ARTIFICI
NEURAL

Artificial Neural Networks

B. YEGNANARAYANA
Professor
Department of Computer Science and Engineering
Indian Ingtitute of Technology Madras
Chennai

Prentice-Hall of India Privaie Mnted

New Delhi - 110 001
2005

Rs. 275.00

ARTIFICIAL NEURAL NETWORKS
by B. Yegnanarayana

© 1999 by Prentice-Hall of India Private Limited, New Delhi. All rights reserved.
No part of this book may be reproduced in any form, by mimeograph or any
other means, without permission in writing from the publisher.
ISBN-81-203-1253-8

The export rights of this book are vested solely with the publisher.

Eleventh Printing June, 2005
Published by Asoke K. Ghosh, Prentice-Hall of India Private Limited, M-97,

Connaught Circus, New Delhi-110001 and Printed by Rajkamal Electric Press,
B-35/9, G.T. Karnal Road Industrial Area, Delhi-110033.

To My Parents
B. Ramamurthy
and
B. Savitri

Contents

Preface

Acknowledgements

INTRODUCTION

Trends in Computing 2

Pattern and Data 4

Pattern Recognition Tasks 6

Methods for Pattern Recognition Tasks 8
Organization of the Topics 10

Review QUEsTIONS 13

1. BASICS OF ARTIFICIAL NEURAL NETWORKS

2.

11
1.2

1.3
1.4
1.5
1.6
1.7

Characteristics of Neural Networks 15

Historical Development of Neural Network
Principles 21

Artificial Neural Networks: Terminology 24

Models of Neuron 26

Topology 29

Basic Learning Laws 31

Summary 36

Review QuEesTions 37

ProBLEMS 38

ACTIVATION AND SYNAPTIC DYNAMICS

2.1
2.2
2.3
24
2.5
2.6
2.7

Introduction 40

Activation Dynamics Models 42
Synaptic Dynamics Models 52
Learning Methods 57

Stability and Convergence 68
Recall in Neural Networks 72
Summary 73

Review QUESTIONS 73

ProBLEMS 74

FUNCTIONAL UNITS OF ANN FOR PATTERN
RECOGNITION TASKS

3.1

Pattern Recognition Problem 77

ix
XLiL

1-14

15-39

40-75

76-07

3.2
33

Contents

Basic Functional Units 78

Pattern Recognition Tasks by the Functional
Units 79

Review Questions 87

FEEDFORWARD NEURAL NETWORKS 88-141

4.1
42
4.3
4.4
4.5

Introduction 88

Analysis of Pattern Association Networks 90
Analysis of Pattern Classification Networks 99
Analysis of Pattern Mapping Networks 113
Summary and Discussion 135

Review Questions 136

ProBLEMS 138

FEEDBACK NEURAL NETWORKS 142-200

al
5.2
53
54
a5
56

Introduction 142

Analysis of Linear Autoassociative FF Networks 144
Analysis of Pattern Storage Networks 146
Stochastic Networks and Simulated Annealing 165
Boltzmann Machine 183

Summary 196

Review Quesrtions 197

ProBLEMS 199

COMPETITIVE LEARNING NEURAL NETWORKS 201-232

6.1
6.2

[epNer N op] o
ouh W

Introduction 201

Components o a Competitive Learning Network 203

Analysis of Feedback Layer for Different Output
Functions 211

Analysis of Pattern Clustering Networks 218

Analysis of Feature Mapping Network 223

Summary 228

Review QUESTIONS 229

ProsLems 230

. ARCHITECTURESFOR COMPLEX PATTERN

RECOGNITION TASKS 233-277

71
7.2
73
7.4
7.5
1.6
7.7

Introduction 233

Associative Memory 235

Pattern Mapping 240
Stability-Plasticity Dilemma: ART' 258
Temporal Patterns 265

Pattern Variability: Neocognitron 271
Summary 273

Review Questions 273

ProBLEMS 276

Contents vii

8. APPLICATIONSCOF ANN 278-339

8.1 Introduction 278
8.2 Direct Applications 280
8.3 Application Areas 306
8.4 Summary 334
Revew QUEsTIons 336
ProBLEMS 338

Appendices 341397

A — Features of Biological Neural Networks through
Parallel and Distributed Processing Models 341
B — Mathematical Preliminaries 351
C — Basics of Gradient Descent Methods 364
D — Generalization in Neural Networks:
An Overview 372
E — Principal Component Neural Networks:
An Overview 379
F — Current Trendsin Neural Networks 391

Bibliography 399431
Author Index 433440
Subject Index 441461

Preface

Over the past fifteen years, a view has emerged that computing based
on modesinspired by our understanding o the structure and function
o the biological neural networks may hold the key to the success of
solving intelligent tasks by machines. The new field is called Artificial
Neural Networks, athough it is more apt to describeit as parallel
and distributed processing. This introductory book is aimed at giving
the basic principles d computing with models o artificial neural
networks, without giving any judgment on their capabilitiesin solving
intelligent tasks.

This text is an outgrowth of the author's teaching and research
experience for the past 25 years in the areas of speech and image
processing, artificial intelligenceand neural networks. The principles
of neural networks are closely related to such areas as pattern
recognition, signal processing and artificial intelligence. Over the past
10 years many excellent books have been published in the area o
artificial neural networksand many more are being published. Thus
one more book like this may seem redundant. However, there seems
to be still a need for a book that could be used as a text book at an
introductory level. This text is designed to meet such a demand. It
must be pointed out that most of the ideas presented here have been
taken from the available references and mainly from the recently
published books in this area. The distinguishing feature d this book
is the manner in which the various concepts are linked to provide
a unified view o the subject.

The book is a self-contained, covering the fundamental principles
o artificial neural networks. It can be adopted as a text book for a
graduate level course. Students with basic engineering or physics or
mathematics background can easily follow the topics discussed. No
advanced concepts from any field are assumed. It can also be used
by scientists and engineers who have an aptitude to explore new ideas
in computing.

‘I'ne book starts with tracing the developments in computmg in
general, and the trends in artificial intelligence, in particular. The
prevailing notions o intelligence and intelligent tasks are discussed
in the context o handling these tasks by machines. The primary
reasons for the performance gapsin the current systems can be traced
to the differences in the perceptions o a given input by machine

Preface

and by human beings. The introductory chapter discusses the
distinction between data and pattern, and between recognition and
understanding, to highlight the differences in machine and human
perceptions of input to a system. The chapter also deals with several
pattern recognition tasks which human beings are able to perform
naturally and effortlessly, whereas there are no good algorithms to
implement these tasks on a machine. A brief discussion on existing
models and methods of solving pattern recognition tasks is given,
followed by an analysis of the need for new models o computing to
deal with such tasks.

The basics of artificial neural networks are introduced in
Chapter 1. The terminology is introduced with reference to a single
computing element (or artificial neuron) and some simple connection
topologies of the computing elements. Basic learning laws are also
discussed in this chapter.

In an artificial neural network the changes o activation values
o units and the connection weights (synapses) between units are
governed by the equations describing the activation and synaptic
dynamics, respectively. Models for activation and synaptic dynamics
areintroduced in Chapter 2. Stability and convergenceissues o these
models are discussed, as these will determine the ability of an
artificial neural network to accomplish a given pattern recognition
task.

Chapter 3 introduces some basic structures d artificial neural
networks and the pattern recognition tasks that these structures
can perform. The structures are organized into feedforward, feedback
and competitive layer networks. The corresponding broad pattern
recognition tasks are pattern association, pattern storage and pattern
clustering, respectively. Chapters 4-6, the kernel of the book, provide
a detailed analysis o the three basic structures o artificial neural
networks and discuss the different pattern recognition tasks that
these structures address. Chapter 4 deals with feedforward networks,
where the pattern association, classification and mapping tasks are
analyzed. Perceptron learning and its limitations for adjusting the
weights of a multilayer feedforward network are covered. The
generalized delta rule or the backpropagation learning is presented
for training a multilayer feedforward neural network. In Chapter 5
feedback networks and the associated pattern storage and pattern
environment storage tasks are analyzed. Here, the Hopfield energy
analysis o feedback networks is presented in detail, and the need
for stochastic neural networks is clearly brought out, besides
introducing the Boltzmann machine to accomplishthe task of pattern
environment storage. Finally, the chapter concludes with a detailed
discussion on the Boltzmann learning law for stochastic neural
networks. Competitive learning networks are analyzed in Chapter 6
which presents the details on how pattern clustering and feature

Preface Xi

mapping are accomplished through the competitivelearning networks.
The chapter also discusses the principles of self-organization and the
self-organization learning for feature map.

Chapter 7 deals with artificial neural network architectures for
complex pattern recognition tasks such as associative memory, pattern
mapping, stability-plasticity dilemma, temporal patterns and pattern
variability. 1n each case, a brief description of the task and asuitable
architecture for the task is given. Applications of artificial neural
network models are covered in Chapter 8. Some direct applications
considered are: pattern classification, associative memories,
optimization, vector quantization and control. Some of the application
areas discussed are: speech and image processing and decision
making. In each case a simplified version of the problem to suit an
existing neural network architecture is considered for illustration.
The chapter also analyzes issues in the development of neural
network modelsfor practical problems. It concludeswith a discussion
on several unresolved issues that severely limit the application of
models based on artificial neural networks.

The book provides examples and illustrations at appropriate
places. |t also gives algorithms are given for important learning laws
to enable the reader to implement them. Finally, review questions
and problems are given at the end of each chapter. A solution manual
for all the problems is available and can be obtained either from the
publisher or at the website http:// speech.iitm.ernet.in/Main/faculty/
yegna/Biodata/solutionmanual.tar.gz.

B. YEGNANARAYANA

Acknowledgements

| am grateful to the Director of the Indian Institute of Technology
Madras for providing an excellent environment for work with ample
facilities and academic freedom. | wish to thank several of my faculty
colleagues for providing feedback on my lectures as well as my
notes. In particular, | would like to thank Dr. C. Chandra Sekhar,
Dr. S. Das, Dr. Degpak Khemani and Dr. R. Sundar for many useful
interactions.

| have been fortunate to have an excellent group of students and
colleagues in the Speech and Vision Laboratory of the Department
of Computer Science and Engineering. In particular, the following
students have contributed significantly in the preparation of many
diagrams, tables and examples. Anitha Mary Jacob, Hemant, |kbal,
Kedar, Jaganadha Reddy, Mathews, Pavan Kumar, Poongodi, Raghu,
Rajasekhar, Rajendran, Ravindra Babu, Seetha, Shaji, and Vijay.

The following students have really helped me to improve my
understanding of the concepts through discussions and constant
criticism: Madhukumar, Manish, Murthy and Raghu.

I would like to thank the following students who have contributed
significantly in the preparation of the manuscript: A. Ravichandran,
C. Chandra Sekhar, PP. Raghu, N. Sudha, A. Neeharika and
Manish Sarkar.

One individual who has been associated with this effort almost
from the beginning is A. Tamilendran, who patiently typed several
versions d this book and also helped me in organizing the material
for the book. I am indeed grateful for his untiring and dedicated
effort.

Finally, I would like to thank my wife Suseela and my daughters
Madhuri and Radhika for their patience and cooperation during the
nearly five years period of writing this book. | am indeed very
fortunate to have understanding and accommodative membersin my
family, without whose help | would not have been able to write this
book.

B. YEGNANARAYANA

Introduction

The current search for new models of computing based on artificial
neural networks is motivated by our quest to solve natural
(intelligent) tasks by exploiting the developments in computer
technology [Marcusand Dam, 1991; | BEEE Computer, Oct. 19961 The
developments in Artificia Intelligence (AI) appear promising, but
when applied to real world intelligent tasks such as in speech, vison
and natural language processing, the Al techniques show their
inadequacies and 'brittleness’ in the sense that they become highly
task specific [Dreyfus, 1992; Rich and Knight, 1991; Holland, 1986;
Pearl, 1984]. Like in the agorithmic methods for problem solving,
even the Al techniques need clear specification and mapping o the
given problemirto aform suitablefor the techniquesto be applicable.
For example, in order to apply heuristic search methods, one needs
to map the problem as a search problem. Likewise, 1o solve a problem
using a rule-based approach, it is necessary to explicitly state the
rules. It is here scientists are hoping that computing modelsinspired
by biological neural networks may provide new directions to solve
problems arising in natural tasks. In particular, it is hoped that
neural networks would extract the relevant features from the input
data and perform a pattern recognition task by learning from
examples without explicitly stating the rulesfor performing the task.
The purpose d this book i s to discussthe issues in pattern recognition
tasks and some o the current approaches used to address theseissues
based on Artificial Neural Networks (ANN). We discuss the notion of
intelligence and intelligent tasks, and then we briefly trace the
developments in Al, in particular, and computer technology, in
general. We show that computing in intelligent tasks requires a
distinction between pattern and data. To give a better appreciation
o the nature o intelligent tasks, we elaborate the distinction between
pattern and data with illustrations. We aso discuss the nature o
patterns and various types o pattern recognition tasks which we
encounter in our daily life. We present briefly different methods
availablefor dealing with various pattern recognitiontasks, and make
a case for new models o computing based on ANNSs to address these
tasks. To appreciate the ANN models, some basicsd ANN, including
the terminology, are introduced. \We provide a detailed discussion on
the operation o ANNs through modes o activation and synaptic
dynamics d ANNs. Some ANNSs are identified as basic functional

2 I ntroduction

units which form building blocks for more complex networks. The
pattern recognition tasks that these functional units can handle are
discussed, and a detailed analysis o the performance of these units
is given. Specific architectures are needed to address complex pattern
recognition tasks. Each o these architectures is typically tailored to.
deal with some critical issues d the pattern recognition tasks.
Principles and architectures o ANNSs are currently limited to trivial
applications, where the problems are modified to suit the
architectures. Some o these direct applications are discussed in
detail. The more challenging task is to solve real world problems.
Limitations o the existing ANNs and issues that need to be addressed
to deal with the real world problemsare discussedinthefind sections
o this book. In the end we notice that our current understanding o
problems and the existing modds & ANNSs still fall too short d our
needs and expectations.

Trends in Computing

I n this section we trace the background for the development d neural
network models from the viewpoint o computing. First we shall
consider the prevailing notion d intelligence and intelligent tasks.
Then we shall trace the developments in computing and computer
technology that led to the belief that intelligent tasks can be realized
by a machine. In particular, we shall discuss the trends in Al and
the gaps in performance o the current Al systems. The primary
reason for the performance gaps can be traced to the differencesin
the perception o an input by machines and by human beings. These
differences will be discussed in the following sections.

The current usage o the terms like Al systems, intelligent
systems, knowledge-based systems, expert systems, etc., are intended
to convey that it is possible to build machinesthat can demonstrate
intelligencesi milar to human beingsin performing somesimpletasks.
In these tasks we look for the final result d the performance d the
machine for comparison with the performance d a human being. We
attribute intelligence to the machine if the performance o the
machine and human being are the same. But the ways the tasks are
performed by the machine and a human being are basically different.
The machine performs a task in a step-by-step sequential manner
dictated by an algorithm, which may be modified by some known
heuristics. Therefore the algorithm.and the heuristics have to be
derived for a given task. Once derived, they remain fixed. Typicaly,
implementation o a task requires large number o operations
(arithmetic and logical) and a large amount o memory. The trends
in computing along several dimensions clearly point out the ability
d a machine to handle large number o operations.

Table | shows the developmentsin device technology, software,

Trends in Computing 3

Table!l Trends in Computing

1. Technology
Mechanical devices
Vacuum tubes
Transistors
Medium scale integration
Large scale integration
Very large scale integration
Optical devices

2. Software
Machine language
Assembly language
High level languages
LISP, PROLOG
4th generation languages
Object-oriented languages
Distributed languages—JAVA
Natural language

3 Avchitecture
Uniprocessors
Array processors
Special purpose chips
Supercomputers
Parallel computers
VLSI array processors
Parallel distributed processing models
Optical computers
4. Al Concepts
Numerical processing
Symbolic processing
General problem solving
Logic
Heuristic search
Computational linguistics
Natural language processing
Knowledge representation
Expert systems
Hidden markov models
Artificial neural networks

architecture and artificial intelligence concepts [| EEE Computer, Oct.
19961. In device technology, the trend is to make each device more
and more powerful and/or to pack more and more devicesin a single
chip, thus increasing the packing density. The trend in software is
to bring the computer more and more closer to the user by providing
multimodal communication and natural input and output facilities.
In particular, the god isto achieve communication through the natural
language d the user, instead o using artificial computer languages.

Significant developments are taking place in the evolution o

4 I ntroduction

computer architectures. It is realized that single or multiple pro-
cessors using Von Neumann model have severe limitations of speed.
Parallel computers and optical computers are aso limited in scope
due to their mismatch with the problems [Partridge, 19971. The trend
is to explore architectures based on Paralel and Distributed
Processing (PDP) models motivated by our understanding of the
structure and function of the biologica neural network [Rumelhart
and McClelland, 1986; McClelland and Rumelhart, 19861. The driving
force for these developments is the desire to make machines more
and more intelligent. Finaly, it is in the applications and in the
simulation o applications, the real test o the technology develop-
ments can be seen.

The notion of intelligence and intelligent systems i s changing con-
tinuously as can be seen from the evolution of AI concepts (Tablel).
Originally computing was meant only for numerical calculations.
When it was realized that symbols like text also can be manipulated
using step-by-step algorithmic approach, it was felt that logica
inference could be implemented on a computer. Through logic it was
possible to incorporate heuristics in reducing the search in the
solution of an Al problem. Thereforeit was felt that all Al problems
including problems of speech and image understanding could be
solved by using clever search methods [Reddy, 1988; Reddy, 1996].
But it was soon realized that mapping a problem onto a problem of
heuristic search was possibleonly for tasks where representation was
obvious as in some games and puzzles. To overcome the representa-
tional problems, rule-based approaches were suggested, where the
rules for the solution o a problem could be explicitly obtained from
a human expert. The set o rules constituting the knowledge, together
with an inferencing mechanism for the application d the rules,
resulted in proliferation of expert systems or knowledge-based
systems for various tasks [Feigenbaum et al, 19881. It did not take
much time to realize that explicit statement o rules by a human
expert does not constitute all the knowledge he uses for a given
problem [Holland, 1986; Dreyfus, 19891. Moreover, the issues o
common sense knowledge and learning, which are so natural to any
human being, could not easily be captured in a machine [Dreyfus,
1972; Dreyfus, 19921.

Pattern and Data

Speech, vision and natural language processing problems dominated
the attention of designers dof intelligent systems [Reddy, 19961. The
most difficult issues in these cases are to derive the description of
the pattern in data in terms d symbols and to derive a set d rules
representing the knowledge of the problem domain. Even if we can
implement highly complex and compute intensive algorithms with the

Pattern and Data 5

current technology, it is now redized that we cannot derive the
pattern description and knowledge completely for a given problem.
Thus the mere ability of a machine to peform large amount o
symbolic processing and logica inferencing (asis being done in Al)
does not result in an intelligent behaviour.

The main difference between human and machine intelligence
comes from the fact that humans perceive everything as a pattern,
whereas for a machine everything is data {Greenberger, 19621. Even
in routine data consisting of integer numbers (like telephone
numbers, bank account numbers, car humbers), humans tend to
perceive a pattern. Recallingthe datais aso normally from a stored
pattern. If there is no pattern, then it is very difficult for a human
being to remember and reproduce the data later. Thus storage and
recall operationsin human beings and machines are performed by
different mechanisms. The pattern nature in storage and recall
automatically gives robustness and fault tolerance for the human
system. Moreover, typically far fewer patterns than the estimated
capacity d human memory system are stored. Functionally also
human beings and machines differ in the sense that human beings
understand patterns, whereas machines can be said to recognise
patterns in data. In other words, human beings can get the whole
object in the data even though there is no clear identification o
subpatterns in the data. For example, consider the name d a person
written in a handwritten cursive script. Even though the individual
patterns for each letter may not be evident, the name is understood
duetothe visual hints providedin the written script. Likewise, speech
is understood even though the patterns corresponding to the
individual sounds may be distorted, sometimes to unrecognizable
extents [Cooper,19801. Another mgjor characteristic d a human being
is the ability to continuously learn from examples, which is not
understood well enough to implement it in an algorithmic fashion in
a machine. Human beings are capable of making mental patterns
in their biologica neural network from an input data given in the
form d numbers, text, picture, sounds, etc., using their sensory
mechanisms o vision, sound, touch, smell and taste. These mental
patterns are formed even when the datais noisy or deformed due to
variations such as translation, rotation and scaling. The patterns are
also formed from a temporal sequenced data asin the case o speech
and pictures. Human beings have the ability to recall the stored
patterns even when the input information is noisy or partial
(incomplete) or mixed with information pertaining to other patterns.
Although patterns and data are different, these terms are used
interchangeably in the literature. While we also use these terms
interchangeably throughout the book, the distinction between these
must be kept in mind to appreciate the limitations of a machine over
human beings for performing pattern recognition tasks.

6 I ntroduction

Pattern Recognition Tasks

The inherent differencesin information handling by human beings
and machinesin the form d patterns and data, respectively, and in
their functions in the form o understanding and recognition,
respectively, have led us to identify and discuss several pattern
recognition tasks which human beings are able to perform very
naturally and effortlessy, whereas no ssimple algorithms exist to
implement these tasks on a machine. Theidentificationd these tasks
bdow was somewhat influenced by the organization o the artificial
neural network models described in this book [Y eghanarayana, 1994;
Duda and Hart, 19731

Pattern Association

Pattern association problem involves storing a set of patterns or a
set d input-output pattern pairsin such a way that when a test
pattern is presented, the stored pattern or pattern pair corresponding
to the test pattern is recalled. Thisis purely a memory function to
be performed for patterns or pattern pairs. Typicdly, it is desirable
to recall the correct pattern even though the test pattern is noisy or
incomplete. The problem o storage and recall d patterns is called
the autoassociationtask. Since thisis a content addressable memory
function, the system should display accretive behaviour, i.e., should
recall the stored pattern closest to the given input. The problem o
storage and recall o pattern pairsis called a heteroassociationtask.
It is adso necessary to store as many patterns or pattern pairs as
possible in a given system. Printed characters or any set o fixed
symbols could be considered as examples d patterns for these tasks.
Note that in this case the test patterns are the same asthe training
patterns, but with some noise added or some portions missing. In
other words, the test patterns are generated from the same source
in an identical manner as the training patterns.

Pattern Classification

I n pattern classification, given aset of patternsand the corresponding
classlabel, the objective is to capture the implicit relation among the
patterns o the same class, so that when a test pattern is given, the
corresponding output class label is retrieved. Note that the individual
patterns of each class are not memorized or stored. Typicdly, in this
case the test patterns belonging to a class are not the same as the
patterns used in the training, although they may originate from the
same source. Speech spectra d steady vowels generated by a person,
or hand-printed characters, could be considered as examples o
patterns for pattern classification problems. Pattern classification
problems display accretive behaviour. Pattern classification problems
are said to belong to the category supervised learning.

Pattern Recognition Tasks 7

Pattern Mapping

In pattern mapping, given a set d input patterns and the
corresponding output patterns, the objective is to capture the implicit
relationship between the input and output patterns, so that when a
test input pattern is given, the pattern corresponding to the output
d the generating system is retrieved. Note that the system should
perform some kind o generalization as opposed to memorizing the
information. Typicaly, in this case the test patterns are not the same
as the training patterns, although they may originate from the same
source. Speech spectra d vowes in continuous speech could be
considered as examples o patterns for pattern mapping problems.
Pattern mapping generally displays interpolative behaviour.

Pattern Grouping

In this case, given a set d patterns, the problem is to identify the
subset o patterns possessing similar distinctive features, and group
them together. Since the number d groups and the features o each
group are not explicitly stated, this problem belongs to the category
o unsupervised learning. Note that, this is possible only when the
features are unambiguous as in the case o hand-printed characters
or steady vowels. In the pattern classification problem the patterns
for each group are given separately. | n pattern grouping, on the other
hand, patterns belonging to several groups are given, and the system
has to resolve them into different groups. Pattern grouping is aso
called pattern clustering task.

Examplesd the patternsfor thistask could be printed characters
or hand-printed characters. In the former case the grouping can be
performed based on the data itself. Moreover, in that case, the test
data is also generated from an identical source as for the training
data. For hand-printed characters or steady vowd patterns, features
of the patterns in the data are used for grouping. In this case the
test data is generated from a similar source as for the training data,
such that only the pattern features are preserved. The actual training
data values are not necessarily reproduced i n the test patterns.

Feature Mapping

In several patterns the features are not unambiguous. In fact the
features vary over a continuum, and hence it is difficult to form
groups of patterns having some distinct features. In such cases, it is
desirable to display directly the feature variations in the patterns.
This again belongs to the unsupervised learning category. In this case
what islearnt is the feature map d a pattern and not the group or
the class to which the pattern belongs. This occurs, for example, in the
speech spectra for vowes in continuous speech. Due to changesin

8 Introduction

the voca tract shape for the same vowd occurring in different
contexts, the features (formants or resonances d the vocd tract in
this case) vary over overlapping regions for different vowels.

Pattern Variablllty

There are many situations when the features in a pattern undergo
unspecified distortions each time the pattern is generated by the
system. This can be easily seen in the characters in norma
handwritten cursive script. Human beings are ableto recognisethem
due to someimplicit interrelations among the features, which are not
known precisely. Classification o such patterns fallsinto the category
o pattern variability task.

Temporal Patterns

All the tasks discussed so far refer to the features present in a given
static pattern. Human beings are able to capture effortlessdy the
dynamic features present in a sequence o patterns. Thisis true, for
example, in speech wherethe changesin the resonancecharacteristics
o the vocd tract system (e.g., formant contours) capture the
significant information about the speech message. This is aso true
in any dynamic scene situation asin amovie on a television. All such
situations require handling multiple static patterns simultaneously,
looking for changes in the features in the subpatterns in adjacent
pattern pairs.

Stabiiity-piasticity Dilemma

In any pattern recognition task the input patterns keep changing.
Therefore it is difficult to freeze the categorization task based on a
set d patterns used in thetraining set. If it isfrozen, then the system
cannot learn the category that a new pattern may suggest. In other
words, the system lacksitsplasticity. On the other hand, if the system
is dlowed to change its categorization continuoudy, based on new
input patterns, it cannot be used for any applicationsuch as pattern
classification or grouping, as it is not stable: This is caled
stability-plasticity dilemma in pattern recognition.

Methods for Pattern Recognition Tasks

Methods for solving pattern recognition tasks generally assume a
sequential model for the pattern recognition process, consisting o
pattern environment, sensors to collect data from the environment,
feature extraction from the data and association/storage/classi-
fication/grouping using the features [Kanal, 1974, Mantas, 19871

Methods for Pattern Recognition Tasks 9

The simplest solution to a pattern recognition problem is to use
a template matching, where the data of the test pattern is matched
point by point with the corresponding data in the reference pattern.
Obvioudy, this can work only for very simple and highly restricted
pattern recognition tasks. At the next level of complexity, one can
assume a deterministic model for the pattem generation process, and
derive the parameters o the modd from a given pattern in order to
represent the information in the pattern. Matching the test and
reference patterns is done at the parametric level. This works well
when the modd d the generation processis known with reasonable
accuracy. One could also assume a stochastic modd for the pattern
generation process, and derive the parameters of the modd from a
large set o training patterns. Matching the test and reference
patterns can be performed by severa statistical methods such as
likelihood ratio, variance weighted distance, Bayesian classification,
etc. Other approaches for pattern recognition tasks depend on
extracting features from parameters or data. These features may be
specific for the task. A pattern is described in terms o features, and
pattern matching is done using descriptions in terms'of the features.
Another method based on descriptions is called syntactic pattern
recognition in which a pattern is expressed in terms d primitives
suitable for the classes o patterns under study. Pattern matchingis
performed by matching the descriptions o the patterns in terms o
the primitives. More recently, methods based on the knowledge o the
sources generating the patterns are being explored for pattern
recognition tasks. These knowledge-based systems express the know-
ledge in the form of rules for generating and perceiving patterns.

The main difficulty in each o the pattern recognition techniques
aluded to above is that of choosing an appropriate modd for the
pattern generating process and estimating the parameters o the
modd in the case o a model-based approach, or extraction o features
from the data/parameters in the case d feature-based methods, or
selecting appropriate primitives in the case d syntactic pattern
recognition, or deriving rules in the case d a knowledge-based
approach. It is al the more difficult when the test patterns are noisy
or distorted versions o the patterns used in the training process. The
ultimate god is to impart to a machine the pattern recognition
capabilitiescomparableto those of human beings. Thisgod is difficult
to achieve using many o the conventional methods, because, as
mentioned earlier, these methods assume a sequential modd for the
pattern recognition process [Devijver and Kittler, 1982; Schalkolff,
1992; Bezdek, 19961 On the other hand, the human pattern
recognition process is an integrated process involving the use o
biologicd neural processng even from the stage o sensing the
environment. Thus the neural processing takes place directly on the
datafor feature extraction and pattern matching. Moreover, the large

10 I ntroduction

size (in terms d number o neurons and interconnections) d the
biologica neural network and the inherently different mechanism o
processing may be contributing to our abilities d pattern recognition
in spite of variability and noise, and also to our abilitiesto deal with
the temporal patterns as well as with the so called stability-plasticity
dilemma. It isfor these reasons attempts are being made to explore
new models d computing. Such models for computing are based on
artificial neural networks, the basics d which are introduced in the
next chapter.

Organization of the Topics
Itispossibleto view thetopicsd interest in artificial neural networks
at various levels as follows (TableI):

TableII Organization of Topicsin Artificial Neural Networks at Different
Levels

(i) Problem level

I ssues:
o Understanding human problem solving as a pattern recognition process
e Understanding biological neural networks

Topics discussed: (Introduction)
o Distinction between pattern and data
o Digtinction between information processing by human beings and by
machines
e Pattern recognition tasks
e Methods and modelsfor pattern recognition tasks

(ii) Basicslevel

I ssues:

Models o neurons

Models of interconnections
Models of activation dynamics
Models of synaptic dynamics

Global pattern formation by models
e Stability and convergence

Topics discussed: (Chapters 1 and 2)
e Basic principles o biological neural networks
e Three basic models o artificial neurons. MP neuron, Perceptron and
Adaline
Topology: Basic structures of ANN
Basic learning laws
Activation dynamics models: Additive and shunting
Synaptic dynamics models. Requirements for learning and categories o
models of learning process
Stability theorems
Neural network recall

Organization of the Topics 11

Table I (Cont.)

(iii) Functional level
I ssues:
¢ ldentification of basic functional units which can be analysed
o Analysis of pattern recognition tasks by the functional units
e Functional units as basic building blocks for complex architectures of
ANN
Topics discussed: (Chapters 3 to 6)

e Three types of functional units namely, FF, FB and CL networks
e Analysis o FF networks. Pattern association, perceptron, multilayer

perceptron, gradient descent methods, backpropagation algorithm
o Analysisdf FB networks: Pattern storage, Hopfield network, Boltzmann

machine, simulated annealing
e Analysis of CL networks: Pattern clustering, self-organization, feature
mapping
@iv) Architectural level

I ssues:
o ldentification o pattern recognition tasks and issues
o Development o architectures for complex pattern recognition tasks
o Architectures specific to problems
Topics discussed: (Chapter 7)
e Associative memory: BAM
e Pattern mapping: RBF and CPN
o Stability-plasticity dilemma: Adaptive Resonance Theory (ART)
o Temporal patterns: Avalanche, Time Delay NN (TDNN)
e Pattern variability: Neocognitron
(v) Applicationslevel
I ssues:
e Potential for direct application
e« Mapping o the given application onto a neural network model
Topics discussed: (Chapter 8)
o Direct applications. Associative memory, data compression, optimization,
vector quantization and control
e Application areas. Problems in speech, image and decision making

(i) Problem level: Thisinvolves mappingthe real world problems as
pattern processors. This may require good understanding d human
information processing both from the psychologica and biologica
angles. This topic is not within the scope o this book, although in
the introductory chapter we have discussed briefly the issues in
problem solving by humans and by machines.

(ii) Basics level: Advances in technology and understanding do
human information processing system enable us to evolve better
models d neurons as processing units, their interconnections and
dynamics (activation and synaptic), learning laws and recall
procedures. These modelsin turn will enable us to build sophisticated

12 I ntroduction

artificial neural networks for solving complex pattern recognition
tasks. Chapters 1 and 2 deal with someissues at the basicslevel. In
particular, in Chapter 1, we present basic models o artificial neurons
and some basic structures obtained by interconnecting these neuron
models. The chapter also includes some basiclearning laws commonly
used in artificial neural networks. In Chapter 2, models o activation
and synaptic dynamics are described. The chapter aso deals with
issues o stability and convergence, pertaining to activation and
synaptic dynamics models, respectively.

(iii) Functional level: It is necessary to understand the pattern
recognition tasks that can be performed by some o the basic
structures o artificial neural networks. These basic structures then
will form building blocks for development o new architectures for
complex pattern recognitiontasks. We haveidentified three categories
o functional units, namely, feedforward, feedbackward and com-
petitivelearning networks. Chapters 3to 6 deal with detailed analysis
of the pattern recognition tasks that these functional units can
perform. Chapter 3 deals with a description d the functional units
and the corresponding pattern recognition tasks. Chapter 4 gives a
detailed analysis o feedforward networks, illustrating at each stage
the limitations o the networks to solve a given pattern recognition
task. The chapter concludes with a discussion on the capabilities and
limitations of multilayer feedforward neural networks and the
associated backpropagation learning law. Chapter 5is devoted to
analysis of feedback networks. The significance of the nonlinear
output function of a processing unit in feedback networksfor pattern
storage task is discussed. Hopfield energy analysis o a feedback
network is used to demonstrate the capability and also limitations o
such networks. Stochastic network models are introduced to overcome
some o the limitations o the Hopfield modd due to local minima
problems. Finaly, the Boltzmann machine is presented to address
theissue d pattern environment storage. The chapter concludes with
a discussion on Boltzmannlearning law and its implementation using
simulated annealing. Chapter 6 deals with a detailed analysis o
competitive learning networks. In particular, simple networks for
pattern clustering are considered. Self-organizingneural networksare
presented as an extension o the idea d competitive learning. The
feature mapping capability d the sdf-organizing networks is
illustrated with examples.

(lv) Architectural level: For complex pattern recognition tasks new
architectures need to be evolved from the known principles,
components and structures at the basics and functiona levels.
Chapter 7 discusses development 0 architectures which address some
complex issues in pattern recognition tasks. We present an extended

Organization of the Topics 13

discussion on some specific architectures for associative memory and
pattern mapping tasks. In addition, we discuss Counter Propagation
Networks (CPN) for data compression, Adaptive Resonance Theory
(ART) architecture for stability-plasticity dilemma, neocognitron for
pattern variability, and avalanche architecture and time delay neural
networks for temporal patterns. These architectures are meant for
specific tasks and hence are severely limited in their use. However,
understanding the development process of these architectures helps
us to evolve new architectures tailored to specific issues.

(v) Applicatlons level: Currently most of the neural network models
are severely limited in their abilities to solve real world problems,
At the application level, one can consider two different categories.
In one case it may be possible to map the given application onto a
neural network modd or architecture. We call such situations as
direct applications. Simple associative memories, data compression,
optimization, vector quantization and pattern mapping fall into the
category of direct application. But in case d problems such as in
speech recognition, image processing, natural language processing
and decison making, it is not normally possible to see a direct
mapping o the given problem onto a neural network modd. These
are natural tasks which human beings are good at, but we still do
not understand how we do them. Hence it is a challenging task to
find suitable neural network models to address these problems
[Barnden, 1995; Cowan and Sharp, 19881

Review Questions

1 Give examples for which heuristic search methods o artificial
intelligenceare applicable.

2 Discussthe developments in artificial intelligencethat led to the
interest in exploring new modds for computing.

3 What is a rule-based expert system?Why do we say such systems
are 'brittle”? Discuss your answer with an illustration.

4. What are the differencesin the manner d solving problems by
human beings and by machines? Illustrate with examples.

5 Explain the distinction between pattern and data.
What are the features d pattern processing by human beings?

7. Explain, with examples, differences between the following
pattern recognition tasks:

(a) Association vs classification
(b) Classification vs mapping
(c) Classification vs clustering

o

14

10.

12.

14.

Introduction

Explain the following pattern recognition issues with illustrations:

(@) Pattern variability

(b) Tempora patterns

(c) Stability-plasticity dilemma

What are different methodsfor solving pattern recognition tasks?

What is the difficulty with the existing methods for solving
natural pattern recognition problems?

Identify some difficult pattern recognition problems in the
following areas.

(a) Speech

(b) Vision

(¢) Natural language processing

What are the issues at the architectural level o artificial neural
networks?

What are the situationsfor direct applicationsd artificial neural
networks?

What is the difficulty in solving a real world problem like speech
recognition even by an artificial neural network model?

Chapter 1

Basics of Artificial Neural
Networks

New moddsd computing to perform patternrecognition tasksareinspired
by the structure and performance d our bidlogicd neura network. But
these models are not expected to reach anywhere near the performance
d the biologica network for several reasons. Firstly, we do not fully
understand the operation d a biologicad neuron and the neurd
interconnections. Moreover, it is nearly impossible to simulate: () the
number o neurons and their interconnectionsasit existsin a biologica
network, and (i) their operationsin the natural asynchronous mode.

However, a network consisting d basic computing units can
display some o thefeatures d the biological network. In this chapter,
the features o neural networks that motivate the study o neural
computing are discussed. A smplified description o the biologica
neural network is given in Section 1.1. The differencesin processing
by the brain and a computer are then presented. In Section 1.2 a
brief history d neurocomputingis presented, indicating some o the
significant developments that have led to the current interest in the
field. In Section 1.3 the terminology d artificial neural networks is
introduced by considering the structure and operation o a basic
computing unit, ie., the artificia neuron. Three classicad modds d
artificial neuronsare describedin Section 1.4. It is necessary to arrange
the units in a suitable manner to handle pattern recognition tasks. In
Section 1.5 we discuss a few basic structures which form the building
blocks for more complex architectures. The basic training or learning
laws for determining the connection weights d a network to represent
agiven problem are then discussedin Section 1.6. The concluding section
gives a summary d the issues discussed in this chapter.

1.1 Characteristics of Neural Networks

1.1.1 Features of Biological Neural Networks
Some attractive features 0 the biologica neural network that make

16 Basics of Artificial Neural Networks

it superior to even the most sophisticated AI computer system for
pattern recognition tasks are the following:

(a) Robustness and fault tolerance: The decay o nerve cells does
not seem to affect the performance significantly.

(b) Hexibility: The network automatically adjusts to a new
environment without using any preprogrammed instructions.

(c) Ability to deal with a variety o data situations: The network
can deal with information that is fuzzy, probabilistic, noisy and
inconsistent.

(d) Collective computation: The network performs routinely many
operationsin parallel and also a given task in a distributed manner.

1.1.2 Biological Neural Networks

The features d the biologica neural network are attributed to its
structure and function. The description o the biological neural
network in this section is adapted from [Muller and Reinhardt, 1991].
The fundamenta unit d the network is called a neuron or a nerve
cdl. Figure 1.1 shows a schematic o the structure o a neuron. It

Fromother '\
neurons

To other

neurons
Synapse

Dendrites

|
Cdl body

NEURON 1

NEURON 2
Figure 1.1 Schematic diagram of a typical neuron or nerve cell.

consists o acell body or somawhere the cdl nucleusislocated. Tree-
like nerve fibres caled dendrites are associated with the cell body.
These dendrites receive signals from other neurons. Extending from
the cdl body is a single long fibre caled the axon, which eventually
branches into strands and substrands connecting to many other
neurons at the synaptic junctions, or synapses. The receiving ends o
these junctions on other cells can be found both on the dendrites and
on the cdl bodies themselves. The axon of a typical neuron leads to
a few thousand synapses associated with other neurons.

Characteristics of Neural Networks 17

The transmission o asignal from one cdll to another at a synapse
is a complex chemical process in which specific transmitter sub-
stances are released from the sending side d the junction. The effect
is to raise or lower the electrical potentia inside the body o the
receiving cel. If this potential reaches a threshold, an electrical
activity in the form o short pulses is generated. When this happens,
the cell is said to have fired. These electrical signals o fixed strength
and duration are sent down the axon. Generally the electrical activity
is confined to the interior & a neuron, whereas the chemica
mechanism operates at the synapses.

The dendrites serve as receptorsfor signals from other neurons,
whereas the purpose d an axon is transmission d the generated
neural activity to other nerve cdlls (inter-neuron) or to muscle fibres
(motor neuron). A third type d neuron, which receives information
from muscles or sensory organs, such as the eye or ear, is caled a
receptor neuron.

The size o the cdl body o a typical neuron is approximately in
the range 10- 80 micrometers (um) and the dendrites and axons have
diameters o the order o afew pm. The gap at the synaptic junction
is about 200 nanometers (nm) wide. The total length d a neuron
varies from 0. 01 mm for internal neuronsin the human brain up to
1 m for neuronsin the limbs.

In the state d inactivity the interior o the neuron, the
protoplasm, is negatively charged against the surrounding neural
liquid containing positive Sodium (Na*) ions.. The resulting resting
potential o about — 70 mV is supported by the action o the cdl
membrane, which is impenetrable for the positive Sodium ions. This
causes a deficiency o positiveionsin the protoplasm. Signals arriving
from the synaptic connections may result in a temporary
depolarization o the resting potential. When the potential is
increased to a level above —60 mV, the membrane suddenly loses its
impermeability against Na+ ions, which enter into the protoplasm
and reduce the potential difference. This sudden change in the
membrane potential causes the neuron to discharge. Then the neuron
is said to have fired. The membrane then gradually recovers its
original propertiesand regenerates the resting potential over a period
o several milliseconds. During this recovery period, the neuron
remainsincapable d further excitation. The discharge, whichinitially
occurs in the cell body, propagates as a signal along the axon to the
synapses. The intensity o the signal is encoded in the frequency o
the sequence d pulses o activity, which can range from about 1 to
100 per second.

The speed o propagation d the discharge signal in the cells o
the human brain is about 0. 5- 2 m/s. The discharge signal travelling
aong the axon stops at the synapses, because there exists no conduc-
ting link to the next neuron. Transmission d the signal across the

18 Basics d Artificial Neural Networks

synaptic gap is mostly effected by chemical activity. When the signal
arrives at the presynaptic nerve terminal, specia substances caled
neurotransmitters are produced in tiny amounts. The neurotrans
mitter molecules travel across the synaptic junction reaching the
postsynaptic neuron within about 0.5 ms. These substances modify
the conductance o the postsynaptic membrane for certain ions,
causing a polarization or depolarizationd the postsynaptic potential.
If the induced polarization potentia is positive, the synapseis termed
excitatory, because the influence d the synapse tends to activate the
postsynaptic neuron. If the polarization potential is negative, the
synapse is caled inhibitory, since it counteracts excitation o the
neuron. All the synapticendingsd an axon are either of an excitatory
or an inhibitory nature.

The cdl body d a neuron acts as a kind o summing device due
to the net depolarizing effect o its input signals. This net effect
decays with a time constant o 5-10 ms. But if several signals arrive
within such a period, their excitatory effects accumulate. When the
total magnitude d the depolarization potential in the cdl body
exceeds the critical threshold (about 10 mV), the neuron fires.

The activity d a given synapse dependson the rate d the arriving
signals. An active synapse, which repeatedly triggers the activation
d its postsynaptic neuron, will grow in strength, while others wiill
gradually weaken. Thus the strength d a synaptic connection gets
modified continuously. This mechanism d synaptic plasticity in the
structure d neural connectivity, known as Hebb's rule, appears to
play a dominant role in the complex process o learning.

Although all neurons operate on the same basic principles as
described above, there exist several different types o neurons,
distinguished by the size and degree d branching o their dendritic
trees, the length o their axons, and other structural details. The
complexity d the human central nervous system is due to the vast
number d the neurons and their mutual connections. Connectivity is
characterised by the complementary properties d convergence and
divergence. In the human cortex every neuron is estimated to recelve
a converging input on an average from about 10* synapses. On the
other hand, each cdl feeds its output into many hundreds o other
neurons. The total number d neurons in the human cortex is
estimated to be in the vicinity o 10!, which are distributed in layers
over afull depth o the cortical tissue at a constant density o about
15 X 10* neurons per mm? Combined with the average number o
synapses per neuron, this yields a total o about 10'® synaptic
connections in the human brain, the majority o which develop during
the first few months after birth. The study d the properties d
complex systems built & ssimple, identical units may lead to an
understanding o the mode o operation o the brain in its various
functions, although we are still very far from such an understanding.

Characteristics of Neural Networks 19

1.13 Performance Comparison of Computer and Biological
Neural Networks

A set o processing units when assembled in a closdly interconnected
network, offers a surprisingly rich structure exhibiting some features
o the biologicd neural network. Such a structure is caled an
artificial neural network (ANN). Since ANNs are implemented on
computers, it is worth comparing the processing capabilities of a
computer with those d the brain [Simpson, 19901.

Speed: Neura networks are dow in processinginformation. For the
most advanced computers the cyde time corresponding to execution
of one step o a program in the central processingunit isin the range
o few nanoseconds. The cyde time corresponding to a neural event
prompted by an external stimulus occurs in milliseconds range. Thus
the computer processes information nearly a million times faster.

Processing: Neural networks can perform massively parallel
operations. Most programs have large number of instructions, and
they operate in a sequential mode one instruction after another on a
conventional computer. On the other hand, the brain operates with
massively parallel operations, each o them having comparatively
fewer steps. This explains the superior performance d human
information processing for certain tasks, despite being several orders
o magnitude slower compared to computer processing d information.

Size and complexity: Neural networks have large number o
computing elements, and the computing is not restricted to within
neurons. The number d neuronsin a brain is estimated to be about
10*! and the total number o interconnectionsto be around 10%. |t
is this size and complexity o connections that may be giving the
brain the power o performing complex pattern recognition tasks
which we are unable to realize on a computer. The complexity o
brain is further compounded by the fact that computing takes place
not only inside the cdll body, or soma, but also outsidein the dendrites
and synapses.

Storage: Neural networksstore informationin the strengths o the
interconnections. In a computer, information is stored in the memory
which is addressed by its location. Any new informationin the same
location destroysthe old information. In contrast, in a neural network
new informationis added by adjusting the interconnection strengths,
without destroying the old information. Thus informationin the brain
is adaptable, whereas in the computer it is strictly replaceable.

Fault tolerance: Neural networks exhibit fault tolerance since the
information is distributed in the connections throughout the network.

Basics of Artificial Neural Networks

Even if a few connections are snapped or a few neurons are not
functioning, the information is still preserved due to the distributed
nature of the encoded information. In contrast, computers are
inherently not fault tolerant, in the sense that information corrupted
in the memory cannot be retrieved.

Control mechanism: There is no central control for processing
information in the brain. In a computer thereis a control unit which
monitors al the activities of computing. In a neural network each
neuron acts based on the information locally available, and transmits
its output to the neurons connected to it. Thus there is no specific
control mechanism external to the computing task.

While the superiority of human information processing system
over the conventional computer for pattern recognition tasks is
evident from the basic structure and operation of the biological neural
network, it is possibleto realize some of itsfeatures using an artificial
network consisting of basic computing units. It is possible to show that
such a network exhibits parallel and distributed processing capability.
I n addition, information can be stored in a distributed manner in the
connection weights so as to achieve some fault tolerance. These
features are illustrated through several parallel and distributed
processing models for cognitive tasks in [Rumelhart and McClelland,
1986; McClelland and Rumelhart, 1986; McClelland and Rumelhart,
19881. Two o these models are described briefly in Appendix A.

The motivation to explore new computing models based on ANNs
is to solve pattern recognition tasks that may sometimes involve
complex optical and acoustical patterns aso. It isimpossible to derive
logical rules for such problems for applying the well known AI
methods. It is also difficult to divide a pattern recognition task into
subtasks, so that each of them could be handled on a separate
processor. Thus the inadequacies of the logic-based artificial
intelligence and the limitations of the sequential computing have led
to the concept of parallel and distributed processing through ANN.
It may be possible to realize a large number of simple computing
units on a single chip or on a few chips, and assemble them into a
neural computer with the present day technology. However, it is
difficult to implement the large number of synaptic connections, and
it is even more difficult to determine the strategies for synaptic
strength adjustment (learning).

Even with these limitations, ANNs can be developed for several
pattern recognition tasks for which it is difficult to derive the logical
rules explicitly. The network connection weights can be adjusted to
learn from example patterns. The architecture of the network can be
evolved to deal with the problem of generalization in pattern
classification tasks. ANNs can also be designed to implement selective
attention feature required for some pattern recognition tasks. While

Historical Development of Neural Network Principles 21

the adjustment o weights may take a long time, the execution o
pattern classification or pattern recall will be much faster, provided
the computing units work in parallel asin a dedicated hardware.

Sinceinformation is stored in the connectionsand it is distributed
throughout, the network can function as a memory. This memory is
content addressabl e, in the sense that the informationmay be recalled
by providing partial or even erroneousinput pattern. Theinformation
is stored by association with other stored data likein the brain. Thus
ANNSs can perform the task of associative memory. This memory can
work even in the presence d certain level o internal noise, or with
a certain degree o forgetfulness. Thus the short-term memory
function o the brain can be realized to some extent. Since information
is stored throughout in an associative manner, ANNSs are somewhat
fault tolerant in the sense that the information is not lost even if
some connections are snapped or some units are not functioning.
Because d the inherent redundancy in information storage, the
networks can a so recover the completeinformation from partial or noisy
input pattern. Another way d looking at it isthat an ANN is a reliable
system built from intrinsically unreliable units. Any degradation in
performance is 'graceful’ rather than abrupt as in the conventional
computers. A remarkablefeature o ANNs is that it can deal with data
that are not only noisy, but dso fuzzy, inconsistent and probabilistic,
just as human beingsdo. All thisisdueto the associative and distributed
nature o the stored information and the redundancy in the information
storage dueto largesize d the network. Typicdly, the stored information
is much less than the capacity d the network.

1.2 Historical Development of Neural Network Principles

The key developments in neural network principles are outlined in
this section. Table 1.1 gives a list & some significant contributions
in this field that have put the field on a strong theoretical and
conceptual foundation, as it exists today.

In 1943 Warren McCulloch and Walter Pitts proposed a modd o
computing element, called McCulloch-Pitts neuron, which performs a
weighted sum o the inputs to the element followed by a threshold
logic operation [McCulloch and Pitts, 19431. Combinations o these
computingelementswere used to realize several logical computations.
The main drawback o this modd d computation is that the weights
are fixed and hence the model could not learn from examples.

In 1949 Donald Hebb proposed a learning scheme for adjusting
a connection weight based on pre- and post-synaptic values o the
variables [Hebb, 19491. Hebb's law became a fundamental learning
rule in neural networks literature.

In 1954 a learning machine was developed by Marvin Minsky,
in which the connection strengths could be adapted automatically

22

Basics of Artificial Neural Networks

Table 11 Historical Development of Neural Network Principles

Key developments

Othe significant contributions

McCulloch and Pitts (1943)
e Modd o neuron
e Logic operations
e Lack of learning
Hebb (1949)
e Synaptic modifications
e Hebb's learning law
Minsky (1954)
e Learning machines
Rosenblatt (1958)

e Perceptmn learning and
convergence

e Pattern classification

e Linear separability
constraint

Widrow and Hoff (1960)
¢ Adaline—LMS learning

e Adaptive signal
processing

Minsky and Papert (1969)

e Perceptron— Multilayer
perceptron (MLP)

e Hard problems

e No learning for MLP
Werbos (1974)

e Error backpropagation
Hopfield (1982)

e Energy analysis

Ackley, Hinton and
Sejnowski (1985)

e Boltzmann machine

Rumelhart, Hinton and
Williams (1986)

o Generdised delta rule

von Neumann (1946)—General purpose
electronic computer

Norbert Weiner (1948>—Cybernetics

Shannon (1948)—Information theory

Ashby (1952)—Design for a Brain

Gabor (1954)—Nonlinear adaptive filter

Uttley (1956)—Theoretical machine

Caianiello (1961)—Statistical theory and
learning

Minsky (1961)—Artfidd intelligence

Steinbuch (1961)—Learnmatrix

Minsky and Selfridge (1961)—Credit
assignment problem

Nilsson (1965)—Learning machine

Amari (1967)—Mathematical solution to
credit assignment

Kohonen (1971)—Asociative memories

Willshaw (1971)—Self-organization and
generalization

Malsburg (1973)—Self-organization

Tikhonov (1973)—Reguaization theory

Little (1974)—Isng mode and neural
network

Grossberg (1976)—Adaptive resonance
theory

Anderson (1977)—Brain state-in-box mode

Little and Shaw (1978)—Stochastic law for
NN, spin glasses

Fukushima (1980)—Neocognitron

Kohonen (1982)—Feature mapping

Barto, Sutton and Anderson (1983)—
Reinforcement learning

Kirkpatrick (1983)—Simulated annealing

Peretto (1984)—Stochastic uits

Mead (1985)-Andog VLS

Amit (1985)—Statistical machines and
stochastic networks

Klopf (1986)—Drive-reinforcement learning

Hecht-Nielsen (1987)—Counterpropagation

Linsker (1988)—Self-organization based on
information preservation

Kosko (1988)-BAM, Fuzzy logic in ANN

Broomhead (1988)—Radid basis functions
(RBF)

Poggio and Giros (1990)—RBF and
regularization theory

Historical Development of Neural Network Principles 23

[Minsky, 19541. But it was in 1958 that Rosenblatt proposed the
perceptron model, which has weights adjustable by the perceptron
learning law [Rosenblatt, 19581. The learning law was shown to
converge for pattern classification problems, which are linearly
separable in the feature space. While a single layer o perceptrons
could handle only linearly separable classes, it was shown that a
multilayer perceptron could be used to perform any pattern
classification task. But there was no systematic learning algorithm
to adjust the weightsto realize the classification task. In 1969 Minsky
and Papert demonstrated the limitations of the perceptron model
through several illustrative examples [Minsky and Papert, 19691.
Lack of suitable learning law for a multilayer perceptron network
had put brakes on the development of neural network models for
pattern recognition tasks for nearly 15 years till 1984.

In 1960s Widrow and his group proposed an Adaline model for a
eomputing element and an LMS learning algorithm to adjust the
weights of an Adaine model [Widrow and Hoff, 19601. The
convergence of the LMS algorithm was proved. The algorithm was
successfully used for adaptive signal processing situations.

The resurgence o interest in artificial neural networks is due to
two key developments in early 1980s. The first one is the energy
analysis o feedback neural networks by John Hopfield, published in
1982 and 1984 [Hopfield, 1982; Hopfield, 19841. The analysis has
shown the existence of stable equilibrium states in a feedback
network, provided that the network has symmetric weights, and that
the state update is made asynchronously. Also, in 1986, Rumelhart
et al have shown that it is possible to adjust the weights o a
multilayer feedforward neural network in a systematic way to learn
the implicit mapping in a set of input-output pattern pairs
[Rumelhart et al, 1986al. Thelearning law is caled generalized delta
rule or error backpropagation learning law.

About the same time Ackley, Hinton and Sejnowski proposed the
Boltzmann machine which is a feedback neural network with
stochastic neuron units [Ackley et al, 19851. A stochastic neuron has
an output function which isimplemented using a probabilistic update
rule instead of a deterministic update rule as in the Hopfield model.
Moreover, .the Boltzmann machine has several additional neuron
units, called hidden units, which are used to make a given pattern
storage problem representable in a feedback network.

Besides these key developments, there are many other significant
contributions made in thisfield during the past thirty years. Notable
among them are the concepts o competitive learning, self-
organization and simulated annealing. Self-organization led to the
realization of feature mapping. Simulated annealing has been very
useful in implementing the learning law for the Boltzmann machine.
Several new learning laws were also devel oped, the prominent among

24 Basics of Artificial Neural Networks

them being the reinforcement learning or learning with critic. Several
architectures were developed to address specific issues in pattern
recognition. Some d these architectures are: adaptive resonance
theory (ART), neocognitron and counterpropagation networks.
Currently, fuzzy logic concepts are being used to enhance the
capability d the neural networks to deal with real world problems
such as in speech, image processing, natural language processing and
decison making [Lin and Lee, 19961.

1.3 Artificial Neural Networks: Terminology

Processing unit: We can consider an artificial neural network
(ANN) as a highly smplified modd o the structure d the biologica
neural network. An ANN consists d interconnected processing units.
The general modd o a processing unit consists d a summing part
followed by..an output part. The summing part receives N input
values, weights each value, and computes a weighted sum. The
weighted sum is called the activation value. The output part produces
a signa from the activation value. The sign d the weight for each
input determines whether the input is excitatory (positiveweight) or
inhibitory (negative weight). The inputs could be discrete or
continuous data values, and likewise the outputs also could be
discrete or continuous. The input and output could also be
deterministic or stochastic or fuzzy.

Interconnections: In an artificial neural network several processing
units are interconnected according to some topology to accomplish a
pattern recognition task. Therefore the inputs to a processing unit
may come from the outputs of other processing units, and/or from
external sources. The output d each unit may be given to severdl
units including itself. The amount o the output of one unit received
by another unit depends on the strength o the connection between
the units, and it is reflected in the weight value associated with the
connecting link. If there are N units in a given ANN, then at any
instant o time each unit will have a unique activation value and a
unique output value. The set o the N activationvalues o the network
defines the activation state d the network at that instant. Likewise,
the set o the N output values o the network defines the output state
d the network at that instant. Depending on the discrete or
continuous nature d the activation and output values, the state d
the network can be described by a discrete or continuous point in an
N-dimensional space.

Operations: In operation, each unit d an ANN receives inputs from
other connected units and/or from an external source. A weighted

Artificial Neural Networks: Terminology

sum d the inputs is computed at a given instant o time. The
activation value determines the actual output from the output
function unit, i.e., the output state of the unit. The output values and-
other external inputs in turn determine the activation and output
states d the other units. Activation dynamics determines the
activation values o all the units, i.e., the activation state o the
network as a function of time. The activation dynamics also
determines the dynamics of the output state of the network. The
set of all activation states defines the activation state space of the
network. The set of all output states defines the output state space
of the network. Activation dynamics determines the trgjectory of
the path o the states in the state space o the network. For a
given network, defined by the units and their interconnections with
appropriate weights, the activation states determine the short term
memory function o the network.

Generdly, given an external input, the activation dynamics is
followed to recall a pattern stored in a network. In order to store a
pattern in a network, it is necessary to adjust the weights o the
connectionsin the network. The set o all weightson all connections
in a network form a weight vector. The set of al possible weight
vectors define the weight space. When the weights are changing, then
the synaptic dynamics o the network determines the weight vector
as a function d time. Synaptic dynamics is followed to adjust the
weights in order to store the given patterns in the network. The
process of adjusting the weightsis referred to as learning. Once the
learning process is completed, the final set o weight values
corresponds to the long term memory function o the network. The
procedure to incrementally update each of the weights is caled a
learning law or learning algorithm.

Update: In implementation, there are several options available for
both activation and synaptic dynamics. In particular, the updating o
the output states d all the units could be performed syrnchronously.
In this case, the activation values of all the units are computed at
the same time, assuming a given output state throughout. From the
activation values, the new output state of the network is derived. In
an asynchronous update, on the other hand, each unit is updated
sequentially, taking the current output state of the network into
account each time. For each unit, the output state can be determined
from the activation value either deterministically or stochastically.

In practice, the activation dynamics, including the update, is
much more complex in a biological neural network than the simple
moddls mentioned above. The ANN models along with the equations
governing the activation and synaptic dynamics are designed
according to the pattern recognition task to be handled.

26 Basics of Artificial Neural Networks

1.4 Models of Neuron

I n this section we will consider three classical modelsfor an artificial
neuron or processing unit.

14.1 McCulloch-Pitts Model

I n McCulloch-Pitts (MP) model (Figurel.2) the activation (x) is given
by a weighted sum of its M input values (g;) and a bias term (8). The

Weights
nput (fixed) Actia)d/ation QUtpallljt
value sign
a, L—- X
G,.#» %wiai_e_ s_f(x)
ay, © Wy 1=1
Output

Summing part functionf ()

Figure 1.2 McCulloch-Pitts model of a neuron.

output signal (s) istypicaly a nonlinear function fix) of the activation
value x. Thefollowing equations describe the operation d an MP modd:

M
Activation: X=Y wa-9
iz
Output signal: s =f®

Three commonly used nonlinear functions (binary, ramp and
sigmoid) are shown in Figure 1.3, although only the binary function

flx) 4
1.0
0 J:=

(a) Binary
fix) 4 fx) 4
1.0 — 1.0 P

0 x= 0 x >

(b) Ramp (c) Sigmoid

Figure 1.3 Some nonlinear functions.

Modds o Neuron 27

was used in the original MP modd. Networks consisting o MP
neurons with binary (on-off) output signals can be configured to
perform several logica functions [McCulloch and Pitts, 1943; Zurada,
19921. Figure1.4 shows some examples d logic circuitsrealized using

(8 NOR gate
a, 1 .
‘:=:> ‘:3’ 8
a, 1

o
=
cooH®

(© Memory cdl
assumingunit
delay for neuron. Excitatory 1
Aninitial excitatory input
input 1 sustainsthe
output 1 and aninitial
inhibitoryinput +1 Inhibitory
sustainstheoutput 0 input

Fgure 14 Illugrationof some dementary logic neworks usi ng M P neurons

the MP modd. In this mode a binary output function is used with
the following logic:

fx) =1, x>0

0, x<0

A single input and a single output MP neuron with proper weight
and threshold gives an output a unit timelater. This unit delay property
d the MP neuron can be used to build sequentia digital circuits. With
feedback, it is also possibleto have a memory cdl (Figure 1.4¢) which
can retain the output indefinitely in the absence o any input.

In the MP modd the weights are fixed. Hence a network using this
modd does not have the capability o learning. Moreover, the origina
mode allows only binary output states, operatingat discretetime steps

1.4.2 Perceptron

The Rosenblatt’s perceptron modd (Figurel.5)for an artificial neuron
consists o outputs from sensory units to a fixed set of association
units, the outputs o which are fed to an MP neuron [Rosenblatt,

Basics o Artificial Neural Networks

Weights
(adjustzble)
I nput
a, w
| /{Z \ Adtivation (S)Létr%’t
‘ L value (binary)
L ¥ x‘fﬂs:f(x)ﬁ

Sensory Assodiation Summing ~ Output
units units unit unit

Figure 15 Rosenblait's perceptron modd of a neuron.

19581. The association units perform predetermined manipul ations on
their inputs. The main deviation from the M P modd is that learning
(i.e., adjustment d weights) is incorporated in the operation o the
unit. The desired or target output (b) is compared with the actual
binary output (s), and the error (6) is used to adjust the weights. The
following equations describe the operation of the perceptron modd d
a neuron:

M
Activation: x = wa-8
i=1
Output signal: s= flx)
Error: 6=>Db-s
Weight change: Aw, = 76a;

where n is the learning rate parameter.

There is a perceptron learning law which gives a step-by-step
procedure for adjusting the weights. Whether the weight adjustment
converges or not depends on the nature d the desired input-output
pairs to be represented by the model. The perceptron convergence
theorem enables us to determine whether the given pattern pairs are
representable or not. If the weight values converge, then the corres-
ponding problemis said to be represented by the perceptron network.

143 Adaline

ADAptive LINear Element (ADALINE) is a computing modd
proposed by Widrow and isshown in Figure 1.6 [Widrow, 19621. The
main distinction between the Rosenblatt's perceptron modd and the

Topology 29

Input Weights Adivaion Output
w vaue sgnd
al 1 -
Dw i =1
O = output

Summing part functionf ()
Figure 1.6 Widrows Addine modd d a neurdn.

Widrow’s Adaline modd is that, in the Adaline the analog activation
value (x) is compared with the target output (b). In other words, the
output is a linear function of the activation value (x). The equations
that describe the operation o an Adaline are as follows:

M

Activation: x=Ywa-6
i=1

Output signal: s=flx) =x

Error: 6=Db-s=b-x

Weight change: Aw; = nda;

where n is the learning rate parameter. This weight update rule
minimises the mean squared error &%, averaged over al inputs. Hence
itis called Least Mean Squared (LMS) error learning law. This law
is derived using the negative gradient o the error surface in the
weight space. Henceit is also known as a gradient descent algorithm.

15 Topology

Artificial neural networks are useful only when the processing units
are organised in a suitable manner to accomplish a given pattern
recognition task. This section presents a few basic structures which
will assist in evolving new architectures. The arrangement d the
processing units, connections, and pattern input/output is referred to
as topology [Simpson, 19901.

Artificial neural networks are normally organized into layers d
processing units. The units o a layer are similar in the sense that
they al have the same activation dynamics and output function.
Connections can be made either from the units d one layer to the
units o another layer (interlayer connections) or among the units
within the layer (intralayer connections) or both interlayer and
intralayer connections. Further, the connections acrossthe layers and
among the units within a layer can be organised either in a
feedforward manner or in afeedback manner. I n a feedback network
the same processing unit may be visited more than once.

We will discussafew basic structures which form building bleeks

30 Basics d Artificial Neural Networks

for more complex neural network architectures. Let us consider two
layers F, and F, with M and N processing units, respectively. By
providing connections to the jth unitin the F, layer from all the units
intheF, layer, asshownin Figures 1.7a and 1.7b, we get two network
structures instar and outstar, which have fan-in and fan-out
geometries, respectively [Grossberg, 19821. During learning, the
normalised weight vector w; = (w;;, wj, --., ij)T in instar approaches
the normalized input vector, when an input vector a= (a;, a, ..., ay)’

M
is presented at the F, layer. Thus the activation w;."a = wpa d

the jth unit in the F, layer will approach maximum value during
learning. Whenever the input is given to F,, then the jth unit of F,

(e) Bidirectiond asodidive mamory () Autoassociative mamnary

F gure 1.7 Some bedc structures of artificia neura networks.

Basic Learning Laws 31

will be activated to the maximum extent. Thus the operation of an
instar can be viewed as content addressing the memory. In the case
d an outstar, during learning, the weight vedor for the connections
from the jth unit in F, approaches the activity pattern in F;, when
an input vector ais presented at F,. During recall, Whenever the unit
j is activated, the signal pattern (swy;, swg, ..,) will be
transmitted to Fy, where s; is the output of the Jth umt }"fh.ls signal
pattern then produces the original activity pattern corresponding to
the input vector a, although the input is absent. Thus the operation
d an outstar can be viewed as memory addressing the contents.

When all the connections from the unitsin F, to F, are made as
in Figure 1.7¢, we obtain a heteroassociation network. This network
can be viewed as a group d instars, if the flow is from F; to F,. On
the other hand, if the flow isfrom F, to F,, then the network can be
viewed as a group o outstars (Figure 1.7d).

When the flow is bidirectional, we get a bidirectional associative
memory (Figure 1.7e), where either o the layers can be used as
input/output.

If the two Iayers F, and F, coincide and the weights are
symmetric, ie., w; = wy i #j, then we obtain an autoassociative
memory in which each unlt is connected to every other unit and to
itself (Figure 1.70).

1.6 Basic Learning Laws

The operation o a neural network is governed by neuronal dynamics.
Neuronal dynamics consists d two parts: one corresponding to the
dynamics d the activation state and the other corresponding to the
dynamics d the synaptic weights. The Short Term Memory (STM) in
neural networksis modelled by the activation state of the network.
The Long Term Memory (LTM) corresponds to the encoded pattern
information in the synaptic weights due to learning. We will discuss
models o neurona dynamicsin Chapter 2. In this section we discuss
some basic learning laws [Zurada, 1992, Sec. 2.5; Hassoun, 1995,
Ch. 3]. Learning laws are merely implementation models d synaptic
dynamics. Typicaly, a modd o synaptic dynamics is described in
terms o expressions for the first derivative d the weights. They are
called learning equations.

Learning laws describe the weight vector for the ith processing
unit at time instant (¢+ 1) in terms o the weight vector at time
instant () as follows:

w(ttD = wt)t Aaw,®) (1.1)
where Aw(¢) is the change in the weight vector.

There are different methods for implementing the learning
feature d a neura network, leading to severa learning laws. Some

32 Basics o Artificial Neural Networks

basic learning laws are discussed beow. All these learning laws use
only local information for adjusting the weight of the connection
between two units.

1.6.1 Hebb's Lav
Here the change in the weight vector is given by

Aw; = nfiwla)a (1.2)
Therefore, the jth component o Aw; is given by
Awg. = f(w?a) a;
= 1s;q;, for j=1,2...,.M (1.3)

where s; is the output signal d the ith unit. The law states that the
weight increment is proportional to the product d the input data and
the resulting output signal d the unit. This law requires weight
initialization to small random values around w;; = 0 prior to learning.
This law represents an unsupervised learning.

1.6.2 Perceptron Learning Lav
Here the change in the weight vector is given by

Aw; = 1 (b, - sgn(wiTa)] a (1.4)
where sgn(x) is sign d x. Therefore, we have
n 6, - sg'n(wiTa)] a;
=n(,-s)9, forj=12,..,M (1.5)

Aw,

This law is applicable only for bipolar output functionsf(.). This
is also caled discrete perceptron learning law. The expression for
Aw;; shows that the weights are adjusted only if the actual output
s; is incorrect, since the term in the square brackets is zero for the
correct output. Thisis asupervised learning law, as the law requires
a desired output for each input. In implementation, the weights can
be initialized to any random initial values, as they are not critical. The
weights converge to the final values eventually by repeated use o the
input-output pattern pairs, provided the pattern pairsare representable
by the system. These issues will be discussed in Chapter 4.

163 DdtaLeaning Lav
Here the change in the weight vector is given by

Aw; = 1 [b;- AiwTa)l Aw’a)a (1.6)

Basic Learning Laws 33

where fix) is the derivative with respect to x. Hence,
Aw;; = 7 [b; - Aw!a)] iw]a) g,
=nlb,-slfixya, forj=1,2 ..M @7

This law is valid only for a differentiable output function, as it
depends on the derivative d the output function f.). I tis a supervised
learning law since the change in the weight is based on the error
between the desired and the actual output values for a given input.
Delta learning law can also be viewed as a continuous perceptron
learning law.

In.implementation, the weights can be initialized to any random
values as the values are not very critical. The weights converge to
the fina values eventualy by repeated use o the input-output
pattern pairs. The convergence can be more or less guaranteed by
using more layers o processingun ts in between theinput and output
layers. The deltalearning law can be generalized to the case o multiple
layers d a feedforward network. We will discuss the generdized delta
rule or the error backpropagation learning law in Chapter 4.

164 Widrow and Hoff LMS Learning Law
Here the change in the weight vector is given by

Aw; = 1 [b,-wTa] @ (1.8)
Hence
- T -
Aw; = n[b-w;ala;, forj=12 ., M (1.9

Thisis a supervised learning law and is a special case o the delta
learning law, where the output function is assumed linear, i.e.,
fix;) =x;. In this case the change in the weight is made proportional
to the negative gradient d the error between the desired output and
the continuous activation value, which is also the continuous output
signal duetolinearity o the output function. Hence, thisis also called
the Least Mean Squared (LMS) error learning law. This is same as
the learning law used in the Adadine modd o neuron. In
implementation, the weights may be initialized to any values. The
input-output pattern pairs data is applied several times to achieve
convergence o the weights for a given set o training data. The
convergence is not guaranteed for any arbitrary training data set.

16,5 Correlation Learning Law
Here the change in the weight vector is given by
Aw; = nb;a (1.10)

34 Basics d Artificial Neural Networks

Therefore
Awy = mba;, forj=1,2, .., M @1y

Thisis a specia case o the Hebbian learning with the output signal
(s;) being replaced by the desired signal (b,). But the Hebbianlearning
is an unsupervised learning, whereas the correlation learning is a
supervised learning, since it uses the desired output value to adjust
the weights. In the implementation d the learning law, the weights
are initialised to small random values close to zero, ie., w; = O.

1.6.6 Instar (Winner-take-all) Learning Law

This is relevant for a collection of neurons, organized in a layer as
shownin Figure 1.8. All the inputs are connected to each o the units

Figure 1.8 Arrangement of unitsfor ‘instar learning', where the adjusted
weights are highlighted.

in the output layer in a feedforward manner. For a given input vector
a, the output from each unit i is computed using the weighted sum
w’a. The unit k that gives maximum output is identified. That is

wia = max (w)a) (1.12)
Then the weight vector leading tlo the kth unit is adjusted as follows
Aw, = 1 (a-w,) (1.13)

Therefore,
Awy; = M (- wy), forj=1,2, .., M (1.19)

The final weight vector tends to represent a group o input vectors
within a small neighbourhood. This is a case d unsupervised
learning. In implementation, the values d the weight vectors are
initialized to random values prior to learning, and the vector lengths
are normalized during learning.

1.6.7 Outstar Learning Law

The outstar learning law is aso related to a group d units arranged
inalayer asshownin Figurel1.9. Inthislaw the weightsare adjusted
0 as to capture the desired output pattern characteristics. The
adjustment o the weightsis given by

Awje = n(bj—wy), forj=1,2 ., M (1.15)

Basic Learning Laws 35

Figure19 Arrangement of unitsfor ‘outstar learning', where the adjusted
weights are highlighted.

where the kth unit is the only active unit in the input layer. The
vector b = (b, by, ..., by)" is the desired response from the layer o
M units. The outstar learning is a supervised learning law, and it is
used with a network o instars to capture the characteristics o the
input and output patterns for data compression. In ,implementation,
the weight vectors are initialized to zero prior to learning.

168 Discussion on Basic Learning Laws
Table 1.2 gives a summary d the basic learning laws described so
Table12 Summary of Basic Learning Laws (Adapted from [Zurada, 19921)

Learning Weight adjustment Initial Lear ni ng
law Ay weights
Hebbian Aw; = nfiw, D) a; Near zero Unsupervised
=nsa;,
forj =1,2,...M
Perceptron Aw; = 1 [b; - sgn(w; a)l o, Random Supervised
=n0;-s)a,
forj=1,2,.,M
Delta Aw,; = 7 [b, - f(w;a)l fiw/a) q, Random Supervised
=1 [b,-s] fix) a;,
forj=1,2,..,M
Widrow- Aw; = n b, - w. a] a, Random Supervised
Hoff forj=212,..,.M
Correlation Aw; = nba;, Near zero Supervised
forj=12,..,M
Winner- Aw,; = 1M (@; - wy), Random but Unsupervised
take-all k iSthewinning unit, ~ normalised
forj=12,2..,M
Outstar Awy, =1 (b - wy), Zero Supervised

forj=1,2,..,M

Basics d Artificial Neural Networks

far. It shows the type o learning {supervised/unsupervised) and the
nature of the output function (sgn for discretel A.) for continuous)
for which each law is applicable. The most important issue in the
application of these laws is the convergence o the weights to some
final limit values as desired. The convergence and the limit values
o the weights depend on the initial setting of the weights prior to
learning, and on the learning rate parameter.

The Hebb's law and the correlation law lead to the sum o the
correlations between input and output (for Hebb's law) components
and between input and desired output (for correlation law)
components, respectively. But in order to achieve this, the starting
initial weight values should be small random values near zero. The
learning rate parameter n should be close to one. Typicaly, the set
of patterns are applied only once in the training process. In some
variations of these (as in the principa component learning to be
discussed in Chapter 6), the learning rate parameter is set to a small
value (< 1) and the training patterns are applied several times to
achieve convergence.

The perceptron, delta and LM S learning laws lead to final steady
state values (provided they converge), only when the weight
adjustments are small. Since the correction depends on the error
between the desired output and the actual output, only a small
portion of the error is used for adjustment of the weights each time.
Thus the learning rate parameter n << 1. Theinitial weights could
be set to random values. The set o training patterns need to be
applied several times to achieve convergence, if it exists. The
convergence will naturally be faster if the starting weights are close
to the final steady values.

The weights in_the instar and outstar learning laws converge to
the mean values o a set o input and desired output patterns,
respectively. In these cases the learning rate parameter is typically
set to a value less than one (n < 1).The weights in the case df instar
can be initialized to any random values, and in the case o outstar
to small random values near zero. The set o training patterns are
applied several times to achieve convergence.

Besides these basic learning laws there are many other learning
laws evolved primarily for application in different situations
[Hassoun, 1995, Ch. 3L Some o them will be discussed at appropriate
places in the later chapters.

1.7 Summary

In this chapter we have seen the motivation and background for the
current interest in the study o problems based on models using
artificial neural networks. We have reviewed the features o the
biologica neural network and discussed the feasibility o realizing

Review Quegtions 37

some o these features through parallel and distributed processing
(PDP) modds (Appendix A). In particular, the associative memory,
fault tolerance and concept learning features could be demonstrated
through these PDP modds. Some key developments in artificial
neural networks were presented to show how the field has evolved
to the present state o understanding.

An artificial neural network is built using a few basic building
blocks. The building blocks were introduced starting with the models
d artificial neurons and the topology o a few basic structures. While
developing artificial neural networks for specific applications, the
weights are adjusted in a systematic manner using learning laws.
We have discussed some basiclearning laws and their characteristics.
But the full potential of a neural network can be exploited if we can
incorporate in its operation the neurona activation and synaptic
dynamics o a biologicd neural network. Some features o these
dynamics are discussed in the next chapter.

Review Questions

1 Describe some attractive features o the biologica neural
network that makeit superior to the most sophisticated Artificial
Intelligence computer system for pattern recognition tasks.

2 Explain briefly the terms cdl body, axon, synapse, dendrite and
neuron with reference to a biologica neural network.

3 Explain briefly the operation d a biological neural network.

4. Compare the performance d a computer and that o a biologica
neural network in terms o speed o processing, size and
complexity, storage, fault tolerance and control mechanism.

5. Givetwo examples d pattern recognition tasks to illustrate the
superiority d the biologica neural network over a conventional
computer system.

6. What are the main differences among the three modds d artificia
neuron, namely, McCulloch-Pitts, perceptron and adaline?

7. What is meant by topology o artificial neural networks? Give a
few basic topologica structures d artificial neural networks.

8 What is the distinction between learning equation and learning
law?

9. What are the basic learning laws?

10 Explain the significance d the initial values d weights and the
learning rate parameter in the seven basic learning laws.

11. Identify supervised and unsupervised basic learning laws.
12 Compare LMS, perceptron and delta learning |aws.

Basics o Artificial Neural Networks
Problems

Explain the logic functions (using truth tables) performed by the
following networks with MP neurons given in Figure P1.1.

a, -1
_ + -
a O—L B=0—> a0—1)l S
[+1 a, ag
(2 ®)

+1

. _.

©
Figure PLI Three networks using MP neurons.

Design networks using M-P neurons to realize the following logic
functions using £ 1 for the weights.

(a) s(ay,aq,a3) = a,a3+aqay +a,ag

(b) s(a,, ay ag) = aja.04

(c) s(ay, @y a3) = @050,

GiveTthe output o the network in Figure P1.2 for the input
[111]°.

Figure PL2 A feedforward network with MP neurons.

Determine the weights o the network in Figure P1.3a after one

iteration using Hebb's law for the following set of input vectors

for two different types o output functions shownin FiguresP1.3b

and P1.3c. Use suitable values for the initia weights and learning

rate parameter. Input: [1100]7, [1001}7, [0011}7 and [0110]7. Choose
f(x) = 1/(1 + ¢ for Figure P1.3c.

Problems

Output
Input vector
fix) 4 fix) 4
1.0 e
> — >
0 '3 0 x
®) ©)

Figure PL3 (a)A neuronwith four inputsand aone output, (b) HardHimiting
output function and (¢) Sgmaid output function.

5. Determine the weights d a network with 4 input and 2 output
units using (a) Perceptron learning law and (b) Delta learning
law with flx) = V(1 +e~*) for the following input-output pairs:

Input: [1100)7 [1001]% [0011]7 [0110)7
Output: [11]7 [oj7 [01)7 [00]T
Discuss your results for different choices d the learning rate

parameters. Use suitable values for the initial weights.
(Hint: Write a program to implement the learning laws.)

6. Using the Instar learning law, group all the sixteen possble
binary vectors o length 4 into four different groups. Use suitable
valuesfor theinitial weightsand for the learning rate parameter.
Use a 4-unit input and 4-unit output network. Select random
initial weightsin the range [0, 11
(Hint: Write a program to implement the learning law.)

Chapter 2

Activation and Synaptic
Dynamics

2.1 Introduction

An artificial neural network consists of several processing units (or
artificial neurons) interconnected in a predetermined manner to
accomplish a desired pattern recognitiontask. I n the previous chapter
we have seen some modes o neurons and some basic topologies,
using which it is possible to build complex structures. However, the
structure d an artificial neural network is not useful, unlessthe rules
governing the changesd the activation values and connection weight
values are also specified. These rules are implied or specified in the
activation and synaptic dynamics equations governing the behaviour
of the network structure to accomplish the desired task.

In a neural network with N processing units, the set o activation
values d the units at any given instant definesthe activation state d
the network. Typically, a problem is specified by a point in the
activation state space. The tragjectory o the activation states, leading
to a solution state, reflects the dynamics o the network. The
trajectory depends upon the activation dynamics built into the
network. The activation dynamicsis prescribed by a set of equations,
which can be used to determine the activation state o the network
at the next instant, given the activation state at the current instant.

For a given input data, the weights o the connecting links in a
network are adjusted to enable the network to learn the pattern in
the given input data. The set d weight values d all the links in a
network at any given instant defines the weight state, which can be
viewed as a point in the weight space. The trgjectory d the weight
statesin the weight space is determined by the synaptic dynamics d
the network.

A network is led to one d its steady activation states by the
activation dynamicsand theinput pattern. Sincethe steady activation
state depends on the input pattern, it is referred to as short term
memory. The state will change if the input pattern changes. On the

I ntroduction 41

other hand, the steady weight state d a network is determined by
the synaptic dynamicsfor a given set o training inputs, and it does
not change. Hence this steady weight stateis referred to aslong term
memory.

Activation dynamics relates to the fluctuations at the neuronal
level in a biologica neural network. Typically, these fluctuations take
place in average intervals o the order o a few milliseconds. Thus
the neuronal level dynamicsis significantly faster than the dynamics
at the synaptic level, where significant changes in the synaptic
weights take place at intervals of the order o a few seconds.
Therefore, it can be assumed that during activation dynamics the
synaptic weights do not change significantly, i.e., the weights can be
assumed to be constants o the network.

The objective o this chapter is to discuss modes for activation
and synaptic dynamics. We must distinguish two situations here.
Models of neural networks normally refer to the mathematical
representation o our understanding and observed behaviour o the
biologicad neural network. The purposein this case is to capture the
knowledge by the modd. The modd is not intended for detailed
analysis d the network. Therefore a modd o the neural network
could be very complex, involving first and higher order derivatives o
activations and weights, as well as several nonlinear interactions. In
contrast, the purpose o neural network models is to provide a
representation for the dynamicsd an artificial network, incorporating
features inspired by our understanding d the operation o the
biologica neural network. In other words, the neural network mode
is a mathematical mode for analysis of gross characteristics of an
artificial network. Typicaly, these models are described by an
expression for the first order time derivative of the activation state
for activation dynamics and an expression for the first order time
derivative o the weight state for synaptic dynamics. These
expressionsare usually smple enough (although nonlinear) to enable
us to predict the globa characteristics of the network. An expression
for the first derivative may contain time parameter explicitly, in
which case such systems become nonautonomous dynamical systems.
If the expression does not contain the time parameter explicitly, then
the systems become autonomous dynamical systems, which are
relatively easier to analyze. Throughout this chapter we use the terms
models of neural networks and neural network models inter-
changeably, although they refer to the autonomous dynarnical system
models represented by an expression for the first derivative of the
activation value d each unit in the network.

We discuss activation dynamics and synaptic dynamics,
separately. The discussion on the activation and synaptic dynamics
is adapted from [Kosko, 19921. In Section 2.2 on the activation
dynamics modes we consider . the additive, shunting (or

42 Activation and Synaptic Dynamics

multiplicative) and stochastic modds. We al so discuss the equilibrium
states o the networks with a specified activation dynamics. Since
synaptic dynamics models lead to learning laws, in Section 2.3 we
first consider the requirements o the learning laws for effective
implementation. In this section we aso discuss the distinction
between the activation and synaptic dynamics models. In Section 2.4
several categories d learning are discussed, which include Hebbian,
competitive, error correcting and stochastic learning. A brief
discussion is included on the equilibrium d synaptic dynamics. In
Section 2.5 we discuss the issues o stability and convergence in
activation and synaptic dynamics, respectively. We shall review the
general stability theorems and discuss briefly the issues o global and
structural stability in neural networks. In Section 26 we discuss
methods for neural network recall for both feedforward and feedback
networks. In the final section we provide a brief summary o the
issues discussed in this chapter.

2.2 Activation Dynamics Models

221 lIssues in the Development of Activation Dynamics Models

Activation dynamics is described by the first derivative o the
activation value o a neuron [Kosko, 19921. For the ith neuron, it is
expressed as

S 2.1

xX; = 70) Q)
where A(.) is a function o the activation state and synaptic weights
o the network. Let us consder a network d N interconnected
processing units, where the variables and constants d each unit are
shownin Figure 2.1. The activation valueis generally associated with

Input Weights Activation Output
value signal
Il wil .
I, W Z w, II) x; §;
D owy J
IN —_—
Summing Output
part function

Figure 2.1 A typical processngunit i with associated parameters.

the cell membrane potential. The output function f{.) determines the
output signal generated at the axon hillock due to a given membrane
potential. This function bounds the output signal, and it is normally

Activation Dynamics Models 43

a nondecreasing function o the activation value. Thus the output is
bounded as shown in Figure 2.2a for a typica output function.
Although the activation value is shown to have a large range, in
practice the membrane potential has to be bounded due to limitation
of the current carrying capacity d a membrane. Thus there is a limit
to the operating range o a processing unit, which corresponds to the
difference between the maximum and minimum activation values.
The input values to a processing unit coming from external
sources, especialy through sensory inputs, may have a large dynamic
range, as for example, the reflections from an object in a dim light
and the same in a bright light. Thus the dynamic range o the
external input values could be very large, and usualy not in our
control. If the neuron is made sensitive to smaller values d inputs,
as in Figure 2.2b, its output signal will saturate for large input
values, i.e., for z > z; in the figure. Moreover, even a noisy input
could produce some output signal, which is not desirable. On the
other hand, if the neuron is made sensitive to large values o the
input by making the threshold 6 large, asin Figure 2.2¢, its activation
value becomes insensitive to small values o the input. Thisis the
familiar noise-saturation dilemma [Grossberg, 19821. The problem is
how a neuron with limited operating range for the activation values
can be made sensitive to nearly unlimited range o the input values.

fx) fx) 4
1 1 | ﬁ
0.5 0.6
> -] _
0 x' R x, x'
6=0 0= 91
(2) (®)
flx) 1* \
1 (/
0.5
1 a
0 % x
0 =20,

©
Fi gure 22 Output functions for three different biasval ues (6).

44 Activation and Synaptic Dynamics

The input to a processing unit may come from the outputs of the
other neurons connected to it through synaptic weights, or from an
external source such as a sensory input. Both d these types of inputs
may have excitatory components which tend to increasethe activation
of the unit, or inhibitory components which tend to decrease the
activation of the unit. Theinput, the activation value and the output
could fall into one or more o the following categories of data
depending on the nature of the external input and the nature of the
output function: deterministic or stochastic, crisp or fuzzy and discrete
or continuous.

In developing models for activation dynamics, it is necessary to
take into account the known behaviour from the studies on biologica
neuronal dynamics, but at the same time, the models must be
tractable for analysis to examine the global behaviour of a network
consisting of a large number of interconnecting processing units. In
particular, the model should be such that it should be possible to
study the behaviour o the equilibrium states of the network to
determine whether the network is globally and structurally stable.
Structural stability refers to the state equilibrium situation where
small perturbations o the state around the equilibrium brings the
network back to the equilibrium state. This depends on the behaviour
o the network in the neighbourhood of the equilibrium state, which
in turn depends on the activation dynamics and the connection
weights of the network. The model also should be ableto learn (adjust
the weights) while satisfying the requirements of storage capacity
and stability characteristics. Global stability refers to the state equili-
brium condition when both the synaptic and activation dynamics are
simultaneously used. In the following discussion we will assume that
the weights do not change while examining the activation dynamics.

We discuss models for activation dynamics starting from simple
additive models and then moving to more general shunting or
multiplicative models. Initially, we consider only the deterministic
models and then extend the models to stochastic versions. We also
provide a discussion on the equilibrium behaviour for different models
o the network. 1t should be noted that each model takes into account
a few features of the neuronal dynamics, which may be relevant for
a particular/limited application.

2.2.2 Additive Activation Models

As mentioned before, the activation value x; o the ith neuron can be
interpreted as the cell membrane potential, and it is a function o
time, ie., x; = x;(f). The activation models are described by an
expression for the first derivative of the activation value of a neuron.
Thus x;(¢) gives the rate of change o the activation value o the ith
neuron o a neural network.

Activation Dynamics Modds 45

For the simplest case d a passive decay situation,
x(t) = —A; x,(2) (2.2)

where A; (> 0) is a constant for the membrane and can beinterpreted
as the passive decay rate. The solution o this equation is given by

x,(t) = x,0) e (2.3)

In electrical circuit analogy, 4; can be interpreted as membrane
conductance, which isinverse o the membrane resistance (R;)). The
initial value o x; is x,0). The steady state value o x; is given by
x{=2) = 0, which is aso called the resting potential.

The passive decay time constant is atered by the membrane
capacitanceC; which can also be viewed as a time scaling parameter.
With C,, the passive decay modd is given by

Ci?.‘i(t) = —A;x(t) (2.4)
and the solution is given by
x(t) = x,(0) e /O (2.5)

Without loss d generality, we can assume C; = 1 throughout the
following discussion. If we assume a nonzero resting potential, then
the activation mode can be expressed by adding a constant P; to the
passive decay term as

x(t) = —A;x () TP, (2.6)

whose solution is given by

x(t) = x,0) eA¢ +‘% (1-e*) 2.7
The steady state activationvalueis given by x; (<) = P/A;, the resting
potential.

Assuming the resting potential to be zero (P; = 0), if there is a
constant external excitatory input I, then the additive activation
modéd is given by

x(t) = -A;x(t)t B, 1 (2.8)

where B; (> 0) is the weight given to I;. The solution d this equation
is given by
Bi Ii -A
x;t) = x0) e+ 2 (1- e (2.9)
Ai
The steady state activation value is given by x(e) = B;;/A;, which

shows that the activation value directly depends on the external
input, and thus it is unbounded.

46 Activation and Synaptic Dynamics

In addition to the external input, if there is an input from the
outputs d the units, then the modd becomes an additive
autoassociative modd, and is given by

N
i(t) = —A;x(t) +) fla®) wy + B, I, (2.10)
=1
where f(.) is the output function o the jth unit. For inhibitory
feedback connections or for inhibitory external input, the equations
will be similar to the above except for the signs o the second and
third terms in the above equation. The classical neural circuit
described by Perkel is a special case o the additive autoassociative
model, and is given by [Perkel et al, 19811

N
C i) = x() zx(t)Rx(t) +BI

y

N
x(t) 2 % 2.11)

where R;; is the resistance between the neuronsi and j, and

Rl., - %Q‘, % 2.12)

Perkel’s modd assumes a linear output function Ax) = x, thus
resulting in a signal which is unbounded. If the output function
flx) is gtrictly an increasing but bounded function, as in Figure 2.2,
and the connection weights are symmetric, i.e., w; = wy, then the
resulting modd is caled Hopfield modd [Hopfleld 1982] The
Hopfield modd belongs to the class d feedback neural network
models,’ called autoassociative memory, that are globdly stable. We
will discussfurther on this point in a later section.

A network consisting d two layers d processing units, where each
unit in one layer (say layer 1)is connected to every unit in the other
layer (say layer 2) and vice versa, is called a heteroassociative
network. The additive activation modd for a heteroassociative
network is given by

N
x®) = -Ax®) Y, [v+, i =12.,M

j=I
M

YO = Ay + 2 fe®w;+d;, j=1,2,.,N (213
i=1

where I; and J; are the net external inputs to the units i and j,
respectively. Note that A; and £i(.) could be different for each unit and

Activation Dynamics Models a7

for each layer. In the above equations V = [vyl is the matrix o
weightsfrom the units in the layer 2 to the unitsin the layer 1, and
W = [wy] is the matrix d weights from the units in the layer 1 to
the units in the layer 2. These are coupled first order differentia
equations. Under special conditions, such as the weightsin both the
directionsbeingidentical, i.e., W = V7, and the output function being
bounded, the resulting hetroassociative mode reduces to a
bidirectional associative memory [Kosko, 1988]. Anaogous to the
Hopfield autoassociative memory, the bidirectional associative
memory can aso be proved to be globally stable. Table 2.1 gives a
summary d the development d activation dynamics models discussed
in this section.

Tabl e 21 Summary o Development of Additive Activation Dynamics
Models

General form:
z(t) = h(), i = 1,2,.,N

Passive decay term:

C,xt) = - A, x(t),

where A; is the membrane conductance and C; is the membrane
capacitance
e Nonzero resting potential (P/A):

x(t) = — A, x(t)+ P,
e With external input (B,1):
x(t) = —A;x(t) + B, I,

where B, is a positive constant
e Additive autoassociative mode!:

N
i) = -Ax®)+ Y, () w;+B 1,
j=1

o Perkel’s modd:

) —x(t) X x() -x(t)
Cixt) = —p—+2 T p— +B],
i j=1 Y
e Hetroassociative modd:

N
x(t) = —Ax®)+ Y, fy@) v+, i=1,2,.,M

j=1

M
IO = - Ay + 3 fa®)wi+d;, j=1,2,..,N
i=1

e Bidirectiona associative memory:

[wﬁ] = [UU]T

48 Activation and Synaptic Dynamics

2.2.3 Shunting Activation Models

Grossherg has proposed a shunting activation modd to restrict the
range d the activation valuesto a specified operating range irrespec-
tive of the dynamic range o the external inputs [Grossberg, 1982;
Grossberg, 19881. We will first consider the saturation model, where
the activation value is bounded to an upper limit. For an excitatory
external input I;, the shunting activation modd is given by

x(t) = —Ajx) T [B;-x,@)] I (2.14)
The steady state activationvalueis obtained by settingx;(t) = 0, and
solving for x;. Theresult is
Bl, __B,

) = AL T THAT, 215)

Astheinput I; — e, thenx;() — B;. That is, the steady state value
of x; saturates at B;. In other words, if the initial value x;(0) < B,
then x;(#) < B; for dl t. If the input value refers to an intensity d
reflected light I; = pd, where | is the background intensity value,
and p; is the fraction o the background intensity that isinput to the
ith unit, then the above saturation modd isinsensitive to p; for large
background intensities.

In order to make the steady state activation value sensitive to
reflectance, irrespective o the background intensity, Grossberg
suggested an on-centre off-surround shunting activation modd by
providing inhibitory inputs from other input elementsto the ith unit
along with the excitatory input from the ith input element to ith unit
as shown in Figure 2.3. Throughout the following discussion we

@ @ ' @ Processing units

I, A L I, Inputintensities

Figure23 An oncenter and off-surround configuration for shunting
activation modd.

assume a hard-limiting threshold function for the output function.
That is, fix) =0, for x <0 and, ix) = 1, for x > 0. Assuming

N
E = | and I; = p, for convenience, the shunting activation modd
with on-centre off-surround configuration is given by

Activation Dynamics Models 49

x(t) = —A; @) + [B;— x| [, - x,2) I, L. (2.16)
J#i
The steady state activation valueis obtained by setting x;(¢) = 0O, and
is given by
_ B; I, _ B;p;
%) = A 0T T 1Al

> Bp, as I - o (2.17)

From this we can see that, even if I, - =, as | — «, the steady
state activation value x{~) does not saturate. Instead, x;(=<) will still
be sensitive to p;, the input reflection. It can be seen that, since
p; < 1, the steady activation value is aways less than B;, the
saturation limit, i.e., x;(¢) < B; for all t.

In order to make a unit insensitive to small positive inputs, may
be due to noise, the shunting activation mode can be modified to
incorporate a lower limit (< 0) to the activation value. The following
is the resulting modd:

x(t) = A x,@) + B, —x,®1 - [E; +x,0] Y, I, (2.18)
J#i
The steady state activationvalueis obtained by setting x;(¢) = 0, and
is given by

B,+E)I,-E,I E, B,+E, 210
%) = A +1 S| PiTBYE, || 1+A/ (2.19)

Note that x(<) — p;B;*E)-E; as | - = This steady state
activation value is negative as long as the input reflectance value to
the ith unit, p; < E/B; T E;). In that case the output signal o the
unit will be zero, since we assume that fix) = O, for x < 0. That is,
the ith processing unit will be sensitive to the input only if its input
reflectance value is aove a threshold. Thus it is possible to make
the unit insensitive to random noiseinput within a specified threshold
limit value. The above shunting activation modd has therefore an
operating range d [- E;, B;] for the activation value, since the lowest
value for x(=) = - E;, which occurs when p; = 0.

A shunting activation model with excitatory feedback from the
same unit and inhibitory feedback from other units is given by

— (&, +x) [g+ Y fa)w, } (2.20)
J#i
where dJ; is the inhibitory component d the external input. Note that,

on the right hand side d Eq. (2.20) x,(¢) is replaced by x; for
convenience. The inhibitory sign is taken out o the weights w;;, and

50 Activation and Synaptic Dynamics

hence w; > 0. The shunting modd o (2.20) is a special case d
Hodgkin-Huxley membrane equations [Hodgkin and Huxley, 19521.
Equation (2.20) can be written in the most general form as

x(t) = =A x; T (B; - C; x) I +fi(x)]

- (E;+D,x) [Ji+ Y, fx) wu} (2.21)

j=i :

where al the constants are positive. Thefirst t er Mon the right hand
side corresponds to the passive decay term; the second term
corresponds to the excitatory term and the third term corresponds to
the inhibitory term. If we consider the excitatory term
(B,- C,x,) [I; +fix)], it shows the contribution o the excitatory
(external and feedback) input in increasing the activation value
(x,) o the input. If C, = 0, then the contribution o this input
reduces to an additive effect, as in the additive activation modd. If
C, > 0, then the contribution of the excitatory input reduces to zero
when the activation xt) = B;/C;. This can be viewed as shunting
effect in an equivalent electrical circuit, and hence the name shunting
activation modd. If the initial value x;(0) < B/C;, then the modd
ensures that x,(t) < B/C;, for all t >0, thus showing the boundedness
o the activation value within an upper limit. This can be proved by
the following argument: If x,(¢) > B;/C;, then the second term becomes
negative, since we assume that fix) = 1, for al x > 0 and I, > O.
Since the contribution due to the inhibitory third term is negative, if
the excitatory second term is also negative, then the steady activation
value, obtained by setting x,¢) = 0, will be negative. Thus thereis a
contradiction, since we started with the assumption that
x;(t) > B;/C;, which is positive. Hence x,(¢t) < B/C; for all t.

Likewise, the inhibitory term (E; + D; x;) [J; +Z fix) w,.j] shows

the contribution of the inhibitory (external and feedback) input in
decreasing the activation value x,(¢) o the unit. In this case, if
D; =0, then the contributiondf thisinput reducesto an additive effect,
as in the additive activation modd. If D; > 0, then the contribution
d the inhibitory input reduces to zero when the activation
x(t)=—-E/D;. This can be viewed as a shunting effect in an
equivalent electrical circuit. If the initia value x;(0) = - E/D; , then
the mode ensuresthat x;(¢) = — E/D; ,for al t > 0. Thiscan be proved
by the following argument: For x(t) < - E/D,, the contribution d the
inhibitory third term will be positive, since Ax) > O, for all x. Since
the excitatory second term is aways postive, the steady state
activation value obtained by setting x; (t) = 0 is aways positive. But
we assumed that x,(t) < - E¢/D;, which is negative. Thus there is a
contradiction. Hence x;(t) 2 - E/D;. Table 2.2 gives a summary of

Activation Dynamics Models 51

the development of shunting activation models discussed in this
section.

Tabl e 22 Summary of Development of Shunting Activation Dynamics
Modds

e Goal: Tokeep the operating range of activation value to a specified range
e General form:
ii(t) = h()
e Saturation modd: To restrict to an upper limit
x(t) = - A x@t) + B, —x@) I,
o On-centre off-surround configuration: To make it sensitive to changesin
the external input
%) = A, x@®) B -x®1 L -x0) Y, I
j#i
e Setting noise limit:
i) = ~Axt) Y B - x @ - [Etxe) ¥ 1,
J#i
e With excitatory feedback from the same unit and inhibitory feedback
from other units:

) = A% 1T (B-x) [Hfx)] - B, +x) [Jit Z fx) w;

Jwi

2.24 Stochastic Models

The activation models considered so far are deterministic modds. In
practice, the input/output patterns and the activation values may be
considered as sample functions o random processes. The output
signal of each processing unit may be a random function o the unit's
activation value. In such cases the network activation state and
output signal state can be viewed as vector stochastic processes. Each
unit in turn behaves as a scalar stochastic process.

Stochastic activation models are represented in a simplified
fashion by adding an additional noise component to the right side o
the expression for x,(¢) for each of the deterministic activation models.
The probability distribution d the noise component is assumed for
analyzing the vector stochastic processes o the activation states. In
particular, in stochastic equilibrium, the activation state vector
hoversin a random fashion about a fixed (deterministic) equilibrium
state, representing the average.

2.25 Discussion on Equilibrium

Normally the term equilibrium is used to denote the state o a
network at which the network settles when small perturbations are

52 Activation and Synaptic Dynamics

madeto the state. I n the deterministic models, the equilibrium states
are also steady states. Hence these states satisfy the equations
@) =0, for i =1,2,..,N. Note that x(¢) = 0 is a necessary
condition for a state to be an equilibrium state, but not a sufficient
condition. In stochastic models, the equilibrium states are defined by
the equations x(t) = n,t), for i = 1,2,...,N, where n,¢) is the
additive noise process. Note that in both the deterministic and
stochastic models the transient due to the passive decay term is
absent in the equilibrium state.

Equilibrium o a network depends on several other factors aso
besides the activation models. The most important among these is
the update d the state change at each stage. The update could be
synchronous, which means that the update d all the units is done
at the same time. On the other hand, in an asynchronous update the
change o state d any one unit changes the overall state d the
network. Another factor is that the state update could be
deterministic or stochastic. The equilibrium behaviour also depends
on whether we are adopting a continuous time update or a discrete
time update. A magjor issue in the study d equilibrium behaviour o
a network is the speed at which the feedback signals from other units
are received by the current unit.

2.3 Synaptic Dynamics Models

2.3.1 Learning

Synaptic dynamics is attributed to learning in a biologica neural
network. The synaptic weights are adjusted to learn the pattern
information in the input samples. Typicdly, learning is a dow
process, and the samples containing a pattern may have to be
presented to the network several times before the pattern information
is captured by the weightsd the network. A large number o samples
are normally needed for the network to learn the pattern implicitin
the samples. Patterninformationis distributed across all the weights,
and it isdifficultto relate the weightsdirectly to the training samples.
The only way to demonstrate the evidence o learning pattern
information is that, given another sample from the same pattern
source, the network would classify the new sample into the pattern
class 0 the earlier trained samples. Another interesting feature o
learning is that the pattern information is dowly acquired by the
network from the training samples, and the training samples
themselves are never stored in the network. That is why we say that
we learn from examples, not store the examples themselves.

The adjustment o the synaptic weights is represented by a set
d learning equations, which describe the synaptic dynamics o the
network. The learning equation describing a synaptic dynamics mode

Synaptic Dynamics Models 53

isgiven as an expressionfor thefirst derivatived the synaptic weight
w,; connecting the unit j to the unit i. The set d equationsfor al the
weightsin the network determine the trajectory d the weight states
in the weight space from a given initial weight state.

Learning laws refer to the specific mannersin which the learning
equations are implemented. Depending on the synaptic dynamics
model and the manner of implementation, several learning laws have
been proposed in the literature. The following are some o the
requirements o the learning laws for effective implementation:

Requirements of learning laws:
(@ The learning law should lead to convergenced weights.

(b) The learning or training time for capturing the pattern
information from samples should be as small as possible.

() An on-linelearning is preferable to an off-linelearning. That
is, the weights should be adjusted on presentation of each sample
containing the pattern information.

(d) Learning should use only the locd information as far as
possble. That is, the change in the weight on a connecting link
between two units should depend on the states o these two units
only. In such a casg, it is possble to implement the learning law in
paralel for al the weights, thus speeding up the learning process.

(e) Learning should be able to capture complex nonlinear
mapping between input-output pattern pairs, as wel as between
adjacent patterns in a temporal sequence d patterns.

() Learning should be able to capture as many patterns as
possible into the network. That is, the pattern information storage
capacity should be as large as possible for a given network.

Categories of learning: Learning can be viewed as searching
through the weight space in a systematic manner to determine the
weight vector that leads to an optimum (minimum or maximum)
value d an objective function. The search depends on the criterion
used for learning. There are several criteria which include minimiza
tion o mean squared error, relative entropy, maximum likelihood,
gradient descent, etc. [Hassoun, 19951 There are several learning
lawsin use, and new laws are being proposed to suit a given applica
tion and architecture. Some of these ill be discussed at appropriate
places throughout the book, but there are some general categories
that these laws fall into, based on the characteristics they are
expected to possess. In the first place, the learning or weight
adjustment could be supervised or unsupervised. In supervised
learning the weight adjustment is determined based on the deviation

54 Activation and Synaptic Dynamics

o the desired output from the actual output. Supervised learning
may be used for structural learning or for temporal learning.
Structural learning is concerned with capturing in the weights the
relationship between the given input-output pattern pairs. Temporal
learning is concerned with capturing in the weights the relationship
between neighbouring patterns in a sequence o patterns.

Unsupervised learning discovers features in a given set o
patterns, and organizes the patterns accordingly. There is no exter-
nally specified desired output in this case. Unsupervisedlearning uses
mostly local information to update the weights. The local information
consists o signal or activation values d the units at either end d
the connection for which the weight update is being made.

Learning methods may be off-line or on-line. In an off-line
learning al the given patterns are used together to determine the
weights. On the other hand, in an on-line learning the information
in each new pattern is incorporatedinto the network by incrementally
adjusting the weights. Thus an on-line learning alows the neural
network to update the information continuously. However, an off-line
learning provides solutions better than an on-line learning since the
information is extracted using al the training samplesin the case o
off-line learning.

In practice, the training patterns can be considered as samples
o random processes. Accordingly, the activation and output states
could also be considered as samplesd random processes. Randomness
in the output state could aso result if the output function is
implemented in a probabilistic manner rather than in a deterministic
manner. These input, activation and output variables may aso be
viewed as fuzzy quantities instead d crisp quantities. Thus we can
view the learning process as deterministic or stochastic or fuzzy or a
combination o these characteristics.

Finaly, in the implementation d the learning methods the
variables may be discrete or continuous. Likewise the update o
weight values may be in discrete steps or in continuous time. All
these factors influence not only the convergence d weights, but aso
the ability d the network to learn from the training samples.

2.3.2 Distinction between Activation and Synaptic Dynamics
Models

In order to appreciate the issues in evolving and implementing
learning, it is necessary to clearly understand the distinction between
the functions d the activation and synaptic dynamics models. This
is discussed in this section. Both activation dynamics and synaptic
dynamics models are expressed in terms o expressions for the first
derivatives d the activation value o each unit and the strength o
the connection between the ith unit and the jth unit, respectively.
However, the purpose d invoking activation dynamics mode is to

Synaptic Dynamics Models 55

determine the equilibrium state that the network would reach for a
giveninput. Inthis case, the input to the network is fixed throughout
the dynamics. The dynamics model may have terms corresponding to
passive decay, excitatory input (external and feedback) and inhibitory
input (external and feedback). The passive decay term contributes to
transients, which may eventually die, leaving only the steady state
part. The transient part is due to the components representing the
capacitance and resistance of the cdl membrane. The steady
state activation equations can be obtained by setting x;() = 0,
i =1,2,...,N. Thisresultsin a set d N coupled nonlinear equations,
the solution of which will givethe steady activation state asafunction
of time. This assumes that the transients decay faster than the
signals coming from feedback, and the feedback signals do not
produce any transients. It isin the movement o the steady activation
statethat we would be interested in the study of activation dynamics.
Note that even a single unit network without feedback may have
transient and steady parts, and the steady part i n this case describes
the stable state also. But in a network with feedback from other units,
the steady activation states may eventually reach an equilibrium or
a stable state, provided the conditions for the existence o stable
states are satisfied by the parameters (especialy the weights) in the
activation dynamics model. Thus, in these cases we are not interested
in the transient part d the solutions. We are only interested in the
equilibrium stabl e states reached by the steady state activation values
for a given input. The equilibrium states (x) correspond to the
locations of the minima of the Lyapunov energy function V(x), and
are given by dV(x(#))/dt = 0, whereas the steady states are given by
x(t) = 0, where x(¢) is the activation vector with components x(t),
i = 1,2,..,N. The equilibrium behaviour o the activation state of a
neural network will be discussed in detail in Section 2.5.

The case d synaptic dynamics model is different from the activa-
tion dynamics model. The objectivein synaptic dynamicsis to capture
the pattern information in the examples by incrementally adjusting
the weights. Here the weights change due to input. If there is no
input, the weights also do not change. Note that providing the same
input at another instant again causes the weights to change, as it
can be viewed as a sample given for further reinforcement of the
weights. If the model contains a passive decay term in addition to
the terms due to the varying external input, the network not only
learns continuously, but also forgets what it had learnt initially. In
discrete implementation, i.e., determining the weight change at each
discrete time step, suitable assumptions are made regarding the
contribution of theinitial weight state and also the contributions due
to the samples given in the past. As an example, let us consider the
following synaptic dynamics model, consisting of a passive decay term
and a correlation term:

Activation and Synaptic Dynamics

Wit) = ~ wy(®) + fixB))) (2.22)
The solution to the equation is given by

t
wyt) = wy O et+et [fem) famedr, (2.23)
0

where w;(0) is a constant initial value o the weight. The above
solution shows that the weight accumulates the correlation o the
output signals, i.e., fi(x,(t)) f(x;(¢)). Note that the activation values
x(t) and x(¢t) depend on the external input given in the form o
samples, continuous in time in this case. This is because the
activation dynamics depends on the external input besides the
network parameters like membrane capacitance and the connection
topology like feedback. The activation values considered here are
steady and stable, since it is assumed that the transients due to
membrane parameters like capacitances have decayed down, and the
steady activation state of the network has reached the stable state.
This assumption is reasonable, since the adjustment o synaptic
weights takes place at a much dower rate compared to the changes
in the activation states.

Theinitial weight w(0) can be viewed asa priori knowledge. The
term w,(0) e can be considered as a forgetting term. Ast — o, the
contribution due to this term to the weight will be zero, i.e., the
system would not remember the knowledge in the network at
t =0. The second term reflects recency effect. It shows the
accumulation d the correlation term with time. There is an
exponential weightage to this accumulation, which shows that recent
correlation value is given more weight than the correlation valuesin
the past. As mentioned above, these correl ations depend on the input
samples. The weights are expected to capture the patterns in the
input samples as determined by the synaptic dynamics modd.

Mog o the timethe learning laws ignore the passive decay term.
Then the initial weight w;(0) recelves importance as can be seen
beow from the solution of the equation without the passive decay
term. Let

wit) = fix) fixt) (2.24)

The solution is given by
t
wt) = w0 + | fix®) filx) de (2.25)
0

Note that the recency effect also disappears, once the passive decay
term is absent. That is, there is no exponentia weighting on the
accumulation o the correlation term.

In discrete-time implementation, the integral is replaced by

Lear ni ng Methods 57

summation d the correlation terms, where each term is due to the
application d one sample input pattern. That is

t
wg(t) = wv(O)' + Z fix,(v) f_;'(xj(‘c)) (2.26)
=1

The initial weight at time t = 0 also influences the weight at any
instant t. It does not decay with time. The change in the weight due
to an input pattern at the timeinstant t is given by

Awyt) = wyt) ~wyt - 1) = filx @) fxfe) (2.27)

In summary, the distinction between the activation dynamics and
synaptic dynamics modelsis highlighted by the following statements:
For activation dynamics our interest is in the equilibrium states (x)
given by V(x()) = 0, which in turn uses the solution o equationsfor
the steady activation states given by x() = 0, i.e., x(t) = 0, for
i =1,2,..,N. For synaptic dynamics, on the other hand, learning
takes place when w(t) # 0.

24 Learning Methods

There are several methodsd learning. For the purpose o discussion,
the learning methods are organized into different groups. Table 2.3
gives a summary d the learning methods discussed in this section.
Thetable dso lists the categories o learning discussed in Section 2.3.1.

Table 2.3 Summary of Learning Methods

1. Categories of learning
o Supervised, reinforcement and unsupervised
o Offdine and orHline
o Deerminigtic, sochadtic and fuzzy
Discrete and continuous
" Criteria for learning

2. Hebbian learning
» Badc Hebbian learning
« Differentid Hebbian learning
o Stochadtic verdons
3. Compstitive learning—learning without a teacher
Linear competitive learning
Differentid competitive learning
Linear differential competitive learning
Stochadtic versons

58 Activation and Synaptic Dynamics

Table 2.3 Summary of Learning Methods (Cont.)

4. Error correction lear ning—lear ning with a teacher
 Perceptron learning
» Ddtalearning
e LMS learning
5. Reinfor cement lear ning—lear ning with a critic
« Fixed credit assgnment
o Probabiligtic credit assignment
» Tempord credit assgnment
6. Stochagtic learning
« In multilayer perceptron
e In Boltzmann machine
7. Other lear ning methods
e Sparse coding
e Min-max learning

« Principa component learning
« Drive-reinforcement learning

Details o implementation of some learning methods will be discussed
at appropriate contexts in the later chapters.

24.1 Hebbian Learning

The basis for the class o Hebbian learning is that the changes in
the synaptic strength is proportional to the correlation between the
firing of the post- and pre-synaptic neurons [Hebb, 19491. Figure 2.4

8 w; 5

Figure2.4 Topdogy for Hebbianlearning, wherei and j represent processing
units.

shows the topology for Hebbian learning [Simpson, 1990]. The

synaptic dynamics equation is given by a decay term (- w(t)) and a

correlation term (s; s;) as

where s;; is the product o the post-synaptic and pre-synaptic
neuronal variables for theith unit. These variables could be activation
values (s;s; = x;(t) xi(2)), or an activation value and an external input
(sis; = x; (t)a, (t)),0r an output signal and an external input (s;s; =
fi (x; (t))a, (1)), or output signals from two units (s;s; = f; (x; (1))
fi (x,(t)))or some other parameters related to the post-synaptic and
pre-synaptic activity. If s; and s; represent variables which are
deviationsfrom their respective mean values (s;, s;), then the resulting

L earning Methods 59

correlation term (s; = 5;) (s; — ;) is caled covariance correlation term.
Throught our discussion we will assume that s; = s;(f) = fi(x;(t)) and
s; = s{t) = f{x;(t)), unless otherwise specified.

The solution o Eq. (2.28) is given by

¢

wilt) = wy0)e™ +e™ | s(1)s(1) e’ dr (2.29)
0

where wi(0) is theinitial value o the weight at time t =.0. The first
term shows that the past knowledge will decay exponentially to zero,
which is equivalent to forgetting. The second term corresponds to
correlation encoding with fading memory due to the exponential
weight factor in the integral term. The Hebbian learning thus
accumulates the correlation terms, giving more weightage to the
recent terms.

Somevariations d the Hebbian learning are as follows [Simpson,
19901

0,0
b ()

u';v(t) = —w;() T wy(?) s;5; [Cheung and Omidvar, 19881 (2.32)

- w(®) +(5;=5) (s;~8) [Sejnowski, 19771 (2.30)
—w;(®) T (5;~3)s; [Sutton and Barto, 19811 (2.32)

The stochastic version o the Hebbianlearning givenin Eq. (2.28)
is approximated to the following stochastic differential equation:

W(t) = — Wlt) +5,8;+ nyt) (2.33)

where {ni(t)} is assumed t0 be a zero-mean Gaussian white noise
process [Papoulis, 19911, independent of the signal process - w(t)
+Si3j.

Synaptic equilibrium in the deterministic case is given by the
steady state condition:

wit) = 0 (2.34)

That is, thereis no further change of weights. In the stochastic case,
the weights reach stochastic equilibrium when the weight changes
are only due to the noise component. That is

w(t) = nyt) (2.35)

I n these cases the synaptic processesfluctuate randomly at stochastic
equilibrium as the weights approach the asymptoticvalues. Note that
the stochastic equilibrium corresponds to the deterministic equilib-
rium on the average. That is the average or expectation
Elw;®)] =0, for al t after w; reaches equilibrium.

60 Activation and Synaptic Dynamics

24.2 Differential Hebbian Learning
The deterministic differential Hebbian learning is described by

w) = -~wyt)tss; 188, (2.36)
or in a simpler classical version, it is given by [Klopf, 1986]
wlt) = —wy®) + 53 (2.37)

That is, the differential equation consists of a passive decay term
- w(t) and a correlation term s; s;, which is a result o the changes
in the post- and pre-synaptic neuronal activations.

The stochastic versionsd these laws are approximated by adding
a noise term to the right hand side d these differential Hebbian
learning equations.

243 Competitive Learning

Learning laws which modulate the difference between the output
signal and the synaptic weight belong to the category o competitive
learning. The general form of competitive learning is given by the
following expression for the synaptic dynamics [Grossberg, 19691

wy(t) = s; [s;—wy(®)] (2.38)

where, s; = fix(t)) is the output signal o the unit i, and s; =
fix(t)) is the output signal o the unit j. This is aso caled the
deterministic competitivelearning law. It can be written as

WAE) = —s;wit) +5; (2.39)

The above expressionis similar to the deterministic Hebbian learning
(see Eq. (2.28)), except that the forgetting term (-s; w(t)), is
nonlinear in this case, whereas it was linear in the Hebbian case.
Here learning or adjustment o weights takes place only when there
iS a nonzero post-synaptic signa (s;). If s; = 0, then the synaptic
weights do not change. It is aso interesting to note that, unlike in
the Hebbian case, in the competitive learning case the system does
not forget the past learning when the post-synapticsignal is zero. In
the Hebbian case, for s; = 0, w(t) = —wyt), which results in
forgetting the knowledge already acquired.

The competitive learning works in a situation where an external
input is presented to an input layer o units and these units feed
signals to each o the unitsin the output layer. The signals from the
unitsin the output layer compete with each other, leaving eventually
one o the units (say i) as the winner. The weights leading to this
unit are adjusted according to the learning law. This is aso called
the 'winner take-all' situation, since only one unit in the output layer
will have a nonzero output eventually. The corresponding weightsw;;

Learning Methods 61

from dl the input units () are adjusted to match the input vector.
While the Hebbian learning is generally distributed, i.e., al the
weights are adjusted for every input pattern, the competitivelearning
is not distributed. Infact the input vectorsleading to the same w nni ng
unit in the competitive layer will produce a weight vector for that unit
which is an avexage of dl the corresponding input vectors.

If the input layer units are linear, i.e., s, = X, then the resulting
learning is called linear competitive learning, and is given by

wt) = s, [x; — wy(®)] (2.40)
The stochastic versions o the competitivelearning are approximated
to the following stochastic differential equations [Kosko, 19921:
Random competitive learning

wt) = s; {s; -~ wOl + ny(r) (2.41)
Random linear competitive learning

wy®) = s; [x; ~ wy@®)] t @) (2.42)
where {n(#)} is assumed t0 be a zero-mean Gaussian white noise
process, independent of the signal process.

If the input space is partitioned into K different honoverlapping
subspaces, Dy, Dy, ..., Dy, i.e.,

D;nD, =0, for i=], (2.43)

then a reinforcement function for an input pattern a is defined as
a =1, if aeD, (2.44)
=-1 if aeD, (2.45)

Using this reinforcement function, the following supervised |learning
laws are defined:

Random supervised competitive learning

Wut) = r(@) s, Is; — we)] t nt) (2.46)
Random supervised linear competitive learning

W &) = r{a)s; [x; - wyt)] tn (@) (2.47)

244 Difterentlal Competitive Learning

Differential competition means that learning takes place only if there
is a change in the post-synaptic neuronal activation. The
deterministic differential competitive learning is described by

wy(t) = éi [Sj_ wy(t)] (248)

62 Activation and Synaptic Dynamics

This combines the competitive learning and differential Hebbian
learning.
Linear differential competitive learning law is described by

wt) = §; lx; - wye)) (2 49

The stochastic versions d the above | earning equations are obtained
by adding a noise term to the right hand side d these differential
competitive | eaning equations.

Random differential competitive learning

wi(t) = s; [s; —w O] + ny(t) (2.50)
Random linear differential competitive learning

lbij(t) = g [x;— wij(t)] +n(t) (2.51)

245 Error Correction Learning

Error correction learning uses the error between the desired output
and the actual output for a given input pattern to adjust the weights.
These are supervisedlearning laws, as they depend on the availability
d the desired output for a given input. Let(a, b) be a sample d the
input-output pair o vectors for which a network has to be designed
by adjusting its weights so as to obtain minimum error between the
desired and actual outputs. Let E be the error function and E&) be
the expected value d the error function for all the training data
consisting o several input-output pairs. Since the joint probability
density function d the pairs o random input-output vectors is not
known, it is not possible to obtain the desired expectation E[E].
Stochastic approximation estimates the expectation using the
observed random input-output pairs o vectorda, b). Theseestimates
are used in a discrete approximation algorithm like a stochastic
gradient descent algorithm to adjust the weightsd the network. This
type o adjustment may not always result in the optimum set d
weights, in the sense d minimizing E[E]. It may result in some loca
minima d the expected error function. Stochastic gradient descent
algorithms are discussed in detail in Chapter 4.

Mogt error correction learning methods use the instantaneous
error (b —b") to adjust the weights, where b’ is the actual output
vector o the network for the input vector a.

Rosenblatt's perceptron learning uses the instantaneous mis
classification error to adjust the weights. It is given by

wy®) = n(b;-s)aq; (2.52)

where b; is the desired output from the ith output unit for an input
pattern a = (ay, ay, ..., ay), @; is the jth component d the input

Learning Methods 63

pattern to the ith unit, and n is a small positive learning constant.
Here s; is the actual output o the ith unit given by
s; = sSgn (X w;; a;). Perceptron |learning for a bipolar (+ 1) output unit
produces a@n error value b; — s; =+ 2. Note that b; — s; = 0 when there
is no error. Thus the discrete perceptron learning adjusts weights
only when there i s misclassification.

The continuous perceptron learning uses a monotonicaly
increasing nonlinear output function A.) for each unit. The weights
are adjusted so as to minimize the squared error between the desired
and actual output at every instant. The corresponding learning
equation is given by

w(t) = n(b;-s) filx) a; (2.53)

M
where s; = fix;)) and x; = yZ w;a;. Continuous perceptron learning

is also cdled delta learning, and it can be generalized for a network
consisting o several layers o feedforward units. The resulting
learning method is called the generalized delta rule.

Widrow’s least mean squared error (LMS) algorithm uses the
instantaneous squared error between the desired and the actual
output of a unit, assuming alinear output function for each unit, i.e.,
fx) = x. The corresponding learning equation is given by

i) = 1 (;-x)a, (2.54)

Note that in al o the above error correction learning methods, we
have assumed that the passive decay term to be zero. These methods
require that the learning constant (n) is made as small as possible,
and that the training samples are applied several times to the
network until the weightslead to a minimum error. As stated earlier,
the resulting weights may not correspond to a globa minimum o the
expected error function.

246 Reinforcement Learning

In error correction learning the desired output for a given input is
known, and therefore the learning is based on the error between the
desired output and the actual output. This supervised learning is
called learning with teacher. On the other hand, there are many
situations where the desired output for a given input is not known.
Only the binary result that the output is right or wrong may be
available. This output is called reinforcement signal. This signal only
evaluates the output. The learning based on this evaluative signal is
called reinforcement learning [Sutton, 19921. Since thisis evaluative
and not instructive, it is also caled learning with critic as opposed
to learning with teacher in the supervised learning.

64 Activation and Synaptic Dynamics

The reinforcement learning can be viewed as a credit assignment
problem [Sutton, 19841. Depending on the reinforcement signal, the
credit or blame for the overall outcome is assigned to different units
or weightsd the network. Thisis called structural credit assignment,
sinceit assigns credit to the internal structures o the system, whose
actions generated the outcome. On the other hand, if the credit is
assigned to the outcomes o series o actions based on the reinforce-
ment signal received for the overall outcome, it is called tempora
credit assignment. This happens for example in a game like chess,
where the reinforcement signal (win or lose) is received only after a
sequence d moves. The assignment o credit or blamein this caseis
to each o the moves in the sequence that led to the final outcome.
The combined temporal and structural credit assignment problem is
aso relevant in situations involving temporally extended distributed
learning systems [Williams, 1988; Williams, 19921.

The reinforcement signal can aso be viewed as a feedback from
the environment which provides input to the network and observes
the output o the network. There are three types d reinforcement
learning depending on the nature o the environment. If the
reinforcement signal from the environment is the same for a given
input-output pair, and if it does not change with time, it is called a
fixed credit assignment problem. This is like supervised learning in
classification problems. On the other hand, if the given input-output
pair determines only the probability of positive reinforcement, then
the network can be viewed as operating in a stochastic environment.
In such a case it is called probabilistic credit assignment. Here the
probabilities are assumed stationary. In both the fixed and
probabilistic credit assignments the input patterns are chosen
randomly and independently by the environment. That is, the input
pattern does not depend on the past inputs or outputs. But in the
general case where the environment itself is changing, then both the
reinforcement signals and the input patterns may depend on the past
history o the network outputs. In such cases tempora credit
assignment is more appropriate.

The associétive reward-penalty reinforcement learning by Barto
and Anandan is applicable for a processing unit with probabilistic
update (see Chapter 5), and is given by [Barto and Anandan, 19851

Awy; = 1" (5= () A= (s)) a

=N (=8, -GN A-6Pa (2.55)
where (s;) is the expected value d the output s; for the ith unit, n*
is the learning rate parameter for positive reinforcement (reward)
and n” is the learning rate parameter for negative reinforcement
(penalty). Typically n* >> n~ > 0. The term (1-(s;)?) is a derivative
term, which can be ignored without affecting the general behaviour

Learning Methods 65

o this learning rule [Hassoun, 1995, p. 891 The above learning rule
is applicable for units in a single layer only. In a multilayer network
with hidden layer units, the error from the output layer units is
propagated back to adjust the weights leading to the hidden layer
units (see Chapter 4).

247 Stochastic Learning

Stochastic learning involves adjustment o weights of a neural
network in a probabilistic manner [Ackley et a, 19851. The
adjustment uses a probability law, which in turn depends on the
error. The error for a network is a positive scalar defined in terms
o the external input, desired output and the weights connecting the
units. In the learning process, a random weight change is made and
the resulting changein the error is determined. If the resulting error
is lower, then accept the random weight change. If the resulting error
is not lower, then accept the random weight changewith a predecided
probability distribution. The acceptance o random change o weights
despite increase in the error from the network allows the network to
escapeloca minimain the search for the globa minimum o the error
surface.

Boltzmann learning uses stochastic |earning alongwith simul ated
annealing to determine the weights d a feedback network to store a
given set o patterns [Ackley et al, 1985; Szu, 19861. Stochastic
learning is also used in determining the optimum weights o a
multilayer feedforward neural network to amve at a set o weight
values corresponding to the global minimum of the error surface,
since stochastic learning helps to overcome the local minima problem
[Wasserman, 19881. However, all stochastic learning methods are
dow in convergence and hence are time consuming.

2.A.8 Other Learning Methods

Sparse encoding: If(a, b), 1 =0,1,2, .., L -1 are the given set
of input-output binary vector pairs, then the sparse encodinglearning
is given by the followinglogica OR and AND operations:

w,l+1) = (@; AND b;) OR w,h) (2.56)

with w;(0) = 0. This type o learning is used to store informationin
an associative memory [Steinbuch and Piske, 1963; Simpson, 19921.

Min-Max learning: This learning is used in the specid case d
providing connectionsto each processing unit from an input unit, one
connection weight (v;) corresponds to the minimum o 'the inputs and
the other connection weight (wy) corresponds to the maximum of the

66 Activation and Synaptic Dynamics

inputs. The weight adjustments are made as follows [Simpson, 19911:

vt 1) = min (a, v, (1) (2.57)
and
w; +1) = max (ay, w;()) (2.58)

with v;(0) =w;(0) =0, where a; is the jth component d the input
vector a;, The minimum and maximum values are treated as bounds
for a given membership function, providing a mechanism to adjust and
analyze classes being formed in a neural network [Simpson, 19921

Principal component learning: Principal components o a set d
input vectors are a minimal set d orthogonal vectors that span the
space d the covariance matrix o the input data. Once these basis
vectors are found, it is possible to express any vector as a linear
combination of these basis vectors. Ojas principal component learning
is given by [Oja, 19821

wim +1) = wm) + 1 y(m) @y~ ¥(m) wym)) (2.59)

where a,,; is the ith component d the given input vector, y(m) is the
actual output for the mth input vector. This learning extracts only
the first principal component, and the output function d the unit is
assumed to be linear. Note that the index m is used to indicate that
a given input vector can be presented several times, even though
there may be only a fixed number o vectorsfor training. The details
o principal component learning are discusssed in Chapter 6.

Drive-reinforcement learning: This law is given by

t
wi(t+1) = wy®) + M) 2, ot —1) lwyt - 1| At -1) (2.60)

=1

where a(t-2) is a decreasing function d time and Af indicates the
change in the output values d the units from the previous instant.
The change in the weight uses a weighted sum d the changesin the
past input values, multiplied by the current change in the output.
The pre-synaptic changes Afj(xi(t - 1)), 2 = 1, 2, ..., t arereferred to as
drives, and the post-synaptic change Afi(x(t)) as the reinforcement,
and hence the name drive-reinforcement learning. This learning law
was proposed for control applications due to its ability to optimize
temporal actions [Klopf, 19861.

249 Learning Functions

Learning laws are merely implementation methods for synaptic
dynamics models. Typically, a synaptic dynamics modd is described

L earning Methods 67

in terms o expressions for the first derivative d the weights. They
are caled learning equations. One general way o expressing the
learning feature in neural network studies is the following:

The change in the weight is proportional to the product of the
input a(¢) and a learning function g(.), and it is given by [Zurada,
19921

w,(t) = ng(w,(?), at), bt)) a(t) (2.61)
where,
n isthelearning rate parameter
W, = (W, Wiy, -, Wayy)T IS the weight vector for the ith unit with
components w;;
_is the weight on the link connecting the jth input unit to
Y the ith processing unit
a= (a, ay ...,aM)T is the input vector with components a;,
j=12 ..M
b= (bb, .., bN)T isthe desired output vector with components
b,i =1,2,..,N

Input units are assumed linear. Hence a = x (activation) = s
(output). Output units are in general nonlinear. Hence s; = f(w,.Ta).

The function g(.) may be viewed as a learning function that
depends on the type o learning. The increment in the weight vector
in unit time interval is given by (see Eq. (2.27))

Aw(t) =n g(w,(®), at), b(t)) a(t) (2.62)

S0 that the weight at the time instant (¢ + 1)in terms o the weight
at the time instant t is given by

w;t t1) = w,(t) T Aw,(t) (2.63)

There are different methods for implementingthe learning feature of a
neural network, leading to severd learning laws. The different basic
learning laws described in Section 1.6 differ in the expression for the
learning function. Al these learning laws use only loca information for
adjusting the weight o the connection between two units. Theexpression
for the learning function for each d the basic learning laws is given
bdow. The corresponding expression for the learning law is aso given.
The learning function for Hebb's law is given by

g() =flwfa) (2.64)
where f{.) is the output function. Therefore the changein the weight
is given by

Aw, = nfiwla)a = ns;a (2.65)

where s; is the output signal d the ith unit.

68 Activation and Synaptic Dynamics

In perceptron learning the learning function assumes the form
g() = b,-s, = b, - sgn(w, Q) (2.66)

which is the difference between the desired output and the actual
output at the ith unit. The change in the weight is given by

Aw, = 1 [b, — sgn(w’a)] a (2.67)
The learning function in delta learning law is given by

g() = [b;-fiwTa)l iw’a) (2.68)
Therefore the resulting weight change is given by

Aw; = 1 [b; - fiwTa)l Aiw a) a (2.69)
The learning function in Widrow and Hoff learning law is given by

g() = [b,-wlal = [b,-x] (2.70)
Therefore the change in the weight is given by

Aw, = n [b;-w'a] a (2.71)
In correlation learning the learning function is given by

8() = b (2.72)
and the weight change is given by

Aw, = nb,a (2.73)

2.5 Stability and Convergence

Stability refers to the equilibrium behaviour of the activation state
of a neura network, whereas convergence refers to the adjustment
behaviour of the weights during learning, which will eventually lead
to minimization of error between the desired and actual outputs. Thus
convergenceis typically associated with supervised learning, although
it is relevant in all cases of learning, both supervised and unsuper-
vised. The objective of any learning law is that it should eventually
lead to a set of weights which will capture the pattern information
in the training set data.

In this section we will discuss the global behaviour of artificial
neural metworks whose activation dynamics is described by the
following set of equations [Cohen and Grossherg, 19831:

N
& =-ax)| bix) =Y cpdylxy) |, =12 .,N (2.74)
k=1

where x; = x;(t) and the coefficients [c;] form a symmetric matrix.

Stability and Convergence 69

These equations represent a class d N-dimensional competitive
dynamical systems. All the previous activation models including the
general shunting activation model form special cases o this system.
In general, the activation state d the network starts from an initial
state and follows a trajectory dictated by the dynamics d the
equations. A network will be useful only if a traectory leads
eventually to an equilibrium state at which point there is no further
change in the state. Such a state is aso called a stable state, when
a small perturbation d the state settles to the same state. Different
initial states may follow different trajectories, al o which should
terminate at some equilibrium states. There may be several
trajectories that may terminate at the same equilibrium state.

The existence o such equilibrium states enables global pattern
formation possble in a network. That is, an input pattern
corresponding to a starting state will eventually lead to one d the
global patterns, which can be interpreted as storage o the input
pattern in long term memory. The global pattern thus formed will
only change if there is a different external input. In some cases the
network parameters such as weights may dowly change due to
learning or self-organization. If the globa pattern formation till
occursfor any choice o these parameters, then the resulting pattern
is said to be absolutely stable or globally stable.

Under certain conditions, which will be discussed later, the set
d equations (2.74) describing activation dynamics do exhibit stable
states which are also caled fixed point equilibrium states. Such a
network then can form global patterns at those states, and hence can
be used for pattern storage. One o the conditionsis that the weights
{c;z} should be symmetric (c;, = ¢,). If the weights are not exactly
symmetric, then the network may exhibit periodic oscillations o
states in certain regions o the state space. These oscillatory regions
are aso stable, and hence can be used for pattern storage. Oscillatory
stable states may also arise when there is some delay in the feedback
d the outputs from other processing units to the current unit, even
though the weights are exactly symmetric.

For some other conditions, the network may display chaotic
changes d states in the regions o equilibrium, also called basins of
attraction. Such a network is said to exhibit chactic stability. Thus
pattern storage is possible in any network that exhibits either fixed
point stability or oscillatory stability or chaotic stability. However, it
is difficult to analyze and design a network suitable for the oscillatory
and chaotictypesd stabilities [Cohenand Grossberg, 1983; Hertz, 19951,

A general network is more likely to exhibit random chaotic
changes d states throughout due to nonlinearly coupled set d
equations with delayed feedback. One has to carefully choose the
parameters d the activation dynamics modds for ensuring stable
points. In general, it is difficult to know whether a network will have

70 Activation and Symptic Dynamics

stable points, and if so, how many. It is even more difficult to
determine the behaviour o the network near the stable points to
examinethe nature o stability. However,in afew casesit is possible
to predict the globa pattern behaviour, if it is possible to show the
existence o an energy function caled Lyapunov function [Amari,
19771 It is a scalar function o the parameters d the network,
denoted by V(x), where x isthe activation state vector of the network.
V(x) is said to be a Lyapunov function if V(x) < 0 for all x. It is
sufficient if we can find a Lyapunov function for a network in order
to demonstrate the existence o stable equilibrium states. It is not a
necessary condition, as the network may still have stable points, even
though a Lyapunov function could not be found. The existence o
Lyapunov function makes it easy to analyze the stability o the
network.

If the Lyapunov function is interpreted as an energy function,
then the condition that V(x) < 0 meansthat any changein the energy
due to change in the state o the network results in lowering the total
energy. In other words, any change o the state d the network results
in the trgjectory d the state sliding along the energy surface in the
state space towards lower energy. Eventually the trajectory leads to
a state from where there is no further decreasein the energy due to
changes in the state. Such a state corresponds to the energy
minimum, at which V(x) = 0. Normally there will be many states at
which V(x) = 0. All such states correspond to equilibrium points or
stable states. All trajectoriesin the state space will eventually lead
to one of these stable states.

In the following, three general theorems are given that describe
the stability o a set d nonlinear dynamical systems. The first
theorem, the Cohen-Grossberg theorem, is useful to show the stability
of fixed weight autoassociative networks. The second theorem, the
Cohen-Grosshberg-Kosko theorem, is useful to show the stability d
adaptive autoassociative networks. The third theorem, the adaptive
bidirectional-associative memory theorem, is useful to show the
stability o adaptive heteroassoci ative networks.

Cohen-Grossberg theorem: For a system o equations given by

N
% = - ax) [bix) — Y, ¢ dylxy)] , i=12,..,N (2.75)
k=1

a globa Lyapunov function is given by

N % N
V=Y [5E)dEIdE -5 Y ad@) dz) @70

i=1 7 ik=1

Stability and Conver gence 71

Snce
) N oy o
V = i; g‘ 5 2.77)
N
= 2 b diz) —Zc,kan(x)dk(xk)x- (2.78)
i=1
N B N
= X di(xi) [bix) - 2 € dy(xy)] (2.79)
i=1 k=1
N) N
== Z a;(x;) di(xi)[bi(xi) = 2 Cik dk(x,,) :\I (2.80)
i=1 k=1
we have
V <0, (2.81)

if afx;) 20, (i.e., aix;) is nonnegative), di(x;) = 0 (i.e., di(x;) is mono-
tonically nondecreasingfunction), ¢; are constant and do not change
with time, and leg] is symmetric. This last property was used to
obtain the smplified expression for the derivative o the second term
d V() in Eq. (2.78).

Notethat the functionb,(x;) could bearbitrary, except that it should
ensure the integrability o the first term in V(x). Thus V(x) is a globa
Lyapunov function, provided these conditions are satisfied.

Cohen-Grossberg-Kosko theorem: For a dynamical system where
both the activation state and the synaptic weights are changing
simultaneously, the equations describing the dynamics may be
expressed as follows [Kosko, 19831

N

%= - ax)| ba) - Y, cadyx) |, i =1,2,.,N (2.82)
k=1

Cip = — ey +di(x) dy(x,) (2.83)

where [ey] is assumed to be a symmetric matrix. For such a system
the followi ng V(x) is a Lyapunov function.

V(x)-Zjb(&)d(&gd&——Zc,kd(x)dk(xk)+ Zc,k (2.84)
i=10

Adaptive bldirectlonal assoclative memory theorem: Thesystem o
equations describing the activation and synaptic dynamicsd a neural
network consisting o two layers o processing units, a unit in each
layer feeding its output to all the units in the other layer, is given
as follows [Kosko, 198381:

72 Activation and Synaptic Dynam cs

x, = —ai(xi)[bi(xi)— > ¢y dj(yj)] (2.85)
j

Yy = “aj@j)[bjﬁ’j)‘ 2 < d,-(xi)] (2.86)

& = — ¢y +dix) d) (2.87)

The following is a Lyapunov function for the above system:

x; y,
Vix,y) = Z J bi(éz) d'i(éi) déi + Z ,r bj(éj) dj(&.y) déj
. =

i 0 Jj

- Y ;dix) d,(v,~)+%2 c2 (2.88)
iJ iJ

2.6 Recall in Neural Networks

During learning, the weights are adjusted to store the informationin
a given pattern or a pattern pair. However, during performance, the
weight changes are suppressed, and the input to the network
determines the output activation x; or the signal value s;. This
operation is caled recall o the stored information. The recall
techniques are different for feedforward and feedback networks.

The simplest feedforward network uses the following equation to
compute the output signal from the input data vector a.

s; = f(w'a) (2.89)

where f{.) is the output function of the ith unit.
A recall equation for a network with feedback connectionsis given
by the following additive mode for activation dynamics:

N
x,(t tD=-(1-39) x(t) +B Z Wy f,‘(xj(t)) +ai (2.90)
feg !

where xt +1) is the activation o the ith unit in a single layer
feedback network at time (t +1).The function £(.) is the nonlinear
output function d the jth unit, a(<1) is a postive constant that
regulates the amount d decay the unit has during the update
interval, B is a positive constant that regulates the amount o
feedback the other units provide to theith unit, and g; is the externa
input to the ith unit. This equation is same as the Eq. (2.10) except
for a change o afew symbols. In general, stability is the main issue
in feedback networks. If the network reaches a stable state in afinite
number o iterations, then the resulting output signal vector
represents the nearest neighbour stored pattern o the system for the
approximate input pattern a.

Summary 73

Cohen and Grossberg (1983) have shown that for a wide class o
neural networkswith certain constraints, the network withfixed weights
reachesa stablestatein afinite period o timefrom any initial condition.
Later Kosko showed that a neural network could learn and recall at
the same time, and yet remains stable [Kosko, 19881

Theresponse d a network dueto recall could be the nearest neighbour
or interpolative. In the nearest neighbour case, the stored pattern dosest
to theinput pattern is recdled. This typicdly happensin the feedforward
pattern classification or in the feedback pattern matching netwoérks. In
the interpol ative case, the recalled pattern is a combination d the outputs
corresponding t0 the input training patterns nearest to the given input
test pattern. Thi s happensin the feedforward pattern mapping networks,

2.7 Summary

In this chapter we have considered the issues in devel opingactivation
and synaptic dynamics models for artificial neural networks. The
activation models o both additive and multiplication types are
discussed in detail. The multiplicative or shunting type models are
developed to limit the operating range of the activation value o a
neuron. The synaptic dynamics modd equations form the basis for
learning in neural networks. Several |earning methods are presented
toindicate the variety o methods developed for different applications.
The activation and synaptic dynamics models are useful only if globa
pattern formation is possible with these models. The globa pattern
formation is linked with stability and convergence o these modés.
The conditions to be met by a dynamical system for stability and
convergence are discussed through stability theorems. Finally the
issues in the recal o stored information are discussed briefly.
Having understood the basicsd artificial neural networks, the next
task is to determine what kind o problems these structures and modds
can solve. The next four chapters deal with pattern recognition tasks
that can be solved by some basic structures o artificial neural networks.

Review Questions
1 Explain the following:
(@) Activation and synaptic dynamics
(b) Models o neural networksvs neural network models
(¢) Autonomous and nonautonomous dynamical systems
(d) Additive and shunting models of activation modds
(e) Stochastic modes vs stochastic versions of models
() Stability and convergence
(g) Structural vs globa stability

74

00 ~N

BRFEB

NI OIS

18.

Activation and Synaptic Dynamics

What is meant by each d the following:

(a) Transient state
(b) Steady state

(¢) Equilibrium state
(d) Stable states

What is the noise-saturation dilemmain activation dynamics?

Explain the differences among the three different types o
stability in neural networks: fixed-point, oscillatory and chaatic.

What is meant by global pattern formationin neural networks?

What are the requirements o learning laws for effective
implementation?

What are forgetting and recency effectsin learning?
What are the different categories d learning?

Explain the difference between short-term memory and long-
terms memory with reference to dynamics models.

What is meant by operating range o a neuron?

What are the different types o Hebbian learning?

What are the different types of competitivelearning?

What is reinforcement learning? In what way it is different from
supervised learning?

Explain some criteria used for neural network learning.
Explain the distinction between stability and convergence.
What is meant by globd stability?

Distinguish between an equilibrium state and a stable state.
What is the significance o Lyapunov function in neural networks?
Explain the significance d each o the following theorems:

(a) Cohen-Grosshergtheorem
(b) Cohen-Grossherg-Kosko theorem
(¢) Adaptive bidirectiona associative memory theorem

What are the two general methods o recal o information in
neural networks?

Explain with an example the digtinction between nearest
neighbour and interpolative recall of information.

Problems

Show that the Perkel’s modd givenin Eq. (2.11) is a specia case
of the additive autoassociative modd given by Eqg. (2.10).

Problems 75

2

3

10.

12.

Show from Eq. (2.16) that if x,0) < B,, then x¢) < B, for al
t>0.

Show from Eg. (2.21) that if x;(0) < B;l C,, then x,(2) | B;IC;
for all t>0.

Show from Eq. (2.21) that if x,(0)>-E,/D,, then x(t) > - E,/ D,
for all t>0.

Explain the meaning d 'shunting' with referenceto the shunting
modd d Eq. (2.21).

Explain the significance d the following:

(@) x; = O, for dl i

b) Vx) <0

(00 Vix) =0

(d) w; # 0O, foralli, j.

Give the expressions for the general functions a,(x;), b;(x;) and
d,(x,) in Eq. (2.74) with reference to specific activation models
given in Egs. (2.10) and (2.21).

Show that the Lyapunov function represents someform o energy
o an electrical circuit.

Show that V(x) < 0 for Eq. (2.84).
Show that Vi(x, y) 1 0 for Eq. (2.89).

Consider a stochastic unit with a bipolar 1-1, 11 output function.
The probability distribution for the unit is given by

Pis=1|x) = 1 +exp(-2ix))

If the learning of the stochastic unit is based on gradient descent
on the error between the desired and the average output, show
that the resulting learning law is the same as the learning law
obtained using delta learning for a deterministic unit with
hyperbolic tangent as the output function.

Determine the weights and the threshold o a stochastic unit
with bipolar {-1, 11 output function to classify the following
2-class problem using reinforcement learning equation given in
Eq. (2.55). Assume P(s = 1|x) = 1/(1 + exp(- 2X)) and n* = 0.1 and
n~ = 0.01. Start with suitable values o initial weights and
threshold. Use positive reinforcement when the classification is
correct and negative reinforcement when the classification is
wrong. Show the final decison surface. (Hint: Write a program
to implement the learning.)

Class C;: [00]7, [10]7, [01)7, and[1 1]”
ClassCy -1-1IT, (-1-217, (-2 -11T,and [-2 -2]T

Chapter 3

Functional Units of ANN for
Pattern Recognition Tasks

So far we have considered issues in pattern recognition, and
introduced the basics o artificial neural networks. In this chapter we
discuss some functional units o artificial neural networks that can
solve simple pattern recognition tasks. These functional units form
building blocks for developing neural architectures to solve complex
pattern recognition problems.

The pattern recognition problem to be addressed by a system is
discussed in Section 3.1. Three fundamental functional units are
identified to deal with the basic pattern association problem and some
variations o this problem. These units are described in Section 3.2.
The specific pattern recognition tasks that the various functional
units can solve are discussed in Section 3.3. Table 3.1 gives the
organization of the networks and the pattern recognition tasks to be
discussed in this chapter.

Tabl e 31 Basic Artificial Neural Network Models for Pattern Recognition
Problems

1 Feedforward ANN
(a) Pattern association
(b) Pattern classification
(¢) Pattern mapping/classification
2. Feedback ANN
(a) Autoassociation
(b) Pattern storage (LTM)
(¢) Pattern environment storage (LTM)
3. Feedforward and Feedback (Competitive Learning) ANN
(a) Pattern storage (STM)
(b) Pattern clustering
(c) Feature mapping

Pattern Recognition Problem

3.1 Pattern Recognition Problem

In any pattern recognition task we have a set o input patterns and
the corresponding output patterns. Depending on the nature o the
output patterns and the nature d the task environment, the problem
could be identified as one o association or classification or mapping.
The given set o input-output pattern pairs form only a few samples
d an unknown system. From these samples the pattern recognition
modd should capture the characteristics d the system. Without
looking into the details o the system, let us assume that the
input-output patterns are available or given to us. Without loss o
generality, let us also assume that the patterns could be represented
as vectors in multidimensional spaces. We first state the most
straightforward pattern recognition problem, namely, the pattern
association problem, and discussits characteristics.

Pattern Association Problem: Given a set o input-output pattern
pairs (a, by, (a5, by), ..., (a, by, ..., (a;, by) where a; = (ay, ay, -,
ayy) and by, = (by, by, ..., by) are M and N dimensional vectors,
respectively, design a neural network to associate each input pattern
with the corresponding output pattern.

If a, and b, are distinct, then the problem is called heteroassocia-
tion. On the other hand, if b, = a,, then the problem is called
autoassociation. In the latter case the input and the corresponding
output patterns refer to the same point in an N-dimensional space,
since M =Nanda;=b;,i=12 .,N,/1=212, .., L.

The problem o storing the association d the input-output pattern
pairs (a, by, | = 1,2,..,L, involves determining the weights d a
network to accomplishthe task. Thisisthe training part. Once stored,
the problem o recall involves determining the output pattern for a
given input pattern by applying the operations d the network on the
input pattern.

The recalled output pattern depends on the nature o the input
and the design o the network. If the input pattern is the same as
one d those used in the training, then the recalled output pattern is
the same as the associated pattern in the training. If the input
pattern is a noisy version d the trained input pattern, then the
pattern may not be identical to any o the patterns used in training
the network. Let the input pattern is 4 = a,+E, where Eis a (small
amplitude) noise vector. Let us assume that 4 is closer (accordingto
some distance measure) to a, than any other a,, £ 1. If the output of
the network for thisinput 4 is still b, then the network is designed
to exhibit an accretive behaviour. On the other hand, if the network
produces an output b = b, t6, suchthat |6] — 0 as |e| — 0, then
the network is designed to exhibit an interpolative behaviour.

Depending on the interpretation d the problem, several pattern

78 Functional Units of ANN for Pattern Recognition Tasks

recognition tasks can be viewed as variants d the pattern association
problem. We will describe these tasks in Section 3.3. First we will
consider three basic functional units o neural networks which
perform the pattern association and related pattern recognition tasks.

3.2 Basic Functional Units

There are three types d artificial neural networks. They are: (i) feed-
forward, (ii) feedback and (iii) a combination o both. The simplest
networks of each o these types form the basic functional units. They
are functional because they can perform by themselves some simple
pattern recognition tasks. They are basic because they form building
blocks for developing neural network architectures for complex
pattern recognition tasks to be described later in Chapter 7.

The simplest feedforward network (Figure 3.1) is a two layer
network with M input units and N output units. Each input unit is

Output vedor = b; By

2

Output units

Input units.
(Fanout units)

Input vector a = o 4 ay
F gure 31 Badc feedforward neural network.

connected to each o the output units, and each connection is
associated with a weight or strength o the connection. The input
units are al linear, and they merely perform the task o fan-out, i.e,
each unit is providing N outputs, one to each output unit. The output
units are either linear or nonlinear depending on the task that the
network should perform. Typicaly, feedforward networks are used
for pattern association or pattern classification or pattern mapping.

The simplest feedback network, shown in Figure 3.2, consists o
a set o N processing units, each connected to all other units. The
connection strengths or weights are assumed to be symmetric, i.e.,
w; = wy, fori # j. Depending on the task, the units o the network
could be linear or nonlinear. Typicaly feedback networks are used
for autoassociation or pattern storage.

Pattern Recognition Tasks by the Functional Units 79

= ¥ b; b,
oy (& e
= a, a, ay

H gure 3.2 Basic feedback neural network.

Output vector ¥’

Input vector a

The simplest combinationnetwork is called a competitivelearning
network, shown in Figure 3.3. It consists o an input layer o units

Output vector b

Output units

Input units
(Fan-out units)

Input vector a = & a, Oy
H gure 3.3 Basic competitive lear ning network.

feeding to the units in the output layer in a feedforward manner, and
a feedback connection among the units in the output layer, including
self-feedback. Usually the connection strengths or weights o the
feedforward path are adjustable by training the network for a given
pattern recognition task. The feedback connection strengths or
weights in the output layer are usualy fixed to specific values
depending on the problem. The input units are dl linear, and they
merely perform the task of fan-out, i.e., each unit providing N outputs,
one to each output unit. The output units are either linear or
nonlinear depending on the task the network should perform.
Typicaly the competitive learning network is used for pattern
grouping/clustering.

3.3 Pattern Recognition Tasks by the Functional Units

Table 3.1 gives a summary o the pattern recognition tasks that can
be performed by the three functional units described in the previous

80 Functional Units d ANN for Pattern Recognition Tasks

section. All the pattern recognition tasks listed are simple, and can
be viewed as variants of the pattern association problem. Each o
these tasks can be described in terms of mapping of points from one
multidimensional space onto another multidimensional space. In this
section the geometrical interpretations of the pattern recognition
tasks are given to obtain a clear understanding o the problems.

The input pattern space ® is an M-dimensional space, and the
input patterns are pointsin this space. Likewise the output pattern
space ® is an N-dimensional space, and the output patterns are
points in this space. The pattern spaces are shown as circles in the
figures used to illustrate the pattern recognition tasks.

33.1 Pattern Recognltlon Tasks by Feedforward Neural Networks
In this section we will discuss three pattern recognition tasks that
can be performed by the basic feedforward neural network.

Pattern association problem: The pattern association problem is
illustrated in Figure 3.4. The input patterns are shown as a,, a,, a,

I nput pattern space Output patter n space
Association

Fi gure 3.4 lllustration of pattern association task.

and the corresponding output patterns asb,, b,, bs. The objective of
designing a neural network is to capture the association between
input-output pattern pairs in the given set o training data, so that
when any of the inputs a, is given, the corresponding output b, is
retrieved. Suppose an input pattern a; not used in the training set
is given. If the training input pattern a, is the closest to a;, then the
pattern association network should retrieve the output pattern b, for
the input pattern a; Thus the network should display accretive
behaviour. The pattern a; can be viewed as a noisy version of the
pattern a,. That is a; = a,t¢, where ¢ is a noise vector.' If the
amplitude of the noise added to a, is s0 large that the noisy input
pattern is closer to some pattern (say a,) other than the correct one
(&), then the network produces an incorrect output pattern

Pattern Recognition Tasks by the Functional Units 81

b,, k = . Thus an incorrect output pattern would be retrieved for
the given noisy input.

An example d a pattern association problem is associating a
unique binary code to a printed alphabet character, say [00000]7 for
A, [000ad for B, etc. (See Figure 3.5). Theinput patterns A, B, etc.,

JUHRT
-1

e H
ae H

—— [00000

E S —— [00001

R —[11001)

H

B

F gure 36 An exampled pattern association problem.

could be represented as black and white pixelsin a grid of size, say
16x16 points. Then the input pattern space is a binary
256-dimensional space, and the output pattern space is a binary
5-dimensional space. Noisy versions d the input patterns are obtained
when some d the pixels in the grid containing a character are
transformed from black to white or vice versa

Notethat the performanced a network for the pattern association
problem is mainly dictated by the distribution o thetraining patterns
in theinput space. Thi s point will be discussed i n detail in Chapter 4.

Pattern classification problem: In the pattern association problem
if a group d input patterns correspond to the same output pattern,
then typically there will be far fewer output patterns compared to
the number d input patterns. In other words, if some o the output
patterns in the pattern association problem are identical, then the
number o distinct output patterns can be viewed as classlabels, and
the input patterns corresponding to each class can be viewed as
sanples o that class. The problem then becomes a pattern
classification problem as illustrated in Figure 3.6.

In this case whenever a pattern belonging to a classis given as
input, the network identifies the classlabel. During training, only a

82 Functional Units of ANN for Pattern Recognition Tasks

Input pattern space Output pattern space
Classification

Figure 36 lllustration of pattern classification t ask.

few samples d patternsfor each class are given. In testing, the input
pattern is usualy different from the patterns used in the training set
for the class. The network displays an accretivebehaviour in this case.

An example d pattern classification problem could be labelling
hand printed characters within a specified grid into the corresponding
printed character. Note that the printed character patterns are
unique and fixed in number, and serve as class labels. These labels
could be a unique 5-bit code as shown in Figure 3.7. For a given

|||||||||||||

H
4
B4

1T

|||||||||||||||||||

vvvvvv
T

— [00000]" [WRHEH —— [00001)

||||||||

=
az
H
B

I
||||||||
||||||||||||||||

Figure 3.7 An example of pattern classification problem.

character, the samples d hand-printed versions o the character are
not identical. In fact the dimensionality o the input pattern space
will have to be very large in order to represent the hand-printed
characters accurately. An input pattern not belonging to any class
may be forced into one d the predetermined class labels by the
network.

Note that the performance d a network for the pattern
classification problem depends on the characteristics df the samples
associated with each class. Thus grouping d the input patterns by

Pattern Recognition Tasks by the Functional Uits 83

the class label dictates the performance. Thi s point will be discussed
in detail in Chapters 4 and 7.

Pattern mapplng: Given a set o input-output pattern pairs as in
the pattern association problem, if the objective is to capture the
implied mapping, instead o association, then the problem becomes a
pattern mapping problem (Figure 3.8). In a pattern mapping problem

Input pattern space Output pattern gpace
Mapping

Figure 3.8 |llugtration of pattern mapping task.

both the input and the output patterns are only samples from the
mapping system. Once the system behaviour is captured by the
network, the network would produce a possible output pattern for a
new input pattern, not used in the training set. The possible output
pattern would be approximately an interpolated version of the output
patterns corresponding to the input training patterns close to the
given test input pattern. Thus the network displays an interpolative
behaviour. Typicdly the input and output pattern spaces are
continuous in this case, and the mapping function must be smooth
for the interpolation to work satisfactorily.

An example o the data for a pattern mapping problem could be
the input data given to a complex physica system and the
corresponding output data from the system for a number of trials.
The objectiveis to capture the unknown system behaviour from the
samples o the input-output pair data.

A pattern mapping problem is the most general case, from which
the pattern classification and pattern association problems can be
derived as specia cases. The network for pattern mappingis expected
to perform generalization. The details of how well a given network
can do generalization will be discussed in Chapter 7.

3.3.2 Pattern Recognition Tasks by Feedback Neural Networks

In this section we Wl discuss three pattern recognition tasks that
can be performed by the basic feedback neural networks.

Autoassoclatlon problem: If each d the output patterns b, in a

84 Functional Units of ANN for Pattern Recognition Tasks

pattern association problem is identical to the corresponding input
patterns a, , then the output pattern space is identical to the input
pattern space (Figure 3.9). In such a case the problem becomes an

Input patter n space Output patter n space
(sameasinput and the
pointsare also same)

R R

Fi gure 3.9 Illustration of autoassociation task.

autoassociation problem. This is a trivial case where the network
merely stores the given set d input patterns. When a noisy input
pattern is given, the network retrieves the same noisy pattern. Thus
there is an absence d accretive behaviour.

A detailed analysis o the autoassociation problem is given in
Chapter 5. Note that the special cased b, =a;,1=1,2, .., L inthe
pattern association task is consdered as a problem o heteroassociation
task to be addressed by afeedforward network Thet er mautoassociation
task is thus used exclusively in the context o feedback networks.

Pattern storage problem: In the autoassociation problem, if a given
input patternisstoredin a network for later recall by an approximate
input pattern, then the problem becomes a pattern storage problem
(Figure 3.10). Any input vector close to a stored input pattern will

Output patter nspace
Input pattern space (sameasinput but the points
could be different from the
input patter nsto be stored)

Figure 3.10 Illustration of pattern storage task.

recall that input pattern exactly from the network, and thus the
network displays accretive behaviour. The stored patterns could be

Pattern Recognition Tasks by the Functional Units 85

the same as the input patterns given during training. In such a case
the input pattern space is a continuous one, and the output space
consists of afixedfinite set of (stored) patterns corresponding to some
o the pointsin the input pattern space. The stored patterns could
aso be some transformed versions d the input patterns, but o the
same dimension as the input space. | n such a case the stored patterns
may correspond to different pointsin the input space.

Due to its accretive behaviour, the pattern storage network is
very useful in practice. A detailed analysis o this network is given
in Chapter 5.

Pattern environment storage probiem: If aset of patterns together
with their probabilities of occurrence are specified, then the resulting
specification is caled pattern environment. The design d a network
to store a given pattern environment aims at recall of the stored
patterns with the lowest probability of error. Thisis caled a pattern
environment storage problem. A detailed analysis o this problem
together with the network design is given in Chapter 5.

3.3.3 Pattern Recognition Tasks by Competitive Learning Neural
Networks

In this section we will discuss three pattern recognition tasks that
can be performed by a combination neural network consisting o
feedforward and feedback parts. The network is aso caled the
competitive learning network.

Temporary pattern storage: If a given input pattern is stored in a
network, even in a transformed form, in such a way that the pattern
remains only until a new pattern input is given, then the problem
becomes that o a short term memory or temporary storage problem.
Thisis only o academicinterest. However, a detailed analysis o this
problem is given in Chapter 6.

Pattern clustering problem: Given a set d patterns, if they are
grouped according to similarity o the patterns, then the resulting
problem is caled pattern clustering. It isillustrated in Figure 3.11.
There are two types o problems here. In one case the network
displays an accretive behaviour (Figure 3.11a). That is, if an input
pattern not belonging to any group is presented, then the network
will forceit into oned the groups. Theinput pattern spaceis typically
a continuous space. The test input patterns could be the same as the
ones used in the training or could be different. The output pattern
space consists o a set o cluster centres or labels.

The second type o problem displays interpolative behaviour as
shownin Figure 3.11b. In this case, atest input pattern not belonging

86 Functional Units of ANN for Pattern Recognition Tasks

Input pattern goece Output pattern goece
ﬂﬂ

(b) Interpolative
Fi gure 311 lllustrationd two types d pattern clustering tasks.

to any group produces an output which is some form o interpolation
o the output patterns or cluster centers, depending on the proximity
of the test input pattern to the input pattern groups formed during
training.

Pattern clustering aso leads to the problem o vector quantiza
tion. A detailed analysis d these problemsis given in Chapter 6.

Feature mapping problem: In the pattern clustering problem a
group d approximately similar input patterns are identified with a
fixed output pattern or a group label. On the other hand, if
similarities o the features d the input patterns have to be retained
in the output, the problem becomes one o feature mapping. In this,
agiven set o input patterns are mapped onto output patternsin such
a way that the proximity of the output patterns reflect the similarity
of the features of the corresponding input patterns. When a test input
pattern is given, it will generate an output which is in the
neighbourhood o the outputsfor similar patterns. Note that typically
the number of output patterns are fixed, but they are much larger
than in the pattern clustering case, and they are organized physically
in the network in such a way that the neighbourhood pattern labels
reflect closeness o features. A detailed analysis o the feature
mapping problem is given in Chapter 6.

In summary, this chapter dealt with some basic functional units
d neural networks and a description of the pattern recognition tasks
that these units can perform. In particular, we have identified three

Review Questions 87

basic networks: feedforward, feedback and competitive learning
networks. We have defined the pattern association problem as a basic
problem, and we have seen how several other pattern recognition
tasks could be interpreted as variants d this problem. We have
discussed each of the pattern recognition tasks in the form o a
mapping problem. What we have not discussed is how the basic
functional units perform the corresponding pattern recognition tasks
mentioned in this chapter. The next three chapters deal with a
detailed analysis o these tasks by the networks.

Revlew Questions

1 What are the three functional units? Why are they called
functional units?

2 Explain the meaning o (&) accretive behaviour and (b) inter-
polative behaviour.

3 Distinguish between pattern association, pattern classification
and pattern mapping tasks.

4. Give ared life example d a pattern mapping problem.

5 Explain the difference between autoassociation problem and
heteroassociation problem.

6. What is meant by a pattern environment storage problem? Give
areal life exampleto illustrate the problem.

7. Explain the difference between the accretive and interpolative
type of clustering problems.

8 Explainwhat is meant by feature mapping? Explain the problem
with a real life example from speech production.

9 Explain how recognition o handwritten digits is closer to a
classification type problem, whereas recognition of vowed sounds
in continuousspeech iscloser to afeaturemappingtype d problem.

Chapter 4

Feedforward Neural Networks

4.1 Introduction

This chapter presents a detailed analysis o the pattern recognition
tasks that can be performed by a feedforward artificial neural net-
work. As mentioned earlier, a feedforward artificial neural network
consists o layers d processing units, each layer feeding input to the
next layer in a feedforward manner through a set of connection
strengths or weights. The simplest such network is a two layer network.

By a suitable choice of architecture for a feedforward network, it
is possible to perform several pattern recognition tasks. The simplest
task is a pattern association task, which can be realized by a two
layer feedforward network with linear processing units. A detailed
analysis o the linear association network shows that the network is
limited in its capabilities. In particular, the number of input-output
pattern pairs to be associated are limited to the dimensionality o the
input pattern, and also the set o input patterns must be linearly
independent. The constraint on the number o input patterns is
overcome by using a two layer feedforward network with nonlinear
processing units in the output layer. This modification automatically
leads to the consideration o pattern classification problems. While
this modification overcomes the constraints o number and linear
independence on the input patterns, it introduces the limitations o
linear separability o the functional relation between i nput and output
patterns. Classification problemswhich are not linearly separable are
caled hard problems. In order to overcome the constraint o linear
separability for pattern classification problems, a multilayer
feedforward network with nonlinear processing units in all the
intermediate hidden layers and in the output layer is proposed. While
a multilayer feedforward architecture could solve representation o
the hard problems in a network, it introduces the problem of hard
learning, i.e., the difficulty in adjusting the weights d the network
to capture the implied functional relationship between the given
input-output pattern pairs. The hard learning problem is solved by
using the backpropagationlearning algorithm. The resulting network
provides a solution to the pattern mapping problems. The generaliza-

I ntroduction 89

tion (ability to learn a mapping function) feature of a multilayer
feedforward network with the backpropagation learning law depends
on several factors such as the architectural details of the network,
the learning rate parameter of the training process and the training
sampl es themselves.

Table 4.1 shows the summary of the topics to be discussed in this
chapter. The pattern association problem is discussed in Section 4.2.

Table 41 Pattern Recognition Tasks by Fesdfoward Neurd Networks

Pattern association
o Architecture: Two layers, linear processing units, single set o weights

e Learning: Hebb's (orthogona) rule, Delta (linearly independent)
rule
e Recall: Direct

e Limitation: Linear independence, number d patterns restricted to
input dimensiondity
e Toovercome: Nonlinear processing units, leads to a pattern
classfication problem
Pattern classification
e Architecture: Two layers, nonlinear processing units, -geometrical

interpretation

e Learning: Perceptron learning

e Recall: Direct

o Limitation: Linearly separable functions, cannot handle hard
problems

e Toovercome More layers, leads to a hard learning problem
Pattern mapping or classification
e Archztecture. Multilayer (hidden), nonlinear processing urits, geometri-
cd interpretation
Learning: Generdized delta rule (backpropagation)
Recall: Direct
Limitation: Sow learning, does not guarantee convergence
To overcome. More complex architecture

This section gives a detailed analysis of alinear associative network,
and shows the limitations of the network for pattern association
problems. Section 4.3 describes the pattern classification problem. An
analysis of atwo layer feedforward network with nonlinear processing
units in the output layer brings out the limitations of the network
for pattern classification task. The section also discussesthe problems
of classification, representation, learning and convergence in the
context of perceptron networks. In Section 4.4 the problem of pattern
mapping by a multilayer neural network is discussed. The chapter
concludes with a discussion on the backpropagation learning law and
its implications for generalization in a pattern mapping problem.

0 Feedforward Neural Networks

4.2 Analysis of Pattern Association Networks

421 Linear Associative Network

The objective in pattern association is to design a network that can
represent the association in the pairs o vectors (a;, by), 1 = 1, 2, ...,
L, through a set o weights to be determined by a learning law. The
given set d input-output pattern pairs is called training data. The
input patterns are typically generated synthetically, like machine
printed characters. The input patterns used for recall may be
corrupted by external noise.

The following vector and matrix notations are used for the
analysis o a linear associative network:

Input vector a; = lay, g, oy 17

Activation vector d input

layer X = [y, %, o, T

Activation vector of

output layer Y =y, Yo - INT

Output vector b, = [by, by, -, OIT

Input matrix A= [a a,..a/]isan M xL matrix
Output matrix B =1[b;b,..b;lis an NxL matrix
Weight matrix W = [w, w, ... wp)T is an N x M matrix
Weight vector for jth

unit of output layer W = wjy, wy, ... wl'

The network consists 0 a set d weights connecting two layers o
processing units as shown in Figure 4.1. The output function of each

Outputvedtor b = b b’y by

Adivaionvedtor ,, y
of output layer

Activation vector
d input layer

Input veotor a = g ay Gy

Figure 41 Linear asoddive nework.

Analysisd Pattern Association Networks a1

unit in these layersis linear. Each output unit receives inputs from
the M input units corresponding to the M-dimensional input vectors.
The number (N) o output units corresponds to the dimensionality d
the output vectors. Due to linearity o the output function, the
activation values (x;) and the signal values d the units in the input
layer are the same as the input data values a;. The activation value
o the sth unit in the output layer is given by

Z pap = wa, J=1L2.,N “.1)

The output (b,J) o the Jth unit is the same as its activation value
¥, Since the output function o the unit is linear, i.e., b; = y;. The
network is caled linear since the output d the network issimply a
linear weighted sum o the component values d the input pattern.

The objectiveis to determine a set d weights {w;} in such a way
that the actual output b;; is equal to the desired output b, for al the
given L pattern pairs. The weights are determined by using the
criterion that the total mean squared error between the desired
output and the actual output is to be minimized. The weights can be
determined either by computing them from the training data set or
by learning. Computation of weights makes use o all the training
set data together. On the other hand, in learning, the weights are
updated after presentation of each d the input-output pattern pairs
in the training set.

4.2.2 Determination of Weights by Computation
For a linear associative network Mecht-Nielsen, 19901,

x=a;,i=12.,M 4.2
M
y; = 2 w;%,j=12,.,N (4.3)
i=1
b/ — — T. — T .
i =yi=wix=wa,j=12.,N (4.4)
Actual output vector
b, =y = WX = Wa, (4.5)

Error in the output is given by the distance between the desired
output vector and the actual output vector. The total error E(W) over
al the L input-output pattern pai rs is given by

E(W)=iz z(sz by)?

I=1 j=1

Mr«

13 b - Way? (4.6)
l

]
—

92 Feedforward Neural Networks

We can write
EGW) = 1 B~ WA 4.7
where the square norm

L N
IB-WAIF =Y, Y (b,—wa) (4.8)
I=1 j=1
Using the definition that the trace d a square matrix Sis the
sum o the main diagonal entries o S, it is easy to see that

E(W) = 1 tx(S) (4.9)
where the matrix Sis given by

S = (B-WAYB - WA)T (4.10)

and tr(S) is the trace o the matrix.S.

Using the definitionfor pseudoinversed a matrix [Penrose, 19551,
ie., A" = ATAATY we get the matrix identities A*AAT = AT and
AATAHT = A, Using these matrix identities we get

S = (W-BAHAAT(W - BAHT + B - A*A)BT (4.11)

It can be seen that the trace o thefirst termin Eq. (4.11)is aways
nonnegative, asit isin a quadratic form d the real symmetric matrix
AAT. It becomes zero for W = BA*. The trace o the second term is a
constant, independent & W. Since the trace d sum o matricesisthe
sum d traces d the individual matrices, the error E(W) is minimum
when W = BA*. The minimum error is obtained by substituting W =
BA+in Eg. (4.7), and is given by
Epn =7 IIB-BA'A

min

T trl(BU - A'ANBA - A"

%tr[B(I—A*A)BT]. (4.12)

where I is an L XL identity matrix. The aove smplification is
obtained by using the following matrix identities: (A*A)T = AT@AHT
and AATANHT = A.

The following singular value decomposition (SVD) d an M x L
matrix A is used to compute the pseudoinverse and to evaluate the
minimum error. Assuming L <M, the SVD o a matrix A is given by
[Strang, 19801

L
A=) AM?%pdq], (4.13)
i=1

Analysis d Pattern Association Networks 93

where AA"p; = Ap;, ATAq; = Aq;, and the sets (p, p, -, Py and

{a;, q,, ..., a;) are each orthogonal. The eigenvalues; d the matrices

AA”T and ATA will be real and nonnegative, since the matrices are

symmetric. The eigenvalues are ordered, i.e., |, 21, ;. Note that the

p;s are M-dimensional vectors and q;’s are L-dimensional vectors.
The pseudoinverse A* d A is given by

AT =Y NP2 qpl, (4.14)
i=1
where r is the rank (maximum number d linearly independent
columns) d A. Also r turns out to be the number d nonzero
eigenvalues |,. Note that if » =L, then all the L column vectors are
linearly independent.

Using the SVD, it can be shown that A™A = I, ,, if L is the
number o linearly independent columns o A. In such a case
I-A*A = 0 (null vector), and hence E_, =0 (See HJ. (4.12)).
Therefore, for alinearly independent set of input pattern vectors, the
error in the recall o the associated output pattern vector is zero, if
the optimum choice & W = BA* is used.

If the rank r o the matrix A islessthan L, then the input vectors
are linearly dependent. In this case aso the choice d the weight
matrix as W = BA+still resultsin the least error E_; . But thisleast
error is not zero in this case. The value d the error depends on the
rank r o the matrix. The matrix A*A will have a sub-matrix I, ,,,
and all the other four sub-matrices will be zero. That is

Ir‘XI‘ O
[A"AlL . = [o o} (4.15)
The expression for minimum error is given from EJ. (4.12) as
E, = %tr[B(ILxL - A"A)BT]
I L

Y. lBq,I? (4.16)
i=r+1
The next issue is how to achieve the minimum error retrieval
from the linear associative network, when there is noise n, added to
the input vectors. The noisy input vectors are

It is assumed that each component o the noise vector n, is
uncorrel ated with the other components and al so with the components
o the pattern vectors, and has the same standard deviation c. Let
C be an M x L matrix o the noisy input vectors. The objectiveis to
find a W that minimizes

94 Feedforward Neural Networks

EW) = %nB —WC|2 (4.18)

Murakami has shown that, if W = BA*, then the expression for
error E(W) is given by [Murakami and Aibara, 19871

L r
EW =7 | Y IBgiP+Lo* ¥ A7) Ba,l (4.19)
i=r+1 i=1
The first term in the square brackets can be attributed to the linear
dependency part o the column vectorsd A. If the rank o the matrix
A isL, then » = L, and the first term will be zero. Therefore, the
error is determined by the noise power o If in addition, there is no
noise, 1.e., ¢ = 0, then the error E(W) = 0, In that case error-free
recall is possible.
To minimize E(W) in the presence of noisein the input pattern
vectors, choose W =B A*, where

At =Y a2 gl (4.20)
i=1
The value d s is determined in such a way that
L)?z <1< foz (4.21)

S s+1

That is, the noise power o2 will decide how many terms should be
considered in the SVD expression for the pseudoinverse. If the
eigenvalue 4; is so small that the noise power dominates, then that
eigenvector could as wdl be included in the first term d the
expression in Eg. (4.19) for the error corresponding to the linear
dependence. This will reduce the error.

Note that this analysis is valid only if the legal inputs are
corrupted by noise. It is not valid if the input consists o only noise.
The expression for the error E(W) is applicable for the closed set d
the column vectorsin A [Murakami and Aibara, 19871.

4.23 Determination of Weights by Learning

It is desirable to determine the weights o a network in an
incremental manner, as and when a new training input-output
pattern pair is available. Thisis called learning. Each update o the
weights with a new input data can be interpreted as network
learning. Computationally also learning is preferable because it does
not require information o all the training set data at the same time.
As will be seen later in this section, it is aso preferable to have
learning confined to alocal operation. That is, the update of a weight
connecting two processing units depends only on the connection

Analysis o Pattern Association Networks 95

weight and the activations d the units on either side o the
connection. Two learning laws and their variations, as applicable to
alinear associative network, are discussed in this section.

Hebb's law: Let the input pattern vector a, and the corresponding
desired output pattern vector b, be applied to the linear associative
network. According to the Hebb's law, the updated weight value of a
connection depends only on the activations o the processingunits on
either side d the connecting link. That is

= wﬂ(l - 1) +ay b{l’
fori=12 ..M ;=12 . N (422)

Note that the computation o the increment x;y; = a;by; is purely
local for the processor unit and the input-output pattern pair. The
updated weight matrix for the application o the /th pair (a;, b)) is
given by

W) = Wi -1)*b,al, (4.23)

where W(l - 1) refers to the weight matrix after presentation o the
first ¢ - 1) pattern pairs, and W() refers to the weight matrix after
presentation o the first { pattern pairs. Note that bal is the outer
product of the two vectors, which results in an N x M matrix. Each
element o this matrix is an increment o the corresponding el ement
in the weight matrix.

If the initial values d the elements d the weight matrix are
assumed to be zero, then the weight matrix resulting after application
d the L input-output pattern vector pairs (a;, b)), 1 =1, 2, .., L, is
given by

L
W =Y bal = BAT, (4.24)
=1
where the element w;; o Wis given by
L
wy = Y ayby (4.25)
=1

To verify whether the network has learnt the association o the
given set d input-output pattern vector pairs, apply the input pattern
a, and determine the actual output vector by .

L
;o - T
I=1

= byala,) + Z b,(ala,) (4.26)
Ik

9% Feedforward Neural Networks

It is obvious from the above equation that the actual output by
is not the same as the desired output b,. Only if some restrictions
are imposed on the set o input pattern vectors {a,, a,, ..., a;}, we
can get therecall o the correct output pattern b, for the input pattern
a,. The restriction is that the set d input vectors must be ortho-
normal. That is

1 ifl=¢k
0 ifl =k (4.27)

In such a case the first term in the expressionfor b, in Eq. (4.26)
becomes b,, and the second term becomes zero, as each d the
productsala, is zerofor I = k. The restriction o orthogonality limits
the total number (L) o the input patterns in the set A to M, i.e., the
dimensionality o the input vectors, as there can be only M or less
than M mutually orthogonal vectorsin an M-dimensional space.

If the restriction o orthogonality on the set of input vectorsis
relaxed to merelinear independence, then the expressionin Eq. (4.26)
for recall reduces to

To — oT _
aa; = aja, =

b, =b,+e (4.28)

where it is assumed that the vectors are o unit magnitude, so that
ala, = 1 This leaves an error.term e indicating that the recall is
not perfect, if the weight matrix is derived using the Hebb's law.
However, it was shown in the previous Section 4.2.2 that, for
linearly independent set of input vectors, exact recall can be achieved
if the weight matrix W is chosen as W = BA*, where A* is the
pseudoinverse d the matrix A. If the set o input vectors are not
linearly independent, then still the best choice o W is BA*, as this
yields, on the average, the least squared error in the recall of the
associated pattern. The error is defined as the difference between the
desired and the actual output patterns from the associative network.
If there is noise in the input, the best choice of the weight matrix W
is BA*, where A" includes fewer (s) terms in the singular value
decomposition expansion d A than the rank (r) o the matrix, the
choice o s being dictated by the level o the noise (See Eq. (4.21)).
For al these best choices & W, the weight values have to be
computed from the knowledge of the complete input pattern matrix
A, since all o them need the SVD d A to compute the pseudoinverse
A*. However, it is possible, at |east in some cases, to develop learning
algorithms which can approach the best choices for the weight
matrices. The purpose d these learning algorithms is to provide a
procedure for incremental update of the weight matrix when an
input-output pattern pair is presented to the network. Most of these
learning algorithms are based on gradient descent along an error
surface (See Appendix C). The most basic anong them is Widrow and

Analysis d Pattern Association Networks 97

Hoff’s least mean square (LMS) algorithm [Widrow and Hoff, 19601.
The gradient descent algorithms are discussed in detail later in the
section on pattern mapping tasks.

Widrow'’s law: A form d Widrow learning can be used to obtain W=
BA+recursively. Let W(l - 1) be the weight matrix after presentation
d (1- Dsamples. Then W — 1)= B(I - DA*(- 1), where the matrices
B(l - 1) and A(- 1) are composed o the first ¢ - 1) vectors d b,
and the first (1- 1) vectors o a,, respectively. When the pair (a;, b)
is given to the network, then the updated matrix is given by (See
[Hecht-Nielsen, 19901)

Wd) = Wl - 1)+ (b, - W(- Da)p] (4.29)
where
__[-4¢- DAY -Dla,
P = |[1-Ad - DAY - D)a,|?

if the denominator is = 0

_ AT - 1DAY(- V)a,,

1+ |40 - Day | otherwise (4.30)
By starting with zero initial values for all the weights, and
successively adding the pairs (ay, by), (ag, by), ..., (az, by), we can
obtain the final pseudoinverse-based weight matrix W = BA*. The
problem with this approachis that the recursive procedure cannot be
implemented locally because d the need to calculate p; in Eq. (4.29).

The same eventual effect can be approximately realized using the
following variation o the above learning law,

W() = Wi - 1)+1 (b, - W(- Daya’, (4.31)

where nj is a small postive constant cadled the learning rate
parameter. This Widrow’s learning law can be implemented locally
by means o the following equation,

wi(l) = wil - 1) +n (b - w (~ Day ay, (4.32)

wherew,(l - 1)is the weight vector associated with thejth processing
unit in the output layer d the linear associative network at
the (1- 1)th iteration. With this scheme, it is often necessary to apply
the pairs (a;, b;) d the training set data several times, with each
pair chosen at random.

The convergence o the Widrow's learning law in Eqg. (4.32)
depends on the choice d the learning rate parameter m. For
sufficiently low values d m, a linear associative network can
adaptively form only an approximation to the desired weight matrix
W = BA*. Thereis no known method for adaptively learning the best

98 Feedforward Neural Networks

choice d the weight matrix W = BA*. Note also that no method is
known to adaptively learn even an approximation to the best choice
d the weight matrix W = BA* in the case d additive noise in the
input pattern vectors. Therefore, in the case d noisy patterns, the
best weight matrix has to be computed using the expressions for A+
in terms d the components d the singular value decompositiond A,
depending on the estimated noise level in the input patterns. Thisis
obvious from the fact that noise effects can be reduced only when its
statistics are observed over several patterns.

4.2.4 Discussion on Pattern Association Problem
Table 4.2 gives a summary d the results d linear associative networks.

Table 42 Summary o Results o Linear Associative Networks

Pattern association problem

Given a set {(a, b,)) o L pattern pairs, the objective is to determine the
weights of a linear associative network so as to minimize the error between
the desired and actual outputs. If A = (a; as ... ar], B= (b; by ...b;] and Ware
theinput, output and weight matrices, respectively, then the optimum weights
are given by
() W = BAT for orthogonal set of input vectors
(b) W = BA™ ! for linearly independent set of input vectors (full rank
square matrix: r = L = M)
() W= BA* for linearly independent set of input vectors (full rank
matrix: r = L < M)
(d) W = BA" for linearly dependent set of input vectors (reduced rank:
r<L<M
A
(e} W = BA" for noisy input vectors

For the cases (a), (b) and (c), the minimum error is zero. For the case (d)
the minimum error is determined by the rank o the input matrix. For the
case (e€) the minimum error is determined by both the rank of the input
matrix and the noise power.

Determination of weights by learning

(a) For orthogona input vectors the optimum weights W = BAT can be
obtained using Hebb’s learning law.

(b) For linearly independent or dependent input vectors an approximation
to the optimum weights W = BA* can belearnt using a form of Widrow’s
learning law.

(c) For noisy input vectors there is no known learning law that can provide
even an approximation to the optimum weights W = BA*.

Analysis o Pattern Classification Networks 29

It is often useful to dlow the processing units in the output layer o
the network to have a bias input. In such a case the input matrix A
to this layer is augmented with an additional column vector, whose
values are aways —1. Addition o this bias term results in a weight
matrix W that performs an affine transformation. With the affine
transformation, any arbitrary rotation, scaling and translation
operation on patterns can be handled, whereas linear transformations
o the previous associative network can carry out only arbitrary rotation
and scaling operations on the input patterns [Hecht-Nielsen, 19901

In many applicationsthe linkage between the dimensionality (M)
o the input data and the number (L) d data items that can be
associated and recalled is an unacceptable restriction. By means o
coding schemes, the dimeriionality o the input data can sometimes
be increased artificially, thus allowing more (L > M) pairs d items
to be associated [Pao, 19891.

But, as we will see in the next section, the dependence d the
number of input patterns on the dimensionality o the pattern vector
can be removed completely by using nonlinear processing unitsin the
output layer. Thus the artificial neural networks can capture the
association among the pairs (a;, by, 1 = 1, 2, ..., L, even when the
number o input patterns is greater than the dimensionality of the
input vectors, i.e., L > M. While the constraint o dimensionality on
the number o input patterns is removed in the artificial neural
networks, some other restrictions will be placed which involve the
functional relation between an input and the corresponding output.
In particular, the implied mapping between the input and output
pattern pairs can be captured by atwo layer artificial neural network,
provided the mapping function belongs to a linearly separable class.
But the number d linearly separable functions decrease rapidly as
the dimensionality o the input and output pattern vectors increases.
These issues will be discussed in the following section.

4.3 Analysis of Pattern Classification Networks

In an M-dimensional space if a set of points could be considered as
input patterns, and if an output pattern, not necessarily distinct from
one another, is assigned to each o the input patterns, then the
number of distinct output patterns can be viewed as distinct classes
or class labels for the input patterns. There is no restriction on the
number o input patterns. The input-output pattern vector pairs
(a, b),1=1, 2 .., L, in this case can be considered as a training
set for a pattern classification problem. Typically, for pattern
classification problems, the output patterns are points in a discrete
(normally binary) N-dimensional space. The input patterns are
usually from natural sourceslike speech and hand-printed characters.
The input patterns may be corrupted by external noise. Even a noisy

100 Feedforward Neural Networks

input will be mapped onto one of the distinct pattern classes, and
hence the recall displays an accretive behaviour.

431 Pattern Classification Network: Perceptron

A two layer feedforward network with nonlinear (har d-limiting)output
functions for the units in the output layer can be used to perform the
task of pattern classification. The number o units in the input layer
correspondsto the dimensionality o theinput pattern vectors. The units
in the input layer are all linear, as the input layer merely contributes
to fan out the input to each o the output units. The number of output
units depends on the number d distinct classes in the pattern
classification task. We assume for this discussion that the output units
are binary. Each output unit is connected to al the input units, and a
weight is associated with each connection. Since the output function of
a unit is a hard-limiting threshold function, for a given set o
input-output patterns, the weighted sum o theinput valuesis compared
with the threshold for the unit to determine whether the sumis greater
or less than the threshold. Thus in this case a set o inequalities are
generated with the given data. Thus there is no unique solution for the
weights in this case, asin the case o linear associative network. It is
necessary to determine a set d weights to satisfy all the inequalities.
Determination o such weights is usually.accompanied by means o
incremental adjustment of the weights using a learning law.

A detailed analysis o pattern classification networksis presented
here assuming M input units and a single binary output unit. The
output unit uses a hard-limiting threshold function to decide whether
the output signal should be 1 or 0. Typically, if the weighted sum o
the input values to the output unit exceeds the threshold, the output
signal is labelled as 1, otherwise as 0. Extension of the analysis for
a network consisting o multiple binary units in the output layer is
trivial [Zurada, 19921. Multiple binary output units are needed if the
number of pattern classes exceeds 2.

Pattern classification problem: If a subset of the input patterns
belong to one class (say class A,) and the remaining subset of the
input patterns to another class (say class A,), then the objectivein
a pattern classification problem is to determine a set of weights
wy, W, ..., Wy, such that if the weighted sum

M
Y, wa;>8, thena = (ay, a, .., a7 belongsto class A, (4.33)
i=1

and if
M
Y wa, < 8, thena = (a, a, .., ay)" belongs to class A, (4.34)
i=1

Analysis o Pattern Classification Networks 101

Note that the dividing surface between the two classes is given by
M
Y wa, =6 (4.35)
i=1

This equation represents a linear hyperplane in the M-dimensional
space. The hyperplane becomes a point if M =1, a straight lineif M =2,
and a plane if M = 3.

Since the solution o the classification problem involves
determining the weights and the threshold value, the classification
network can be depicted as shown in Figure 4.2, where the input a,

a, Wo
a w, fx)
g M . 11—
a. Wy Z wa; - s
g . 0 x
. 0 U
ay W \

Fi gure 4.2 A single unit pattern classification network (perceptron).

to the connection involving the threshold value w, = 6 is aways
-1. Defining the augmented input and weight vectors as
a=(-1a, ..,apT and W = (g, wy, ..., w7, respectively, the per-
ceptron classification problem can be stated as follows:

If w'a> 0, then a belongs to class A, and
if wa<0, then a belongs to class A,.

The equation for the dividing linear hyperplane isw'a = 0.

Perceptron learning law: In the above perceptron classification
problem, the input space is an M-dimensional space and the number
o output patterns are two, corresponding to the two classes. Note
that we use the (M * 1)-dimensional vector to denote a point in the
M-dimensional space, as the a, component o the vector is always -1
Suppose the subsets A, and A, o points in the M-dimensional space
contain the sample patterns belonging to the classes A, and A,
respectively. The objective in the perceptron learning is to
systematically adjust the weights for each presentation o an input
vector belonging to A, or A, aong with its class identification. The
perceptron learning law for the two-class problem may be stated as
follows:

w(im+1) = wm)+n a, if ac 4; and w'(m)a<0

w(m)-na, if ac A, and w'(m)a>0 (4.36)

102 Feedforward Neural Networks

where the index m is used to denote the learning process at the mth
step. The vectors a and w(m) are the input and weight vectors,
respectively, at the mth step, and n is a postive learning rate
parameter. n can be varying at each learning step, although it is
assumed as constant in the perceptron learning. Note that no
adjustment o weights is made when the input vector is correctly
classified. That is,

w(m 1) = w(m), if ae A, and w'(m)a>0
= w(m), if ae A, and w'(m)a<0 (4.37)

The initial value d the weight vector w(0) could be random.
Figure 4.3 shows an example o the decision boundaries at different

0 x, =a,

Figure4.3 lllugration of decison boundari es formed during implementation
of perceptron learning for linearly separable classes.

times for a 2-dimensional input vector. The equation o the straight
line is given by
wya, twya, = 6 (4.38)

For different values d the weights during learning, the position
d the line changes. Note that in this examplethe two classes can be
separated by a straight line, and hence they are cadled linearly
separable classes. On the other hand consider the example o the
pattern classification problem in Figure 4.4. In this case the straight
line wanders in the plane during learning, and the weights do not
converge to a final stable value, as the two classes cannot be
separated by a single straight line.

Perceptron convergence theorem: This theorem states that the
perceptron learning law converges to a final set d weight valuesin
a finite number o steps, if the classes are linearly separable. The
proof o this theorem is as follows

Anaysis d Pattern Classification Networks 103

0 x=a,

Fi gure4.4 Illustration of decison boundaries formed during implementation
of perceptron learning for linearly inseparable classes.

Let a and w be the augmented input and weight vectors,
respectively. Assuming that there exists a solution w* for the
classification problem, we have to show that w* can be approached
in afinite number of steps, starting from someinitial random weight
values. We know that the solution w* satisfies the following
inequality as per the Eq. (4.37):

wTa >a>0, forechaeA, (4.39)
where

a = min (w'7a)
acA,

The weight vector is updated if w'(m)a<O0, for ae A,. That is,

w(m +1) = w(m) +n a(m), for a(m) = acA,, (4.40)
where a(m) is used to denote the input vector at step m. If we start
with w(0) = 0, where 0 is an all zero column vector, then

m-1
w(m) = 1 Y, a() (4.41)
i=0

Multiplying both sides of Eq. (4.41)by w'7, we get

m-1
wTw(n) = n Y wTa@) > gma (4.42)
i=0
since w** a(i) > a according to Eq. (4.39).Using the Cauchy-Schwartz
inequality
NwT I I wem) I? 2w Tw(m)® (4.43)
we get from Eq. (4.42)

| w(m) 12 > n?mZ® | w7 |2 (4.44)

104 Feedforward Neural Networks

We aso have from Eq. (4.40)
I wim + 1) I* = (w(m) +n am))’ (w(m) +1 a(m))
= || w(m) I +n? | a(m) |2 + 21 w'(m) a(m)
< [l wim) [+ 02| a(m) |2 (4.45)

since for learningw' (m)a(m) 0 when a(m) € A,. Therefore, starting
from w(0) = 0, we get from Eq. (4.45)

m-1
Iwm) 1?2 < 02 Y, la@) 2 < n?m B (4.46)
i=0

where B = max |l a(i) ||°. Combining Egs. (4.44)and (4.46), we obtain
a(le A;

the optimum value o m by solving

m? o
— = = Bm 4.47)
| w*T)2 P (
or,
m = &% Iw TR = f;n w'|? (4.48)

Since B is positive, Eq. (4.48)shows that the optimum weight value
can be approached in a finite number d steps using the perceptron
learning law.

Alternate proof of the convergence theorem: Assume that a
solutionvector w* exists. Then using the following perceptron behaviour

wla >a >0 for acA, (4.49)
and

wla < -—a <0 for acA, (4.50)

we can show that the magnitude of the cosine d the angle ¢ between
the weight vectors w* and w(m) is given by

|w w(m) | Vmo.
cos = ” >— (4.51)
|cos ¢ | I w I wim)ll ™ liw" | VB
where
o = min|w'a]| (4.52)
and
B = max | al? (4.53)

a

Using the perceptron learning law in Eq. (4.36), and Eqgs. (4.49)
and (4.52), we get the following:

Analysis of Pattern Classification Networks

wTw(m+ 1) = w(w(m) +n a(m))
> w'Tw(m)+tqa, forw'(m)a(m< 0
Starting from w(0) = 0, we get
w'Tw(m) > mne, for w'(m)a(m<0, and a(m) € 4,

105

(4.54)

(4.55)

Likewise, using the perceptron learning law in Eq. (4.36), and EQs.

(4.50) and (4.52), we get
wTwim + 1) = w'T(w(mn) —n a@m))
< w'Tw(m) - no, for wim)a(m) >0
Starting from w(0) = 0, we get
w'Tw(m) < - mqa, for w/(m)a(m) >0, and a(m) € A,
That is
| wTw(m)| > mqa, for wi(m)a(m30, and a(m) € A,
Therefore from Egs. (4.55) and (4.57), we get
|w'Tw(m)| > mqa, forall a
Similarly, using Eq. (4.36), we get
| wim +1) |* = (W(m) +n a(m)) (w(m) + 1 a(m))
< ' wim) |? + 2 n wi(m)a@m) +n* B

< | w(m) |2 +n?p, for wlim)am) <0
and
| w(m +1) |2 = (Wim) -1 a@m)T(w(m) —n a(m))

< I'w(m)|? - 21 w'(m)a(m) +n? p
< [wm) | +n? B, for w'(m)a(m) >0
Starting from w(0) = 0, we get for both (4.59) and (4.60)
| w(m) |I? < mn?p
Therefore, from Egs. (4.51), (4.58) and (4.61), we get

| w" w(m) | S Vma
TNwt il wen) | T W VB
_mo__
| w' || VB

m<-|33||W'II2
o

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)

106 Feedforward Neural Networks

Discussion on the convergence theorem: The number o iterations
for convergence depends on the relation between w(0) and w* Normally
the initial value w(0) is set to 0. The initial setting of the weight
values does not affect the proof o the perceptron convergencetheorem.

The working of the perceptron learning can be viewed as follows:
At the (m+ 1th iteration we have

w(m + 1) = w(m)+n a(@m), for w'(m)a(ms 0

and a(m)e A, (4.65)
From this we get

wl(m + 1a(m) = wl(m)a(m) +n al(m)a(m) (4.66)

Notice that if w'(m)a(mx 0, then w'(m+ Lya(m) > 0, provided nis
chosen as the smallest positive real number (< 1) such that

n al(mya(m) > | wl(m)a(m) | (4.67)

Thus the given pattern a(m) is classified correctly if it is presented
to the perceptron with the new weight vector w(m + 1). The weight
vector is adjusted to enable the pattern to be classified correctly.

The perceptron convergence theorem for the two class problem is
applicable for both binary {0, 1) and bipolar (-1,+1} input and output
data. By considering a two-class problem each time, the perceptron
convergence theorem can be proved for a multiclass problem as well.
The perceptron learning law and its proof of convergence are
applicable for a single layer d nonlinear processing units, also called
a single layer perceptron. Note that convergence takes place provided
an optimal solution w* exists. Such a solution existsfor a single layer
perceptron, only if the given classification problem is linearly
separable. In other words, the perceptron learning law converges to
a solution only if the class boundaries are separable by linear
hyperplanes in the M-dimensional input pattern space.

Perceptron learning as gradient descent: The perceptron learning
law in Eq. (4.36)can aso be written as

w(m + 1) = w(m) + nn (b(m) — s(m)) a(m) (4.68)

where b(m) is the desired output, which for the binary caseis given by
b(m) = 1, for a(m)e A, (4.69)

= 0, for a(m) e A, (4.70)

and s(m) is the actual output for the input vector a(m) to the
perceptron. The actual output is given by

s(m) = 1, if w'(m)a(m>0 (4.71)
=0, if w'(m)a(mg0 (4.72)

Anaysisd Pattern Classification Networks 107

From Eq. (4.68) we note that if s(m) = b(m), then wim+1) = w(m),
i.e., no correction takes place. On the other hand, if thereisan error,
s(m) # b(m), then the update rule given by (4.68) is same as the
update rule given in Eq. (4.36).

Note that Eq. (4.68) is also valid for a bipolar output function,
i.e.,, when s(m) = Aw?(m)a(m)) = £ 1. Therefore Eq. (4.68) can be
written as

w(m + 1) = w(m) + 1 e(m) a(m) 4.73)

where e(m) = b(m)-s(m) is the error signal. If we use the
instantaneous correlation (product) between the output error e(m) and
the activation value x(m) = w'(m)a(m)as a measure o performance
E(m), then

E(m) = —e(m) x(m) = — e(m) wl(m)a(m) 4.74)

The negative derivative o E(m) with respect to the weight vector
w(m) can be defined as the negative gradient d E(m) and is given by

E
g—w% = e(m) a(m) (4.75)

Thus the weight update ne(m)a(m) in the perceptron learning iw
Eq. (4.73) is proportional to the negative gradient o the performance
measure E(m).

Perceptron representatlon problem: Convergencein the perceptron
learning takes place only if the pattern classes are linearly separable
in the pattern space. Linear separability requires that the convex
hulls o the pattern sets of the classes are digoint. A convex hull o
a pattern set A, is the smallest convex set in ® that contains A, A
convex set is a set o points in the M-dimensional space such that a
line joining any two points in the set lies entirely in the region
enclosed by the set. For linearly separable classes, the perceptron
convergence theorem ensures that the final set of weights will be
reached in a finite number of steps. These weights define a linear
hyperplane separating the two classes. But in practice the number
of linearly separable functions will decrease rapidly as the dimension
o the input pattern space is increased [Cameron, 1960; Muroga,
19711. Table 4.3 shows the number of linearly separable functionsfor
a two-class problem with binary input patterns for different
dimensionsd the input pattern space. For binary pattern classifica
tion problems (M = 2), there are 14 functions which are linearly
separable. The probleminFi gure 4.5a isone d thelinearly separable
functions. There are two functionswhich arelinearly inseparable, one
d which isshown in Figure 4.5b. These linearly inseparable problems
do not lead to convergence o weightsthrough the perceptronlearning

108 Feedforward Neural Networks

law, indicating that these problems are not representable by a single
layer of perceptron discussed so far.

Table 4.3 . Number of Linearly Separable Functions for a Two-class Problem

Dimension of input Number of possible Number of linearly

data M functions 2" separ able functions
1 4 4
2 16 14
3 256 104
4 65536 1882
5 - 43x 10° 94572
6 - 1.8 x 10" 15028134
b o «L X
©, 1) 1,1 |1 11
a, Qa,
©, 0) % @, 0) 0, 0) % @, 0)

(@

Figure 4.5 Examples d (a) linearly separable and () linearly inseparable
classification problems. The classes are indicated by 'x' and ‘o’.

4.3.2 Linear Inseparability: Hard Problems

A two-layer feedforward network with hard-limiting threshold units
in the output layer can solve linearly separable pattern classification
problems. This is also called a single layer perceptron, as there is
only one layer of nonlinear units. There are many problems which
are not linearly separabl e, and hence are not representable by a single
layer perceptron. These unrepresentable problems are caled hard
problems. Some o these problemsareillustrated using the perceptron
model consisting of sensory units, association units and the output
layer as shown in Figure 4.6. The output unit of the perceptron
computes a logical predicate, based on the information fed to it by
the association units connected to it. The association units form a
family o local predicates, computing a set o loca properties or
features. The family o local predicates are looking at a 'retina’, which
consists o points on a plane, which in the figure corresponds to the
sensory input. Inthe simple'linear' perceptron the output unit looks
at thelocal predicates fromthe association units, takes their weighted
sum, compares with a threshold, and then responds with a value for
the overdl logical predicate, whichis either true or false. If it were

Analysis of Pattern Classification Networks

Weights
Input (adjustable)

Activation O}ltpu':
value s}gnal
(binary)

—ZxJ—s=x

Sensory Association Summing OutI_)ut
units units unit unit

Figure 4.6 Rosenblatt'sperceptron model of a neuron.

possible for the local predicates to look at every point in the entire
retina, any possible logical predicate could be computed. This would
be impractical, since the number o possible patterns on the retina
grows exponentially with the size of the retina [Minsky and Papert,
19901. Two important limitations on the local predicates are:
order-limited, where only a certain maximum order of retinal points
could be connected to the loca decision unit computing the loca
predicate, and diameter-limited, where only a geometrically restricted
region of retina could be connected to the local predicate. The
order-limited perceptron cannot compute the parity problem examples
shown in Figure 4.7, where images with an even number o distinct

O \

I

()

Figure4.7 A parity problem illustrating the order-limited perceptron: (a)
Even parity and (b) Odd parity.

110 Feedforward Neural Networks

unconnected patterns (Figure 4.7a) should produce an output 1,
otherwise the output for the odd number of patternsin Figure 4.7b
should be 0. Likewise the diameter-limited perceptron cannot handle
the connectedness problem examples shown in Figure 4.8, where to
detect connectednessthe output o the perceptronshould be 1if there
is only one connected pattern as in Figure 4.8a, otherwise it should be
0 for patterns shown in Figure 4.8b [Aleksander and Morton, 19901.

(a)

%

Figure 48 A connectedness problem illustrating the diameter-limited
perceptron: (a) Connected class and (b) Disconnected class.

433 Geometrical Interpretation of Hard Problems:
Multllayer Perceptron

In this section the problem o pattern classification and the
performance o feedforward neural networks are discussed in
geometric terms. A pattern classification problem can be viewed as
determining the hypersurfaces separating the multidimensional
patterns belonging to different classes. For convenience throughout
this section we consider a 2-dimensional pattern space. If the pattern
classes are linearly separable then the hypersurfaces reduce to
straight lines as shownin Figure 4.9. A two-layer network consisting
o two input units and N output units can produce N distinct lines
in the pattern space. These lines can be used to separate different
classes, provided the regions formed by the pattern classification
problem are linearly separable. As mentioned earlier (See Table 4.3),
linearly separable problems are in general far fewer among all
possible problems, especially as the dimensionality d the input space
increases. If the outputs d the second layer are combined by a set
o units forming another layer, then it can be shown that any convex
region can be formed by the separating surfaces [Lippmann, 1987;
Wasserman, 1989]. A convex region is onein which aline joining any

Analysis of Pattern Classification Networks 111

Output layer
(hard-limiting units)

Input layer
(linear units)
a, ay
@
% X o o]
X o X X 00
% %X X0
o]

a,

®)

FHogure 49 An example o linearly separable classes: (a) Network and (b)
Linearly separable classes.

two points is entirely confined to the region itself. Figure 4.10b
illustrates the regions that can be created by a three layer network.
In this case the number of unitsin the second layer determines the
shape o the dividing surface. The number o unitsin the third layer
decides the number of classes. It can be seen that the three-layer
network (Fig. 4.10b) is not general enough, as it is not guaranteed
that the class regionsin the pattern spaceform convex regionsin all
cases. In fad one could have a situation as shown for the classes with
meshed regions, where the desired classes are enclosed by complicated
nonconvex regions. Note that intersection o linear hyperplanesin the
three layer network can only produce convex surfaces.

However, intersection of the convex regions may produce any
nonconvex region aso. Thus adding one more layer o units to
combine the outputs o the third layer can yield surfaces which can
separate even the nonconvex regions d the type shown in Figure
4.10c. In fad it can be shown that a four-layer network with the
input layer consisting o linear units, and the other three layers
consisting o hard-limiting nonlinear units, can perform any complex
pattern classification tasks. Thus all the hard problems mentioned
earlier can be handled by a multilayer feedforward neural network,
with nonlinear units. Such a network is also called a multilayer
perceptron. Note that the two-layer network in Figure 4.10a is a

112 Feedforward Neural Networks

single-layer perceptron, and the three-layer and four-layer networks
in the Figures 4.10b and 4.10c are two-layer and threelayer
perceptrons, respectively.

Types of Exclusive |Classes with Most general

Structure deci‘sion OR problem meghed
regions regions

Two-layer
network Half Plane

(Bounded
AN
hyperplane)

Three-layer
network Convex
(Open
or
closed
regions)

Four-layer
network Arbitrary
(Complexity
limited by
number of
neurons)

Figure 410 Geometrical interpretation of pattern classification. The figure
shows decison regions for different layers of perceptron
networks. [Adapted from Lippmann, 1987].

The above discussion is focussed primarily on a multilayer
perceptron network with units having hard-limiting nonlinear output
functions. Similar behaviour is expected from a multilayer feed-
forward neural network when the output functions o the units are
continuous nonlinear functions, such as sigmoid functions. In these
cases the decision regions are typically bounded by smooth surfaces
instead o linear hyperplanes, and hence geometrical visualization
and interpretation is difficult.

Table 4.4 gives a summary o the discussion on the perceptron
network. The main difficulty with a multilayer perceptron network
isthat it is not straightforward to adjust the weights leading to the
units in the intermediate layers, since the desired output values o
the unitsin these layers are not known. The perceptronlearning uses
the knowledge d the error between the desired output and the actual
output to adjust the weights. From the given data only the desired

Analysis of Pattern Mapping Networks 113

Table 44 Summary of Issues in Perceptron Learning

1. Perceptron network
Weighted sum of the input to a unit with hard-limiting output function
2. Perceptron classification problem
For a two class (A, and A) problem, determine the weights (w) and
threshold (8) such that

w'a-0>0, for ae A, and w'a- 850, for a€ A,.

3. Perceptron |earning law
The weights are determined in an iterative manner using the following
learning law at the (m + 1)™ iteration:
w(m t1) = w(m)+n a@m), for w'(m)a@m)<8 and a(m) €A,
= w(m)-n a(m), for w'(m)a(m)>8 and a(m) € A,
where 1 is a (positive) learning rate parameter.
4. Perceptron |earning as gradient descent
The perceptron learning law can be rewritten as a single equation:
w(m + 1) = w(m) + 1 e(m) a(m), where e(m) = b(m) - s(m).
Denoting
Aw(m) =n e(m) a(m),
- dE(m)
ow(m)

we have

Aw(m) = n

where E(m) = — e(m) wl(m)a(m

5. Perceptron convergence theorem
The perceptron learning law converges in a finite number o steps,
provided that the given classification problem is representable.

6. Perceptron representation problem
A classification problem is representable by a single layer perceptron if
the classes are linearly separable, i.e., separable by linear hyperplanes in
the input feature space. Classification problems that are not linearly
separable are called hard problems.

7. Multilayer perceptron
Any pattern classification prohlem, including the hard problems, can be
represented by a multilayer perceptron network.

output values o the unitsin the final output layer are known. Thus,
although a multilayer perceptron network can handle hard problems,
the problem o learning or training such a network, called hard
learning problem, remains. This problem is discussed in detail in the
following section.

4.4 Analysis of Pattern Mapping Networks

44.1 Pattern Mapping Problem
If a set d input-output pattern pairs is given corresponding to an

114 Feedforward Neural Networks

arbitrary function transforming a point in the M-dimensional input
pattern space to a point in the N-dimensional output pattern space,
then the problem o capturing the implied functional relationship is
caled a mapping problem. The network that accomplishes this task
is called a mapping network. Since no restriction such as linear
separability is placed on the set d input-output pattern pairs, the
pattern mapping problem is a more general case O pattern
classification problem.

Note that the objective in the pattern mapping problem is to
capture the implied function, i.e., the generalization implied in the
given input-output pattern pairs. This can also be viewed as an
approximation o the function from a given data. For a complex
system with multiple (M) inputs and multiple (N) outputs,'if several
input-output pattern pairs are collected during experimentation, then
the objectivein the pattern mapping problem is to capture the system
characteristics from the observed data. For a new input, the captured
system is expected to produce an output close to the one that would
have been obtained by the real system. In terms o function
approximation, the approximate mapping system should give an
output which is close to the values o the real function for inputs
close to the current input used during learning. Note that the
approximate system does not produce strictly an interpolated output,
as the function finally captured during learning may not fit any o
the pointsgivenin the training set. Thisisillustrated in Figure4. 11.

]
f®

output

-

input x
Figure 4.11 Function approximation in pattern mapping problem.

44.2 Pattern Mapping Network

Earlier we have seen that a multilayer feedforward neural network
with at least two intermediate layers in addition to the input and
output layers can perform any pattern classification task. Such a
network can also perform a pattern mapping task. The additional
layers are called hidden layers, and the number o unitsin the hidden
layers depends on the nature o the mapping problem. For any

Analysis of Pattern Mapping Networks 115

arbitrary problem, generalization may be difficult. With a sufficiently
large size d the network, it is possible to (virtually) store dl the
input-output pattern pairs givenin thetraining set. Then the network
will not be performing the desired mapping, because it will not be
capturing the implied functional relationship between the given
input-output pattern pairs.

Except in the input layer, the units in the other layers must be
nonlinear in order to provide generaization capability for the
network. In fact it can be shown that, if all the units are linear, then
a multilayer network can be reduced to an equivalent two-layer
network with a set o N x M weights.

Let W,, W, and W, be the weight matrices o appropriate sizes
between the input layer and the first hidden layer, the first hidden
layer and the second hidden layer, and the second hidden layer and
the output layer, respectively. Then if all the units are linear, the
output and input patterns are related by the weight matrix containing
N XM weight elements. That is,

Wy ar = WsWW, (4.76)
As can be seen easily, such a network reduces to a linear associative
network. But if the unitsin the output layer are nonlinear, then the
network is limited by the linear separability constraint on the
function relating the input-output pattern pairs. If the unitsin the
hidden layers and in the output layer are nonlinear, then the number
o unknown weights depend on the number o units in the hidden
layers, besides the number o units in the input and output layers.
The pattern mapping problem involves determining these weights,
given a training set consisting o input-output pattern pairs. \We need
a systematic way o updating these weights when each input-output
pattern pair is presented to the network. I n order to do this updating
d weightsin a supervisory mode, it is necessary to know the desired
output for each unit in the hiddenand output layers. Oncethe desired
output is known, the error, i.e., the difference between the desired
and actual outputs from each unit may be used to guide the updating
o the weightsleadingto the unit from the unitsin the previouslayer.
We know the desired output only for the units in the final output
layer, and not for the units in the hidden layers. Therefore a
straightforward application o a learning rule, that depends on the
difference between the desired and the actual outputs, is not feasible
in this case. The problem o updating the weightsin this caseiscalled
a hard learning problem.

The hard learning problem is solved by using a differentiable
nonlinear output function for each unit in the hidden and output
layers. The corresponding learning law is based on propagating the
error from the output layer to the hidden layers for updating the
weights. This is an error correcting learning law, also called the

116 Feedforward Neural Networks

generalized deltarule. Itis based on the principle d gradient descent
along the error surface.

Appendix C gives the background information needed for under-
standing the gradient descent methods. Table 4.5 gives a summary
d the gradient search methods discussed in the Appendix C. In the
following section we derive the generalized delta rule applicable for
a multilayer feedforward network with nonlinear units.

Table45 Summary o Basic Gradient Search Methods

1. Objective
Determine the optimal set d weights for which the expected error E(w)
between the desired and actual outputs is minimum.

For a linear network the error surface is a quadratic function o the
weights

Ew) = €[¢%] = E__+(w-w")Rw-w")
The optimum weight vector w* is given by
w' = w-1R7'V, where V = dE/dw

and R is the autocorrelation matrix o the input data.
2. Gradient Search Methods
We can write the equation for adjustment d weights as

w(m+1) = wm)- 1RV,

e If Rand V,, are known exactly, then the above adjustment gives w in
one step starting from any initial weights w(m).

e If R and V,, are known only approximately,then the optimum weight
vector can be obtained in an iterative manner by writing

w(m+1) = wm)-nR'V,,

where n<1/2 for convergence. This is Newton's method. The error
moves approximately along the path from w(mn) to w*. Here) is a
dimensionless quantity.

o If the weightsare adjusted in the direction of the negative gradient at
each step, it becomes method of steepest descent.

wim+1) = wim)+u(-V)),

where p < 1/(2A,,,) for convergence and A, is the largest
eigenvalued R. The learning rate parameter p has the dimensions of
inverse o signal power. Here convergence is slower than in the
Newton's method.

e Ingeneral, thegradient cannot be computed, but can only be estimated.
Hence convergence d the gradient descent methodsis not guaranteed.
The estimate depends on our knowledge o the error surface.

Anal ysi s of Pattern Mapping Networks 117

Table 4.5 (Cont.)

3. Natured error dace
o Error surface may not be quadratic if R ie to be estimated from a small
eet of samples.
o Error surface ie not quadratic for instantaneous measurement o error.
e Error eurfaceis also not quadratic if the processing unitsare nonlinear.
e Error eurface is not predictablefor nonstationary input data, since R
will be varying with time.
4. Bstination of gradient

o Derivative measurement: Uses general knowledge of the error surface.

o Instantaneous measurement (linear units): Uses specific knowledge of
the error eurface.
LMS algorithm. Leadsto convergencein the mean (stochastic gradient
descent).

¢ Instantaneous measurement (nonlinear units): Uses specific knowledge
o the error surface.

Delta rule. No guarantee of convergence even in the mean as in the
LMS agorithm.

443 Generalized Delta Rule: Backpropagation learning

The objectiveis to develop a learning algorithm for a multilayer
feedforward neural network, so that the network can be trained to
capture the mapping implicit in the given set of input-output pattern
pairs. The approach to be followed is basically a gradient descent
aong the error surface to arrive at the optimum set o weights. The
error is defined as the squared difference between the desired output
(i.e., given output pattern) and the actual output obtained at the
output layer o the network due to application o an input pattern
from the given input-output pattern pair. The output is calculated
using the current setting of the weightsin all the layers. The optimum
weights may be obtained if the weights are adjusted in such a way
that the gradient descent is made along the total error surface. But
$he desirable characteristic of any learning law is to specify the
incremental update o the weights o the network for each
presentation o an input-output pattern pair. While this may result
in a suboptimal solution, in most cases o practical significance the
result is acceptable.

A learning law, called generalized delta rule or backpropagation
law, isderived in this section [Werbos, 1974; Rumelthart et al, 1986al.
Let (a,b),1=1,2,..,L betheset d training pattern pairs. It is
not necessary to have all the training data set at one time, nor the
training data set to be afinite set. The objectiveis to determine the
weight update for each presentation o an input-output pattern pair.

118 Feedforward Neural Networks

Since the given data may be used several times during training, let
us use the index m to indicate the presentation step for the training
pair at step m.

For training a multilayer feedforward neural network, we use the
following estimate of the gradient descent along the error surface to
determine the increment in the weight connecting the units j and i:

Awm) = -7 a%v'—"l @.77)

'}

where n>0 is a learning rate parameter, which may also vary for
each presentation of the training pair. The weight update is given by

wi(m + 1) = w,-J(m) + Aw‘-,(m) (4.78)

The generalized delta rule to be derived bdow consists of
deriving expressions for Aw;; for the connections at different layers.
Let us consder the multilayer feedforward neural network given in
Figure 4.12 The network consist o three layers o units, the first

Hgure 4.12 A three layer feedforward neural network.

layer has | linear input units indexed by i, the second layer has J
nonlinear units indexed by j, and the third layer has X nonlinear
units indexed by k. For ssimplicity only one layer (the second layer)
of hidden unitsis considered here. Extension o learning to a network
consisting of several hidden layers is trivial.

Since the input vector a(m) is given at the input layer and the
desired output b(m) is available only at the output layer, the error
between the desired output vector b(m) and the actual output vector
b’(m) is available only at the output layer. Using this error it is
necessary to adjust the weights (w?) from the input units to the
hidden units, and the weights (wy; from the hidden units to the
output units.

Let (a(m), b(m)) be the current sample o the function mapping
the input space to the output space £ — %%, Let b’(m) be the actual
output d the network for the input a(m) at the step m. The mean
squared error at the mth step is given by

Analysisd Pattern Mapping Networks 119

K X
E(m) = % Y, [bym) b, (m)? = % Y bym)-si12 (4.79)
k=1 k=1
1 K
=5 X bym) - P, (4.80)
k=1
where
J
=Y wys (4.81)
j=1
= £ 4.82)
I
=Y ws (4.83)
i=1
s; = %, = a(m). (4.84)

The superscript ‘o’ refers to the output units quantities, the
superscript ‘4’ refers to the hidden units quantities, and q; , z, , and
s; refer to the input, activation and output values for the unit i,
respectively. For the weights leading to the units in the output layer:

_ oE(m)
Awy(m) = - (4.85)
k(M) n awkj
Em) 1 3 4 ’
qw, 2 aww{b‘_f:[jgl wy; 8 ” (4.86)
=-G-MES (4.87)
= -8 s}', (4.88)

where 8 = (b, = 9 /. Here theiteration index is omitted in all the
functions and variables on the right hand side for convenience.
Therefore

Aw(m) = n8s! (4.89)

and
wy(m +1) = wy(m) + Awy(m) (4.90)
= wy(m) t sk, (4.91)

For the weights leading to the units in the hidden layer:

Aw}}(m) = -7 9%?-)- (4.92)
ji

Feedforward Neural Networks

J
af[zwﬁs,'f]

M — < 0 Jj=1
=-2 &=f) (4.93)
o k=1 v Bwﬁ
K) as"
== G- R wy =%, (4.94)
k=1 owj;
Sinces? = fih, we get
h h
S _ g
an’: J an’-:-
I .
Sincex} =Y whs;, we get
i=1 ,
- aX, = 8.
Therefore
dEm) _ _K))
= -85 (4.96)
where
. K
8 =fr X wy§ 4.97)
k=1
Hence
Awhm)= 1 8s; = n 8 am) (4.98)
sinces; = x; = a(m). Therefore
wim + 1) = wli(m)+Awlm)
= wi(m) +n & am) (4.99)

. K
where 8} = £} R 8¢ represents the error propagated back to the

output d the hidden units from the next layer, hence the name
backpropagation for this learning algorithm. Table 4.6 gives a
summary d the backpropagation learning algorithm.

444 Discussion on Backpropagation Law

There are several issues which are important for understanding and
implementing the backpropagation learning in practice [Haykin,
1994; Russo, 1991; Guyon, 1991; Hush and Horme, 1993; Werbos,
19941 A summary d theissuesis givenin Table4.7. A few o these
issues will be discussed in this section.

Analysis of Pattern Mapping Networks 121

Table 46 Backpropagation Algorithm (Generalized Delta Rule)

Given a set of input-output patterns(a;, b), ! = 1, 2, ... L,

where the Ith input vector a, = (a,;, a,, ,,.,au)T and the Ith output vector
b, = (b,,, by, ..., b)Y
1 {15 212 2 YK

Assume only one hidden layer and initial setting o weights to be arbitrary.
Assume input layer with only linear units.

Then the output signal isequal to the input activationvaluefor each o these
units. Let n be the learning rate parameter.

Let a=a(m) =a, and b =b(m) = b,
Activation o unit i in the input layer, x; = a,(m)

|
Activation of unit j in the hidden layer, 2} = ¥ wha,
Output signal from the jth unit in the hidden =hlayer, st = f)
J

J Y

P P h
Activation of unit k in the output layer, x; = Z Wy; S;

=1
Output signal from unit k in the output IayerJ, sy = fxp)
Error term for the kth output unit, 6; = (b, - sp 7y
Update weights on output layer, w,(m +1) = w,(m) +n8; s

K
. . . h _ 'h o
Error term for the jth hidden unit, & = f; k; & w,
Update the weights on the hidden layer, whm + 1) = wjm) +n8} q,
K

Calculate the error for the Ith pattern, E, = %‘ D (b - s9?
k=1

L
Total error for all patterns, E = Y’ E,

1=1

Apply the given patterns one by one, may be several times, in some random
order and update the weights until the total error reduces to an acceptable
value.

Table47 Issuesin Backpropagetion Learning

Description and features of backpropagation
e Significance df error backpropagation
e Forward computation (inner product and nonlinear function)
Backward operation (error calculation and derivative d output function)
‘Nature d output function (semilinear)
Stochastic gradient descent
Locad computations
Stopping criterion

Performance of backpropagation learning

e Initialization of weights
e Presentation d training patterns: Pattern and batch modes

Feedforward Neural Networks

Table 4.7 Issuesin Backpropagation Lear ni ng (Cont.)

e Learning rate parameter 1
= Range and value o n for stability and convergence
- Learning rate adaptation for better convergence
o Momentum term for faster convergence
e Second order methods for better and faster convergence

Refinement of backpropagation |ear ning

e Stochastic gradient descent, not an optimization method
¢ Nonlinear system identification: Extended Kaman-type algorithm
¢ Unconstrained optimization: Conjugate-gradient methods
e Asymptotic estimation of a posteriori class probabilities
e Fuzzy backpropagation learning
I nter pretation of results of learning

e Ill-posed nature of solution
o Approximation of functions
e Good estimation of decision surfaces
o Nonlinear feature detector followed by linearly separable classification
o Estimation of a posteriori class probabilities
Generalization
e VVC dimension
e Cross-vaidation
Loading problem
Size and efficiency d training set data
Architectures of network
Complexity of problem
Tasks with backpropagation networ k
e Logic function
Pattern classification
Pattern mapping
Function approximation
Probability estimation
e Prediction
Limitations of backpropagationlearning
o Slow convergence (no proof d convergence)
e Loca minima problem
‘e Scaling
o Need for teacher: Supervised learning
Extensions to backpropagation
Learning with critic
Regularization
Radia basis functions

Probabilistic neural networks
Fuzzy neural networks

Analysis of Pattern Mapping Networks 123

Description and features of backpropagation: The training patterns
are applied in some random order one by one, and the weights are
adjusted using the backpropagation learning law. Each application o
the training set patterns is caled a cycle. The patterns may have to
be applied for several training cyclesto obtain the output error to an
acceptable low value. Once the network is trained, it can be used to
recall the appropriate pattern (in this case some interpolated output
pattern) for a new input pattern. The computation for recal is
straightforward, in the sense that the weights and the output
functions o the units in different layers are used to compute the
activation values and the output signals. The signals from the output
layer correspond to the output.

Backpropagation learning emerged as the most significant result
in the field o artificial neural networks. In fact it is this learning
law that led to the resurgence d interest in neural networks, nearly
after 15 years period o lull due to exposition of limitations of the
perceptron learning by Minsky and Papert (1969). In this section we
will discuss various features including limitations o the backpro-
pagation learning. We will also discuss the issues that determine the
performance o the network resulting from the learning law. We will
discuss these issues with reference to specific applications, and also
with reference to some potential applications o the multilayer
feedforward neural networks.

As noted earlier, the backpropagation learning involves
propagation o ‘the error backwards from the output layer to the
hidden layersin order to determinethe update for the weightsleading
to the units in a hidden layer. The error at the output layer itself is
computed using the difference between the desired output and the
actual output at each o the output units. The actual output for a
given input training pattern is determined by computing the outputs
o units for each hidden layer in the forward pass o the input data.
Note that the error in the output is propagated backwards only to
determine the weight updates. There is no feedback o the signal
itself at any stage, as it is a feedforward neural network.

Since the backpropagation learning is exactly the same as the
delta learning (see Section 1.6.3) at the output layer and is similar
to the delta learning with the propagated error at the hidden layers,
itis also caled generalized delta rule. The term 'generalized' is used
because the delta learning could be extended to the hidden layer
units. Backpropagation o error is possibleonly if the output functions
d the nonlinear processing units are differentiable. Note that if these
output functions are linear, then we cannot realize the advantage o
a multilayer network to generate complex decision boundaries for a
nonlinearly separable (hard) classification problems. In fact a multi-
layer feedforward network with linear processing units is equivalent
to a linear associative network, as discussed in Eq. (4.76), which, in

124 Feedforward Neural Networks

turn, is limited to solving simple pattern association problems. On
the other hand, hard-limiting output function as in a multilayer
perceptron cannot be used for learning the weights. A common
differentiable output function used in the backpropagation |earning
is one which possesses a sigmoid nonlinearity. Two examples o
sigmoidal nonlinear function are the logistic function and hyperbolic
tangent function (See Figure 4.13):

f(x) =1/ (1 + exp(~2Px)) f(x) = 2Bf ()1 - F(2))
f(x) 4 f 4
N J
0 =

(@ Loglstlcfunctlon and its derlvatlve

f(x) = tanh px f(x)=BQA-f (x))
f) { 7P
-1 x>

(b) Hyperbolic tangent functionand its derlvative

H gure 4.13 Logistic and hyperbolictangent functions and their derivatives
for p = 0.5.

Logistic function

f) = — =, —w<x<e (4.100)
1+e
Hyperbolic function
fix) = tanh@) = ex;e_x’ w<x<o (4101)
e

For the logistic function the limits are 0 < Ax) 1 1, and for the
hyperbolic tangent function the limitsare -1 1 fix) 1 1

Analysisd Pattern Mapping Networks
Let us consider the derivative of the logistic function
. e_x
fix) = Tee - fix) [1 - fx)l (4.102)

It can be seen from Eq. (4.102) that fix) has the maximum value
of 0.25 when f{x) = 0.5, and has the minimum value o 0 when fix)
= 0 or 1. Since the amount of change in the weight value leading to
any unit i in the network is proportiona to f(x), the change is
maximum in the midrange o the activation value. This feature
the learning law contributes to its stability [Rumelhart et al, 1986a].

Note that the hyperbolic tangent function can be viewed as a
biased and scaled version o the logistic function. That is

o tanh(bx) = —>—-a. (4.103)
l+e

The asymmetry d the hyperbolic tangent function seems to make the

learning faster by reducing the number o iterations required for

training [Guyon, 19911.

The backpropagation learning is based on the gradient descent
alongthe error surface. That is, the weight adjustment is proportional
to the negative gradient d the error with respect to the weight. The
error is the instantaneous error between the desired and the actua
values o the output o the network. This instantaneous error is due
to a given training pattern, which can be assumed to be a sample
function of a random process. Thus the error can be assumed to be
a random variable. Therefore this gradient descent method is a
stochastic gradient learning method. Due to this stochastic nature,
the path to the minimum o the error surface will be zigzag. The
error surfaceitself will be an approximationto the true error surface
determined by the entire training set o patterns. Moreover, even the
true error surface is not a smooth quadratic surface as in the case
o the Adaline. In fact the error surface may contain several loca
minimabesides the global minimum. Hence the stochastic approxima
tion o the gradient descent used in the backpropagation learning
need not converge. Thereis no proof o convergence even in the mean
as in the case o the LMS algorithm. The issues in the convergence
o gradient descent methods are summarized in Table 4.8.

Sincethere is no proof d convergence, some heuristic criteria are
used to stop the process of learning. They are based on the values o
the gradient and the error in successive iterations and aso on the
total number d iterations. The average gradient value over each
training cyce (presentation d all the training patterns once) is
observed, and if this average valueis bdow a preset threshold value
for successive cycles, then the training process may be stopped.
Likewise, the training process may be stopped using a threshold for
the average error and observingthe average error i n successivecycles.

126 Feedforward Neural Networks

Tabl e 48 Gradient Descent and Convergence

1. Let the input-output vector pair(a, b) be the sample function d a random
process.
True ensemble average of the error

Ew) = El¥m)]

where e(m) is the instantaneous error for a given sample function. For
linear unitsthe error surface E(w) is a smooth bowl-shaped in the weight
space and hence the gradient descent dE/ow,; converges to the optimal
weight vector w'.

2. Egtimation d the error from afinite set o input-output pairs:

M
Ew) =, eXm)
m=1

For linear units, this error surface is an approximation to the bowl-shape
in the weight space and hence convergenced the gradient descent is only
approximate.

3. Instantaneous error (Linear units):

Ew) = e¥(m)

For linear units, the gradient descent converges only in the mean
(stochastic convergence)
4. Instantaneous error (Nonlinear units):

E(w) = e¥(m)
For nonlinear units, thereis no proof o convergenceeven in the stochastic
sense.

Sometimes both the average gradient as well as the average error
may be used in the stopping criterion. But the main objective is to
capture theimplicit pattern behaviour in the training set data so that
adequate generalization takes place in the network. The
generalization feature is verified by testing the performance of the
network for several new (test) patterns.

Performance of the backpropagation leaming law: The performance
o the backpropagation learning law depends on theinitial setting o
the weights, learning rate parameter, output functions o the units,
presentation o the training data, besides the specific pattern
recognition task (like classification, mapping, etc.) or specific
application (like function approximation, probability estimation,
prediction, logic function, etc.). It isimportant to initialize the weight
values properly before applying the learning law for a given training
set [Hush et al, 1991; Lee et al, 19911 Initial weights correspond to
a priori knowledge. If we have the knowledge and also if we know
how to present the knowledgein theform of initial weights, then the
overall performanced the resultingtrained network in terms of speed

Analysis of Pattern Mapping Networks 127

of learning and generalization would improvesignificantly. In general
it is not known how to collect the relevant knowledge a priori. The
more difficult part is to know how to includeit in the form d weighta.
Therefore dl the weights in the network are initialized to random
numbers that are uniformly distributed in a small range o values.
The rangeistypicaly [- a/VN;, T al ¥N;] where N; is the number o
inputs to the ith unit. Thus the range can be different for each unit.
Thevaued aistypicalyintherange (1 to 3) [Wessels and Barnard,
19921. Initial weighta that are in very small range will result in long
learning times. On the other hand, large initial weight values may
result in the network output values in the saturation region o the
output function. In the saturation region the gradient value is small.
If the saturation is at the incorrect level, it may result in dow
learning due to small changes made in the weighta in each iteration.
Incorrect saturation rarely occurs if the unit operates in the linear
range o the output function.

Adjustment o the weights using backpropagation learning law is
done by presenting the given set o training patterns several times.
Randomizing the presentation of these patterns tends to make the
search in the weight space stochastic, andt hus reducesthe possibility
o limit cycles in the tragjectory in the weight space during learning
[Haykin, 1994, p. 151]. Presentation o the training data pattern by
pattern for adjustment o the weights makes it possible to have the
learning online. This pattern mode also reduces the problem of local
minima. But to speed up the learning process it is preferable to
update the weights in a batch mode, in which the gradient o the
error, computed over al the training patterns, is used. The batch.
mode gives a better estimation o the gradient o the overall error
surface.

Learning rate parameter n plays a crucia role in the
backpropagation learning. The order o values for n depends on the
variance o the input data. For the case of Adaline, the learning rate
parameter n < 11(2A,,,), where X, is the largest eigenvalue o the
autocorrelation matrix o the input data. This gives an indication for
the choice o n, since the derivationin the backpropagation does not
suggest any clue for this choice. Since it is a stochastic gradient
descent learning, too small an n will result in a smooth trajectory in
the weight space, but takes long time to converge. On the other hand,
too large an n may increase the speed of learning, but Wl result in
large random fluctuations in the weight space, which in turn may
lead to an unstable situation in the sense that the network weights
may not converge.

It is desirable to adjust the weights in such a way that all the
units learn nearly at the same rate. That is, the net changein all
the weights leading to a unit should be nearly the same. To
accomplish this, the learning rate parameters should be different for

128 Feedforward Neural Networks

different weights. The weights leading to a unit with many inputs
should have smaller n compared to the n for the weights leading to
a unit with fewer inputs. Also, the gradient d the error with respect
to the weights leading to the output layer will be larger than the
gradient o the error with respect to the weightsleading to the hidden
layers. Therefore the learning rate parameters n should be typically
smaller for the weights at the output layer and larger for the weights
leading to the units in the hidden layers. This will ensure that the
net change in the weights remains nearly the same for all layers.
Better convergence in learning can be achieved by adapting the
learning rate parameter n suitably for each iteration. For this the
change in nn is made proportional to the negative gradient o the
instantapeous error with respect to n [Haykin, 1994, p. 1951. That is

_ de’(m)
Any(m +1) = -y (4.104)
’ 3nji(m)

where v is a proportionality constant.
It was shown in [Haykin, 19941 that

de’(m) _ 0e*(m) de’(m -1)
31‘lﬁ(m) awji(m) awji(m -1

(4.105)

Thisis caled delta-delta learning rule [Jacobs, 19881. The change
in the learning rate parameter depends on the instantaneous
gradients at the previoustwo iterations. In thislearning it is difficult
to choovse suitable values for the proportionality constant y if the
magnitudes o the two gradientsin the product are either too small
or too large. To overcome this limitation a modification o the above
learning rule, namely, delta-bar-delta learning rule was proposed
[Jacobs, 1988; Minai and Williams, 19901.

The adaptation o the learning rate parameter using the
delta-delta learning rule or the delta-bar-delta learning rule dows
down the backpropagation learning significantly due to additional
complexity in computation at each iteration. It is possible to reduce
this complexity by using the idea d the gradient reuse method, in
which the gradient estimate is obtained by averaging the gradient
values corresponding to severa training patterns. Thus

L
w;(m + 1) = wy(m) + n;(m) 2 811-(m) Sf(m) (4.106)
I=1

where | isthe index for training pattern and 8}(m) is the propagated
error. The learning rate parameter 1;(m) is also computed using the
averaged gradient for several training patterns.

The values d the learning rate parameters computed using any
o the above methods are very low, thus resulting in dow learning.

Analysis d Pattern Mapping Networks 129

One way to increase the rate o learning is by using a momentum
term in the weight change as follows [Plaut et a, 1986; Fahlman,
1989; Rumelhart et al, 1986al:

Awg(m) = o Awy(m—1) +n 8j(m) s{m) 4.107)

where 0 £ a< 1is the momentum constant. The use d the momentum
term accelerates the descent to the minimum d the error surface. It
will aso helpin reducing the effectsd loca minimad the error surface.

The expression for the updated weight which includes momentum
temas well as the learning rate adaptation is given by

wﬁ(m +1 = wﬁ(m) +0o Awﬁ(m -1

L
+M;0m) Y, §(m) si(m) (4.108)
=1
Normally the backpropagation learning uses the weight change
proportional to the negativegradient o theinstantaneous error. Thus
it uses only thefirst derivatived the instantaneous error with respect
to the weight. If the weight change is made using the informationin
the second derivative o the error, then a better estimate of the
optimum weight change towards the minimum may be obtained. The
momentum method is one such method where both theweight change
at the previous step and the gradient at the current step are used to
determine the weight change for the current step.
More effective methods [Battiti, 19921 can be derived starting
with the following Taylor series expression o the error as a function
o the weight vector

E(w + Aw) = Ew) + g"Aw +% AwTHAW + ... (4.109)

where g = g% is the gradient vector, and H = g:fz the Hessian

matrix. For small Aw, the higher order terms can be neglected, o
that we get

AE = E(wtAw) — E(w) (4.110)
= gTAw +% AWTHAW (4.111)
Taking the derivative d E with respect to Wi gives the gradient. That is
JoE
o€ (4.112)
On the other hand, taking the derivative o AE with respect to Aw
gives
JAE
A = &+ HAwW (4.113)

130 Feedforward Neural Networks

Setting this to zero gives an optimum value of Aw, taking upto the
second order term into account. Therefore

AW' = -H g (4.114)
Thus the new weight vector taki ng the optimal value df Aw is given by

w(m +1) = w(m)-H g (4.115)

This is the Newton's method. Note that this is similar to the
expression (C.17) in Appendix-C.

For the quadratic error function E(w), the optimal step Aw* will
lead to the final weight value w* starting from any initial weight
vector w(0). That is

w = w(0)-H g (4.116)

provided H “'g is known at w = w(0). For a nonquadratic error
surface, asin the network with nonlinear units, the Newton's method
gives the optimal weight change if the variation o the error is
considered only upto the second derivative. Note that the Newton's
method is different from the gradient descent. Since the Newton's
method uses more information of the error surface than the gradient
descent, it is expected to converge faster. But there is no guarantee
that this choice of the weight change will converge.

Implementation of Newton's method is cumbersome due to the
need for computation o the Hessian matrix. Methods were proposed
which will avoid the need for the computation o the Hessian matrix.
The conjugate gradient method is one such method, where the
increment in the weight at the mth step is given by

Aw = wim + 1) - w(m) = n(m) d(m) (4.117)

where the direction o the increment d(m) in the weight is a linear
combination of the current gradient vector and the previous direction
of the increment in the weight. That is

dim) = —-gm)+am-1)dim-1) (4.118)

where the value o a(m) is obtained in terms of the gradient by one
of the following formulae [Fletcher and Reeves, 1964; Polak and
Ribiere, 19691.

gf(m +1)gim +1)
) g (m)g(m)
or
m+ Dg(m + 1) — g(m)]
= 4.120
om gi(m)g(m) 120

Computation o the learning rate parametersn@m) in Eq. (4.117)
requires line minimization for each iteration [Johansson et al, 19901.

Analysis of Pattern Mapping Networks 131

The objective is to determine the value o m for which the error
E[w(m)+mn d(@m)] is minimized for given values o w(m) and d(m).
Performance d the conjugate-gradient method depends critically on
the choice d n(m) and hence on the line minimization. But generally
the conjugate-gradient method converges much faster than the
standard backpropagation learning, although there is no proof o
convergence in this case dso due to the nonquadratic nature o the
error surface [Kramer and Sangiovanni-Vincentelli, 19891

Refinements of the backpropagation learning: The backpropagation
learning is based on the steepest descent along the surface o the
instantaneous error in the weight space. It is only a first order
approximation d the descent as the weight change is assumed to be
proportional to the negative gradient. The instantaneous error is a
result of a single training pattern, which can be viewed as a sample
function d a random process. The search for the global minimum o
the error surface is stochastic in nature as it uses only the
instantaneous error at each step. The stochastic nature o the
gradient descent results in a zig-zag path d the trgjectory in the
weight space in our search for the globa minimum o the error
surface. Note that the zig-zag path is aso due to the nonquadratic
nature o the error surface, which in turn is due to the nonlinear
output functions d the units. Note also that the backpropagation
learning is based only on the gradient descent and not on any
optimization criterion.

A better learning in terms d convergence towards the global
minimum may be achieved if the information from the given training
patterns are used more effectively. One such approach is based on
posng the supervised learning problem as a nonlinear system
identification problem [Haykin, 19911. The resulting learning
algorithm is called an extended Kalman-type learning [Singha and
Wu, 19891 which uses piecewise linear approximation to the nonlinear
optimal filtering problem.

Better learning can also be achieved if the supervised learningis
posed as an unconstrained optimization problem, where the cost
function is the error function E(w) [Battiti, 19921. In this case the
optimal value o the increment in the weight is obtained by
considering only upto second order derivatives o the error function.
The resulting expression for the optimal Aw requires computation o
the second derivativesd E(w) with respect to all the weights, namely,
the Hessian matrix. The convergence will befaster than the gradient
descent, but there is no guarantee for convergencein this case aso.

A multilayer feedforward neural network with backpropagation
learning on a finite set o independent and identically distributed
samples leads to an asymptotic approximation o the underlying a
posteriori class probabilitiesprovided that the size o the training set

132 Feedforward Neural Networks

data is large, and the learning algorithm does not get struck in a
loca minima [Hampshire and Pearlmutter, 19901.

If the a posteriori conditional probabilitiesare used as the desired
response in a learning algorithm based on an information theoretic
measure for the cost function [Kullback, 1968; Haykin, 1994, Sec.
6.201, then the network captures these conditiona probability
distributions. In particular, the output o the network can be
interpreted as estimates o the a posteriori conditional probabilities
for the underlying distributions in the given training data.

Yet another way d formulating the learning problem for a
multilayer neural network is by using the fuzzy representation for
input or output or for both. This results in a fuzzy backpropagation
learning law [Ishibuchi et a, 19931 The convergence o the fuzzy
backpropagation learning is significantly faster, and the resulting
minimum mean squared error is also significantly lower than the
usual backpropagation learning.

Interpretation of the result of learning: A trained multilayer feed-
forward neural network is expected to capture the functional
relationship between the input-output pattern pairs in the given
training data. It is implicitly assumed that the mapping function
correspondingto the data is a smooth one. But due to limited number
o training samples, the problem becomes an ill-posed problem,in the
sense that there will be many solutions satisfying the given data, but
none of them may be the desired/correct one [Tikhonov and Arsenin,
1977; Widland and Leighton, 19871. Figure 4.14 illustrates the basic

Training
data points Functionrealized
dueto overtraining

Desired function
Output

Input
Figure 4.14 Illugration of an ill-posed problem for a function of one variable.

idea d an ill-posed problem for a function d one variable. Given the
samples marked ‘<, the objective is to capture the function
represented by the solid curve. But depending on the size o the
network, several solutions are possible, including the overtraining
situations (shown by dotted curve) in which for al the training data

Analysis of Pattern Mapping Networks 133

the error is zero. In fact there could be severa functions passing
through the given set d points, none o whichisthe desired one. This
happens if the number o free parameters (weights) o the network
is very large. Such a situation results in a large error when some
other (test) samples are given to validate the network mode for the
function. This is called 'poor generaization' by the network. On the
other hand, fewer number o the free parameters may result in a
large error evenfor the training data, and hence a poor approximation
to the desired function. The function approximation interpretation o
a multilayer feedforward neural network enables us to view different
hidden layers o the network performing different functions. For
example, the first hidden layer can be interpreted as capturing some
loca features in the input space. The second hidden layer can be
interpreted as capturing some globa features. This two-stage
approximation has been shown to realize any continuous
vector-valued function [Sentag, 1992b]. The universal approximation
theorem of Cybenko seems to suggest that even a single layer o
nonlinear units would suffice to realize any continuous function
[Cybenko, 19891. But this result assumes that a hidden layer o
unlimited size is available, and that the continuous function to be
approximated is also available. Thus Cybenko's theorem gives only
an existence proof, but it is not useful to realize the function by
training a single hidden layer network.

A trained multilayer neural network can be interpreted as a
classifier, with complex decison surfaces separating the classes.
These decision surfaces are due to multiplelayers d nonlinear units.
In the limiting case o hard-limiting nonlinear units, the geometrical
arguments for the creation o the complex decison surfaces in a
multilayer perceptron discussed in Section 4.3.3 are applicable.

It is also possble to view that the hidden layers perform a
nonlinear feature extraction to map the input data into linearly
separable classes in the feature space. At the output layer the unit
with the largest output is considered as the class to which the input
belongs.

As mentioned earlier, the output o a trained multilayer neural
network can also be consdered as an approximation to the a
posteriori class probabilities.

Generalization: A backpropagation learning network is expected to
generalize from the training set data, so that the network can be
used to determine the output for a new test input. As mentioned
earlier, 'generdization’ is different from ‘interpolation’, since in
generalization the network is expected to modd the unknown system
or function from which the training set data has been obtained. The
problem o determination d weights from the training set data is
called the loading' problem [Judd, 1990; Blum and Rivest, 19921. The

134 Feedforward Neural Networks

generalization performance depends on the size and efficiency of the
training set, besides the architecture d the network and the
complexity o the problem [Hush and Horne, 19981 Testing the
performance o the network with new data is called cross-validation.
If the performance for the test data is as good as for the training
data, then the network is said to have generalized from the training
data. Further discussion on generalization is given later in Section
7.3 and in Appendix D.

Tasks with backpropagation network: A backpropagation network
can be used for several applications such as realization o logic
functions, pattern classification, pattern mapping, function approxi-
mation, estimation d probability distribution and prediction [Hush
and Horne, 19931 These tasks were demonstrated in several red
world applications such as in gpeech, character recognition, system
identification, passive sonar detection/classification, speech synthesis,
etc. [Sejnowski and Rosenberg, 1987; Cohen et al, 1993; LeCun et al,
1990; Narendra and Parthasarathy, 1990; Casselman et al, 19911

Limitations of backpropagation: The mgor limitation of the back-
propagation learning is its dow convergence. Moreover, there is no
proof d convergence, although it seems to perform well in practice.
Due to stochastic gradient descent on a nonlinear error surface, it is
likely that most of the time the result may converge to some loca
minimum on the error surface [Gori and Tesi, 19921. Thereis no easy
way to eliminate this effect completely, although stochastic learning
algorithms were proposed to reduce the effects o local minima
[Wasserman, 19881 Another major problem is the problem o scaling.
When the complexity o the problem is increased, there is no
guarantee that a given network would converge, and even if it
converges, there is no guarantee that good generalization would
result. The complexity o a problem can be defined in terms o its
sizeor its predicate order [Minsky and Papert, 1990; Hush and Horne,
19931. Effectsdf scaling can be handled by using the prior information
d the problem, if possble. Also, modular architectures can also
reduce the effects of the scaling problem [Ballard, 1990; Jacobs et al,
1991; Haykin, 19941

For many applications, the desired output may not be known
precisaly. In such a case the backpropagation |earning cannot be used
directly. Other learning laws have been developed based on the
information whether the response is correct or wrong. This mode o
learning is caled reinforcement learning or learning with critic
[Sutton et al, 1991; Barto, 19921 as discussed in Section 2. 4. 6.

Extensions of backpropagation: Principles andogous to the ones
used in the backpropagation network have been applied to extend the

Summary and Discussion 135

soope d the network in several directions as in the case d probabi-
listic neural networks, fuzzy backpropagation networks, regularization
networks and radial basis function networks [Wasserman, 19931

45 Summary and Discussion

We have presented a detailed analysis o feedforward networks in
this chapter with emphasis on the pattern recognitiontasks that can
be redized using these networks. A network with linear units
(Adalineunits) performsa pattern association task provided theinput
patterns are linearly independent. Linear independence d input
patterns aso limits the number o patterns to the dimensionality o
theinput pattern space. We have seen that thislimitation i s overcome
by using hard-limiting threshold units (perceptron units) in the
feedforward network. Since threshold unitsin the output layer results
in a discrete set d states, the resulting network performs pattern
classification task. The hard-limiting threshold units provide a set d
inequalities to be satisfied by the network. Thus the weights o the
network are not unique any more and hence they are determined by
means d the perceptron learning law.

A single layer perceptron is limited to linearly separable classes
only. For an arbitrary pattern classification problem, a multilayer
perceptron (MLP) is needed. But due to absence d desired output at
the unitsin theintermediate layers o units, the MLP network cannot
be trained by the simple perceptronlearning law. This hard learning
problem can be solved by using nonlinear units with differentiable
output functions. Since the output functions are now continuous, the
multilayer feedforward neural network can perform pattern mapping
task. The output error backpropagation is used in the learning
agorithm for these multilayer networks.

Since the backpropagation learning is based on stochastic
gradient descent along a rough error surface, there is no guarantee
that the learning law converges towards the desired solution for a
given pattern mapping task. Several variations d the back-
propagati onlearning have been suggested to improve the convergence
as well as the result o convergence. Although there is no proof o
convergence, the backpropagation learning algorithm seems to
perform effectively for many tasks such as pattern classification,
function approximation, time series prediction, etc.

How well a trained feedforward network performs a given task
is discussed both theoretically and experimentally in the literature
on generalization. The issue o generalization is an important topic,
but it is not discussed in this book. There are excellent treatments
o this topic in [Vidyasagar, 1997; Valiant, 19941. Appendix D gives
an overview d generalization in neural networks.

Some o the limitations d backpropagation such as convergence

136 Feedforward Neural Networks

can be addressed with reference to specific tasks, exploiting the know-
ledge d the task domain. Thus architectures developed for specific
tasks are more useful than the general feedforward neural networks.
Some d these architectures will be discussed in Chapter 7.

Review Questions
1 What is a linear associative network?
What is pseudoinverse d a matrix?

3 Explain the dignificance o (a) determination o weights by
computation and (b) determination d weights by learning.

4. What is the difference between linearly independent set and
orthogonal set o vectors?

5 What does the rank d an input matrix indicate?

6 Explain the nature o the input vectors in each d the followin
cases o the optima choice d weight matrix. (a) W = BA",
(bW = BA™ and (c) W = BA*,

7 Explain the choice & W = BA* for linearly independent and
linearly dependent cases o input vectors.

8 Why the choice o W = BA* need not be the best choice for noisy
input vectors? Discuss your answer with reference to the
Murakami result given in Eq. (4.19).

9 What is the dgnificance d the Widrow’s learning for linear
associative networks?

10 Why is it that there is no learning law for obtaining the best
choice o the weights for the case d noisy input vectors?

11 Why is it that the number o input patterns are linked to the
dimensionality o the input vectors in the case d linear
associative network?

Why learning is essential for a network with nonlinear units?
What is perceptron learning for pattern classification?
Explain the significanced perceptron convergence theorem.

Explain how to interpret perceptron learning as a gradient
descent algorithm. What is the gradient term here?

What is meant by perceptron representation problem?

Distinguish between linearly separable and linearly inseparable
problems.

Why a singlelayer o perceptron cannot be used to solvelinearly
inseparable problems?

Give two examples d linearly inseparable problems.

Show by geometrical arguments that with 3 layers d nonlinear
units, any hard classification problem can be solved.

N

B R BR

56

Bb bk

Review Questions 137

21.

22.

23.

24,

25.
26.
27.

28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

38.

39.

40.

41.

Distinguish between multilayer perceptron and a general
multilayer feedforward neural network.

Explain how a multilayer feedforward neural network with linear
units in all the layers is equivalent to a linear associative
network.

What is meant by gradient descent methods?

Explain the difference between method o steepest descent and
Newton's method.

Explain the difference between LMS learning and deltalearning.
Why LMS learningis called a stochastic gradient descent method?

Comment on the nature o the error surface for a multilayer
feedforward neural network.

Why backpropagation learning is also called generalized delta
rule?

Why convergence is not guaranteed for the backpropagation
learning algorithm?

Discuss the significance d semilinear function in the backpro-
pagation |learning.

How 'pattern’ mode and 'batch’ mode o training affect the result
o backpropagation learning?

Explain why it is preferable to have different values for i for
weights leading to the units in different layers in a feedforward
neural network.

What is the significance of momentum term in backpropagation
learning?

What is conjugate gradient method?

Discuss various interpretations o the results o backpropagation
learning.

What is an ill-posed problem in the context o training a
multilayer feedforward network?

What is meant by generalization in feedforward networks?

Why should generalization depend on the size and efficiency o
the training set, architecture of the network and the complexity
o the problem?

Discuss a few tasks that can be performed by a backpropagation
network.

How can we interpret the results d backpropagationlearning as
an estimation o a posteriori class probabilities?

Explain the limitations d backpropagation |earning.

Feedforward Neural Networks

Problems

1 A pth order polynomia threshold function is defined as
[Hassoun, 1995, p. 8L

M M M
1, if D w; a; + 2 X w; ;0 @+
~

11=1 =1y

s = M M M
+ z 2 2 wi1i2~~~i,, ai‘aiz...aip >0
ilzl Ly=1, L

| 0, otherwise
Show that the-number o weightsis given by

r=i [M] for a e {0, 1}

and
r= [M+p] for a e &M
P
where [M J is the number o combinationsd M different items
14

taken i at a time without repetition. (Hint: Count the number o

weights in each case. Note that for the binary case ac {0, 1}¥ the
indices in the summation are i, >i,_; for p22)

2. Inthe equationin Problem 1 abovep = 1 correspondsto the case
o linear threshold function, and p=2 for a quadratic threshold
function. Larger values o p gives higher flexibility to realize a
Boolean function by threshold gates. Infact it can be shown that
any Boolean function of M variables can be realized using a
polynomid threshold function of order p £ M [Hassoun, 1995, p.
9]. Show that the most difficult M-variable Boolean function to
implement by a polynomia threshold function requires 24
parameters in the worst case. (Hint: Use the result o Problem
d1forp=M.)

3 Asetd N pointsin &M is said to bein ‘general podition’ if every
subset & M or fewer pointsis linearly dependent. A 'dichotomy’
islabellingd N points into two distinct categories. The number
o linearly separable dichotomies of N pointsin general position
in M is given by [Hassoun, 1995, p. 181

M (N-1
2 ¥y [V~ for N> M+1
ca M =1 "=

oN for N<M+1

Problems 139

Derive the above result using repeated iteration of the recursive
relation
C(Nt1, M) = CIN, M)+ C(N, M-1)

and noting that C(l, M) = 2. (Hint: See [Hertz,1991, p. 113-1141))

4. A pth order polynomial threshold function with labeled inputs
asz= Y may be viewed as a linear threshold function
with (r - 1) preprocessed inputs, where

,= [M + p]
p

Th ' f the input M 1o t

2, TR E eyt I RPN polis S dedpar
able if there exist a(r-2)-dimensiona hyperplane in the
'$-gpace which correctly classifies the N points [Hassoun, 1995,
p. 20L Show that the number o Boolean functionsdf M-variables
that can be redlized by an M-input pth order polynomial
threshold function is less than C@V, r - 1).

5 Usingthe matrixidentitiesA = AAT(A*)T and AT = A* AAY, derive
the expression given in Eq. (4.11) from the definition o the
matrix S given in Eg. (4.10).

6. Derive the expresson for E_;, given in EQ. (4.16) using the
expression for the pseudoinverse given in Eq. (4.14).

7. Computetheweight nat ri x for the following pattern association task

1 5 1 17
m =[5 2] M-moor
T
ne[3 333 meour
r T
. 1

8 Using the perceptron learning law design a classifier for the
following problem:

Class Cp;: 2 21", [- 2 1517, (-2 017, [1 0]%, and [3 017
Class C,: [1 317, I8 317, 1 217, [3 217, and 110 0]F

O Dedgn and train a feedforward network for the following
problems:

(@) Parity: Consider a 4-input and 1-output problem, where the
output should be 'on€ if there are odd number of 1s in the
input pattern and 'zero' otherwise. The difficulty o the
problemis due to the fact that the input patterns differing
in only one bit require opposite outputs.

140 Feedforward Neural Networks

(b) Encoding: Consider an 8-input and 8-output problem, where
the output should be equal to the input for any d the 8
combinations o seven 0s and one 1.

(¢) Symmetry: Consider a 4-input and 1-output problem where
the output is required to be ‘oné if the input configuration
is symmetrical and 'zero' otherwise.

(d) Addition: Consider a 4-input and 3-output problem, where
the output should bethe result d the sum of two 2-bit input
numbers.

(Hint: Write a program to implement the algorithm. In all the
cases start with a hidden layer o 8 units and progressively
reduce the number of units.)

10. Generalize the XOR problem to a parity problem for N (> 2)
variables by considering a network for the two variables first
and then extending the network considering the output of the
first network as one variable and the third variable as another.
Repeat thisfor N = 4 and design a network for solvingthe parity
problem for 4 variables. (See [Bose and Liang, 1996, p. 214].)

11 For the following 2-class problem determine the decison
boundaries obtained by LMS and perceptron learning laws.
Comment on the results.

Class C; [2 2I%, (-2 317, [-11lT, [<1 417 [0 oI,
[0 117, [0 217, [0 3" and[1 1j7
Class Cyp: [1 017, (2 117, (3 -11T, 3 117, [3 2I7,
[4 -217, [4 117, [5 -1)" and [5 0)7

12. Study the classification performanced a MLFFNN for a 2-class
problem, where the 2-dimensional data for each class is derived
from the Gaussian distributions with the following means and
variances, and the class probabilities:

Class C;: p, = [0 017, o = 1, and P(C)) =04

Class C,: p, = [3 0", o3 = 4, and P(C;)=06

Assume a single hidden layer and a sgmoid output function for
the unitsin the hidden and output layers. Study the performance
for different number of hidden units (say 2, 4, and 6), and for
different learning rate parameters (say 0.01, 0.1, and 0.9). Study
also the effect d momentum term by considering two different
values for the momentum parameter (say 0.1 and 0.5).

Pr obl ens 141

13. Compare the classification performance of the best network in
Problem 12 &bove with the performance o the Bayesian
classification result. The Bayes classification result is obtained
by computing the probability of error for optimum Bayes
classifier for the given distributions. The Bayes classifier is
defined as follows:

For a given input X, decide C; if
P(Cy|x) > P(C,|x)

otherwise decide C,, where

px|C) P(C)

PC|x = p(x)

, t=1,2
and

2
p® = Y, p(x|Cy) P(C,).
k=1

Chapter 5

Feedback Neural Networks

5.1 Introduction

This chapter presents a detailed analysis o the pattern recognition
tasks that can be performed by feedback artificial neural networks.
In its mogt general form a feedback network consists o a set d
processing units, the output o each unit is fed as input to all
other units including the same unit. With each link connecting any
two units, a weight is associated which determines the amount o
output a unit feeds as input to the other unit. A general feedback
network does not have any structure, and hence is not likely to be
useful for solving any pattern recognition task.

However, by appropriate choice of the parameters o a feedback
network, it is possible to perform several pattern recognition tasks.
The simplest oneis an autoassociation task, which can be performed
by afeedback network consistingd linear processing units. A detailed
analysis d the linear autoassociative network shows that the network
is severely limited in its capabilities. In particular, a linear
autoassociative network merely gives out what is given to it asinput.
That is, if theinputis noisy, it comes out as noisy output, thus giving
an error in recall even with optimal setting o weights. Therefore a
linear autoassociative network does not have any practical use. By
using a nonlinear output functionfor each processing unit, a feedback
network can be used for pattern storage. The function o a feedback
network with nonlinear units can be described in terms o the
trajectory d the state o the network with time. By associating an
energy with each state, the trgjectory describes a traversal aong the
energy landscape. The minima d the energy landscape correspond to
stable states, which can be used,to store the given input patterns.
The number o patterns that can be stored in a given network depends
on the number o units and the strengths o the connectinglinks. It
is quite possible that the number o available energy minimais less
than the number o patterns to be stored. In such a case the given
pattern storage problem becomes a hard problem for the network. If
on the other hand, the number d energy minima in the energy
landscape o a network is greater than the required number o

Introduction 143

patterns to be stored, then there is likely to be an error in the recall
o the stored patterns due to the additional false minima. The hard
problem can be solved by providing additional (hidden) units in a
feedback network, and the errorsin recall o the stored patterns due
to false minima can be reduced using probabilistic update for the
output function o a unit. A feedback network with hidden units and
probabilistic update is called a Boltzmann machine. It can be used to
store a pattern environment, described by a set o patterns to be stored,
together with the probability d occurrence d each d these patterns.
Table 5.1 shows the organization o the topics to be discussed in
this chapter. A detailed analysisd linear autoassoci ativefeedforward
networks is consdered first in Section 5.2 The pattern storage problem
is anayzed in detail in Section 5.3 In particular, the Hopfield energy
analysis, and theissues d hard problem and false minima are discussed
in this section. The Boltzmann machine is introduced in Section 5.4.
This section also deals with the details o the pattern environment
storage problem and the Boltzmann learning law. Some practical
issuesin the implementation o learning laws for feedback networks
including simulated annealing are discussed in Section 5.5,

Table5.1 Pattern Recognition Tasks by Feedback Neural Networks

Autoasociation

o Architecture: Single layer with feedback, linear processing units
Learning: Not important

o Recdl: Activation dynamics until stable states are reached

o Limitution: No accretive behaviour

e To overcome: Nonlinear processing units, leads to a pattern storage
problem

Pattern Storage

o Architecture: Feedback neural network, nonlinear processing units,
states, Hopfield energy analysis

e Learning: Not important

¢ Recall: Activation dynamics until stable states are reached

o Limitation: Hard problems, limited number of patterns, false minima

o To overcome; Stochastic update, hidden units

Patter n Environment Storage

o Architecture: Boltzmann machine, nonlinear processing units, hidden
units, stochastic update

¢ Learning: Boltzmann learning law, simulated annealing

¢ Recall: Activation dynamics, simulated annealing

e Limitation: Slow learning

¢ To Overcome: Different architecture

144 Feedback Neural Networks

5.2 Analysis of Linear Autoassociative FF Networks

First we censider the redlization o an autoassociative task with a
feedforward network as shown in Figure 5.1. Analogousto the hetero-

a; = a ay (s 8

a, =

Figure 51 Linear autoassociative feedforward network.

association, in autoassociation the objective is to associate a given
pattern with itself during training, and then to recall the associated
pattern when an approximate/noisy version o the same pattern is
given during testing. In other words, in autoassociation the associated
output pattern by is same as the input pattern a,; for the Ith pattern.
That is, with reference to the pattern association task, by = a;, 1= 1,
2, ..., L inthe case d autoassociation. In recall it is desired to obtain
b; as output for an approximate input a;+e The weight matrix
W = [wy] o a linear autoassociative network (Figure 5.1) can be
determined as in the case o the linear heteroassociator, for a fixed
set d input pattern vectors {a;}. Since we want WA= A, the optimal
weights are given by (see Section 4.2.2)

W = AA* (5.1)

where A+is the pseudoinverse d the M x L matrix A consisting o
the input vectors {a}. The pseudoinverse is given in terms of the
components o singular value decomposition of the matrix A as follows

L
A=Y N?pqf (5.2)
i=1
where A; are the eigenvalues, and p; and q; are the eigenvectors o

the matrices AAT and A7A, respectively. That is,

AATp, = A p; (5.3)
and
ATAq, = A q; (5.4)

Analysis of Linear Autoassociative FF Networks 145

The sets d eigenvectors {p;} and {q,} are orthonormal sets The
1genva1ues A; are real and nonnegative, since the matricesAAT and
A"A are symmetric. The eigenvalues A; are ordered, i.e., A, 24, ;. If
therank o the matrix A isr (<L), then the elgenvaluesk i >r WI||
be zero. Therefore

A=Y Npd (5.5)
i=1
and the pseudoinverse

* = 2 NPZqpl (5.6)

The minimum error for the choice d the optimum weight matrix
W = AA" is given from Eq. (4.16) as

1 3 2
Epn=7 2 lAql
i=r+1
1 < 2
-1, 2 | 24 eaa|
i=r+l || J
1 < 7 .
=1 P since q;q; = 0, j#i

i=r+1

=1j=t (6.7

But since A; = 0 for i > r, Ep;, = 0. Thus in the case o linear
autoassoci ative network there is no error in the recall due to linear
dependency d the input patterns, unlike in the case o linear
heteroassociative network. In other words, in this case the input
COmMeSs out as output without any error.
When noise is added to the input vector, the noisy input vectors
are given by
¢, =a+¢g [=12..,L (5.8)

where the noise vector ¢ is uncorrelated with the input vector a;, and
has the average power or variance o®. For the choiced W = AA*, the
error in recdl is given from EQ. (4.19) as (Murakami and Aibara, 1987]

En -1 3 iaq Lo }_‘,x:l) Ag I

i=r+1
= o (5.9)

Thus the error in the recall is mainly due to noise, as the linear
dependence component o the error is zero in the case o auto-
association. Note that this is because a noisy input vector comes out

146 Feedback Neural Networks

as a noisy output and henceits differencefrom the true vector in the
recall is only due to noise.

The;\error in recall due to noise can be reduced by the choice o
W = AA*, where

A=Y AV qpf (5.10)
i=1
where s is given by
Ld Ld*
-7\'_8 <1« 7\18_'_1 (511)

That is, for a given noise power ¢?, the error can be reduced by
moving the error into the linear dependency term, which is realized
by an appropriate choice d the number d terms in.the expression
for th‘i‘é)seudoi nverse. The resulting error for the optimal choice o
W = AA"is
E,, = % { Y A +L czs] (5.12)
i=s+1

Thelinear autoassociation task can aso be redlized by asinglelayer
feedback network with linear processing unts shownin Figure 5.2. The

Gy ay Gy

L % w, L

NN
Wy Wy

Figure52 Linear autoasociation by a feedback network.

condition for autoassociation, namely, Wa, = a;, is satisified if
W = |, anidentity matrix. This trivial choice of the weight matrix is
realized if the input vectors are linearly independent, so that
W=AA"=1. For this choice of W, the output for a noisy input
a, teisgiven by W(a, +¢) = a,t ¢, whichis the noisy input itself. This
is due to lack o accretive behaviour during recall, and such a
feedback network is not useful for storing information. It is possible
to make a feedback network useful, especidly for pattern storage, if
the linear processing unitsare replaced with processing units having
nonlinear output functions. We discuss this case in the next section
and give a detailed analysis d pattern storage networks.

5.3 Analysis of Pattern Storage Networks

5.3.1 Pattern Storage Networks
The objective in a pattern storage task is to store a given set d

Analysis of Pattern Storage Networks 147

patterns, so that any o them can be recadled exactly when an
approximate version d the corresponding pattern is presented to the
network. For this purpose, the features and their spatial relationsin
the patterns need to be stored. The pattern recall should take place
even when the features and their spatial relations are dlightly
disturbed due to noise and distortion or due to natural variation o
the pattern generating process. The approximation of a pattern refers
to the closeness d the features and their spatial relations to the
original stored pattern.

Sometimesthe data itself is actually stored through the weights,
as in the case d binary patterns. In this case the approximation can
be measured in terms o some distance, like Hamming distance,
between the patterns. The distance is automatically captured by the
threshold feature of the output functions of the processing unitsin a
feedback network Freeman and Skapura, 19911

Pattern storage is generally accomplished by a feedback network
consisting o processing units with nonlinear output functions. The
outputs o the processing units at any instant of time define the
output state o the network at that instant. Likewise, the activation
values d the units at any instant determine the activation state o
the network at that instant.

The state o the network at successiveinstants of time, i.e., the
trgectory d the state, is determined by the activation dynamics
model used for the network. Recal o a stored pattern involves
starting at someinitial state o the network depending on the input,
and applying the activation dynamics until the trajectory reaches an
equilibrium state. The final equilibrium state is the stored pattern
resulting from the network for the given input.

Associated with each output state is an energy (to be defined
later) which depends on the network parameters like the weightsand
bias, besides the state d the network. The energy as a function o
the state o the network corresponds to something like an energy
landscape. The shape d the energy landscape is determined by the
network parameters and states. The feedback among the units and
the nonlinear processing in the units may create basins d attraction
in the energy landscape, when the weights satisfy certain constraints.
Figure 5.3 shows energy landscapes as a function o the output state
for the two cases o with and without the basins o attraction. In the
latter casethe energy fluctuates quickly and randomly from one state
to another as shown in Figure 5.3b. But in the energy landscape with
basins o attraction as in Figure 5.3a, the states around the stable
state correspond to small deviations from the stable state. The
deviation can be measured in some suitable distance measure, such
as Hamming distance for binary patterns. The Hamming distance
between two binary patterns each o length N is defined as the
number d bit positionsin which the patterns differ. Thus the states

148 Feedback Neural Networks

I AVAVEE

SV TE U N0 T 0 U 0 B U U P B N A) | I ETOTEE N T A N O A SO S

State State
(@ (®)

Figure5.3 Energy landscapes(a) with basins of attraction and (b) without
basins of attraction.

closer to the stable states correspond to patterns with smaller
Hamming distance.

The basins o attraction in the energy landscape tend to be the
regions o stable equilibrium states [Cohen and Grossberg, 19831 If
there is a fixed state in each d the basins where the energy is
minimum, then that state correspondsto a fixed point of equilibrium.
The basins could also be periodic (oscillatory) regions or chaotic
regions o equilibria. For an oscillatory region, the state d the
network changes continuoudly in a periodic manner. For a chaotic
region, the state o the network is not predictable, but it is confined
to the equilibrium region. Throughout the subsequent discussion we
consider only the fixed points d equilibriumin the energy landscape.

It is the existence d the basins d attraction or regions o
equilibrium states that is exploited for the pattern storage task. The
fixed points in these regions correspond to the states d the energy
minima, and they are used to store the desired patterns. These stored
patterns can be recalled even with approximate patterns as inputs.
An erroneous pattern is more likely to be closer to the corresponding
true pattern than to the other stored patterns according to some
distance measure. Each input pattern results in an initial state o
the network, which may be closer to the desired true state in the
sense that it may lie near the basin o attraction corresponding to
the true state. An arbitrary state may not correspond to an
equilibrium or a stable state. As the dynamicsd the network evolves,
the network may eventually settle at a stable state, from which the
pattern may be read or derived.

Given a network specified by the number of processing units, their
connection strengths and the activation dynamics, it is not normally
possible to determine exactly the number of basins o attraction in
the energy landscape as wdl as their relative spacings and depths
in the state space d the network. The spacing between two states
can be measured .by a suitable distance measure, such as the Hamm-
ing distance for binary patterns. The number o patterns that can be
stored is called the capacity of the network. It i spossible to estimate

Analysis o Pattern ,Storage Networks 149

the capacity o the network and also the average probability of error
inrecall. The probability d error in recall can be reduced by adjusting
the weights in such a way that the resulting energy landscape is
matched to the probability distribution o the desired patterns.

Typicaly the capacity o a fully connected network is df the order
o N, the number of processing units. Although there are 2V different
states for a network with binary state units, the network can be used
to store only o the order o N binary patterns, as there will be only
that many fixed points or energy minima in the energy landscape.

In general, the number o desired patterns is independent o the
number o basins o attractions. The latter depends only on the
network units and their interconnections. If the number of patterns
is more than the number o basins o attraction, then the pattern
storage problem becomes a hard problem, in the sense that the
patterns cannot be stored in the given network. On the other hand,
if the number o patterns is less than the number d basins o
attraction, then there will be the so called false wells or minima due
to the additional basins o attraction. During recall, it is likely that
the state o the network, as it evolves from the initia state
corresponding to the input pattern, may settle in a false well. The
recalled pattern corresponding to thefalse well may not bethe desired
pattern, thus resulting in an error in the recall.

In the next subsection we will consider the Hopfield modd o a
feedback network for the pattern storage and discuss the working o
a discrete Hopfield model. The Hopfield modd is a fully connected
feedback network with symmetric weights. In the discrete Hopfield
network the state update is asynchronous and the units have
binary/bipolar output functions. In the continuous Hopfield modd the
state update is dictated by the activation dynamics, and the units
have continuous nonlinear output functions.

53.2 The Hopfleld Model

Consider the McCulloch-Pitts neuron model for the units of afeedback
network, where the output of each unit is fed to all the other units
with weights wy;, for al i and j. Let the output function o each o
the units be bipolar (x 1) so that

s; = flx;) = sgn(x)), (5.13)
and
N
x, =y w;s;—6 (5.14)
j=1

where 6; is the threshold for the unit i. We will assume 6; = 0 for
convenience. The state of each unit is either +1 or <1 at any given
instant of time. Due to feedback, the state d a unit depends on the

150 Feedback Neural Networks

states o the other units. The updating o the state o a unit can be
done synchronously or asynchronously. In the synchronous update all
the units are simultaneously updated at each time instant, assuming
that the state d the network is frozen until update is made for dl
the units. In the asynchronous update a unit is selected at random
and its new state is computed. Another unit is selected at random
and its state is updated using the current state of the network. The
updating -using the random choice o a unit is continued until no
further changein the state takes place for al the units. That is, the
state at time (¢ + 1) is the same as the state at time t for al the
units. That is

stt1) =sy), foralli (5.15)

In this situation we can say that the network activation dynamics
reached a stabl e state. WWe assume asynchronous update throughout the
following discusson. Note that the asynchronous update ensures that
the next state is at most unit Hamming distance from the current state.

If the network is to store a pattern a = (a4, a,, .., aN)T, then in
a stable state we must have the updated state value to be the same
as the current state value. That is

N
sgn[> wﬁajJ =a, foralli (5.16)
j=1
This can happen if w;; = (UN) a; a;, because
w.a == g, a.a =+ a‘ = q; 5.17)
s vy Nj:l 7~ Nj=1 J i

where af = 1 for bipolar (+ 1) states.
For storingL patterns, we could choose a general Hebbian rule given
by the summation d the Hebbian terms for each pattern. That is,

Ly
w. =~ Y a,a (5.18)
1) Nl:l EY

Then the state a, will be stable if

1 ¢ s
Sgn[ﬁz ZGﬁaljakj

Jj=11=1

= a,, for alli (5.19)

Taking out the 1 = k term in the summation and simplifyingit using
af; = 1, we get

N
sgn[aki+ﬁ Y a; aua,v.].: a, forali (5.20)

Jj=1 1=k

Since a;; = £ 1, the aoveis true for al a,;, provided the crossterm

Anal ysi s of Pattern Stomge Networks 151

in Eg. (5.20) does not change the sign o a; plus the crossterm.
Table 5.2 gives an algorithm for storing and recall o patternsin a
Hopfield network.

Table 62 Hopfield Network Algorithm to Store and Recall a Set o Bipolar
Patterns

Let the network consist o N fully connected units with each unit having
hard-limiting bipolar threshold output function. Let a,, I =1, 2, ..., L be the
vectorsto be stored. The vectors {a} are assumed to have bipolar componernts,
ie,a;, =11, i=1,2.,N.

1. Assign the connection weights

1 ¥ .
w..=-—Za.a-, for i = j
iy N = Ul
=0,fori=j,1<ijs<N
2 Initialize the network output with the given unknown input pattern a
§0) =a, fori =1,2.. N

where s(0) is the output of the uniti at timet =0
3. Iterate until convergence

N

stt1 = sgn[z wUsj(t)], fori =12 ..,N
J=1

The process is repeated until the outputs renai n unchanged with

further iteration. The steady outputa o the units represent the stored

pattern that best matches the given input.

In general, the crossterm in Eq. (5.20) is negligible if LIN << 1.
Eq. (5.20) is satisfied if the number o patterns L is limited to the
storage capecity d the network, i.e., the maximum number o
patterns that can be stored in the network.

5.3.3 Capacity of Hopfleld Model

We consider the discrete Hopfield modd to derive the capacity d the
network. Let us consider the following quantity [Hertz et al, 19911

N
ck = -ay; % 2 Z a;; ;i ay; (56.21)

j=1 I=k
If ¢! is negative then the cross term and a,; have the same sign in
Eqg. (5.20) and hence the pattern a, is stable. On the other hand, if
¢! is podtive and greater than 1, then the sign o the cross term
changes the sign o a,; plus the cross term in Eq. (5.20). The result
isthat the pattern a, turns out to be unstable, and hence the desired
pattern cannot be stored.

152 Feedback Neural Networks

Therefore the probability of error is given by
P, = Prob (! >1) (5.22)

To compute this probability, let us assume that the probability
a; equal to +1 or -1 is 0.5. For random patterns, the cross term
corresponds to /N times the sum d about NL independent random
numbers, each o which is +1 or <. Thus c{-’ is asum o random
variables having a binomial distribution with zero mean and
variance ¢ = L/N. |f NL is assumed large, then the distribution o
c* can be approximated by a Gaussian distribution with zero mean
and o® variance [Papoulis, 19911. Therefore,

~2*2 &%) de

"
Pe_;/2noJ1‘e

3 [l—eﬁ['\/g]] (5.23)

where erflx) is error function given by

erf (x) = 721? [e dx (5.24)
0

This gives a value o Ly.,/N = 0.105 for P, = 0.001. Thus the
maximum number o patterns that can be stored for a probability of
error o 0.001is Lyaz = 0.105N.

A more sophisticated calculation [Amit et al, 1987; Amit, 1989]
using probabilistic update leads to a capacity o L, = 0.138N.

534 Energy Analysis of Hoptield Network

Discrete Hoptleld model: Associated with each state d the network,
Hopfield proposed an energy function whose value always either
reduces or remains the same as the state o the network changes.
Assuming the threshold value d the unit i to be 6, the energy
functionis given by [Hopfield, 19821

Vis) = V = _% ; %‘, w,-jsisj+; 0., (5.25)

The energy V(s) as a function o the state s o the network describes
the energy landscape in the state space. The energy landscape is
determined only by the network architecture, i.e., the number d
units, their output functions, threshold values, connections between
units and the strengths o the connections. Hopfield has shown that
for symmetric weights with no sdf-feedback, i.e., wy; = wj , and with
bipolar 1-1, +1} or binary {0, 1) output functions, the dynamics o the

Andysis d Pattern Storage Networks 153

network using the asynchronous update aways|eads towards energy
minima at equilibrium. The states corresponding to these energy
minima turn out to be stable states, which means that small
perturbations around it lead to unstable states. Hence the dynamics
d the network takes the network back to a stable state again. It is
the existence d these stable states that enables us to store patterns,
one at each d these states.

To show that AV < O, let us consder the change d state due to
update d one unit, say k, at some instant. All other units remain
unchanged. We can write the expressions for energy before and after
the change as follows [Freeman and Skapura, 19911

ve--z 3 2wyt 9 3 oot
i

Ve = -0 Z Z wy; ST STV + 2 0,82 (5.26)
i
The change in energy due to update d the kth unit is given by
AV = Vnew_vold

1
== 3 2 wy (s;:ew s}lew —S:?ld S;ld)+z ei (slpew _s?ld)
itk j+k itk

1
new new = new new new
2 wy, S ST ~5 X wy i 7+ 8, 5
J

+_ Z w, s old old+_ z wk) old old ek sold (5.27)

Since 2% = s, for i #k, theflrst two t er ns on the right hand
sided Eq. (5.27)W|II be zero. Hence,

i J

+ szld [+% Z w;, s;’ld +-;— Z Wy s]‘?ld -8,] (5.28)
i J
If the weights are assumed symmetric, i.e., w; = wj, then we get
AV = —si" [2 wy s]+sz‘d [2 wy st -8,] (5.29)
i

If, in addition, w,, = 0, then sinces™ = s fori = k, theterms
in both the parentheses are equal. Therefore,

AV = (s - sp) [Z w,, s —9,,] (5.30)
i

154 Feedback Neural Networks

The update rule for each unit & is as folows

Case A If 3 wy s -6,>0, then sj*" = +1

Case B: If 2 wy, s24 -6, <0, then sP*¥

-1
Case C: If Z wy,; s34 — @, =0, then s = spld

For case A, if s = +1, then AV=0, and if s{¢ = -1, then AV<O.
For case B, if s"ld = +1, then AV <0, and if s°ld -1, then AV=0.
For case C, irrespective of the value o s, AV = 0.

Thus we have AV < 0. Therefore the energy decreases or remains
the same when a unit, selected at random, is updated, provided the
weights are symmetric, and the self-feedback is zero. This is the
energy analysis for discrete Hopfield modd.

That the expression for V in Eq. (5.25) does indeed represent
some form o energy can be seen from the following arguments based
on Hebb’s law:

If a given pattern vector a,; is to be stored in the network state
vector s, then the match will be perfect if both the vectors coincide.
That is, the magnitude o their inner product is maximum.
Alternatively, the negative d the magnitude o their inner product
is minimum. Thus we can choose a quantity [Hertz et al, 19911

i=1

1 (& :
V= “oN {Z siauJ (5.31)

to be minimized for storing a pattern vector a; in the network. For
storingL pattern vectorswe can write theresulting V as a summation
o the contributions due to each pattern vector. That is

1 < i
V=- ‘WIZ [) sazi]
1 - N N L
If we identify the weightsw; with th term (]JN)): al, ay;, then we get
1 N N
-3 2 Z w8, ; (5.33)

which is same as the first term in the Hopfield energy expression
given in Eq. (5.25).

Analysis of Pattern Storage Networks 155

This method d identifying w;; from an energy function is useful,
especialy to solve severa optimization problems. Given an energy
function or a cost function or an objective function for a problem in
terms o its variables and constraints, if we can identify the
coefficientsassociated with s; S, s; and constant termsin the function,
then a feedback network can be built with weights corresponding to
these coefficients. Then using an activation dynamicsfor the network,
the equilibrium state or states can be found. These states correspond
to the minimaor maxima d the energy function. Higher order terms
consisting of product d three (s; s; s) or more variables cannot be
handled by the feedback mode with pairwise connections.

Continuous Hopfield model. |n this subsection we will consider the
energy analysis for a continuous Hopfield modd [Hopfield, 1984,
Hertz et al, 1991; Freeman and Skapura, 19911. A continuous modd is
a fully connected feedback network with a continuous nonlinear output
function in each unit. The output function is typically a sgmoid

A
function fAx) = i .|.e-u which is shown in Figure 5.4 for different
e
) =3 ')
1ol A1 +
0 el 0
» 1 iy
x" -1.0 1.0 Y
-1.0
(@) ®)

-1.0 0 1.0

©
Figure 54 (a) Sgmoid functionf (x) =

1-¢**
1te

parameter 1. (b) The inverse function. (c) Contribution of A.) to
the energy function.

for different values of gain

156 Feedback Neural Networks

values o the gain parameter A. In the continuous modd all the units
will change their output signals (s;) continuously and simultaneously
towards values determined by the output function. The activation
values (x;) will aso change continuousdly according to x; = ?’ w;S.

Thisis reflected in the following equationfor the activation dynamics:
J
where 1; is the time constant and s = fix)).
Consider the following energy function [Hopfield, 19841:

V=-% PIPIIEERDY B[f“l(s)ds (5.35)
i i

We can show that inthiscase(dV/dt) 1 O
dV . ds- ds.
Z vdt % 222% ,dt+2f1(s)dt (5.36)

Assuming symmetry o weights, i.e., w; = wj;, We get

%=‘Z [Zwujf(s):l

= - Z d—i‘ [2 wijsj-xi:I (5.37)
i J
Using the relation in Eqg. (5.34), we get
av _ ds; dz;
dt Z Yidt dt
2
. (dx
= - ; T, f(x) (E} (5.38)

Since fix) is a monotonicaly increasing function, fix)>0. Hence
dV/dt < 0.

Note that dV/dt = 0 when dx/dt = O, for dl i. This shows that
the activation dynamics eventually leads to a state where the energy
funetion has a locd minimum value, i.e.,, dV/idt = 0. This happens
when the activation state reaches an equilibrium steady state at
which there is no further change in the activation values, i.e.,
dx/dt = 0. The above result, namely, dV/dt 1 0, shows that the
energy aways decreases as the state o the network changes.

Let us examine the differencesbetween the continuous modd and
the discrete modd. In the discrete modd only one unit is considered

Analysisd Pattern Storage Networks 157

at a time for update. The choice o the unit for update is random and
the dynamics is that o the steady activation values(x; = 0), since
the transients are assumed to have died down at each update o the
state d the unit. Hence in the discrete casex; = 0 and V(x) = 0 are
different conditions. In the continuous case the states o dl the units
and hence the state of the network change continuously, as dictated
by the differential equations for the activation dynamics. Hence, in
this case z;, = 0 for all i implies that VV = 0. The energy function V
is aso caled the Lyapunov function d the dynamical system.

The difference in the energy functions for the discrete and

continuous case is due to the extra term £ ff‘l(s) ds in Eq. (5.35).
o
This expression is for a gain value A = 1. For a general gain value
this term is given by (1/A2) £ Ji fs)ds. Theintegral term is 0 for
o

s; = 0 and becomes very large as s; approaches = 1 (see Figure 5.4c).
But for high gain values (h >> 1), this term in the energy function
becomes negligibly small, and hence the energy function approaches
that d the discrete case. In fact when A — <, the output function
becomes a bipolar function, and hence is equal to the discrete case.
In the discrete case the energy minima are at some o the corners d
the hypercube in the N-dimensional space, since all the states are at
the corners o the hypercube. On the other hand, for moderate or
small values d h, the integral term contributes to large positive
values near the surfaces, edges and corners o the hypercube, and it
contributes small values interior to the hypercube. This is because
thevalued s;is1at the surfaces, edges and corners. Thus the energy
minima will be displaced to the interior d the hypercube. As
A — 0, theminimad the energy function disappear one by one, since
al the states will tend to have the same energy value.

The energy analysis so far shows that, for symmetric weights on
the connections, there exist basins o attraction with afixed point or
a stable point for each basin corresponding to an energy minimum.
If the connections are not symmetric, then the basins o attraction
may correspond to oscillatory or chaotic states regions. In the case
o purely random connections, with mean 0 and variance &2, there
will be a transition from stable to chaotic behaviour as ¢” isincreased
[Sompolinsky et al, 1988; Hertz, 1995; Hertz et al, 19911

We can summarize the behaviour of feedback networksin relation
to the complexity of the network asfollows. To make a network useful
for pattern storage, the output functionsd the units are made hard-
limiting nonlinear units. For analysis in terms o storage capacity,
as well as for the recal d information from the stable states, we
have imposed Hopfield conditions d symmetry d weights and asyn-
chronous update. A more natural situation will be to use continuous

158 Feedback Neural Networks

output functions, so that any type d pattern can be stored. But the
analysis o the performance o the network will be more difficult. In
addition, if we relax the conditions on the symmetry d weights, we may
still get stable regions, but it is not possble to analyse the network in
terms o its storage capacity and retrieval d information. If we further
relax the constraints to make the feedback system more closer to the
natural biologicd system, then we may be able to get better
functionality, but it is amost impossble to analyse such complex
networks. For example it is not possble to predict the globa pattern
behaviour d a feedback network with random weights. Thus, athough
the networks may get more and more poweful by relaxing the
constraintson the network, they becomeless useful, if we cannot predict
and control the pattern storage and recall d the desired information.

5.3.,6 State Transition Diagram

Derivation of state transition diagram: The energy analysis o the
Hopfield network in the previous section shows that the energy o
the network at each state either decreases or remains the same as
the network dynamics evolves. In other words, the network either
remains in the same state or moves to a state having a lower energy.
This can also be demonstrated by means o a state transition diagram
which gives the states o the network and their energies, together
with the probability of transition from one state to another. In this
section we will illustrate the state transition diagram (adapted from
[Aleksander and Morton, 19901) for a 3-unit feedback network with
symmetric weights wy = Wy The units have a threshold value o
6, i=1,23 and a binary {0, 1) output function. A binary output
function is assumed for convenience, although the conclusions are
equally valid for the bipolar (-1,+1} case.

Figure 5.5 shows a 3-unit feedback network. The state update for
the unit i is governed by the following equation:

L, if Y wys(t) > 6
J

s (t+1)

it

0, if D w;sit) <8 (5.39)
J

5y

wlﬂ = wll = wla

Sy Wz = Way S

F gure 55 A 3-unit feedback network with symmetric weights w;j, threshold
values 6; and the output states s;,i=1, 2, 3.

Analysis of Pattern Storage Networks

The energy at any state s, s, 83 o the network is given by
1
Vis, sy85) = -3 Z Z w;; s; 8; + Z s; 6, (5.40)
i J i

There are eight different states for the 3-unit network, as each
d the s; may assume avalue either 0 or 1. Thus the states are: 000,
001, 010, 100, 011, 101, 110 and 111. Assuming the values

Wy = Wy = ~0.5, Wy = wgy = 04, wg; = wyz = 05
91 = —0.1, 92 = "0.2, and 63 = 0.7,
we get the following energy values, for each state.

V(000) = 0.0, V(001) = 0.7, V(010) = - 0.2, V(100) = - 0.1,
V(011) = 0.1, V(101) = 0.1, V(110) = 0.2, and V(111) = O.0.

The transition from any state to the next state can be computed using
the state update Eq. (5.39). For example, if the current state is

000, by selecting any one unit, say unit 2, at random, we can find
3
its next state by computing the activation value x, :j§1w2f s; and

comparing it with the threshold 6,. Since x, (= 0) > 8, (= — 0.2) the
state df the unit 2 changes from 0 to 1. Thus if we select this unit,
there will be a transition from the state 000 to 010. Since we can
select any one o the three units with equal probability, i.e., U3, the
probability o making a transition from 000 to 010 is thus U3.
Likewise by selecting the unit 1 for update, the network makes a
transition from 000 to 100 with a probability U3. Selecting the unit
3 for update results in a transition from 000 to itself, since the
activation x5 (= 0) < 85 (= 0.7). By computing the transition probabili-
ties for all the states, we get the state transition diagram shown in
Figure 5.6. Note that while computing the transitions, only asynchro-
nous update of each unit selected at random was used. Table 5.3
shows the computation of the state transitions by comparing the
weighted inputs with the threshold value for each unit. The entries
in the parenthesis are (2} w;s;<>6;).

From the state transition diagram we observe the following points:
The diagram is drawn in such a way that the higher energy states are
shown abowe the lower energy states. The transition is dways from a
higher energy state to a state with equal or lower energy. Thus the
Hopfield result AV < 0 is satisfied. There are some states 010, 100
and 111 which have a sdlf-transition probability o 1. That means, once
these states ar e reached, the network remainsin these states, whichis
equivalent to saying that the activation dynamics equation is such that

3
f[2 wijsj_eiJ =s;, 1=123 (5.41)
j=1

160 Feedback Neural Networks

0
0 1
0.7
1 1 1
_Uni 3
(a) A 3-unit network 1 1 o 3
3
0.2
1
3
1 0 L 1 1 1
3 1 1 3 3 3 0 1
0.1 0.1
1
3
1
0 3
1
=10 O
3,
0.0
1
1 3
3
1
; 0 o0
3 -0.1

-0.2
U3
3

(b)State transition di agram

Figure5.6 A 3-unit network and the corresponding state transition
diagram. (Adapted from [Aleksander and Morton, 1990]).

where £.) is the binary output function, i.e., fix) = O, for x < 0 and
fix) = A, for x > 0. Since there is no transition from these states to
other states, these are stable states. Note that only three out o the
total eight are stable states. As per the approximate capacity
calculationsmadein Section 5.3.3 for a Hopfield network, the number

Analysis of Pattern Storage Networks 161

Tabl e 6.3 Computation of State Transitions for Figure 5.6

Unit 1 Unit 2 Unit 3

0 >-0.1) 0> -0.2) 0 <07

000 100 . 010 000
0.5 > - 0.1) 04 >-0.2 0 <07

001 101 011 000
-05<-0.1) 0>-02 0.5 <0.7)

010 010 010 010
0 >-0.1) -05<-0.2) 0.5 < 0.7

100 100 100 100
©>-0.1) 04 >-0.2) (0.4 < 0.7)

011 111 011 010
0.5 > ~-0.1) (-01>-02 0.5 < 0.7

101 101 111 100
-05<-0.1) (-05<-02) 0.9 > 0.7

110 010 100 111
0>~0.1) (-0.1>-0.2) 0.9 > 0.7

111 111 111 111

o stable states will be much fewer than the number o possiblestates,
and in fact the number d stable states are o the order N. The stable
states are always at the energy minima, so that the transition to any
d these states is aways from a state with a higher energy value
than the energy value d the stable state.

Computatlon of welghts for pattern storage: So far we have consi-
dered the analysis d a given feedback network and studied its
characteristics. But patterns can be stored at the stable states by
design. That is, it is possbleto determine the weights o a network
by calculationin order to store a given set d patterns in the network.
Let 010 and 111 be the two patterns to be stored in a 3-unit binary
network. Then at each o these states the following activation
dynamics equations must be satisfied:

f[> wi,sj-e,.] =s, i=123 (5.42)
J

This will result in the following inequalities for each o the states:
For the state sy sgs3 = 010

and for the state s; sgs3 = 111
Wy W+ W3 —0;>0, wy + Wy +wy; —06,>0,

Wqy + Wap + W33 —03>0

162 Feedback Neural Networks
Since we assume symmetry o the weights (w; = w;;) and w; = 0, the
above inequalities reduce to

Wy 0y, 0,<0, wy3 S6;, Wy, +Way >0, Wiy +Wy3 >0, Wy +Wy3>60;
The following choice o the thresholds and weights, namely,

8, = 01,8, =-02, 0, = 0.7, w;;, = —05, wy; = 04, wy;, = 0.7
satisfies the aboveinequalities and hence the resulting network given
in Figure 5.7a stores the given two patterns. These two patterns
correspond to the stable states 010 and 111 in the network as can

be seen from the state transition diagram in Figure 5.7b. The energy
values for different states are as follows:

(a) A 3-unit network

wl—
wlns

0
1 0

~0.2
Ut
3

(b) State transition diagram

Figure 57 A 3-unit network and the corresponding state transition
diagram. (Adapted from [Aleksander and Morton, 19901).

Analysis of Pattern Storage Networks

The energies o different states are:

V(000) = 0.0, V(001) = 0.7, V(010) = — 0.2, V(100) = 0.1
V(011) = 0.1, V(101) = 0.1, V(110) = 0.4, V(111) = 0.0

Table 5.4 shows the computation o the state transitions by comp-
aring the weighted inputs with the threshold values for each unit in
each state. The entries in the parenthesis are [2 w;s;<=>6; J .

Tabl e 64 Computation of State Transitions for Figure 5.7

unit 1 Unit 2 Unit 3

0 <0.1 0 >-0.2) 0 <07

000 000 010 000
0.7>0.1) 04 >-0.2) 0 <07

001 101 011 000
(-05<0.1) (0>-02 (0.4 < 0.7)

010 010 010 010
0 <0.1) (-05<-0.2) 0.7 =0.7)

100 000 100 100
0.2 >0.1) (0.4 >-0.2) (0.4 < 0.7)

011 111 011 010
0.7 > 0.1) (-01>-0.2) 0.7 =0.7)

101 101 111 100
(-05<0.1) (-05<-0.2) (1.1>0.7)

110 010 100 111
02 > 0.1) (-01>-02) (1.1 > 0.7)

111 111 111 111

5.3.6 Pattern Storage by Computation of Weights-Problem of False
Energy Minima

For another choice o the values o 6; and w; which satisfies al the
inequalities for the above problem d storage o the patterns 010 and
111 in a 3-unit network, there may be more than two energy minima
or stable statesin the network. Two o them correspond to the desired
patterns and the other extra states correspond to false minima. This
is illustrated for the choice o the thresholds and weights shown in
Figure 5.6a. The corresponding state transition diagram is given in
the Figure 5.6b. Here there are three energy minima corresponding
to the three stable states 010, 100, 111

The presence o the extra stable state may result in recalling a
pattern not in the set d the desired patterns to be stored. If an
approximate input is given to the units in the network, so that the
network isforced into the state, say s, s, 53 = 000initially, then since
this state is unstable, the dynamics d the network will eventually
lead to either the state 010 (the desired pattern) or to the state 100

164 Feedback Neural Networks

(See the state transition diagram in Figure 5.6b). Both these states
are stable states and have equal probability o transition from the
initial state 000. While the state 010 is the desirable pattern to be
recalled, there is an egual chance that the pattern 100 may be
recalled. Likewiseg, if the initial state is 110, then there is an equal
chance that any one o the stable states 010, 100 and 111 may be
recalled. The recal o the pattern 111 results in an undetectable
error, as the desired pattern is 010 for the approximate input 110.
Therecall o the pattern 100 at any time will give as output a pattern
which was not stored in the network intentionally, since in our
pattern storage task we have specified only 010 and 111 as the
desired patterns to be stored in the network. The stable state 100 in
this case corresponds to a false (undesirable) energy minimum.
Errors in recall due to false minima can be reduced in two ways.

1. By designing the energy minima for the given patterns in an
optimal way, so that the given patterns correspond to the
lowest energy minima in the network.

2. By using a stochastic update of the state for each unit, instead
o the deterministic update dictated by the activation values
and the output function.

Theissue d stochastic update will be discussed in Section 5.4, and the
issue d designing energy wells by learning in Section 5.5.

Pattern storage—Hard problems: In the previous subsection we
have discussed the effect d having more minima in the energy
landscape than the number required to store the given patterns. In
this section we consider the case of the so called hard problems o
pattern storage. Let us consider the problem o storing the patterns
say 000, 1, 101 and 110. By wusing the condition
f)}: wys; - 6;) = s, for each unit i, the inequalities to be satisfied to

make these states stable in a 3-unit feedback network can be derived.
In this case no choice d thresholds and weights can satisfy all the
constraintsin the inequalities. The reason is that the number o desired
patternsis more thanthe capacity o the network, and hence they cannot
be represented/stored in afeedback network with 3 units. In some cases,
even if the number o desired patterns is within the capacity limit o a
network, the specific patterns may not be representablein a given type
(binary) o a feedback network For example, for storing the patterns
000 and 100, the faollowing inequalities have to be satisfied by the type
o network we have been considering so far.

6,20,8,20,0;20, and 0, <0, wy; <6,, w3 <O (543
The conditions on 8; < 0 and 6, = 0 cannot obvioudy be satisfied

simultaneously by any choice o 8,. In fact any pair o patternswithin
a Hamming distance o 1 cannot be stored in a 3-unit network.

Stochastic Networksand Simulated Annealing 165

Pattern storage problems which cannot be represented by a
feedback network o a given size, can be caled hard problems. This
is analogous to the hard problems in the pattern classification task
for a singlelayer perceptron network. Hard problemsin the pattern
storage task are handled by introducing additional units in the
feedback network. These units are caled hidden units. But with
hidden units it is difficult to write a set of inequalities as before to
make the given patterns correspond to stable states in the feedback
network. Thus the design o a network with hidden units becomes
difficult due to lack d a straightforward approach for determining
the weights o the network. In other words, this may be viewed as
hard learning problems. We will see in Section 5.5 how this problem
is addressed in Boltzmann learning law. To store a given number d
patterns, a network with sufficiently large number o units may have
to be considered. But in general it is difficult to know the required
number o units exactly for a given number o patterns to be stored.

5.4 Stochastic Networks and Simulated Annealing

54.1 Stochastic Update

Error in pattern recall due to false minima can be reduced
significantly if initially the desired patterns are stored (by careful
training) at the lowest energy minima o a network. The error can
be reduced further by using suitable activation dynamics. Let us
assume that by training we have achieved a set o weights which will
enablethe desired patterns to be stored at the lowest energy minima.
The activation dynamics is modified so that the network can also
move to a state d higher energy value initially, and then to the
nearest deep energy minimum. This way errors in recall due to false
minima can be reduced.

It is possibleto realize a transition to a higher energy state from
alower energy state by using a stochastic update in each unit instead
d the deterministic update o the output function as in the Hopfield
modd. In a stochastic update the activation value o a unit does nét
decide the next output state of the unit by directly using the output
function f(x) asshown in Figure5.8a. Instead, the update is expressed
in probabilistic terms, like the probability o firing by the unit being
greater than 0.5 if the activation value exceeds a threshold, and less
than 0.5 if the activation value is less than the threshold. Note that
the output function Ax) is still a nonlinear function, either a
hard-limiting threshold logic function or a semilinear sigmoida
function, but the function itself is applied in a stochastic manner.

Figure 5.8b shows a typical probability function that can be used
for stochastic update o units. The output function itself is the binary
logic function fix) shown in Figure 5.8a.

166 Feedback Neural Networks

4
fix)

Figure58 Stochastic update of a unit using the probability law P (s=
1|x) = 141 +e” @~ 9T) (q) Binary output function and (b) Pro-
bability function for stochastic update for different values of T.

The probability o firing for an activation value o x can be
expressed as

Pis=1 |x) = w (5.44)
The probability function is defined in terms of a parameter called
temperature T. At T = O, the probability function is sharp with a
discontinuity at x = 6. In this case the stochastic update reduces to
the deterministic update used in the Hopfield analysis. As the
temperature is increased, the uncertainty in making the update
according to fix) increases, giving thus a chance for the network to
go to a higher energy state. Therefore the result o the Hopfield

Stochastic Networks and Simulated Annealing 167

energy analysis, namely AV <0, will be no longer true for nonzero
temperatures. Finally, when T = «, then the update of the unit does
not depend on the activation value (x) any more. The state of a unit
changes randomly from 1.to 0 or vice versa. It is impotant to note
that the stochastic update for different T does not change the energy
landscape itself, since the shape o the landscape depends on the
network, its weights and the output function, which are fixed. Only
the traversal in the landscape will be changing. In contrast, in the
continuous Hopfield modd, the output function is different for
different values o the gain parameter A, and hence the energy
landscape itself is different for different A (See Sec. 5.3.4).

5.4.2 Equilibrium of Stochastic Networks

A feedback neural network with N binary units and stochastic update
of the units is described by the following set of equations:
Assuming the threshold value 6; = O,

> wys;, i=12,..,N (5.45)
J

x;

flxy) =0, for x;<0
=1, for x>0 (5.46)

A unit i is selected at random for updating. The output is updated
according to the stochastic update law, specified by the probability
that the output s; = 1 given the activation x;. It is given by

1
1+exp (/T

A network with the above dynamicsis called a stochastic network.

A stochastic network will evolve differently each time it is run,
in the sense that the trajectory,d the state of the network becomes
a sample function o a random process. In the case o deterministic
update the trgjectories will eventually reach an equilibrium corres-
ponding to a stable state. The equilibriumis a static equilibrium. In
contrast, there will never be a static stable state for a stochastic
network, as the state o the network is aways changing due to
stochastic update for each unit. However, one could talk d a dynamic
equilibrium for stochastic networks, if the ensemble average state o
the network does not change with time [Papoulis, 19911. By ensemble
averagewe mean that for several (infinitelylarge) runsd the network
the average value o the state ((s)) o the network is computed. The
average value d the state is described in terms d the average value
({s)) o the output df each unit (i) d the network. That is

P(s;=1]|x) = (5.47)

sy = Isip (15 89y «es 8jy ony SN) d51d5,.. ds;.. . dsy (5.48)

168 Feedback Neural Networks

where p(s) = p(sy, Sz, ..., Si ..., Sy) IS the joint probability density
function of the components o the state vector s.

First of al, the probability distribution of states should be
stationary or independent of time for a network state to be in a
stochastic equilibrium. If stationarity of the probability distribution
of statesis achieved at a given temperature, then the network is said
to be in thermal equilibrium [Muller and Reinhardt, 1990, p. 1471
At thermal equilibrium the average value o the output o the ith unit
is given by

(s) = J.sip(si) ds; (5.49)

where p(s;) the probability density function for the ith unit. For binary
units

(s;) = 1xP(s;=1]x)T0xP(s;=0|x,)

P(s;=1|x)

1

Thusfor a given temperature, the average value o the output unit is
a continuous function o the activation value o the unit. Figure 5.9

s 4 (s)4

10 1.0 —/_-—
/

0 x 0 x

»
»

v

(a) Discrete output (b) Continuous output
Figures59 Instantaneous(discrete)and average (continuous) outputsof a
unit in a gochastic network.

shows the discrete output and the average continuous output of a
unit.

At stochastic equilibrium the average value of the output state
of a unit does not change dueto stationarity o probability distribution
of the state of the network. For the average value to remain constant,
the flow of activity of a unit i between the active (s; = 1) to the
inactive (s; = 0) state should be balanced by the corresponding flow
of activity from the inactive (s; = 0) to the active (s; = 1) state. This
will ensure that the average value of the state due to state transitions
over a period of time remains constant. In other words, for a binary

Stochastic Networks and Simulated Annealing 169

unit, t he probability of a unit that is currently active (s; = 1)to become
inactive (s; = 0) must be equal to the probability o the unit when it
is inactive (s; = 0) to become active (s; = 1). That is

P(sy, Sg, ..y 5;=1, ., 53 P(s; > 05, =1)
= P(sy, Sg, ..., 5;=0, ..., s) P(s; > 1|s;=0) (5.51)

Since the stochastic update rule for each unit is assumed to be
independent d the state d the unit, we have from Eq. (5.47)

1

P(s; > 1]s;=0) = P(s;=1|x;) = T+ expa/T) (5.52)
and
P(s;—0[s;=1) = P (5,=0|x,) = pm
e exi(xm (5.53)
Therefore from Egs. (5.51), (5.52) and (5.53), we get
P(sy, 89, oy 5, =1, .0, 80) B P(s;=1|x)
P(sy, 89, - 8;=0,...,8y) P(s;=0]|x)
14 exp(x/T)
~ 1 +exp(—«/T)
= exp /T (5.54)

From the Hopfield analysis we have the global energy for the state
s as

E(s) = —% z Z wy; S; S; (5.55)
i
Difference in the energy for change d state in the kth unit from
s, = 0tos, = 1lis given by
AE, = E(s,=1D-E(s,=0) = —z wis; = -x% - (5.56)
Note that this is true only if the V\;eights are symmetric, i.e.,

w;; = w;. Theratio o probabilitiesd the states o the network before
and after an update in the ith unit is then given by (see Eq. (5.54))

P(Sl, Sgy .y 8; =1, ..., SN
P(s,, 89, ..., 8;= 0, ..., 5p) = exp(-AE/T) (5.57)

Let AE; = Eg—-E, where E is the energy for the state
83 = (51,82 .., 8=1,..,sy), and E, is the energy for the state
8, = (S1, Sg, ..., 8; =0, ..., sy). Therefore we get

170 Feedback Neural Networks

P(sy) F£ST
‘ﬁ(sf} = (5.58)

From Eq. (5.58) we find that the probability d a state at thermal
equilibriumisinversely proportional to the exponential of the energy
o the state. That is

P(s,) o e EdT (5.59)
where E, is the energy d the network in any state s,, and is given

by the Hopfield energy equation (5.55).
Sinceg1 Psy) = 1, we get

P(s,) = %e‘Eﬂ, (5.60)

where 1/Z i s the proportionality constant. Therefore,
S P(s,) = % S BT - g (5.61)
z=Y k" (5.62)

Therefore the probability d a state at thermal equilibrium is given by
e EdT
T e BT

B

This is cdled the Boltzmann-Gibb's probability distribution. The
normalization factor Z is cdled the partition function in statistical
mechanics [Hertz et al, 1991; Muller and Reinhardt, 19901. The
partition function plays a central role in statistical mechanics, as it
can be used to compute averages at thermal equilibrium. At high
temperature (T —), the stationary probabilities of the states are
nearly equal and are independent o the energies d the states. On
the other hand, at low temperatures (T — 0), the stationary
probabilities are dictated by the energies d the states, and the states
with lower energy will have higher probabilities.

P(s)) = (5.63)

5.4.3 Thermal Averages

From the stationary probabilities P(s,) o the states at thermal
equilibrium at a given temperature, the average (A) d any quantity
A pertaining to the states can be computed as follows:

@A =Y A, Psy) (5.64)

a
where A, is the value o the quantity for the state s,. Thisis called
thermal average d the quantity A.

Stochastic Networks and Simulated Annealing 171

In many cases the thermal averages can be computed from the
partition function itself, instead o using the stationary probabilities.
But, in practice, obtaining the partition function becomes the main
issue. Assuming that the partition function Z is known, the averages
d some relevant quantities are computed as follows:

In order to compute the averages, it is convenient to define a
term, called free energy o the system, given by [Hertz et al, 1991,

Appendix].

F=-Tlogz=-T |09[Z e-EJTJ (5.65)
where Iog stands for the natural Iogarithm Then
aT T 2 2 E_P(s) (5.66)
The average energy (E) d the states is given by
Z PBs)E, = - ¥ _ Tz (5.67)
oT Z oT

To compute the averages (s;) and {s;s;), let us consider the
expression for the Hopfield energy with the biasterm asin Eq. (5.25)
[Muller and Reinhardt, 1990, p. 149].

i J i
Taking the derivative with respect to 8;, we get
oE(s) _
%, = (5.69)
We can show using Egs. (5.65) and (5.69) that
()= 2L T (5.70)
| 6, Z 06,
If we take - dF/ow;; then we get
_F _ToZ
ow; Z owy
ae‘Ea’T
TR
== |- 2 e'Eﬂ'T(—s s):|
| +3
e BT

= Z —7 S = (s; s;) 5.71)

172 Feedback Neural Networks

Thus.
_oF T iz
ow;; ~Z ow;;

Equations (5.67), (5.70) and (5.72) are three thermal average
expressionsin terms o the free energy F and partition function Z.
The free energy F can be interpreted as follows

Sincee T = Z = 3 & &7, we have
a

(s;sp) = (5.72)

e FIT
“Z Y Py (5.73)

The sum o probabilities over all possble states is 1, and hence the
left hand side of Eq. (5.73)aboveis equal to 1. But the above equation
applies even if the summation is taken over a subset o the states.
Then the lef't hand side gives the probability of finding the system
in that subset.

5.4.4 Stability in Stochastic Networks

I n stochastic networks, equilibrium refers to the thermal equilibrium
at which the averages over all possible realizations d the states are
independent o time. This is because the probability distribution of
the states does not change with time. It can be proved that networks
with symmetric weights do indeed reach thermal equilibrium at a
given temperature. Since the state o the network changes due to
stochastic update, it is not possible to talk about absolutely stable
statesin the sense that, once such a stateis reached, it should remain
there. On the other hand, one can still study stability of states at
thermal equilibrium in which the average values do not change in
time. Likein the deterministiccase, for a stable statein the stochastic
case we invoke the condition that the average value o the output is
proportional to one d the stored patterns, say the kth one (a,). That
is, for each component o the vector,

sy =may, i=1,2,..,N (5.74)

where m is the proportionally constant. In the deterministic (T = 0)
case, these stable states exist for m = 1 as seenin Section 5.3.2. In
the stochastic case we have from Eq. (5.50)

1

(sp) = 1+ oxp@E/T)’ (5.75)

where AE; = -x; = -% wy;(s;). Here the activation value is

determined using the average o the fluctuations d the outputs from
the other units. Thisis called the mean-field approximation by which

Stochastic Networks and Simulated Annealing 173

the actual variables are replaced by their averaged quantities
[Soukoulis et al, 1983; Bilbro et al, 19921

We can obtain an approximate solution o Eqg. (5.74) by
substituting for ¢sp in Eqg. (5.74) and simplifying. In doing this
analysisit is convenientto assume units with bipolar {-1, +1} outputs.
Then the average value (s;) is given by

(S) = 1xP(s;=1|x)-1xP(s;=-1]|x) (5.76)

Assuming for convenience the probability of update in this case as

P(si=1|xi) = 1+exu_2x/7~r) (5-77)
we get
) = L — 1
¥ 7 1texp(-2x/T) 1+exp-2x/T)
= tanh [%] (5.78)
where x; is given by '
x; = 2 wi; (sj)

J

using the mean-field approximation. From the Hebb's law given in
Eq. (5.18), we have
1 L
=1
Therefore from Egs. (5.74), (5.78) and (5.79), we have
1
ma,; = tanh —ZZaia-mak-J (5.80)
k [TN iy LY]

Ignoring the cross terms, which is vaid if the number o patterns
stored (L) is much less than N, we get

may, = tanh{% ak,.] (5.81)
Since q;; = t1, and tanh(—=x) = - tank), we get
m = tanh{%] (5.82)

Solutions o this equation are shown in Figure 5.10. It shows that
the solutionsfor m are the points o intersection of the straight line
y = Tx and the sgmoid curvey = tanh(x). If T 21, thereis only one
solution aty = 0. For T < 1, there are three solutions.

From Figure 5.10 we can obtain the values o y for different

174 Feedback Neural Networks

v

Figure510 Solution of theequationy = tanh (m/T) as points of intersection
of y =Tz and y = tanh ().

temperatures. Figure 5.11 shows the positivevalue of (s) o Eq. (5.78)
as a function o the temperature T. It shows that nonzero solutions
to (s exist only whenT < T,. As T — 0, (s)approaches+ 1. The critical
temperature T, = 1 for stochastic networks with L << N, since the
crossterms in Eg. (5.80) are negligible under this condition.

)

0 T. T
FHgure 511 The positive solution (s) as a function of temperature.

The above anaysis shows that a stochastic network with
symmetric weights will have stableequilibriumstates, i.e., will satisfy
Eqg. (5.81), only at temperatures bdow a critica temperature,
provided L<<N. The number o such states is very small compared
to N, and the actual number depends on the temperature. But the
maximum value o L will belessthan 0.138 N, which is the limit for
the deterministic case, i.e., for T = 0 [Amit et al, 19871

Stochastic Networks and Simulated Anneal i ng 175
The maximum number of stable states for a stochastic network
is referred to as the capacity d the network. The capacity will be

different for different temperatures. Above a critical temperature for
any givenLIN (SeeFigure 5.12), the network will not have any stable

1.0

0.5 P

0.0 kL : L
0.00 0.05 0.1

| 0.156 L/N

0.138
Fgure 512 The region (shaded) for the exigtence of stable states for a
gochagtic network.

equilibrium state and hence cannot be used as memory. The critical
temperature is lower for higher values of LIN. For LIN > 0.138,
however, there are no stable states for any temperature, including T
= 0 [Amit et al, 1987; Hertz et al, 1991, p. 9L

545 Operatlon of a Stochastic Network

Having seen that a stochastic network exhibitsstable statesfor temp
eratures bdow a critical temperature, we shall discussthe operation
o a stochastic network for memorizing a given set o patterns.
Throughout we assume that L << N, and that we are operating at
temperatures lower than the critical temperature, o that the network
has stable states at thermal equilibrium at a given temperature.
Given a feedback network with symmetric connections, there exists
an energy landscapewith a unique value o energy for each state d the
network. There are two aspects d the network when used as memory:
Designing a network to store a given set o patterns (training) and
recalling a pattern stored in the network (recall). To understand these
aspects, let us first discuss the operation o a stochastic network in
detail. The operation involves monitoring the trajectory of the states
o the feedback network and studying the characteristics of the
resulting random process in terms o probability distributions o
states and the relation d these distributions with the energy.

176 Feedback Neural Networks

Note that the energy landscapeis fixed for a given network, as
the energy depends only on the output state s; o each unit i and on
the weights w; on the connecting link between units j and i. The
activation dynamics including the asynchronous or synchronous
operation and the stochastic update decidethe trajectory d the states
and hence the traversal aong the energy landscape. Since provision
for stochastic update is available, the trgjectory may move aong a
path which may include movement to states with higher energiesin
the energy landscape.

Figure 5.13 illustrates the regions for trgjectories o states at
different temperatures. Note that at T = O, the trajectory can only

Fi gure5.13 Regionsof traversal in the energy landscape. The shaded area
indicatesregion of traversal for a temperature of T,.

slide along the downward dope d the energy and reach a fixed point
equilibrium state. Thus at T = 0, there are as many stable states as
there are energy minimain the landscape. At higher temperatures
there is greater mobility, thus resulting sometimes in a movement
towards higher energy states. In such a case al the energy minima
regions covered in the region d movement cease to be stable regions.
Only regions with deep energy minima are likely to be stable. Thus
the number o stable regions decreaseswith increase intemperature.
At a given temperature several trgjectories are possible depending
on the update at each unit. These trajectories may be viewed as
sample functions & a random process. When the temperature is
changed, the trajectories correspond to the transient phenomenon
during which the random processis nonstationary. Consequently the
probability distribution o states changes with time as shown in
Figure 5. 14 for three time instants (¢, t,, ¢5), where ¢, is the instant
at which the temperature parameter is changed, ¢, is an instant in
the transient region and ¢, is an instant in the steady region after
the random process became stationary. Note that the probability
distributions may not be related to the energy landscape during the
transient phenomenon. But once the thermal equilibriumis reached,

Stochastic Networks and Simulated Annealing

Fi gure 5.14 Probability distribution
o states at a given new
during
transient phenomenon
at three instants o
time (¢, > & > ¢) (@
Energy landscape. (b),
(© and (d) are proba
bility distributions at
and ¢,

I\

state —

temperature

times ¢, f
respectively.

(a)

)

©

C)]

PLT,)

PATY)

P(Ty

. Ne——" L ®)

_/\/\/\ (C)

J O

state —

Fi gure5.15 Stationary probability

distribution at three
different temperatures
for a stochastic network
(To < T, <T). (a) Energy
landscape. (b), (©) and
(d are stationary
probability distri-
butions at temperatures
T,, T, and T, res
pectively, with Ty = O.

the stationary probability distribution shows some relation to the
energy landscape. In particular, the peaks in the probability
distribution correspond typically to deeper valleys o the energy
|andscape.
Figure 5.15 shows the stationary probability distributions at

178 Feedback Neural Networks

different temperatures. At higher temperatures the probability
distribution is moreflat, indicating that severa higher energy states
are also likely with high probability. At T = 0O, the probability
distribution showsimpulsesat the states which are fixed stable points
and at which the energy is minimum. Probabilitiesd nonminimum
energy states are zero. Moreover, the probability d astateisinversely
proportional to the energy at that state. Hence the average energy
at T = 0 is minimum. The average energy at thermal equilibrium at
T=z0 is higher for higher temperatures. This is because the energy
landscape is fixed, but the probability distribution of states is flatter
at-higher temperatures than at lower temperatures.

5.4.6 Simulated Annealing

From the above analysis we can see that the matching probability
distribution o states for a given network gives the lowest average
energy at T = 0. When the network is used as a memory to store a
given set o patterns, the average error in the recall will be minimum
if the probability distribution of the given patterns matches the
optimal probability distribution d the stable states of the network at
T = 0. This can happen only by determining an optimal size o the
network and the connection weights. Determination of a suitable
architecture and adjustment o the weights are discussed in
Section 55. But the adjustment o weights or learning involves
determining the probability distribution at T = 0 for each presentation
of a pattern input, by going through a sequence o temperature values
starting from a high temperature to finally T = 0. Thus for each
application o a training pattern the network is said to be annealed
to obtain the probability distribution matching the energy |andscape.
To reinforcethe given pattern, the weights are adjusted i n accordance
with the statistics d the outputs d the units collected at the end o
the annealing process. The objective is to ultimately shape the energy
landscape for the given distribution o the input patterns so as to
obtain a low probability d error in the recall. But if the number o
patterns to be stored is smaller than the number d energy minima,
then during recall the network may settle in a state corresponding
to an energy minimum not used for storage. Thisis called the local
minima problem.

The existence d locad minimamay result in an error in the recall,
even though the training attempts to match the given distribution o
patterns with the energy landscape d the network. For recall, when
an approximate input is given, the network is alowed to reach an
equilibrium state near T = 0, following an annealing process starting
from a high temperature. Thia will reduce the effects o local minima
and thus reduces the probability d error in the recall. Using the
given approximate input as a constraint, we want to arrive at a state

Stochastic Networks and Simulated Annealing 179

that corresponds to a minimum energy o the given network. The
information corresponding to the state gives the desired pattern to
be recalled.

Both training and recall o patternsin a stochastic network use the
process o annealing controlled by the temperature parameter. The rate
o change o temperature, called annealing schedule, becomes critical in
realizing the desired probability distribution o statesnear T = 0. This
processis cdled simulated annealing [Kirkpatrick et al, 19831.

54.7 Example of Simulated Annealing

In this section we consider an example to illustrate the ideas o
stochastic update, thermal equilibrium and simulated annealing. The
exampleis adapted from [Aleksander and Morton, 19901. For this we
take the three unit binary network with symmetric weights shown
in Figure 5.7. For each unit, the probability of firing for an activation
x is assumed to be

Ps=1]x) = - 1 (5.83)

For-each temperature T a separate state transition diagram can be
derived, whichindicates the transition from each stateto other states.
Let usillustrate the calculation o the transition probabilitiesfor one
state, say s;8.83 = 011. Assuming only one unit is alowed to change
at a time, for each unit we can compute the activation value (x —)
using);, w; s;— 6; . For a temperature T = 0.25, the values of P(1]x)

for units 1, 2 and 3 are 0.6, 0.92 and 0.23, respectively. The corres-
ponding probabilitiesfor not firing P(0|x) = 1 - P(1|x) are 0.4, 0.08
and 0.77, respectively for the units 1, 2 and 3. A change of state from
011 to 111 occursif thefirst unit fires. Since each unit can be chosen
with a probability o 1/3, and the probability d unit A firingis 0.6,
the transition probability from 011 to 111 is 0613. Likewise the
transition probability from 011 to 001 is 0.0813 and from 011 to
010 is 0.7713. Since only these transitions are possible from
011, besides self-transition, the probability o self-transition is given
by 1 - 0613 - 00813 - 0.7713. The transition probabilities for the
state 011 for three different temperatures (T = 0.0, 0.25 and 0.5) are
shown in Figure 5.16. It can be seen that in the deterministic case
(T = 0) the transitions to the state 001 are not possible becauseit is
at a higher energy levd. For nonzero temperature there is a nonzero
probability of transition to all possiblestatesincludingto a state with
higher energy value. These transition probabilities get distributed
more evenly at higher temperatures.

The complete state transition diagram for T = 0.25 shows a tran-
sition with nonzero probability from every state to its neighbouring
(Hamming distance = 1) states. The transition probabilities for all

180 Feedback Neural Networ ks

0 0 0
0 1 0 1 0 1
0.7 0.7 0.7
0.028 [0.118
0.333 0.516 0.516
Glo 0.333 C1010'200 61010174
0.1 }1 0.1 ’1 0.1 il
0.333 1 1 0.256 | 11 0.192 1 1
Y 0 Y 0 Y 0
0 0 0
1 0 1 0 1 0
-0.2 -0.2 -0.2
(a) T=00) T=025 ©T=10

Figure5.16 State transtion probabilities for the state 011 at different
temperatures.{a) T=0,(b) T=025and (c) T = 1.0.

the eight states for T = 0.25 case are shown in the form of a matrix
in Table 5.5. Note there are four nonzero entries in each row,
indicating the four possible transitions for each state, and these
entries in each row add up to 1.

Tabl e 5.5 State Transtion ProbabilitiesRi | at T = 0.25 for the 3-unit
Network in Figure 5.7(a)

j i| 000 001 010 011 100 101 110 111

000 | 0.617 0.019 0230 0.000 0.134 0.000 0.000 0.000
001 | 0.314 0.074 0.000 0.306 0.000 0.306 0.000 0.000
010 | 0.103 0.000 0.792 0.077 0.000 0.000 0.028 0.000
011 | 0.000 0.028 0256 0.516 0.000 0.000 0.000 0.200
100 0200 0.000 0.000 0000 0557 0.166 0.077 0.000
101 0.000 0.028 0.000 0000 0.166 0606 0.000 0.200
110 | 0.000 0.000 0306 0.000 0.256 0.000 0.161 0.277
111 0.000 0.000 0.000 0.134 0.000 0.134 0.056 0.676

For a given state transition probability matrix, it is possible to
determine the probability distribution of the states {P,(¢)} at each
instant of time t, starting with some assumed distribution at time
t=0. Let us assume equal probability for each state as the initial
state probability distribution. That is P(0) = 1/8 = 0.125, as there
are eight states.

Let P(i|j) be the probability of transition from the state j to the
statei. Since each state j occurs with probability P«z), the probability
of reaching state i in the next instant from the state j at the current

Stochastic Networks and Simulated Annealing 181

instant is Py#) P(i|). Summing this over dl states will give the
probability o the state i at the next instant and is given by

Pi+1) =Y P®PG|) fori=0,1,.,7 (5.84)

J

In matrix notation the probability distribution d states at time
t+1 isgven by
p(t+1) = Pp@),

where p(¢) = [Pi#)T is a column matrix with the state probabilities
as elements, and P = [P(i|)]7, is the transition probability matrix
with P(i]j) as elements. Therefore,

p(t) = P’ p(0), (5.85)

where P* denotes matrix multiplicationt times. From Eq. (5.85) the
steady probability distribution can be obtained when t — . Note that
the time to reach the steady state depends on the initial state
probabilities and the state transition probability matrix.

The state transition probability matrix P depends on the temper-
ature T. As the temperature is varied, these transition probabilities
aso will change. Therefore the steady state probability distribution
depends on the temperature, and hence the corresponding steady
stateis called thermal equilibrium. When the temperature is changed
say from T, to T,, then the network moves from one thermal
equilibrium condition to another thermal equilibrium condition after
going through a transient phase during which the state probability
distribution will be changing. Thisisillustrated in Table 5.6 for the
three unit network examplein Fig. 5.7(a). In the table, the notation
P,¢) indicates the probability o the state i (the integer value o the
corresponding binary state) at time t. Starting with equal initial
probabilities for all the states at T = 1, the probabilities during
transient phase are calculated until thermal equilibrium is reached.
Thermal equilibriumisindicated whenthereis no changein the state
probabilities for subsequent updating instants. At this stage the
temperature is changed to T = 0.25, and the state probabilities are
again calculated until thermal equilibrium is reached again. Finally
the temperature is set to zero, i.e., T = O, and the state probabilities
are updated until thermal equilibrium is reached. At this stage, we
notice that there are only two states with nonzero probabilities, and
these probabilities are inversely related to their state energies. These
states correspond to the stable states d the network.

In general the rate o change o the temperature parameter is
critical to arrive at the fina stable states after passing through
several stages o thermal equilibrium. This rate o change o
temperature is caled annealing schedule.

182 Feedback Neural Networks

Table 56 Illustration of State Probabilities during Simulated Annealing
for the 3-unit Network in Figure 5.7(a). (Adapted from
[Aleksander and Morton, 19901)

State Probability P.() P,&) P,t) Py&) P) Py&) Pgt) P,o)

Temp. Time't

1.0 0 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
1.0 1 0.137 0.087 0.147 0.129 0.129 0.135 0.098 0.137
1.0 2 0.139 0.076 0.158 0.128 0.130 0.135 0.093 0.141
1.0 3 0.140 0.073 0.163 0.127 0.129 0.133 0.093 0.142
1.0 4 0.140 0.071 0.166 0.127 0.129 0.132 0.093 0.142
1.0 5 0.140 0.071 0.168 0.127 0.128 0.131 0.094 0.142
1.0 6 0.140 0.070 0.169 0.127 0.128 0.130 0.094 0.142
1.0 7 0.141 0.070 0.172 0.127 0.128 0.128 0.094 0.141
1.0 8 0.141 0.070 0.172 0.127 0.127 0.128 0.094 0.141
1.0 9 0.141 0.070 0.172 0.127 0.127 0.128 0.094 0.141
0.25 10 0.152 0.015 0.230 0.119 0.135 0.139 0.038 0.172
0.25 11 0.149 0.011 0.259 0.107 0.128 0.134 0.033 0.178
0.25 12 0.148 0.010 0.277 0.103 0.122 0.130 0.032 0.178
0.25 13 0.148 0.010 0.289 0.101 0.118 0.126 0.032 0.176
0.25 14 0.148 0.010 0.299 0.101 0.115 0.123 0.032 0.173
0.25 15 0.148 0.010 0.306 0.102 0.112 0.120 0.032 0.171
0.25 16 0.149 0.010 0.321 0.102 0.108 0.113 0.032 0.165
0.25 17 0.150 0.010 0.325 0.103 0.107 0.111 0.032 0.163
0.25 18 0.150 0.010 0.328 0.103 0.106 0.110 0.031 0.162
0.25 19 0.151 0.009 0.330 0.103 0.106 0.109 0.031 0.161
0.25 20 0.151 0.009 0.332 0.103 0.105 0.108 0.031 0.160
0.25 21 0.152 0.009 0.334 0.103 0.105 0.107 0.031 0.159
0.25 23 0.153 0.009 0.338 0.103 0.104 0.105 0.031 0.156
0.25 24 0.153 0.009 0.340 0.103 0.104 0.104 0.031 0.155
0.25 25 0.153 0.009 0.340 0.103 0.104 0.104 0.031 0.155
0.25 26 0.153 0.009 0.341 0.103 0.103 0.104 0.031 0.155
0.25 27 0.153 0.009 0.341 0.103 0.103 0.104 0.031 0.155
0.25 28 0.153 0.009 0.341 0.103 0.103 0.104 0.031 0.155
0.25 29 0.154 0.009 0.341 0.103 0.103 0.104 0.031 0.155
0.25 30 0.154 0.009 0.342 0.103 0.103 0.103 0.031 0.155
0.00 31 0.140 0.000 0.438 0.037 0.045 0.106 0.000 0.233
0.00 32 0.108 0.000 0.498 0.012 0.015 0.086 0.000 0.281
0.00 33 0.077 0.000 0.538 0.004 0.005 0.062 0.000 0.314
0.00 35 0.036 0.000 0.583 0.000 0.001 0.029 0.000 0.351
0.00 36 0.024 0.000 0.595 0.000 0.000 0.020 0.000 0.360
0.00 37 0.016 0.000 0.603 0.000 0.000 0.013 0.000 0.367
0.00 38 0.011 0.000 0.609 0.000 0.000 0.009 0.000 0.372
0.06 39 0.007 0.000 0.612 0.000 0.000 0.006 0.000 0.374
0.00 40 0.005 0.000 0.615 0.000 0.000 0.004 0.000 0.376
0.00 41 0.003 0.000 0.616 0.000 0.000 0.003 0.000 0.378
0.00 42 0.002 0.000 0.618 0.000 0.000 0.002 0.000 0.379
0.00 43 0.001 0.000 0.619 0.000 0.000 0.001 0.000 0.380
0.00 44 0.001 0.000 0.619 0.000 0.000 0.001 0.000 0.380

o
[}
(=)
S
5]}

0.000 0.000 0.620 0.000 0.000 0.000 0.000 0.380

Boltzmann Machine

5.5 Boltzmann Machine

55.1 Problem of Pattern Environment Storage

The relation between probabilities and energies o the stable states
suggests that the probability of error in the recal o stored patterns
in afeedback neural network can be reduced if the weightsare chosen
appropriately. If the probability distribution o the given (desired)
patterns, called pattern environment, is known, then this knowledge
can be used for determining the weights o the network while storing
the patterns. Thetraining procedureshould try to capture the pattern
environment in the network in an optimal way. Boltzmann learning
law to be discussed in Section 5.5.3 gives a procedure to accomplish
this pattern environment storage in an optimal way for a given
feedback network. But first we shall discuss considerationsin the
choice o a suitable feedback network for the pattern environment
storage problem.

5.5.2 Architecture of a Boltzmann Machine

Given a set o L patterns, each pattern described by a point in an
N-dimensional space, it is hot clear how many processing units would
be needed for a feedback network. It may not be possible to store
them in a network consisting d N units, if the resulting number d
stable states (for a given set o weights)is less than the number d
patterns L. That is, the capacity o the network is less than L. Such
problems are caled hard problems. In generd it is difficult to say
whether a given pattern storage problem is a hard problem or not
for a given network. To be on the safe side, one can add extra units
to the feedback network. These extra units are caled hidden units,
whereas the remaining N units, to which the input patterns are
applied during training, are caled visible units. A fully connected
network consisting o both hidden and visible units (Figure5.17) and
operating asynchronously with stochastic update for each unit is
called a Boltzmann machine. Since the steady state probabilities at
thermal equilibrium follow the Boltzmann-Gibb's distribution, the
network architecture is called a Boltzmann machine [Ackley et al,
19851.

Since the network architecture is so chosen that the number o
stable states is more than the desired number o patterns, the
additional stable states become spurious stable states. Existence o
the spurious stable states results in a nonzero probability d error in
the recall, even though the network is trained to capture the pattern
environment in an optimal way. Pattern recall from a Boltzmann
machine uses simulated annealing to reduce the effects o these
additional stable states, which correspond to loca minima in the
energy landscape d the network.

Feedback Neural Networks

Visibleunits: 1, 2, 3 areinput units
6, 7 areoutput units

Hiddenunits: 4,5

Fi gure 5.17 Illustration of a Boltzmann machine.

A Boltzmann machine can also be used for a pattern association
task. Thisis accomplished by identifying a subset of the visible units
with the inputs and the remaining visible units with the outputs o
the given pattern pairs. In other words, each input-output pair is
considered as a pattern, and these patterns are stored as in the
pattern environment storage problem. For recall, the input is
presented only to the input subset of the visible units. The output is
read out from the output subset of the visible units, after the network
reached thermal equilibrium at T = 0 using a simulated annealing
schedule to reduce the local minima effects.

In general a Boltzmann machine architecture can be used for any
pattern completion task, in which the stored (input-output) pattern
can be recaled by providing a partial information about the pattern.

5.5.3 Boltzmann Learning Law

The Boltzmann learning law gives a procedure to represent a given
pattern environment by a Boltzmann machine. The law uses an
information theoretic measure to evaluate how well the environment
is represented by the network. If a perfect representation is obtained,
then there will be as many energy minima as there are desired
patterns in the environment. Moreover, these energy minima are
inversely related to the probabilities o occurrence o the
corresponding patterns in the environment. Normally since only an
approximate representation of the environment is accomplished after
training, there will be a residual mismatch o the probabilities of the
patterns in the environment with the probabilities of the stable states
o the resulting network. This mismatch, together with the inevitable
existence of spurious stable states, results in some nonzero probability

Boltzmann Machi ne 185

o error in recalling the stored patterns. In this section we will derive
the Boltzmann learning law based on an information theoretic
measure [Gray, 19901. We will discuss the implementation issues in
the next section.

Let P*(V,), a = 1,2, .., L bethe probability distribution o the
set of givenL patterns {V,}, where V, is a point in the N-dimensional
space. The superscript ‘+' denotes the desired states and their
probabilities for the visible units o the network. Note that

I P*V,) = 1. Duringrecall it is desirableto have the network settle

at one o the training patterns only. Let P<(V,) be the actual

probability distribution o the desired patterns at the visible units at
equilibriumfor a given network. The objective o training is to adjust
the weights o the network so that the difference/in the network
behaviour for these two probability distributionsis negligible. Ideally
one would liketo have P*(V,) = P*(V,),a=1,2,..,L.

The distribution P*(V,) corresponds to the desired situation o
the states at the visible units and the distribution P~(V,) corresponds
to the probability of occurrence o these states when the network is
running freely. The difference between these conditionsi s represented
by an error criterion derived based on information theoretic measure
[Gray, 19901. The error function is given by

P*(V,)
P (V,)

It is easy to show that G 20, using the relation logx 21~ (1/x). The
error function G = 0, only when P*(V,) = P~ (V,. In other words,
when G = 0 the given pattern environment is represented by the
network exactly. Using the gradient descent aong the error surface
G in the weight space to adjust the weights, we have

aG

Aw,.j o< — —a;U (5.87)

G =Y P*V,)log (5.86)

To compute the gradient dG/ow;, we will use the following relations
for the probabilities and energies o the states:

P (V) = Y, P(V,AHy, (5.88)
b

where H, is a vector d states o the hidden units, V, is a vector o
statesd thevisibleunitsand (V, A H,) representsthe state d the entire
network. P~(.) represents the probabilities d the states when the
network is free running.
Likewise
P*V,) = Y, PV, aH,) (5.89)
b

186 Feedback Neural Networks

where Hy is a vector o states d the hidden units. P*(.) represent the
probabilitiesd the states when the network isforced or clamped with
the given patterns as states o the visible units.

The energy o the network in the state V, A H, is given by

E, = —— 2 wy; 7P s (5.90)

where s# is the output o the unit i when the network isin the state
Va A Hb'

Since P™(V, a H,) represents the probability distribution of states
at thermal equilibrium at some temperature T, the probability of the
state (V, A Hy) at equilibrium is related to the energy E,, through
Boltzmann-Gibbs law as follows

-E,T e ElT

- e
P (VonHy) = 3 FET T Z (5.91)
mn
Therefore,
P (V) = % Y & T (5.92)

b
The gradient dG/dw; is given by

oG P*(V,) oP7(Vy)
a—uz‘; = —za: P_(Va) - '_awlj (593)

since P*(V,) is constant for a given pattern environment. \We have
P (V) o

= P~ (V,AH))
ow;; awu 2 b
_ e E/T V]
aa, 22 ™))
1 uI/ aE e_Eab/T aZ
__1 £z (5.94)
T % wij zb: Z2 aw,.j
From Eg. (5.90)we have
oE
Wub = -5t s, (5.95)

i
Therefore we get

oZ 1
aw,.j 2 T ow
mn
1
T

s s e Bl T (5.96)

Boltzmann Machine 187

Therefore,
dP°(V) 1 _ b ab
B, =7 zb: P (V,AHy) sibsj
_P (-
(Vo AH,) s7" s (5.97)
and
ai _ l +() ab ab
2 A
a
+—):,P (Vi AH)s™ s (5.98)
We have the following relations:
2 PV, =

P*(V, AH,) = P*(H,|V,) P*V,)
P(V,AH,) = P(H,|V,) P(V,) (5.99)

Also we know that the probability that the state Hy will occur on the
hidden units should not depend on whether the state V,, on the visible
units got there by being forced by environment or by free running.
That is

PYH,|V,) = P H,|V,) (5.100)
Hence from Eq. (5.99), we get
P (V,~H) P(V)

A TR A (5.101)
Therefore,
37(2= %P”(V AHb)s"bs"b+T2P (V. AH)s!™s™
1r + '
= -7|Pi-p5] (5.102)
where

pi =Y P'(V,AHy)sb s
ab

isthe average o the product o the outputs of the unitsi and j, when
the network is clamped and

p; =Y PV, aAH)s™ s

188 Feedback Neural Networks

is the average value o the product o the outputs o the unitsi and
j when the network is free running. The changein theweight is given
from Egs. (5.87) and (5.102) as

Awy = %[pY- p;j] (5.103)
where n is a learning rate parameter and T is the temperature at
which the equilibrium statistics are computed. This is caled
Boltzmann learning.

554 Issues In Implementation of Boltzmann Learning

Discussion on Boltzmann learning: The Boltzmannlearning law in
Eq. (5.103) is a result of using three principles: (a) Hopfield model

with symmetric weights, no salf-feedback and asynchronous update,

(b) Boltzmann-Gibb'sdistribution for probability d states at thermal

equilibrium under stochastic update o the neurons, and (¢) an
information theoretic measure for error criterion for matching the
probability distribution of the states at thermal equilibrium with the'
distribution specified for the pattern environment. In the derivation
d the law we have implicitly used the features d the Boltzmann
machine, namely, the concept d hidden and visible units, stochastic
update d the units, thermal equilibrium o the network at each
temperature and simulated annealing with a specified schedule for
annealing. Thefinal objectiveis to adjust the weightsin a systematic
way so that the feedback network will have stable states at the
desired input patterns. These states will have energiesrelated to the
probabilitiesdof the input patterns through the Gibb's law. Table 5.7
gives a summary of Boltzmann learning law. Table 5.8 lists some o

the issues in Boltzmann learning which will be discussed in some
detail in this section.

The expression in Eqg. (5.103) for Boltzmann learning shows that
thelearning has the loca property, namely, the changein the weight
connecting the units i and j depends on the values o the variables
associated with those units only. It is interesting that the gradient
descent along the information-theoretic based error surface leads to
this desirable property o a learning law. The terms pj; and pj;
correspond to the termsin a Hebb's learning law. The term p;; isthe
average o the product d the output state values for the unitsi and
j, averaged over all possble states d the network when the visible
units o the network are clamped with the patterns to be stored. Thus
p; can beinterpreted as correl ation between the output values of the
it!fl and jth units. Likewise pj is the correlation between the units
when the network is in free running condition. The contribution to
the weight change due to p;; can be viewed as Hebbian learning and
that dueto pj; can bevieweJ as Hebbian unlearning. The second term

Boltzmann Machine 189

Tabl e 57 Summary d Boltzmann Learning Lav

e The objectiveis to adjust the weights d a Boltzmann machine so as to
store a pattern environment described by the set d vectors{V,} and their
probabilitiesd occurrence. These vectors should appear as outputs d the
visbleunits. Let (H,} be the set d vectors appearing on the hidden units.

e Let P*(V,) be the probability that the outputs d the visible units will
be clamped (indicated by ‘+’ superscript) to the vector V,. Then,
P*(V)) = Y P*(V,aH,), whereP*(V, A H,) is the probability of the state

b

d the network when the outputs d the visible units are clamped to the
vector V,, and the outputs of the hidden units are H,.

» Likewisethe probability that V, will appear on thevisibleunits when none
d the visble units are damped (indicated by = superscript) is given by

P (V) = P (V,~H).
b

» Note that P*(V,) is given by the pattern environment description, and
P™(V,) depends on the network dynamics and is given by

P(V) = Y exp(~-EyT) [¥ exp(-E,,/D,
b mn
where the total energy o the system in the state V, a H, is given by
1 a a
Eab = —_2_2 wUS‘-b Sjb,
4hJ

s? refersto the output d the ith unit in the state V, A H,,.

e The Boltzmann learning law is derived using the negative gradient
descent o the functional

G =Y P*(V,)log [PV VP (V]

¢ It can be shown that
-3Ghw,; = (UD ¢},~ P,
where
By = S PV, nHY 60 5y = TPV, aHy s
ab ab

The weight updates are calculated according to

Aw; = - (@GRw,) = W/ ;- py)-

o TheBoltzmann learninglaw i simplemented using an annealing schedule
for the network during clamped and unclamped phases d the visible
units of the network to determine p; and D respectively.

can also beinterpreted as aforgetting term. Whenthetwo correlations
are equal, then we can interpret that the resulting network with the
|earned weightshas absorbed thegiven pattern environment.

190 Feedback Neural Networks

Tabl e 58 Issuesin Boltzmann Learning

Expression for Boltzmann learning: Aw, = 111[py-p;)

o Sgnificance of p; and pj;

o Learning and unlearning

» Locd property

o Choice of n and initial weights
Implementation.of Boltzmann learning

o Algorithm for learning a pattern environment

« Algorithm for recdll of a pattern

o Implementation of Smulated annealing

o Anneding schedule
Pattern recognition tasks by Boltzmann machine

o Pattern completion

« Pattern association

o Recdl from noisy or partial input
Interpretation of Boltzmann learning

o Markw property of Smulated annedling

o Clampedfree energy and full-freeenergy
Variationsof Boltzmann learning

o Deterministic Boltzmann mechine

o Meanfidd gpproximation

In the implementation o the Boltzmann learning law, there are
two distinct phases, one for determining p;; by clamping the input
pattern to the visible units and the other for determining pj;
corresponding to the free running condition. In each phase the
network is subjected to an annealing process, starting with some high
temperature and using an annealing schedule. At each temperature
in the schedule the network is alowed to reach thermal equilibrium.
The Metropolis algorithm [Metropoliset al, 19531 may be used to
arrive at the thermal equilibrium o states at each temperature. The
algorithm uses the probability law given in Eq. (5.47) for updating
the state of a unit based on the activation value (net input to the
unit). The probability law is implemented using a random number
uniformly distributed in the interval 0 to 1, and comparing the
number with the probability [Binder and Heerman, 19881. If the
difference between the generated random number and the computed
probability is positive, then the state of the unit is updated to the
new value. Otherwise the stateis unaltered. Thisis repeated for each
unit selected at random, and for several cycles. Each cycle consists
of N iterations, where N is the number of units in the network. After
a certain number o cycles the network reaches thermal equilibrium
at that temperature. At that stage the temperature is lowered to the
next value in the schedule.

Boltzmann Machine 191

At the thermal equilibrium, achieved at the lowest value of the
temperature in the annealing schedule, the productss;s; are computed
for all i and j. This processis repeated for each presentation d an
input pattern in the clamped phase. Theinput patterns are presented
one by one several times according to their frequency o occurrence
in the pattern environment. Find the averaged the s;s; from all these
trials. The resulting average value is an estimate oflp;;. The same
operations are repeated on the network in the free running condition
for the same number o trials with the same number o cydes at each
stage in each trial. The resulting average s;s; gives pj;.

To start with, the weights are set to some random initial values
in the range -1 to +1, assuming that the state o each unit in the
network is either 0 or 1 (binary units). The value o the learning rate
parameter 1 is chosenin the range of 0 to 1, preferably a small value
o 0.1. The range o temperatures for annealing also could be from
T=1to T=0.1. The weights are adjusted according to Eq. (5.103).
The algorithm for implementing the Boltzmann learning law is given
in Table 5.9.

Tabl e 5.9 Botzmann Machine Learning Algarithm far Binary Units

=

Clamp one training vector to the visble units.

Anned until equilibriumis reached at desred minimum temperature.

3. Continue to run the network for several processing cydes After each
oyde determine the connected units whose states are ‘1’ Smultaneoudly.

4. Average the cooocurrence results from Step 3.

Repest Steps 1. to 4 for Al training vectorsto get pj;.

6. Undamp the visble units, and anned until equilibrium at the desired

minimum temperature

Continue to run the network for saverd processing cydes After eech

cyde determine the connected units whose states are ‘1’ Smultaneoudy .

Average the cooccurrence results from Step 7.

9. Repeat Seps 6 1o 8 for the same number of times as in Sep 5 to get

Py
10. Cfdculate and apply the appropriate waght changes
11. Repedt Steps 1 1o 10 until pf; - pj; is sufficiently small.

N

o

®

To recall a stored pattern, the given partial input is clamped to
the appropriate visibleunits, and the network is subjected to an anne-
aling process according to a schedule to reach thermal equilibrium
at the minimum temperature. The output state o the visible units
at this stage corresponds to the pattern to be recalled. Table 5.10
gives an algorithm for recalling a stored pattern.

The Boltzmann learning is a very dow process, since a large
number d cycles are needed to obtain sufficient amount of data to
estimate the desired averagesp;; and p;; reasonably well. The learning

192 Feedback Neural Networks

Tabl e 5.10 Boltzmann Machine Recall from Partial Input

Force outputs of visible units to specified initial input binary vector.
Assign unknown visible units and hidden units to random value (O, 1).
Select a unit k at random and calculate the activation value x;,.

Assign the output s, = 1 with probability 1/(1 +e™%7).

Repeat Steps 3 and 4 until all units have a chance to update (one
processing cycle).

Repeat Step 5 for several processing cydes until thermal equilibriumis
reached at the temperatureT.

7. Lowea T and repeat Steps 3 to 6.

8. Once the temperature has been reducad to a small value, the network
will stabilize.

9. Thefinal result will be the outputs of the visible units.

GAwN

»

rate parameter n should besmall in order to take care o theinaccura
ciesin the estimates o these averages. If n is large, then thereis a
possibility of taking a large step along a wrong direction due to ap-
proximation in the computation o the gradient of the error measure.
But a small value o n further dows down the learning process.

Successdof annealing in the learning process critically depends on
the annealing schedule. The probability distribution of the states
converges asymptoticaly to the distribution corresponding to the
minimum average energy value, provided the temperature at the kth
step in the annealing schedul e satisfies the following inequality [Geman
and Geman, 1984; Aarts and Korst, 1989; Salamon et al, 19881:

TS
(5.104)

Tw2 1+logk

where T is the initial high temperature. This annealing scheduleis
too dow for implementation in practice. Several ad hoc schedules
were suggested to speed up the process d annealing. One such
method uses T}, = T/(1 + k), which is known as fast annealing schedule
or a Cauchy machine [Szu, 19861. But there is no proof o convergence
towards the minimum average energy value in these ad hoc methods.

Boltzmann machine can be used for recalling a stored pattern
from partial input, by clamping the known input at the corresponding
visible units. This is caled pattern completion task. Boltzmann
machine can also be used for pattern association task. In this case
the visible units are split into two parts, one part corresponding to
theinput pattern and the other to the output pattern. Duringtraining
both the input and output patterns are given as a pair to the visible
units. Thus all the given pattern pairs are used in the training. While
recalling, the input part o the visible units are clamped and the
recall isimplemented asin the pattern completion task. The state at
the output part d the visible units gives the associated pattern.

Boltzmann Machi ne 193

It is aso possble to recall a pattern from a noisy version o it.
In this case the noisy input patternis presentedinitially to the visible
units and subsequently the network is allowed to anneal asin a free
running condition. The initial presentation d the noisy input pattern
will bias the state d the network towards the true state and the
annealing process will be helpful to overcomethe local minimastates
to reach the deep minimum corresponding to the stored pattern.

In the operation o the Boltzmann machine the state o the
network due to a transition depends on the previous state only and
not on the states prior to the previous state (See Eg. (5.84)). Thisis
called Markov property o the simulated annealing [van Laarhoven
and Aarts, 1988; Haykin, 1994, p. 3161 Note that the transition
probabilities are derived assuming a probability distribution for the
update of the state o a unit and using an asynchronous update in
which only one unit is considered at a time for updating. The
probability distribution d the states o the network at a given instant
together with the transition probabilitieswill enable us to determine
the probability distribution of the states at the next instant in the
simulated annealing process (See Eq. (5.84)). This Markov property
will eventualy lead to a stationary probability distribution o the
states at thermal equilibrium. Moreover, the stationary probability
distribution in turn isrelated to the energy distribution o the states
through the Boltzmann-Gibb's law.

The Boltzmann learning law can be interpreted in terms of the
energy and probability distribution o the states as follows. Let the
partition function Z be expressed as

7Z = Ze'Eab/T = e_F/T (5.105)
ab

where F is the free energy of the system. Then we have from
Egs. (5.65) and (5.72)

F=-TlegZ (5.106)
and
- oF
Let Z3 = T e BT _E T
OF Selamped = Ee " and Zunclamped = %e ’ Then
P(V) = Y P (V,rHy
b
- Ze-E"ﬂ = Z:lamned
b Z Zu.nclamped

= 5T/ P (5.108)

194 Feedback Neural Networ ks

where F2 is the clamped free energy, i.e., the free energy when the
visible units are clamped with the state V,.
The error function G o Eqg. (5.86) can be written as

G = G-), PV,) logP (V) (5.109)
a

where G, = EP*(V,,) log P*(V,) is independent d the network
parameters such as weights. Therefore, from Egs. (5.108) and (5.109)
we get

1 o 1
G = G0+T§P+(Va)F -T§P+(V.,)F

= Go+% [Fe - F] (5.110)

where F is the average clamped free energy and Fis the full free
energy {Hertz et al, 1991, Appendix]. We can show that (See Problem
5in Ch. 5)

. _-oF°
Py = 3w, (5.111)
Therefore,
_ G
= %(p;;._ o) (5.112)

where p; and p; are given by Egs. (5.111) and (5.107), respectively.
Thus we can view the error function (G-Gy) as the difference
between the average clamped free energy and the full free energy.
The full free energy will be lower since under free running condition
the energy landscape is pefectly maiched to the probability
distribution o states at thermal equilibrium through the Gibb’s law.
In the clamped condition the stationary probabilities do not match
the energy landscape perfectly due to the constraint of the clamping.
Note that the energy landscape depends on the connection weights
and states o the network.

Computation of the average values o the correlations requires a
very large number d iterations in the Boltzmann learning law. The
implementation o the Metropolis algorithm by Monte Carlo method
[Binder et al, 19881 for state update, together with the simulated
annealing accordingto an annealing schedule, resultsin an extremely
dow learning o the Boltzmann machine. A fast learning procedure
is to simply run the machine only at zero temperature. Thisis caled
deterministic Boltzmann machine [LeCun, 19861. This has the

Boltzmann Machi ne 195

disadvantage df getting stuck in shalow minima. Consequently, the
pattern environment cannot be exactly matched with the network.

A Dbetter approach for learning which retains some d the
advantages o the stochastic nature o the network is caled
mean-field annealing [Peterson and Anderson, 19871. In the
mean-field annealing the stochastic nature o the neuronsis replaced
by mean values o the outputs d the units. That is, according to the
Eqg. (5.78)for bipolar units we have

(s;) = tanh/T')

1
= tanh [FZ,: w (s,-)] (5.113)

We get one such nonlinear equation for each unit i. These equations
are solved using iterative methods. This, combined with the annealing
process, can be used to obtain the average correlation values at
therma equilibrium at the minimum temperature. The average
correlation values become the product o the individua average
values. That is,

(s;8) = () (s (5.114)

The mean-field approximation minimizesthe mean-field free energy,
given by [Hinton, 1989]
1r%a

Grp = Go+ 75| Frp=Fog| (5.115)
wheref‘,:’,fisthe mean-field energy when the visible units are clamped
and F, is the mean-field free energy under unclamped conditions.
Using gradient descent, the weight update using the mean-fied
approximation is given by

3G,

Aw
BwU

i = N

2 s (55— (s) (5 (5.116)

which is the Boltzmann learning law with the average correlations
replaced by the average values for each unit. Table 5.11 gives an
algorithm for implementing the mean-field approximation to
Boltzmann learning. The mean-field approximation results in 10-30
times speed up d the Boltzmann learning, besides providing
somewhat better results [Peterson and Anderson, 19871

196 Feedback Neural Networ ks

Tabl e 511 Algorithm for Mean-field Approximation for Boltzmann L earning

1. Initialize the weights to some random val ues uniformly distributed in the
range t1.

2. Clamp the unitswith agiven pattern. Starting at some high temperature,
the network is subjected to an annealing process using each time the
mean-field values (s). The mean-field value is computed using the
recursive formula

1 .
<si>new = tanh [T Z w;j <sj>old] y U= 1, 2, aeny N
J

3. At thefinal minimum temperature compute the correlations
PZ,- = (s (sj>r .i, J =12 .,N

iwj
4. Likewise compute the correlationsp;; in the free running case
p; = {(s)(s) ij =1,2,.,N

inj
5. Compute the weight update using the Boltzmann learning law:

Awy; = %[PE‘PE]

wheren islearning rate parameter.
6. Repeat Steps 2 to 5 until convergence o weights.

5.6 Summary

Feedback neural networks are used mainly for pattern storage tasks.
In this chapter we have given a detailed analysis o simple feedback
networks for storing a set d patterns. Associated with each state o
the network is an energy value. The key idea in pattern storage by
feedback networks is the formation d basins o attraction in the
energy landscapein the activation or output state space. The Hopfield
conditions for formation of suitable energy landscape are discussed.
In order to store a set o patterns in a feedback network with
hard-limiting threshold units, a set o inequalitieshave to be satisfied
by the weights connecting the units. Thus there may be several
solutions for the weights satisfying the inequalities. The resulting
energy landscape may have additional fal se minima corresponding to
patterns not designed for storage. This happensif the storage capacity
o the network is higher than the number o patterns required to be
stored. The presence o false minima will increase the probability o
error in recall o the stored pattern.

The effect of false minima is reduced using stochastic units
instead o deterministic units. Analysis o stochastic neural network
is based on the concepts o thermal equilibrium and simulated
annealing. These concepts are used for traversal along an energy

Review Questions 197

landscape to reducethe effects of false minima during recall of stored
patterns. To reduce the probability of error in recall, the weights o
a feedback network are adjusted using the knowledge o the patterns
as well the probability distribution of these patterns. Loading o the
pattern environment is accomplished in a feedback network with
stochastic units using Boltzmann learning law. The learning law,
derived based on an informationtheoretic criterion, involves only loca
computations, and is implemented using simulated annealing accord-
ing to a temperature schedule.

Boltzmann learning law is too dow for implementation in any
practical situations involving pattern environment storage. For
practical implementation, an approximation in the form of mean-field
annealingisused. Whilethereisno guaranteefor solution, mean-field
annealing has been applied in several applications, especialy in
optimization problems. Some of these applications will be discussed
in Chapter 8.

Review Questions

1 Distinguish between autoassociation, pattern storage and pattern
environment storage tasks. Give examplesfor each task.

2 What isthe significance o the nonlinear output function o the
units in feedback neural networks?

3 Explainthe meaning o activation state and energy landscape o
a feedback network.

4 What is meant by capacity d a feedback network?
What is the Hopfield modd o a neural network?

Explain the differencesbetween discrete and continuous Hopfield
models in terms o energy landscape and stable states.

What is a state transition diagram for a feedback network?
Explain how to derive it for a given network.

What are hard problemsin pattern storage task?
How to solve the hard pattern storage problems?

Explain with the help of a state transition diagram the meaning
o stable states and false minima.

How t0 overcome the effects o false minima?

What is the significance of hidden units in a feedback network?
What is meant by stochastic update o a neuron?

Explain the concept of equilibriumin stochastic neural networks.

Explain the meaning d stationary probability distribution at
thermal equilibrium.

What is the significance o Gibb's distribution?

o O

~N

FEBRSE By e

=
o

198

B B8 R B b B

R

N
o

8 BR 8 BBR B

4B8R

Feedback Neural Networks

What is meant by stability in the case d stochastic neural
networks?

Show the probability function for update o a neuron for different
temperatures. Explain the significance d the temperature
parameter.

Discuss the behaviour d trajectories o the states during the
transient portion when temperature is changed.

Discuss the behaviour o stationary probability distributionsd the
states at different temperaturesin rel ation to the energy landscape.

Explain the behaviour d a stochastic neural network at thermal
equilibrium with reference to Brownian particle motion.

Explain how to derive the state transition diagram for a
stochastic neural network.

What differences will you observe in the state transition
diagrams at two different temperatures?

Describe a bouncing ball analogy for the dynamics of a stochastic
neural network.

. What is meant by capacity o a stochastic neural network? How

doesit vary for different temperatures?

What is meant by simulated annealing? What is annealing
schedule?

Describe the Boltzmann machine.
What is the basis for Boltzmann learning law?

What is the significancedf the Boltzmann learning law given by
Eqg. (5.103)?

Distinguish between clamped and free running conditionsin a
Boltzmann machine during learning.

Explain theimplementation details o the Boltzmann learning law.

Explain the implementation details d recall o patterns in a
Boltzmann machine.

How to perform the following tasks by a Boltzmann machine?

(a) Pattern completion
(b) Pattern association
(c) Pattern recall from noisy input.

What are the limitations d the Boltzmann learning?
What is a Cauchy machine?
What is the Markov property d the simulated annealing process?

What is meant by full free energy and clamped free energy in a
Boltzmann machine?

Problems 199

3.

30.

40.

N

10.

How do you interpret the Boltzmann learning in terms o full
free energy and clamped free energy?

What is mean-field approximationto Boltzmann learning?
What is meant by deterministic Boltzmann machine?

Problems
Derive the Murakami result in Eq. (5.12) for autoassociation
task.

Show the result of Hopfield analysis, i.e., AV < 0, for a feedback
network with binary {0, 1) units.

Draw a state transition diagram for a 3-unit mode with bipolar
(-1, +1} units.

Using the Egs. (5.65) and (5.69), derive the result in Eq. (5.70).
Show that (See Egs. (5.72), (5.107), (5.108) and (5.111))
JaF°

aw,.j

K
Ii‘j T dwy
where F and F¢ are the full free energy and the clamped free
energy d the Boltzmann machine.

Derive the expression for Aw;; for the mean-field approximation
d the Boltzmann learning. (dee [Hertz et al, 1991, p. 1721)

and pj; =

* Show that theinformation theoretic measure G = 0. (See Eq. (5.86))

Derive the complete state transition diagram for the 3-unit
network given in the Figure 5.7(a) for a temperature o T = 1.0.

For a 5-unit feedback network the weight matrix is given by

0 1 -1 -1 -3
1 0 1 1 -1

W=|-1 1 0 3 1
-1 1 3 0 1
-3 -1 1 1 0

Assuming that the bias and input d each o the units to be zero,
compute the energy at the following states.

s=1[-11111Tands = [1-11-1-1]7
A 3-unit feedback network has the weight vector given by
0 -1 -1
W=[_1 0 1}
-1 1 0

Compute the gfadient vector VV and the Hessian matrix V2V
for the energy function d the network.

200 Feedback Neural Networks

11. Consider the representation of each o the ten digits (0, 14, ..., 9)
by a matrix of 10 x 10 elements, where each element is either 1
or -1. Design a Hopfield network d 100 units to store these
digits. Study the performance o the network for recall o digits
if 10% of the elements are randomly switched.

(See [Haykin, 1994, p. 297].)

12. Comment on the capacities d the following networks:
(a) Feedforward neural network
(1) linear units C 5 M (dimensionality o the input)

(ii) nonlinear units C = 2M for large M (See [Hertz et al,
1991, pp. 111-1141).

(b) Feedback neural network with N units (SeeHertz et a, 1991,
p. 39)

C = 0.138N for large N

{(¢) Hamming network (See Hint for Problem 3 in Chapter 8 and
[Kung, 1993, p. 611)

C =2, p<l.

Chapter 6

Competitive Learning
Neural Networks.

6.1 Introduction

In this chapter we consider pattern recognitiontasks that a network
o the type shown in Figure 6.1 can perform. The network consists
d an input layer d linear units. The output of each of these unitsis
givento dl the unitsin the second layer (output layer) with adaptive
(adjustable) feedforward weights. The output functions d the units
in the second layer are either linear or nonlinear depending on the
task for which the network is to be designed. The output o each unit
in the second layer is fed back to itself in a self-excitatory manner
and to the other units in the layer in an excitatory or inhibitory
manner depending on the task. Generally the weights on the
connections in the feedback layer are nonadaptive or fixed. Such a
combination d both feedforward and feedback connection layers
resultsin some kind d competition among the activations o the units
in the output layer, and hence such networks are called competitive
learning neural networks. Different choices d the output functions

Output layer with
on-centre and
off-surround
connections

Input layer

Figure6l A feedforwardand feedback structure. The fesdforward weights
are adaptive and the weights in the feedback layer arefixed

201

202 Competitive Learning Neural Networks

and interconnectionsin the feedback layer o the network can be used
to perform different pattern recognition tasks. For example, if the
output functions are linear, and the feedback connections are made
in an on-centre off-surround fashion, the network performs the task
o storing an input pattern temporarily. In an on-centre off-surround
connection there is an excitatory connection to the same unit and
inhibitory connections to the other units in the layer. But such a
network is o theoretical interest only, as there are few occasions
where one needs to store a pattern temporarily in this manner. On
the other hand, if the output functions o the units in the feedback
layer are made nonlinear, with fixed weight on-centre off-surround
connections, the network can be used for pattern clustering. The
objective in pattern clustering is to group the given input patterns
in an unsupervised manner, and the group for a pattern is indicated
by the output unit that has a nonzero output at equilibrium. The
network is called a pattern clustering network, and the feedback layer
is called a competitive layer. The unit that gives the nonzero output
at equilibrium is said to be the winner. Learning in a pattern
clustering network involves adjustment o weightsin the feedforward
path so as to orient the weights (leading to the winning unit) towards
the input pattern.

If the output functions o the units in the feedback layer are
nonlinear and the units are connected in such a way that connections
to the neighbouring units are all made excitatory and to the farther
units inhibitory, the network then can perform the task o feature
mapping. Theresulting network is called a self-organization network.
In the sdlf-organization, at equilibrium the output signals from the
nearby units in the feedback layer indicate the proximity of the
correspondinginput patterns in the feature space. A self-organization
network can be used to obtain mapping d features in the input
patterns onto a one-dimensional or a two-dimensional feature space.

Table 6.1 shows the organization d the topics to be discussed in
this chapter. First a detailed discussion on the components o a
competitive learning network is given in Section 6.2. In particular,
we will discuss the input layer, a single instar network and a group
o instars. We will also discuss the learning laws for an instar and
the activation dynamics o the feedback network. We will show that,
with some variation the learning for the instar networks, one can
obtain the principal component analysislearning networks. In Section
6.3 an analysis o the combination network with linear unitsin the
feedback layer is presented to show the short time memory nature
o the pattern recognition task performed by such a network. In this
section the significance o different nonlinear output functions o the
units in the feedback layer is aso discussed. An analysis o the
competitive learning network for pattern clustering is given in
Section 6.4. Some applications d the pattern clustering networks are

Components o a Competitive Learning Network 203

Table 61 Pattern Recognition Tasks by Feedforward (FF) and Feedback
(FB) ANN (Competitive L earning Neural Networks)

Pattern storage (STM)
e Architecture: Two layers (input and competitive), linear processing units
e Learning: No learning in FF stage, fixed weightsin FB layer
e Recall: Not relevant
e Limitation: STM, no application, theoretical interest
o To overcome: Nonlinear output function in FB stage, learning in FF
stage
Pattern clustering (grouping)
e Architecture: Two layers (input and competitive), nonlinear processing
anits in the competitive layer
e Learning: Only in FF stage, Compstitive learning
e Recall: Direct in FF stage, activation dynamics until stable state is
reached in FB layer
o Limitation: Fixed (rigid) grouping d patterns
e To overcome: Train neighbourhood units in competition layer

Feature map

» Architecture: Self-organizationnetwork, two layers, nonlinear processing
units, excitatory neighbourhood units

¢ Learning: Weightsleadingto the neighbourhood unitsin the competitive
layer

e Recall: Apply input, determine winner

o Limitation: Only visual features, not quantitative

e To overcome: More complex architecture

also discussed briefly in this section. A detailed analysis o the
self-organization network is given in Section 6.5. Several examples
o feature mapping are given in this section to illustrate the
significance o the concept o self-organization.

6.2 Components of a Competitive Learning Network

A competitive learning network consists o an input layer with linear
units, a group o instars forming a feedforward portion of the network
and a feedback layer with linear or nonlinear units. In this section
we discuss each o these componentsin some detail .

6.21 The Input Layer

The purpose o this layer is to distribute the given external input
pattern vector to the feedforward portion d the network. But in
general the input vectors may be d varying magnitude, even though
they may contain the same pattern information. Moreover, for any
processing by a unit, it is necessary to have the inputs bounded to

204 Competitive Learning Neural Networks

some limits. In an on-line situation, the input layer should not feed
background noise to the feedforward portion of the competitive
learning network. The so called noise-saturation dilemma (discussed
in Chapter 2) for input vectors can be handled by feeding the actual
inputs from the environment to a layer of input processing units as
shown in Figure 6.2. A shunting activation model with on-centre

Input layer

External input A T I R

1 ¥

Figure6.2 Input layer with M processingunits, showing a few connections
with external inputs.

off-surround configuration takes care of the noise-saturation. problem
of the input layer, and is given by (see Eq. 2.18)

%, = ~Ax;+B-x)I,- (C+x) Y I, (6.1)
J#i
As shown in Chapter 2, the steady s’ate activation value of the ith
unit is given by
B+O)I,-CI I C B+C
R

n A+l 6.2)

where

and all the inputs (I;) are nonnegative. The above equations show
that in the steady state the activation value of theith unit is confined
to the range [-C, BIl. The output function of these units is assumed
to belinear for x > 0. That is

fx) =x, forx =20
=0, forx<0 (6.3)

The output of the units will be zero as long as the inputs I; <
CI/(B + C). That is, the input should be greater than some minimum

Components d a Competitive L earning Network 205

value before it can make the activation d the unit postive. Thus the
units in the input layers do not respond to noise input, if the noise
amplitude is bdow some threshold value. Therefore the input to the
feedforward portion is always postive and is limited to a maximum
value d B. Thus this input layer not only normalizes the input data
values, but aso takes care o the noise-saturation problem with an
on-line input data.

6.2.2 The Instar

Each unit in the feedback layer receives inputs from all the input
units. A configuration where a unit receives weighted inputs from
several units of another layer is: called an instar, as shown in
Figure 6.3. Let X = (%, g, ..., Xa)? and W = (wy, wy, ..., wpy)” be the

X1 Xi XM

Figure 6.3 An instar configuration.
input and weight vectors, respectively. The net input to the instar
processing unit is given by w'x. The activation dynamics of the instar
processing unit is given by the followingadditive model with a passive
decay term and the net input term:
@O = -yt + w'x, (6.4)

where we have assumed the decay constant to be 1. The solution of
this equation is

y(t) = y(0) et +wix (1-e% (6.5)
The steady state activation value is given by
y) = w'x (6.6)

which will be zero when the external input x is removed.

6.2.3 Basic Competitive Learning

The steady activation value with an external input depends on the
angle between the input and weight vectors as shown in Figure 6.4.
For the instar to respond maximally for a given input vector x, the
weight vector is moved towards the input vector. The adjustment o

Compsitive Learning Neural Networks

Aw(?)
wi(t)

x(t) — w(t)

x(t)

Figure 6.4 lllustration of adjustmentsof weightsin insgtar

the weight vector is governed by the following synaptic dynamics
equation (see Eq. 2.40)

w = [x-w]fy) 6.7)
where fly) is the output d the instar processing unit. In discrete
implementation the change in the weight Aw(z) is given by

Aw(t) = M [x-w@®)] Ay) (6.8)

where m is a learning rate parameter. For binary output function,
fiy)=1 or 0. Therefore the weights in the instar are adjusted only
when the output d the instar processingunit is 1. The increment in
the weight is given by

Aw() = n [x - w(t)] (6.9)
The updated weight is given by
w(t+1) = w(t) +Aw(t) (6.10)

This shows that the weight vector is adjusted in such a way that it
is moved towards the input vector to reduce the angle between them
as shown in Figure 6.4. This adjustment is repeated several times
for a given set d input patterns. When the weight vector reaches an
average position, the weight adjustment will be such that the average
movement around the weight vector will be zero. That is

€lAw] = 0 = n (Ex] -w) 6.11)

Thereforethe weight vector w will be equal to the average d the set
d input vectors.

An individual instar responds to a set o input vectors, if it is
trained to capture the average behaviour .of the set. Generally the
input patterns may fall into different categories. More than one
instar, i.e., a group o instars (Figure 6.5), can be used to capture the
average behaviour d each d the different categories o the input
patterns. One instar may 'be trained to each category d the input
patterns, so that the corresponding processing unit responds maxi-

Components of a Competitive Learning Network

Figure6.5 A group of N instars.

mally when an input vector belonging to that category is givento the
common input layer o the group o instars. Typicaly, the number
(V) o instars correspondsto the number o different categories of the
input patterns. The category o an input vector can be identified by
observing the instar processing unit with maximum response.

Plain Hebbian learning: With linear output function for the instar
processing unit, i.e., fiy) =y, one possibility is to make the output y
to be ascalar measure d similarity. Thatis, for the giveninput vector
X, the weights should be adjusted to give a large output y, on the
average. For this, if we use the plain Hebbian learning, we get

Aw; =nyx; (6.12)

wheren isthe learning rate parameter. | n this case the weights keep
growing without bound. That is, the weights never converge, which
is equivalent to saying that on the average the weight change will
not be zero. This can be proved as follows:

Taking the expectation to compute the average, we get

EAw] = E[nijxjxi] =1 w Elx; x;], (6.13)
J J

whereit is assumed that the weight vector i s statistically independent
o the input vector. Therefore the average changein the weight vector

is given by
&[AW = nRw (6.14)
where AW = (Awy, Aws, ..., Awy)¥, and R = €xxT] is the auto-

correlation matrix o the input vectors.
R is positive semidefinite, since for any vector a, we have

a’Ra = a’€[xx’]a = €[a’xx"a] = E[xTa)?] >0 (6.15)

Therefore R will have only positive eigenvalues. The weight vector
converges if €Aw) = 0. Then EQq. (6.14) states that for convergence
Rw = 0. This meansthat the resulting weight vector is an elgenvector

208 Competitive Learning Neural Networks

with zero eigenvalue, which is not a stable situation, since R has
positive eigenvalues. Any fluctuation of the weight vector with a
component along an eigenvector of R will result in a weight vector
which would grow eventualy, and the component along the
eigenvector with the largest eigenvalue will dominate.

This can be shown as follows Taking the projection of the
average change o the weight vector onto one o the eigenvectors q;
of R, we get

q/€[Aw] = N q/Rw (6.16)

This will be nonzero if w is the eigenvector q;, since Rq, = }; q; and
the eigenvedors (q;} are orthonormal. Therefore we have

q’€law] = 1 q’Rq; = N,

This projection in turn is maximum when q; is the eigenvedor wy
corresponding to the maximum eigenvalue Ap,,. Therefore we have

€law] = nRw, = A, W, (6.17)
According to Eqg. (6.17) the average change of the weight will be
dominated by the component along the eigenvector with maximum
eigenvalue. The norm o w will increase without bound, because

w(im +1) = w(im)+ E[AW] = w(m) +nA,,

w, (6.18)

Starting with aninitial value of the weight w(0) = O, and determining
the value of the weight at each time instant, we get from Eqg. (6.18)

w(m) = mn Ay, Wo (6.19)

Thus, with plain Hebbian learning, there will be only unstable weight
values.

Oja's rule: The divergence o the plain Hebbian learning can be
prevented by constraining the growth of the weight vector w. One
way of doingthisis by normalizing the weight || w {| =1 at every stage
after adjustment. Another method, called Ojas rule, uses a decay
term proportional to y* in the synaptic dynamics equation. Then the
weight update in Eg. (6.12)is modified as

Aw; = —ny2wi+nyxi
=Ny -yw) (6.20)

In this case the change in the weight depends on the difference
between the actual input and the back propagated output (yw;). The
weight vector will eventualy align with the eigenvector o R
corresponding to the largest eigenvalue [Oja, 19821.

If R is a covariance matrix, ie, R = €ix-wx-w,
u = €[x], then the final weight vector will be along the largest

Components of a Competitive Learning Network 209

principal component passing through the origin (Figure 6.6a) [Hertz
et al, 1991; Haykin, 19941. See Appendix E for details o principal
component analysis. If R is only an autocorrelation matrix, the final
weight vector will still be along the largest principal eigenvector,
passing through the origin (Figure 6.6b). But in the later case the
choice will not be optimal in the sense that the projection o the set
o input vectors on the weight vector will not be the least as in the
case d the covariance matrix. In both cases the weight vector will
settle to the normalized value f w | =1

A k ..
% % L. AT

we)

w(0)

() (b)

Figure66 lllustration d Oja’s rule for training instar. The training data
consists of vectors in 2D space, represented as dots. The line
from w(«) tO w() is the trajectory of the weight values. The
final weight represents direction of maximum variance o the
input data as shown in (a@). But in (b) the directiond maximum
varianceis the average d the input data vectors [Adapted from
Hertz et al, 1991, p. 2011

Oja’s rule finds a unit weight vector which maximizes the mean
squared output €[y2l. For zero-mean input data, this becomes the
first principal component. In order to obtain thefirst p principal cont
ponents, one can have a network with p instars. Two learning laws
for this feedforward network are given by [Sanger, 1989; Oja, 19891

Sanger’s rule:

Aw,; = nyi{xj_zwkjyk], i=1,2..,p (6.21)
k=1
Oja's p-unit rule:

Aw; = nyi[xj—ﬁwk’.yk] , 1=1,2,...p (6.22)
k=1

In both the cases the weight vectors w; converge to orthogonal unit
vectors. With Sanger's rule, the weight vectors become exactly the

210 Competitive Learning Neural Networks

first p-principal component directions in order, whereas with Ojas
p-unit rule, the p weight vectors convergeto span the same subspace
as the first p eigenvectors, but the weight vectors do not correspond
to the eigenvectors themselves. Table 6.2 gives a summary of the
learning algorithms for the principal component analysis.

Table62 Summary o Learning Algorithms for Principal Component
Analysis Networks

Consider agroup of p instars, with all the unitshavinglinear output function.
Let R be the covariance matrix of the input vectors. That isR =
E€lx -w(x-w1,u = €Ix]. Output o each unit

M
yi(m) - 2 wi(m)x;(m), i=12,..,p
i=
e Plain Hebbian learning for ith instar
Aw(m) = Ny m)x(m)
Weight vector w; converges to the direction of the first principal

component but is unbounded.
o Ojas rule for ith instar

Aw(m) = ny,(m) [x(m) -y (m)w;m)
Weight vector w; converges to the direction o the first principal

component o R.
e Ojds p-unit rule for p instars

Awij(m) =n yi(m) |: xj(m) - i wlu'(m) ¥y (m) jl ’
k=1
i=12.,p, j=12 ., M,
Weight vectors converge to p orthogonal vectors which span the same
space as the first p principal componentsd R.
e Sanger's rule or Generalized Hebbian rule for p instara

k=1
i=1,2.,p, j=12 ..M

Weight vectors converge to the first p principal component directions
o R

Bw(m) = Ny m) [x(m) = Y, w,(m) y,(m) } ,

6.24 Feedback Layer

As mentioned earlier, in the arrangement of a group of instars, the
category of an input vector can be identified by observing the instar
processing unit with maximum response. The maximum response unit
can be determined by the system itself if the outputs of the instar
processing units are fed back to each other.

Analysis of Feedback Layer for DifferentOutput Functions 211

If the processing units o a group d instars are connected as an
on-centre off-surroundfeedback network, as shownin Figure 6.7, then

Feedback layer

Input layer

Fi gure 6.7 Arrangement of group of instars with output uits connected in
an on-centre off-surround manner.

the feedback layer is called a competitive layer. In this layer thereis
an excitatory self-feedback to each unit, and an inhibitory feedback
from a given unit to all other units. The excitatory feedback is
indicated by a postive (+) weight, and the inhibitory feedback is
indicated by a negative (-) weight. Generally these weights are fixed
a priori. The nature o the output function o the instar processing
units will determine the behaviour expected from such a competitive
layer. The pattern recognitiontasksfor different output functionswill
be discussed in the next section. Figure 6.8 shows the complete
competitive learning network we have discussed sofar in this section.

Feadback layer

Input layer

Input vector

Figure 6.8 The complete competitive lear ning network structure.

6.3 Analysis of Feedback Layer for Different Output
Functions

6.3.1 Pattern Storage (STM) Networks
Earlier in Chapter 5 we have discussed the pattern storage networks

212 Competitive Learning Neural Networks

which are fully connected feedback networkswith symmetric weights.
The pattern information is captured in the weights d the network,
and the pattern storage is due to the existence d stable activation
states in the feedback network. The pattern storage in such cases is
permanent, in the sense that the patterns are available, and they
can be recalled from the network as long as the weights are fixed.
This type o storage can be viewed as long-term memory (LTM). In
contrast, we have seen in Section 6.2.1 that in an on-centre
off-surround feedforward network connection (Figure 6.2), the output
disappears when the input is removed. The pattern is present in the
activation values d the units, and the pattern disappears once the
input is removed. Thus the availability of the pattern is purely
temporary in such a case.

In this section we will study a pattern storage network wherethe
pattern is present even if the input pattern is removed, as long as
the network is not disturbed by another external input. Note that in
this case the pattern is stored in the activation values-of a feedback
layer, and the activation values remain stable due to feedback. This
type o storage is cdled short-term memory (STM). The existing
pattern information disappears if there is an externa input due to
another pattern, since the new input changes the stable activation
values to the ones corresponding to the new pattern. The three types
o pattern storage networks are illustrated in Figure 6.9.

F gure 69 Different pattern storage networks: (a) Temporary storage, (b) Short-
term memory and (¢) Long-term memory.

6.3.2 Analysis with Linear Output Functions

To analyze the pattern storage network corresponding to the short-
term memory, we will use the notation shown in Figure 6.10 for the
feedback network. The input is fed in an on-centre off-surround type

Analysis d Feedback Layer for Different Output Functions 213

Fi gure 6.10 Pattern storagenetwork with linear units in thefeedback layer.

connection to provide normalized input to the unitsin the feedback
layer. The units in the feedback layers are all linear. That is the
output functions d the feedback units are given by f(x) ==x.

The anal ysi s presented in this section is adapted from [Freeman
and Skapura, 19911. The activation dynamicsis described by the follow-
ing shunting modd within an operating range [0, B] (See Eq. (2.20)):

x; = —Ax;+ (B-x) [ﬂxi)+Ii]—xi[2 Rxp) + 2 IJ]
k=i Ji

= -Ax,+B [ﬂxi)+Ii]—x,.[P EARID) Ij] (6.23)
k J

The passive decay termis given by — Ax; and the quantity [Ax,) + I]
is the total excitatory input to the ith unit, and the quantity
[& e + % 4j]isthetotal inhibitory inpufo the ith unit. Summing

#1

the expression for «; over i and usingx = Z,x;, we get

%= —Ax+(B—x)[2 f)+ Y Ij] (6.24)
k J
Let x; = xX;. Then

%, =z X, +x X, (6.25)
Using the Eq. (6.23) to (6.25) we get
xX, = x,-xX
= B[f(xi)+Ii]-xi[Zﬂxk)+ZIj]—(B—x)Xi[2 ﬂx,,)+21j]
R J R Jj
= Bﬂxi)—xizf(xk)—(B—x) Xizf(xk)+BIi—xiZIj—(B—x)Xi ZIJ
k R Jj J

=Bfx)-BX, Y, fx)+BL,-BX, Y, I,
k J

214 Competitive Learning Neural Networks

Therefore,
xX, = B[ﬂx&)—Xi > e Xp)
k

+BL,-BX, > I, (6.26)
J

Let Aiy) = y g(y). Substituting this for fiy) in E0. (6.26), we get

xX, = B[xx,.g(x}q)-)q Zxng(xXk)] +BI,-BX, Y I,
- -

J

=BxX, 2 X,lgxX)-gxX)+BI,-BX, > I, (6.27)
k J

Since £ X, g(x X)) = g(xX) I X, = g(x X)).
For a linear output function, i.e., fiy) =y, we get gly) = L The
first term in the expression for x X; will become zero. Therefore

xX,=BI-BX, Y |, (6.28)
J
In the steady state X; = 0, and hence

I

X =5+
2
J

Thus the steady normalized activation values d the units in the feed-
back layer correspond to the normalized input patterns. Figure 6.11
shows the performance d the feedback layer with linear processing
units. Figure 6.11a showsthe linear output function and Figure 6.11b
shows the steady normalized activation values. If the input is
removed, ie., I; = 0 for al i, then from EJ. (6.28) we get x X;=0.
This shows that for nonzero x, X; = 0. That is X; = x/x = constant,
and the activation values are determined by x alone.
When I, = O, for al i, we also get from K. (6.24),

(6.29)

x=-Ax+B-x)x
= B-A-x)x (6.30)
In the steady state and for nonzero x, since x = 0, we get
X = B-A = constant (6.31)

Thus both x and X; are constant. That means x;s8 are constant. That
is, the steady state activation values will remain at some fixed,
nonzero values even after removal d the input. The steady state
values remain until they are disturbed by another set of input values.
Thus the pattern stored can be viewed as short-term memory.
Figure 6.11c illustrates the performance d the feedback layer with
linear processing units, when the input values are set to zero.

Analysis of Feedback Layer for Different Output Functions 215

fx)

o

— X

(a) Linear output function Ax) =z

External
input I |
(b) Steady state pattern (c) Steady state patternafter
with external input setting the exter nal input
tozero

Figure 6.11 Performance of feedback layer with linear processing units
[Adapted from Freeman and Skapura, 19911

6.3.3 Anaiysls with Quadratic Output Functions

The analysis presented in this section is adapted from [Freeman and
Skapura, 19911. In this section we will discuss the behaviour o the
competitive learning network d the type 'in Figure 6.10 with
nonlinear processing units in the feedback layer. In particular, let us
consider the quadratic output function Ry) = y% Then substituting
for giy) = fiy)/y = yin the expression for x X; in Eq. (6.27), we get

xX, = BxX, Y X, xX,-xX,)+BI,-BX; Y I,
- :

J

= BxX,Y x X, (X,-X,) +BI,-BX,Y 4 (6.32)
k J

If X;>X; for k # i, then the first t er mis aways positive, and hence

216 Competitive Learning Neuml Networks

it becomes an excitatory term. In this case the network tries to
enhance the activity X;. If X; <X, , for & * i, then the first term is
negative and hence it becomes an inhibitory term. In this case the
network tries to suppress the activity X;. Thus the largest X;, say
when i = j, will get enhanced in the steady state as shown in Figure
6.12b. For the intermediate cases, where (X; — X,) is greater than
zero in some cases and less than zero in some other cases, the steady
state values will be in between the maximum and zero values. When
the input is removed, i.e., I; = 0 for al i, the steady state value o
X; isgiven by setting xX; = 0 in Eq. (6.32)and x = 0in Eq. (6.24).
That is

YxXx,X,-X,) =0 (6.33)
k
and
-Ax+B-x)), (xX,)? = (6.34)
k
Eq. (6.33) gives
X, = EX,? = X2+ Y X? (6.35)
k=i

since ;X,, = 1. From Eq. (6.35) the only nonzero solution for X; is

X, =1l andX, =0,fork #1i.
Likewise from Eq. (6.34) above, we get

~Ax+B-0Y =0 (6.36)
k
or,
B> x5

k
= —a— 6.37
* A+fo ()

k

This shows that the total activation x is bounded by B, since A and
B are poditive.

The above analysis shows that when the input is zero, in the
steady state only one d the unitsis activated to the maximum value
d x;, which is equal to the total activation value x, as shown in
Figure 6.12¢c. The maximum value is bounded by B. Thus we may
say that only one unit in the feedback layer wins the competition for
a given input pattern, even after the pattern is removed. Therefore
the feedback layer is called a competitivelayer in this case. Note that
the result is valid for any function d the type ix) = x* ,n>1 In all
o these cases only one d the units will have maximum activation
and all others will have zero activation values. This may be viewed
as noise suppression, in the sense that all activation values lower
than the maximum will be reduced to zero in the competition.

Analysisd Feedback Layer for Different Output Functions 217

i /
P

(a) Quadratic output function fix) = »2

x x; xw 0 B 0

wo n w1

External
input I |
(b) Steady state pattern (c) Steady state patter n after
~ith-external input settingthe external input

tozero

Figure 6.12 Performance of feedback layer with units having quadratic
output functions[Adapted from Freeman and Skapura, 1991].

From the analysisin the previous section, we notice that pattern
storage is achieved by using feedback units with linear output
functions. Analysis in this section shows that noise suppression can
be achieved by using quadratic output functions. Thus by using a
quadratic output function for low activation and linear output
function for high activation, both noise suppression and pattern
storage (STM) tasks can be accomplished. In addition, if the output
functionincreases at a rate less than linear for large activation, then
the output is bounded all the time. The resulting output function is
like a semilinear function as shown in Figure 6.13a. In such a case,
in the steady state more than one o the units may have large
activation values when the input is present (Figure 6.13b). Likewise,
when the input is removed, in the steady state more than one unit

218 Competitive Learning Neural Networks

may reach maximum activation and all other units will have zero
activation. Thisis illustrated in Figure 6.13c.

f(x)

po

X
(8) Semilinear output function

Output | . I I - |

I=0 I=0 L,=0

(b) Steady state pattern (c) Steady state patternafter
withexter nal input settingthe exter nal input
tozero

Figure6.13 Peaformance of feedback layer with units having semilinear
output functions.

6.4 Analysis of Pattern Clustering Networks

In the previous section we have seen that a competitive learning
network with nonlinear output functions for units in the feedback
layer can produce at equilibrium larger activation on a single unit
and small activations on other units. This behaviour leads to a
winner-take all situation, where, when the input pattern is removed,
only one unit in the feedback layer will have nonzero activation. That
unit may be designated as the winner for the input pattern. If the
feedforward weights are suitably adjusted, each o the units in the
feedback layer can be made to win for a group o similar input pat-
terns. The correspondinglearning is called competitive learning. The

Analysisd Pattern Clustering Networks 219

units in the feedback layer have nonlinear fix) = ", n>1 output
functions. Other nonlinear output functions such as hard-limiting
threshold function or semilinear sigmoid function can also be used.
These units are connected among themselves with fixed weights in
an on-centre off-surround manner. Such networks are called competi-
tive learning networks. Since they are used for clustering or grouping
o input patterns, they can aso be called pattern clustering networks.

In the pattern clustering task, the pattern classes are formed on
unlabelled input data, and hence the corresponding learning is
unsupervised. In the competitive learning the weights in the
feedforward path are adjusted only after the winner unit in the
feedback layer isidentifiedfor a given input pattern. There are three
different methods o implementing the competitive learning as
illustrated in Figure 6.14. In thefigure, it is assumed that the input

Output

I nput

Figure614 lllustration of basic competitive learning laws: (1) Minimal
learning—nly connections d type A (solid lines) are trained.
(2) Mdsburg learning—nly connections d type A and B
(dashed lines) are trained. (3) Lesky learning—connections of
al the three types A, B and C (dotted lines) are trained
[Adapted from Kung, 19931

isa binary (0, 1} vector. The activation o theith unit in the feedback
layer for an input vector X = (x;, x,, ...,xM)T is given by y; =j¥1w,~,- i

where w; is the G, j)th element of the weight matrix W, connecting
the jth input to the ith unit. Let i = k be the unit in the feedback
layer such that

¥, = max(y,) (6.38)
then
wix 2 wix, fordl i (6.39)

Assume that the weight vectors to all the units are normalized, i.e.,

220 Competitive Learning Neural Networks

lw;|| = 1,for al i. Geometrically, the above result neans that the input
vector X is closest to the weight vector w, among all w;. That is

IX- w, Il < I X-w,|, foralli (6.40)

Start with someinitial random values for the weights. The given set
of input vectors are applied one by one in a random order. For each
input the winner unit in the feedback layer is identified, and the
weightsleading to the unit are adjusted i n such away that the weight
vector w;, moves towards the input vector X by a small amount,
determined by a learning rate parameter n. Note that by doing this
we are making that unit to respond more for that input. A straight
forward implementation of the weight adjustment is to make

Awy; = N (x; - wy), (6.41)
so that
wy(m T 1) = wy(m) + Awy(m)

w,, (m) + 1 (x —w,, (m)) (6.42)

This looks more like Hebb's learning with a decay term if the output
of the winning unit is assumed to be 1. It works best for
prenormalized input vectors. This is called the standard competitive
learning. Figure 6.15 shows the performance of the competitive

Figure6.15 Illustration of competitive learning. The circles (‘0" represent
input vectors and crosses (*X") represent weight vectors: (a)
before learning, and (b) after leaming.

learning law for normalized input and weight vectors for a set of 3
dimensional input vector clusters. If the input vectors are not
normalized, then they are normalized in the weight.adjustment
formula as follows:

oo
Awy,, = M {fjx—— Wy, } only for those j for whichx; = 1. (6.43)

i

Analysis of Pattern Clustering Networks 221

This can be caled minimal learning [Kung, 19931. In the case d
binary input vectors, for the winner unit, only the weightswhich have
nonzero input would be adjusted. That is

x.
j :
Aw,, = M| =— — w; |, forx; =1
ki ki |
[Z"i ’
=0, for x;=0 (6.44)

J

Thus in this case only the connections which have both 1 at either
end will be adjusted as shown in Figure 6.14 for the minimal |earning
case.

In the minimal learning there is no automatic normalization of

M
weights after each adjustment. That is Zw,: # 1. In order to
=1

overcome this problem, Malsburg suggested the following learning
law, in which all the weights leading to the winner unit will be
adjusted [von der Malsburg, 19731:

S

i

- w, l for all j (6.45)

In thislaw if a unit winsthe competition, then each of itsinput lines
gives up some portion o its weights, and that weight is distributed
equally among the active connections for whichx; = 1.

The unit i with an initial weight vector w; far from any input
vector, may never W n the competition. Since a unit will never learn
unless it wins the competition, another method called leaky learning
law is proposed [Rumelhart and Zipser, 19851. In this case, the
weights leading to the units which do not wn aso are adjusted for
each update as follows:

Awy; = 1, — ~ wy |, for allj,
xm
m
if i wins the competition, i.e., i = k
% forall i
= - wy |, forallj,
Y3,
m

if i loses the competition, i.e., i # k (6.46)

where n,, and n; are the learning rate parameters for the winning
and losing units, respectively (m,, >> 7). In this case the weightsd the
losing units are aso slightly moved for each presentation o an input.

222 Competitive Learning Neural Networks

Basic competitivelearning and itsvariations are used for adaptive
vector quantization [Nasrabadi and King, 19881, in which the input
vectors are grouped based on the Euclidean distance between vectors.
Both unsupervised vector quantization (VQ) and supervised or learn-
ing vector quantization (LVQ) algorithms are available [Kohonen,
1988; Kohonen, 19891. The basic learning laws for competitive
learning and vector quantization are summarized in Table 6.3.

Table 6.3 Summary o Competitive Learning Methods

Basic competitive learning
Assume prenormalized input vectors and weight vectors normalization.

Let X be the input vector and w; be the weight vector for ith unit in the
competitive layer. Thus if w{xz w,.Tx, for al i, then k is the winning unit.

Awy; = M @; = wy)

Minimal lear ning (for binary input vectors)

Aw

ki zx,

i

x.
T\{—J—w,ul, only for those j for which % =1

0, for =0
Malsburg |lear ning (forbinary input vectors)
P2

L
Leaky learning (for binary input vectors)

Awy, =,,(_"f_._ wkj:" for all j

X
Aw; = 1, — w; |, forallj
S
m
if i wins the competition, ie., i = k

x.
= T|1|:§'L - w,u.j,, for all j
xm

if i loses the competition, i.e., i # Kk
Vector Quantization (unsupervised)

For input vector X and weight vector for the ith unit w, if
[X-w,| £ |X-w,], for all i, then k is the winning unit. The vector
quantization learning law is given by

_Awk =NE-w,)

Analysis of Feature Mapping Network

Table6.3 (Cont.)

Lear ni ng Vector Quantization (LVQ1) (supervised)
If the dam of the input vector x is given, then

AN = n(x-w,), if thewinningclassk iscorrect
= -n(x-w,), ifthewinningclass & isincorrect

Lear ni ng Vector Quantization (LVQ2) (supervised)

If the input vector X is misclassified by the winning uit Kk, and if the
nearest-neighbour unit i has the corret class, then

Awy

Aw, = n(x-w,), for correct neighbouringunit

i

-n(x-w,), forincorrect winning unit

If the units in the feedback layer are arranged in a geometrical
fashion, like a 1-D or a 2-D array, then the update o weights could
be confined to the neighbouring losing units only. This is called
Kohonen’s learning or feature mapping which will be discussed in the
next section.

6.5 Analysis of Feature Mapping Network

In the pattern clustering network using competitive learning, only
one unit in the feedback layer is made to win by appropriate choice
of the connections d the units in the feedback layer. The number o
units corresponds to the number o possible clusters into which the
set o input pattern vectors arelikely to form. Each unit isidentified
with one cluster or a group. The units otherwise have nothing in
common among themselves. Even the physical location o a unit
relative to the other unitsin the output layer has no significance.

On the other hand, there are many situations whereit is difficult
to group the input patterns into distinct groups. The patterns may
form a continuum in some feature space, and it is this kind o
information that may be needed in some applications. For example,
it may be o interest to know how close a given input is to some of
the other patterns for which the feedforward path has already been
trained. In other words, it is o interest to have some order in the
activation o a unit in the feedback layer in relation to the activations
o its neighbouring units. Thisis caled feature mapping. The network
that achievesthisis called feature mapping network.

A feature mapping network is also a competitivel earning network
with nonlinear output functions for units in the feedback layer, asin
the networks used for pattern clustering. But the main distinction is
in the geometrical arrangement o the output units, and the signifi-
cance attached to the neighbouring units during training.

224 Competitive Learning Neural Networks

ri ng recal o information the activations of the neighbouring
units in the output feedback layer suggest that the input patterns
correspondingto these units are similar. Thus feature mapping could
also be viewed as topology preserving map from the space of possible
input values to aline or a plane d the output uits [Kohonen, 1982b;
Kohonen, 19891

Theinputs to a feature mapping network could be N-dimensional
patterns (See Figure 6.16a for a 3-D input), applied one at a time,
and the network is to be trained to map the similarities in the set
of input patterns. Anothertype o input is shownin Figure 6.16b, where

CES

oo oo
oo oo

(@) 3-D input space to (b) 2-D input spaceto
2-D output space 2-D output space
Figure 6.16 Feature mapping networks where the layers are fully
connected although only a few connectionsare shown.

the imputs are arranged in a 2-D array 0 that the array represents
the input pattern space as in the case d a textured image. At any
given time only a few d the input units may be turned on. That is,
only the corresponding links are activated. The objectiveis to capture
the features in the gpace o input patterns, and the connections are
like softwiring dictated by the unsupervised learning mode in which
the network is expected to work. This second type is more common
in topological mappings in the brain [Hertz et al, 1991, p. 2331
There are several ways d implementing the feature mapping
process. In one method the output layer is organized into predefined
receptive fields, and the unsupervised learning should perform the
feature mapping by activating appropriate connections. This can also
be viewed as orientational selectivity [Hubel and Weisel, 1962;
Linsker, 1986; Linsker, 19831l. Another method is to modify the
feedback connections in the output layer o Figure 6.16a. Instead d
connecting them in an on-~centre off-surround manner, the connections
can be made as indicated by a Mexican hat type function, a 1-D
version o which is shown in Figure 6.17. The function gives the

Analysis of Feature Mapping Network

Wy

F gure 617 A Mexican hat function in Idimension.

|ateral connection weight valuefor a neighbouring unit £ at a distance
|i — k| from the current unit i. The unit i and its immediate neigh-
bours are connected in an excitatory (+ve weights) manner. The unit
i is connected in an inhibitory (~ve weights) manner to far off units.

A third method of implementing the feature mapping processis
to use an architecture of a competitive learning network with on-
centre off-surround type df connections among units, but at each stage
the weights are updated not only for the winning unit, but also for
the units in its neighbourhood. The neighbourhood region may be
progressively reduced during learning. Thisis called self-organization
network with Kohonen's learning [Kohonen, 1982a]. Figure 6.18 shows
an example o a feature mapping using a self-organization network. It
shows a 2-D input vector and a feedback layer with units arranged as
a 2-D grid. The input and the output layers are fully connected.

Output layer

00000
0
0

Input layer

X X
{a) Network structure

(b) Neighbourhood regionsat diffe-
rent timesin the output layer

Figure 6,18 |Illustration of a self-organizing network. In the network
structure in (a) the input units are connected to all the units
in the output layer, although only a few connectionsare shown.
In the output layer all the units are connected to each other,
although the connections are not shown in thefigure.

226 Competitive Learning Neural Networks

The self-organization network is trained as follows The weights
are set to random initial values. When an input vector x is applied,
the winning unit k in the output layer isidentified such that

Ix-w, || <|lx—w;]|, for all { (6.47)

The weights associated with the winning unit k and its neighbouring
units m, identified by a neighbourhood function A(k, m), are updated
using the expression

Aw,, = NAk, M)(X-W,) (6.48)

The neighbourhood functionA(k, m)is maximumfor m = k. A suitable
choice for Ak, m) is a Gaussian function o the type

1
Mk, m) = 3= Xp (-||x, ~ r,, || %20?) (6.49)

wherer, refersto the postion d the kth unit in the 2-D plane o the
output units. The width of the Gaussian function, described by o, is
gradually decreased to reduce the neighbourhood region in successive
iterations o the training process. Even the learning rate parameter
1 can be changed as afunction d time during the training phase. The
weights are renormalized each time after the update. Table 6.4 gives
an agorithmfor implementing the self-organizingfeature map learning.

Tabl e 64 An Algorithm for Self-organizing Feature Map Learning

1. Initialize the weights from M inputs to the N output units to small
random values. Initialize the size of the neighbourhood region % (0).

2. Present a new input a.
3. Compute the distance d; between theinput and the weight on each output
unit i:
M
d :J; o @ -wolf, fori=1,2.,N
where ay?) is the input to thejth input unit at time t and w(t) isthe

weight horn thejth input unit to the ith output unit.
4. Select the output unit k with minimum distance

k = index of [mlm @)]

5. Update weight to node k and its neighbours
wit T 1) = wyt) TNE) (@) - wt)

forie g andj=1,2, ..., M, where n@) is the learning rate parameter
(0<n(@) <D that decreases with time. () gives the neighbourhood
region around the node k at time t.

6. Repeat Steps 2 through 5 for all inputs several times.

Anal ysi s d Feature Mapping Network 227

Figure 6.19illustrates theresult d Kohonen's learning for feature
mapping. In the figure the mapping is from a 2-D input to a 2-D

—>w, —>uw,
(a) initial weights

w, w,

—»w,
(o) after 50 cycles (d) after 1000 cycles

Figure6.19 Anillustrationd Kohonen's learning for self-organizingnetworks.

feature space. The input consists o a point chosen at random from
the input space defined by the region o interest, a square in this
case. The feature map is displayed by the weight values o the
connections leading to each unit in the output layer after training.
The weights for each unit is a point in the (w,, w,) Space, and the
points corresponding to adjacent units in the output layer are joined
in the figure. Initially the weights are set to some random values
around the mean. As training proceeds, the weights are modified to
span the space in the (w,, w,) plane. The shape d the spanned space
is dictated by the shape o the region (a unit square in this case)
from which the input values are sdected at random. Figure 6.20
illustrates the feature mappingfrom a 2-D input space to a 1-D layer
o output units. The spacefilling characteristic o the feature mapping
can be seen from the figure.

Finaly, Figure 6.21 illustrates the feature mapping from a 1-D
input space to a 1-D layer o output units. Here the input data is
uniformly distributed random numbers in the interval [0, 11 The
initial weightsfor al the unitsin the 1-D output layer are shown in
Figure 6.21a. The feature mapping in Figure 6.21c shows that the
weights are organized along a line. The line could have a positive or
a negative slope depending on how the feature mapping evolves.

228 Competitive Learning Neural Networks

—>wl

Nt

> fl_J —
PN IRy

—> w, —> w,
(c) after 75¢cydes (d) after 100 cydes

Hgue6 20 Anillustration d Kohonen's learning for feature mapping from
2D input to 1-D feature mapping.

(a)initial weights (b) after 50 cydes (¢) after 500 cydes

Figure&2r An illustration d Kohonen's feature mapping from 1-D input
to 1-D feature mapping.

6.6 Summary

In this chapter simple networks to perform the task of pattern
clustering have been analyzed in detail. The components of a competi-
tive learning network were discussed individually. In particular, the
principal component analysis feature of the instar layer with linear
output unitsis useful for feature extraction and data compression.

Review Quegtions 229

A competitivel earning network consistsdf afeedforward part and
a feedback part. Use o nonlinear units in the feedback layer o the
competitive learning network leads to the concept o pattern clus-
tering. Different choices of competitive learning are available for
adjusting the weights o the feedforward part o the network. Basic
competitivelearning and its variations are useful for adaptive vector
quanti zation. Supervised form o vector quantization, called Learning
Vector Quantization, was also described briefly.

The competitive learning networks can be modified to perform
the task of feature mapping. Kohonen’s self-organizationlearning law
enables us to interpret the outputs of the units in the second layer
as features in the input data. Illustrations o feature mapping from
2-D data to 2-D space, 2-D data to I-D space and |-D data to |-D
space were given. Theseillustrations demonstrate the significance of
SOM .feature of the competitive learning networks. Combination o
SOM and classification networks have been used effectively for
pattern classification applications in speech and images [Huang et al,
1992; Raghu et al, 19951

Review Questions
1 What are the componentsdf a competitive learning network?

2 Describe the operation o an input layer when it is directly
connected to the environment.

3 What is an instar network?

4. Describe the basic learning feature df an instar and discuss its
application.

5 What is the main difference between an instar network with
competitivelearningand an instar network with Hebbian learning?

6. Explain how pattern clustering can be achieved by a group o
instars with binary output functions.

7. What are principal components of an autocorrelation matrix?

8 Explain the distinction between eigenvectors o autocorrelation
and covariance matrices.

9. What is the Oja’s learning law for a single instar? How is it
different from plain Hebbian learning?

Explain the differencebetween Sanger’s rule and Oja’s p-unit rule.
What is meant by on-centre off-surround feedback network?
Give a diagram d the complete competitive learning network.
Distinguish among temporary storage, short-time memory and
long-term memory.

14. Explain how a competitive learning network with linear units
performs a short-term memory task.

ERESBS

230 Competitive Learning Neural Networks

15. Explain the noise suppression property o the quadratic output
functionin the feedback layer of a competitive learning network.

16. Discuss the performance of a competitive learning network for
semilinear output function in the feedback layer.

17. What is a pattern clustering network?

18 What are the three basic competitive learning laws?

19. What is adaptive vector quantization? What is learning vector
quantization?

20. Explain the difference between pattern clustering and feature
mapping.

21. Explain the three different methods o implementing the feature
mapping process.

22. What is a sdf-organization network?

23. What are the salient features o the Kohonen's self-organizing
learning agorithm?

24. lllustrate the concept o feature mapping with the help o an
example d mapping 2-D input onto a 2-D feature space.

25. Explain thefeature mappingd 2-D input onto 1-D feature space.

26. Explain the build up o the 1-D feature map o 1-D input values
selected at random from an interval 0 to 1.

Problems

1 Show how asingle unit instar with Hebbian learning results in
a weight vector that will increase without bound. (See [Hertz et
al, 1991, p. 200; Hassoun, 1995, p. 901)

2 Show that for the competitive network o Figure 6.12, in the
steady state when the inputs are removed, only one of the units
will have maximum output value for any output function
flx) = 2", n2 1. Also show that the activation value is bounded.
(See [Freeman and Skapura, 19911)

3. Show that the weight vector in the Oja’s rule aligns with the
eigenvector o the autocorrelation matrix corresponding to the
largest eigenvalue. (See[Hertz et a, 1991, pp. 202-204; Haykin,
1994, p. 3741)

4. Findthe eigenvector corresponding to thefirst principal component
d the following correlation matrix o a stochastic process (See
Appendix E and [Kung, 1993, p. 3051):

5 3 0
R=[3 5 3]
0 3 5

Summary 231

5 The following is the cross-correlation matrix o two stochastic
processes (See [Kung, 1993, p. 3061):
53 00
R_=|2 4 2 0
"’ [o 2 5 1}
Find the left and the right eigenvectors correspondingto the first
asymmetric principal component.

6. For feature extraction Linsker used a modified Hebbian rule for
a single unit given by (See [Hertz et al, 1991, p. 211; Hassoun,
1995, pp. 95-97D

Aw; = 1 (aix + aa; +fr +7v)
where M
j=1

and a, p and y are the parameters that can be tuned to produce

the desired behaviour. Assuming that all the input components
a, have the same mean 2, so that a; = @+ ¢, Show that

(w)) = n[?cuwﬁx[u_ ?wjn

where A and it are some combination o the constants 6, a, B, ¥
and @, and C; = (&g
7. Show that the Linsker’s rule can be defined by computing

average o the gradient descent learning Aw; = - ndE/Qw; on the
cost function

1 A 2
E = —EWTCW+§ u—ij]

J
where C = [C‘.j]. Linsker’s rule tries to maximize the output
variance subjected to the constraint that ?W = L.

8. Show that Linsker rule is unstable, i.e., {Aw,) does not tend to
zero unless the weights are subjected t0 the boundary constraint
w_sw; Sw,. Note that in contrast, the Oja’s rule maximizesthe
output variance subjected to w} =1 and hence does not need a
boundary constraint on the'weghts. (See [Hertz et al, 1991,
p.213; Hassoun, 1995, p. 97; Haykin, 1994, pp.357-3621)

M
9. Substituting y; = -21w"f a; in the Sanger’s rule
i= ;

I
Awu = nyi[aj_ L Y wk]l
k=1
and taking the average, show'that

i-1
(Aw)/m = Rw,~ ¥ [wiRw]w, - [Ww/Rw]w,

232

10.

14.

Competitive Learning Neural Networks

where w,=[w;y, wy, .., wyl”, and R=[aa). Also show by
induction that it leads to ith eigenvalue d R (see [Hertz et al,
1991, p. 2081).

Nonlinear PCA neural networks can capture higher order
statistics o the input data. One way d introducing nonlinearity
into a PCANN is by using higher order units whose output is
given by [Hassoun, 1995, p.101]

M M
i=1

Jj=1

Show that this can beinterpreted as the output o a linear unit
with the input vector as

z = [x), %, ... Xpp, X3, Xy Xgy +oo XyXpg, Koy XXy, oo XoglT
and the weight vector as

W = [wy, Wy, ... Wy, Wiy, W, .. Wop, Wag, ... Wapd' -
That is, y = wz

Also show that the principal component resulting from this
net\T/>vork corresponds to the principal eigenvector o the matrix
{zZ").

Show that the Malsburglearning Eq. (6.45)for competitionlayer

results injif:{lwﬁ = 1, if initialy the weights are normalized.
Generate a set o random points in 2-dimensional space using
four Gaussian distributions with the following means and
variances.

M ean: [-5 -5]" [-b 5)" [5 -21" {5 5]"
Variance: 4 3 2 2
Starting with four random initial weight vectors, determine the
cluster centres formed by using the competitive learning law
given in Eq. (6.42). Study the effect of different values of the
learning rate parameter.

Determine the cluster centres for the data in the Problem 12
above using the LVQ1 algorithm given in Table 6.3.

Determine the self-organizing map generated by points selected
at random from an annular ring formed by two concentriccircles.
Consider the following two cases.

(2) TheunitsintheSOM arearrangedin a2-dimensiona plane.
(b) The unitsin the SOM are arranged in a 1-D layer.

Chapter 7

Architectures for Complex
Pattern Recognition Tasks

7.1 Introduction

In the previous chapters the principles o artificial neural networks
and some basic functional units were presented. These functional
units are basic structures o neural networks capable of performing
simple pattern recognition tasks. In practice the pattern recognition
tasks are much more complex, and each task may require evolving
a new structure based on the principles discussed in the previous
chapters. In fact, designing an architecture for a given task involves
developing a suitable structure d the neural network and defining
appropriate activation and synaptic dynamics.

The pattern recognition tasks performed by human beings are
severa orders d magnitude more complex than the smple tasks like
pattern association, classfication, storage and clustering discussed
earlier. For example, the associative memory function o the biological
neural network is highly sophisticated in terms o its ability to perform
the learning, storing and recall operations. Likewise, the abilities d the
biologicd network in dealing with pattern variability as in the hand-
written characters, or with temporal pattern recognition as in speech
and image sequenceare at present impossibleto realize by an artificial
system. However, thesefeaturesd the biologica system motivate people
to develop new architectures o artificial neural networks.

While the urge is to develop an architecture to solve a real world
problem, such as involving pattern variability, the structure o the
network is still based on the well understood principles (which are
very few) of modes d neurons, connections and the network
dynamics. In all these cases the real world problems are smplified
or tailored to satisfy the constraints d the architecture, rather than
developing suitable architectures for the problems. Thus an
architecture is restricted to a class o simplified problems or to a
specific problem, but not universal.

One way to organize the networks at architectural level is as
proposed by Simpson (1990]. They are organized along the broad

234 Architectures for Complex Pattern Recognition Tasks

categories d learning (supervised and unsupervised) and aong the
broad categories o structures (feedforward and feedback). In
supervised learning the weight adjustment at each step is based on
the given input and the desired output. The adjustment may be o
correlation type, perceptron learning, delta learning, reinforcement
learning, etc. In supervised learning, the weights of the network are
determined either by learning or by computation from the given input
patterns. In feedforward structures the pattern recall is a
straightforward applicationd the computationsinvolved for each unit
once. But in feedback structures the pattern recall involves severa
cycles o computations, each cyde consisting d computations by all
the processing units on the average. The cydes are repeated until an
equilibrium state is reached. The architectures in each category are
described in a common format consisting of description of the task,
description o the topology d the network, the encoding scheme (.e.,
determination d weights), the decoding scheme (i.e., recall o pattern
information), stability, performance o the network in terms o
capacity and some applications o the architecture [Simpson, 19901.

We adopt a different approach in this chapter. We consider a few
issues in pattern recognition tasks and discuss evolution o
architectures for addressing these issues. This chapter presents five
different classes d architecture, to address five different classes o
complex pattern recognition tasks. While these architectures may not
solve the real world problems completely, their descriptions do help
in understanding the issues better and aso in developing new
architectures, once the issues for new classes d problems are clear.

Table 7.1 gives the organization o topics for this chapter. We
consider associative memories in Section 7.2, where we discuss
bidirectional associative memory in some detail. Pattern mapping
architectures are considered in Section 7.3, In particular, we discuss
the radial basis function networks for pattern classification and
function approximation problems. We also consider the counter-
propagation network which can capture both forward mapping as well
as inverse mapping (if it exists) between a pair d patterns. In
Section 7. 4 theissue d stability-plasticity dilemmais addressed using
the class d Adaptive Resonance Theory (ART) models. Architectures
for tempora pattern recognition and generation are described in
Section 7.5. In particular, we discuss the Avaanche architecture and
Time Delay Neural Networks (TDNN) for recognition d sequences o
patterns. The issue o pattern variability is discussed in Section 7.5
through the neocognitron architecture. While the pattern recognition
issues o memory, mapping, stability-plasticity, temporal patterns and
pattern variability are easly handled by human beings, the
developments of architectures in this chapter clearly bring out the
advantages and limitations of ANN models to deal with these
issues.

Associative Memory 235

Table 7.1 Organization of Neural Network Architectures based on Pattern
Recognition Tasks

Associative memories

e Linear associative memories (Hetero and Autoassociative)
Autoassociative memories (Hopfield network and Boltzmann machine)
Bidirectional associative memories
Multidirectional associative memories
Temporal associative memories
Pattern mapping networks
e Multilayer feedforward networks
e Radia basis function networks for
(a) Classification
(b) Mapping or function approximation
e Generalized regression neural networks
o Probabilistic neural networks
e Counterpropagation network
Pattern classification: Stability-plagticity dilemma
e Adaptive Resonance Theory (ART)
ART1, ART2 and ART3
o ARTMAP
e . Fuzzy ARTMAP

Temporal patterns

e Avaanche

¢ Kohonen’s phonetic typewriter

o Associative memory based network
Partially recurrent network

Fully recurrent network
Backpropagation through time

e Real-time recurrent learning network

Pattern variability
* Neocognitron

7.2 Associative Memory

Pattern storage is an obvious pattern recognition task that one would
like to realize using an artificial neural network. Thisis a memory
function, where the network is expected to store the pattern informa-
tion (not data) for later recall. The patterns to be stored may be d
spatial type or spatio-temporal (pattern sequence) type. Typicaly, an
artificial neural network behaves like an associative memory, in
which a pattern is associated with another pattern, or with itself.
Thisisin contrast with the random access memory which maps an

236 Architectures for Complex Pattern Recognition Tasks

address to a data. An artificia neural network can aso function as
a content addressable memory where data is mapped onto an address.

The pattern information is stored in the weight matrix o a
feedback neural network. The stable states d the network represent
the stored patterns, which can be recalled by providing an external
stimulus in theform o partial input. If the weight matrix stores the
given patterns, then the network becomes an autoassociativememory.
If the weight matrix stores the association between a pair o patterns,
the network becomes a bidirectional associative memory. This is
caled heteroassociation between the two patterns. If the weight
matrix stores multiple associationsamong several (> 2) patterns, then
the network becomes a multidirectional associative memory. If the
weights store the associations between adjacent pairs o patterns in
a sequence o patterns, then the network is caled a tempora
associative memory.

Some desirable characteristics o associative memories are: (a) The
network should have a large capacity, i.e., ability to store a large
number o patterns or pattern associations. (b) The network should
be fault tolerant in the sense that damage to a few units or
connections should not affect the performance in recall significantly.
(¢) The network should be able to recall the stored pattern or the
desired associated pattern even if the input pattern is distorted or
noisy. (d) The network performance as an associative memory should
degrade only gracefully due to damage to some units or connections,
or due to noise or distortion in the input. (e) Finally, the network
should be flexible to accommodate new patterns or associations
(within the limits o its capacity) and to be able to eliminate
unnecessary patterns or associations.

Linear associative memory and autoassociative memory were
discussed in detail in Chapter 5. In this section the discrete
Bidirectional Associative Memory (BAM) is discussed in some detail.
Extensions o the BAM concepts to multidirectional and temporal
associative memories are discussed briefly.

7.2.1 Bidirectional Associative Memory (BAM)

The objective is to store a set o pattern pairs in such a way that
any stored pattern pair can berecalled by giving either o the patterns
asinput. The network is a two-layer heteroassociativeneural network
(Figure 7.1) that encodes binary or bipolar pattern pairs (a;, b;) using
the Hebbian learning. It can learn on-lineand it operates in discrete
time steps. The BAM weight matrix from thefirst layer to the second

layer is given by
L

=1

Associative Memory 237

Figure 7.1 Bidirectional associative memory.

wherea;e {-1,+1™ and by« {-1,+ 1} for bipolar patterns, and L
is the number o training patterns. For binary patterns p; = {0, 1}¥
and q = {0, 1IN, the bipolar values a;; = 2p;-1 and b; = 2q;-1
corresponding to the binary elementsp;; and gj;, respectively, are used
in the computation o the weight matrix. The weight matrix from the
second layer to the first layer is given by

L
Wr' =) bal (7.2)
I=1
The activation equations for the bipolar case are as foHows:
1, ify, >0
b(m+1) = | bm), ify;=0 (7.3)
-1, if ¥;< 0
M
where y; :i=zlwﬁ a,(m), and
1, ifx;>0
a(m+1) =4{am), ifx,=0 (7.4)
-1, if x;<0

where x; = ,'>“;1 w; bi(m). In the above equations a(m) = lay(m), ay(m),
J=

.., ap(m)]T is the output of the first layer at the mth iteration, and
b(m) = [by(m), by(m), ..., by(m)]T is the output o the second layer at
the mth iteration.

For recall, the given input a,0),: = 1,2, ..., M, is applied to the
first layer and the activation equations are used in the forward and
backward passes several times until equilibrium is reached. The
stable vaues bfe), j = 1,2, .., N are read out as the pattern
associated with the given input. Likewise the pattern at the first
layer can be recalled given the pattern at the second layer.

The updates in the BAM are synchronousin the sense that the
units in each layer are updated simultaneously. BAM can be shown

238 Architecturesfor Complex Pattern Recognition Tasks

to be unconditionally stable using the Lyapunov energy function given
by [Kosko, 19921

Via,b) = ——;—bTWTa—%aTWb =—aTWb = -b"W'a (7.5)
Therefore,

N M M N
Via,b) = - Y, wab; = —2 Y, wba, (7.6)
S =1 i=1 i=1 j=1

The change in energy due to change Ag; in g; is given by

N A

a. t 4
{4

i=12 ..M (7.7)
j=1)

Likewise the change in energy due to change Ab; in b; is given by

M
AV, = -| Ywa; |Ab;, j=12.,N (7.8)
! i=1

For bipolar units,)
2o0r 0, ifx;>0

Aa; = 0, ifx,=0 (7.9)
—-2o0r 0O, ifx;<0

N
where x; = :leybj. Similarly,
Jj=
2 or 0, ifyj>0
Ab; = 0, ify; =0 (7.10)
-2 o0r 0, ify;<0

M : L ,
where y; :'E| w;a;. From these relations, it is obvious that
[=

AV, £ 0, fori=1,2.,M, (7.11)

and

Av, <0, forj=12.,N, (7.12)
which means that the energy either decreases or remains the same
in each iteration. Therefore the BAM reaches a stable state for any
weight matrix derived from the given pattern pairs.

The BAM is limited to binary or bipolar valued pattern pairs.
The upper limit on the number (L) o pattern pairsthat can be stored
is min (M, N) [Kasko, 19881. The performance of BAM depends on
the nature of the pattern pairs and their number. As the number o
pattern pairs increases, the probability of error in recall will also

Associ ative Memory 239

increase. The error in the recall will be large if the memory is filled
to its capacity. Improved methods o encoding (determination o
weights) were proposed through the use of matrix transformations
[Wang et al, 1990a; 1990b; 19911

Extensions o the discrete BAM have been proposed to deal with
analog pattern pairs in continuous time. The resulting network is
called Adaptive BAM (ABAM) [Kosko, 19871. I n this case the pattern
pairs are encoded using Hebbian learning with a passive decay term
in learning. For recall d the patterns, the additive mode o the
activation dynamics is used for units in each layer separately.
According to the ABAM theorem the memory is globaly stable.

722 Multidirectional Assoclatlve Memory

The bidirectional associative memory concept can be generalized to
store associations among more than two patterns. The multiple
association memory is aso called multidirectional associative memory
(MAM) [Hagiwara, 19901 As an illustration, the architecture o MAM
is shown in Figure 7.2 for the case o associations among three

wos__ A |

Figure7.2 lllustration d multidirectional associative memory for three layers
d units.

patterns (a;, by, ¢;). The three layers d units are denoted as A, B, C
in the figure. The dimensions of the three vectors a;, b; and ¢, are
N, N, and N3, respectively. The weight matrices for the pairs o
layers are given by
L L L
Wis = Y ab], Wge =D, bel, Wg, = Y cal (7.13)
I=1 I=1 I=1
and
Wy = Wip, Wep = Wae, Wuo = W, (7.14)

For recall, the activation equations for the bipolar case are
computed as shown bdow for the layer B

240 Architecturesfor Complex Pattern Recognition Tasks

1, ify, >0
b(m+1) = § b(m), ify =0 (7.15)
-1, ify <0
forj=1, 2, ..., Ny, where
Nl Ns
y; = 2 Wapii ai(m)+2 Wepj; ¢(m) (7.16)

i=1 i=1
where wyg;; is thejith element of the weight matrix Wag, and weg;j;
is thejith element of the weight matrix Weg.

The outputs cim + 1) and a;m *+ 1) are likewise computed. Each
unitin alayer is updated independently and synchronously based on
the net input from units in the other two layers. The updating is
performed util a multidirectionally stable state is reached.

The BAM isonly a specia case o MAM. Due to associations among
severa layers to be satisfied simultaneoudly, the information recovery
for the partial input is better in MAM than in BAM [Hagiwara, 19901.

723 Temporal Associative Memory (TAM)

The BAM can be used to store a sequenced temporal pattern vectors,
and recall the sequence o patterns [Zurada, 1992, Sec. 6.61. The basic
idea is that the adjacent overlapping pattern pairs are to be stored
in a BAM. Let ay, ay, ..., a; be a sequence o L patterns, each with a
dimensionality d M. Then (a,, a,), (a,, 83) ,..., (8;, &+1), ..., (AL _ 1, &)
and (az, a) form the pattern pairs to be stored in the BAM. Note
that the last pattern in the sequenceis paired with thefirst pattern.
The weight matrix in the forward direction is given by

L-1
W=Y aal,,+a al (7.17)
i=1
The weight matrix for the reverse direction is given by the transpose
o the forward weight matrix, i.e., by W7
The recall steps are exactly the same as for BAM. When stable
conditionsare reached, thenitis possibleto recall the entire sequence
d patterns from any one pattern in the sequence. The TAM has the
same kind d limitations as those d BAM in its error performancein
recall and also in its capacity for storing a given length (L) o a
sequence o patterns.

7.3 Pattern Mapping

7.3.1 Background for Pattern Mapping Networks
The multilayer feedforward neural network with error backpropaga-

Pattern Mapping 241

tion learning was primarily developed to overcome the limitation of
a single layer perceptron for classification o hard problems (non-
linearly separable classes) and to overcome the problem of training
a multilayer perceptron (due to hard-limiting output function) for
these hard problems. In this so called backpropagation network the
objective is to capture (in the weights) the complex nonlinear
hypersurfaces separating the classes. The complexity d the surface
is determined by the number o hidden units in the network. Strictly
speaking, any classification problem specified by the training set o
examples can be solved using a network with sufficient number o
hidden units. In such a case, the problem is more d a pattern
association type than d a classification type, with no restrictions on
the associated patterns asin the case o alinear associative network.

In a classification problem the input patterns belongingto a class
are expected to have some common features which are different for
patterns belonging to another class. The idea is that, for a pattern
belonging to any d the trained classes, the network is supposed to
give the correct classification. In other words, for a classification
problem, the trained neural network is expected to perform some kind
o generaization, which is possible only if there are some features
common among the input patterns belonging to each class, and these
features are captured by the network during training. Generalization
has no meaning for arbitrary association d one pattern to another
asin the case o arbitrary Boolean functions. Generalizationalso has
no meaning if the training set consists o all possibleinput patterns
as in the XOR problem.

Some specia association tasks may have common features hidden
too deep in the input, like in the parity problem [(Minsky and Papert,
19901 In this case the feature characterizing the similarity o
patterns belonging to the same class is not reflected directly in the
bit pattern d the input vector. For example, 00110000 and 00001111
both beong to the same class d even parity, and 01110000 and
00000111 both belong to the class of odd parity, although the odd
parity pattern 01110000 is closer t 0 the even parity pattern 00110000
in the Hamming distance sense. In these cases the representation of
the input patternsis crucial to achieve generalization by a network.
Preprocessing d the input vectorsis to be performed separately to
extract the desired features for feeding the features to a neural
network. A neural network by itself may not be able to extract
automatically the desired features due to limitations o operations it
can perform on theinput data, and moreimportantly, due to masking
o the desired features by the other undesirable, but dominating
features in the input.

Therefore a trained neural network is expected to exhibit the
generalization property for the classification problems in which
groups d the input patterns belonging to a class possess some

242 Architectures for Complex Pattern Recognition Tasks

common features within each group. Another way o looking at this
problemisthat there should be some redundancy among the patterns
in each group in order to develop a system for classification. Note
that the class label that is assigned to a group or a collection of
groups could be quite arbitrary. In other words, the mapping d a
group of input patterns to an output or a class label need not have
any restrictions.

Another class o problems deals with capturing the mapping
function implied in the given training set o input-output pattern
pairs. Here the mapping function represents the system that produced
the output for a given input for each pair of patterns. A trained neural
network is expected to capture the system characteristics in their
weights. The network is supposed to have generalized from the
training data, if for a new input the network produces the same
output which the system would have produced. The generalization o
this mapping function in the network can be tested by a set of test
input-output pattern pairs. Note that in this case the mapping
function must exhibit some smoothness or redundancy, as the given
training data is usually not adequate to sample the function at all
points. Note aso that the set of input patterns themselves could be
quite arbitrary. So generalization in these cases is possible only if
the mapping function satisfies certain constraints. Otherwise, the
problem of capturing the mapping function from the training data
set will be an ill-posed problem [Tikhonov and Arsenin, 19771
Assuming that the constraints are satisfied by the mapping function,
they are forced on the approximating function using regularization
methods, so that the ill-posed problem becomeswell-posed [Poggio et al,
19851 Finally, generalizationby a network is also possiblein situations
where both the input patterns in a group and the mapping function
have redundancies displayed in the form of common features among the
patterns in a group and smoothness in the function, respectively.

A multilayer perceptron (MLP) architecture is suggested to
address arbitrary pattern association tasks which could not be solved
by either a linear associative network due to restriction on the type
and number o input patterns or by a single layer perceptron due to
linear separability constraint on the classification task specified by
the input-output mapping.

A multilayer feedforward neural network (MLFFNN) can be used
to realize an approximation to a multilayer perceptron (MLP) for
complex (arbitrary) pattern association tasks. It is not intended
specifically to solve a pattern classification or pattern mapping
problem, as both require generalization based on 'closeness property
in classification and 'smoothness property in mapping, respectively.
In other words, a MLFFNN trained with backpropagation |earning
is neither designed to exploit the property o 'closeness for
generalizing a classification task, nor is it designed to exploit the

Pattern Mapping 243

property o 'smoothness to generalize a function approximationtask.
It is designed mainly to provide discrimination between patterns
belonging to different classes.

The distinction between what is being achieved by a MLFFNN
and what is needed to be achieved for classification and function
approximation tasks is illustrated in Figure 7.3 [Lowe, 1995].-Mere

Data space

SN

Classification Data closeness
(MLP result) (Desiredresult)

(a) Classification problem
Function approximation Function smoothness
(MLFFNN result) (Desired result)

Xoox x
%

x X

% x

(b) Function approximation problem

F gure 7.3 Digtinction between two patter n recognition tasks asrealized by
a trained MLFFNN and the desired results: (a) Classification
problem and (b) Function approximation problem.

manipulation o the structure o a neural network and learning o a
MLFFNN are not likely to achieve the generalization required for a
given problem. Even if the generalization behaviour o a trained
MLFFNN is confirmed by cross-validation, it is only an ad hoc
solution. There is no guarantee d obtaining the desired result. This
is because, the network is not designed specifically to address the
generalization problem. Moreover, it is not generally possble to
analyze a MLFFNN to understand the task each layer is performing.

In fact, if the given problem is known to be a classification
problem based on the closeness o data in the input vectors, then
specific architectures can be evolved to achieve generalization. Such
architectures tend to be much simpler than a general MLFFNN, and

244 Architectures for Complex Pattern Recognition Tasks

training aso is likey to be simpler than the backpropagation
learning. It is aso possible to improve the generalization capability
by incorporating a priori knowledge about the patterns in the
classification task. However, developing architectures will be much
more difficult if the classification is based on deep features present
in the data, and if preprocessing needed to extract these features is
not explicitly included as part o the network.

Likewise, if the given problem is a function approximation based
on the smoothness o the mapping function o the given input-output
data, then specific architectures can be evolved to achieve
generalization in such cases. Here again these architectures tend to
be much simpler than the MLFFNN, and the training involved also
will be trivial in most cases. It is possible to improve the generaliza-
tion capability using regularization which involves imposing some
smoothness constraints explicitly on the mapping function. The
smoothness constraint is intended to reflect the a priori knowledge
d the function. However, developing architectures for proper
generalization is much more difficult if the mapping function is not
smooth at the given data level. Even if smoothness d the mapping
function is present at some deep feature leve, it is not possible for
the network to generalize, unless preprocessing o the data to obtain
the features is explicitly known and implemented in the network.

For discussion, we assume that the training set data consists d
pairs d input-output vectors represented by (a,b), I = 1,2, ..., L.
For a classification task, b, is an N-dimensional -vector d zeros and
ones, with a 1in the jth postion if the input vector a, belongsto the
jth class. This is caled 'hard’ classification. There may be severa
input vectors, which are close to each other, and hence may have the
same b, associated with them. In many situations, it may be desirable
to have the N-dimensional output vector to represent an estimate d
the probability distribution d the classes for the given input. That
is, the jth component o b, corresponds to the probability that the
input vector belongs to the classj. In this case the sum o al the
components in b; will add upto 1. The input vector a, could be an
M-dimensional vector of ones and zeros or a vector o real numbers.

In the function estimation or pattern mapping the output vector
b, is an N-dimensional vector o real values. The function estimation
can also be viewed as a nonparametric regression problem, as we are
trying to determine a network that realizes the best fit function for
the given input-output pairs d data.

In this section we will consider the tasks o pattern classification
and multivariate function approximation (or pattern mapping). In
both cases the learned network should generalizewell, which means
that the network should give the correct classification for a new (test)
data input in the case o a classification task and a reasonable
approximation to the true function value for a new (test) data input

Pattern Mapping 245

in the case o a function approximation task. We will discuss
architectures o the Radial Basis Function (RBF) network suitable
for these tasks. We assume that the 'closeness property for the
classfication tasks and the 'smoothness property for the function
approximation tasks are satisfied in the given training set data.

7.3.2 Architecture of Radial Basis Function (RBF) Networks

The architecture of a radial basis function network is shown in
Figure 7.4. It consists d a single hidden layer with nonlinear units,
followed by an output layer with linear units.

[4 Gy by Wy

Figure 7.4 General form of a radial bass function network. The nonlinear
basisfunction of thejth hidden unit isa function of the normal-
ized radial disance (la-pilfa;) between the input vector
a = lay, az, ..., aml’ and the weight vector wy = [y, M -

associated with the unit. Normalization factor o; decides
the range of influence of the jth unit around its centre w;.

The output of the kth unit in the output layer of the network is
given by

J

by, =, wyh (7.18)

j=0

where ki = ¢ia-w oy, j = 1,2, ., Jand kg (= - Dis the output
of the bias unit, so that w,g correspondsto the bias on the kth output
unit. The nonlinear basis function ¢{.) of the jth hidden unit is a
function of the normalized radial distance between the input vector
a=(ayas .., ay)7 and the weight vector ;i = (W, Wiz, s Kine)"

246 Architecturesfor Complex Pattern Recognition Tasks

associated with the unit. The normalizing factor o; decides the range
of influence of thejth unit. If the basisfunction isa Gaussian function
of the type #(x) = exp(-x%2), then the weight vector p; corresponds
to the mean value o the function and o; corresponds to the standard
deviation. For a multidimensional vector x with zero mean, the
Gaussian function is given by ¢(x) = exp(- xR 'x), where R is the
covariance matrix of the input vectors, namely, expectation of xx’.
The significance d the radial basis function is that the output of the
unit is a function of the radial distance, i.e., h; = ¢;(ll a- K;|/c)). On
the other hand, in a multilayer feedforward neural network,
h; = ¢ja™w)), i.e., the output is a nonlinear function of the scalar product
d the input vector and the weight vector.

7.3.3 Theorems for Functlon Approximation

Before we discuss RBF networks for function approximation, it is
worthwhile noting the following two theorems for function approxi-
mation, one based on the linear basis function and the other based
on the radial basis function [Kung, 1993L

Theorem 1: Functlon approximation by linear basis function.
[Cybenko, 1989; Funahashi, 19891. Let A be a compact subset o
/M and F(x) be a continuous function onA. Then for any £ >0, there
exist an integer N and real constants ¢;, w; and 6; such that
| F(x)- F(x)] <€ for al x < A, where

. . N M
Fx) = F(x,, 25, ., %yy) = 3, cif[z wijxj+9iJ (7.19)
i=1 j=1
and fl.) is any nonconstant, bounded and monotonically increasing
continuous function. The argument of the function A.) is a linear

weighted sum of the component values, i.e., T w;x;t6;. Therefore
J

A iscaled linear basis function. In this approximation the function
f() could be like the semilinear output function d a MLFFNN. Thus
this function approximation, in principle, can be realized by a
MLFFNN with a single layer o hidden units and an output layer o
linear units.

Theorem 2: Function approximation by radiai basis function. Let
A be a compact subset of ® and F(x) be a continuous function on A.
Then for any ¢> 0, there exist an integer N and parameters w; and
¢; such that |F(x) - F(x)| < ¢ for all x € A, where w;s are M-dimen-
sional parameter vectors corresponding to the centroids of clusters,
so that

A A N
Fx) = F(x;, %5, .,) = 9, ¢, 8(1 X~ W, D (7.20)

i=1

Pattern Mapping 247

where g(.) is a nonlinear function with unique maximum centered at
w; [Powell, 1988, Broomhead and Lowe, 1988; Moody and Darken,
19891 The argument d the function g(.) forms the basis o the
function. Since the argument is the radial distance between the
variablevector X from the centroid vector w;, thefunction g(.) iscalled
the radial basis function. The function approximation itself is called
the radial basis function approximation. Gaussian functionis one o
the commonly used nonlinear functions for g(.).

The above theorems are called universal approximation theorems.
They show the existence o the parameters to approximate a given
function. Inthe context of neural networks, both the theorems suggest
that a feedforward network with a single hidden layer with nonlinear
units can approximate any arbitrary function. But the theorems do
not suggest any method o determining the parameters, such as the
number o hidden units and weights in order to achieve a given
accuracy for the approximation o the function.

734 RBF Networks for Function Approximation

In the RBF networksthe weights (i; 6;) o the hidden layer units are
determined directly from the data. No learning is involved. The
weightsw, o the output layer are determined by supervised learning
[Broomhead and Lowe, 1988; Moody and Darken, 19891 For function
approximation task the error to be minimized in the supervised
learning is given by

EF)=EyF)Y+AMERF) (7.21)

where Ep, is the error due to the given data in the form o input-
output pair (a;, b)), ER is the contribution due to regularization, and
A is the regularization parameter. The error term Ep, is given by

1 & &

EpF) =35 Y Y (b -by)? (7.22)

I=1k=1

Note that 4, is a function o the input data and the parameters o
the network, i.e., b, = F(a;, wy). The regularizationterm Ep depends
on the prior knowledge o the function or some globa knowledge
derived from the given data. This knowledgeis normally represented
in the form of a smoothness constraint on the mapping function
between the input and the output. In one form of smoothing, the
weightsof the network are constrained using the following expression
for the regularization term [Hergert et al, 19921

EnF) = % > D wh (7.23)
j ok

Inclusion o this term favourssmall values o the weights. It can also

248 Architectures for Complex Pattern Recognition Tasks

be viewed as a 'weight decay' term, since the weight change is
proportional to the negative gradient o the error (See Eq. (4.77)),
and the negativegradient o Ex(F) givesa decay termin thelearning
equation (See Eq. (2.22)).

Smoothing constraint is also expressed in the form o the square
o the derivatives of the mapping function, namely,

ExF) = 5 I PFI? (7.24)

where P is alinear differential operator, and || . || is the Ly norm. For
example, P could be a simple second derivative o F with respect to
w. Then minimization o the square d the derivative restricts the
discontinuous jumps in the function [Poggio and Girosi, 1990].

In the expression for E(F) in (7.21), if A = 0, then the error is
dictated by the given training data. For a sufficiently large (in terms
o number of hidden units) network, it is possble to determine the
weights o the network so that we can get an approximate
interpolating function as shown by the solid line in Figure 7.5a for
a 1-D case, whereas what is desired is the function shown by the
dashed line [Wahba, 19951. Thus the network fails to generalizefrom
the data due to overfitting o the data. Thisis not desirable, as the
given training data can be usualy noisy. In order to improve the
generalization capability, the A parameter is made nonzero. For a
suitable choice d A, we get a reasonable estimation d the function
as shown by the solid line in Figure 7.5b, where the dashed line
shows the desired function. For large h, if the smoothing functionis
restricted to small valuet i.e., || PFF|P < ¢, then the resulti ngfunction
is a poor estimate o the desired function as shown in Figure 7.5¢,
because the error term due to data does not play a significant role.
Thus the parameter A controls the performance of the pattern
mapping network. The value d the parameter A can be inferred from
the given data using probability theory and Bayes theorem for
conditional probability [Mackay, 19951.

(a) (b) ©

Fgure75 Function approximation for different values of regularization
parameter A: (a) A too small, (b) A near optimal and (c) A too
large. X indicates actual points. Dashed line is the desired
function. Solid line is the realized function.

Pattern Mapping 249

The regularization problem is to find the function F(.) that
minimizes the error given by Eqg. (7.21), where the second term due
to regularization is a constraint on the desired level o smoothness
d the function. The smoothness constraint is usually in the form d
a differential operator, as noted before.

Let us consider one dimensional case, i.e., the function F()) is a
scalar function and hence there is only one output unit for the
network. Then

ED(F) =

N [=

L
Y, [d,~F(a))® (7.25)
I=1

We have Ex(F') = 1 Il PFFI2, where Pis a linear differential operator.
The minimization problem reduces to solving the following differential
eguation [Poggio and Girosi, 19901

L
PPF = 3 3. [d,- F(@) &a - 8. (7.26)

=1

where P*is the adjoint of the differential operator P [Haykin, 19941
and &) is a delta function.
Let G denote the Green's function for the operator P°P, so that

P'PG(a:a) = 3(a-a) (7.27)
Then the solution o the regularization problem is given by [Haykin,
19941

Fa) = Y w,Ga:a) (7.28)
=1
where
w, = = ld, - Fa)] (7.29)

G is the Green's function for the ith input pattern. The Green's
function is a result d the smoothness constraint expressed in the
form o a differential operator. If the differential operator PP is
invariant to rotation and translation, then the Green's function is a
function o the magnitude d the difference o its arguments, i.e.,
G(a:ap) = G(la-a). In such a case G is caled a radia basis
function. For some special cases o the differential operator P, the
radial basis function becomes a multivariate Gaussian function
[Haykin, 19941.

Thus the solution o the regularization problem leads to a radial
basis function as shown in Figure 76 for the |-D case, where the
Green's function is shown by ¢ (.). The weights are determined by
minimizing the error E in Eg. (7.21) which consists d the squared
error between the desired and actual output values, and the
regularization term, the extent o which is determined by the

250 Architectures for Complex Pattern Recognition Tasks

t(a-a)

Figure 7.6 Radia basi s function network for function approximation,with
one output unit and L hidden units.

parameter h. In the above formulation the number o hidden unitsis
equal to the number d training samples (L) and the centres of the
basis function are located at the sample values a,.

A suboptimal solution to the function approximation is obtained
using fewer basis functions. That is, using the radial basis functions,
the function Fis given by

H
F@) = 3, w;o(la~pl) (7.30)

i=1

where H<L, and p; are the centres o the basis functions to be
determined from the given data. The weights d the output units and
the centres o the radia basis function can be determined by
computation using al the training set data [Haykin, 19941.

For a 1-D output function, the desired output d, is a scalar for
the given input vector a,. That is,

d, = F(a). (7.31)

Minimizing the error in Eq. (7.21) without regularization (h = 0), the
optimum weight vector W = [w,, wy, ..., wgl® is given by

w=&'d (7.32)

whered = [d,, d,, ..., dL]T, and @' is the pseudoinversed the matrix
¢11 ¢12 ¢1H

® = ¢21 ¢22 ¢2H (733)

b1 G2 - O

Pattern Mapping 251

The elements of the matrix are given by
;i =oUla-wl), =12 .,H j=12,.,L (7.34)
The pseudoinverse d @* is given by
at= @ o)-'o” (7.85)

If regularization (h # 0) is used in the error function, then the
corresponding expression for the optimal weight vector is given by
[Haykin, 19941

w = (®T® + hoy)'o’d (7.36)

where @, isan H x H matrix whose jith element is ¢(| ;- w; I)-

The weights can also be determined by using supervised learning
methodslike LMS algorithm, i n which the weight adjustment at each
stage is given by (See Chapter 1)

Aw; = -1 [d; - fla)] (7.37)

where 1 is the learning rate parameter.

7.35 RBF Networks tor Pattern Classification

Given a set d training samplesin the form o input pattern vectors
a,! =1, 2 .., L and the associated class labels, the objective in
pattern classification is to design a system which can classify any
new input vector a correctly by assigning the correct class label to
it. Note that in a classification problem there will be fewer classes
than the number o trai ning patterns, and hence all the class labels
are not distinct. In thetraining set there may be many pattern vectors
associated with each o the distinct classesin the problem.

The pattern classification problem can be posed as follows [Lowe,
19951: Given an input pattern a, determine the class label C; such
that the a posteriori probability P(C; (a)df the class C; is maximum
among all classes. This probability can be computed using the
probabilities p(a| C,) and p(a), since

(a|C) P(C)
P, e = PO

where p(a| C;) gives the probability distribution d the data generated
for the class C; and p(a) is the probability distribution d the data
vector irrespective d the class. These probability distributions can be
expressed in terms o a linear combination of some standard
distribution y(a), say Gaussian, in order to reflect the possible
multimodal nature d the distribution of the data a belonging to any
class. These mixture distributions can be written as [Lowe, 19951

(7.38)

252 Architectures for Complex Pattern Recognition Tasks
p(a) = Y, o, y(a), (7.39)
k

and .
p@lC) = 3, B v(a). (7.39)
j

where o, and B} are coefficients o the standard distribution functions.
Therefore,

B, vi(a)
PC;la) =), PC)<—"L——
(C;}2) ; (,)gak%(a)

_ Z P(C) Bji o; y{a)

-] o 3 oy y(a)
k

= 2, w;¢a)
J

where $,(a) is the normalized basis function and w; = P(C)) Bj'/oy; is
the contributiond the output o the basisfunction to the output unit
correspondingto theith class C;. Thus the expression for P(C;|a) can
be viewed as a bass function formulation d the classification
problem, and the corresponding radial basis function network is
shown in Figure 7.7.

Basisfunction
¢,(a)

Input
vector a

Figure 77 Radiad basis function network for pattern classification. The
number o input nodes depends on the dimensionality o the input
vector. The number d output nodes is equa to the number d
distinct classes. The number o hidden nodesisequa tothe number
d basis functionsused in the network The number and shapes o
the bhasi s functions depend on the closeness the input data in
thetranng set.

Pattern Mapping 253

The basis functions for classification tasks are determined from
the input data in the training set. The number and shapes o the
basis functions depend on the 'doseness property o the input data
in the training set. This can be determined using an unsupervised
clustering o the input data. The representation of the clusters is
somewhat smplified if the basis functions are assumed to be o
Gaussian type, so that the parameters o each cluster can be
determined by computing the firg (mean) and second (covariance
matrix) order statistics of the input data for each cluster. In other
words, the probability distribution of each cluster is assumed to be
elliptical. Note that in the classification task the basis functions are
solely determined by the distribution of pointsin the training set in
the input space. It involves determination o clusters first and then
fitting a distribution to each cluster. The number clusters and the
parameters o the basis functions can be either computed using the
entire training set data or can be learned using learning techniques
[Haykin, 19941

Once the basis functions are determined, then the weightsin the
output layer can be obtained from the training data either by
computation using matrix inversion or by supervised learning using
gradient descent methods.

To illustrate the steps involved in a pattern classification task,
let us consider the 2-Dcluster points given in Figure 7.8, where each
classisindicated by a separate symboal like <, ‘O, etc. The fird step
is to determine the clusters using any standard clustering algorithm
[Haykin, 19941 or by any o the unsupervised learning methods

a,

@ @

Figure 7.8 2-Ddata pointsbeonging to three classes.

254 - Architecturesfor Complex Pattern Recognition Tasks

described in Chapter 6. The number d clusters can be fixed a priori,
or a criterion may be used to determine the optimum number d
clusters [Dubes, 19871. Then a basis function is derived for each
cluster. If a 2-D Gaussian function is assumed, then the mean and
covariance matrix are derived for each cluster to represent the
corresponding Gaussian baceis function $(a). That is

. 1
- ,(21:)M |R|1/2

where p is the mean vector d the cluster points and R is the
covariance matrix o the cluster. The ijth element o the matrix R is

given by

e-@-WTR(a-p) . (7.41)

Rg,' = ; (@; - 1) (azj - l»lj)’ i,j=1,2 (7.42)

where | is the index for the sample pattern in the cluster, and
W = @;and; = g;arethe mean values o theith and jth components
d the input vectors. They are given by a; = ¥ ai for all i. For the

kth cluster, ¢ = ¢, and the mean vector and covariance matrix can
be indicated by p = p* and R = R*, respectively.

The basis functions specified by the mean vector and the
covariance matrix for each cluster determine the computations to be
performed at the hidden units. The number (H) of hidden units is
equal to the total number o clusters:

The number (N) o the output units is equal to the number o
distinct classes. The desired response for the classification task is
represented by an N-dimensional vector, with a 1 at the output o
the unit corresponding to the correct class, and a 0 at the output
o all other units. That is, the desired output vector is given by d =
[0020, .., 0] for aninput pattern a belonging to the class 3.

Using the training set data, which consists o a set d input
vectors and the desired class labels, the output weights w; can be
determined by any o the following methods:

1. Determination o weights by matrix inversion:
For the Ith pattern pair, the error between the desired and
actual outputsis given by

N H 2
= Z ldu‘ 2wy 4’,’(31)] (7.43)

j=1

The total error E = T E is minimized to determine the
optimum weight matfix. This requires computation df
pseudoinverse o a matrix and uses all the training data in
the computation of the matrix.

Pattern Mapping 255

2. Determination o weights by learning using LMS algorithm:
Since the output units are assumed linear, the instantaneous
error can be used to adjust the weights as in the LMS
algorithm. That is,

(7.44)

H
Awy = - [du- 2 w; 9(@)
j=1
where n isthe learning rate parameter.

For the optimum weight matrix, the network output F(a) from
the ith unit is an approximation to the conditional expectation
€ld;| a] in the mean squared error minimizing sense. The conditional
expectation €Id;| al in turnisequal to the probability P(C;| a) [White,
1989; Richard and Lippmann, 19911.

Thus a trained radial basis function for classification gives as
output the a posteriori probabilities P(C;|a), i = 1,2, ..., N, for a
given input vector. The class C, for which P(C;|a) is maximum for
al i, isthe class to which the input vector a belongs.

We have noted that the basis function networks provide several
advantages over the multilayer feedforward neural networks. The
main advantage is that the training o the basis function networks
is much faster than the MLFFNN. Thisis because the basis function
networks are developed specifically for the tasks such as function
approximation or pattern classification, instead o arbitrary mapping
that is sought to be achieved by the MLFFNN. Thefirst layer of the
basis function network involves computation d the nonlinear basis
function values for each new input vector in order to determine the
outputs d the hidden units. These computationsgenerally take much
more time than for the linear basis function (inner product)
computationsin a MLFFNN. Thus the pattern recall takes more time
for the basis function networks.

There are other types d networks where the training is
completely avoided. They are cadled Generalized Regression Neural
Networks (GRNN) for function approximation tasks and Probabilistic
Neural Network (PNN) for pattern classification tasks [Specht, 1991,
Specht, 1988; Specht, 1990; Wasserman, 19931. Both of them typically
use as many hidden units asthere are training input patterns. These
networks are similar to the basisfunction networks, except that there
is no training involved. GRNN is based on nonlinear regression theory
and can be designed to approximate any continuous function [Specht,
19911. On the other hand, PNN is based on Bayesian classification
theory and uses Parzen windows to approximate the probability
distribution o the input pattern [Parzen, 19621. GRNN finds the
regression estimate, i.e., the expected value d the output o the
network given the input vector. This can be shown to be an optimal
estimate in the mean squared sense. Any estimate that is optimal in

256 Architectures for Complex Pattern Recognition Tasks

the mean squared sense also approximates a Bayesian classifier
(Geman et al, 1992; Richard and Lippmann, 19911. Thus GRNN and
the PNN can be related.

The effectiveness o dl the basis function networks depends on
the choice o suitable windows or basis functions with appropriate
values for the spreads. This is because of the dependence d the
networks on the loca nature o the input space. In contrast, the
M_FFNN captures the global information. Any attempt to make the
choicesd the windows optimal increases the training time due to the
optimization process involved in determining the number o clusters,
cluster centres and their spreads.

736 Counterpropagatlon Network

In a multilayer feedforward neural network the training process is
dow, and its ability to generalize a pattern mapping task depends
on the learning rate and the number d units in the hidden layer. In
the use d radial basisfunctionsthe unsupervised part o the learning
involves determination o the loca receptive field centres and the
spread in the input data corresponding to each hidden unit. The
centres are determined using a vector quantization approach. This
could be done either by computation or by learning from the input
data. On the other hand, a different pattern mapping strategy,
namely counterpropagation, uses winner-take-all instar learning for
the weights from the units in the input layer to the units in the
hidden layer. The counterpropagation network (CPN) provides a
practical approach for implementing a pattern mapping task, since
learning is fast in this network [Hecht-Nielsen, 1987; Hecht-Nielsen,
19881. The network(Fi gure 7.9) consists of two feedforward networks
with a common hidden layer. The feedforward network formed by

Layers 1 2 3 4 6
Fi gure 7.9 Counterpropagation network.

Pattern Mapping 257

layers 1, 3and 2is usedfor forward mapping and the network formed
by layers 5, 3 and 4 is used for inverse mapping (if it exists) between
the given input-output pattern pairs. Each feedforward netwrok uses
a combination o instar and outstar topologies. The first and second
(hidden) layers of a feedforward network form a competitivelearning
system and the second (hidden) and third layers form an outstar
structure. Learning takes place in the instar structure o the
competitive learning system to code the input patterns a, and in the
outstar structure to represent the output patterns b,. The training of
the instar and outstar structures are as follows

Tralning instars of CPN:

1 Select an input vector a;, from the given training set
(al’ bl)’ l = 1, 2, very L.

2. Normaize the input vector and apply it to the CPN
competitivelayer.

3. Determine the unit that wins the competition by determining
the unit £ whose vector w, is closest to the given input.

4. Update the winning unit's weight vector as
Wim +1) = w,(m) +10 (a, - w,(m)).

5. Repeat Steps 1 through 4 until all input vectors are grouped
properly by applying the training vectors several times.

After successful training the weight vector leading to each hidden
unit represents the average o the input vectors corresponding to the
group represented by the unit.

Tralnlng outstars of CPN:

1 After training the instars apply a normalized input vector a,
to theinput layer and the corresponding desired output vector
b, to the output layer.

2. Determinethe winning unit & in the competitive layer.
3. Update the weights on the connections from the winning
competitive unit to the output units
vi(m + 1) = vi(m) +1 (b, — vi(m)).
4. Repeat Steps 1 through 3 until all the vector pairs in the
training data are mapped satisfactorily.

After successful training the outstar weight vector for each unit
in the hidden competitivelayer represents the average o the subset
o the output vectors corresponding to the input vectors belonging to
that unit.

Depending on the number o units in,the hidden layer, the

258 Architectures for Complex Pattern Recognition Tasks

network can perform any desired mapping function. In the extreme
casg, if a unit is provided in the hidden layer for each input pattern,
then any arbitrary mapping (a,, b,) can be realized. But in such a
case the network failsto generalize. It merely stores the pattern pair.
By using a small number o units in the hidden layer, the network
can accomplish data compression. Note also that the network can be
trained to capture the inverse mapping as well, ie., a, = ¢ (b)),
provided such a mapping exists and it is unique. The name
counterpropagation is given to this architecture due to the network’s
ability to learn both forward and inverse mapping functions.

7.4 Stability-Plasticity Dilemma: ART

Many pattern mapping networks can be transformedto perform pattern
classfication or category learning tasks. However these networks have
the disadvantagethat duringlearningthe weight vectors tend to encode
the presently active pattern, thus weakening the traces o patterns it
had aready learnt. Moreover, any new pattern that does not belong
to the categories already learnt is still forced into one o them using
the best match strategy, without taking into account how good even
the best match is. Thelack o stability of weights as well the inability
to accommodate patterns belonging to new categories, led to the
proposal o new architectures for pattern classification. These
architectures are based on adaptive resonance theory (ART) and dre
specidly designed to take care o the s0 called stability-plasticity
dilemma in pattern classification [Carpenter and Grossberg, 19881
ART also uses a combination d instar-outstar networks asin the
CPN, but with the output layer merged with the input layer, thus
forming a two-layer network with feedback as shown in Figure 7. 10.
The minimal ART network includes a bottom-up competitivelearning

F, Layer
o SR In
[w}i]
-M [v
Gain 1 x, _x
control O ' o .- d bl
G -
1
a, a, ay,

Figure7.10 ART network.

Stability-Plasticity Dilemma: ART 259

system (F; to F,) combined with a top-down (Fy to F,) outstar
pattern learning system. The number of units in the F, layer
determines the number o possible categories o the input patterns.
When an input pattern a; is presented to the F, layer, the system
dynamicsinitially follows the course of competitive learning, leading
to a winning unit in the competitive F, layer depending on the past
learning o the adaptive weights of the bottom-up connections from
F, to F,. The signals sent back from the winning unit in the F, layer
down to F, via a top-down outstar network correspond to a prototype
vector. This prototype vector is compared to the input pattern vector
at the F, layer. If the two vectors match well, then the w nni ng unit
in the F, layer determines the category d the input pattern. If the
match is poor, as determined by a vigilance parameter, then the
winning unit in the F, layer does not represent the proper class for
the input pattern a. That unit is removed from the set o allowable
winnersin the F, layer. The other unitsin the F, layer are likewise
skipped until a suitable match is obtained at the F, layer between
the top-down prototype vector and the input vector. When a match
is obtained, then both the bottom-up and top-down network weights
are adjusted to reinforce the input pattern. If no match is obtained,
then an uncommitted unit (whose category is not identified during
training) in the F, layer is committed to this input pattern, and the
corresponding weights are adjusted to reinforce the input. The above
sequence o events conducts a search through the encoded patterns
associated with each category, trying tofind a sufficiently closematch
with the input pattern. If no category exists, a new category is made.
The search process is controlled by two subsystems, namely the
orienting subsystem and the attentional subsystem. The orienting
subsystem uses the dimensionlessvigilance parameter that establishes
the criterion for deciding whether the match is good enough to accept
the input pattern as an exemplar o the chosen category. The gain
control process in the attentional subsystem alows the units in the
F, layer to be engaged only when an input pattern is present, and it
also actively regulates the learning [Freeman and Skapura, 19911.

Stability is achieved in the ART network due to dynamic matching
and control in learning. Plasticity is achieved in the ART duetoits ability
to commit an uncommitted unit in the F, layer for an input pattern
belonging to a category different from the categories already learnt.

In ART information from units reverberates back and forth
between two layers. Once the proper patterns develop, the neural
network can be said to be in resonance. Duri ng this resonance period
the adaptive weights are adjusted. No learning takes place beforethe
network reaches a resonant state.

ART1 network was proposed to deal with binary input patterns
[Carpenter and Grossberg, 1988]. The algorithm for binary valued
ART1 is asfollows [Bose and Liang, 1996]:

260 Architecturesfor Complex Pattern Recognition Tasks

wj; is the weight from the ith unit in the F, layer to thejth unit
in the F, layer.

w; is the weight vector leading to the jth unit in the F, layer
from all units in the F, layer.

v; is the weight from the jth unit in the F, layer to the ith unit
in the F, layer.

v; isthe weight vector (prototype vector) emanating from the jth
unit in the F, layer to all the unitsin the F, layer.

Initially set all the components of all the prototype vectors to 1.
Thatisv; = 1, for all i and j. This will enable the uncommitted units
inthe F, layer also to competein the same way as the learned units.

Initialize all wys to random values in the range 0 to 1

1. Enable dl the units in the F, layer.

2. For an input binary pattern a to the F, layer, determine the
winner unit kK in the F, layer by computing

k = arg[max wJTa].

J
3. A similarity measure between the winning prototype v, and
the input a is computed and compared with a vigilance
parameter (0<p<1). The similarity measure gives the
fraction d bits of athat are aso present in v,. That is

T
v,a

M
Ta
I =

Once the prototype associated with the winner unit k passes
the vigilance test, then go to Step 4 to adjust the weight
vectors associated with the kth unit both in the forward and
backward directions.

If the vigilance test fails, then the output unit k is disabled
and another winner is selected by repeating Steps 2 and 3.

If none of the committed units in the F, layer passes the
vigilance test, then an uncommitted unit is committed to the
input pattern and the corresponding prototype vector v, is set
equal to the input pattern a That is v, = a

4. The weights are adjusted as follows:
vlk(m + 1) = Ulk(m) A al, i = 1, 2, arey M

2 p

where a is the logical AND operation and

vym+1
wy(m+1) = ‘:l() , i=12 ..M

0.5+, vy(m+1)
i=

w,(m T 1) can be viewed as normalized version of v,(m * 1),

Stability-Plasticity Dilemma: ART 261

normalized with the number o 1’s in the vector. The factor
0.5 in the denominator is used to avoid division by zero. With
this choice o w,, the inner product w}'a computed in Step 2
can beinterpreted asthefraction o bits o the prototype vector
v, that arein the input vector a aso. Thus the winner-take-all

ecision selects the winner unit that corresponds to a
prototype vector that has maximum number o bits matching
with the bitsin the input vector a.

In implementation the ART1 network operates automatically through
the use o the gain parameter (G) and the reset parameter (R).

The gain control unit operates as follows: If al the units in the
F, layer are OFF, then G = L If one o the units in the F, layer is
ON, then G = 0. The gain parameter Gis generated using the function

M
G=fl Y a-MY y-05 (7.45)
i=1 J

wherefix) = 1, if x>0, andfix) = 0, if x < 0. The quantity y, is the
output d the j/th unit in the F, layer and is either 1. or 0 depending
on whether the unit j is a winner or not. If all unitsin the F, layer
are OFF, theny, = O, for j = 1,2, ..., N. Assuming that there is at
most one nonzero component in the input vector a, the argument o
) is greater than 0. Hence G = 1.

For any winning unit in the F, layer, one d the y;s will be 1.
Then the argument o A.) isless than 0. Hence G = 0.

The output o the ith unit in the F, layer is given by

N
% =f|a+, v;5,+G-15 (7.46)

j=1

This computes the output o the ith unit in the F, layer as
x; = a; Avy if the unit k is the winner, sincey, = 1andy, = O, for
j = k,and aso G = 0. If none o the units in the F, layer are ON,
theny, = O, for al jand G = 1, and hence x; = a;, for dl i. Thus
equation (7.46) represents a 2/3 rule since x; = 1if any two out d
the three variables in the argument are 1L

The reset value R is computed as follows

M M
R=1 pZai—in] (7.47)
i=1 i=1
If the vigilance test
25 XAy T

vpa

Zai—‘Zai =Zai>p

(7.48)

Architecturesfor Complex Pattern Recognition Tasks

succeeds, then the argument o f(.) will be negative, and hence
R = 0. That is there is no reset. On the other hand, if the vigilance
test fails, then the argument off (.) is positiveand henceR = 1. Then
the current winning unit is disabled and all the unitsin the F, layer
are reset to OFF. Hence G = 1. Therefore another winning unit will
be selected.

Figure 7.11illustrates the clustering performanced ART1 for 24
binary patterns each having 4 x 4 pixels. It can be seen that lower
vigilance p = 0.5 case produces fewer clusters than the larger
vigilancep = 0.7 case. ART2 network was developed to self-organize
recognition categories for analog as well as binary input patterns
[Carpenter and Grossberg, 1987; Carpenter et a, 1991b]. Figure 7.12
illustrates the clustering of analog signals by an ART2 network. Here
50 patterns, each o 25-dimensional vector d analog values are
clustered for two values d the vigilance parameter p. As expected
smaller vigilance value produces fewer clusters.

A minima ART network can be embedded in a larger system to
realize an associate memory. A system like CPN or multilayer
feedforward network directly maps pairs o patterns (a;, b;) during
learning. If an ART system replaces the CPN, the resulting system
becomes self-stabilizing. Two ART systems can be used to pair
sequencesd the categoriesself-organized by theinput sequences. The
pattern recall can occur in either direction during performance asin
BAM. This scheme brings to the associate memory paradigm the code
compression capabilities, as well as the stability properties d ART
[Carpenter, 19891.

ART3 network was developed for parallel search of distributed
recognition codes in a multilevel network hierarchy [Carpenter and
Grossberg, 19901. All these three ART models are based on unsuper-
vised learning for adaptive clustering. On the other hand, ARTMAP
architecture performs supervised learning by mapping categories o
one input space onto categories of another input space, and both the
sets o categories are determined by two separate ART systems
[Carpenter et al, 1991a]l. Fuzzy ARTMAP extends the ideas o
ARTMAP to include additional knowledge in the form o production
rules and fuzzy logic [Carpenter et al, 1991¢; Carpenter and
Grossberg, 19961.

Note that ART models belong to the classd match-based learning
as opposed to error-based learning o the backpropagation networks.
In match-based learning the weights are adjusted only when the
external input matches one o the stored prototypes, whereas in
error-based |learning the weights are adjusted only if thereisan error
between the actual output and the desired output. Thus match-based
learning tends to group similar patterns whereas error-based learning
tends to discriminate dissimilar patterns.

provosre [EE G P R R M D R G

TIE i P S R O
K RENRRGEA
Eﬁ &

(@

protorype PP PR EE SO 0 D CRCH O P PP R i)

R 2 O 0 W A A 0 R A
- ﬁﬂﬂ ™

Figure 7.11 Clusteringof random bi nary patterns by ART1 network for two different valuesof the vigilanceparameter. (a) p = 0.5

and (b) p = 0.7. The top row in each case showsthe prototype patter nsextracted by the ART1 network [Adapted from
Hassoun, 19951.

LYV owwapyy 103s01d-411129018

€92

Architectures for Complex Pattern Recognition Tasks

264

‘[e661 ‘umossely woly pajdepy] "(q) 10J anfea ay) uey) Jafjews sI (B) JOJ onyea Jajaourered
soueq31a oy, Isjourered SoUB[BIA 9Y) JO SIN[EA JUAISPIP OM] I0oj WIomjou ZIYV 4q s[eudis Joreus jo Suuesny) ZI°L dandrg

@

”® EE F43 1€ ot

*l

S EH LTS

T

; NN
RZIE Lol el vz 58 e Im T I 2w S o
®
Wy
EAEE Ty U A S e A B A Y e IR

Temporal Patterns 265

75 Temporal Patterns

The ANN architectures described so far are applicable for recognition
of patterns on the basis of information contained within the pattern
itself. Even if a sequence o patterns with temporal correlationsis
presented, the previous or subsequent patterns have no effect on the
classification d the current input pattern. But there are many
applications (for example, speech recognition) where it is necessary
to encode the information relating to the time correlation of spatial
patterns, as wel as the spatial pattern information itself.

In a temporal pattern the ordering among the componentsin the
sequencei s important. The components themsel vea may be fixed/rigid
like printed text symbols, or they may be varying naturally due to
production and context as in the case o sound units in speech or
symbolsin a cursivescript. Tempora patterns could be very complex
depending on the extent d influence of the context and the inherent
variability o each component. In this section we consider simple
temporal pattern sequences in which each component is o fixed
duration, and it depends only on the components adjacent to it.

There are three types d problems involving temporal sequences
[Hertz et al, 19911

(a) Sequence recognition in which the objective is to determine
the classlabel o a given temporal pattern. Thisis like the standard
pattern classification task performed by a multilayer feedforward
neural network.

(b) Sequence reproduction in which the desired temporal pattern
is generated from a partial input of the pattern. This is like an
autoassociation task in the feedback neural networks. This can also
be viewed as a pattern completion task. One can aso interpret
prediction of time-series data as a sequence reproduction task.

(c) Temporal association in whichthe desired sequenceis generated
as an output in response to a given input sequence. Th'S can be viewed
as generaization d the heteroassociation task for temporal sequences.

Architecturesfor temporal pattern recognitiontasks have evolved
from the well-understood principles o multilayer feedforward and
feedback neural networks. In order to use modes based on these
known architectures, it is necessary to represent the temporal pattern
as a static spatial pattern. For this representation, delay uits are
used to store a fixed number of components belongingto the preceding
instants. Thus atemporal pattern isrepresented using a tapped delay
line as shown in theinput layer in Figure 7. 13. Thefigureillustrates
an architecture for temporal pattern recognition using a multilayer
feedforward neural network. The disadvantage o this approach is
that the length o the sequence has to be fixed a priori. Als0, alarge
number d training sample sequences are required for learning and

266 Architecturesfor Complex Pattern Recognition Tasks

T

) x(-T) x(-2T) x(t-MT)

FHgure 7.13 A tapped delay neural network with one input and M delays
in the input layer, one hidden layer and a single unit output
layer.

generalization. Moreover, the input signal must have precise time
registration. Many natural signalslike speech do not conform to these
restrictions.

One d the early architectures proposed for classification of spatio-
temporal patterns (STP) is based on the Grossberg formal avalanche
structure [Grossberg, 19691. The structure d the network shown in
Figure 7. 14 resembles the top two layers o the CPN, and both use
multiple outstars [Freeman and Skapura, 1911 The avalanche
architecture shows how a complex spatio-temporal pattern can be
learned and recalled. Let a(t) = (a,(t), ay(t), ..., ay(t)) be the spatial
pattern required at time t. The sequence d a(¢) at time intervals o
Atintheranget, < t < t, correspond to the desired spatio-temporal
pattern. The unit labelled ¢, is activated and a(t,) is applied, which

t, t,+ At t,

a,()

b,(®) b (#) bu(2)
H gure 7.14 Avalanche architecture.

Tempora Patterns 267

is to be learned by the outstar's output units. The second pattern
a(t,+At) is applied while activating the second outstar, |abelled
t, T At. This process is continued by activating successive outstars
until all the patterns in the sequence have been learned. Replay o
the learned sequence can be initialized by stimulating the ¢, unit,
while a zero vector is applied to the ainputs. The output sequence
b(t) = a(t), for ¢, <t £ t,, isthe learned sequence.

More sophisticated time delay neural network architectures were
proposed for recognitiond speech patterns [Waibel, 19891. These will
be discussed in Chapter 8. Once the temporal pattern is represented
as a static pattern, a recognition system can be developed by template
matching using principles o competitive learning or self-organiza-
tion. Kohonen's phonetic typewriter is an example o such an
architecture, which will be described in Chapter 8 [Kohonen, 19881.

Tank and Hopfield [1987a; 1987b] proposed an associative
memory based approach for temporal pattern recognition using the
exponential kernels representation o temporal patterns. This
representation replaces the fixed delays with filters that broaden the
signal duration in time as wel as delaying it. Figure 7.15 showsfour

f®

u_’
t
Figure7.15 Four time reversed exponential kerne functions which are
used to window the time signal x(t). The network input at time
t for a four delay network are averages of the past signal
weighted by these functions.

typical exponentia kernels for four delays. The network inputs at
time t for a four delay network are averages of the past signal
weighted by these functions. This representation is more robust and
can handle speech-like signals.

Recurrent network models are more natural models to deal with
temporal patterns. But training will be a problem with these models.
Several partially recurrent models were proposed in the literature
[Elman, 1990; Jordan, 1986; Stornetta et al, 1988; Mozer, 1989]. The
connections are mostly feedforward with a few selected fixed feedback

268 Architectures for Complex Pattern Recognition Tasks

connectionsso as to keep the training within manageabl e complexity.
Thus the recurrent part is realized with context units in different
configurations. The context units receive the feedback signals as
shown in Figure 7.16 for the configuration proposed by Jordan [1986].

Output layer

Hidden layer

Input units

Figure7.16 Architecture with context units to recelve feedback signals.
Only two units are considered for each of the input, feedback,
hidden and output layers for illustration.

The input layer consists o two parts. One part (input units)
receives external inputs and the other part (context units) receives
feedback from output units with unit gain. There is adso a
self-feedback with gain a< 1 on the context units so that the inputs
to the hidden layer units from the context units have exponentially
decaying memory o the past. Therefore the output of the ith context
unit C(t) is given by

Ct) = oft-1)+aoft - 2) + oot - 3)....

t-1
=Y oo m) (7.49)
=0

where o(t) is the output of the ith unit in the output layer at time
t. Thus the context units accumulate the weighted average of the past
output values. With afixed input pattern the network can be trained
using backpropagation learning to generate a desired output
sequence. Thus different fixed input patterns can be associated with
different output sequences [Jordan, 1986; Jordan, 19891. By applying
a sequence o patterns at the input, one at a time, and a fixed output
for each sequence o the inputs, the network can be trained to
distinguish different input sequences. Thus tempora pattern

Temporal Patterns 269

recognition can be achieved. Anderson et al, [1989] have studied the
problem d recognizing a class d English syllablesusi ng this network.

Partially recurrent networks have been proposed for time-series
prediction which involves prediction of the future patterns based on
the patterns learnt from the past data. In these cases the network
is designed to capture the pattern behaviour embedded in the past
data. Theseideas have been applied in several forecasting situations
such as in the case o financial markets [Weigend and Gershenfeld,
1993; Lapedes and Farber, 1988; Weigend et al, 19911.

I deas based on time-series prediction have also been exploited for
identification o nonlinear dynamical systems using partially recur-
rent networks [Narendra and Parthasarathy, 19901. The nonlinear
plant dynamics is given by

x(t+1) = gle®), x(t - 1), ..., x(t - n); u(t), ut - 1), ..., u(t - m)]
where m < n, and u(t) and x(¢) are the input and output signals o
the plant at t, respectively. The function g(.) is a nonlinear function

representing the dynamics o the plant. The network shown in
Figure 7.17 is trained with backpropagation |earning using the actual

Desired
Actual output output
2At+1) - L x(t+1)
plant

[

Feedforward neural network

u(t)Iu(t—l)Iu(t-mI u(t—M)I txa—N) w(t-2) (=100
t

u(t)
Figure 717 Partially recurrent neural network for identification of
nonlinear dynamical system.

output from the plant. During training the same input is given to
the plant as well as to the network. If the network has generalized
from the training data, then for an input u(¢) it produces an output
£+ D) whichis almost closeto the actual output, thus predictingthe
plant's output.

Fully recurrent networks are more efficient in terms o number

270 Architectures for Complex Pattern Recognition Tasks

of units, in order to realize temporal association tasks. Here the
individual units may represent input units, output units or both. The
desired outputs are specified on some units at some predetermined
time instants. A two-unit fully recurrent network is shown in Figure
7.18 with the unit 1 asinput unit and the unit 2 as the output unit.
The desired output is specified on the unit 2.

Wy,

Wy

Wiy
x

Figure 7.18 A two unit recurrent network.
If sequences d small lengths (P) (measured in time units)

are involved, then the recurrent network may be unfolded into a
feedforward network with P layers as shown in Figure 7.19 for

x(1)

Figure719 Feedforward network generated by unfolding a recurrent
network in time by four time units.

P = 4. In this case the desired outputs are specified for unitsin the
hidden layers also. Moreover, the errors are propagated not only from
the outputs o the final layer but also from the outputs d the hidden
layers as well. It should also be noted that the weights are copied
for different layers. The average increment o all the corresponding
weights is used for updating. This is caled backpropagation-
through-time learning method [Rumelhart et al, 19861. Thisis not a
very efficient method for long sequences. One interesting application
o backpropagation-through-timeis the truck backer-upper problem

Pattern Variability: Neocognitron 271

described in [Rumelhart et al, 19861, in which the god is to design
a controller that successfully backs up a truck so that the back o
the trailor designated by the (z, y) coordinatesends at (0, 0) with the
trailer perpendicular to the dock, when only backward movements o
the truck are dlowed.

Williams and Zipser [1989] proposed a real time recurrent learning
method for on-linelearning o the time sequences. It can t hus deal with
sequencesd arbitrary length. It was shown that the real time recurrent
network can be trained to be a flip-flop or even a finite state machine.
Finally, Pearlmutter [1989] devdoped an agorithm for training a
continuous time recurrent network. It can be viewed as a continuous
time extension d backpropagation-through-time learning.

7.6 Pattern Variability: Neocognitron

Visua pattern recognition, such asrecognition d handwritten charac-
ters or hand-drawn figures, is done effortlessly by human beings
despite variability of features in different realizations of the pattern
d the same character or figure. The patterns considered in the
architectures described o far assume that the objects in the training
and test patterns are identical in size, shape and position, except that
in some cases there may be some noise added or some portions o
the pattern missing. Modds o associative memory can recover
complete patterns from such imperfections, but normally cannot work
if thereis variability or deformation in the patterns of the test input.

Neural network models based on our understanding d human
visual pattern recognition tend to perform well even for shifted and
deformed patterns. In the visual area d the cerebrum, neurons
respond selectively to local features of avisual pattern such aslines
and edges. In areas higher than the visual context, cells exist that
respond selectively to certain figures like circles, triangles, squares,
human faces, etc [Fukushima, 19751. Thus the human visual system
seems to have a hierarchical structure in which simple features are
first extracted from the stimulus pattern, then integrated into more
complicated ones. A cdll at a higher stage generally receives signals
from a wider area d the retina and is less sensitive to the position
d the stimulus. Within the hierarchical structure o the visual system
are forward (afferent or bottom-up) and backward (efferent or
top-down) propagation o signals. This kind o physiological evidence
suggests a neura network structure for modeling the phenomenon
o visua pattern recognition.

The objectiveis to synthesize a'neural network modd for pattern
recognition for shifted and deformed patterns. The network model
learns with a teacher (supervised learning) for reinforcement o the
adaptive weights. The network modd is caled neocognitron. It is a
hierarchical network (Figure 7.20) consisting d many layers d cells,

Architecturesfor Complex Pattern Recognition Tasks

o]
-1
U,
I
|
19x19 /§
21%21x8 13x13x33 ~ Tx7Tx64
19x19x12 21x21x80 13x13x97 3x3x47

Figure7.20 Neocognitron architecture. A hierarchica structure o neo-
cognitron for recognitiond alphanumeric characters. The first
stage o the network consists d a 2-dimensiona array o
receptor cells. Each succeeding stage has layers consistingd S
cdls and C cdls alternatively. Each layer is organized into
groups d these cells, each group responding to a particular
geometrical position. The numbers show the total numbers o
§ and C cdlsin individua layers d the network S cells are
feature extracting cells. The C cdls are inserted to dlow for
poditiona errors in the feature. [Adapted from Fukushima
et al, 1991].

and has variable connections between cdllsin adjoining layers. It can
be trained to recognize any set o patterns. After training, pattern
recognition is performed on the basis d similarity in shape between
patterns, and the recognition is not affected by deformation, or
changes in size, or shifts in the postions o the input patterns
[Fukushima, 19881

In the hierarchical network o the neocognitron, loca features o
the input pattern are extracted by the cdls o the lower stage, and
they are gradually integrated into more global features. Finally, each
cel o the highest stage integrates all the information o the input
pattern, and respondsonly to one specific pattern. During the process
o extracting and integrating features, errors in the relative positions
o the locad features are gradually tolerated. The operation o
tolerating positional error alittle at a time at each stage, rather than
all in one step, plays an important role in endowing the network with
the ability to recognize even distorted patterns [Fukushima et al, 19911

Neocognitron also provides backward connections which will
enableit to realize the selective attention feature d thevisual pattern
recognition system. The selective attention feature relates to two or
more patterns simultaneously present in the data, and our ability to
focus on the desired one.

Neocognitron was developed for recognition o handwritten char-
acters, although the ideas used in the architecture may be extended
to other situations d pattern variability [Fukushimaet al, 1991).

Summary

7.7 Summary

The objective o this chapter is to highlight the need for evolving
architectures specific to particular tasks. In this context we have
discussed neural network architectures for five classes of pattern
recognition tasks, namely, associative memory, pattern mapping,
stability-plasticity dilemma, temporal patterns and pattern
variability. These architectures use the well understood principles o
models d neurons, their interconnectionsand network dynamics. The
bidirectional associative memory issimilar in principleto the Hopfield
modd. The extension o these principles to multidirectional and
temporal associative memories is straightforward. Pattern mapping
task is one o the wel studied pattern recognition tasks in neural
network studies.. We have aso highlighted the fact that all pattern
mapping problems are not generalizable by a neural network
architecture. The specific characteristics d generalizable problems
are exploited for developing suitable architectures as in the radial
basis function networks. It is interesting to note that pattern
classification and function approximation tasks automatically lead to
radial basis function network architectures.

The adaptive resonance theory networks for stability-plasticity
dilemma have evolved over a long period of nearly 20 years, with
different networks addressing different situations, such as discrete,
analog and fuzzy data situations. It is one of the most sophisticated
architectures developed for a variety d problems [Carpenter and
Grossberg, 1996; Grosshberg, 19961. We have considered a few simple
neural network architectures for temporal pattern recognitionas well
as generation. More sophisticated architectures are needed to exploit
the temporal pattern behaviour directly without processingindividual
frames o data. Finally, the neocognitron architecture for pattern
variability task has been discussed briefly. Development o
neocognitron structure clearly demonstrates how issues specific to a
given task need to be addressed.

Review Questions

1. Explain the following with reference to memory in artificia
neural networks:

(a) Transient memory, (b) Temporary memory, {(c¢) Short-time
memory, and (d) Long-term memory.

2 Distinguish between content-addressable and address-address-
able memories.

What is an associative memory?
What are the requirements o an associate memory?
5. Distinguish between static and dynamic memories.

> W

274

6.

F B

5

17.

Architectures for Complex Pattern Recognition Tasks

Distinguish between heteroassociative and autoassociative
memories.

What is a linear association? What are its limitations as an
associ ative memory?

What is a recurrent autoassociative memory?

How is noise suppression achieved in a recurrent autoassociative
memory?

What is a Bidirectional Associative Memory? What is meant by
‘BAM is unconditionally stable'?

Explain the following terms with reference to an autoassociative
memory:

(a) Storage, () Encoding, (¢) Retrieval, (d) Stability, and
(e) Performance

What is meant by synchronous and asynchronous update in
BAM?

What is an adaptive BAM?

What is a MAM? Explan why MAM will have superior
performance over BAM for pattern retrieval.

What isatemporal associative memory ? What areitslimitations
in recalling a sequence of temporal patterns?

Explain the distinction between
(@) pattern association and pattern classification tasks.
(b) pattern classification and function approximation tasks.

What is meant by generalization in the context d (&) pattern
classification and (b) function approximation tasks? Illustrate
with examples.

Why is it that any arbitrary pattern association task does not
fall under the category o generalizable problems?

What is meant by (&) surface features and (b) deep features?

Why a general MLFFNN is not likely to generalize a problem
aways?

Explain the concept o 'closeness of data and 'smoothness o a
mapping function.

Explain why is it that an MLFFNN does not take closeness o
data into account.

Give the architecture o a basis function network.

What is the significance d the regularization term in the cost
function for a function approximation problem?

Review Questions 275

25.

26.

27.
28.

29.

30.

31.

32.

33.

34.

36.

36.

37.
38.

39.

41.

EBS

Explain the significance d regularization using constraints on
the weights.

Explain how the constraint of smoothness is realized by the
sgquare integrable derivatives d the mapping function.

What is the significance d Green's function?

Explain the behaviour d aradial basisfunction method for function
approximation for different valuesd the regularization parameter.

Explain how a pattern classification problem leads to a radial
basis function network.

What decides the basis functions in a pattern classification
problem?

Explain the basis for the statement:

A trained radial basis function for classification gives as output
the a posteriori probabilities P(C;|x) d each class for a given
input vector X.

How do you determine the basis functions for a given pattern
classification task?

How do you determine the weights o the output layer o a radia
basis function network for a given pattern classification problem?

Discuss the significance o the number and distribution o
clusters on the performance o a pattern classification task.

What is a probabilistic neural network? In what way it is
different from a basis function network?

What is a generalized regression neural network? In what way
it is different from a basis function network for function
approximation?

What is a counterpropagation network?

Explain the differences in the performance o multilayer
feedforward neural network and counterpropagation network for
a pattern mapping task.

What is the significance o 'resonance’ in ART network?
Explain briefly the operation o an ART for binary patterns?
Explain the'gain control' mechanismin ART.

Explain how the orienting subsystem works in ART network.
What are some extensions d the ART concept?

What is atemporal pattern, and in what way it is different from
a static pattern?

Explain the three categories of problems involving temporal
patterns.

276 Architectures for Complex Pattern Recognition Tasks

46. What is an 'avalanche' architecture?

47. What is the disadvantage of fixed delay neural networks for
temporal pattern classification and how is it overcome in an
associative memory based approach?

48. What are partially recurrent neural networks?
49. What is meant by backpropagation-through-time?
50. Explain the principle of neocognitron for pattern variability task.

Problems

1 Prove that BAM is unconditionally stable for any binary units.

2 Prove that BAM for binary or bipolar units is stable for
asynchronous update o units. (Hint: Convert BAM into a
feedback network o Hopfield type.)

3 Construct-an example to show that pattern recall is superior in
a tridirectional associative memory compared to a bidirectional
associative memory. (See [Zurada, 1992, p. 3681)

4. Show that the weight vector for a radial basis function network
for function approximation task is given by (Eq. (7.36)). (See
[Haykin, 1994, p. 258])

w= @'o+10) 0" d

5 Generate training data for the following two functions:
fix) = logx, 1<x<10 and fix) = exp(~x), 1 <x <10. Design a
suitable MLFFNN with one hidden layer to capture the mapping
function from thetraining data. Explain the complexity (in terms
of number of hidden units of the network) to the function being
mapped. (See Haykin, 1994, p.231])

6. Cluster al the 5-bit binary vectors except the al zero vector,
{00 ... 01%, using ART1 algorithm. Study the effect of vigilance
parameter on the resulting clusters.

7. Study the classification performance of a RBFNN for the 2-class
problem given in the Problem 4.12. Study the performance for
two sets o clusters with H =20 and H = 10. Choose the centres
(t) arbitrarily and the variance d the Gaussian distribution for
each cluster as oM, where ¢ is the maximum distance between
the chosen cluster centres. That is

M
G(llx-t;[") = exp [‘;{lx-tiﬂzJ

fori =1,2,...,N.
The weight matrix of the output layer o the network is given by

W = G'G+1Gy) 'GT d

Problems 277

where Gisan M x H matrix d the basis function and G, is an
H x H matrix whose elements are given by g; = G(||t; — t;|| 9.
Examine the performance d the network for different values o
the regularization parameter X = 0.01, A = 1.0 and A = 100.

8. For binary {0, 11 patterns, the weight vectors are obtained by
using (2e;; — 1)in place df ay, and the threshold of a unit is given
M
by 6, = _%—j§1wii’ wherew;; istheweight leading to the ith unit
from the jth input and g is the jth component o the
M-dimensional input pattern.
Determine the weights and discuss retrieval o patterns for
the following pattern recognition tasks with binary patterns

(a) Feedforward neural network (pattern association)
input @ =[I111O111IT @ =Mmo0101010]7
output b, = [10210]” b, = 11117
Test patternt = (110110017
(b) Feedback neural network (pattern storage)
g =[11110111)7 anda, = 1010101017
Test patternt = [11011001]7
(¢) Hamming network (pattern storage) usi ng the data given in

(b) (see Section 8.2.1)

(d) Bidirectional associative memory using the input-output
pattern given in (a).
9. Train a MLFFNN to capture the nonlinear dynamical system
given by [Narendra and Parthasarathy, 19901

B xt-Dxt-Dut-=1) [x¢E-2)-1] +ul®)
1+x%¢-2)+x%t-1)

using inputs u(f) generated using samples uniformly distributed
in the range [-1,t11l Consider a network with two hidden
layers o 20 and 10 units with bipolar output functions. The
inputs to the network during training are x(t),x(-1),
x(t - 2), u(t) and u(t - 1).Study the performance of the system
for twolearning ratesn = 0.1andn = 0.3. Comparethe outputs
o the modd and the system by plotting the outputa for the
following input:

ut) = Sin(2nt/250) for Os t < 500
~ 1 0.8sin(2m/250) T 0.2sin (2rt/25) for t > 500

xt+1) =

Chapter 8

Applications of ANN

8.1 Introduction

This chapter is devoted to applications o artificial neural network
models and some research issues that are being currently addressed
in this field. In the applications two different situations exist: (a)
where the known neural networks concepts and models are directly
applicable, and (b) where there appears to be potential for using the
neural networks ideas, but it is not yet clear how to formulate the
real world problemsto evolve a suitable neural network architecture.
Apart from the attempts to apply some existing models for real world
problems, several fundamental issues are also being addressed to
understand the basic operationsand dynamicsd the biologicd neural
network in order to derive suitable modds o artificial neural -
networks.

In problems such as pattern classification, associative memories,
optimization, vector quantization and control applications, the
principlesd neural networks are directly applicable. Many real world
problems are first formulated as one d these problems, identifying
the relation between the parameters from the physical data with the
input/output data and other parameters describing a neural network.
Note that in these cases the ingenuity o the problem solver liesin
the formulation part, and several compromises may have to be made
in arriving at the formulation. These direct applicationsare discussed
in Section 8.2.

While neural network concepts and models appear to have great
potential for solving problems arising in practice, for many such
problems the solution by neural networks is not obvious. This is
because the problems cannot be mapped directly onto an existing
(known) neural network architecture. In fact there are no principles
guiding us to this mapping. As human beings we seem to perform
effortlessly many pattern recognition tasks in speech, vision, natural
language processing and decison making, although we do not
understand how we do it. For example, in speech our auditory
mechanism processes the signal directly in a manner suitablefor later

| ntroducti on 279

neural processing. To prepare input to an artificial neural network,
the speech signal is normally processed in fixed frames d 10- 20 msec
durationto extract a fixed number of spectral or related parameters.
In this process the temporal and spectral features with proper
resolution needed for recognition may not have been captured. There
is as yet no neura network architecture which could perform the
speech pattern recognition task with the same effectivenessas human
beings do. Similar comments apply to problemsin the visual pattern
recognition aso. Some d the other areas where human performance
could not be matched by the existing neural network architectures
are in motor control and decision making. Despiterealization of these
issues, there are several situations where neural principleshave been
used successfully. Some o these applications are discussed in
Section 8 3

The most important issue for solving practical problemsusing the
principlesd artificial neural networksis still in evolving a suitable
architecture to solve a given problem. Neural network research is
expanding in its scope to take into account the fuzzy nature o the
real world data and reasoning, and the complex (and largely
unknown) processing performed by the human perceptual mechanism
through the biologica neural networks. Some o the current research
issues are discussed in Section 8. 4. Table 8 1 gives an organization
d the topics to be discussed in this chapter.

Table81 Organization o Topics on Applications of Artificial Neural
Networks

Direct applications

Pattern classification

¢ Recognition of Olympic symbols

e Recognition of printed characters

e Making an opening bid in Contract Bridge game
Associative memories

¢ |Image pattern recall

¢ Content addressable memory

o Information retrieval
Optimization

e Graph bipartition problem

e Linear programming problem

¢ Travelling salesman problem
Smoothing images with discontinuities

Vector quantization
Control applications

280 Applications of ANN

Tabl e 81 Organization of Topics on Applications of Artificial Neural
Networks (Cont.)

Appli cati on areas
Applicationsin Speech
e NETtalk
o Phonetic typewriter
¢ Vowd classification
o Recognition of consonant-vowe (CV) segments
¢ Recognition of stop CV utterancesin Indian languages
Applicationsin Image Processing
¢ Recognition of handwritten digits
¢ |mage segmentation
e Texture classfication and segmentation

Applicationsin decison making

8.2 Direct Applications

821 Pattern Classification

Pattern classification is the most direct among all applications o
neural networks. In fact, neural networks became very popular
because of the ability of a multilayer feedforward neural network to
form complex decision regions in the pattern space for classification.
Many pattern recognition problems, especially character or other
symbol recognition and vowd recognition, have been implemented
using a multilayer neural network. Note, however, that these
networks are not directly applicablefor situations wherethe patterns
are deformed or modified due to transformations such astranslation,
rotation and scale change, although some o them may work well
even with large additive uncorrelated noise in the data.

Direct applications are successful, if the data is directly
presentable to the classification network. Three such cases are
considered for detailed discussion in this section. They are: (a) Re-
cognition o Olympic games symbols, (b) Recognition o characters,
and (¢) Making an opening bid from a dealt hand in the card game
o Contract Bridge. As can be seen beow, in each of these cases there
is no difficulty in presenting the input data to a multilayer neural
network. Limits d classification performance will be reached if the
symbols are degraded due to ‘deformations in the case of Olympic
symbols, or if the input corresponds to casualy ‘handwritten'
characters in the case o character recognition, or if the ‘knowledge’
o the bidding sequence and the 'reasoning’ power of human players
have to be used in the bridge bidding problem.

Direct Applications 281

Recognition of Olympic Games Symbols: We consder a set of 20
Olympic games symbolsshownin Figure 8 1 for illustrating a pattern

) A Jk %
N A nlo& A
Archery Athletics Baseball Basketball Boxing
® ® \ y_— 1.
ALl 13 Al |7
[R==
Canoeing Cycling Diving Fencing Football
o / ‘80 L/ ¢ " o «
—" . XX
Gymnastics Handball Hockey Pentathalon Rowing
. L] Q
AT S Y <
Shooting ~ wimming Syncswim Tennis Volleyball

Fi gure 8.1 Olympic games symbols (20) used for studies on recognition of
objects from degraded images.

classification task by a neural network [Ravichandran and
Y eghanarayana, 19951. The symbolsare all represented as black and
white pixels on a 128 x 128 points grid. Although the symbols appear
complex in terms d detail, each symbol represents a rigid-object-like
behaviour. This behaviour ensures that the relative pixel positions of
a symbol do not change even under severe degradation, such as
tranglation, rotation and scaling. For such objects the performance d
a neural network classifier is aways satisfactory. We discuss the
results d classification studies for various types d degradation. The
type o degradation studied in this case corresponds to the poor
resolution o the image obtained when the image is reconstructed
using a sparse set o elements asin a sensor array imaging situation
{Yegnanarayana et al, 1990l For example, the reconstructed
(128 x 128 pt) images from a 16 x 16 element array are shown in
Figure8. 2 In this case a Hamming network which performstemplate
matching using neural principles is suitable for classification. The
Hamming network is a maximum likelihood classifier for binary
inputs, and it performs correlation matching between the input and
the stored templates [Lippmann, 19871 It consists df two subnets as
shown in Figure8. 3. The lower subnet consists of M(128 x 128) input

Applications & ANN

15 AR)

dball 90

Swim 77 Syncswim 134 Tennis84 Volley 95
Figure8.2 Recognition results for images reconstructed from data collected
from a 16 x 16 element sensor array. The class decision of the
network is given along with the activation value of the winning
pattern. In this case, al of the 20 images were correctly
identified.

units, each corresponding to a pixel in the given pattern, and N output
units corresponding to the N pattern classes, whichin this caseis 20.
In the lower subnet the connection weights between the input
and output units are fixed in such a way that the network calculates
the distance from the input pattern to each of the N stored pattern

classes. The weights are given by [Lippmann, 1987]

w; =a;/2 6 =M/2 1<jsM, 1<isN (8.1)

where w;; is the connection weight from the input unit j to the output
unit i in the lower subnet, ¢, is the threshold for the ith output unit
and a; isthe element j o the pattern for the ith symbol. The values
o a; are-1or 1.

In the upper subnet, the weights are fixed in such a way that
the output units inhibit each other. That is

vy, =1, for k=1
=—E, for k%l (8.2)

where vy; is the connection weight between the units £ and / in the
upper net, and e is a small positive number, say E = 0.1.

When a bipolar pattern is presented for classification, the lower
subnet calculates its matching score (s;) with the stored pattern for

Direct Applications 283

the ith class as follows.
s; =50 =f [Z w; x,.—e,.]. (8.3)
J

where) is the output function, x; is the jth element of the input
pattem and 6; is the threshold value for the ith unit.

The output o the lower subnet is presented to the upper subnet,
where a competitive interaction takes place among the units. The
dynamics of the upper subnet is given by

st+1) = f[s,.(t)-ezs,,(t) J i=12.,N (8.4)

ki

The competition continues util the output o only one unit r emai ns
positive, and the outputs o all other units become negative. The
positive unit correspondsto the class d the input pattem.

For the set d degraded symbols given in Figure 8.2, the correct
classification performance is 100%. The performance is impressive,

) s v

Upper Subnet
(Pick the maximum)

Lower Subnet
(Calculate matching scores)

x, Xy Xy

Figure 83 The Hamming network. The input and output units are
represented by x and y vectors, respectively.

since it is difficult even for us to identify visually the discriminating
featuresin many o these images. When the degradation isincreased
by reducing the resolution using an array o 8x 8 elements, the
recognition performance is only 13 out d 20. Figure 8.4 gives a
summary d the recognition performance with different sparse arrays
[Ravichandran, 19931 The figure shows the number o patterns
correctly classified out d 20. The above experiment illustrates the
following points: (a) It is interesting to note that many images for

284 Applications of ANN

]

64x64 32x32 16x16 8x8
Array size
Correct EFs |ncorrect

Figure84 Summay of recognition peaformance with different sparse
arrays(64 x 64, 32 x 32,16 x 16 and 8 x 8 sensors). Grgph
shows the number of patterns correctly dassified out of twenty
patterns in each case.

the 16 x 16 sensor array size case seem to have very few visual clues
(Figure 8.2) for us to recognize, but were recognized correctly by the
network. (b) The performanced the classifier degradesgradually with
increasing image degradation due to sparsity and noise. (¢} The
activation values d the winner units are indicative o the level of the
image degradation, i.e., greater the degradation the lower is the
activation d the winning units. (d) The matching scores obtained at
the first layer are measures d similarity o the input pattern with
each o the patterns stored in the network. But the activation level
d each unit in the second layer is affected by the activation values
o all other units. Hence when an output unit becomes positive, its
activation level not only reflects how close the input imageis to the
identified pattern, but also gives an idea d the degree o confidence
given to this decison relative to other patterns stored in the network.
Thus the activation value aso reflects the complexity of the symbol
set in terms o how close in shape the symbols are.

Thus this study indicates that if the set of expected objects is
known, then it is possble to design a neural network for object
recognition, where the network performs a simple correlation
matching only. In this study only direct pixel-wise description o the
object was used, and hence the network may not function well if the
objects are deformed due to transformation and scaling.

If the images are clean and noise-free, then there exist methods
to overcome the effects d metric transformations o the objects. Sev-
eral neural network models have been proposed for invariant pattern

25

Number of patterns correctly classified

Direct Applications 285

recognition [Barnard and Casasent, 19911. In the case o networks
which achieve invariance by structure, the structure o the network
is designed such that the output is invariant to the transformations
d interest. In the case of invariance by training, representative
samples d various transformations are presented during training so
that the network learns equivalent transformations.

Invariance by structure or by training assumes the existence o
a fixed set o weights which provide invariance over the continuum
d transformations. It also assumesthat a network can be trained to
estimate this set o weights from examples. But invariances cannot
be built as static functions in the structure. They have to be
dynamically estimated from the data. Alternatively, one can first
address the transformation invariance by feature extraction, and then
use these features as input to a classifier [Ravichandran and
Y egnanarayana, 19911.

Methods based on the theory of geometric moments have been
used for normalization and invariant feature extraction [Hu, 19621
If the object is compact and has only a few details, these invariant
measures, which are stable over a wide range o spatial trans
formations can be designed. In this study the six moment values
proposed by Hu [1962] are used as featuresinvariant with respect to
scale, position and orientation. Since these features values vary over
a wide range, logarithm o the absolute values o these moments are
used as features representing an image.

For classification, a feedforward neural network with 6 units in
the input layer, correspondingto the input features, and 20 unitsin
the output layer corresponding to the number o different symbols,
are used. The network has one hiddenlayer with 8 units. The number
o unitsin the hidden layer in this case appears to be not very critical
as long as it is aove a certain minimum value, which in this case
is8. The network wastrained with eight different transformedimages
for each o the twenty symbols. Some samples o the transformed
images used in the training are shown in Figure 8.5 for six different
symbols. Since reductionin the size o the image causes loss o detail,
100% classification accuracies were obtained only for images reduced
upto 1/3 o the linear dimension o its origind, i.e., when the
128 x 128 pt image was reduced to a 40x 40 pt image. Further
reduction in scale decreases the classification accuracy as shown in
Figure 8.6.

When sparse data reconstruction is used on the transformed
images, the reconstructed images are not only transformed, but aso
noisy as shown in FHgure 8.7 for images reconstructed from a
32 x 3 element sensor array. In this case the computation o moment
features had to be done after preprocessingthe noisy image. A neural
network-based method proposed in [Ravichandran, 19931 for
preprocessing the noisy images is used to derive the preprocessed

286

Figure 8.5

of patterns correctlyclieds

Nuber

Figure 8.6

Applications of ANN

v
(L
&&

s
<
Y
»

~y

Ab—
A
o
T
»%
—~%

:&%\J \l)f" éJ A

%] [
H T
X
.1!
b

Some rotated, scaled ond translated images of Olympic games
symbols used to study transformation invariant recognition of
objects.

[
[= »w
(=) «Q
1]

® o
© o©
T T

'S
(=4
1

v
Z0 i
0 1 i 1 L 1 1
70 60 60 40 30 20 10 0
One side length of the scaled jmqge in pixels

Transformation invariant recognition performance for Olympic
games symbols. Graph shows the number (out of o set or 120
test patterns) of objects (maximum size 128 x 128) correctly
classified os the size of the image is reduced.

Direct Applications 287

Y

\]

=

o

@ ®) (©) (a) ®) ()

Figure 87 Someexamples d transformed images. (8) Transformed images
d four Olympic games symbols, tennis, archer, athletics and
baseball. (b) Corresponding images Obtained by recongtruction
from data collected by a sparse 32 x 32 sensor array. (c) Images
in (b) after NOise SUppression.

images o the objects as shown in Figure 8.7(c) for a few cases of
transformation. In this case some features are lost even when there
is a scale change of lessthan 1/2 along linear dimensions, and hence
there isloss of recognition accuracy as shown in Figure 8.8.

Recognition of printed characters: Similar results were obtained

288 Applications of ANN

70

50 ~
40r—-

30 -

20L
IOF

0 ! L 1 { [
70 60 50 40 30 20 10 0

One sdelengthof the scaled image in pixels

Number of patterns correctly classified

Fi gure 8.8 Transformation invariant recognition of olympic game symbols
from degraded images obtained by recongruction from data
collected by a 32 x 32 array. Graph shows the nmgzher (out of a
set of 60 test patterns) of objects (maximum size 128 x 128)
correctly classified as the size of the image is reduced.

when images (128 x 128 pts) o ten characters d alphabet were used
in the study o transformation invariant object recognition. The ten
characters and some transformed versions d these characters used
in the study are shown in Figure 8.9. In this case 100% classification
accuracies could be obtained for all the test data upto a scae
reduction of 1/12 d the linear dimension d the origind, i.e., the
reduced imageis about 10 x 10 pts. Thusthe moment feature approach
gives better transformation invariant recognition in this case than in
the case o the Olympic games symbols, snce the objects are simpler
in detail in the case d the printed characters d the alphabet.

The above studies illustrate that pattern classifications can be
accomplished using neural network models for objects whose images
are severely degraded by transformations and noise. But in all these
cases the objects were assumed to be rigid, in the sense that there
was no relative displacement in different parts o the object. Note
that the above illustrations differ from the handwritten charactersin
which different parts o a character are deformed differently in each
sample. Thus the classfication methods based on correlation matching
or training a feedforward network using moment features are not useful
for problems such as recognition d handwritten characters.

289

Direct Applications

>y | < v
gl &l
090 9o °
o0 OCal oo °
m2 3|V u «
- Dl 4] v | «
QDo O 0| ©
T\X\H % =) °
O O0|9 o °
o Olgd| ol a| ¢

ated to test translation invariant recognition.

gener

Figure 8.9 Some rotated, scaled and translated images of characters

290 Applications of ANN

Making an opening bid In Contract Bridge game: Artificial neural
networks can be trained to capture the implicit associations between
an input pattern and the corresponding output response of complex
systems. We consider one such situation where the system
corresponds to human reasoning process used for bidding in the card
game of Contract Bridge [Yegnanarayana et al, 1996].

In Contract Bridge a player makes a bid to convey information
about the pattern of the thirteen cards in his hand. There are four
players, each one is dealt with thirteen cards. The first bid a player
makes in the game is called an opening bid, which he makes based
on the pattern of the cards in his hand. He has no a priori knowledge
of the rest of the cards in other players’ hands. The problem is to
train a neural network model to capture the reasoning process a
player adopts in making an opening bid. In this case the data can
be collected from a practical situation like in a tournament while the
game is being played. The hand pattern and the bid made by a player
is used as input and output of a feedforward neural network,
respectively. The hand pattern is represented as a 52-dimensional
vector filled with ‘1’ when a particular card is present, and ‘0’ when
the card is not present. Thus there will be thirteen 1s and thirty nine
Os to describe each hand pattern. Hence there are 52 units in the
input layer. For example, the following thirteen card pattern is
represented as the 52-bit pattern shown below:

Spades KQ?2
Hearts 5
Diamonds A J 9 8 7
Clubs AK32

Hearts
Diamonds 1
Clubs 1 1 0 0

We consider only 1-level bidding for illustration. Hence there are
seven output units, corresponding to PASS (P), 1-CLUB (1C),
1-DIAMOND (1D), I-HEART (1H), 1-SPADE (1S), I-NOTRUMP (1N)
and all OTHER bids. The network has one hidden layer with 60
hidden units. The number of units in the hidden layer was arrived
at by trial and error [Yegnanarayana et al, 1996].

The network was trained with 900 different hands and the
corresponding bids made on these hands by different players in a
bridge tournament. Another 200 test hands were generated randomly
by the machine. The network bids were correct in 92% of the cases.
While evaluating the performance of the network, the output of the
network was taken as correct if it was also acceptable to an expert

A K

Spades 0 1
0 o

0

OOH‘O

J
0
0
1

ocooooH
O OO
O OO
OO Og
COO0COoO ™
OO MOW;m
OO OO
- QOO0 w
==l]

Direct Applications 291

player. Errors in the I-level network occur mainly because there are
many borderline hands which may fall into either I-level or into
OTHER categories. Table 8.2 shows the expert bids and the bids made
by a 1-level network for some sample hands. In the table strong
unbalanced hands are labelled unknown (U) for training purpose.
Sometimes the system did well by opening 1C as in Example 2. Also,
in Example 3 the network’s bid seems to be better than the expert. The
discrepancy in the last example is also typical of human players.

Table 8.2 Bids made by the 1-Level Network. (Strong Unbalanced Hands
were Labelled ‘Unknown’ (U) for Training Purposes.)

No. (S)-(H)-(D)<C) Points Expert 1-level

bids network
1 KJ6-Q62-K94-A864 13 1C 1C
2 -4-AT942-AKJ8974 12 U 1C
3 J8-KQT643-KQ92-T 11 p 1H
4 K64-AQ874-AT953 13 1C 1C
5 AKQT9-J765432-9- 10 U p
6 AT63-KQJT6-AT73 14 1D 1D
7 AQT87-K4-AKT4-Q7 18 1S 18
8 AKJ9542-QJ852-6 11 U U
9 62-AT3-J942-AKT7 12 1C 1C
10 Q653-AKJ8-AJ-974 15 1H 18

The above study clearly shows that it is possible to capture the
implicit reasoning process by a pattern classification network. Unlike
in the case of Olympic games symbols example, here the input
representation is accurate and noise-free, whereas the ouiput class
level is fuzzy. The fuzzy nature of output is due to the possibility of
making different bids on the same hand by different players or by
the same player at different times.

8.2.2 Assoclative Memories

As discussed earlier, the objective of an associative memory is to store
a pattern or data for later recall with partial or noisy version of the
pattern as input, or to store association between two patterns for
later recall of one of the patterns given the other. Both feedback and
feedforward topologies of neural networks are directly useful for these
applications. Associative memory, if used in a feedback structure of
the Hopfield type, can function as a content addressable memory as
well. The stable states of the network, which represent the energy

292 Applications of ANN

minima or basins of attraction, are used to store the pattern informa-
tion. In a feedforward network the associations corresponding to the
input-output pattern pairs are stored in the weights of the network.

Applications of these networks for associative memory are direct,
if the patterns are available in the form of one or two-dimensional
arrays of values. Associative memories as content addressable
memories are quite powerful. For example, if information about
individuals are stored in a network, then it is possible to retrieve the
complete data by providing partial or even noisy clues [Haken, 1991;
Haken, 1995; Mhaswade, 1997]. Other useful applications for an
associative memory are recognition of images, and retrieval of
bibliography information from partial references such as from
incomplete title of a paper [Kohonen, 1997].

Three applications of the associative memory function of neural
networks are discussed in this section. The first application refers to
the image pattern recall from partial or noisy clues. The second
application refers to the content addressability feature of the associa-
tive memories. The third application deals with information retrieval.

Image pattern recall: Suppose a set of L distinct images of size
N x N pixels is given, each described by a set of gray level values for
all the pixel positions. Then the images can be stored in a feedback
network consisting of N x N units, with weights determined by the
correlation between pixel values. That is,

L
=1

where a; is the ith pixel value in the /th image. Then any image can
be recalled by giving a partial input to the network and letting the
network relax to an equilibrium state corresponding to the image.
Reliability of the image recall is governed by the uncorrelatedness
between images, and the correlation among pixels within an image.
The representation of the Olympic symbols in the previous section
can also be viewed as an illustration of image pattern storage and
recall. It is obvious that such a method of storage will not work if
there are deformations in the image. Better ways of storage and recall
of image patterns are possible, if the images are represented by
suitable models like Markov random fields [Rangarajan and
Chellappa, 1995] or by Gabor features [Daugman, 1988]. But storage
and recall performance of any such representation models depend
critically on the effectiveness of the models in capturing the
significant image features.

Content addressable memory: Information stored in a neural
network model can be accessed using partial contents of the required

Direct Applications 293

information. This task can be accomplished by a suitably designed
feedback network. The illustration of data storage using the IAC
model in Appendix A is an example of information access using the
contents [McClelland and Rumelhart, 1988]. For the example of Jets
and Sharks data in the IAC model, the name of the individual can
be obtained by specifying his other characteristics such as ‘age’ group,
‘education’, etc.

Information retrieval: Representation of the Jets and Sharks data
through the IAC model also illustrates how any data can be stored
in a network for retrieval with partial inputs. For more complex
situations of accessing information with noisy or degraded input,
suitable representation of the input and its matching procedure with
the stored data would be needed. For example, to access items in a
data base with voice inputs, it is necessary to process the input speech
signal to derive parameters or features suitable for matching with
the stored information. This is true even for accessing bibliographic
information with a string of characters containing some random
errors. In all these cases the information access mechanism depends
critically on the representation of the input information and the
algorithms for matching the input features with the stored data
[Cherkassky and Vassilas, 1990; Mhaswade, 1997, Kohonen, 1997] .

8.2.3 Optimization

One of the most successful applications of neural network principles
is in solving optimization problems [Peterson and Soderberg, 1995;
Hertz et al, 1991; Muller and Reinhardt, 1991; Yuille, 1995]. There
are many situations where a problem can be formulated as
minimization or maximization of some cost function or objective
function subject to certain constraints. It is possible to map such a
problem onto a feedback network, where the units and connection
strengths are identified by comparing the cost function of the problem
with the energy function of the network expressed in terms of the
state values of the units and the connections strengths. The solution
to the problem lies in determining the state of the network at the
global minimum of the energy function. In this process, it is necessary
to overcome the local minima of the energy function. This is accom-
plished by adopting a simulated annealing schedule for implementing
the search for global minimum [Kirkpatrick et al, 1983).

The solution to an optimization problem by neural networks
consists of the following steps:

(a) Express the objective function or cost function and the con-
straints of the given problem in terms of the variables of the problem:

Objective function (E) = cost + global constraints (8.6)

294 ‘ Applications of ANN

(b) Compare the objective function in Eq. (8.6) with the energy
function (Eq. (8.7)) of a feedback neural network of Hopfield type to
identify the states and the weights of the network in terms of the
variables and parameters appearing in the objective function.

Energy function: E = —% Z ws;s; 8.7
i#j
(¢) The solution to the optimization problem consists of deter-
mining the state corresponding to the global minimum of the energy
function of the network. Assuming bipolar states for each unit, the
dynamics of the network can be expressed as

s{t+1) = sgn (2 w;; s(t) J (8.8)
jwi ;

(d) Direct application of the above dynamics in search of a stable
state may lead to a state corresponding to a local minimum of the
energy function. In order to reach the global minimum, bypassing the
local minima, the concept of stochastic unit is used in the activation
dynamics of the network. As discussed in Chapter 5, for a stochastic
unit the state of the unit is updated using a probability law, which
is controlled by a temperature parameter (T). At low temperatures,
the stochastic update approaches the deterministic update, which is
dictated by the output function of the unit.

(e) The state of a neural network with stochastic units is described
in terms of probability distribution. The probability distributions of
the states at thermal equilibrium follow the Boltzmann-Gibb’s law
(see Sec. 5.4.2), namely

P@s,) = %e‘Eal T (8.9)

where E, is the energy of the network in the state s, and Z is the
partition function given by

Z=3y kT (8.10)
a

The network is allowed to relax to thermal equilibrium at a given
temperature (7). Due to stochastic update the state of the network
does not remain constant at thermal equilibrium. But the average
value of the state of the network remains constant due to stationarity
of the probabilities P(s,) of the states of the network at thermal
equilibrium. The average value of the state vector is given by

(8) = Y, 8, P(8,). (8.11)

(f) At higher temperatures many states are likely to be visited,
irrespective of the energies of those states. Thus the local minima of

Direct Applications 295

the energy function can be escaped. As the temperature is gradually
reduced, the states having lower energies will be visited more
frequently. Finally, at T = 0, the state with the lowest energy will
have the highest probability. Thus the state corresponding to the
global minimum of the energy function can be reached, escaping the
local minima. This method of search for the global minimum of the
energy function is called simulated annealing.

Implementation of simulated annealing requires computation of
stationary probabilities at thermal equilibrium for each temperature
in the annealing schedule. Moreover, the convergence to the global
minimum is guaranteed only if the temperature parameter is reduced
slowly starting from a high value initially [Geman and Geman, 1984].
The state probabilities are computed by collecting the distribution of
the states for a large number of cycles of updates of the states of the
network at a given temperature. The cycles are repeated until the
probabilities of states do not change substantially for different sets
of cycles. Once the thermal equilibrium is reached, the temperature
is changed to the next lower value. Thus the process of
implementation of simulated annealing is very slow. The Metropolis
algorithm gives a simpler method for implementing the simulated
annealing [Metropolis et al, 1953]. However, in this case the
convergence is not guaranteed.

(2) In order to speed up the process of simulated annealing, the
mean-field annealing approximation is used [Peterson and Anderson,
1987], in which the stochastic' update of the binary/bipolar units is
replaced by deterministic analog states [Glauber, 1963]. The basic
idea of mean-field approximation is to replace the fluctuating
activation values of each unit by its average value. That is x; is
replaced by (x,).

@) = (X wys;) = X wys) (8.12)
J J
where () represents the expectation or average of the random

quantities. Likewise, in the average of the state of the ith unit given
by (see Eq. (5.78))

(s;) = tanh(x/T), (8.13)
If x; is replaced by (x;), we get from Egs. (8.12) and (8.13)
(s) = tanh[-% T w, <sj>J (8.14)
J

The mean-field approximation involves solving the following recur-
sive equations involving the average values of the states of the units.

N
(s,t+1) = tanh[% Zl w; (sj(t))], i=12,.,N. (8.15)
J=

296 Applications of ANN

These are a set of coupled nonlinear deterministic equations. The
equations are solved iteratively starting with some arbitrary values
(s;(0)) initially. Once the steady equilibrium values of {(s;) have been
obtained, then the temperature is lowered. The next set of average
states at thermal equilibrium are determined using the average state
values at the previous thermal equilibrium condition as the initial
values {s,;(0)} in the equations above for iterative solution. Note that,
due to deterministic set of equations involved in this computation,
the computation will be much faster than in the case of simulated
annealing. While the convergence to the global minima is not
guaranteed in the mean-field approximation, it seems to yield good
results [Haykin, 1994, Sec. 8.14].

The set of equations of the mean-field approximation is a result
of minimization of an effective energy defined as a function of the
temperature. This results in an alternative expression for Eq. (8.14)
and is given by [Haykin, 1994, p. 338].

@ = wnn [32 619

where the effective energy E((8)) is the expression for energy of the
Hopfield model using averages for the state variables.

Probably, the most studied problem in the context of optimization
using the principles of neural networks is the travelling salesman
problem, where the objective is to find the shortest route connecting
all cities to be visited by a salesman [Peterson, 1990]. Other
optimization problems include the weighted matching problem, where
a number of points must be pairwise connected such that the sum of
lengths of all connections is as short as possible, and the stereo vision
matching in optical image processing. The method of simulated
annealing has also been successfully employed to find the optimal
arrangement of integrated electronic circuits on semiconductor chips
[Hertz et al, 1991; Muller and Reinhardt, 1991].

In this section four optimization problems are discussed, showing
in each case the formulation of the optimization problem, mapping
the problem onto a neural network, and a solution using neural net-
works principles. The problems to be discussed are: Graph bipartition
problem, Linear programming problem, Travelling salesman problem
and Image processing.

Graph bipartition problem: The problem is to partition a graph of
N nodes equally as shown in Figure 8.10 such that the connectivity
(measured in terms of number of links) between the two partitioned
graphs is minimum. The problem can be mapped onto a Hopfield
network, in which each bipolar unit corresponds to a node in the
graph, with the state s; = + 1 representing the node in one half and

Direct Applications 297

Figure 8,10 Graph bipartition problem. The connectivity for A-A partition
is 7, whereas the connectivity for B-B partition is 6.

;= -1 representing the nodes in the other half. Let ¢; = 1 if the
nodes i and j are connected and ¢;; = 0 if the nodes are not connected.
Thus the cost term ¢;ss; contnbutes a nonzero value only if the nodes
are connected. We ﬁave c;8s8;=+1 if the nodes are in the same
partition, and cs;s; = -1 if they are in different partitions. For equal
division of nodes Z5;=0. Therefore the cost term with equality

constraint is given by
= 2Zc,}sls +——[Zs J (8.17)

where the positive constant ¢ is used to indicate the relative strengths
of the two terms in the energy function. Due to conflicting
requirements of the two terms, there will be several local minima in
the energy function. The cost function E can be written in the
Hopfield energy form as

=-3 Zw,js,s +M (8.18)

where w;j=c;~0. The term No/2 is to take care of the term
correspondmg toi = j, since w; = O for a Hopfield model. A solution
by the mean-field approximation is derived using the values of w; in
Eq. (8.15). For a given temperature, the iterative solution of the set
of N nonlinear equations is obtained. Using the resulting average
values {s;) as initial values, the temperature is lowered and the set
of {s;) is again obtained iteratively at the new temperature. The final
solution is obtained using this mean-field annealing according to a
preset annealing schedule. Note that at the final (near zero)
temperature, the average value {s;) = s;, as the network reaches the

298 Applications of ANN

stable state. The final states (s;) of the units partition the nodes of
the graph into two with minimal cost, with the units having
s; = +1 into one partition and the units having s; = -1 into the
other partition. Good results were obtained for the graph bipartition
problem for a wide range of problem sizes. The solutions obtained
by mean-field annealing are comparable to those obtained by
simulated annealing [Peterson and Soderberg, 1989].

Linear programming problem: In a linear programming problem

N
the aim is to maximize an objective ﬁmctioniglcisi subjected to a set

of constraints given by the inequalities of the type

N
Y wys; <b, k=12.,M. (8.19)

i=1

If the unit values s; are confined to integers, then the problem
becomes an integer programming problem. In particular, for
s; € {0, 1} the following cost function can be defined

N M N
E=—Zc§i+a2¢[2wk§i—bk] (8.20)
i=1 k=1 (i=1

where @ is a function defined to ensure that the constraints given in
Eq. (8.19) are satisfied. For example, ®(x) = x U(x), where
Ux)=1,for x > 0, and U(x) =0, for x € 0. Because of the non-
polynomial form of the constraints in (8.19), the derivative dE/ds; is
replaced by a difference as follows [Peterson and Soderberg, 1995]

3E i < 3
PREDE NN
J k=1 i=1

i=1

-0

s.=1
J

sj=0

(8.21)

Minimizing the energy function using the mean-field approximation
requires iterative solution of Eq. (8.16), after substituting the
expression for dE/d(s;) in terms of the average values (s;) and using
a suitable annealing schedule as discussed before. The solutions to
these class of problems with constraints in the form of inequalities
are described in [Peterson and Soderberg, 1989)].

Travelling salesman problem: For a given number of cities (N) and
their intercity distances, the objective is to determine a closed loop
of the tour of the cities such that the total distance is minimized
subjected to the constraints that each city is visited only once, and
all cities are covered in the tour. Denoting the state of a binary unit

Direct Applications 299

of a Hopfield network as s;, where s,, = 1 indicates that the city a
is to be visited at the ith stage of the tour, we can write the following
cost function [Hopfield and Tank, 1985]:

azb

axb
E = 2 2 Aup Sia (Sg_1p + Sanyp) + % 2 2 Sia Sip
a,b

i i ab

1
+g—z i,smsja+:2x(2sia—NT (8.22)
a ij i,a

where the first term gives the total distance in the tour, with d,
representing the distance between the cities a and b. The second term
vanishes if no more than one city is visited at each stage. The third
* term vanishes if each city is visited not more than once. The last
term vanishes when each city is visited exactly once and all cities
are covered in the tour. The positive constants «, B and y denote the
relative importance given to the constraints. Note that these
constraints can also be viewed as soft constraints or weak constraints
which ought to be satisfied in the overall energy minimization

process, as in the constraint satisfaction model (see Appendix A).
The Hopfield neural network consists of N ? units, with each unit
assuming a binary value, s;, € {0, 1}, where 5;,, = 1 in the solution
indicates that the city a is to be visited at the ith stage in the tour.

A suitable choice of the energy function for this network is

1 i# azb
E = 9 > 2 Wiajb Sia Sjb ~ PICHEN (8.23)
ij ab ia
The expression for the weights can be obtained by comparing the
expressions for the energy with the cost function. The weights are
given by
Wigip = (1 = 4p) (8(:'-1),' + 8i1y)

+ ol = 8gp)0; + P(1 — 8)dap + ¥ (8.24)

The threshold 6;, for each unit is given by YN.

A solution to the travelling salesman problem is obtained by
determining the stable state of the network using either a determin-
istic relaxation procedure or a stochastic relaxation procedure with
an annealing schedule. Studies have shown that this neural network
approach does not yield minimum cost function solution most of the
time [Wilson and Pawley, 1988]. The performance does not improve
with the adjustment of the scaling parameters «, § and 7y for changing
the relative importance of different constraints.

In most of the cases involving large number of cities, the optimum
solution for the travelling salesman problem depends critically on the

300 Applications of ANN

choice of the parameters used for the constraint terms and for
implementing the annealing process. A suboptimal solution is possible
for a large size (30 cities or more) of the travelling salesman problem
using the elastic ring method and self-organization network [Durbin
and Willshaw, 1987] (see Figure 8.11).

T~

(a) Initial weights

(c) After 500 iterations (d) After 2000 iterations

Figure 8.11 Kohonen’s self-organization feature map for travelling
salesman problem for 30 cities and 100 units in the output
layer. The cities are shown as X’ and the units as ‘0.

The elastic ring method is based on Kohonen’s feature mapping
approach. The location of the N cities are shown as ‘X’ in the
two-dimensional plane in Figure 8.11a. A tour can be represented as
a line passing through these points. Therefore the travelling salesman
problem can be viewed as mapping from the plane to a line (see
Figure 6.20). Consider an N-unit output layer and a 2-unit input layer
of Kohonen’s self-organization map network. The units in the output
layer are arranged along a closed curve, with initial weights
corresponding to the points on the curve as shown in Figure 8.11a.
Note that the axes represent the two weights for each unit, and the
weight vectors for adjacent units are joined to form the closed curve.
The network is trained by presenting the coordinate values of each
city as input. The resulting self-organized feature maps after three
different number of iterations are shown in Figures 8.11b, 8.11c and

Direct Applications 301

8.11d. Since more than one unit can be attracted to the same city,
normally the number of units in the output layer are made much
larger than the number of cities. The approximate tour shown in
Figure 8.11 is for 30 cities and 100 units. Figure 8.12 shows the

Initial weights After 500 iterations

After 1000 iterations After 10000 iterations

Figure 8.12 Kohonen’s self-organization feature map for travelling
salesman problem for 100 cities and 1000 units in the output
layer. The cities are shown as %’ and the units as ‘0.

approximate tour developed when the number of cities is 100 and the
number of units is 1000. Note that, while an approximate tour can
be obtained quickly, there is no optimization criterion used in arriving
at the tour using this method.

Smoothing images with discontinuitles: Suppose we have a noisy
or blurred image with discontinuities due to edges. We can apply
optimization using simulated annealing by formulating the problem
as an energy minimization problem [Hertz et al, 1991, p. 85]. Let
s; be the smoothed ith pixel value that we want to reconstruct from
the given noisy data d;. If there are no discontinuities, the cost
function to be minimized for deriving a smoothed surface is given by

E= % « ; (s; _si+1)2 +% p 2;, (s;— di)2 (8.25)

302 Applications of ANN

where the first term ensures that the difference between smoothed
values (s;) for adjacent pixels is small, and the second term ensures
that the smoothed pixel value does not deviate much from the
observed noisy data. The constants o and p will determine the relative
importance to the costs of these two terms. Here s; can represent the
output of a processing unit of a neural network with a continuous
output function f{x).

If the image has discontinuities (see Figure 8.13), we can
introduce an additional unit v; between two adjacent pixel units s;

Figure 8.13 Illustration of image discontinuity problem in 1-D. This shows
fitting piecewise smooth curve to noisy data to allow breaks in
the fitted curve.

and s;, ;. These additional units should have bipolar values + 1, so
that v; = + 1 indicates the presence of a discontinuity and v; = -1
the absence of a discontinuity. Therefore the first term in the cost
function in Eq. (8.26) below has the additional (1 -v,) to make this
cost zero if there is a discontinuity.

1 1
E = Ealza(l—vi) (si—si+1)2+% B;(si—di)zvy; v, (8.26)

To prevent the network from putting too many discontinuities, the
cost function includes an additional term X v;. The constants o, and
. 13

Y determine the relative importance to smoothing, data and
discontinuities, respectively.

The s; units of the network should be analog in order to reflect
the continuous nature of the pixel intensity, and the v; units should
be discrete to indicate the presence or absence of discontinuity. Both
these requirements are met using stochastic binary or bipolar units.
The units must be operating at temperatures (T) high enough
compared to the constants o and P so that the average state values
operate more or less in the linear operating range of the unit’s
activation value. At the same time the temperature T should be small
compared to the constant y in order to obtain values of v; close to
saturation values of +1 or —1. One can also achieve this by gradually

Direct Applications 303

varying the gain parameter A for a continuous output function of v,
units (see Figure 5.4a) [Cortes and Hertz, 1989].

The cost function of Eq. (8.26) for a one-dimensional case can be
generalized to two-dimension representing an image by using the
following cost function [Koch et al, 1986].

1 1 1
E = 5ozz—z—(l—vy) (s,-—sj)2+§ BY, (s;-dy+ydv;, (827
@ i @n
where the pair (ij) indicates that i and j are the adjacent pixels in
the image lattice. A discontinuity between two adjacent pixels is
indicated by v; = +1. Figure 8.14 shows the geometry of the image

| e |
v, =+1
o |
[® [
o | o | o |

Figure 8.14 An image lattice with dots (.) indicating pixel positions.
Between two adjacent pixel units (i, j) is a v; unit indicated by
a short horizontal or vertical bars. A discontinuity between two
adjacent pixels (%, I) is obtained if v, = +1 and is indicated
by a long bar.

lattice, where dots () indicate the pixel units (i, j, &, [), and the
horizontal and vertical short bars indicate the units (v;) in between
two adjacent pixels (ij). The state of the pixel unit (i) is indicated by
s; and the state of the in-between units as v; with v; = +1
indicating discontinuity and v; = -1 indicating continuity.

304 Applications of ANN

It is possible to reduce the presence of several isolated
discontinuities due to noise by adding an additional term E\,,, to the
cost function, which gives importance to the closed contours formed
by regions in an image [Hertz et al, 1989]. The term is given by

Eip = =8 Y vwpvyvy (8.28)
(kb
where (ijkl) refer to the set of four adjecent pixels that form a closed
loop. For a closed contour case formed by the discontinuities, the E,,,
contributes a negative term — & (see shaded area A in Figure 8.14). On
the other hand, isolated discontinuities due to open contour contribute
+ 8 for the E)y, term (see shaded areas B and C in Figure 8.14).

8.2.4 Vector Quantization

Vector quantization (VQ) typically encodes a large set of training data
vectors into a small set of representative points, thus achieving a
significant compression in the representation of data. Vector
quantization has been shown to be useful in compressing data that
arises in speech processing, image processing, facsimile transmission
and weather satellites [Gray, 1984; Nasrabadi and King, 1988].

Formally, vector quantization maps data vectors onto a binary
representation or a symbol. The mapping is from an N-dimensional
vector space to a finite set of symbols corresponding to K classes.
Associated with each symbol & € K is a reproduction vector &, The
encoding of a data vector x to the symbol % is the mapping in vector
quantization. The collection of all possible reproduction vectors is
called the codebook.

The design of a codebook is called training, and it can be
implemented using neural network models. The learning vector
quantization is one such network model. Several other models have
been proposed, for example, Kohonen’s self-organizing feature map,
to construct vector quantization codebooks for storage and trans-
mission of speech and image data [Kohonen, 1995; Kohonen, 1992].

Note that the process of vector quantization involves merely
grouping the given vectors into different classes based on similarity
of the data vectors. The question of how well the given data
represents the physical situation is not relevant. In this sense the
vector quantization is a direct application of neural network principles
for data compression.

The simple competitive learning algorithm (see ‘Eq. (6.42))
provides a method for vector quantization of a given data. The
algorithm is for unsupervised learning, and is given by first finding
the minimum distance weight vector w(m) corresponding to the input
vector a(m), and then adjusting the weight vector of the competitive
learning network according to the following equation:

Direct Applications 305

w(m + 1) = w(m) +n (a(m) — w(m)) (8.29)

where 1 is the learning rate parameter.

Kohonen suggested a supervised verson o the vector
quantization called Learning Vector Quantization (LVQ) Kohonen,
19891. Thislearning law is applicable when |abelled sets o input data
are given. The algorithm is given by

w(mt1) = w(m)+n (agm) -w(m)), Iif the input is classified

correctly.

w(m+1) = w(m)-n (a(m)-w(m)), Iif the input is classified
incorrectly.

w(m t 1) = w(m), if the input does not

bdong to the class
corresponding to w(m).

8.25 Control Applications

There are several situations in control applications where the
principlesd neural networkscan be directly applied. The applications
include process control, robotics, industrial manufacturing, aerospace
and several others [Zurada, 19921. The main task in a control
situation is to generate an appropriate input signal to the physical
process (plant) to obtain the desired response from the plant
[Narendra and Parthasarathy, 1990; Nguyen and Widrow, 19901

The controller generates the actuating signal when the external
input is given. The design o a controller depends on the nature o
the plant and the way the input is derived for the controller in the
operation o the plant. The plant may be static or dynamic. For a
static plant, the transfer function is given by a constant. For a
dynamical plant, the transfer function is given by the ratio o the
Laplace transform o the plant's output to the Laplace transform o
the plant's input [Zurada, 19921.

There are two ways d controlling a plant: open-loop control and
feedback control. In an open-loop control the controller consists o
cascade of a system and the inverse o the plant. The system is used
to achieve the desired response for the input. The controller thus
generates an actuating signal to the plant to obtain the desired
response at the output o the plant. This needs inverse transfer
function o the plant, and the plant should not change its
characteristics during its operation. Both these problems are
overcome in a feedback control mechanism where the controller is
designed in such a way that the output becomes independent of the
plant transfer function.

Multilayer feedforward networks can be used to capture the
characteristics of the plant transfer function or the plant's inverse

306 Applications of ANN

transfer function. The neural network is then used to design a
controller. A detailed discussion on the use of neural networks for
control applications can be found in [Hunt et al, 1992; Narendra and
Mukhopadhyay, 19921.

8.3 Application Areas

The excitement in neural networks started mainly due to difficulties
in dealing with problems in the field of speech, image, natural
language and decision making using known methods of pattern
recognition and artificial intelligence. Several of these problems have
been attempted using the principles of neural networks, and some o
these attempts will be discussed in this section.

The mainissue in all these problemsis the representation of the
real world problem in a system. The power of a neural network can
be exploited provided the problem can be well represented in the
network as discussed in Sec. 8 2 on direct applications. But in the
application areas to be discussed in this section, the poor and fragile
performance of the neural network based system may be attributed
to the weakness in the input processing and the mapping of the
problem onto the neural network model. Since problems in speech,
image, natural language and decision making seem to be solved
effortlessly by human beings, our expectations from an artificial
system are aso high [Reddy, 1996; Dreyfus, 19921. In this context,
it is worth remembering that the human pattern recognition
processing is an integrated system o data acquisition, input
preprocessing, feature extraction, recognition and understanding. It
is not feasible to assess the performance of each of these processes
in isolation.

In this section some problems in the,application areas of speech
and image processing are discussed. A brief discussion on the use o
neural networks for expert decision making is also given.

8.3.1 Applications in Speech

Speech signal is the output of a time-varying vocal tract system
excited by a time-varying excitation signal. The vocal tract system,
including the coupling of the nasal tract, can be accurately described
interms o the positions of the articulators such as tongue, lips, jaw,
velum, etc. Generally the voca tract system is approximately
described in terms o the acoustic features such as the frequency
response or the resonances (formants) and anti-resonances
(anti-formants) of the system. These features are easier to extract
from the signal than the articulatory parameters. The excitation o
the vocal tract system consists o broadly three categories: (a) Voiced
source (the quasiperiodic excitation due to the vibrating vocal folds),

Application Areas 307

(b) Unvoiced source (theturbulent flow of air at a narrow constriction
created in the vocd tract during production), and (¢) Plosive source
(the abrupt release d the pressure built up behind a closurein the
voca tract system). The voiced source is characterized by the
periodicity (pitch period), and the change o the pitch period with
time (intonation). In general the short-time characteristics o the
speech signal are represented by the short-time (10-20 ms) spectral
features of the vocd tract system as well as the nature o excitation
in the short-time segment. These are called segmental features. Supra-
segmental features o speech are represented by the variation of the
pitch period (intonation), the durations o different sound units, and
the coarticulation reflecting the dependence o characteristics of one
sound unit on the neighbouring sound units during speech production.

Speech is a sequence d sound units correspondingto a linguistic
message. |mportant applications in speech area are:

(a) Speech Recognition: The objectiveisto determinethe sequence
of sound units from the speech signal so that the linguistic message
in the form o text can be decoded from the speech signal.

(b) Speech Synthesis: The objectiveis to determine the sequence
of sound units correspondingto a text so that the given text message
can be encoded into a speech signal.

(c) Speaker ldentification: The objective is to determine the
identity of the speaker from the speech signal.

The main problem in these speech applicationsis processing o
the gpeech signal in a manner similar to human auditory processing
mechanism, so that features relevant to a particular task can be
extracted. The speech problem is further complicated by the fact that
the message is conveyed not only through the segmental features but
also by the suprasegmental features. It is our lack of understanding
o these segmental and suprasegmental features and their extraction
mechanism that makes the speech tasks extremely difficult for
implementation by machines [Flanagan, 1972; Rabiner and Juang,
19931. In this section we will briefly discuss neural network models
for some speech tasks. We will discussin detail the development o
neural network architectures for recognition of consonant-vowe (CV)
segments. Other interesting applications in speech can be found in
[Lippmann, 1989; Narendranath et al, 1995; Coleet al, 1992; Pal and
Mitra, 19921

NETtalk: The NETtalk is a multilayer feedforward neural network
(Figure 8.15) developed to generate pronunciation units or phoneme
code from an input text [Sejnowsky and Rosenberg, 19871. The
phonemecodeis presented as input to a speech synthesizer to produce
speech corresponding to the text. The network consists o an input

Applications of ANN

[NN | Output units

\ (Phoneme code)

INPUT[;ﬂ E|X|[T| [F|/O|R NETtai

Figure 8.15 NETtalk: A feedforward neural network to convert English text
to speech.

j Hidden units

[

layer of 7 x 29 binary input units corresponding to 7 input text
characters including punctuation, one hidden layer with 80 units and
ore output layer with 26 units corresponding to 26 different pboreuwes
or phonetic units. The network takes as input 7 consecutive
characters at a time and produces the pbornewe corresponding to the
pronunciation of the letter at the centre of the input string. Each
character of the input is Jepresenbed as a 29-bit string. The network
was trained on 1024 words from a set of English pboneure exemplars
giving the pronunciation of words, m d was tested using different text
sentences. The system produces a string of pbornewes for a given
input text. The speech produced by a synthesizer using these strings
of phonemes os input was intelligible, although the quality was poor.
The network was capable of distinguishing between vowels and
consonants. On a new text the network achieved a generalization
accuracy of 78% in phonetic transcription. The system merely
demonstrated the ability of a neural network to capture the letter to
sound rules from input-output data. The quality will be obviously
pool, as it cannot capture the significant suprasegmental features
which are essential for producing natural sounding synthetic speech.

NETtalk is a good example to illustrate the generalization feature
of neural networks. The network is able to learn from examples and
produce intelligible speech for new text input, eeen though the quality
of speech is poor. Rule-based text-to-speech systems produce
significantly better quality speech since knowledge is explicitly
incorporated into the system [Klatt, 1980; DECtalk, 1983;
Yegnanarayana et al, 1994]. But development of rule-based systems
takes several years of effort, whereas neural networks can e trained
to learn within a few-hours.

Phonetic typewriter: The objective in speech recognition is to
transform a given utterance into a sequence of phoneme-like units
and convert this sequence into the text corresponding to the spofen

Application Areas 309

utterance. A block diagram d the phonetic typewriter developed by
Kohonen [Kohonen, 1988; Torkkola et al, 19911 is given in
Figure 8.16. The input speech signal to the phonetic typewriter is

) Phoneme Decoding Error
— I\{lyelpcl:%ro' classification by by HMM | corr ection—+-
S.peec? SCMor LVQ v by DEC |Text

inpu

Mel-cep. Quasi-phoneme Phoneme
vedors sequence sequence

(evay 10 mg) (evay 10 m9
Figure 816 Hock di agramof a phonetic typewriter.

processed to obtain a spectral representation using 20 mel-scae
cepstral coefficients for every 10 ms segments d data [Davis and
Mermelstein, 19801. The sequence d coefficient vectors is given as
input to a phoneme classifier, one vector at a time, to obtain the
quasi-phoneme sequence as output. The phoneme classification is
achieved by using either LVQ or SOM learning [Kohonen, 1990a;
Kohonen, 1990b]. The sequenced phoneme-like unitsis converted to
the phonetic transcription using a multiple codebook Hidden Markov
Modd (HMM) technigue [Rabiner, 1989]. The errorsin the phonetic
decoding by the HMM are corrected usingthe Dynamically Expanding
Context (DEC) agorithm [Kohonen, 19861, and then converted into
thetext correspondingto theinput utterance. The phonetictypewriter
was able to producel etter accuraciesd 95%for the Finnish language.
The approach was reported to have worked well for languages whose
orthography and phonemic transcriptions have simple
correspondence.

Vowel classlflcatlon: The classic Peterson and Barney [1952]
formant data for 10 vowes is a good test case for a real-world
classification problem. It consists d the first two formants collected
from spectrographic analysis o the vowd data. The vowe data was
collected for a total of 67 men, women and children. The data was
collected in the constant-vowel-consonant context of AVd. A gure 8.17
shows the distribution d the first two formants data for the vowds
in the following ten words. heed, head, had, hud, hod, hawed, W' d,
hood, heard and hid. The available vowd data was split into two
sets, one set was used for training the classification network and the
other set for testing the performance. Using a radial basis function
network for classfication, Nowlan obtained a recognition accuracy o
87% [Nowlan, 19901. Considering the fact that there is significant
overlap among the classes, the classification performance o the
network is indeed significant.

310 Applications of ANN

4000 =T =T

b head
3000 f heed > > 7

2000 |- %alle B XD x X

F2 (Hz)
=
a

QQ

%

<
1000 r hood ~ A< .’\)..,

' <
who'd 30 Q59 &

R 1% ° hawed

”~

500 o 2 1
0 500 1000 1400
F1 (Hz)

F gure817 Vowd data from Peterson and Baney [1952]. The lines are
the class boundaries obtained by a two-layer feedforward
network. [Adapted from Huang and Lippmann, 1988].

Recognition of Consonant-Vowel (CV) segments: Consonant-Vowel
(CV) utterance typically forms a production unit (syllable)in speech,
and hence several attempts have been reported for recognition of CV
utterances [Harrington, 19881. Since these are dynamic sounds, the
spectral patterns change with time. Each utterance d a CV unit is
represented as a temporal sequence of spectral vectors. Each spectral
vector corresponding to a fixed 10 ms segment may be represented
using 16 log spectral coefficientson a mel-frequency scale or usingthe
corresponding mel-scalecepstral coefficients [Davis and Mermelstein,
19801. The number of spectral vectors per CV utterance generally
varies. But usually a fixed duration (50-200 ms) segment o CV
enclosing the vowe onset, the transition to vowd and some steady
part o the vowd, is used to represent a CV unit. The CV units are
thus temporal sequence patterns and hence static pattern recognition
networks like multilayer feedforward neural network (MLFFNN) are
not suitable for recognition of these units. Moreover, discriminability
among these CV units islow due to domination d the vowe context.

Appl i cation Areas 311

An obvious method to perform sequencerecognitionis to view the
temporal sequenced the spectral vectorsas a two-dimensional spatial
input pattern for a MLFFNN, The conventional backpropagation
learning can then be used to train the network. A better approach
for CV recognition is through timedelay neural networks(TDNN)
[Waibel, 1989; Waibd et al, 19891 TDNN is a MLFFNN with its
input consisting o tim'e-delayed input frames o data. The input to
the intermediate hidden layers also consists o time-delayed outputs
o the preceding layer. Figure 8. 18 illustrates the idea of a time-delay

Output
layer

Seoond hidden
layer

111

First hidden
layer

—

I nput
layer

[TITTIIIT11)

(NN EEEEEERENE

HENNEEEEEEEEEEEE
[HNEEENENEREEEEEE

[LITIITTTITTTITUIqN 0]

[HNEEEEEENEEERREN
COITITTTTIITTITId]

| EEEEENNEEEEENEEE

(TTITTTITITTTITT11]
CITITTTTITITT 101
CCLITTTTI I TITIT11

Eﬂj

Time

H gure8.18 Architecture d a Time Dday Neurd Newok (TDNN) for
dassfication d three CV units, Multiple copies d the TDNN
are digned with adjacent spectrd vectors Thefirst TDNN is
shown in baxes narked by thick lines.

neural network applied for classification of three CV units lbl, /d/,
and /g/. The time sequence is reflected in the computation d block
d three frames of data at a time, with two frames overlapping for

312 Applications of ANN

successive blocks. In other words, F gure 8 18 shows multiple copies
o the TDNN aligned with adjacent input spectral vectors. The first
TDNN isshown in the boxes marked by thick lines. In this case each
utterance has 15 frames o data, each frame consisting of 16 spectral
components. For this, 13 different copiesof TDNN are created. These
include 13 copies of the input layer, nine copies of the first hidden
layer, and only one second hidden layer and one output layer. The
output layer has three units corresponding to the three classes /b/,
/d/, and /g/. For each TDNN, each unit in a layer is connected to all
the unitsin the layer below it. For each TDNN there are 16 X 3 units
intheinput layer, 8 X 5 unitsin thefirst hidden layer and 9 x 3 units
in the second hidden layer and 3 units in the output layer. Multiple
copies of the TDNN as shown in the Figure 8. 18 enable the entire
history o the network activity to be present at the same time. This
allows the use of the backpropagation learning algorithm to train the
network.

The 16 log spectral coefficients for each 10 ms frame are
normalized using the average o each coefficient for all the 15 frames
in the utterance, and the coefficients are mapped into the range [-1,
1]. The normalized values are given as input to the TDNN network.
The speech data for the three classes was excised from continuous
speech in Japanese, and a database of about 800 CV units was
collected for a given speaker. The TDNN was able to discriminate
the three classes with an accuracy of 98. %% Considering thefact that
the data for each class has significant variation due to contextual
effects, this result is impressive.

Extending this network model for large number of CV classes
requires modular approach, where it is necessary to distinguish the
groups of CV classes first before the individual classes can be
identified [Waibel, 19891. Moreover, because of the large size of the
network, the training of the network Wl be dow. It will aso be
difficult to collect sufficient data to obtain good generalization
performance from such a large network.

Recognition of stopconsonant vowei utterances in indian languages:
For the development of a recognition system for large number of CV
classes, recognition of Stop-Consonant-Vowel (SCV) utterances in
Indian languages is considered [Chandrasekhar, 19961. | n particular,
we consider the SCV classes of the Indian language, Hindi. The 80
SCV classes considered in this study are given in Table 8. 3, where
the classes are organized according to the 4 manners of articulation,
namely, UnVoiced-UnAspirated (UVUA), Unvoiced-Aspirated (UVA),
Voiced-UnAspirated (VUA) and Voiced-Aspirated (VA). These are
highly confusable set of sound classes. A modular network approach
followed by a Constraint Satisfaction Modd (CSM) approach is
proposed for recognition of isolated utterances of the 80 SCV classes.

Application Areas 313

Tabl e 8.3 Arrangement d SOV Classesinto Subgroups usng Manner d
Articulaionfor Grouping

Subgroup OV Classes

UVUA ka ki ku ke ko
ta ti tu te to
ta ti tu te to
pa pi pu pe po

UVA kha khi khu khe kho
tha thi thu the tho
tha thi thu the tho
pha phi phu phe pho

VUA ga gi gu ge go
da di du de do
da di du de do
ba bi bu be bo

VA gha ghi ghu ghe gho
dha dhi dhu dhe dho
dha dhi dhu dhe dho
bha bhi bhu bhe bho

When the number o classesislarge and the similarity amongst
the classesis high, it is difiicult to train a monolithic neural network
classifier based on the All-Class-One-Network (ACON) architecture
to form the necessary decision surfaces in the input pattern space
[Kung, 19931. An attempt has been made to train a multilayer
feedforward neural network for al the 80 SCV classes. It was
observed that even after a large number o epochs, the sum o the
squared error remained high and it did not change significantly from
one epoch to another. 1t shows that a single network could not be
trained for these large number d classes. It is possible to develop a
classifier based on the One-Class-One-Network (OCON) architecture
in which a separate network is trained for each class [Kung, 19931
But the discriminatory capability the OCON classifiers was found
to be poor [Chandrasekhar and Y egnanarayana, 19961.

Modular approaches [Haykin, 19941 can be used to overcome the
limitations d the ACON and OCON architectures. | n modular appro-
aches large number d classes are grouped into smaller subgroups,
and a separate neural network (subnet) is trained for each subgroup.
A post-processor can be used to combine the outputs o the subnets.

Criteria guided by the phonetic descriptions of the SCV classes
can be used to form subgroups. Such criteria are useful in analyzing
the performance o the classifiers and determining the sources d
errors in classification. A unique phonetic description can be given
for each o the 80 SCV classesin terms o three features, namely,
(a) the manner d articulation (MOA) o the stop consonant, (b) the

314 Applications of ANN

place o articulation (POA) d the stop consonant, and (c) the identity
of the vowd in the SCV. For example, the class /ka/ is described as
unvoiced unaspirated velar stop consonant followed by the vowel /a/.
The phonetic descriptions d the SCV classes suggest that grouping can
bedone in such away that one d the three featuresis common to the
classes in a subgroup. This gives 3 different criteriafor grouping.

Grouping based on MOA leads to 4 subgroups givenin Table8. 3.
Grouping based on POA leads to 4 subgroups. Velar (eg. /ka/, /kha/,
/gal, gha/), Alveolar (eg./t o/, t ha/, /d o/, /d ha/), Dental (eg. ta/, /tha/,
/da/, dha/), and Bilabia (eg. /pal/, /pha/, /ba/, /bha/). Each POA
subgroup consists of 20 classes, and the stop consonants in these
classes have the same place d articulation. Grouping based on the
vowd leads to five subgroups with one subgroup for each o the five
vowds. /a/, 1/, /v, le/ and /ol. Each vowe subgroup consists of 16
classes, and these classes have the same vowd.

We consider each d the three grouping criteria to develop a
modular network for al the SCV classes. The classfication
performance o the modular network depends on the performance o
its subnets and on the way the outputs d the subnets are combined.
A simple way d combining the outputs d the subnets isto assign to
the test input the class corresponding to the largest value among the
outputs o all the subnets. Better performance can be obtained by
combining the evidence from the output values d each subnet in an
effective way [Chandrasekhar, 19961

Data from isolated utterances o al the 80 SCV classes was
collected from three male speakers. For each class, 12 tokens were
collected from each speaker. The training data for a class consists d
4 tokena from each speaker. The remaining 8 tokens from each
speaker are used as the test data.

A fixed duration portion d the signal around the Vowd Onset
Point (VOP) d an SCV utterance is processed to derive a pattern
vector. A 200 ms portion o the signal with 60 ms before and 140 ms
after the VOP is considered for analysis. This fixed duration signal
is processed (using a frame size & 20 ms and a frame shift d 5 ms)
to obtain 40 frames d parameter data consisting d 12 weighted
cepstral coefficientsin each frame. The size d the pattern vector is
reduced using the average d the coefficientsfor every two adjacent
frames. Thus a 20 x 12 = 240 dimensiona pattern vector is used to
represent an SCV utterance. A multilayer feedforward neura network
(MLFFNN) is used to build the subnets. The network has 7Q unitsin
the first hidden layer and 50 units in the second hidden layer.

The training and test data sets for each subnet consistsd pattern
vectors belonging to the classesin that subgroup only. Performance
o the subnets for different subgroups is given in Table 8.4. The
performance is given as percentage d the total number o pattern
vectorsin the data set that are correctly classified by the subnet.

Application Areas 315

Table 84 Classification Performance of Subnets for Different Subgroups of
SCV Classes

(e) Performance of subnets for MOA subgroups

Subgroup Training data Test data
UVUA 98.1 77.1
N A 98.T 100
N A 94.2 6€9
VA 91.0 66.T
Average 95.4 66.6

(b) Performance of subnets for POA subgroups

Subgroup Training data Test data
Velar 96.6 54,6
Alveolar 96.0 84.2
Dental 93.3 7.9
Bilabial 91.7 80.0
Average 93.9 74.2

(e) Performance of subnets for Vowel subgroups

Subgroup Training data Test data
la/ 92.7 61.5
i1} 93.2 66.6
h/ 92.2 688
e/ 94.0 62.0
lo/ 91.7 67.7

Average 92.8 65.1

The average performance on the test data for all the 80 SCV
classes for the modular networks bwed on different grouping criteria
is given in Table 8.5. The performance is measured bwed on the
outputs of the subnets. In the Table 8.5 Case_% indicates that the
correct class is in the first £ largest outputs of the subnets. For
example, for the POA grouping criterion, the correct class is within
the first four classes for 76.6% or the test patterns. This performance

Table 8.5 Average Classification Performance on Test Data for the Modular
Networks based on Different Grouping Criteria

Grouping Classification performance
criterion Case_1 Case_2 " Case_3 Case_4
MOA 29.2 50.2 59.0 65.3
POA 35.1 56.9 69.5 76.6

Vowel 30.1 47.5 58.8 63.6

316 Applications of ANN

is significant considering the fad that there are 80 different classes,
and that they are confusable. The modular network for the POA
grouping criterion gives a better performance compared to the other
two grouping criteria. It isimportant to develop techniquesto reduce
the errorsin classification at the level of subnets in order to improve
the over all performance o the modular networks.

It is also possible to improve the classification performance by
properly combining the evidence available at the outputs o the
subnets. Confusability among the classes can be resolved to some
extent by using the acoustic-phoneticsknowledge o the classes. This
knowledge can be incorporated as constraints to be met by the classes.
A constraint satisfaction modd [McClelland and Rumelhart, 19861 that
tries to satisfy as many d these constraints as possible can be used to
process the outputs d the subnets (see Appendix A). The advantage is
that it may work even if some o the constraints derived from the
acousti c-phonetic knowledge are weak, conflicting and erroneous.

For the constraint satisfaction modd, a feedback neural network
is used with one unit for each o the 80 SCV classes. The weight on
the connection between a pair units is determined based on the
similarity between the classes represented by the units. The
similarity between two SCV classesis determined from the knowledge
o speech production features and al so from the confusability between
them indicated by the outputs d the subnets.

There are 3 different feedback networks, one for each o the 3
grouping criteria. Since the SCV classes within a subgroup are
designed to compete among themselves during training, excitatory
connections are provided between the units in the subgroup. The
connections across the subgroups are made inhibitory. The weights
for the excitatory and inhibitory connections are derived from the
similarity matrices derived from the classification performance d
subnets on test data. The similarity matrix for different manners o
articulation is given in Table 8.6(a). The matrices for different places
o articulation and for different vowels in SCVs are given in
Tables 8.6(b) and 8.6(c), respectively. An excitatory connection is
provided between units o two SCV classes within a subgroup if they
differ in only MOA or POA or vowd. The weight d an excitatory
connection is equal to the similarity measure between the production
features o the two classes. An inhibitory connection is provided
between classes in different subgroups only if the two classes differ
in MOA or POA or vowd. The weight for the inhibitory connection
is inversely proportiona to the similarity measure between the
production features o the two classes. If the similarity measureis C
(inthe range 0.0 to 1.0), then the inhibitory weight w is assigned as

I
100 x C

(8.30)

w =

Application Areas 317

Tabl e 86 Similarity Matrices for (a) Different Manners of Articulation of
Stop Consonants, (b) Different Plates of Articulation of Stop
Consonants and (c) Different Vowels in SCVs

(a) Similarity matrix for manners of articulation

MOA UVUA UVA W A VA

UVUA 0.87 (0R0¢] 0.06 002
UVA (0R0¢] 0.8 0.04 0.08
W A 006 004 0.78 0.12
VA 0.02 0.08 012 08

(b) Similarity matrix for places of articulation

POA Vdar Alveolar Dental Bilabial
Vdar 0.72 0.08 0.08 0.08
Alveolar 0.08 0.75 0.10 0.M
Dental 0.08 0.10 0.68 0.10
Bilabial 0.08 0.0 0.10 0.80

(¢) Similarity matrix for vowels

Vowel /a/) h/ lel o/
/a/ 0& ool 0.02 0.01 006
i 0.01 0% 0.02 0.08 0.00
h/ (0102 0.02 0.8 0.01 0.16
le/ 0.01 0.08 0.01 0.90 0.00
o/ 0.05 0.00 0.16 0.00 0.77

If the similarity measure C isless than 0.01, then the corresponding
inhibitory weight is assigned as —10.

The connections in the feedback network for the POA grouping
criterionareillustrated in Figure 8.19. The excitatory connectionsfor
the class /ka/ in the 'Vela' subgroup are shown in Figure 8.19a
and the inhibitory connections for the same class accross the
subgroups are shown in Figure 8.19b.

The feedback networks for different grouping criteria interact
with each other through a pod o units, called instance pod
[McClleland and Rumelhart, 1988] (see Appendix A). There are as
many (80) units in the instance pod as the number o SCV classes.
Each unit in the instance pod (for example, the unit corresponding
to the class /ka/) has a bidirectional excitatory connection with the
corresponding units in the feedback networks (for example, units
corresponding to /ka/ in the MQA group, /ka/ in the POA group and
/ka/ in the Vowd group). Unitswithin the instance pod competewith
one another and hence are connected by a fixed negative weight
(-0.2). The 3 feedback networks aong with the instance pod

Applications ¢f ANN

Vdar

(9) Excitatory connections for thecl ass /ka/ i nt he POA feedback network

Alveolar Dental

Vear Bilabial

(b) Inhibitory connections for thecl ass /ka/ in the POA feedback network

Fi gure819 Connections for the class /ka/ in the POA feedback network.
The excitatory connections far the class /ka/ in the 'Vdar'
subgroup are shown in (a). The inhibitory connections for the
class /ka/ are shown in (b).

congtitute the constraint satisfaction modd reflecting the known
speech production knowledge o the SCVs as well as the knowledge
derived from the trained subnets. The complete constraint satisfaction
model developed for classification d SCVsis shown in Figure 8.20.
A Multilayer Feedforward Neural Network (MLFFNN) trained for
a subgroup o classes can be considered as a set d nonlinear filters
designed to provide discrimination among the classes. There are 16
or 20 filters in each subgroup and a total o 80 filters for each
grouping criterion. It may be noted that each SCV class occursin a
different subgroupfor each o the three grouping criteria. The outputs

Application Areas 319

MOA

UvuUa _
JA

B3 looo

Figures.20 A condraint satisfaction modd for classification o SCY utter-
ances. Connectionsfor /ka/ are shown for illustration.

of the filters for each subgroup for a given training sample is
considered as a feature vector. The distribution of the feature vectors
for each class is obtained from a second set of training data. The
distribution is represented in terms of a mean vector { and a
covariance matrix R derived from the feature vectors for the class.

The operation of the constraint satisfaction model is as follows:
Each unit j in the constraint satisfaction model computes the
weighted sum of the inputs from the other units (s) in the model.
An externd input for each of the units in the feedback networks is
provided as bias. The bias is derived from the 16- or 20-dimensional
feature vector x of the subgroup to which the unit belongs. The bias
for the unit j is given by

B. = 1 o ®-w)TR} B

T oo 3
'_—(Zﬂ)M|Rj| (8.31)

where M isthe dimension of thefeature vector, w; isthe mean feature
vector of theclass associated with the jth unit and R; isthe covariance
matrix associated with the class of the jth unit.

320 Applications of ANN

The net input to the unit j is given by
C;=aB;+Bs;+y (8.32)

where a, B and y are constants in the range 0.0 to 1.0, chosen
empirically by trial and error. The output function for each unit is a
sigmoid function.

The constraint satisfaction modd is initialized as follows For a
new input pattern, the feature vectors (x) are obtained from all the
MLFFNNs. The outputs o the units in the feedback networks for
which the corresponding feature vector component value is above a
threshold § (= 0.3) areinitialized to +1.0, and the outputs of all other
units in the feedback networks are initialized to 0.0. The bias for a
unit in the instance pod is computed from the net input to the unit
after the feedback networks are initialized. The output o a unit in
the instance pod is initialized to +1.0, if the net input to the unit is
greater than 0.0. The constraint satisfaction modd is then dlowed
to relax until a stable state is reached for a given input using a
deterministic relaxation method. In this method a unit in the model
is chosen at random and its output is computed. This is continued
until there is no significant change in the outputs d al the units.
When a stable state is reached, then the outputs o the instance pool
units can be interpreted to determine the class o the input pattern.

The class o the instance pod unit with the largest output value
is assigned as the class o the input utterance. Because of similarity
among the SCV classes, we consider the cases (Case_k) in which the
correct class is among the classes corresponding to the £ largest
output values. The classification performance o the constraint
satisfaction mode (CSM) for different casesis givenin Table8.7. The
performance of the modular network is also given in the table for
comparison. Here the performance d the modular network based on
POA groupingis given, as it gave the best classification performance
among the three grouping criterion.

Tabl e 8.7 Classification Performance of the Constraint Satisfaction Modd
using Test Data for all the 80 SCV Classes

Modd Case-1 Case_2 Case-3 Case-4
ca 65.6 75.0 80.8 82.6
Modular Network 35.1 56.9 69.5 76.6

It can be seen that the performance d the CSM is significantly
better than the performance o the modular networks. The performance
d the C3M for Case-1is as high as 65% indicating that the instance
pod unit with the largest output value gives the class o the input
utterance correctly for 65% d the total number o test utterances. This
result is significant considering the fact that the classification is

Application Areas 321

performed by the CSM by discriminating among 80 SCV classes and
that many o these classes are similar. The performance o the CaM
increases to 82%for the Case-4 of the decision criterion.

The ability o the CSM to combine evidence from multiple sources
may be useful for performing even speaker independent classification.
The subnets are trained using the data collected from multiple
speakers. Since the operation o the C3V is speaker independent, it
is expected that the CSM would show a distinct improvement for
speaker independent classification over the modular networks
[Chandrasekhar, 19961.

The description d the recognition system for the SCV units given
above clearly demonstrates the need to evolve an architecture suitable
for a given problem. For example, the acoustic-phonetic knowledge
has been used effectively in the form of constraints to improve the
performance d the 80 class network for the confusable set d SCV
units. It is obvious that ultimately the recognition performance is
limited primarily by the features derived from the signal.

8.3.2 Applicatlons In Image Processing

An image is represented as a two-dimensional array d pixels, with
some gray value or colour associated with each pixel. Characteristics
o an images are: (a) the loca structure, dictated by the spatial
correlations among nearby pixels, and (b) the globa structure,
conveying the semantics o theimage. These local and globa features
are used in interpreting an image for recognition. Standard neural
network models accept the input data in an unstructured manner, in
the sense that the input to each unit in the input layer is considered
independent. Thus when an image is fed as an input to a neural
network the gray value o each pixel is provided as input, and the
input units have no spatial structure reflecting the spatial
correlations among the pixd values. Before feeding an image to a
network, the image is size-normalized, since the dimensionality o the
input to the network is fixed. In some cases like handwriting, the
normalization may be carried out at word level, in which case the
size, slant and position variations d the individual characters will
cause difficulty for recognition by the neural network. Thus the main
difficulty d the unstructured nature o the input units o neural
network architectures is that there is no built-in invariance to
translation, rotation, scaling and distortion at local or global features
levels [LeCun and Bengio, 1995a and 1995b].

In this section we describe the development o some neural
network models for three applications in image processing, namely,
handwritten character recognition, image segmentation and texture
classification.

322 Applications of ANN

Recognition of handwritten digits: The objective is to develop a
recognition system for binary images consisting of handwritten
characters or digits. Even after an overal size-normalization of each
character before inputting, the system ill has to take care of the
variations due to shifts and loca distortions. Convolutiona network
architectures are proposed for such images [LeCun and Bengio,
1995a; Sackinger et al, 1992; LeCun et al, 19901. These architectures
use three key ideas, namely, loca receptivefied, weight sharing and
spatial subsampling. The images are applied directly to the network
after some sizenormalization and centering. The network
architecture for an optical character recognition for a digits task is
shown in Figure 8.21 [Sickinger et al, 19921. It is a multilayer feed-

Input Feature Feature Feature Festure Output
20x20 maps maps maps maps 10x1x1
4x16x16 4x8x8 12x4x4 12x2x2

o
5x5 e
2%2

Convolution Subsampling Convolution Subsampling Convolution
Figure 8.21 A convolutional network for optical character recognition.

forward neural network with oneinput layer, four hidden layers and
one output layer. Theinput layer consists of 400 units corresponding
to a 20 x 20 normalized binary image d each digit. The first hidden
layer consists d 4 feature maps, each unit in the feature map is
connected to a local receptivefield of 5x 5 pixel neighbourhood in the
input layer. Two adjacent units in a feature map have their loca
receptive fields displaced by one unit shift in the input layer.

Weight sharing is achieved by assuming the same set o weights
to each unit in the feature map. Thus there are 25 free parameters
only for each o the 4 feature maps in the first hidden layer. From
each local receptivefield, each unit extracts some elementary features
such as oriented edges, corners, ete. Each of thefeature maps extracts
different featuresfrom the same receotive field. Thefirst hidden layer
thus performsfour separate, 2-D nonlinear convolutionsd the feature
map with the input image.

The features extracted in the first hidden layer are combined in
the second hidden layer to take care d shifts in the features. A shift
of the input o a convolutiona layer will shift only the features but
the output remains the same. Therefore once the feature has been
detected, itslocationis not very critical, aslong asits position relative

Application Areas 323

to other features does not change. Therefore the second hidden layer
is used to reduce the resolution by subsampling. Each unit in a
feature map in the second hidden layer computes the average of the
outputs o four(2 X 2) neighbouring units in the correspondingfeature
map in the first layer. The loca receptivefieldsfor adjacent unitsin
this case do not overlap.

The third and fourth hidden layers perform feature extraction
and subsampling as in the case o thefirst and second hidden layers,
respectively. Each unit in each feature map of the third hidden layer
extracts features form 5 x 5 units receptive field in the output o the
second hidden layer. But each unit this time is connected to the
outputs d more than one feature map in the second hidden layer.
For example, 5x 5 units from each o the two feature maps in the
second hidden layer may be combined by connecting outputs of dl
the 50 units to each unit in the third layer. The weight sharing is
donefor each unit asin the case d the first hidden layer. The number
o feature maps in the third layer are 12 corresponding to 4C,
combinations o features from the lower layer. The fourth hidden
layer performs averaging and subsampling as in the case o the
second hidden layer.

The outputs d all the units in the fourth hidden layer are
connected to each o the units in the output layer. The output layer
has 10 units corresponding to the 10 digits to be recognized. The
classification isindicated by the maximum output among the 10 uni ts
in the output layer.

The network is trained using samples o handwritten digits
collected from real life situation such as the digits in the postal
addresses on the envelopes. Note that the weights from the hidden
layers 1 to 2 and from the hidden layers 3 to 4 are fixed, as they
perform only averaging. All other weights are adjusted using the
standard backpropagation