 362
Hamming distance, 362
maximum value distance, 362
Minkowski r-metric, 362

Metric transformation, 284
Metropolis algorithm, 190, 295
Mexican hat function, 224
Min-max learning, 65
Minimal

ART, 262
learning, 221

Minimum error, 93, 146
Minimum error retrieval, 93
Minimum norm solution, 356
Mismatch of probabilities, 184
Mixture distribution (see Gaussian

mixture)
Models of

activation dynamics, 42
computing, 1, 15
neural networks, 41
neuron, 26
synaptic dynamics, 52

Modular approach, 312, 313
Modular architecture, 134

Modular network, 312
Momentum constant, 129
Momentum term, 121
Monotonically increasing function,

156
Monte Carlo method, 194
Motor neuron, 17
Multilayer feed forward neural

network (MLFFNN), 88, 114
Multiclass problem, 106
Multidimensional patterns, 110
Multidirectional associative memory

(MAM), 236, 239
Multidirectionally stable, 240
Multilayer perceptron (MLP), 110,

113, 133, 241
Multilevel network hierarchy, 262
Multiple associations, 239
Multiple binary output units, 100
Multiple principal component extrac-

tion, 382
Multispectral band imagery, 331
Multivariate function approximation,

244
Multivariate Gaussian function, 249,

326
Murakami result, 94, 145
Mutual Hebbian rule, 385
Mutually exclusive events, 359
Mutually orthogonal vectors, 96

N-dimensional
Euclidean geometry, 351
space, 157

Nasal tract, 306
Natural language processing, 1
Nearest neighbour

recall, 73
stored pattern, 72

Negative definite matrix, 354
Negative reinforcement, 63
Negative semidefinite matrix, 364
Negative gradient, 107
Neighbouring pixel interaction, 324
Neighbouring units, 223
Neocognitron, 22, 271, 323
NETtalk, 280, 307
Nerve fibres, 16

Subject Index

Neural network
architectures, 235
feedback, 142
feedforward, 88
models, 41
recall, 72

Neuro-evolutionary techniques, 335
Neuro-fuzzy systems, 335
Neuro-rough synergism, 335
Neuron

firing, 17
number in brain, 18
structure of, 16

Neurotransmitter, 18
Newton's method, 116, 130, 367
Noise

cancellation, 389
power, 94
subspace, 390
suppression, 216
vector, 93

Noise-saturation dilemma, 43, 204
Noisy

image, 285
input, 93
pattern, 193

Nonautonomous dynamical system,
41

Noncwex regions, 111
Nonlinear

basis function, 245, 255
convolution, 322
dynamical systems, 70, 269
error surface, 134
feature detector, 121
feature extraction, 133
filters, 318
hypersurfaces, 241
optimal filtering, 131
output function, 100, 131
PCNN, 387
plant dynamics, 269
processing units, 88, 99, 143
regression, 255, 333
system ideqtification, 122, 131

Nonlinearly separable classes, 241
Nonparametric nonlinear regression,

334
Nonparametric regression problem,

244
Nonquadratic error surface, 130

Nonstationary input, 117
Norm4 distribution (see Gaussian

distribution)
Normalization of features, 285
Normalized basis function, 252
Normalized radial distance, 245
Normalizing the weight, 208
Notrump in card game, 290
Number of

cycles, 191
linearly separable classes, 107
linearly separable functions, 108
trials, 191

Objective function, 293
Odd parity, 241
Oder-limited, 109
Off-line learning, 54
Oja's learning, 208, 381
Oja's punit rule, 209
Olympic game symbols, 280
On-centre and off-surround, 48, 202
One-Class-One-Network (OCON),

3 13
On-line learning, 54, 271
Opening bid in card game, 280,

290
Operating range, 43
Operation of ANN, 1
Operation of stochastic network,

175
Optical

character recognition, 322
computers, 4
image processing, 296

Optimization, 279, 293, 391
criterion, 131
problems, 155, 293

Optimum
choice of weights, 93
number of clusters, 254
set of weights, 117
weight matrix, 145
weight value, 104
weight vector, 116, 250

Order of a unit, 387
Orientational selectivity, 224
Orienting subsystem, 259

Subject Index

Orthogonal
inputs, 98, 143
unit vectors, 209
vectors, 98, 353

Orthography, 309
Orthonormal, 96, 208
Oscillatory

regions of equilibrium, 148
stable states, 69
state regions, 157

Outer product, 353
Output function, 25

binary, 27
bipolar, 32
continuous, 33
discrete, 32
linear range, 127
ramp, 26
saturation region, 127
sigmoid, 26

Output
layer, 90
matrix, 90
pattern space, 80
signal, 26
state, 25
vector, 90

Outstar, 30
group of, 30
learning law, 34
structure, 257

Overall logical predicate, 108
Overdetermined, 356
Overlapping frames, 311
Overtraining, 378

PCNN, 381
applications, 389

statistical data, 389
temporal data, 390

curve fitting, 389
data compression, 389
feature extraction, 389
generalization measure, 389
misalignment of image, 389
noise suppression, 390
preprocessor, 389
summary, 390
surface fitting, 389

PCNN learning, 381
PDP models, 36, 345
Parallel and Distributed Processing

(PDP), 4, 20, 341
Parallel computers, 4
Parametric level matching, 9
Parity problem, 109
Partial information, 184
Partially recurrent models, 267
Partition function, 170
Partition process, 326
Partitioned graphs, 296
Parzen windows, 255
Passive

decay rate, 45
decay term, 56
sonar detection, 134

Pattern
association, 6,76,77,98,184,187,

190
classification, 6, 76, 81, 88, 99,

100, 122, 251, 279, 280
clustering, 7, 76, 85, 202, 219
completion, 184, 190, 192, 265
environment, 143, 183
environment storage, 85, 183
grouping, 7
mapping, 7, 76, 83, 88, 113, 240
matching, 9
storage, 76, 84, 143, 146, 211
variability, 8, 271

Pattern and data, 4
Pattern recall, 183
Pattern recognition tasks, 76, 89
Patterns in data, 341
Perception, 2

by human beings, 2
by machines, 2

Perceptron, 27, 103
classification, 113
convergence, 28, 102, 113
learning law, 28,32,101,106,113
model, 27
multilayer, 110
network, 113
representation problem, 107, 113
single layer, 108, 241

Perceptron convergence theorem, 28,
102, 113

alternate proof, 104
discussion, 106
proof, 102

Subject index

Perceptron learning
continuous, 33
discrete, 32
gradient descent, 106, 113

Performance measure, 107
Performance of backpropagation

learning, 121, 126
moddar network, 315
subnets, 315

Periodic
regions of equilibrium, 148
stability, 148

Perkel's model, 46
Peterson and Barney data, 309
Phoneme

classifier, 309
code, 307

Phoneme-like units, 308
Phonetic

decoding, 309
description, 313
transcription, 308
typewriter, 267, 280, 308

Pitch period, 307
Pixels, 281, 303, 325
Place of articulation, 314
Plain Hebbian learning, 207
Plant dynamics, 305
Plant transfer function, 305
Plasticity in ART, 259
Plosive source, 307
Polarization, 18
Pools of units, 342
Poor generalization, 133
Population-based problem solving,

391
Positional errors, 272
Positive definite, 354
Post-processor, 313
Post-synaptic neuron, 18
Post-synaptic potential, 18
Postal addresses, 323
Power spectrum, 325
Prediction of time series, 265
Preprocessing of image, 285
Preprocessing of input, 241
Principal axes;366
Principal component neural network,

379
Principal component learning, 66,

209, 381

Principle Component Analysis (PCA),
209, 379

Principle of orthogonality, 380
Printed characters, 7, 279, 287
Printed text symbols, 265
Prior knowledge, 126, 247
Probabilistic

neural networks, 121, 135, 255,
392

uncertainty, 393
update, 23, 152, 165

Probability, 357
a posteriori, 358
a priori, 358
axioms, 358
definition, 358
properties, 358

Probability density function (see
distribution)

Probability distribution, 168, 359
expectation, 359
mean, 359
variance, 359

Probability distribution of states,
168, 176

Probability estimation, 122
Probability of

error, 149, 152
error in recall, 178
firing, 165
occurrence of patterns, 184
transition, 158

Probability theory, 248
Probably Approximate Correct (PAC)

learning, 375
Problem level, 10, 11, 336
Problem of false minima, 163
Processing unit, 24
Production rules, 262
Projection matrix, 357
Proof of convergence, 126
Prototype vector, 259
Pseudoinverse of a matrix, 92, 144,

250
Puzzles, 4

Quadratic
error function, 130, 366
error surface, 130

806
'mqsbs q3aads-o$-$xaq pasleq-a~nx

~€6 'mqds pedxa pas~qs~nx
966 '966 '&U!WJwun y%QJ

966 'slas y%QJ
082 '66 'U0lllr)QJ

LZ 'uaqdaarad s'q38Iquasox
9)s 'srgdwsap moq

91 '9 'ssawsnqq
VL6 'PUOl?3UY 9sM

1)~ 'sanp Ls!ou ww
WE 'uogdwsap pg-d moJ3

))g 'amleu may
1,s '4 4

IB~a!4w
801 'BUl?W

66. 's~ql8d lndu! UO uOg3UlSw
9V 'L1 'I~!lua?od Su!lsw

69Z 'a?wlS lmUOsazI
8 'laurl pm~ JO sa~muosw

6Z6 '68Z 'Uo!lnIosW
V81 '~r)8rpSnn 18nPrsw

19Z 'anw lasw
~gz 'ralam~rd lasw

'SMBI Supma1 JO quamar!nbw
LOT 'ma1qord uo!llr)uasardq
1)~ 'lndq JO uo!llr)uasardq

VZ6
'sqro~lau 18uo!~n~o~uo3 pq83ydw

166 'Supuas qomw
VZ~ 'I~PO~ PI~~~OH JO uol?-~w

066 '~17flBU-9
066 '3l?s!uWqaP
salse?84s uog-1w

8P1
'mpqu~ maua JO Su~~ds aAg8Iw

€9 'Ldoqua aqqq
fg 'quama3roju!ar a~grsod
fg '~uamaaop!ar a~g8Sau

666
'V61 '69 'ZZ 'ma1 7uama~oRW

€9 'P*!fl
19 'UOl73UY
~uama3ro~uyw

ZZ 'hoaw
LVZ 'me7

6VZ 'UognIofl
6VZ 'ma1qmd

LW 'ra~am8~d
961 'sqJofilau
ZVZ 'vowam

LVZ 'ZZ1 'uo!'l~zU~~~ax

99~ 'qaru!Jsa uo!ssar8w
9L1 '~al.rg=P4 30 suom

9L1 'PaaAB4 P uorsw
161 '*!-a1

uo!~8S8dordq38q jo sluamauyax
6 'swqqsd muwajw

ZtZ 'sw877d U! -PWP~Pw
~6 'ampemrd aA!amq

~gz 'slapom qrowau luaumq
Z66 '692 'NN la-
L9Z 's=3nd y3eads

ZZ6 's7rs!P Ua?lPPV
9 '~09-

PZZ 'v1ay alll7dww
99 'laaga buaw

061 'lndu! PW
€61 'UIql8d LS!OU

061 'qndu! Lsrou
moJ3 m

082 'rafiod Srrpoww
906 '6LZ 'VBZ 'flma1qo~d PPoM PW

ILZ 7ua-r amg pw
Z6 'VPm 3-a-s PW

66 'FWm JO TW
9VZ 'a3uanUu! p m 1g 'sanp~ uog8~!~38 p ai3uq.1

896 'aIqPu8A moPW
9L1 'L91 'ss-rd mopw

ggz 'homam ssam mopuq.~
99 'aSuq3 qqS!afi

Z91 'swe?7d
061 'uog8iauaS requmu

161 'SanPA IBFlFu!
Lg1 'wog~uum

=oPW
9tZ

'9VZ 'ZZ '(dm) Uo!PW s!W P!PW
L)Z 'uogsmpoidd8 uopuy

19Z 'uog=%J!sfl813
9W 'aJ~wW-

19Z 'LVZ '9W '961 '89Jodb7aU da

Subject Index

S-cells, 272
SCV classes, 312, 314
SVD expression for pseudoinverse, 94
SVD of crosscorrelation matrix, 385
Sample

function, 167, 364
set, 357
space, 357

Sanger's rule, 209, 382
Saturation model, 48
Scaling, 99, 122, 280
Search methods

controlled, 391
global, 392
gradient-descent, 364-371, 392
parallel, 391
stochastic, 391

Second order
derivatives, 131
methods, 122
statistics, 253

Segmental features, 307
Selective attention feature, 272
Self-amplification, 382
Self-feedback, 188
Self-organization, 22, 202, 262

learning, 379
network, 225, 300

Self-stabilizing, 262
&ensor array imaging, 281
Sensory mechanism, 5
Sensory units, 27
Sequence of patterns, 265
Bequence recognition, 265
Sequence reproduction, 265
Sequential model, 8
Set of inequalities, 100
Shattering, 376
Shifted patterns, 271
Short time memory (STM), 25, 40,

85, 202, 212
Short-time characteristics, 307
Short-time segment, 307
Shunting activation, 48, 50, 204

general form, 50
summary, 51

Sigmoid function, 26, 112, 155
Sigmoidal nonlinearity, 124
Signal power, 371

Signal processing, 390
Signal separation, 387
Similarity

matrix, 316
measure, 260, 361

Simulated annealing, 22, 65, 143,
165, 178, 179, 349, 392

Single layer perceptron, 106, 241
Singular subspaces, 385
Singular value decomposition (SVD),

92, 144, 355
Singular vectors

left, 355, 385
right, 355, 385

Size-normalization, 321
Skin diseases diagnosis, 334
Slow convergence, 134
Slow learning, 143
Smoothed surface, 301
Smoothness constraint, 244, 247
Smoothness in mapping function, 242
Smoothness property, 242
Soft constraints, 299
Software, 2
Softwiring, 224
SOM network, 225, 392
Sonar, 134, 390
Sound units in speech, 265, 307
Space displacement neural networks,

324
Space filling characteristic, 227
Spade in card game, 290
Sparse data, 285
Sparse encoding, 65
Spatial

correlation, 321
pattern, 235, 265
relations in features, 147
transformation, 285

Spatio-temporal pattern, 235, 266,
397

Speaker identification, 307
Spectral features, 307
Spectral vector, 310
Speech, 1, 4, 99, 134, 306, 390

production knowledge, 318
recognition, 307
spectra, 7
synthesis, 134, 307

Speech-like signals, 267
Speed, 19

Subject Index

Spin glasses. 22
Spontaneous generalization, 344
Spurious stable states, 183
Square norm, 92
Stability, 68

chaotic, 69, 397
fixed point, 69, 157
in ART, 259
in stochastic networks, 172
of patterns, 69
oscillatory, 69, 397
theorems, 42
thermal equilibrium, 172

Stability and convergence, 42, 68
Stability-plasticity dilemma, 8, 258,

396
Stable state, 55, 69, 150
State at thermal equilibrium, 170
State of energy minima, 148
State of network, 147
State space, 25

depth of energy minima, 148
relative spacings of energy

minima, 148
State transition

diagram, 158, 179
probability matrix, 181

Static
equilibrium, 167
pattern, 310
spatial pattern, 265

Stationary
probabilities, 170, 295
probability distribution, 177
random process, 364

Statistical machines, 23
Statistical mechanics, 170
Steady

activation stat . , 40, 55
state, 45, 55
weight state, 40

Steepest descent method, 368
Stereovision matching, 296
Stochastic, 25, 42, 51, 165,324, 330,

391
activation models, 51
differential equation, 59
equilibrium, 168
gradient descent, 62,121, 134,371
learning algorithms, 134
learning, 54, 65

network, 165, 167, 175
process, 51

scalar, 51
vector, 51

relaxation, 299
unit, 22
update, 143, 164, 165, 295
update law, 167

Stock prices, 334
Stop-Consonant-Vowel (SCW atter-

aqces, 312
Stopping criterion, 121, 126, 378
Storage capacity, 53, 151, 157
Strange attractom, 397
Stretching operation, 397
Structural

learning, 54
stability, 42, 44

Subjective computation, 393
Submatrices, 93
Subnet, 313
Suboptimal solution, 117, 250
Subsampling, 323
Subsignals, 387
Subspace decomposition, 380
Summary of

backpropagation learning algo-
rithm, 121

gradient search methods, 116
perceptron learning, 113

Summing part, 24
Supervised learning, 6, 32
Supervised vector quantization, 223
Supervisory mode, 115
Suprasegmental features, 307
Surface fitting, 389
Syllable, 310
Symbolic processing, 5
Symmetric

matrix, 366
weights, 149, 153

Synapse, 16
Synaptic connection, 18
Synaptic dynamics, 25, 40, 52

discrete-time implementation, 56
model, 52

Synaptic equilibrium, 59
Synaptic junctions, 16
Synaptic strength, 18
Synchronous update, 150, 237
Syntactic pattern recognition, 9
System identification, 134

Subject Index

Tapped delay line, 265
Tasks with backpropagation, 122
Taylor series, 129, 354

multidimensional, 354
Temperature parameter, 166, 181
Template matching, 9
Temporal

association, 265
aseociative memory, 240
correlations, 265
learning, 54
pattern, 8, 265
pattern recognition, 265
pattern vectors, 240
sequence, 265

Temporary pattern storage, 85, 212
lbrminology of ANN, 24
Test patterns, 9
Test error, 378
Texture classes, 326
Texture classification, 279, 321, 324
Texture features, 324

deterministic modelling, 324
stochastic modelling, 324

Texture label, 326
Texture segmentation, 324
Texture-based scheme, 324
Theorems for function approxi-

mation, 246
Theoretical machine, 22
Thermal averages, 170
Thermal equilibrium, 168, 181, 295
Threshold function

linear, 138
polynomial, 138
quadratic, 138

Threshold value, 101
Time constant, 18
Time correlation, 265
Time registration, 266
Time sequences, 271
Time-delay neural networks (TDNN),

311
Time-series prediction, 269
Top-down outstar learning, 259
Top-down weights, 259
Topological mapping, 224
Topology of ANN, 29
Topology preserving map, 2%

Total error, 91
Total error surface, 117
Tongue, 306
Trace of a square matrix, 92
Tracking frequency components, 390
Training, 127

batch mode, 127
instars of CPN, 257
outstars of CPN, 257
pattern mode, 127
process, 89
samples, 89, 377

Training data, 117, 378
Trajectory, 25,53,147,167,176,368
Transformation invariant object

recognition, 288
Transient

phenomenon, 176
region, 176

Transition probabilities, 180
Translation, 99, 280
Travelling salesman problem, 279,

298
elastic ring method, 300
optimization method, 296

Traversal in the landscape, 167
Trends in computing, 2
Trial solutions, 391
Truck backer-upper problem, 270
Turbulent flow, 307
Two-class problem, 101
Two-layer networks, 110

Unaspirated, 312 -
Unclamped condition, 195
Uncommitted units, 259
Unconditionally stable, 238
Unconstrained optimization, 121,131
Understanding, 5
Uniform distribution, 190, 360
Unique solution, 100
Unit

higher-order, 386
sensory, 27

Universal approximation theorem,
133, 247

Unrepresentable problems, 108
Unstable states, 153

Subject Index

Unstable weight values, 208
Unsupemised learning, 7, 32
Unvoiced, 307, 314
Update, 25

asynchronous, 25
deterministic, 25
stochastic, 25
synchronous, 25

Upper subnet, 282

Validation, 373
VLSI, 3
VC dimension, 122, 375
Variance maximization, 380
Variance of input data, 127
Vector quantization (VQ), 86, 279,

304
Vigilance parameter, 259
Vigilance test, 260
Visible units, 183, 343
Vision, 1
Visual clues, 284
Visual pattern recognition, 271
Vocal folds, 306
Vocal tract, 306
Voiced, 306, 312

Vowel classification, 279, 309
Vowels, 314

Weak constraints, 299, 345
Weight

decay, 248
matrix, 90, 95, 236
sharing, 322
space, 25, 40, 53
state, 40
update, 107
vector, 25; 90, 207

Weighted inner product, 362
Weighted matching problem, 296
Weights by computation, 91
Well-posed problems, 242
Widrow's learning law, 97
Widrow-Hoffs LMS algorithm, 68
Winner, 202
Winning unit, 61, 202, 257, 284
Winner-take-all, 34, 60, 218, 261

XOR problem, 241

ARTIFICIAL NEURAL
NETWORKS

B. YEGNAWARAYANA

I
Designed as an.lntroductory level textbook on Artif~aial Neural Networks at the I
postgraduate and senior undergraduate IweJs in my brench of engineering, I

this self-contalned and well-organized book highlights the nmd for new models
of computing based on the fundamental principles of neural networks.

Professor Yegnanarayana compresses, into the covers of a single volume, his
several years of rich experience, in teaching and- research in the areas of
speech processing, image processing, artiacjerl intelligence and neural networks.
He gives a masterly analysis of such topics as Basics of artificial neutgi networks,
Functional units of artificial neural networks far pattern recognition tasks,
Feedfoward and Feedback neural networks, and Architectures for complex
pattern recognition tasks. Throughout, the emphasis is on the pattern processing
feature of the neural networks. Besides, the presentation of real-world applications
provides a practical thrust to the discussion.

I

The fairly large number of diagrams, the detailed Bibliography, and the provision
of Review Questions and Problems at the end of each chapter should prove to I

be of considerable assistance to the reader. Besides students, practising I

engineers and research scientists would cherish this book which treats the
I
I

emerging and exciting area of artificial neural networks in a rigorous yet lucid
I

fashion.

B. YEGNANARAYANA, Ph.D., is Professor, Department of Computer Science
and Engineering, lndian Institute of Technology Madras. A Fellow of the lndian
National Science Academy, Fellow of the lndian Academy of Sciences and
lndian National Academy of Engineering, Prof. Yegnanarayana has published
several papers in reputed national and international journals. His areas of

I interest include signal processing, speech and image processing, and neural
networks.

I S B N 8 L - 2 0 3 - L 2 5 3 - 8

To learn more about
PrentlceHail of lndla products,
please visit US at : www.phindia.com

Rs. 275.00

