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Preface

This book is an exploration of neural networks for pattern recognition in
scientific data. An important highlight is the extensive visual presentation of
neural networks concepts throughout. This book is motivated by the
necessity for a text that caters to both researchers and students from a wide
range of backgrounds, one that puts neural networks into a multi-
disciplinary scientific context. For the last seven years, I have taught neural
networks to graduate students from diverse backgrounds, including
biology, ecology, applied sciences, engineering, computing, and commerce
at Lincoln University in New Zealand. My interactions with these students
evolved my presentation of the material in such a way that it makes
networks and their internal details transparent, thereby building confidence
in the methods. Visual presentation became an invaluable tool in making
difficult mathematical concepts easier to grasp. This book is a reflection of
these efforts and of my own interest in exploring neural networks.

My intent is to provide a sound theoretical background within an applied
context. My experience has shown that learning combined with hands-on
applications using neural networks software provides the best outcome.
Additionally, practical tutorial sessions to complement the theoretical
treatments have been very successful in presenting this material.

I have designed this book to introduce neural networks to senior under-
graduate and graduate students from applied fields of research with some
mathematical and basic calculus background. Simple presentations in con-
junction with visual aids make it possible to unravel a network to understand
the mathematical concepts and derivations, and to appreciate the internal
workings of neural networks that are considered to be a ‘black box’ by many.

Chapter 1 begins with an introductory discussion of the role neural
networks play in scientific data analysis and a detailed layout of the book is
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presented. Many scientists are interested in determining the advantage of
neural networks over classical statistical methods. In this book, statistical
methods are addressed in detail in relation to neural networks; Chapter 2
illustrates that the two approaches are equivalent in linear data analysis and
then begins to build a solid foundation of basic neural network concepts,
instilling a deep understanding to continue forth with confidence.

Chapter 3 through Chapter 5 address nonlinear data analysis with neural
networks using multilayer networks that are the most popular networks for
nonlinear pattern recognition. Multilayer networks are a class of networks
that have layers of neurons with nonlinear processing capabilities. The book
provides extensive coverage of these networks because their potential and
usefulness in systems modeling are increased if their limitations in relation
to robustness and extensive trial-and-error requirements are addressed. The
advantages of neural networks over statistical methods in nonlinear
modeling are illustrated in these chapters. Specifically, these chapters
address in detail nonlinear processing in networks, network training, and
optimization of network configurations. Examples and case studies are
presented so that these chapters can be easily understood. The material in
these chapters is intended for both regular lectures and independent study.

Chapter 6 is a discussion of data exploration and preprocessing; it
involves a significant number of statistical methods, some of which are
available on commonly known statistical programs. The objective of the
chapter is to extract relevant and independent inputs for effective model
development and it can be used in conjunction with hands-on problem
solving on statistical software.

Chapter 7 discusses uncertainty assessment in neural networks and relies
heavily on statistical methods; neural networks are examined on a rigorous
statistical foundation. Although neural networks are powerful nonlinear
processes, tools to assess their robustness have been limited. In this chapter,
neural networks are put into the context of Bayesian statistics for a rigorous
assessment of their uncertainty in relation to network parameters, errors,
and sensitivities. The material presented in this chapter requires a basic
understanding of the concepts of simple, joint, and conditional probabil-
ities, as well as the neural networks concepts developed in Chapter 3
through Chapter 5. Uncertainty assessment presented in the chapter can be
invaluable for gaining confidence in the neural network models and then
using them in decision making.

In my experience, students are particularly interested in self-organizing
maps—unsupervised networks for discovering unknown clusters and
relationships in multidimensional data. Chapter 6 presents this material in
a step-by-step manner that highlights the important concepts. These can be
used as both lecture material and for independent study. The essential
concepts are presented incrementally and many features of unsupervised
data clustering and its relation to some statistical clustering methods are
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illustrated using examples. Specifically, the chapter covers topics including
competitive learning and topology preservation, one- and two-dimensional
maps, map training and validation, map quality assessment, cluster
formation on maps, and evolving self-organizing maps using extensive
graphical illustrations.

The last chapter treats linear and nonlinear time-series forecasting with
neural networks. It extensively covers concepts of recurrent and
feedforward networks for short-term and long-term time-series forecasting,
and the majority of the material can be used as both lecture material and for
independent study. A variety of practical example case studies highlight
all new concepts introduced. The similarity of linear neural networks and
the relevant classical statistical methods are illustrated and the advantages of
nonlinear neural networks are demonstrated.

The examples presented in the book have been developed mainly on
Neural Networks for Mathematica® and Machine Learning Framework for
Mathematica—two Mathematica add-on programs—and NeuroShell2™ | a
commercial software. There are many commercial and free neural networks
software programs available on the World Wide Web to complement the
material in the book.

It was my intention to present the material in this book in such a way that
the fundamentals gained from it will help the reader apply this knowledge
and understanding to a variety of other networks that are not covered in the
book, as well as any other new developments in this fast-growing field. My
experience has shown that the approach used in this book has helped many
diverse researchers learn and apply neural networks in their individual
fields of research. I hope that the readers will find this to be true for
themselves as well.

How to Use the Book

This book covers a number of important issues in model development with
neural networks and is suitable as a research-focused textbook or as a
reference for researchers interested in independent study. The book has
been written for applied scientists and engineers, and as a textbook for
students in these fields. The material may be presented over two semesters:
Chapter 2 through Chapter 5 may be covered in the first semester, and
Chapter 6 through Chapter 9 in the second. Although there is a seamless and
logical progression of material from Chapter 2 through Chapter 7, Chapter 8
relies on the concepts developed in Chapter 2. The final chapter has a strong
relationship to Chapter 3 through Chapter 7. 1T have used NeuroShell2
(Ward Systems, Inc., USA), Neural Connnection™ (SPSS, Inc., USA), and
NeuroSolutions™ (NeuroDimension, Inc.) in the past and each is suitable for
class tutorials as well as independent research.
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In a multidisciplinary audience, expected outcomes of the participants
are quite broad. Some wish to learn how to use neural networks as a tool in
their research, and for them it is essential to have user-friendly software such
as those mentioned above. Others prefer to experiment with neural
networks concepts; for these, Mathematica (Wolfram Research, Inc.),
MATLAB® (The MathWorks Inc., USA), and C++ programming environ-
ments have been useful.
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Chapter 1

From Data to Models:
Complexity and
Challenges in
Understanding
Biological, Ecological,
and Natural Systems

1.1 Introduction

Nature is complex. It sustains many interacting and interdependent systems
to maintain biological and ecological diversity as well as natural and
environmental processes. Many problems researchers currently face are
related to one or more of these interdependent systems. In solving
biological, ecological, and environmental problems, scientists attempt to
develop models to predict an outcome, understand or explain a process, or
classify a process’s outcome. A major hindrance in modeling real problems
is the lack of understanding of their underlying mechanisms because of
complex and nonlinear interactions among various aspects of the problem.
For example, individuals in an ecosystem make up species that coexist with
other species to form a community that depends on their habitat for
sustenance and regeneration. Ecosystems are maintained through complex
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interactions between various players in the system that make it impossible to
gain a complete understanding of this system to develop predictive models.
Even the simplest mathematical models of population dynamics, for
example, can exhibit oscillatory and even chaotic behavior, making it
impossible to predict precise dynamics of populations governed by such
equations [1]. In many cases, the best solution is to learn system behavior
through observations or data. Specifically, researchers collect data that
characterizes a system, and they attempt to extract complex nonlinear and
multidimensional patterns and relationships embedded in the data.

There are many reasons for complex system behavior. Many natural
systems display randomness, heterogeneity, multiple causes and effects, and
noise [2]. For example, there are many plant species, and their growth
depends on genetic, environmental, and soil conditions that are also
variables with an element of randomness. Thus, plant growth is a dynamic
process that makes all aspects of growth and properties vary in space and
time. Therefore, understanding the underlying mechanism of plant growth
and its interaction with the environment is a complex problem.

Many situations exist where researchers rely on data to study system
behavior. In ecosystem management, researchers want to know which plant
or animal species is invasive, their habitat’s characteristics, and the risks they
pose to health, crops, commerce, and the management of the ecosystem.
Through biological study, researchers now know the complete human
genome that contains the blueprint for life. However, how genes express in
response to various harmful agents by resisting or giving in to diseases, how
enzymes build proteins, how complex protein structures fold into compact
forms, and many related issues are complex and the only way to understand
these processes is through data. Complex interactions are also found in
environmental management, including water quality, air pollution, and
contaminant transport in porous media, as well as in the management of
natural resources, rivers, lakes, forests, fisheries, and wildlife [2—4].

The nature of the aforementioned problems requires a systems approach
where the most essential features of a complex problem with multiple
interactions are modeled so that the system behavior can be predicted
reliably even under random and noisy conditions. Neural networks are
flexible, adaptive learning systems that follow the observed data freely to
find patterns in the data and develop nonlinear system models to make
reliable predictions; they provide a promising approach for solving many
real-world problems [5,6].

Information processing in the brain inspired neural networks. The brain
processes information incrementally and learns concepts over time. In this
process, the brain attains a remarkable ability to make decisions and draw
conclusions when presented with complex, noisy, irrelevant, or partial
information [7,8]. Neural networks are popular because of their ability to
imitate some of the brain’s creative processes, albeit in a simplistic way, that
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cannot be imitated by existing mathematical or logical methods. Such
capabilities are essential for solving many complex problems.

The remarkable capabilities in the brain arise from its massive networks
of interconnected neurons that incrementally process information trans-
mitted from the external or its internal environment to develop robust
internal representations of the external phenomena. This is called learning,
and the brain can be trained or left to learn on its own. Artificial neural
networks, the subject of this book, are a system of interconnected neurons
organized into a network where each neuron processes data locally using
the concepts of learning in the brain [5,8]. Thus, the networks can be either
specifically trained or left to self-organize and learn on their own. This is
accomplished by repeated exposure to data representing the studied
system, so that the network learns system behavior from data. Once trained,
networks can be used to make pragmatic decisions with regard to the
nature, behavior, use, or management of the system. When they are trained
with samples of input—output data in supervisory mode, they can make
predictions, classifications, or forecasts of future events. In self-organization,
networks learn in an unsupervisory mode and can learn to discover
unknown clusters. For example, they may cluster similar species, groups,
protein structures, etc., and they can provide insight into the internal
structure and relations in the data.

Neural networks have been successfully developed to solve problems in
a variety of applied fields, and a list of examples to demonstrate the diversity
of applications includes

m Plant ecosystems (growth, health, and interaction with the environ-

ment) [9]

Plant disease identification and prediction of disease spread [10]

Study of the dynamics of plant and animal communities and their

habitat characteristics [11]

Study of the effects of deforestation and habitat change on ecosystems

Classification of plant and animal species

Micro-array data analysis and protein structure prediction [12]

Meat quality and tenderness characterization [13—15]

Animal disease diagnosis and stages of severity to produce animal

health indicators [16,20]

s Prediction of properties and behavior of biological materials
(17,23,24,27]
Modeling land use change

s Properties and behavior of natural systems such as ground
water systems, time and space variation of properties,
contamination of aquifers and atmospheric systems [3,4]

s Chemicals in the environment and their local and global
consequences [18]
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Forecasting inflows into rivers and lakes [19]
Reservoir management
Integration of many management parameters to provide an
effective solution for the management of a system
s Understanding waste generation factors and long-term forecast-
ing of waste production [20,21]
Electricity load forecasting [22,25]
Economic predictions [28]

1.2 Layout of the Book

This book is an exploration of neural networks for pattern recognition in
scientific data, and a major component of the book is the extensive visual
presentations illustrating neural network concepts. Starting with the basics,
the book provides instruction on a variety of neural networks’ internal
workings, and it shows how to apply them to solve real problems. A
thorough explanation of the fundamentals provides a solid foundation for
understanding many types of neural networks. Once this is achieved, we
will explore, in detail, Multilayer Perceptron for predictions and classifi-
cation, Self-Organizing Feature Maps for unsupervised clustering and
Recurrent Networks for time-series understanding and forecasting. Other
selected networks such as Generalized Neuron models and Generalized
Regression Networks are also presented. The importance of, and
approaches to, data preprocessing, model validation, and uncertainty
assessment that are crucial to successful model development are also
addressed. Relevant statistical concepts are presented alongside the neural
network concepts throughout the book. All new concepts are explained
using hands-on examples, and the use and behavior of all network types are
demonstrated through practical application case studies. Following is a
summary of the rest of the book’s chapters.

Chapter 2 introduces neural networks and relevant concepts from
biological neural networks. It demonstrates the operation of single neurons
and several models developed to capture information processing in a
neuron. Neurons presented in this chapter are linear models and their
performance is compared with linear statistical models. Concepts of neuron
activation functions and connection strength (weights) between neurons are
introduced. Weights are the free parameters, and they are the most
important feature of networks because they hold internal representations
(memory) of the model. Learning involves optimizing the weights. This
chapter offers an exploration of learning in these neurons using the learning
theories that have been proposed over time to adjust weights incrementally.
Specifically, a study of the classification capabilities of threshold limited
neurons as well as classification and predictive capabilities of linear neurons
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are conducted. The performance of networks made up of multiple numbers
of these neurons organized in a layer is discussed. Their relationship to
discriminant function analysis and linear and multiple linear regression will
be demonstrated. The chapter also introduces supervised learning,
including Hebbian learning and delta rule, as well as unsupervised learning.

Neural networks draw their nonlinear modeling capabilities from the
flexible processing in nonlinear neurons that are organized into layers in
networks. There are several variants of such networks, and Chapter 3
deals with the operation of a multiple layer network, popularly known as
a Multilayer Perceptron, where more complex neurons are organized in
several layers that make it possible for them to do complex nonlinear
mapping tasks. In-depth discussion within the chapter will provide a solid
foundation for understanding the operation of other similar networks as
well as more complex networks. Here, all the details of data processing
by a network are illustrated through examples. These examples include
how a network processes information and how learning organizes the
internal aspects of a network through activities such as neuron activation
functions, connection strengths, and hidden neuron layers to produce the
desired outcome.

Actual learning mechanisms are covered in Chapter 4, which explores
the internal workings of multilayer networks, and it pays particular attention
to how a network can be trained to learn using learning methods. Learning
involves optimizing the free parameters (i.e., weights) of a network, and the
most widely used approach is minimizing mean square error. The delta rule
is one such approach and this chapter illustrates its use for simultaneously
adapting all the weights in a network. Every detail of the delta rule’s
application is explained through graphs and hands-on examples. Extensive
coverage of several other variants of delta rule—back propagation with
momentum, adaptive learning rate or delta-bar-delta, steepest descent, and
second-order learning methods including QuickProp, Gauss—Newton and
Levenberg—-Marquardt methods—is given in this chapter. Each learning
method is explained with a hand calculation and a computer experiment, and
learning methods are compared to assess their efficiency. This investigation is
complemented with case studies comparing different learning methods and
assessing their performance on complex data.

Neural networks’ power comes at a cost. There are many possible ways
to configure networks and train them. In other words, with a large enough
number of free parameters, neural networks can be trained to rigidly fit data
that may also include noise. Therefore, it is important to understand how to
optimize the structure and learning of the networks to develop models that
generalize well to unseen data and that are reliable for decision making.
Chapter 5 treats these aspects extensively for multilayer feedforward
networks. Specifically, methods for improving the generalization ability of
networks and the effect of data, noise, and initial network weights on the
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generalization ability of networks are illustrated. The effect of the internal
structure, such as the number of neurons and connections, on the
performance of the networks is explored graphically, and several
approaches to pruning networks to reduce their complexity are illustrated
with examples. Reasons for the instability of weights (i.e., multiple
solutions) in general in a network are explored, and the robustness and
uncertainty of the networks is assessed by analyzing the resistance of
network weights to perturbations.

An important aspect of model development is finding the essential
features that must be incorporated into the model and omitting
unnecessary information or noise. This process is called feature extraction.
Using only the relevant inputs helps reduce the complexity of models and
makes the model parameters robust. Chapter 6 is devoted to data
exploration and preprocessing. It starts with a presentation on approaches
to data visualization and proceeds to discuss correlation and covariance
between variables to identify correlated data. Several approaches to data
normalization are offered to improve the representation of the variables in
the model. Various statistical tools, including partial correlation, best
subsets regression, and principal component analysis, are presented for
selecting inputs into a neural network. The correlated inputs give rise to
multicollinearity, which can severely affect the model’s accuracy and
robustness. Therefore, removing multicollinearity to reduce input
dimensionality can greatly improve model accuracy. In this chapter,
several approaches to addressing multicollinearity are illustrated, including
principal component analysis and partial least-square regression. Outlier
detection and noise removal in multivariate data are addressed for cleaning
the data. The input selection is illustrated through a case study that
highlights the positive effects of dimensionality reduction on model
accuracy of feedforward networks.

Chapter 7 is devoted to uncertainty assessment of feedforward networks
using Bayesian statistics. First, it puts network learning in the context of
maximum likelihood parameter estimation in statistics. It then puts the
optimum parameters (weights) obtained from training of networks in a
probabilistic framework so the uncertainty of weights can be properly
assessed. Specifically, for a trained network, weight probability
distribution is attained and is used to assess the uncertainty of other
parameters, such as model output, error due to intrinsic noise, and network
sensitivity to inputs. A case study is presented where the uncertainty of
networks’ sensitivities are explored to assess the relevance of inputs, and
the uncertainty of output errors are assessed to ascertain the robustness
of the model’s output. This chapter systematically illustrates the significance
of the principal component-based dimensionality reduction on the
robustness of models.
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Chapter 8 presents self-organizing map (SOM) networks, also called
unsupervised networks, that discover cluster structures and relationships in
multidimensional data that are not initially known. These networks have an
input layer and an output layer (the map), which has a predefined structure
(i.e., number of neurons). Input layer is connected to output layer neurons
with weights that reorganize themselves in a way so that inputs that are
similar are clustered together. The structure and training of these networks
using competitive and self-organization learning are discussed, and
illustrated using hand calculations, computer experiments, and real case
studies. One- and two-dimensional maps and relevant learning issues are
discussed in greater detail. A trained map is a compact preservation of the
input probability distribution. Ways to assess the quality of the map as well
as defining specific numbers of clusters on a trained map are also presented.
Evolving SOMs that allow a flexible map structure to grow as dictated by the
data are presented and illustrated through examples.

Time-series forecasting with neural networks is the focus of Chapter 9.
Time-series are auto-correlated, and an outcome at an instance of time has a
strong correlation to past observations (lags) of the same series. First, a
detailed analysis of linear models is presented with examples, then,
nonlinear neural networks for time-series forecasting are discussed.
Specifically, a modified back propagation and several variants of recurrent
networks are analyzed extensively to demonstrate their ability to capture
temporal dynamics in data, and each network is illustrated with an example
case study. These networks are presented as an extension of the classical
linear Autoregressive (AR) and Moving Average (ARMA) models. Network
development for extended long-term forecasting is presented and illustrated
using a case study. Networks’ bias and variance components for time-series
forecasting are analyzed with respect to input lags and network structure.
Finally, approaches for input selection in time-series forecasting are
presented and illustrated using a practical example case study.
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Chapter 2

Fundamentals of Neural
Networks and Models for
Linear Data Analysis

2.1 Introduction and Overview

Neural networks are an evolving field with origins in neurobiology. Neural
networks are models that attempt to mimic some of the basic information
processing methods found in the brain. Because our brains perform
complex tasks, neural networks modeled after the brain have also been
found useful in solving complex problems. The field of neural networks has
grown from the modeling of simple processing elements or neurons to
massively parallel neural networks. This chapter demonstrates the basic
concepts of neural networks by following the evolution of some neural
networks concepts. Specifically, the chapter will look broadly at what
comprises a neural network and will present a detailed study of what
neurons are, how they have been modeled, and how to interpret the model
outcomes. It will also give an introduction to the foundation of learning
methods, and to important major developments that laid the groundwork
for the development of powerful neural network models. At the end of the
chapter, the reader will have a solid understanding of information
processing in single-neuron models and linear neural network models,
which will aid the study of nonlinear neural network models in subsequent
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chapters. Along the way, the chapter will also relate several statistical
concepts of linear analysis to neural network concepts that will be
developed incrementally.

Section 2.2 introduces the concepts of neurons and neural networks;
Section 2.3 presents the fundamental concepts from neurobiology that
inspired the development of neural networks. The modeling of neurons is
introduced in Section 2.4, and learning strategies are discussed in Section 2.5,
along with two single-neuron models for linear data analysis—perceptron
and linear neuron—as well as linear neural networks. Corresponding
statistical methods are also highlighted in Section 2.5. A chapter summary is
presented in Section 2.0.

2.2 Neural Networks and Their Capabilities

A broader definition of a practical neural network is that it is a collection
of interconnected neurons that incrementally learn from their environ-
ment (data) to capture essential linear and nonlinear trends in complex
data, so that it provides reliable predictions for new situations containing
even noisy and partial information. Neurons are the basic computing
units that perform local data processing inside a network. These neurons
form massively parallel networks, whose function is determined by the
network structure (i.e., how neurons are organized and linked to each
other), the connection strengths between neurons, and the processing
performed at neurons.

Haykin [1] states that “A neural network is a massively parallel distributed
processor that has a natural propensity for storing experiential knowledge
and making it available for use. It resembles the brain in two respects: 1.
Knowledge is acquired by the network through a learning process; 2.
Interconnection strengths between neurons, known as synaptic weights or
weights, are used to store knowledge.”

Neural networks perform a variety of tasks, including prediction or
function approximation, pattern classification, clustering, and forecasting,
as shown in Figure 2.1 [2]. Neural networks are very powerful when fitting
models to data (Figure 2.1a). They can fit arbitrarily complex nonlinear
models to multidimensional data to any desired accuracy; consequently,
neural network predictors are called universal approximators [3]. From a
functionality point of view, they can be thought of as extensions to some
multivariate techniques, such as multiple linear regression and
nonlinear regression.

Neural networks are also capable of complex data and signal (time-series)
classification tasks involving arbitrarily complex nonlinear classification
boundaries (Figure 2.1b). In situations in which the naturally formed clusters
in the data are unknown a priori, neural networks are useful in unsupervised
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Figure 2.1 Some functions of neural networks suitable for scientific data
modeling: (a) fitting models to data, (b) complex classification tasks, (c)
discovering clusters in data, and (d) time-series forecasting.

clustering, in which they use the internal properties of the data to discover
unknown cluster structures (Figure 2.1c¢). A powerful feature of the
unsupervised neural clustering method called self-organization is that it
can also simultaneously reveal spatial relations between clusters of data
while finding the clusters. Neural networks are also capable of time-series
forecasting, in which the next outcome or outcomes for the next several
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time steps are predicted (Figure 2.1d). This is accomplished by capturing
temporal patterns in the data in the form of past memory, which is embedded
in the model. In forecasting, this knowledge about the past defines future
behavior.

There are a variety of neural networks with special features that have
been developed to accomplish the above tasks; some of the most relevant
for scientific data modeling are shown in Figure 2.2, which illustrates the
organization of the individual processing elements or neurons (denoted by
circles), the links between them, and the manner in which this structure

Single-layer perceptron Linear neuron
Linear classifier Linear predictor/classifier
(a) (b)
Multilayer perceptron Competitive networks
Nonlinear predictor/classifier Unsupervised classifier

=0

(c) (d)

SOM
Unsupervised clustering/topology presentation

(e)

Recurrent petworks
Time-series forecasting

(f)

Figure 2.2 Some neural network types for performing tasks depicted in Figure 2.1:
(@) single-layer perceptron, (b) linear neuron, (c) multilayer perceptron, (d)
competitive networks, (e) self-organizing feature map, (f) recurrent networks.
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links inputs to outputs. The perceptron network in Figure 2.2a, which will
be explored in this chapter, is a linear classifier and is functionally similar to
simple- and multiple-discriminant function analysis in statistics.

The linear neuron shown in Figure 2.2b is a linear classifier and predictor
whose predictive capabilities are equivalent to simple and multiple linear
regression models; as a classifier, it resembles simple- and multiple-
discriminant function analysis in statistics. These aspects will also be
explored in this chapter.

The multilayer perceptron (MLP) model shown in Figure 2.2¢ is the most
well-known neural network for the nonlinear prediction and classification
tasks shown in Figure 2.1a and Figure 2.1b. This, in fact, is an extension of
the perceptron network. Chapter 3 and Chapter 4 are devoted entirely to
these networks. The competitive networks (Figure 2.2d) are unsupervised
networks that can find clusters in the data. The self-organizing feature map
(SOFM) competitive network shown in Figure 2.2e not only finds unknown
clusters in the data but also preserves the topological structure (spatial
relations) of the data and clusters [4]. Two popular neural networks for time-
series forecasting are the Jordan and Elman Networks [5] presented in
Figure 2.2f. These networks contain feedback links that help to capture
temporal effects. All the networks illustrated in Figure 2.2 will be discussed
in various chapters throughout this book.

The common element between all these networks is that they each
contain many links connecting inputs to neurons and neurons to outputs.
These links are called weights, and they facilitate a structure for flexible
learning that allows a network to freely follow the patterns in the data. The
weights are called free parameters, and the neural networks are therefore
parametric models involving the estimation of optimum parameters. The
flexible structure of these neural networks is what makes them capable of
solving such a variety of complex problems.

To illustrate this point, Figure 2.3 shows the structure of an MLP network
(also shown in Figure 2.2¢) that is capable of complex input—output
mapping, shown in Figure 2.1a and Figure 2.1b. It has an input layer, a
hidden layer, and an output layer of neurons, denoted by I, H, and O,
respectively. These three layers are linked by connections whose strength is

Figure 2.3 An example multilayer neural network.
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called weight. Thus there are two sets of weights, the input-hidden layer
weights and the hidden-output layer weights. These weights provide the
network with tremendous flexibility to freely adapt to the data; they are the
free parameters, and their number is equivalent to the degrees of freedom of
a network.

The input layer transmits input data to the hidden neurons through
input-hidden layer weights. Inputs are weighted by the corresponding
weights before they are received by the hidden neurons. The neurons in the
hidden layer accumulate and process the weighted inputs before sending
their output to the output neurons via the hidden-output layer weights,
where the hidden-neuron output is weighted by the corresponding weights
and processed to produce the final output. This structure is trained to learn
by repeated exposure to examples (input—output data) until the network
produces the correct output. Learning involves incrementally changing the
connection strengths (weights) until the network learns to produce the
correct output. The final weights are the optimized parameters of
the network.

Some of the key features of neural networks can therefore be
summarized as follows: they process information locally in neurons;
neurons operate in parallel and are connected into a network through
weights depicting the connection strength; networks acquire knowledge
from the data in a process called learning, which is stored or reflected in the
weights; a network that has undergone learning captures the essential
features of a problem and can therefore make reliable predictions. These are
essentially the functions of the brain, and they illustrate the manner in which
the functioning of the brain has inspired neural networks. To understand the
internal workings of neural networks, the next section will briefly examine
how the brain processes information.

2.3 Inspirations from Biology

The human brain can be thought of as an information-processing entity. It
receives information from the external environment via the senses and
processes them to form internal models of external phenomena. The brain is
particularly capable of adjusting these models, as well as interpolating or
extrapolating them to suit new situations with such agility that it can make
reliable decisions, including recognizing patterns, understanding concepts,
and making predictions even with partial information that may be random
Or Noisy.

The local information processing in brain cells or neurons, which form a
large number of parallel networks in the cortex of the brain, is central to
these activities. The cortex is the thin outer layer of the brain that contains a
large number of neurons, in the order of 100 to 500 billion [6]. Neurons are
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organized into about 1000 main clusters, each with about 500 networks [7].
A single network may have in the order of 10000 neurons, and it is known
that some networks are organized in a hierarchical or layered fashion. The
brain has a variety of specialized neurons, and depending on the type, each
neuron can send signals to anywhere from a hundred to several thousand
other neurons. It is now known that the repeated excitation of neurons leads
to the growth of new connections between them, thus creating and
expanding a massively interconnected network that holds memory. The
memory, or the acquired knowledge, is known to be stored as the
connection strengths between neurons.

A biological neuron consists of three main components, as shown in
Figure 2.4a: (i) dendrites that channel input signals, which are weighted by
connection strengths, to a cell body; (i) a cell body, which accumulates the
weighted input signals and further processes these signals; and (iii) an axon,
which transmits the output signal to other neurons that are connected to it.
The computing process in a neuron is idealized in a model neuron shown in
Figure 2.4b, in which signals are received, accumulated, or summed (2) in
the cell body and processed further [f(Z)] to produce an output. These
aspects of neural operation will be examined in detail later in this chapter.
The other neurons that receive this output signal (and the output signals
from other neurons) in turn process the information locally and pass the
output signal to other neurons until the process is completed and a concept
is generated or reviewed, or an action is taken. This process is shown in
detail in Figure 2.4c, in which each input is first weighted appropriately and
the weighted inputs are summed and processed through an input—output
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s Input Input
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Figure 2.4 A biological neuron and its representation: (a) biological neuron, (b)
neuron model, (c) detailed workings of a single neuron.
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Figure 2.5 Communication between neurons: (a) network of three biological
neurons, (b) neural network model.

function inside the neuron to produce an output [6]. This figure also
highlights the effect of the weights, which must undergo adaptation if the
neuron were to learn patterns in the information it receives.

The signals (inputs) from one neuron are passed to another neuron
through connections between them; Figure 2.5a shows the communication
between three neurons comprising a small network [6]. The first neuron
sends signals to the latter two, which receive additional signals from the
other neurons connected to them, as indicated by the extra arrows.
Figure 2.5b shows a model of this network [6]. By organizing neurons in this
fashion, massively parallel networks are formed in the brain. In biological
neurons, signals are electrical in nature and are generated as a result of the
concentration differential in potassium (K*) and sodium (Na™) ions within
and outside of cells. The signal passes from one neuron to the next through
the release of neurotransmitters, which leads to the generation of an electric
potential in the receiving neuron.

2.4 Modeling Information Processing in Neurons

An interest in modeling biological neural networks emerged in the 1940s.
Initial modeling efforts were in biology, the cognitive sciences, and related
fields, and were stimulated by the possibility that the models might explain
brain function based on the observations made by neurobiologists and
cognitive scientists. To mimic biological networks, it is important to model
the information processing in individual neurons. This involves under-
standing how signals are synthesized by a neuron to produce an output
signal, and how neurons work collectively to produce an outcome. It also
necessitates an understanding of the mechanisms of learning in neural
networks from data, which is crucial to the development of memory or
knowledge in the network, which in turn enables a model to perform some
brain-like functions.
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A lack of detailed knowledge of the mechanisms of neural information
processing provided the researchers with an opportunity to experiment
with new ideas for these networks, resulting in a rich array of neural
networks, some of which are simple approximations of biological neural
networks, and others are highly useful for problem solving but bear little
resemblance to the actual operation of the brain. These efforts led to the
development of artificial neural networks, which are widely used for
solving a variety of problems in many fields remotely related to
neurobiology, such as ecology, biology, engineering, agriculture, environ-
mental and resource studies, and commerce and marketing. In this book,
the term “neural networks” represents artificial neural networks, and
“neurons” denotes artificial neurons. In this chapter, biological and
artificial neural networks are intertwined, but the aim is to demonstrate
the development of artificial neural networks that are useful for practical
problem solving.

The next section presents an incremental introduction to neural network
concepts, neuron models, mechanisms of learning from data, and other
fundamental issues of neural networks, so that the reader can better
appreciate and understand the neural networks in the rest of the book.
These discussions will also facilitate the exploration of deeper aspects of the
nature of data modeling as relevant to many applied fields of study.

2.5 Neuron Models and Learning Strategies

Neural computing has undergone several distinct stages. Early attempts
occurred from the beginning of the 20th century to about 1969; 1969 to 1982
were quieter years, and 1982 marks the resurgence of activities that
propelled a growth of neural networks that continues to this day [3]. This
section highlights some of the important conceptual developments that are
important for understanding and applying neural networks.

During the early 20th century, William James, an eminent American
psychologist, provided two important clues to neural modeling: (1) If two
neurons are active together, or in immediate succession, then on
reoccurrence they repeatedly excite each other and the intensity between
them grows; (2) the amount of activity of a neuron is the sum of the signals it
receives, with signals being proportional to the strength of the connection
through which a signal is received [7]. This basically suggests that a signal
from one neuron going to the cell body of another is weighted in proportion
to how strongly one neuron excites the other. The more intensely one
neuron excites another, the larger the weight between them. These
fundamental ideas have been implemented and incrementally advanced
throughout the development of artificial neural networks.
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2.5.1 Threshold Neuron as a Simple Classifier

A threshold neuron is a simple model, developed as a simple approximation
to biological neurons by McCulloch-Pitts in 1940 [8]. It provided the stepping
stone for the development of neural networks and learning methods that
followed later [7]. It uses the threshold function in the neuron to transform
inputs to an output, producing an output of either 0 or 1. This is simplistic
from a biological point of view, because real neurons seem to have
continuous signal outputs. The model neuron also has fixed weights, so it
does not learn. This is because, at the time, it was not known how to adapt
the connection strengths (weights) between the neurons. In the original
design, threshold neurons used binary inputs (1 or 0) and McCulloch and
Pitts [8] demonstrated that even these simple neurons could be organized
into parallel networks that can perform some complex classifications
tasks [3].

This chapter will study the general properties of a single-threshold
neuron that takes real values as inputs, as it highlights some basic aspects of
neural processing and it has some interesting basic features of a classifier. To
illustrate the operation of this neuron, a simple classification problem, given
in Table 2.1 and plotted in Figure 2.6a, will be solved. This problem includes
two inputs (x; and x,), one target output (¢) that belongs to one of two
categories (0 or 1), and four sets of input—output pairs. One row or one set of
inputs is called an input vector or input pattern. The task is to correctly
classify the input patterns into two groups (1 or 0). This task will be solved
using a threshold neuron, shown in Figure 2.6b, to model the data. Here the
neuron receives the two inputs through weights w, and w,, but both weights
will be fixed at 1.0 for this exercise, which means that there is no learning.

There are two aspects to the computations in this neuron. It first
calculates the net input # and then decides the output y using a threshold
function. These two calculations are performed as follows: The net input
to neuron is the sum of the weighted inputs, calculated as

S =u=wx; + wyx,, 2.1

where x; and x, are inputs. Because w; and w, are both equal to 1,

Table 2.1 Classification Data

X1 X2 t
0.2 0.3 0
0.2 0.8 0
0.8 0.2 0
1.0 0.8 1
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Figure 2.6 Classification by a threshold neuron: (a) classification data and (b)
configuration of a linear threshold neuron for this task.

u=x + x;. (2.2)

The value of u decides the activation threshold. Because the sum of the two
inputs for one category is 2 and for the other category is 0, 1, and 1,
respectively, for the inputs in Table 2.1, the threshold should be placed
anywhere between 1.0 and 2.0. A threshold of 1.3 will be arbitrarily chosen
for this case. Then the threshold function computes the activation or output
(» of the neuron as a function of #, such that

0 u<1l3

N =y = 2.
S =y {1 u=>1.3. 23)

Using this simple classifier, it is now possible to check its performance. For
the four inputs, the neuron output is computed following the same
procedure described above; the results are presented in Table 2.2.

The neuron correctly classifies the data immediately due to the prior
decision to set the threshold function at « = 1.3. As stated earlier, for this
case u can be fixed anywhere between 1.0 and 2.0 to obtain a correct
classifier for the data. Because the location of the threshold function defines
the two categories, = 1.3 decides a classification boundary that can be
formulated as

Table 2.2 Performance of the Threshold Classifier

Input (x4, X7) u y
(0.2, 0.3) 0.5 0
(0.2, 0.8) 1.0 0
(0.8, 0.2) 1.0 0
(1.0, 0.8) 1.8 1
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u=x +x, =13
P (2.4)
xz =1S_X1

This boundary line is superimposed on the data in Figure 2.7. The data
on one side of the classification boundary belong to one category, and
those on the other side of the boundary are classified into the other
category. This is a simple classifier neuron that accumulates inputs and
produces a bounded output (0 or 1) using a threshold function.

Key aspects of the above threshold neuron classifier can be summarized
as follows: It does not learn from the environment (weights are equal to 1),
but it can be designed to perform a classification task if the designer
carefully positions the threshold function at a particular location (ideally, the
neuron would decide this position by itself). The threshold neuron also
classifies the data regions that are linearly separable. This means that a
straight line can separate the two classes, and the threshold fixes this line as
the classification boundary. Any input to the left of the boundary produces
an output of 0, and those to the right of and on the boundary line yield an
output of 1.

Inputs and weights as vectors. For simplicity, vector notation will be
used. In this notation, an input vector is represented by upper case x as

x = {x1, 25}
Thus, the four input vectors can be represented as
x; =1{0.2,0.3}, x, ={0.2,0.8}, x5 = {0.8,0.2}, x4 = {1.0,0.8}.
Similarly, the weight vector can be denoted in vector form as

w = {w,, w,}.

Figure 2.7 Classification boundary of the threshold neuron superimposed on the
data.
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Figure 2.8 Representation of the input data and the weights as vectors.

The four input vectors and the weight vector are graphically presented in
Figure 2.8.

The weighted sum of the inputs, © = x;.w; +x,.w-,, can be represented
as multiplication of the input and weight vectors or dot product as

u=w-x={w,w} {x,x}

= wWi1X, + WrX,

Forw ={1,1}, u=x; + x,.

Refer to the Appendix for a brief introduction to vectors and vector
processing.

2.5.2 Learning Models for Neurons and Neural Assemblies
2.5.2.1 Hebbian Learning

A major drawback of the threshold neuron considered in the previous
section is that it does not learn. In 1949, Donald Hebb, a psychologist,
proposed a mechanism whereby learning can take place in neurons in a
learning environment. In his book The Organization of Behavior, Hebb [9]
defined a method to update weights between neurons that came to be
known as Hebbian learning. Key points of his contribution are: (1) He stated
that the information in a network is stored in weights or connections
between the neurons. (2) He postulated that the weight change between
two neurons is proportional to the product of their activation values (neuron
outputs), thereby enabling a mathematical formulation of the concept that
stronger excitation between neurons leads to the growth in weights
between them. (3) He proposed a neuron assembly theory, suggesting that
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as learning takes place by repeatedly and simultaneously activating a group
of weakly connected neurons, the strength and patterns of the weights
between them undergo incremental changes, leading to the formation of
assemblies of strongly connected neurons.

The above ideas of learning were motivated by well-known concepts
of classical, or Pavlovian, conditioning, established through animal
experiments that supported the fact that through repeated exposure to a
stimulus, learning takes place in the brain. These findings strongly
supported the hypothesis that learning involves the formation of new
connections between neurons that grow in strength through repeated
exposure to the stimulus. Hebb [9] developed this into a learning method
that allows neurons to learn by adjusting their weights in a learning
environment.

Formulation of Hebbian learning. Hebbian learning can be expressed as
follows: If two neurons have activations, or outputs, of x and y, and if x
excites y (or moves in the same direction), the connection strength between
them increases. Therefore, the change in weight between two neurons, Aw,
is proportional to the product of x and y, as given in Equation 2.5:

Awoc x-y. (2.5)

The symbol o denotes proportionality, which can be removed by using a
coefficient, 3, so that

Aw = B x-). (2.6)
The new value of the weight, wycyw, 1S
Whew = Woig + AW = Wyg + B+, (2.7)

where w4 is the initial value of the weight prior to learning. This concept
was later logically extended to inhibitory connections, in which one
neuron inhibits another and the connection strength decreases (i.e.,
Whew = Woid —Aw) [7]. The constant of proportionality, 8, is termed the
“learning rate,” and determines the speed at which learning takes place. The
larger the @, the faster the weights change, and vice versa. With repeated
exposure to stimuli (learning environment or example data), this
mechanism allows for incremental learning from the environment.
However, it took several years before this learning was incorporated into
the next model neuron—perceptron—which not only became very popular
and caused a great stir in the research community, but was also the platform
on which many later developments were made in artificial neural networks.
The next section will present an example of Hebbian learning as it is applied
to perceptron.

Implementation of learning in a neural assembly (perceptron). Research
on modeling of the learning process in neural networks dates back to Frank
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Rosenblatt, who, during the 1950s, laid the foundation for the field of
adaptive neural computing. He recognized that the threshold neuron is not
suitable for modeling brain functions such as cognition because it is not
flexible enough to learn from and adapt to the environment. He focused on
how the brain learns from experience, responds in similar ways to similar
experiences, recognizes patterns, groups similar experiences together, and
differentiates them from dissimilar experiences, despite the imprecision in
initial wiring in the brain [3]. In a landmark paper, Rosenblatt [10] proposed
the first neural model, called perceptron, which was capable of learning to
classify certain pattern sets as similar or dissimilar by modifying its
connections. Essentially, he made threshold neurons learn using
Hebbian learning.

Rosenblatt [10,11] used biological vision for his network model. He
demonstrated many possible network structures for this task, but this section
will look at one that has interesting features (structure and learning) relevant
to all the networks that will be studied later in this book. In this
configuration, the perceptron network has three layers, as shown in
Figure 2.9. The input layer consists of a set of sensory cells in the retina,
randomly and partially connected to neurons in the next higher association
layer. The association layer neurons are connected bidirectionally in a
partial and random manner to neurons in the next higher response layer.
With bidirectional connections, association and response neurons can
excite or inhibit each other. Moreover, all response neurons are
interconnected with inhibitory connections, causing them to competitively
inhibit each other by sending inhibitory signals. The neurons in the
association and response layers were threshold neurons, with a threshold
function set at the origin. The goal of the perceptron network was to activate
the correct response neurons for each input pattern class. Learning only
happened between the association layer and the response layer. A popular
version of this network (single-layer perceptron) is shown in Figure 2.2a,
which is presented in Chapter 3 and Chapter 4.

= B
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A g
=
Retina Association Response
cells layer layer

Figure 2.9 A schematic diagram capturing some essential features of a perceptron
network that learns through competition.
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Rosenblatt [10,11] introduced two important learning concepts—
unsupervised and supervised learning—to train perceptron networks.
These concepts are still the basis for neural learning today. Their
fundamental aspects will be reviewed in the next section in relation to his
perceptron model.

2.5.2.2 Unsupervised or Competitive Learning

Competitive learning, also called unsupervised learning, involves a network
learning to respond correctly on its own without the involvement of an
external agent (actual output). When an input is presented to the perceptron
shown in Figure 2.9, various association neurons become active, and they in
turn activate some response neurons. The response neuron that receives the
largest input inhibits the other cells in the same layer and becomes the
winner. The winner produces the network output, which may be an implicit
action of perception such as pattern classification. The association neurons
that activate the winner response neuron grow in connection strength, and
those that do not send signals to it get inhibited and decrease in strength. In
this manner, the response neurons become increasingly sensitive to the type
of input they initially respond to; over time, various response neurons learn
to specialize by responding to specific inputs. This basic idea is currently
used in competitive networks and SOFMs, which were briefly discussed
earlier and are shown in Figure 2.2d and Figure 2.2e. These networks will be
covered in detail in Chapter 8.

2.5.2.3 Supervised Learning

Supervised learning does not involve competition, but uses an external
agent (actual output) for each input pattern that guides the learning process.
There are several forms of supervised learning. Its simplest form, forced
learning, works as follows: At the same time as an input pattern (one input
vector) is presented, an appropriate response neuron is forced into action
from outside. The active association neurons feeding this neuron will grow
in connection strength and, over time, this response neuron becomes more
sensitive to that input pattern and learns to classify it correctly without any
outside force. Another form of forced learning is reinforcement learning, in
which the network receives feedback whether the output is positive or
negative and uses this information to improve its response over time. These
two methods imply Hebbian learning.

A third, more advanced, form of supervised learning that grew out of the
above methods is error correction learning, now generally known as
supervised learning, in which the actual value of the correct output is shown
to the network and the weights are adjusted until the actual difference
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between the output of response neurons and correct output becomes
acceptable. This idea is more complex than Hebbian learning, and has been
developed into more powerful learning methods based on error gradient; it
is currently used in the widely popular MLP discussed in detail in Chapter 3
and Chapter 4.

2.5.3 Perceptron with Supervised Learning as a Classifier

The neurons in perceptron are threshold neurons working together.
However, the difference is that a perceptron network learns from example
data and the weights change during learning. This section examines a
simple version of a response neuron without feedback or competition, as
shown in Figure 2.10. This neuron receives multiple inputs and processes
them to produce an output. One of the inputs can be made equal to 1 and
called bias; it can be considered as incorporating the effects that are not
accounted for by the input variables feeding the neuron. This is similar to
the intercept in regression analysis. Learning requires a set of inputs and the
corresponding output(s), which together are called a training set. Thus, the
true output class must be known for each input vector prior to learning, and
supervised learning involves repeated exposure to training data and
iterative modification of the weights that are set to random values, until
the model learns to perform the task properly. This process is called training
a network.

Processing in this simple perceptron takes place as follows: Weights are
initialized with random values. The first input pattern is presented and the
inputs are weighted by the corresponding weights, summed, and
transformed through a threshold function to produce an output. The
threshold function is a unit step function positioned at the origin, such that
the perceptron output is either 1 or 0 (on or off). If the weighted sum is
greater than or equal to 0, the output is 1; otherwise, it is 0. Consequently, a
one-output perceptron can indicate only two output classes (1 or 0). The
perceptron output, y, is compared with the target output, t. If the

Figure 2.10 A single-neuron perceptron model.
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classification result is wrong, the learning algorithm adjusts the weights to
map the input data correctly to one of the two classes. The next input
pattern is presented, and the process is repeated for all input patterns until
learning is complete. This iterative learning process is demonstrated below.

2.5.3.1 Perceptron Learning Algorithm

Assume 7 input connections representing » input variables xy, X, ..., X,,.
The input vector, X is {x, x3, ..., X,,}. The corresponding weight vector, w, is
{wq, w,, ..., w,}. The net input u for an input vector x is:

u=wx, + wyx, + -+ w,x,. (2.8)

The threshold function set at the origin produces an output y, such that

0 u<o0

= 2.9
Y 1 u=>0. 29)

If the classification is correct, the perceptron has classified correctly and the
weights are not adjusted. Otherwise, the individual weights are adjusted
using a perceptron learning algorithm, which is a modified form of Hebbian
learning that incorporates the error as follows:

Error=E=¢f—y (2.10)
where ¢ is the target output. The new value for any single weight is
Whew = Woig + BXE (2.11)

where x is the input. This results in the following for the three possible
conditions of error, E:

Wald E=0 (i.e., t =y)
Whew = § Wolg T 6x E=1 (le.,t=1,y=0) Rulel, (2.12)
Wog— Bx E=-—1 (ie,r=0,y=1) Rule2

where wyey is the new value of any weight, w4 is the old or initial value of
the weight, and x is the input vector. § is the learning rate, a constant
between 0 and 1, that adjusts how fast learning should take place. Smaller
values indicate a slower weight adjustment, requiring a longer period of
time to complete training; larger values accelerate the rate of weight
increments. Accelerated weight adjustment is not necessarily better because
it may cause the solution (i.e. weights) to oscillate around the optimum,
leading to instability, as will be explored in later chapters.

Next, this perceptron learning algorithm will be used in a modified form
to train a simple perceptron classifier with two inputs and one output, as
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shown in Figure 2.11b, in which x; and x; are input variables and y is the
perceptron output. The task is to classify the two-dimensional patterns
plotted in Figure 2.11a, which belong to two output classes (A denotes class
A and m denotes class B).

For this example, assume that §=0.5. Random initial values will be
assigned for the weights; #?=0.8 and w9=-—0.5 (the superscript 0
denotes initial.) Thus the initial weight vector is W"=1{0.8,—0.5}, and is
superimposed on the data in Figure 2.12. The length L° of the initial weight
vector, which is denoted by ||[w°|| in vector notation, is

L’ = /(u))? + w))? = 1/(0.8)> + (—0.5)* = 0.94.

Present input pattern 1—A1: x; = 0.3, x, =0.7, t=1; w(f =0.8, wg =—0.5.
The weighted input is

u = (0.8)(0.3) + (—0.5)(0.7) = —0.11,
u<O0oy=20
= classification INCORRECT;
= weights should be adjusted using Rule 1 in Equation 2.12.

Suppose that the increment of the two weights is denoted by Awj and
Aw}, the superscript 1 denoting the first weight increment. Then

Aw} = Bx; = (0.5)(0.3) = 0.15
Aw) = Bx, = (0.5)(0.7) = 0.35.

A
0.5 X. W
. B
X W’Z > y
- -0.5 0.5 1 Xz/
-0.51 2
(b)

(@ .

Figure 2.11 Perceptron learning: (a) plot of the input data belonging to two
classes for perceptron learning and (b) the perceptron configuration for this task.
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Figure 2.12 Progression of weight adaptation in a two-input perceptron.

New weights after the first increment will be denoted by w] and w}. Then

wh =w! + Aw} =0.8 + 0.15 = 0.95
wy = Aud + wh =—0.54 0.35 =—0.15.
In vector form:
w' = [wi,w,] =[0.8,—0.5] 4 [0.15,0.35] = [0.95,—0.15].

Thus the new weight vector is {0.95, —0.15} and the length of the weight

vector is
L' = /(wh)? + wl)? = /0.95 + (—0.15)? = 0.96.

In Figure 2.12, the initial and modified weights are superimposed on the
input data. The wrong classification causes the weights to change. It can be
seen that if the perceptron underpredicts (i.e., t=1, y=0), the weights
move closer to the input vector; in this case, they move closer to one that is
at the upper right corner.

Reapplying the input vector {0.3, 0.7}

u = (0.3)(0.95) + (0.7)(—0.15) = 0.18>0
= y = 1= classification CORRECT.
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Now, the next input pattern is presented to the modified perceptron:

Present input pattern 2—B1: x; = —0.6, x, = 0.3, 1 = 0;
wi = 0.95, wy =—0.15,
u = (—0.6)(0.95) + (0.3) (—0.15) = —0.615
u<0=y =0
o classification CORRECT = weights are not modified.
Thus the neuron correctly classifies the two input patterns.

Present input pattern 3—B2: x; = —0.1, x, = —0.8,
t=0; w}=0.095, w)=-—0.15.

u = (—0.1)(0.95) + (—0.8)(—0.15) = 0.025
u>0y=1
= classification INCORRECT

=> perceptron over-predicts (i.e., =0, y=1); weights need adjustment
using Rule 2 in Equation 2.12.

Suppose that the increment of the two weights is denoted by Aw?
and Aw3, with the superscript 2 denoting the second weight increment.
Then

Awi =—Bx; =—(0.5)(—0.1) = 0.05

Aws = —Bx, = —(0.5)(—0.8) = 0.4.
Denoting new weights after second increment by wf, and w3:
wi = w} + Aw? =0.95+ 0.05=1.0
w3 = w + Aws = —0.15 + 0.4 = 0.25.
In vector form
w’ = [wi, w;] =1[0.95,—0.15] + [0.05,0.4] = [1.0,0.25].

The new weight vector w? = (w{, w5)={1.0,0.25}. The magnitude or the
length of the new weight vector denoted by ||w?|| is

L? = ||[w?]| = V1.0 + 0.252 = 1.03.

The new weight vector is superimposed on the data in Figure 2.12, which
shows that overprediction (i.e., t=0, y=1) pushes the weight away from
that input.
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Present input pattern 4—A2:x,=0.1, x,= —0.45, t=1, w;=1.0,
w3 =0.25.

u = (0.1)(1.0) + (= 0.45) (0.25) = —0.0125
u <0 = y = 0 underprediction, classification INCORRECT
=>weights need adjustment using Rule 1 in Equation 2.12.

Suppose that the increment of the two weights is denoted by Aw; and
Aw3, with the superscript 3 denoting the third weight increment. Then

Aw; = Bx; = (0.5)(0.1) = 0.05
Aw3 = Bx, = (0.5)(—0.45) = —0.225.

Denoting new weights after the third increment by w? and w3:

w; = wi + Aw; = 1.0+ 0.05 = 1.05
w3 = wi + Aws = 0.25— 0.225 = 0.025

In vector form:
W’ = [w],w3] = [1.0,0.25] + [0.05,—0.225] = [1.05,0.025].

The new weight vector W3 = (w%, wg) = {1.05,0.025}. The magnitude or the
length of the weight vector L? denoted by |[W?|| is

L} = v/1.05% + 0.025% = 1.05.

The new weight vector is superimposed on the data in Figure 2.12, which
again shows that underprediction pulls the vector towards the input vector.

Thus the final weight vector is W? = (w%, w2)= (1.05,0.025). The final
weight vector and the all the preceding weights are superimposed on the
data in Figure 2.12.

It is now possible to see if all the input patterns are correctly classified
using the final weights. The results are presented in Table 2.3, which shows
that the perceptron classified all the data correctly.

This example demonstrates how the perceptron learns by adjusting the
weights. In this case, learning is complete in one iteration of the dataset due
to the linear nature of the problem. One presentation or iteration of all input
data is called an epoch. Weights move until the perceptron classifies all the
data correctly. Therefore, learning involves iteratively finding the appro-
priate weights so that the perceptron classifies the data perfectly. For any
input vector that the neuron underpredicts, the new weight vector is pulled
towards that input, and for any input vector that it overpredicts, the weight
vector is pushed away from that input. Also, incremental learning via the
perceptron learning algorithm employed here results in an increasing length
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Table 2.3 Classification Accuracy of the Trained Perceptron

Input Classification

Pattern X1, X2 t u y Accuracy

Al 0.3, 0.7 1 0.3 X 1.05+ 0.7 X 0.025= 1 Correct
0.3325>0

B1 —0.6, 0.3 0 —06 X1.05+03 X 0 Correct
0.025=-0.6225 <0

B2 —-0.1, —0.8 0 —01X1.054+(-0.8) X 0 Correct
0.025=-0.125<0

A2 0.1, =045 1 0.1 X 1.05+ (—0.45) X 1 Correct

0.025=10.09375> 0

of the weight vector with each weight adjustment. This is not a desirable
quality when a large number of input patterns are used in training, and also
is not correct from a biological point of view in that the connection strength
between biological neurons does not grow infinitely large. In biological
neurons, there appear to be corrective mechanisms [12], but for artificial
neurons, this can lead to computational problems. This issue is addressed in
more advanced networks later.

What are the features of the trained perceptron? Examine the
classification boundary that divides the two groups. Recall that the boundary
is defined by the position of the threshold function, which in this case is at
#=0. (Note that u, being the weighted sum of the inputs, compactly
encapsulates all inputs in one single quantity.) Thus, the boundary line can
be expressed as

U =wx, + wyx, =0

w (2.13)
‘XZ —_ ;2 xl.

The above equation defines a straight line. Each weight adjustment
results in a different classification boundary; therefore, learning is a process
that searches a set of weights (w; and w,) that produce the correct
classification boundary. The final classification boundary for this problem is
found by inserting final weight values into Equation 2.13:

x, = —(1.05/0.025)x, = —42x,,
(2.14)
Xy = _42.X1

The slope of this line is —42, which is equal to the tangent of the angle
that the slope makes with respect to the horizontal. The inclination of the
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boundary line to the negative horizontal axis is therefore tan(42), and is
equal to 88.6°,

The boundary line is superimposed on the data in Figure 2.13. It can be
seen that the boundary line separates the data into two categories with a
straight line, and that the linear classification boundary means that the
perceptron can be trained to solve any two-class classification problem in
which the classes can be separated by a straight-line boundary (i.e., linearly
separable). In higher-dimensional problems in which more than two input
variables are involved, the classes are still separable by a hyperplane that the
reader could intuitively understand; the learning algorithm and the concepts
discussed here still apply. However, they cannot be visually demonstrated
beyond three dimensions.

Note from Figure 2.13 that the final weight vector is perpendicular to the
classification boundary. Therefore, learning finds the optimum weight
vector to fix a boundary line perpendicular to itself and that correctly divides
the input domain into two regions to yield an accurate classification.

For the benefit of mathematically inclined readers, it can be shown that
the weights always define a boundary that is perpendicular to the weights.
This can be explained using vector algebra (refer to the Appendix for an
introduction to vectors). For example, for an input vector x = {x;, x,} and a
weight vector w = {w,, w»),

Xo, Wp

0.5
]
w.
ah 3 Xy, Wy

T T T T T T

-0.7 -05 -03 -01} 01 03 05 07 09 11
05 a

]
-9

-1.5

2 |

Figure 2.13 The perceptron classification boundary and the final weight vector
superimposed on the data.
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u = xw, + xw;,
which can be expressed using vectors as
u = [Ix[lllwllcos @,

where ||x|| and ||w]|| are the magnitude of an input vector and weight vector,
respectively, and @ is the angle between the two. Because u =0 at the
boundary

u = ||x[|[wllcos @ = 0.

Because [|x|| and [|w|| are not equal to zero, for the above expression to
be valid, cos # must be zero, which means that # = +90°. Because cos 6 is
positive in the range between —90° and +90°, any input that makes an
angle from —90° to +90° with the weight vector (i.e., lying on one side of
the boundary line) will result in # > 0 and thus y=1. Therefore, the
maximum angle between the weight vector and an input vector that belongs
to the class with = 1is £90°. Those input vectors yielding an angle greater
than +90° (i.e., lying on the other side of the boundary line) will result in
©# < 0 and produce y =0. Thus, the weights fix a boundary line that is
perpendicular to themselves.

2.5.3.2 A Practical Example of Perceptron on a Larger Realistic
Data Set: Identifying the Origin of Fish from the
Growth-Ring Diameter of Scales

A simple but realistic problem will be solved using perceptron.
Environmental authorities concerned with the depletion of salmon stocks
decided to regulate the catches. To do this, it is necessary to identify whether
a fish is of Alaskan or Canadian origin. Fifty fish from each place of origin
were caught, and the growth-ring diameter of the scales was measured for
the time they lived in freshwater and for the subsequent time they lived in
saltwater [13]. The aim is to identify the origin of a fish from its growth-ring
diameter in freshwater and saltwater. This section will study how well
perceptron classifies the fish as being of Alaskan or Canadian origin.

Figure 2.14 shows the relationship between the two variables, which are
separated into two distinct groups. Because there are two inputs, a two-
input classifier must be trained. There are 50 input patterns each of Class 1
(Canadian) and Class 2 (Alaskan). Only one output node represents the two
classes—with an output of 0 representing one class, and 1 the other. Due to
the large number of patterns, only the outcomes are shown, but the process
is exactly the same as that studied in the previous section.

The evolution of the classification boundary for the same data at a few
selected points in the training process is shown in Figure 2.15, in which
more continuous lines show the progressive improvement of the classifier’s
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Figure 2.14 The growth-ring diameter of salmon in freshwater and saltwater for

Canadian and Alaskan fish.

performance. It can be seen that the initial classification boundary is far from
where it should be (at the lower right corner in Figure 2.15) and that learning
incrementally repositions the boundary until the correct classification
boundary is obtained. The correct classification has put one class of data on

one side and the other class of data on the other side.
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Figure 2.15 The refinement of the classification boundary of a perceptron with

training.
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Figure 2.16 depicts the training results, showing how classification
improves with each epoch. Recall that an epoch is one pass of all input
patterns through the perceptron. By now, the reader must know that an
input pattern is the same as an input vector, or one record of input data. In
many real problems, the input dataset must be repeatedly presented over
many epochs, and the weights are adjusted until the correct classification is
achieved. This is because each wrongly classified input repositions the
boundary line and can offset the changes caused by some previous input
patterns. Only after the perceptron has seen the whole dataset numerous
times is it able to correctly position the final boundary line. Figure 2.16a
shows the number of input patterns classified as Class 1, and Figure 2.16b
shows the number classified as belonging to Class 2 after each epoch. The
solid line represents the number of patterns actually belonging to the
specified class, and the dashed lines show the input patterns being wrongly
classified as belonging to that same class. For example, the top image in
Figure 2.16 shows that the perceptron learns to classify Class 1 data
immediately, but that it wrongly classifies some Class 2 data as belonging to
Class 1.

However, the perceptron incrementally learns to classify Class 2 data
correctly, and after 80 epochs, it classifies all data correctly, and no input is
wrongly classified as belonging to Class 1. The bottom figure of Figure 2.16
shows the classification accuracy for Class 2. In the initial iterations, the
perceptron has difficulties differentiating and classifying patterns, but it later

Correctly/incorrectly classified data

Patterns  Class: 1

“* Epoch
20 40 60 80 o

Patterns  Class: 2

R 3 Enoch
20 40 60 80 —Poene

Figure 2.16 The improvement of classification accuracy during training for Class 1
and Class 2.
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learns to correctly classify Class 2 data and eliminates the Class 1 data
wrongly classified as belonging to Class 2.

Figure 2.17 shows the final classification boundary superimposed on the
data, which shows that the perceptron has found the best linear classification
boundary for this problem. After training is finished, the accuracy of
classification can be assessed. Accuracy can be defined either for each class
as the percentage of patterns correctly classified for that class, or for the
whole dataset as the percentage of patterns correctly classified across the set.
In this example, there were 50 patterns in each class, and the perceptron
correctly classified 97 samples, with only three misclassifications. Thus, the
classification accuracy for Canadian salmon is 100 percent, and for Alaskan
salmon is 94 percent; the overall classification accuracy is 97 percent.

The learning rate, (8, specifies how fast the learning takes place. A value
of zero indicates no learning, and as the value gets larger, the perceptron
learns at a faster rate. Larger values for the learning rate can accelerate the
training process; however, they also may induce oscillations that could slow
down the convergence to an acceptable solution. It has been common to
use a value between 0 and 1.

2.5.3.3 Comparison of Perceptron with Linear Discriminant
Function Analysis in Statistics

Discriminant analysis is a multivariate statistical method used to simul-
taneously analyze the difference between categories in terms of several
independent numerical variables. It can also be used as a classifier in which
a class is assigned to the values of a set of input variables [14]. Therefore,
discriminant function analysis can be used to classify input data.

In discriminant analysis, the centroid or the mean of the categories is
calculated and an input is classified as belonging to the class whose center is

Final classification boundary
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Figure 2.17 The final classification boundary produced by the perceptron.
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the closest to the input. This analysis can be done on any commercial
statistical software and a linear discriminant function that separates the
classes can be obtained from the analysis.

As a classifier, perceptron and linear discriminant analysis are equivalent.
To demonstrate this, discriminant analysis was performed on the salmon
dataset used for classification using perceptron in the previous section. The
resulting classification boundary is shown in Equation 2.18, superimposed
on the data in Figure 2.18, along with the perceptron classification boundary
given in Equation 2.15a and already shown in Figure 2.17. The dashed line
represents the discriminant classifier boundary and the solid line depicts the
perceptron classifier.

The perceptron classification boundary is

x, = 0.026 + 3.31x,. (2.152)

The discriminant function classification boundary is
x, = 1006.9 + 2.5x; (2.15b)

Figure 2.18 shows the similarity between the two classifiers. However, the
perceptron classification accuracy is slightly better than that of the
discriminant function classifier. For the linear discriminant classifier (dashed
line in Figure 2.18), the classification accuracy for Alaskan salmon is
90 percent, with five misclassifications, the accuracy for Canadian salmon
is 100 percent, and the overall classification accuracy for the entire dataset is
95 percent. These values for the perceptron classifier (solid line in Figure 2.18)
were 94 percent, 100 percent, and 97 percent, respectively. This was intended
to be a brief comparison of the linear discriminant function classifier

Classification boundary: perceptron solid, discrimant dashed
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300t
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Figure 2.18 Perceptron and linear discriminant classifiers superimposed on the
data.
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with perceptron. A detailed treatment of other aspects of linear discriminant
analysis can be found in books on multivariate statistical analysis [15,10].

2.5.3.4  Multi-Output Perceptron for Multicategory Classification

Classification problems involving more than two output classes can be
solved by a multi-output perceptron that has one output neuron for each
class in the output layer. The training process for a multi-output perceptron
involves mapping each input pattern to the correct output class by
iteratively adjusting the weights to produce an output of 1 at the
corresponding output neuron and 0 at all the remaining ones. In some
problems, it is quite possible that a number of input patterns map to several
classes, indicating that they belong to more than one class. This may be due
to the nature of data, which could require nonlinear classification
boundaries, or to the insufficient complexity of the network structure itself.

This section will now examine the two-dimensional multiclass mapping
performance of a perceptron network. Figure 2.19 shows data belonging to
three classes [17]; this requires three output perceptron neurons, one for
each class, as shown in Figure 2.20. There are 20 data points in each class.

The perceptron network was trained using the perceptron learning
algorithm. For a particular input, the trained network activates output
neurons with a response of either 0 or 1. The process of training is similar to
that used for single perceptron, except for the fact that the required output
from the three perceptrons for Class 1 would be 1,0,0, for Class 2 they
would be 0, 1,0, and for Class 3 they would be 0,0, 1, respectively. During
training, the actual output of the three perceptrons is compared with the
target outputs, and any perceptron yielding incorrect classifications has its
weights adjusted using the learning rule over several epochs until all the
perceptrons correctly classify the data that they represent and do not
misclassify other data as belonging to them.
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Figure 2.19 Data belonging to three categories.
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Figure 2.20 Multiple-perceptron network configuration for multiclass classifi-
cation in which each perceptron represents a class.

The final classifications boundaries obtained from training are super-
imposed on the data in Figure 2.21. Because each perceptron defines a
linear classification boundary, there are three linear boundaries, as shown in
this figure. Each classification boundary separates one class from the other
two classes. Because this problem is suited to linear classification, the
perceptron network correctly classifies all the data.

In Figure 2.21, there are overlapping regions in which two neurons will
produce an output of 1. This is because there is no data in those regions with
which to train the network. To demonstrate that the network has learned to
classify correctly, one input pattern from each class was randomly chosen to
be presented to the network. The input and the corresponding response are
shown in Table 2.4.

Figure 2.21 The classification boundaries for the three neurons in the multiple-
perceptron network shown in Figure 2.20 superimposed on the data.
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Table 2.4 Inputs and the Corresponding Output
from the Multi-Output Perceptron

Input Output Target
(—0.56, 1.84) (1,0,0) (1,0,0)
(2.23, 2.15) 0,1,0) 0,1,0)
(2.00, —0.04) 0,0, 1 0,0,1)

Thus, the trained network classifies all three input patterns. The
classification boundary shown in Figure 2.21 for each neuron can be easily
constructed from the corresponding weights from the trained network.
Recall that each neuron is a threshold neuron and the process that was used
to extract the boundary line for one perceptron neuron applies here for each
of the three neurons. The extracted equation for each classification line is
given as

—3.8— 42.8x, + 17.5x, =0
—78.2 + 26.9x, + 24.30x, = 0 (2.16)

The coefficients in the equations denote the weights w, and w, for each
neuron, and the intercept denotes the weight associated with the bias input
of +1.

Figure 2.22 shows how classification improves with each epoch for
each of the three neurons representing Class 1, 2, and 3, respectively. It
shows, for example, that neurons one and three initially misclassify but learn
correct classification reasonably quickly, whereas neuron two learns Class 2
data with some difficulty. Neuron two misclassifies a large number of patterns
belonging to the other two classes and sheds them slowly over the epochs.
After 25 epochs, all three neurons produce the correct classification for the 20
data points represented by each neuron, and produce the individual
boundary lines already shown in Figure 2.21 and given in Equation 2.16.

Comparison with multiple discriminant classifier. When there are more
than two categories of the dependent variable, multiple linear discriminant
analysis can be used. Multiple discriminant analysis results on the same data
shown in Figure 2.19 were obtained from SPSS statistical software [18], and
are presented in Figure 2.23. In the figure, three Fisher’s discriminant
functions corresponding to three classes, the canonical discriminant
function classifier, and the cluster centroids are superimposed on the data
in Figure 2.23a through Figure 2.23c, respectively. As can be seen from
Figure 2.23a and Figure 2.22, the multiple Fisher’s discriminant functions are
functionally similar to the multi-output perceptron classifier, in that each
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Figure 2.22 The performance of a multi-output perceptron with training epochs.

function attempts to separate one class from the other two classes.
Generally, two discriminant functions can classify three classes, and these
functions can be obtained from the Fisher’s discriminant functions.
Canonical discriminant functions yield classifier such as shown in
Figure 2.23b. Overall, perceptron performance is perfect in this example
and discriminant analysis performance is slightly inferior. The perceptron
does not find the cluster centroids as given by canonical function
coefficients (Figure 2.23¢) in statistical analysis.
The equations for the three Fisher’s discriminant functions are

—31.4 + 29.7x; — 0.953x, = 0
—49.5 4+ 30.0x; + 18.5x, = 0 (2.17)
—20.6— 0.231x; + 20.1x, = 0

Each function in Equation 2.17 corresponds to a class.
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2.5.3.5 Higher-Dimensional Classification Using Perceptron

The perceptron network can be extended to higher-dimensional classifi-
cation when the dimensions of the input pattern are larger than two. This is
done by adding the appropriate number of inputs and the corresponding
connection weights. However, it is no longer possible to illustrate the results
for dimensions higher than three, although various two-dimensional
projections of data can still be viewed. Classification plots similar to
Figure 2.22 can still be obtained, and the results can be assessed as for two-
dimensional classification.

As can be deduced from the previous two comparisons between the
perceptron and the discriminant function analysis, the higher-dimensional
perceptron classifier is functionally equivalent to the multiple discriminant
function analysis for multidimensional data.

If the classification problem is not linearly separable, then it is impossible
for the perceptron to classify all patterns correctly. If some misclassifications
are acceptable, then the perceptron could still be a good linear classifier.
However, the perceptron linear classifier is often inadequate as a model for
many nonlinear problems. Linearity comes from the classification boundary
u =0 associated with the threshold function. This simplicity of the
perceptron came under attack by Minsky and Papport [19], but later
advances in MLP networks led to the development of models that perform
complex nonlinear classification and prediction tasks, shown earlier in
Figure 2.1; more details of this will be seen later in this book. Nevertheless,
perceptron could still apply to many classification problems that have
simple solutions, or even to nonlinear problems that can be transformed to
linear problems. More importantly, the simple learning mechanism in
perceptron can provide important insights and shed some light onto the
issues involved in developing more complex neural network models.

2.5.3.6  Perceptron Summary

The perceptron learning presented in the above sections can be summarized
as follows: Inputs are weighted and processed by a threshold function and,
therefore, the output is bounded between 0 and 1. The perceptron learns if
its classification is wrong. If it underpredicts, it compensates by moving the
weight vector towards the input and vice versa, using a modified form of
Hebbian learning called perceptron training algorithm, which incorporates a
learning rate that controls the rate of weight adjustment. The perceptron
learns incrementally until the input patterns are classified correctly. The
classification boundary defined by the perceptron is perpendicular to the
weight vector. More importantly, the classification boundary is linear and,
therefore, the perceptron can classify only linearly separable patterns, i.e.,
patterns that can be separated by a straight line, as shown in Figure 2.17.
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Perceptron can be used for two or multicategory classification involving two
or more inputs. In all these aspects, the perceptron network classifier is
functionally equivalent to the multiple discriminant function analysis in
multivariate statistics, and can even outperform it in some cases.

2.5.4 Linear Neuron for Linear Classification and
Prediction

To this point, the neurons studied in this book have had only two outputs (0
or 1. In a linear neuron, output is continuous, i.e., it can take many values.
Linear means that output is a linear sum of weighted inputs, and thus the
activation function in the neuron is linear, as opposed to a threshold in
perceptron. This is depicted in a neuron model with several inputs and a
bias input that is equal to one, as shown in Figure 2.24. The linear output
makes this neuron capable of both linear classification and, more
importantly, linear function approximation. Widrow and Hoff [20]
developed the first adaptive linear neuron model (ADALINE) and, for the
first time, implemented supervised error correction learning, known as
gradient descent or the delta rule, in neural learning. It is implemented such
that the square error between the target and the network output is
minimized. This concept is called least square error minimization, and is
also a criterion used in many statistical methods.

The linear neuron shown in Figure 2.24 has two key attributes: (1) It uses
supervised learning as in perceptron, which means the neuron must have
the desired (target) output for the inputs on which it is trained, and (2)
learning is based on the delta rule or gradient descent, which adjusts the
weights in the direction in which error goes down most steeply. It was
developed as an engineering model, and in its original design, inputs were
either 1 or —1 and outputs were also 1 or —1, so it was used as a classifier.
This section, however, looks at both the classification and predictive
capabilities of a general linear neuron to explore some of its broader
capabilities and to examine how it is trained using delta rule.

L
i

Figure 2.24 A linear neuron model.
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A linear neuron processes data as follows. For a given input pattern, x,
X2, ..., Xy, wWith corresponding weights w;, w,, ..., w,,, and a bias input of +1
with corresponding weight w, it first calculates the net input « as before:

n
u= Z wix; + wy = wyx, + wyx, + 0+ wx, + w. (2.18)
1

Linear transformation results in
y=u;

therefore, mathematically, the linear neuron gives rise to a linear model that
has the following simple equation for the output:

Y =wixy + wyx, + o+ wex,, + wy. (2.19)

Thus the linear neuron model is analogous to multiple linear regression
models in statistics. In statistical terminology, wy is the intercept, which
accounts for factors that are not accounted for by the input variables; in
neural networks terminology, it is called a bias and has the same meaning.
The output is said to regress on the inputs xy, x5, ..., X,,. [t is possible to make
this neuron a classifier by restricting the output to 1 if u is greater than or
equal to 0, and 0 otherwise, as was done in perceptron. Both of these
capabilities will be examined after an exploration of how supervised
learning with the delta rule works.

2.5.4.1 Learning with the Delta Rule

This section will examine how to train a linear neuron using the delta rule.
For simplicity, the section will begin with the derivation of the delta rule for
a linear neuron with one input, x, and without a bias input, as shown in
Figure 2.25. The target output is ¢ and the predicted output is .

Suppose the neuron is presented with an input pattern. It first calculates
the net input # and output y as before:

U= wx
(2.20)
Y =U = wWX.

w.

Figure 2.25 A one-input linear neuron.
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The error E is
E=t—y=it—wx (2.21)

and the square error ¢ for an input pattern is

1., _1 2
e=—E =—({—wx). (2.22)
2 2

The indicator of error used in the delta rule is the square of the error,
which is preferred to simple error because squaring eliminates the sign of
the error, which could cause a problem when the error is summed over all
input patterns. The fraction % is arbitrary, and is used for mathematical
convenience. It is used in the statistics community, but not in some
engineering and computing fields. The square error function has a parabolic
shape in relation to the weight, as shown in Figure 2.26.

To draw this curve using the above equation, the square error for a range
of values of w has been calculated for a fixed pair of values for input x and
target output ¢ of 2.0 and 1.53, respectively, whose values are not important
in this demonstration of the relationship between the square error and the
weight. It can be seen that the optimum weight is at the bottom of the bowl,
and that the delta rule proposes to reach it from the initial weight values by
descending down the bowl in the opposite direction to the gradient during
training. The solid arrow in the figure represents the gradient at an arbitrary
initial weight of 1.28. To find the gradient at a particular weight after each
presentation of an input, it is necessary to differentiate the square error
function with respect to w, yielding

de 2
dwy S U= )(=x) = —Ex (2.23)

which gives the magnitude of the error gradient and the direction in which
the error increases most rapidly at the current weight value, as indicated by

Square error

0.5
0.4
0.3
0.2
0.1

W,
02 04 06 08 1 12 14

Figure 2.26 Parabolic square error curve for a one-input linear neuron.
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the arrow in Figure 2.26. According to the delta rule, weight change is
proportional to the negative of the error gradient because it is necessary
to go down the error curve to minimize the error; therefore, the weight
change is

Aw, < Ex (2.24)

where o denotes proportionality, which can be replaced with learning rate,

B, as
Aw, = ( Ex. (2.25)

The learning rate determines how far along the gradient it is necessary to
move to fix the new weights. Larger values of § accelerate the weight change
and smaller values slow it down. The new weight after the ith iteration can
be expressed as

Wit = wl + Aw, = w| + B Ex. (2.26)

Using the same logic, it is possible to extend this idea for a multiple-input
neuron with a bias input; the new weights for this situation would be

wit'=wh + BE

it+1 i (2.27)
wy =w; + BxE,

where wy is the bias weight and w; is the weight corresponding to input x;. In
this case, the square error function is a multidimensional surface with
respect to weights. However, by slicing it with respect to each weight axis,
the square error and individual weight relationship can still be viewed as
one-dimensional curves or two-dimensional surfaces.

Example-by-example learning versus batch learning. Recall that one
pass of the whole training dataset is called one epoch, and that training can
take many epochs to complete learning. Learning can be performed after
each input pattern (iteration), or after an epoch. Adjusting the weights after
each presentation of an input pattern is called example-by-example
learning. For some problems, this can cause weights to oscillate due to
the fact that the adjustment required by one input vector may be canceled
by that of another input; however, this method works well for some other
problems. Epoch or batch training is more popular because it generally
provides stable solutions.

Batch learning. In many situations, it is preferable to wait until all the
input patterns (or some portion of them) have been processed and then
adjust weights in an average sense. This is called batch learning. A batch
can be the entire training dataset (epoch-based learning) or some portion
of the dataset. Generally, the goal is to reduce the average error over all
the patterns, which is called the mean square error (MSE) and can be
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expressed as

1 n 5
MSE = — E; 2.28
> ; i (2.28)

where E; is error for ith input pattern, and # is the total number of input
patterns in the batch. If the weights are adjusted after all the patterns have
been processed, this approach is called epoch-based learning, and there is
only one weight adjustment after each epoch. The basic idea with this
method is to obtain the error gradient for each input pattern as it is
processed, average them at the end of the epoch, and use this average value
to adjust the weights using the delta rule. For the linear neuron this results in
a weight increment of

1 n
Aw, = (- Y (2.29)
i=1

after an epoch. This can facilitate a smoother climb down the error surface
for many problems.

In summary, supervised learning using the delta rule is implemented as
follows: An input pattern (xy, X3, ..., X,,) is transmitted through connections
whose weights are initially set to random values. The weighted inputs are
summed, the output y is produced, and y is compared with the given target
output (9 to determine error (E) for this pattern. Inputs and target outputs
are presented repeatedly, and the weights are adjusted using the delta rule at
each iteration or after an epoch until the minimum possible square error is
achieved. This may involve the iterative presentation of the entire training
dataset many times.

The delta rule greatly simplifies for a linear neuron and, in example-
by-example learning, it is similar in form to the perceptron learning rule,
except that the method of computing the error is different for the two
methods. However, the two methods have different origins and the
gradient descent concept in the delta rule has a far greater implication for
modeling more complex networks than the simple perceptron rule, as
will be discussed later. This is due to the delta rule being more
meaningful and powerful because it follows the error curve in the
direction in which error decreases most. More importantly, it has made it
possible to train a neuron to learn continuous linear or nonlinear mapping of
inputs to output(s). In the above derivation, only linear mapping of x to y
was examined, but the delta rule is especially useful in the nonlinear
mapping of a set of inputs to output(s), as discussed in Chapter 3 and
Chapter 4.
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2.5.4.2 Linear Neuron as a Classifier

This section will examine how a linear neuron can be trained as a classifier
using the delta rule. It is possible to convert the linear neuron into a classifier
by passing the output through a threshold function, as shown in
Figure 2.27b. The error, however, is calculated based on the linear
output, y. Because the output, y, of the linear neuron is continuous, the
output of the classifier is specified as

1 =0
y = (2.30)
0 y<o.

This section will demonstrate how to train a linear neuron to classify the
data shown in Figure 2.27a. The same data was used earlier in Section 2.5.3
to train a perceptron. Because there are two input variables, it is necessary to
use a linear neuron with two inputs and one output, as shown in
Figure 2.27Db.

The learning process for example-by-example learning is

U = wix, + wx,
y=u
E=t—y (2.31)
Aw = B Ex
Whew = Wog T Aw.

Assume that the initial weights are w; = 0.8, w, = —0.5, and 8= 0.5, as
were used for the perceptron.

X1 l,y,
0.5 ° \ y %
. . -5
1" Xg/

(@) -1 (b)

Figure 2.27 Classification with a linear neuron: (a) two-dimensional data and
classes and (b) two-input linear neuron classifier.
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Present input pattern 1—A1: x; = 0.3, x, = 0.7, t = 1; w(l) = 0.8,
w) =—0.5.
u = (0.3)(0.8) + (0.7) (—0.5) = —0.11
Yy =u=-—0.11<0 = Category 0
= WRONG CLASSIFICATION
E=1—(—0.11) = 1.11.

The first weight increments are

Aw! = (0.5)(1.11) (0.3) = 0.1665
Aw?} = (0.5)(1.11) (0.7) = 0.3885.

The new weights after the first increment are
w} = 0.8 4 0.1665 = 0.9665
wy =— 0.5+ 0.3885 = — 0.1115.
Thus, the new weight vector w' =[0.9665,—0.1115].

Present input pattern 2—B1: x; = —0.6, x,=0.3, t=0; w; = 0.9665,
w)=—0.1115.

u = (—0.6) (0.9665) + (0.3) (—0.1115) = —0.61335
y =u =—0.61335 < 0 = Category 0
= CORRECT CLASSIFICATION = WEIGHTS DO NOT CHANGE.

Present input pattern 3—B2: x; = —0.1, x, = —0.8, t = 0; w} = 0.9665,
w)=—0.1115.

u = (—0.1)(0.9665) + (—0.8) (—0.1115) = —0.00745
y=u=-—0.00745<0 = Category 0
= CORRECT CLASSIFICATION = WEIGHTS DO NOT CHANGE.

Present input pattern 4—A2: x; = 0.1, x, = —0.45, t = 1; w} = 0.9665,
w)=—0.1115.

u = (0.1)(0.9665) + (—0.45) (—0.1115) = 0.1468
y =u = 0.1468 > 0 = Category 1
= CORRECT CLASSIFICATION = WEIGHTS DO NOT CHANGE.

The linear neuron classifies all four patterns correctly. The results
demonstrate that for this simple classification task, the linear neuron finds
the best weights using the delta rule more quickly than the perceptron. This
is because the error is calculated based on the linear neuron output, y, not
on the threshold function output, .
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The classification boundary for the trained linear neuron is given by
y =0. Because y = u

=u =wx; + wyx, =0
Y 1X1 2X72 (2.32)

x, = — (wyx1)w,

For the neuron trained above, the final weights are w; =0.9665 and
w, = —0.115. Thus, the boundary is

x; = — (0.9665x,)/(— 0.1115)

(2.33)
Xy = 867.X1 .

This boundary line (dashed line) is superimposed on the data in
Figure 2.28, along with the classification boundary for the perceptron (solid
line).

The boundary lines found for the linear neuron and the perceptron have
different slopes. This is because the two methods are fundamentally different
and the data is sparse. With more data they should produce identical results.

The linear neuron can be trained to solve any two-class classification
problem in which the classes are linearly separable. The linear neuron finds
the best weights using the delta rule more quickly than the perceptron. In
higher-dimensional problems in which more than two input variables are
involved, the classes are separable by a hyperplane that the reader could
intuitively understand; the learning concept applies without change.

2.5.4.3 Classification Properties of a Linear Neuron as a Subset
of Predictive Capabilities

Classification is only half the capability of a linear neuron. In the above
section, a classifier was trained, but a linear neuron is more capable and can
also be a predictor. To highlight this, it is useful to look at the general form of

Xo

/

/
1 ) a
u 2

-1 -0.75 -0.5 —0.25!1/ 2025 05 075 1"

Figure 2.28 Linear neuron and perceptron classification boundaries super-
imposed on the data (linear neuron: dashed line; perceptron: solid line).
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the input—output relationship established by the linear neuron to put
classification into context and to understand its predictive capability, as well
as the effect of learning, i.e., weight change, on the output. The output of the
one-input one-output neuron trained in Section 2.5.4.2 is

Y = wix; + wrx;, (2.34)

where y is a plane called the solution plane and shown in Figure 2.29 for the
linear neuron trained in the previous section. Here, w, is the slope with
respect to the & axis, and w; is the slope with respect to the x; axis. The
solution plane has a unique output for each input vector {x;, x5}. In fact,
this solution plane is used to classify patterns in classification problems. The
classification boundary previously established is drawn in the figure as
the dashed line that the solution plane cuts through the xy, x, plane. This is the
same as the dashed line representing the classification boundary for the linear
neuron shown in the xy, x; plane in Figure 2.28. Thus, unlike in perceptron,
the classification boundary now lies in a continuous solution plane. What is
seen here is that weight adjustment alters the slope of the solution plane until
the error between the target and the predicted output is minimized. For
classification, positive outputs ( > 0) classify the patterns into one category,
and negative outputs ( y < 0) classify the patterns into the other categories;
this again produces results comparable to the linear discriminant analysis
in statistics.

It can be seen that the linear neuron is capable of the continuous
mapping of inputs to outputs, which is required in prediction or function
approximation. Classification is a simplified form of prediction. The next
section examines in detail the predictive capabilities of a linear neuron.

2.5.4.4 Example: Linear Neuron as a Predictor

The linear neuron can approximate a linear function, as was shown in
Equation 2.34, and is functionally similar to linear regression in statistics. In a

Figure 2.29 The classification boundary superimposed on the linear neuron
solution plane.
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Table 2.5 Linear Function

Data

X t
0 0
1.0 0.75
2.0 1.53
3.0 2.34
4.0 3.2

function approximation situation, the actual magnitude of the output (y) for
a given input pattern is of concern, not the category or classification
boundary. Specifically, during training, it is the linear function that
minimizes the prediction error is sought. This section presents a simple
example in which a linear neuron is used to fit a linear function to the data
shown in Table 2.5 and plotted in Figure 2.30, in which there is one input
and one output. The data was generated from the function y=0.8x, and a
small noise was added to the data to introduce variability. However, the
linear neuron does not know that the data came from this function, and its
task is to find it iteratively from the data. Because each input has a unique
output, the linear neuron learns continuously until the error decreases to
zero or an acceptable limit.

For simplicity, the bias will be disregarded because the desired result is a
function that goes through the origin. Thus, there is one weight and the
linear neuron output takes the form of

Y = wx. (2.35)

In this case, the weight defines the slope of the straight line and by
beginning with any initial random value for the weight, it should eventually
settle down to 0.8. Thus, learning requires finding the accurate value of the

2.5
1.5 .

0.5

Figure 2.30 Plot of the linear data.
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weight (0.8) that fixes the slope of the line. The computation process for
example-by-example learning is now

Yy =wx
E=t—y=t—wx
(2.36)
Aw = BEx

Whew = Wolq + Aw.

If batch learning is employed, Aw is defined as 8 (—ZE x> A random

value of 0.5 is assigned to the initial weight and it is assumed that the
learning rate is 0.1.

Example-by-example learning (recursive or on-line learning). The
response to the first input, x =1, is

y=05X1=0.5.
The target output is 0.75. Thus, the error, E, is

E=1t—y=075—05=025
w' =w+ BxE =05+ 0.1 X 0.25 X 1 = 0.5+ 0.025 = 0.525.
The weight has now been adjusted to 0.525 and the next input, x= 2,

can be presented to the neuron. The target for this input is 1.53. The
predicted output is

y=0.525X 2 =1.05
E=1—y=153—105=048
w* =0.525 + 0.1 X 0.48 X 2 = 0.525 + 0.096 = 0.621.

The presentation of the next input, x = 3, for which #= 2.34, results in

»=0621 X 3 = 1.863
E =234— 1863 = 0.477
w® =0.621 + 0.1 X 0.477 X 3 = 0.621 + 0.1431 = 0.7641.

The last input, x =4 with ¢ = 3.2 yields
y = 0.7641 X 4 = 3.0564

E =3.2—3.0564 = 0.1436
w* =0.7641 + 0.1 X 0.1436 X 4 = 0.7641 + 0.05744 = 0.8215.
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The final weight after processing the four inputs is very close to the
required 0.8. During learning, the weight changes steadily in increments,
from 0.525, 0.621, 0.7641, to the final value of 0.8215.

The section will now train the neuron on the same data using batch
learning to demonstrate how batch learning is implemented.

Batch learning. The response to the first input, x; =1, is

»1 =05X1=0.5.
The error for the first input pattern is
E, =t—y, =0.75—0.5=0.25.
The response to the second input, x, = 2, is
%, =05 X 2=10.
The error for the second input pattern is
E, =t—y,=153—1.0=0.53.
The response to the third input, x5 = 3, is
3 =05 X3=15.
The error for the third input pattern is
Ey=t—y;=234—15 =0.84.
The response to the last input, x; = 4, is
Y =05 X 4=20.
The error for the last input pattern is
E =t—y;=32—20=12.
The weight increment Aw" after first epoch is

1 n
Aw' = ﬂ(;ZEx) =0.1 X
i=1

1
1 (Eyx, + Eyxy + Ezxz + Egxg)

=0.1X %(0.25><1+O.53><2+O.84><3+1.2><4)

= 0.2158.

The new weight, w', after first increment is

w' = w+ Aw = 0.5+ 0.2158 = 0.7158.
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The same process is repeated for next epoch, with the weight adjusted to
0.7158; the results are

¥ =0.7158  E; =0.0342

y, =14316  E, = 0.0984

vy =21474  Ey =0.1926

Vi =28632  E;=0.3368
Auw? = 0.0539

w? = 0.7697.

The weight has now been adjusted to 0.7697; the results for the third
epoch are

» =07697  E =-—0.0197
y, =15394  E, =— 0.0094
y5=23091  E; =0.0309
yi =3.0788  E, =0.1212

Aw? = 0.013475

w’ = 0.783175.

The neuron has settled to a final weight of 0.821 after four iterations in
example-by-example learning, and 0.7832 after three epochs in batch
learning with the four inputs. The final weight is very close to the target of
around 0.8. Note that with batch learning, the first weight increment itself
brings the weights up close to the target in one epoch (0.7158) and in the
next epochs the weight is fine tuned and adjusted much more slowly. This is
because the average error over an epoch contains information about the
entire dataset. On the other hand, in example-by-example learning the
weight adjustment is gradual from the beginning to the end because the
neuron is incrementally exposed to the entire dataset. Further training with
the same data will not substantially alter the weight, but will fine tune it
around this value. You may try training with another epoch and check the
results yourself.

The equation of the line thus derived from example-by-example
learning is

y = 0.821x (2.37)

and is superimposed on the data in Figure 2.31.
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25

15 4
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Figure 2.31 The linear neuron output superimposed on the data.

It is now possible to examine the overall prediction error in the form of
MSE over all the input patterns by averaging the error

1 n
MSE = —— > B (2.38)
na=

where 7 indicates the pattern number and 7 is the total number of
input patterns.

First compute the square error for each input pattern and then find the
average. The input, predicted output, target output, and square error over
each pattern are

x =1, 3 =0821, =075, (1 —y)° =(0.75—0.821)* = 0.00504

X, =2, 9, =0.821 X2=1.642, 1, =153, (,— )" = (1.53—1.642)* =0.0125

3 =3, 3 =0.821 X 3=2.463, t; =234, (t;—1;)° = (2.34—2.463)> =0.0151

X =4, y4=0821 X4=3.284, 1, =32, (t;—y;)" =(3.2—3.284)> = 0.0071,
MSE = (0.00504 + 0.0125 + 0.0151 + 0.0071)/(2 X 4) = 0.00497.

Thus, the average predicted error of the trained neuron over all the input
patterns is 0.00495, which is acceptably small.
It is possible to visualize the square error for an input pattern in graphical
format:
E=t—y=t—wx
) ) (2.39)
e =E° = (t— wx)*“.
For convenience, ' has been removed from the square error. For a
particular input, for instance x =1, t = 0.75, the error function becomes

e =(0.75— w)* (2.40)

and Figure 2.32 illustrates this graphically, where the abscissa represents the
weight and the ordinate represents the square error. The error function takes
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Square error

02 04 06 08 1 12 14

Figure 2.32 Error surface for a one-input linear neuron without bias.

the form of a parabola, and the error is at a minimum for the weight that
indicates the lowest point on this parabola. In the example, it is seen that the
delta learning rule involves descending the gradient of this error curve,
incrementally searching the weight that minimizes the prediction error. It
has found the target weight value in one epoch.

In the case where there is a bias (or intercept), two weights, w, and wy,
must be found to minimize the square error. The w), is the weight associated
with the bias input which is typically +1, and wj is that associated with the
input x. The output of a linear neuron for this case is

The square error function is
e=FE =[t— (w, + wx)]* (2.42)

To illustrate this function graphically, an intercept of approximately 1
will be introduced to the linear function by shifting all the data points
vertically by one unit. Now, for x =4, the target is 4.2 (i.e., 3.2+ 1. It is
possible to plot the error function for this input—output pair for a range of wy
and w; values as

e =FE* =[4.2— (w, + 4w)% (2.43)

as shown in Figure 2.33.

The error function is a two-dimensional surface with the minimum error
at approximately w, =1 and w; = 0.8. These correspond to the intercept
and the slope, respectively, of the linear function in Equation 2.41.
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Figure 2.33 Error surface for a one-input neuron with bias.

2.5.4.5 A Practical Example of Linear Prediction: Predicting the
Heat Influx in a Home

This section will solve a practical example using a linear neuron model to
estimate the heat influx into a home. It is known that many factors, such as
insulation, northern, southern, and eastern aspect, etc., affect heat influx;
however, of all these factors, northern exposure has been found to be the
most important. We are going to model the relationship between heat influx
and northern exposure on data collected to study this behavior [13]. Due to
the large number of observations involved, only the final results are shown
here. A linear neuron with northern exposure and a bias input was trained
using the delta rule, starting with random initial weights, until the error
reached the minimum possible level. The resulting model is superimposed
on the data in Figure 2.34.

The simpler linear relationship made it possible to find the optimum
weights in one epoch; they were found to be 607 (bias) and —21.4.
Therefore, the linear neuron model fits the data well, with a slope of —21.4
and an intercept of 607. Note that for visual clarity, the origin of
the axes in the plot is not set at (0,0), hence the smaller intercept.
The relationship between the heat influx and the northern exposure is

Heat influx
280

260
240
220
200

- North elevation
16 16.517 17.5 18 18.5 19

Figure 2.34 Linear neuron model predictions of heat influx superimposed on the
data.
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therefore modeled by
Heat Influx = 607 — 21.4 Northern Elevation (2.44)

with a coefficient of determination (R?) of 0.72 and MSE of 152.

2.5.4.6  Comparison of Linear Neuron Model with Linear
Regression

As a predictor, the linear neuron is functionally equivalent to linear
regression in statistics. To demonstrate this, the same heat influx problem
was solved using linear regression. In linear regression, the coefficients
(intercept and slope) that minimize the sum of square error for the whole
sample are sought using one pass of the dataset. The problem was solved
using Minitab statistical software [13], and the analysis of variance (ANOVA)
results are shown in Table 2.6.

The slope and intercept from this analysis are —21.4 and 607,
respectively, which are identical to the results obtained from the linear
neuron model. The R?, which is a measure of the amount of variation of the
dependent variable accounted for by the model (i.e., the ratio of the sum of
the squares for the model to the total sum of the squares) is 0.72, and MSE is
152; these results are again identical to those obtained from the neuron
model. The statistical methods used to ascertain the significance of the
coefficients can be used to test the significance of those given by the linear
neuron. The linear neuron does not make any assumptions about the
distribution of the data, whereas linear regression assumes that the variables
are normally distributed and that the variance of the dependent variable is
uniform across the range of the independent variables (homoskedasticity).

Table 2.6 ANOVA Table for Heat Influx-Northern Aspect Relationship

Estimate SE T Stat P Value
Parameter 1 607.103 42.9061 14.1496 5.24025x10 2
Table®
X —21.4025 2.56525 —8.34323 5.93501x10°

RSquared®™ 0.720524, Adjusted RSquared® 0.710173,
Estimated Variance® 151.972

DF  SumofSq Mean Sq Fratio P Value

ANOVA Model 1 10 578.7 10 578.7 69.6094 5.93501x10°
Table®

Error 27 4103.24 151.972
Total 28 14 681.9
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When statistical methods are used to test the significance of the coefficients
of neuron models, however, the concept of sampling distribution
should apply.

2.5.4.7 Example: Multiple Input Linear Neuron
Model—Improving the Prediction Accuracy
of Heat Influx in a Home

To improve the accuracy of the heat flux prediction in the problem
addressed in the previous section, the southern aspect was included as a
second variable, as it is thought to be the second most important predictor
variable. This necessitates the use of a two-input (and bias) neuron, which
produces a model in the form

y = bo + ZU]xl + wZ.xZ. (245)

Training was completed using a linear neuron with random initial
weights; the final bias weight and the weights associated with the inputs
were found to be 483.7, —24.21, and 4.79, respectively, resulting in the
following model:

Heat Influx = 483.7 — 24.21 North Elevation + 4.79 South Elevation.
(2.46)

This model has an R* of 0.86, which is an improvement over the one-
input model; the MSE for this model is reduced to 79.78. The optimum
weights were found in one epoch.

2.5.4.8 Comparison of a Multiple-Input Linear Neuron with
Multiple Linear Regression

The multiple-input neuron model is functionally equivalent to multiple
linear regression in statistics. To demonstrate this, the same heat influx
prediction problem was solved using both the northern and the southern
exposures. In multiple linear regression, the coefficients (intercept and
slopes) of a relationship between a dependent variable and several
independent variables are sought such that the sum of the square error
for the whole dataset is minimized. Table 2.7 shows the ANOVA table for this
analysis, which demonstrates that the intercept is 483.67 and that the slopes
with respect to the northern southern aspects are —24.215 and 4.79,
respectively. These are identical to those obtained from the linear neuron.

The R* for the model is 0.86, which is also identical to that given by the
linear model.
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Table 2.7 ANOVA Table for Relationship between Heat Influx and the
Northern and Southern Aspects

Estimate SE T Stat P Value
Parameter 1 483.67 39.5671 12.2241 2.77867x10~ 12
Table®
X1 —24215  1.94054 —12.4785 1.75336x10~ 12
x2 4.79629 0.951099  5.04289 0.0000300103

RSquared® 0.858715, Adjusted RSquared® 0.847847,
Estimated Variance® 79.7819

DF SumofSq  Mean Sq F Ratio P Value
ANOVA Model 2 12 607.6 6303.8 79.0129 8.93785x10~ 2
Table®
Error 26 2074.33 79.7819
Total 28 14 681.9

2.5.4.9 Multiple Linear Neuron Models

Many linear neuron units can be combined to form a multi-output linear
classifier or a predictor network consisting of many linear neurons, as
illustrated in Figure 2.35. In classification, each neuron represents a class;
the reader should now understand that the multi-output linear classifier is
equivalent to a linear multiple discriminant function classifier.

As a predictor, multiple linear neural networks can be used to
simultaneously model the linear relationship between one or more
dependent variables and several predictor variables. This allows for the
study of the simultaneous effects of inputs on several dependent variables.
Given the input variables and the output variables, the delta rule adjusts the
weights incrementally, simultaneously reducing the prediction error over all

Figure 2.35 A multi-output linear neuron model.
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the dependent variables. The resulting model is actually a set of models that
are a linear combination of inputs whose relative importance to each output
is captured by the weights; the model preserves the correlation of the inputs
to the predicted variables. The ith model is

.yi - bo + Wi X + wizxz + -+ wmxn (247)

where y; is the predicted value of the ith dependent variable and wy is the
weight associated with the jth input and the ith dependent variable.

2.5.4.10 Comparison of a Multiple Linear Neuron Network
with Canonical Correlation Analysis

As a predictor, a multiple linear neural network has a close correspon-
dence to a canonical correlation in statistics. Canonical correlation is a
multivariate statistical method designed to study the simultaneous effect of
a set of independent variables on a set of dependent variables. Canonical
correlation is similar to multiple linear regression in that they both
develop linear combinations of inputs for predicting an outcome. The
difference is that canonical correlation analysis does this simultaneously
for several dependent variables [15]. Canonical correlation involves
obtaining the set of weights for the dependent and independent variables
that provides the maximum simple correlation for the two sets
of variables.

2.5.4.11 Linear Neuron and Linear Network Summary

This chapter has presented the concepts of the delta rule as applied to a
linear neuron and has examined its classification and predictive capabilities.
Learning amounts to the alteration of weights, which in essence fixes the
slope of the solution plane. The delta rule was used to minimize error;
through an example it was found that this method can approximate a linear
function well. It was also demonstrated that, as a classifier, a linear neuron is
functionally equivalent to simple linear discriminant function classifier, and
as a predictor is analogous to a simple linear and multiple linear regression
for single- and multiple-input cases, respectively. In a multiple-input case,
the weights adjust the slopes of a hyperplane. Many linear neurons can be
combined to form a network that is suitable for multiclass classification and
that is similar to multiple discriminant function analysis. When many linear
neurons are used for simultaneous function approximation in which the
effect of a set of inputs on several outputs is modeled, this model resembles
canonical correlation analysis in statistics.
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2.6 Summary

This chapter presented the fundamentals of neural networks through
examples. Specifically, it examined threshold neuron models, linear neuron
models, and learning strategies, including Hebbian, perceptron, supervised,
and unsupervised learning methods. It highlighted, through this coverage of
neural network fundamentals, the linear analysis capabilities of single and
multiple neuron models of perceptron and linear neurons, and compared
these with equivalent statistical methods for linear analysis. Specifically, it
was shown that a single perceptron and linear neuron classifiers are
equivalent to a linear simple discriminant function classifier in statistics, and
that linear analysis of a single linear neuron is equivalent to simple and
multiple linear regression in statistics. Multiple-perceptron and multiple-
linear neuron classifiers are equivalent to multiple-discriminant function
analysis, and the predictive capabilities of the multiple-linear neuron
models are equivalent to canonical correlation analysis.

The next chapter will examine neural networks for nonlinear data
analysis. One of the early criticisms of neural networks focused on their
inability to solve nonlinear problems involving the complex, nonlinear
mapping of inputs to outputs [19]. This is essential for solving many real
problems, which are generally complex in nature. As a response to these
criticisms, neural networks for nonlinear analysis emerged and the next
chapter begins a discussion on MLP networks, which are among the most
important neural networks developed for the nonlinear analysis of data. The
essential conceptual developments that took place during the growth period
of neural networks are presented in a three-volume series by Rumelhart and
McClelland [21-23]; these are considered to be the most comprehensive
reference on the foundation of neural networks.

Problems

1. In linear analysis of data with neural networks, what aspects of
neurons make them linear models? What does the term “linear” refer
to?

2. What are the advantages and limitations of threshold neurons?

3. What is a classification boundary, and how is it obtained for a
threshold and a linear neuron?

4. What is a “linearly separable” classification problem?

5. Use the data in Table 2.5 to train the linear classifier in Section
2.5.4.2 in continuous learning mode, in which it adjusts weights
even if the classification is correct, to move the weights closer to the
inputs. Compare the difference between learning only when a
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mistake is made and continuous learning in terms of the final
weights and the classification boundary.

6. On a dataset of choice, perform a linear classification using
perceptron, linear neuron, and discriminant analysis, and compare
the results in terms of classification accuracy.

7. Describe the delta rule and show how it is applied on a two-input
linear model.

8. On a dataset of choice, perform a linear prediction using a linear
neuron and a simple or multiple linear regression, as appropriate.
Compare the results from the two methods. Extract the model
parameters from the linear neuron and explain what they mean in
relation to the inputs and the output.

9. What is the difference between the perceptron learning algorithm
and the delta rule?

10. What are the advantages of the delta rule in learning?
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Chapter 3

Neural Networks for
Nonlinear Pattern
Recognition

3.1 Overview and Introduction

This chapter will extend the discussion about linear analysis to nonlinear
analysis using neural networks. There are several methods suitable for
nonlinear analysis, including multilayer perceptron (MLP) networks, radial
basis function (RBF) networks, support vector machines (SVMs), general-
ized model for data handling (GMDH), also called polynomial nets,
generalized regression neural network (GRNN) and generalized neural
network (GNN). Most of these networks have several processing layers that
give them nonlinear modeling capability.

The topic of this chapter, the MLP, is the most popular and widely used
nonlinear network for solving many practical problems in applied sciences,
including ecology, biology, and engineering [1-3]. It is conceptually similar
to RBF networks in that the intermediate processing is done by one or more
layers of hidden neurons with nonlinear activation functions. RBFs use
Gaussian functions as activation functions and MLPs use a range of
activation functions. The GNN, presented in Chapter 9 (Section 9.6), is a
network with only two hidden neurons, one performing linear analysis and
the other performing nonlinear analysis. The GRNN is used for
nonparametric estimation of the probability density of data; it does not

69
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require iterative training and is useful for relatively nonlinear data
processing. The GRNN is presented in Chapter 9 (Section 9.10). The
GMDH is another nonlinear network that builds polynomials from input
variables in successive stages to obtain a more complex polynomial that
contains the most influential input variables, much like in regression. The
SVM is a statistical method that transforms a nonlinear, multidimensional
problem into a linear problem in a higher dimensional space.

The reason for the popularity of the MLP network is that it is very
flexible and can be trained to assume the shape of the patterns in the
data, regardless of the complexity of these patterns. In this chapter, MLP
networks are presented in detail in order to highlight nonlinear
processing in neural networks. It is presented in such a way that the
processing in other networks can be understood with relative ease. MLP
is a powerful extension of the perceptron; these networks are called
universal approximators due to their ability to approximate any
nonlinear relationship between inputs and outputs to any degree of
accuracy [4]. The power of these networks comes from the hidden layer
of neurons located between the input layer and output layer of neurons.
The hidden layer may consist of one or many nonlinear neurons and,
more importantly, it performs continuous, nonlinear transformations of
the weighted inputs, in contrast with the linear mapping in the linear
neuron and the step function mapping used in the perceptron.

Recall from Chapter 2 that the perceptron and linear neuron are only
capable of classifying linearly separable patterns and therefore cannot form
the arbitrary nonlinear classification boundaries required by complex data.
Furthermore, the linear neuron is capable of performing only a linear
mapping of input data to output data in prediction. In contrast, nonlinear
mapping done locally in each neuron gives nonlinear networks the
flexibility and power to approximate many complex relationships inherent
in the data. Founding concepts and studies on these ideas were developed
in the 1980s and are presented in McClelland and Rumelhart [5,6] and
Werbos [7], who laid the foundation for implementing nonlinear mapping in
neural networks. Kohonen [8] contributed greatly in implementing non-
linear projections of multidimensional data onto one- and two-dimensional
maps in a self-organizing manner so that unknown data clusters and
classification boundaries can be discovered. Some later developments of
these concepts are elaborated in detail in Haykin [9], Principe [10], Fausett
[11], Kohonen [12], and Eberhart et al. [13,14].

Both this chapter and the next concentrate on MLP networks. This
chapter examines in detail how data is processed by individual neurons and
how the whole network assembles individual neurons and synthesizes their
outputs to produce a final output. It begins with a brief overview of the
operation of MLPs, and then, in Section 3.2, moves on to a detailed study of
processing in a nonlinear neuron, with examples. Also, the nonlinear
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neuron model is compared with nonlinear regression. In Section 3.3 and
Section 3.4, networks for single- and two-dimensional input processing are
presented in detail and illustrated with examples. These sections explore
fundamental processing in neurons and the ways in which these neurons
work together in a network to perform nonlinear mapping of inputs to
outputs where highly nonlinear mapping functions are formed and complex
classification boundaries are created. The next chapter explains how
networks learn to perform these tasks.

3.1.1 Multilayer Perceptron

The layout of an MLP network with one hidden layer is shown in Figure 3.1.
In Figure 3.1, xy, ..., x,, are input variables comprising the input layer. The
first set of arrows represent the weights (or input-hidden neuron
connections) that link this layer to the hidden middle layer, consisting of
one or many hidden neurons—so called because they are not exposed to
the external environment (data), as are the input and output neurons.
Hidden neurons sum the corresponding weighted inputs as denoted by X in
Figure 3.1; this is similar to the initial processing in the linear neuron and
perceptron. However, unlike those systems, each hidden neurons passes its
weighted sum through a nonlinear transfer function, denoted by ¢. The
outputs of the hidden neurons are fed through the second set of weights
(hidden-output neuron connections) into the output neuron(s), which
assemble the outputs by computing the weighted sum and passing it
through a linear or nonlinear function. The output of these neurons makes
up the network output, which is usually a single output in prediction (or
function approximation), and one or many outputs in classification,
indicating the class to which each input belongs. There are many choices
for the neuron activation (transfer) function, and this chapter will spend a
great deal of time studying these choices, their characteristics, and the ways
they turn multilayer networks into powerful classifiers and predictors.

m—

D,
>

Figure 3.1 Configuration of a multilayer neural network.
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Learning or training in MLPs is supervised by showing the network the
desired output for a particular input. Learning involves presenting the input
vectors, one at a time, at the input layer and passing them through the
hidden layer and output layer, where the final network output is generated.
At this point, the network output is compared with the desired output and
the difference, which is the error, is calculated. If the absolute error is larger
than an acceptable threshold, the error is backpropagated through the
network; this process adjusts the weights between the input and hidden
layers and those between the hidden and output layers using an appropriate
learning method to minimize the error in the repeated processing of the
inputs by the network. The error threshold, or acceptable limit for error,
defines the accuracy of the model and depends on practical considerations.

One popular learning method for error correction is the delta rule, also
called steepest descent, presented in Chapter 2 in relation to learning in
linear neurons. Error correction methods are continually being improved,;
some of these methods will be studied in Chapter 4. The training process is
repeated, adjusting weights until the optimum network performance
(resulting in minimum error) is achieved, at which point training stops.
For simple linear problems, hidden neurons are not required, as can be seen
from the analysis of the linear neuron in Chapter 2. For simple nonlinear
problems, one or few hidden neurons may be sufficient. However, for
highly nonlinear problems involving many input variables, a larger number
of neurons may be necessary to correctly approximate the desired input—
output relationship.

The following sections will systematically examine data processing in
MLPs by looking in detail at the internal workings of these networks.
Specifically, they will look at characteristics of activation functions and
hidden neuron processing, and process data through networks of increasing
complexity to highlight how individual neurons process information locally
and how an ensemble of neurons collectively produce complex mappings
of data. In essence, this chapter is a study of the ways in which networks
process data, called forward passing of input—output data. Once data
processing has been studied thoroughly, the entirety of Chapter 4 is devoted
to a discussion of how to train MLP networks to perform these complex
mappings. Through these discussions, it is expected that the reader will not
only understand the fundamentals of nonlinear neural processing but also
be able to study other networks with ease.

3.2 Nonlinear Neurons

MLP derives its power from nonlinear processing in the hidden neurons.
Crucial to this task are the nonlinear activation functions that transform the
weighted input of a neuron nonlinearly to an output. This section will first
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Figure 3.2 Nonlinear neuron.

look at some of these nonlinear activation functions in detail and then study
how they themselves are transformed during training to map inputs to
output(s) nonlinearly. Figure 3.2 shows a hidden neuron receiving 7 inputs,
X1, oeey X

The output of the neuron is given in Equation 3.1, where the weighted
sum of the inputs (as shown within brackets) is passed through a nonlinear
function ¢ as

T (Z wx; + b> (3.1)
Jj=1

where b denotes the weight associated with the bias input and w; represents
the weight associated with the jth input. The most widely used function is
sigmoid—a family of curves that includes logistic and hyperbolic tangent
functions—and is used for modeling in population dynamics, economics,
and so on. Other functions that are used are Gaussian, sine, arc tangent, and
their variants. Some of these are presented in Figure 3.3 and explored in the
next section.

3.2.1 Neuron Activation Functions

The neuron activation functions shown in Figure 3.3 have some important
characteristics that make them vital to neural information processing.

I S S/ N | /A A
- | | v/

(@) (b) () (d) (e)

Figure 3.3 Some nonlinear neuron activation functions: (a) logistic, (b) hyperbolic-
tangent, (c) Gaussian, (d) Gaussian complement, (e) sine function.
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They are nonlinear, continuous functions that remain within some upper
and lower bounds. Nonlinear means that the output of the function varies
nonlinearly with the input; this aspect makes it possible for neural
networks to do nonlinear mapping between inputs and outputs.
Continuity of the functions implies that there are no sharp peaks or
gaps in the function, so that they can be differentiated throughout,
making it possible to implement the delta rule to adjust both input-hidden
and hidden-output layer weights in backpropagation of errors, as Chapter
4 will study in detail. These two important properties are instrumental in
shifting the neural networks application domains from simple linear to
complex nonlinear domains. The term “bounded” means that the output
never reaches very large values, regardless of the input. This means that
the output activation remains bounded even if the net input to a neuron
is large. These developments were a direct result of the attempts to
develop models that mimic the biological neurons, where the outputs are
nonlinear, continuous, bounded signals. Due to their popularity, sigmoid
activation functions will be studied next in more detail. The concepts
apply equally well to other functions.

3.2.1.1 Sigmoid Functions

The sigmoid functions are a family of S-shaped functions whose
characteristics are described in the previous section; two of them are
shown in Figure 3.3a and Figure 3.3b. The most widely used sigmoid
function is the logistic function, shown in Figure 3.4 for the range of input
values u from —10 to 10. Z(x) denotes the output for an input .

The logistic function has a lower bound of zero and upper bound of 1.
This means that the function value (or the output) range is [0,1]. At the input
u =0, the output is the midpoint (0.5), and the slope of the function, which
indicates how fast the function is changing, is the greatest at this point.
The slope at = 0is 0.25 (14°). The output increases relatively quickly in the

L(u)
1

0.8

0.6

0.
2

u
-10 -5 5 10

Figure 3.4 Logistic activation function.
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vicinity of u = 0, as input increases and approaches the upper bound much
more slowly. For inputs below zero, the output initially decreases more
rapidly, then more slowly as the lower bound is approached. Smith [4]
gives a more detailed graphical analysis of the components of the
logistic function. The logistic function has the following mathematical
formulation:

1

:L = —_—
Y (@) 1+e™

(3.2)
where e is the base of natural logarithm, which is a constant with a value
of 2.71828.

Another commonly used sigmoid function is the hyperbolic tangent
function shown in Figure 3.3b and given below:

1+e™*

tanh(u) = ﬁ
— ¢

(3.3)

As shown in Figure 3.5, the hyperbolic tangent function has a
lower bound of —1 and an upper bound of 1, making its output range
[—1,1] in contrast to the [0,1] range for the logistic function. Another
difference is that the output at # =0 is zero. The slope of the hyper-
bolic tangent is also higher at # =0, meaning that it reaches the bounds
more quickly than the logistic function. The slope at =0 here is 1.0
(.e., 45°.

Another related function is the inverse tan (tan™ ! or arctan) function,
shown in Figure 3.6. It has a more gradual variation than the above two
functions, with a slope at boundary in between those of the logistic and
hyperbolic tangent functions.

Many of these functions have been used for neural information
processing. When they are used in output neurons, the actual output
must be scaled to fit the output range of the transfer function because the

tanh(u)
1

0.5

Figure 3.5 Hyperbolic tangent function.
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tan~'(u)
1.5

Figure 3.6 Arctan function.

network output is compared to the actual output. For example, if a neuron
with a logistic activation function is used for the output neuron, the output
will be in the range of [0,1]. Therefore, the actual outputs have to be
scaled to fit this range. The inputs, however, can take any value
regardless of the bounds of the sigmoid function; however, in some
situations it may be necessary and advantageous to scale the input data to
the range of the transfer function receiving the inputs. These aspects will be
explored later.

3.2.1.2 Gaussian Functions

Standard normal curve. The standard normal curve, shown in Figure 3.7,
has a symmetric bell shape and is the commonly known standard
normal distribution (Equation 3.4). It represents input data with mean
zero and standard deviation one. Its range is [0,1], it peaks at input « =0,
is highly sensitive to © values around zero, and is almost insensitive to those

Figure 3.7 Gaussian function.
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Figure 3.8 Gaussian complement function.

at the tails. Thus, it amplifies the mid-range of the input distribution.
Therefore, when this function is used in a neuron as a component of a
neural network, it is more sensitive to the weighted inputs that are close

to zero:
2

y=e (3.4)

Gaussian complement. This is the inverted Gaussian function so it
peaks at the tails and assumes a value of zero when u =0, as shown in
Figure 3.8 and Equation 3.5. Thus, it has a larger output for the inputs at
the upper and lower ends. When it is used in a neuron as part of a neural
network, the network is more sensitive to the weighted inputs that are at
the two extreme ends:

y=1—e*, (3.5)

The working of these functions in a neural network can now be
explored, beginning with a one-input network and examining thoroughly
all aspects of the network in order to completely understand what
enables MLPs to approximate any nonlinear function or classify data with
arbitrarily nonlinear classification boundaries.

3.2.2 Example: Population Growth Modeling Using a
Nonlinear Neuron

Exponential functions are popularly used for modeling population growth.
Presented below is the way in which a single neuron with a logistic function
learns to model population growth through training using the data shown in
Figure 3.9.

A single neuron model was trained, as shown in Figure 3.10, using the
delta rule starting with a small random initial weight value; the progress of
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Figure 3.9 Population growth over time.

the model at four epochs of training is shown in Figure 3.11, where the solid
line represents the model output [15].

It can be seen that the initial model output shown for iteration zero is far
from what it should be, and the training quickly corrects most of the error in
the first epoch itself. (In the figure, iteration is an epoch.) The final optimum
values obtained for the bias and input-neuron weights are —0.00002 and
0.5, respectively, resulting in the following model output:

. 1
- 1+ e—O.Sx

Y (3.6)

Thus, a single, nonlinear neuron with logistic transfer function is capable
of modeling simple, nonlinear functions such as growth models. It also
highlights the fact that a single neuron can model any region of output
where the output is monotonically (continuously) increasing or decreasing.
A single neuron with multiple inputs will produce a multidimensional,
nonlinear model with an output in the form of

1
y= 14+ e (w0 + w6+ -+ w,x,) *

(3.7)

+1 bo

x——> —>y

Figure 3.10 Nonlinear neuron with a logistic transfer function for modeling
population growth.
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Figure 3.11 Learning progress with epochs.
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Table 3.1 Results from Nonlinear Regression on Population Growth Data

Parameter Estimate Asymptotic SE @)
Theta 1 1.39x107'° 1.59x10~"° {1.95%x107 1%, 4.73x 10~ %}
Theta 2 —0.5 7.35x10~1 {—0.5, —0.5}

3.2.3 Comparison of Nonlinear Neuron with Nonlinear
Regression Analysis

Functionally, the performance of the single, nonlinear neuron is similar to
the nonlinear regression in statistics. The same population growth data
used in the previous section were used to fit a nonlinear regression [16]
model with the results presented in Table 3.1 where thetal and theta2
refer to by and w, respectively, of the nonlinear neuron. It can be seen that
the parameter estimates from the nonlinear neuron and nonlinear
regression are identical.

3.3 One-Input Multilayer Nonlinear Networks

3.3.1 Processing with a Single Nonlinear Hidden Neuron

In this section we study a simple MLP network, shown in Figure 3.12, with
one input in the input layer, one hidden neuron in the hidden neuron layer,
and one output in the output layer. Therefore, it has one input-hidden layer
weight denoted by @; and one hidden-output layer weight denoted by b;.
The input is x and the network output is 2. The hidden neuron has a bias
input of +1 with an associated weight of a, and the output neuron has a
bias weight of by. This notation for the weights is also used by Smith [4]. This
section examines the most common activation function, logistic function, in
the hidden neuron and for simplicity assumes a linear function in the output
neuron, which in theory can be any activation function previously
described. However, it will be shown that a linear activation function is
more appropriate for the output neuron in prediction, and logistic or a
bounded function is more appropriate for classification.

1-b
o

z
Gl

Figure 3.12 One-input, one-hidden neuron, one-output neural network.
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The input is fed into the network and the hidden neuron calculates the
weighted sum of inputs (including bias) and passes it through the logistic
function to produce the hidden-neuron output, y. This output is fed as input
into the output neuron through the associated connection link, where it is
weighted. The weighted input is passed through the neuron’s activation
function and the output of this neuron becomes the network output. The
most important part of processing takes place in the hidden neuron, whose
details are shown in Figure 3.13.

The weighted input is

u=a,+ ax. (3.8)

The result of this operation is to map x linearly to #, as shown in Figure 3.14,
with a slope a; and intercept a.

As the weight a; changes, the slope of the line changes, and as a,
changes, the vertical position of the line changes. Thus, the weights (a,, a;)
fix a line in two-dimensional space of (1 —x). The weight a, can be thought
of as incorporating the effects of all inputs other than x that are not explicitly
involved in the model.

The second task of the hidden neuron is to pass the weighted sum u
through the logistic function. The logistic function has u« as its argument and
is always a standard function with y = 0.5 at # = 0. It will be more useful to
express the output y in terms of input x to illustrate how x is mapped to y
through u. Substituting # into the logistic function, the hidden-neuron
output y is

1
]+ e @taxn)

1 &
x 2 @D y

Figure 3.13 Hidden neuron details.

y (3.9)

a

Figure 3.14 Hidden neuron weighted input u as a function of x.
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Because learning is about adjusting weights, it is essential to see the
effect of learning on the hidden-neuron output. Several cases will be
presented to illustrate this concept, starting with the simplest case.

1. ag = O, a, = 1
The hidden neuron output becomes

. 1
YT e
This is the familiar standard logistic function, as shown in Figure 3.4, with
the weighted sum « = x. Thus, when there is no bias input and the input-
hidden weight is one, the hidden-neuron output with respect to the network
input is represented by the standard logistic function. The function is such
that when x =0, y=0.5. When x is greater than zero, y is greater than 0.5,
and when x is less than zero, y is less than 0.5. Thus the position of x = 0 can
be thought of as a boundary that divides the input space into two equal
regions: one in which y is closer to one and the other in which y is closer to
zero. This point of x is called the boundary point; this concept will be used
later in classification. The slope of the curve at the boundary point is 0.25.

2.ap=0anda, = —1
The hidden-neuron output now becomes

(3.10)

The resulting function is plotted in Figure 3.15, which shows that the
slope of the curve is now reversed and the curve is the mirror image of the
standard logistic function.

3. ay =0, a, varies from —1 to 2
Changing a, from —1 to 2 yields curves of varying slope at the boundary
point, as shown in Figure 3.16.

X
-10 -5 5 10

Figure 3.15 Logistic function for 2, =0, a; = —1.
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—-a,=.05
-- a4=05
— ay=1
- ay=2
— ay=-1

Figure 3.16 Logistic functions for ap = 0, a; varies from —1 to 2.

The larger the a,, the steeper the slope of the curve at the boundary
point. Thus, the effect of adjustment of a; during learning is to fix the slope
of the hidden-neuron output function around the boundary point. The
overall effect of a, is that its magnitude adjusts the slope of the curve and its
sign determines whether the direction of the slope is positive or negative.

4. a.=1,a,=—3,04

Here the effect of the bias weight alone is illustrated. Figure 3.17 shows
the hidden-neuron output function for three values of ay: — 3, 0, 4. As can be
seen, negative values of a, push the curve forward and positive values pull it
backwards. A value of zero produces the standard logistic function. Thus the
effect of adjusting a, during learning is to control the horizontal position of
the curve. Because the boundary point is where the function value is 0.5, the
change in a, essentially serves to move the boundary point horizontally.
The position of the boundary point is not a function of g, alone, but varies
with a, as well, as demonstrated below.

5‘ ﬁll = 03, ﬂ(): _3, O, 4
Figure 3.18 shows a hidden-neuron output for the same values of a, as in
the previous figure, but with @; = 0.3. This highlights a dramatic effect of a,

———- a0=73

Figure 3.17 Logistic functions for a; = 1.0, ap= —3, 0, 4.
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Figure 3.18 Logistic functions for a; = 0.3, ap= —3, 0, 4.

on the position of the curves, demonstrating that the most active regions
(boundary regions) of the curves are placed at various locations along the
x-axis. This feature is used for modeling various local nonlinear features of
an input—output function, as will be seen later.

What are the boundary points for the three curves shown in Figure 3.18?
The boundary point will be denoted by x’. The boundary point is where
©# =0, which always gives a function value of 0.5, but u=ay+ax,
therefore, at the boundary point, dy+a;x’ = 0, resulting in

x'=—ayla. (3.11)
Thus, the boundary point for ag= —3 is —(—3)/0.3 =10, for a4, =0 is
zero, and for ay =4 is (—4)/0.3 = —13.3. The above equation shows that

the smaller the magnitude of a,, the larger the shift that curve makes
horizontally for a given value of ag, as can be seen in Figure 3.17 and
Figure 3.18 for @, = 1 and a, = 0.3, respectively.

Now it is possible to summarize the combined effect on the hidden-
neuron output of adjusting a, and a; during learning. By plotting the
hidden-neuron output as a function of input x, not only can the relationship
between the inputs and hidden-neuron output be seen, but also the ways in
which this relationship is transformed during learning as a, and a, change.
Basically, ay and a, alter the position and shape, respectively, of the logistic
function with respect to the inputs, and learning involves finding the
appropriate g, and a; incrementally. Because there is a lot of scope for
changing the slope and the position of the curve, it can be tailored to take
any desired form by adjusting its slope, direction, and horizontal position.

When the desired function is more complex for approximation by a
single hidden neuron, the capability of the neural network can be greatly
enhanced by adding more neurons that act in parallel. Each neuron
processes information in a similar fashion, but due to different initial
weights, they begin using logistic functions with different slopes and
positions. During training, each of these undergoes transformations in
shape and position through changes in the corresponding weights to
model various aspects of the desired function, so that collectively they



Neural Networks for Nonlinear Pattern Recognition m 85

1&

Figure 3.19 Output neuron and network output.

approximate the desired function. This gives MLP networks the power of
nonlinear processing to approximate any function to any desired degree
of accuracy.

Oultput of the network. Now the way in which the network produces the
final output will be explained (Figure 3.19).

The output neuron, like the hidden neuron, first computes the weighted
sum of the inputs it receives, denoted here by v, and then produces the final
output z, which is equal to v for the case where a linear activation function is
used. This yields

v=>by+ by

z =0,

(3.12)

where b, is the bias weight and b; is the hidden-output neuron
weight. The output is linear with respect to v but is still nonlinear with
respect to the original input due to the nonlinear processing in the hidden
neuron.

For the general case in which there is more than one (say, n)
hidden neurons, the output of each of the neurons, y, ¥, ..., V,, is fed
into the output neuron through the corresponding weights, by, b, ..., b,,
along with the bias input +1 through bias weight b, as shown in
Figure 3.20.

The weighted sum of inputs () received by the output neuron from
many hidden neurons and the output z is

n
U= b() + Zb]y]
Jj=1

z =0,

(3.13)

where b; is the weight linking hidden neuron j and the output neuron.

Figure 3.20 Network output for multiple hidden neurons.
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For classification problems, it is more appropriate to use a logistic
activation function. The output then is

_ 1
1+e v’

Using a logistic function, the output is bounded between zero and one,
and output is nonlinear with respect to both v and the original input.

This concludes the forward processing in a one-input and one-output
network with more than one hidden neuron. This network with one
output neuron receiving inputs from many hidden neurons, which in turn
receive a single input, can approximate arbitrarily complex single-input
single-output functions.

z

(3.14)

3.3.2 Examples: Modeling Cyclical Phenomena with
Multiple Nonlinear Neurons

Now two examples involving cyclical phenomena will be explored. Many
natural processes are cyclical in nature. The first example is a single cycle
square wave that can be thought of as an idealization of phenomena such as
seasonal plant growth. The second example involves modeling two-cycle
phenomena, such as spring and autumn species migration, which are
complex, nonlinear functions to model. A deeper exploration into the
networks modeling these phenomena sheds light on the internal
transformations that finally produce the desired nonlinear function.

3.3.2.1 Example 1: Approximating a Square Wave

First the square wave function, as presented in Smith [4] and shown in
Figure 3.21, will be explored, in which ¢ is the desired output and x is the
input. The function is constant at 0.25 for x is less than 0.3 or greater than 0.7.
Within the range of 0.3 to 0.7, the value of the target function is 0.75.

0.8

0.6
0.4

0.2

0.2 0.4 0.6 0.8 1

Figure 3.21 Square wave function t in relation to x.
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Figure 3.22 Network with two nonlinear hidden neurons for square wave
approximation.

The first stage of the development of a neural network model is to
generate the data. For a function approximation or classification, this
involves generating input—output pairs that describe the problem. For the
square wave problem, any number of input-output pairs can easily be
generated within the range of x between zero and one, as it is known from
the function in Figure 3.21 what the target value should be. As training has
not yet been discussed in detail, it will be assumed that this function will be
modeled using two hidden neurons with a logistic activation function and
one output neuron with a linear function, as shown in Figure 3.22, where x
is the input, ag; and ag, are bias weights associated with the two hidden
neurons, and a,; and a,; are input-hidden neuron weights for the two
hidden neurons. For the output neuron, b, represents the bias weight and b,
and b, are the weights associated with links to the output neuron from the
two hidden neurons. Thus, this problem has seven unknown weights that
require incremental adjustment during training. The hidden-neuron
weighted sum is © and the output is y; the weighted sum for the output
neuron is v and the network output is z.

Random initial values between 0.3 were assigned to the weights, and
the network predictions before training (solid line) were superimposed on
the data in Figure 3.23.

e o o o o
0.7
0.6
0.5
0.4
0.3
b o o o o o e \e
X
0.2 0.4 0.6 0.8 1

Figure 3.23 Model output with initial random weights.
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Figure 3.24 Trained network predictions superimposed on data.

As can be seen from Figure 3.23, the network with initial weights
poorly models the data. The network was trained using the delta rule until
error did not change appreciably; this occurred in 15 epochs, and the
predictions from the trained network superimposed on data are shown in
Figure 3.24.

Figure 3.24 shows that the trained network follows the data very well
except for the two steep areas with infinite slope. These steep areas are
generally very difficult to model, but this network has done it rather well.
The final values obtained for the weights are shown in Table 3.2.

Now a forward pass of two input—output pairs selected from Figure 3.21
will be performed, and the network output for these values will be examined.

1.x=0,r=0.25
For this pair, the first hidden-neuron output is
U1 = dp + anx = —20.8+ 0 =20.8

_ 1 _ 1
1+e ™ 1+e

" o5 = 0.999.

The second hidden-neuron output is
U, = dyy + apXxX = 476 + 0= 476

v v
1+ e 1+ 6—47.6

Nz

Table 3.2 Weights for the Two-Neuron Nonlinear Model
Approximating Square Wave

apq ap2 a a by b, b,

20.8 47.6 —69 —68 0.25 —0.5 0.5
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The net input v and output 2z of output neuron are

v=">by+ by, + by, =0.25—(0.5 X 0.999) + (0.5 X 1) =0.25
z=v=0.25.

The desired target = 0.25, so the predicted and desired results are

identical. Now the second input—output pair will be examined.

2.x=0.5, t=0.75 (This point belongs to the stepped portion of the
function.)
For this pair, the first hidden-neuron output is

Uy = dpy + a1 x = 20.8 — (69 X 05) = _137

1 1

— — — —0
= e T ooy - 22X

N
The second hidden-neuron output is
MZ == 6102 + alzx == 476_ 68 >< 05 = 156

1
Cltet 14 e 130

V2 = 0.999.

The net input and output of output neuron is

y=by+ by, + by, =0.25—0.5X 1.122 X 10~° + 0.5 X 0.999 = 0.75
z=0v=0.75.

The desired target is t=0.75, so the predicted and target values
are identical.

The reader may wish to try another input—-output pair from the latter
portion of the function to see how the predicted and desired values compare.

Hidden neuron outputs in relation to the input. Now that the model
behaves satisfactorily, it is time to examine the way that the training has
positioned and adjusted the slope of the hidden-neuron activation functions
in the input space of x. The predicted output of the network will also
be considered.

Because u; = ag, +ay; xand y; = 1/(1 + e )y, substituting for u, into y;
yields

1

N=TF e @ntanm (3.15)

Similarly, for the second hidden neuron, u,=ag,+a;,x and
9, =1/1+ e ")) resulting in
1
Y2 = 1+ e @ntano’

(3.16)
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Network output in relation to the input. The predicted model output z is

1 1
.= — . (3.17)

1+ e 2
1+e =

By substituting #; into y; in the above equation, the output z as a
function of x is obtained, together with all the weights, ay;, dg,, a11, and
dqp, AS

1

2
) (’%+ Sonan+ e(“w*"“’”)>
1+e /=1

- ! (3.18)

1 4+ e (bt [+ e ot a4 b (/14 ezt a129)]) 2

which becomes the model that maps inputs nonlinearly to the output
through weights that are free parameters of the network.

By substituting for values of weights from Table 3.2, the final output of
the trained network as a function of input x becomes

1
» = (3.19)

1 4+ e (0254 [(-0.5)(1/14e 5T EO) 40,5(1/14 - W0FCHI)]) *

Grapbical illustration of steps in network processing. Figure 3.25 and
Figure 3.26 show plots of all intermediate steps in the calculation to show
graphically how the original data is mapped to u,, 5, ¥1, V2, v, and finally z.
This was done by plotting the above functions of u;, ¢j, and z in relation to
input x. Exploring these graphs one by one illuminates the neural
information processing in MLP in general, and in this network in particular.
Figure 3.25 shows u; and u, as a function of x.

Figure 3.25 Mapping of inputs to weighted sum u of inputs in hidden neurons.
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As previously discussed, u, is the weighted sum of the inputs to the
first hidden neuron and must be a linear function of x with intercept equal
to bias weight ag,, and slope equal to input-first hidden-neuron weight
aq1. Learning in the network has configured the final values of these
weights to 20.8 and —069, respectively, showing a positive intercept and
negatively inclined line, as shown in Figure 3.25. Similarly, u, is the
weighted sum of the inputs to the second hidden neuron, and this
function has an intercept equal to bias weight, ay,, and slope equal to
weight, a;,. Learning in the network has configured the final values of
these weights to 47.6 and — 68, respectively, showing a positive intercept
and negatively inclined line (Figure 3.25). These are the values of weights
in Table 3.2.

When 2, and u, are mapped to corresponding hidden-neuron outputs y;
and y,, a standard logistic function results, but in the input space we know
that the effect of ap; and a,4, for example, is to control the position and
slope, respectively, of y, to follow the desired target function. Similarly, the
effect of ay, and a;, is to control the corresponding aspects of y, to represent
the desired target function jointly with y;. These two outputs are plotted
against x in Figure 3.26.

Figure 3.26 shows how the active regions of the two hidden neurons
have been positioned in the input space to perform the required mapping.
In Figure 3.26 the two curves have been shifted in the horizontal direction
such that the boundary point that divides y; in half is &' = —ay/a,, =
(—20.8)/(—69) = 0.3. Note that this is the point where the original function
steps up. The slope of y; at the boundary point is —17.29 (87°), which is an
approximation of the infinite slope in the original function. This can be seen
in Figure 3.27, in which hidden-neuron outputs are superimposed on the
output of the network, z. Because an activation function must be smooth
and differentiable, a step function will never be modeled perfectly. The
output of the second hidden neuron y, in relation to x, as shown in
Figure 3.26, shows that its boundary pointis — agy/a, = —47.6/—(68) = 0.7.
This is exactly the point at which the target function steps down

y - N
L \\ )
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Figure 3.26 Mapping of input to two hidden-neuron outputs.
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Figure 3.27 Mapping of input to output by the joint activity of the two hidden
neurons.

(Figure 3.27). This logistic function also has a slope of 17.0 (87°), fixed by
ay, and this is an approximation of the infinite slope of the original function
at this location. Note that the slope of the logistic is not equal to the weight
but is controlled by it. Comparison of the output z and the target ¢ in
Figure 3.24 shows that the network has found the correct positioning of the
curves and models the data well.

Next the activation of the hidden neurons will be closely studied. The
first neuron is initially fully active (y; = 1) up to about x = 0.25 (Figure 3.27)
and then decreases its output up to about x = 0.4; from that point on, the
first neuron remains inactive with an output of zero. The second neuron also
starts with full activation (3, = 1), but remain fully active until x reaches 0.7,
where the activity slows down and ceases at x = 0.8. The overall effect of
neuronal activation is that the neurons cooperate by taking care of separate
features of the target function and crafting their own logistic function to
mimic the target function.

How do the neurons work together to produce the final outcome? To
answer this question, the network outcome will be analyzed. The predicted
output z of the network is

The activation of both hidden neurons, y; and y;, is initially 1. Because
hidden-output weights are 0.5 and —0.5, their weighted sums are canceled
and thus the target value of 0.25 in the input range of 0 to 0.3 comes entirely
from the bias output weight of 0.25. Closer to ¢ = 0.3, y; begins decreasing to
accommodate the step function at x = 0.3. This results in an overall increase
in z according to Equation 3.20, which continues until y; becomes zero at
x = 0.4. At this point z = 0.75, which is equal to the required target and the
first hidden neuron is responsible for the step function at x=0.3. In the
input range of around 0.3 to 0.7, only hidden neuron 2 is active at the full
capacity that keeps z constant. At x closer to 0.7, neuron 2 decreases its
activity to accommodate the second step and its effect is to reduce the z
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Figure 3.28 Change in network weights during training with number of epochs.

value; this continues until x = 0.8, when both neurons are inactive. The
required output of 0.25 in the last input range is solely provided by the bias
weight. Note that because both neurons are active simultaneously to
produce the required alterations of the shape of the output function,
removal of one neuron affects the output of the network for the entire
input range.

The above example also highlights the number of neurons required to
model the output. Because there are two distinct regions in which the
direction of output changes, two logistic functions are required to model
these two regions. This is because a single neuron can model only
monotonic changes, not reversals in direction.

Figure 3.28 shows how all the network weights change during
training until the desired weights are achieved. Each line represents
adaptation in one weight. With further training, these weights do not
change, but reach a plateau. Values of the seven weights (Table 3.2) of
the trained network are those for the 15th epoch in Figure 3.28. Note that
in this figure all of the output neuron weights are very small compared to
hidden-neuron weights, and therefore cannot be distinguished from
one another.

In summary, all of the stages of neural information processing were
examined in detail in this example. It was shown graphically how learning
crafts hidden neuron activation functions such that the final output
follows the target function. The slopes of the original function are modeled
by placing logistic functions at appropriate locations and adjusting the
slopes of these functions that are primarily responsible for specific regions
of the input space. The final output is produced by the joint activation of the
hidden neurons, which are combined and processed by the output neuron.
Thus, the whole network operates as an integrated whole, but the internal
computation is distributed among the hidden neurons that do most of the
work and, therefore, removal of a neuron affects the entire output.
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Figure 3.29 A pattern of bimodal seasonal species migration.

3.3.2.2 Example 2: Modeling Seasonal Species Migration

In this example, seasonal species migration is modeled. Many species show
bimodal migratory patterns depicting spring and autumn migrations.
Figure 3.29 shows data from such a pattern.

This pattern requires more than two hidden neurons. Since there are
four distinct regions in which monotonicity is broken, it was approxi-
mated using four hidden neurons, as shown in Figure 3.30. The network
comprises one input, four hidden neurons, and one output neuron.
Consequently, there are 13 unknown weights, including the bias weights,
to be estimated in the training. The data shown in Figure 3.29 was used to
train the network using the delta rule until the error was minimized. The
model output with random weights before training and the output with
final optimum weights are shown in Figure 3.31a and Figure 3.31b,
respectively. In Figure 3.31b, target data (black dots) is superimposed on
the predictions (solid line) and there is a high degree of accuracy in the
prediction, which shows that the network has mapped input data to the
output perfectly. The prediction error will be studied in detail later.
The final weights are shown in Table 3.3.

Figure 3.30 Multilayer perceptron network for modeling bimodal pattern of
species migration.
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Figure 3.31 Network prediction superimposed on data: (a) for initial weights and
(b) for final optimum weights.

First, the forward pass of data will be studied to explore the hidden
workings of this more complex network. The data is processed similarly to
that in the previous network containing two hidden neurons, except that
this network contains four neurons. Here, each neuron sees the same input,
but due to their different initial weights, the position and the shape of the
activation functions in the input space will be different. This can be thought
of as four activation functions with different slopes being placed at random
locations in the input space. With random starting positions, weights are
adjusted incrementally during learning until they make the activation
functions assume final position and shape. This is done in such a way that
each function takes care of a different region of the input space
appropriately, so that their joint activity produces the network output that
attempts to mimic the target function, which in this case is the bimodal
pattern of species migration. A few input—output pairs will be selected and
the inputs will be passed through the network. Table 3.4 shows the
intermediate results of the processing of three inputs by the network.

Table 3.4 and Figure 3.31b indicate that the network error is very small.
Now that the network models the data very well, the way in which the
network produces the final outcome will be explored. First of all, the hidden

Table 3.3 Input-Hidden and Hidden-Output Neuron Weights;
Bias b, = 0.65

Neuron, i Bias Weight, ay Weight, a4; Weight, by;
1 2.7 —31.6 —0.55
2 —104 32.4 —0.58
3 35.0 —38.1 0.53
4 20.0 —29.5 —0.57
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Table 3.4 Intermediate Results of Processing Three Inputs by the Network

Time uq \Z U, Va us Y3 Uy Va z=v t E

0.2 —3.59 0.026 —3.96 0.019 274 1.0 142 0999 0592 0.6 0.008
06 —16.2 0.00 9.0 0999 121 0.999 239 0.99% 0.087 0.1 0.013
09 —257 0.000 187 1.0 071 0699 —6.45 0.001 0433 045 0.017

neuron outputs will be examined. The plotting of « will be skipped because
now it is known know that each u represents a line with an intercept equal
to the bias weight and a slope equal to the input-hidden neuron weight.
Figure 3.32 shows the final shape and the position of the four logistic
functions after training. Neuron 2 has a positive slope and neurons 1, 3, and
4 have negative slopes.

According to Figure 3.32, neurons 3 and 4 are fully active from the
beginning, and are joined by neuron 2, which becomes fully active when
input is around 0.4. Neuron 2’s initial activity is zero. Neuron 1 has a high
initial activity that deceases quickly to zero at input around 0.2, where
neuron 2 begins to show an increase. To show how these functions work
together to produce the bimodal pattern, the output neuron activity is
superimposed on the four hidden-neuron outputs in Figure 3.33. Note that
each neuron is the most active near its boundary region, where it
contributes mostly to the final output z. These boundary points for neurons
1, 2, 3, and 4 are 0.08, 0.32, 0.92, and 0.68, respectively.

The network output is

z=0v=>by+ by, + by, + b3ys + byy;

(3.21)
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Figure 3.32 Activation functions of the four hidden neurons in the nonlinear
network.
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Figure 3.33 Activation of the four hidden neurons superimposed on the network
output.

Asboth ys and y, are initially 1 and they have similar weights with opposite
signs (0.53, —0.57), they do not contribute to the initial rise of the model
output shown in Equation 3.21. Inactive neuron 2 does not contribute either.
Therefore, the initial rise is due mainly to the bias and the rapidly decreasing
activation of neuron 1, i.e., z=0.65—0.55),. The fall of the output after the
initial rise is provided by neuron 2 alone because neuron 1 becomes inactive
at that time and because active neurons 3 and 4 cancel each other. In this
region, z = 0.65—0.58y,. Because ), is increasing, z continues to fall. When it
comes to the third rise, neurons 2 and 3 are fully active, but activation of
neuron 4 is decreasing. Activation of neurons 2 and 3 cancel each other, so
only neuron 4 contributes in this region to produce the increasing output by
decreasing y, i.e., z = 0.65—0.57y4. When it comes to the last fall, neurons 1
and 4 are inactive, 2 is fully active (y,=1), and neuron 3 decreases its
activation. Thus, in this region neurons 2 and 3 jointly contribute to produce
the output, i.e., z=0.65—0.58y,+0.53y; = 0.07+0.53y;. The decreasing
activity of neuron 3 gradually brings the output to a minimum.

In summary, neurons process data locally but interact globally to produce
the output. Furthermore, they become active at various locations in the
input space to produce the required intensity or to offset a continuing trend.
The pattern that forms out of this complex and smoothly propagating activity
is the desired target function, which models the bimodal migratory data.

The MSE for all the data points for this network was calculated by

1 | &
MSE = N lz (n— zi)zl , (3.22)

where N is the number of data points, ¢ is the target, and z is the
network output. The resulting MSE is 0.085. The square root of MSE (RMSE)
is 0.291. Chapter 4 will use this concept of network error to train a network.
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Figure 3.34 Two-input multilayer network structure.

3.4 Two-Input Multilayer Perceptron Network

The understanding gained with one input can be extended to two or more
inputs. By looking at two inputs, it is possible to build a solid foundation for
the understanding of networks with many inputs, because the knowledge
we gained from one and two inputs (one- and two-dimensional problems)
generalize to many inputs (multidimensional problems). This is possible
because the basic principles underlying neural information in MLP can be
extracted from these examples. A network with two inputs can approximate
any function or predict any output that depends on two independent
variables. Hence, it can solve any two-dimensional prediction or
classification problem.

The structure of a two-input network is shown in Figure 3.34, in which
there are two inputs, one or more hidden neurons, and one output.
For classification problems involving more than two classes, it is necessary
to use one output neuron for each class. However, for most prediction
problems, only one neuron is needed. With two inputs, the network has
many extra weights, thus making learning more complex in terms of
number of weights to be optimized.

3.4.1 Processing of Two-Dimensional Inputs by
Nonlinear Neurons

The discussion of this network is treated in the same way as the one-
dimensional network, beginning with the processing of one isolated,
hidden neuron, as shown in Figure 3.35. Here, x; and x; are inputs, and a,
ay, and a, are the bias and the input-hidden neuron weights. The u
represents the weighted sum of inputs, and y is the hidden neuron output.
All activation functions are assumed to be logistic.
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Figure 3.35 One hidden neuron of the two-dimensional nonlinear network.

Each hidden neuron receives two inputs and the bias input, which are
weighted by the corresponding weights and summed during the first stage
of computing. The weighted sum « for the above neuron is

U =dy+ a1x; + ax,. (3.23)

This relationship is a plane in two-dimensional space of x; and x;,
as shown in Figure 3.36. The weight a, controls the slope of the plane
with respect to the x; axis, and a, controls its slope with respect to
the x, axis. Therefore, the effect of learning is to map inputs x; and X,
to a two-dimensional plane and to completely control the position
and orientation of the plane in two-dimensional space through a, a,
and a,.

The weighted sum u is passed through the logistic function to obtain the
hidden node output, y, as follows:

1
1+e '
where y is a standard logistic function with respect to . Once again, the
boundary point is where # = 0, at which point y = 0.5. By substituting for #,

it is possible to find how the weights map inputs x; and x, to the hidden-
node output as follows:

y= (3.24)

1
= . .25
Y 14+ e—(a0+a1x1+a2x2) (3.25)
The output y is now a two-dimensional logistic function, in contrast

with the one-dimensional function seen in the one-input case. The

Figure 3.36 Mapping of two-dimensional inputs to weighted sum.
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Figure 3.37 Two-dimensional logistic function characteristics for ap =0, a; =1,
a, = 0: (a) logistic function and (b) boundary line that symmetrically divides the
input space.

boundary is still defined by « = 0; however, it is no longer a point, but a line
defined by

u=a,+ a;x; + a,x, =0. (3.20)

Now y and u will be explored for several cases of a,, a,, and a, values to
link the one-dimensional logistic with the two-dimensional case.

1.ap=0,a,=1,a,=0

The plot of y as a function of x; and X, for this case is shown in
Figure 3.37a, which depicts a standard logistic function in two-dimensional
space. The value of the weight a, controls the slope of the function with
respect to the x axis. Because a, = 0, the slope with respect to x, is zero.
Because aq = 0, the function is centered at x; = 0 and x, = 0. The equation
for the boundary line that results from passing a horizontal plane through
the middle of the logistic function can be obtained by solving © = 0, and is
plotted in Figure 3.37b as a straight vertical line. Neuron activation increases
below the line and decreases above it.

The points where the boundary line crosses the x; and x, axes can be
found using simple algebra. Denoting the boundary point on x; axis by x;’
and that on x, axis by x,’, x," can obtained by substituting x, =0 into
Equation 3.26 as follows:

—ay

X1 = )
ay

Similarly, by substituting x; = 0 into Equation 3.206:

2. ﬁ():o, 611207 6l2:1
This case is plotted in Figure 3.38a, which demonstrates that a,
controls the slope of the function with respect x, and the slope with
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Figure 3.38 Two-dimensional logistic function characteristics for ap =0, a; =0,
a, = 1: (a) logistic function and (b) boundary line that symmetrically divides the
input space.

respect to x; is zero due to a; being zero and the function being centered at
x, =0 and x, = 0. The boundary line in this case is a straight horizontal line,
as plotted in Figure 3.38b. The neuron activation increases above the line
and decreases below it.

3.a0=0,a,=1,a,=2

In this case, where a; and a,, which control the slopes, are nonzero, a
more complex logistic function is produced, as shown in Figure 3.39a. The
boundary line is, predictably, along the diagonal, symmetrically dividing
the input space as shown in Figure 3.39b. Neuron activity is greater above
the line and lesser below it.

4. ap=—05 a,=1,a,=—1

In this case, the slope with respect x; is positive, and that with respect to
X, is negative, as shown in Figure 3.40a. The effect of gy is to offset the
boundary line, which essentially shifts the region of the highest activity from
the center, as shown in Figure 3.40Db.

The above graphical illustrations show that two inputs are mapped to a
two-dimensional logistic function of y whose slopes are controlled by the
weights a; and a,. The weight a, shifts the region of the highest activation of
the logistic function, depicted by the boundary line, in the two-dimensional
input space. Comparing this with the one-input case, it is possible to
visualize how several neurons can act together to approximate a two-
dimensional function or a model that predicts or classifies an outcome from
two independent variables. Basically, each node crafts its own two-
dimensional sigmoid function, whose shape and position are controlled by
its weights ay, a,, and a,, depending on the nonlinear nature of the function
being approximated. In this way, several neurons assuming their form in a
flexible manner adds the power and tremendous flexibility to the network
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Figure 3.39 Two-dimensional logistic function characteristics for ap =0, a; =1,
a, = 2: (a) logistic function and (b) boundary line that symmetrically divides the
input space.

that allows it to approximate any two-dimensional function for prediction
or classification.

3.4.2 Network Output

The last stage of the processing is to synthesize the hidden-neuron outputs
by computing their weighted sum, v, and then processing v through the
output neuron activation function. The weighted sum produces the desired
form of the target function in a similar fashion to the one-input case, except
that the hidden neuron output is now produced by two-dimensional logistic
functions that work together. The output activation, z, adjusts the weighted
sum to approximate the target function, ¢. The z in the case of prediction can
be an arbitrarily complex, nonlinear surface. In classification, z values
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Figure 3.40 Two-dimensional logistic function characteristics for a, = —0.5,

a; =1, a,= —1: (a) logistic function and (b) boundary line that symmetrically

divides the input space.



Neural Networks for Nonlinear Pattern Recognition m 103

above 0.5 (or any user-defined threshold) are adjusted to one and classified
as one class, and those below it are adjusted to 0 and classified as another.
Prediction and classification are basically the same problem except for this
final adjustment. Thus, classification is a subset of prediction problems. The
final classification boundary is obtained by passing a plane across the model
output surface horizontally at the boundary value of the output activation,
and this boundary can be arbitrarily complex and nonlinear, dividing the
input space into classes in a complex manner. The next section will visually
explore nonlinear model surfaces and complex classification boundaries of
a two-input network. It will also aid in understanding the power of the
trained networks, as well as how proficiently they perform the prediction or
classification task. First, a prediction problem will be discussed.

3.4.3 Examples: Two-Dimensional Prediction and
Classification

3.4.3.1 Example 1: Two-Dimensional Nonlinear
Function Approximation

In this example, a complex, two-dimensional nonlinear function is
approximated to illustrate the powerful feature of approximating highly
nonlinear functions by multilayer networks. The target data was generated
from the function shown in Figure 3.41, which shows that the target
outcome has a nonlinear relationship with x; and x,. The data was modeled

Figure 3.41 Two-dimensional nonlinear surface to be approximated by the neural
network. (Adapted from Mathematica—Neural Networks, Wolfram Research,
Champaign, IL, 2002.)
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by a neural network with one hidden layer of four neurons using logistic
activation functions. The output activation function is linear [15].

Figure 3.42a shows the network output with random initial weights before
training, and Figure 3.42b shows that of the fully-trained network. Training
took 20 epochs with mean square error minimization using the delta rule.

Function approximation accuracy of the mnetwork. According to
Figure 3.42, the approximated surface is quite close to the target surface,
which illustrates how neural networks are capable of approximating highly
nonlinear problems. The prediction error for each input—output pair can be
obtained in the usual way by subtracting predicted outcome from the target.
The histogram of the error (or the error distribution) for the above problem
is shown in Figure 3.43. It shows that the error distribution is approximately

Figure 3.42 Neural network approximation of the two-dimensional nonlinear
surface: (a) surface created by initial random weights, (b) predicted surface
from a trained neural network.
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Figure 3.43 Error histogram for the network output.
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normal with a mean around zero, indicating that the network has captured
the trend, leaving the unaccounted-for variance in output as noise.

The nonlinear surface in Figure 3.42 is generated by the combined
response of the two-dimensional logistic activation functions of the four
hidden neurons. Due to the adaptation of the free parameters (weights)
associated with each function, a unique configuration is assumed by these
functions in the input space in such a way that arbitrarily nonlinear
surfaces can be created by their combined response. For the same reason,
multilayer networks can form complex classification boundaries and in
the next example, the outcome of an MLP classification problem will be
visualized.

3.4.3.2 Example 2: Two-Dimensional Nonlinear Classification
Model

This example solves a two-dimensional classification of data requiring
complex nonlinear classification boundaries. Data shown in Figure 3.44
comprises three classes, each containing two clusters. Each class has 20
observations, producing a total of 60 observations. The data was sourced
from Neural Networks for Mathematica [15]. This problem was solved with
an MLP network with six hidden neurons using a logistic activation function.
Because there are three classes, three output nodes are required to represent
these classes. The output activation function is logistic; this is more suitable
than a linear function for classification, because a class is represented in the
output as either 0 or 1, with one indicating class membership and zero
indicating nonmembership. The task of the classifier is to sort the data into
three classes by creating appropriate boundaries. Learning involves
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Figure 3.44 Three classes of data with two clusters in each class. (From
Mathematica—Neural Networks, Wolfram Research, Champaign, IL, 2002.)
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controlling the form of the hidden neuron activation functions through
weight adjustment until the desired boundaries are created.

Figure 3.45 and Figure 3.46 show the performance of the developed
classifier superimposed on the data. In Figure 3.45, hidden neuron boundary
lines are superimposed on the data to show how learning has evolved
network weights in such a way that the boundary line of hidden neurons
has separated classes and clusters. Careful examination of the boundary
lines reveals that clusters belonging to classes have been properly identified.

A clearer view of classification can be seen in Figure 3.46, which illustrates
the classification boundaries produced by the output neurons whose
function is to combine the output of hidden neurons. The figure shows
more clearly the nonlinear classification boundaries crafted by the hidden

Figure 3.46 Final nonlinear classification boundaries created by the network.
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Figure 3.47 Output function for each of the output neurons shown in the input
space.

neurons to accommodate clusters within classes. For example, the network
has correctly grouped clusters into appropriate classes, and the three classes
are distinctly separated from each other.

The surfaces generated by the network can explain how such complex
boundaries are formed. Recall that MLPs construct nonlinear surfaces or
functions of input data to predict the target outcome. With three output
neurons, there are three output surfaces, one for each neuron; they are
shown in Figure 3.47. The classification boundaries in Figure 3.46 are
obtained by passing a plane through the output of each neuron shown
in Figure 3.47 in such a way that it divides the output in half, and projecting
the resulting boundaries of the three neurons onto the input space.

Observing the output functions and the boundary lines for each neuron,
it can be noted in Figure 3.46 that neuron 1 represents the class indicated
by A, neuron 2 represents the class indicated by [, and neuron 3 classifies
data belonging to the class denoted by *. There is a very small overlap
between the classes denoted by % and A. However, for the given data, this
is not an issue because there is no data in the overlapping region and
classification of the data will always be correct. However, if the overlap
must be removed, more data from this region must be generated and the
network retrained, in which case shape of at least the two affected output
functions will change to accommodate the new data and eliminate
the overlap.

Network classification accuracy. The classification error is defined by the
number of patterns that are wrongly classified, and can be visualized in a
three-dimensional bar graph with the number of patterns classified plotted
against the corresponding actual class and the predicted class for each
pattern. Figure 3.48 illustrates the progress at three instances during
training of the classifier. (Iteration is the same as epoch.) For correct
classification, actual and predicted classes must be the same. At the initial
stages of training (first plot), classification is not accurate; however, the
fully trained MLP classifier (last plot) works perfectly with zero
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Figure 3.48 Progress of the MLP classifier for data belonging to three classes with
two clusters in each.
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classification error, indicated by the fact that there are no instances in which
the actual class and the predicted class differ, as depicted by off-diagonal
entries.

To this point, information processing in one-input and two-input MLPs
capable of one-dimensional and two-dimensional prediction or classification
have been studied. The concepts learned from these two cases can be
extended to networks with multiple inputs. The problem is that the logistic
functions become multidimensional and therefore cannot be visualized
graphically. However, it is possible to intuitively understand the whole
process of information processing even in these networks, based onan under-
standing of data processing in one- and two-dimensional networks. As the
pattern of the formulation is now clear, it is possible to write the equations
with relative ease, as shown in the next section.

3.5 Multidimensional Data Modeling with
Nonlinear Multilayer Perceptron Networks

An MLP, in its most general form, can have many inputs and many outputs.
In the case of prediction, there is usually one output neuron; multiclass
classification requires more than one. There can be one or several hidden
layers and any number of hidden neurons in each layer. In the general case
where there are 7 inputs, m hidden neurons, and & output neurons, the
intermediate stages of processing within an MLP can be constructed as
follows.
The hidden neuron input #; and output y; of the jth neuron are

n
Uy = dog + Yy
i=1

,yj = f(?/l]),

where x; is the ith input, a;; is the weight associated with the input i and
neuron j, dy,; is the bias weight of hidden neuron j and f{u;) can be any
activation function that transforms u; into a hidden neuron output y;.

The weighted sum of inputs v}, and the output z;, of the kth output
neuron can be written as

(3.27)

m
Ve = boe + Y by
/=1 (3.28)
zp = [ (vp),
where m and k are the number of hidden neurons and output neurons,

respectively, by is the bias weight of output node &, by, is the weight of the
connection between the jth hidden neuron and the kth output neuron, and
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vy is the activation function of the kth output neuron, which transforms v,
into its final output.

3.6 Summary

This chapter covered an in-depth study of information processing in
multiple-layer perceptron networks. Specifically, nonlinear processing in
a single-input neuron with logistic activation function was examined, and it
was shown that the bias and the input-hidden weights alter the slope and
horizontal position, respectively, of the logistic function so that it assumes the
shape of the data. A single neuron with a logistic function can approximate
any monotonically changing trend in data. When there are reversals in the
trend of the data, more than one neuron is needed to take care of each of
these changes in trend. The training alters the slope and position of the
corresponding activation functions through changes in weights such that
they are located in the critical regions of the input space. Only the
performance of networks with logistic functions was specifically demon-
strated, but the concepts apply exactly to other functions as well.

The next chapter covers the ways in which networks learn to produce
the outcomes presented in this chapter. Learning involves adjusting weights
that control the configuration of activation functions in input space. Weights
are the free parameters or the degrees of freedom of a network, and these
free parameters are optimized through learning.

Problems

1. What does “nonlinear” refer to in nonlinear data analysis?

2. Discuss how nonlinear processing is incorporated into neurons. For
a single-input neuron, plot the input—output relationship mapped
by different activation functions.

3. What criteria are used in selecting an activation function? Comment
on the similarities or differences between activation functions.

4. What is an active region of an activation function and what is its
significance?

5. How does learning alter activation functions and what drives this
process?

6. What is a boundary point (or line) for an activation function and
what is its significance?

7. Explain in detail how nonlinear mapping is performed by the
network in Figure 3.22.

8. What is the difference between one-dimensional and multi-
dimensional input mapping in relation to internal workings of a
network?
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9.

10.

11.

12.

Select an input—output pair from the latter part of the square wave
depicted in Figure 3.21 and compute the output of the nonlinear
network in Figure 3.22 that approximates this function.

Draw the following three sigmoid functions for « ranging from — 10
to 10 on the same plotand answer the questions that follow regarding
the nature of these functions:

i) logistic function: =
(D) logistic function: g() T

_ e—u

) b= 2800 1=

(ii) hyperbolic tangent: tanh(z) =

u __ eﬂl
(a) Comment on the differences between these functions in
terms of the upper and lower bounds and slope.
(b) Compute the function values for # = —0.5 and = 7.0.
For the logistic function y = g(a,+ a, x), analyze the following cases
for x ranging from —10 to 10:

(@) ag=0— Draw the function fora, = 0.1, 1, 3, —1 and calculate
the slope at the boundary point.

(b) a, =1— Draw the function a, =0, —3, 6.

(©) a,=0.2— Plot the function and calculate the boundary point
for ap =0, —3, 6.

Use a neural network software to train a multilayer network to
approximate the sine function (sin x) using one input neuron, five
hidden-layer neurons, and one output neuron. This should predict

sin(x) for a given value of x

(a) Extract 100 or more input—output pairs from the sine function.
Call this the target function (#).

(b) Train a network that predicts sin(x) from x.

(o) Extract weights (i.e., input-hidden neuron weights and
hidden-output neuron weights) from the software.

(d) Plotthe hidden neuron output y and output neuron output z as
a function of x. Find the boundary point for each hidden
neuron output function and comment on the participation of
the hidden neurons in producing the output.

(e) Calculate the MSE for the network using the following formula:

1 N 5

where 7; is the target output, z; is the network output for the ith
data point, and N is the number of data points.
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Chapter 4

Learning of Nonlinear
Patterns by Neural
Networks

4.1 Introduction and Overview

Multilayer networks can perform complex prediction and classification
tasks. Chapter 3 detailed examples of one-dimensional and two-dimen-
sional predictions involving highly nonlinear relationships as well as
nonlinear classification boundaries. Such complex approximations are
facilitated by nonlinear activation functions in hidden neurons whose
features are controlled by the weights of the networks. Learning involves the
simultaneous and incremental adjustment of these weights in such a way
that the activation functions gradually assume features that help collectively
approximate the desired response. In the process, the network prediction
error goes down incrementally until it falls below a specified error
threshold. This process is called training a network.

This chapter treats the concepts of learning in depth and illustrates them
in detail. Specifically, beginning with mean square error (MSE), it graphically
portrays the error surface in relation to the weights in order to define the
error minimization problem in Section 4.2. It looks deeply into the error
gradient with respect to each of the weights that are to be optimized, and, in
Section 4.2 and Section 4.3, examines how learning methods operate on

113
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these gradients. Specifically, it will examine several variants of gradient
descent, namely backpropagation, delta-bar-delta (or adaptive
learning rate), steepest descent, QuickProp, Gauss—Newton, and the
Levenberg—Marquardt (LM) learning methods. Backpropagation, delta-bar-
delta, and steepest descent are first-order error minimization methods based
solely on the gradient of the error surface. Gauss—Newton and LM learning
methods are second-order error minimization methods in which the gradient
descent concept is extended to include the curvature (second derivative) of
the error surface.

Each learning method is treated in detail with a hand calculation and a
computer experiment, and the methods are compared to one another to
ascertain their relative effectiveness. Specifically, backpropagation is
presented in Section 4.4, delta-bar-delta in Section 4.5, and steepest descent
in Section 4.6. The concept of second-order methods of error minimization
is presented in Section 4.7, in which QuickProp (Section 4.7.1), the
Gauss—Newton method (Section 4.7.3), and the LM method (Section 4.7.4)
are treated in detail. First-order and second-order error minimization
methods are compared in relation to the efficiency of error minimization in
Section 4.7.5, and convergence characteristics are discussed in Section 4.7.6.

4.2 Supervised Training of Networks for Nonlinear
Pattern Recognition

The training of feedforward networks such as the multilayer perceptron
(MLP) is supervised in that, for each input, the corresponding output is also
presented to the network. The initial weights are set at random. The
network processes each input vector and the network output is compared
with the desired or target output. Initially, the error would be large, due to
the random assignment of values to weights. The MSE, the most commonly
used error indicator, of the prediction over all the training patterns for a
network with one output neuron can be written as

1
E=_r Z (t— 2,)? (4.1)

where E denotes MSE, #; and z; are the target and the predicted output for the
ith training pattern, and N is the total number of training patterns. The
division by 2 is a mathematical convenience and is conventionally used in
statistics, although in some disciplines it is not used. As illustrated in
Chapter 3, z depends on the output neuron activation function, as well all
of the outputs of the hidden neurons, which in turn depend on the
hidden-neuron activation functions and inputs.
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Figure 4.1 A two-dimensional error surface with respect to weights wy and w;,
and slope of error surface.

The best way to start probing into learning is to look at the features of the
error surface. Figure 4.1 shows the MSE surface generated in Chapter 2 for a
single neuron with bias weight w, and weight w;. In this problem, there are
two parameters to be adjusted, wy and wy, and the error surface shows the
amount of error that would result for each combination of wy and w;. The
lowest point on the surface gives the optimum set of weights, and the learning
challenge is to find the weights that produce the minimum error for the whole
training set. In a practical network, there are more than two weights, so it is
not possible to simultaneously visualize the error function with respect to all
weights; however, it is possible to visualize two weights at a time, and the
above concept would hold equally true for all of them. In linear regression,
the least square error method is used to directly obtain the coefficients of a
linear equation that minimize the error on a set of data. Unfortunately, for
highly nonlinear problems, there is no such direct method to find the weights,
and they must be established iteratively. Trying all of the possible
combinations of weights randomly would be prohibitively costly in time
and effort. The gradient descent approach is an efficient method to find the
bottom of the error surface more quickly during network training.

4.3 Gradient Descent and Error Minimization

Gradient descent, as the name implies, uses the error gradient to descend
the error surface. Here, the gradient is the slope of the error surface, which
indicates how sensitive the error is to changes in the weights; this sensitivity
can be exploited to incrementally guide the changes in the weights towards
the optimum. Starting with random values for the weights, this method finds
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Figure 4.2 A slice through the error surface at three values of a weight.

the slope of the error surface at these weights. For example, the up-arrow in
Figure 4.1 shows the slope at a point on the error surface. The gradient
descent method proposes to change the weights in the direction in which
the error decreases most rapidly, i.e., in the opposite direction to the
gradient, as shown by the down arrow in Figure 4.1. By continuing to do this
iteratively, the bottom of the error surface will eventually be reached, and
the optimum set of weights will be found. This is illustrated in Figure 4.2,
in which a slice through the error function along one weight is shown for
clarity. This shows how the error changes with one weight. If the starting
point on the error surface is at 1, the slope is negative, as shown, and the
value of the weight needs to be increased to reach the optimum. If the
current point is at 2, the slope is positive and the weight has to be decreased.
If the current point is at 3, the slope is positive, but the weight is still far too
large and has to be decreased.

It is first necessary to find the slope of the error surface. Then it is
necessary to know how much to go down the error surface and exactly how
the weights should be adjusted after each iteration. The methods that are
used to adjust the weights are called learning rules, and this chapter will
spend a great deal of time exploring these issues. Other issues to be
addressed in this chapter include when to stop training and what governs
this decision; whether the solution (i.e., weights) are suboptimal; and how
good the final model is and how to assess its goodness of fit.

4.4 Backpropagation Learning

The error derivative, or the slope of the error surface in relation to weights, is
crucial to the adjustment of the weights. During the training of a network,
such as the one shown in Figure 4.3, all of the output and hidden-neuron
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Figure 4.3 Multilayer perceptron and weights (free parameters) to be adapted.

weights must be adjusted simultaneously. Therefore, it is necessary to find
the error derivative with respect to all these weights. Denote the derivative
with respect to output node weights by 0E/0b, and the derivatives with
respect to the hidden node weights by 0E/0a. Since E is not directly linked to
b and a, the concept of chain rule is used that finds the derivatives when the
link from the error E to a weight is not direct by following through
the associations one by one. Chapter 2 illustrated that E is linked to 2z (the
network output) and z is related to v (the weighted sum of hidden-neuron
outputs 3), which in turn depends on the weights b. So it is possible to use
the chain rule of differentiation to obtain the 0E/0b. Then, v is also related to
y (the hidden-node output), which links the inputs and the input-hidden
neuron weights, a. Thus it is possible to follow this chain of association from
E, z, v, y to the inputs to obtain 0E/0a. This concept is called
backpropagation, and was first proposed by Werbos [1] and later by
Rumelhart [2,3].

4.4.1 Example: Backpropagation Training—A Hand
Computation

This section includes an example to familiarize the reader with the training
and derive error gradients for a simple one-input, one-output network with
one hidden neuron using a logistic activation function; the network is
shown in Figure 4.4a. The function to be approximated is the first quarter
of the sine wave, shown in Figure 4.4b. Two input-output pairs
{(0.7853, 0.707) and (1.57, 1.0)} were chosen from Figure 4.4b. (Note that
this example is continued from here to the end of the chapter in various
sections, as appropriate, to highlight relevant aspects of the discussion.)
Once the network configuration has been decided, the first step in
training is to initialize the weights to random values. The random initial
values chosen for this problem are given in Table 4.1, along with the input x
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Figure 4.4 A network training example: (a) simple one-input, one-output, and
one-hidden-neuron networks, (b) first quarter of sine wave to be approximated.

and target t. Then an input value is presented to the network and a forward
pass of the input is made. The order of this process is to first determine u
(the weighted sum of the inputs to the hidden neurons) and to transform this
to y, the hidden-neuron output. Next, the weighted sum of inputs, v, to
output neuron is calculated and transformed to z, which completes the
forward pass. At this point, the target output is presented to the network and
the MSE is calculated.

Following the forward pass to determine the network output for
x=0.7853, t=10.707:

u = ay + a;x = 0.3 + 0.2(0.7853) = 0.457

- o6
YTl et T 14 0m

1 1

TF e 1o 0%

z =

The predicted output z and target ¢ are not equal, so there is a
prediction error, which can be represented by the square error. For the

Table 4.1 Initial Weights and Two Example Input-Output Patterns (x, 9

dg aq b() b1 X t

0.3 0.2 —0.1 0.4 0.7853 0.707
1.571 1.00
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Figure 4.5 The square error as a function of network output z.
single input—output pair of {x, # this is
Ezéw—ﬁ, (4.2)

where z is the network output and ¢ is the target, or desired output. Note that
(z—0 is used instead of (—2). There is no real effect in this change other
than the convenience of not having to carry a minus sign later in the
calculation. For the given value of £=0.707, the error function E with
respect to z is quadratic, with a minimum at the point where z == 0.707,
as shown in Figure. 4.5.

For the example problem, the square error is

E=%m%&4wmf=om%.

In fact, Equation 4.2 can be expanded by substituting for z, which
requires v, which in turn involves, y, u#, and x (see the expressions used
above for the hand calculations) to express the square error for the input—
output pair {x, # as a function of the weights. The output z and E expressed
this way are

1
Z =
1
(ot b1) 1 4+ e @tax)
1+e
2
(4.3)
1 1
E=— —t
2 1
—%+W{T1:F@:aa}
1+e
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The first part of Equation 4.3 is the output z as a function of the weights
(the free parameters) to be estimated and the input. This is called the neural
network model, and it defines the form of the relationship between the
output and the input. From this, the input—output relationship can be further
investigated. This will be done later in the chapter. In the second part of
Equation 4.3, z is substituted into Equation 4.2 to express the error as a
function of the weights and the input. From this, it is possible to ascertain
how sensitive the error is to each of the free parameters. It is this sensitivity
(error derivative or gradient) that is used in gradient descent learning which
will now be explored in detail.

4.4.1.1  Error Gradient with Respect to Output Neuron Weights

According to the chain rule, the error derivative for any hidden-output
weight b is

i _at 0z 00 ”
b  dz dv 9b
which consists of three parts. First is the partial derivative of the error with
respect to the network output, second is the partial derivative of z with
respect to the weighted sum, v, of the inputs to the output neuron, and third
is the partial derivative of v with respect to the hidden-output weight b. This
section will now examine each of these terms, following the approach used
by Smith [4].

Continuing with the original format of the error and differentiating E with
respect to z yields

—— =zt 4.
9z~ (%5)
which highlights the reason for using 0.5 in the error formulation and (z— 1)
for error, which avoids the necessity of carrying a minus sign.
For the example problem

0F
— =2z—1t=0.536—0.707 =—0.171.
0z

The 0E/0z is basically the slope of this error surface with respect to the
network output, i.e., the sensitivity of the error to the network output, as can
be depicted by a tangent drawn at a point on the error surface, shown in
Figure 4.0. As illustrated, the slope is negative at this point of z.

The second derivative 0z/0v is the slope (derivative) of the activation
function used in the output neuron, and is illustrated for the logistic function
in Figure 4.7. This indicates the sensitivity of z to any changes in the
weighted sum, v, of inputs to the output neuron. As stated in Chapter 3, the
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Figure 4.6 0F/dz with respect to z.

steepest slope of the logistic function is equal to 0.25 at the boundary point,
where z=0.5. The slope increases continuously up to the boundary point
and then slowly decreases, reaching zero again at the upper bound.
The derivative of the sigmoid can be obtained in the standard way as
follows:
1

T 1tev

l( )_aj__ e_v(_]-) _ e—L‘
T T At e ) A+t e oy

z

(4.0)

A graph of the derivative z'(v) is presented in Figure 4.8, which depicts a
Gaussian curve. The largest derivative is at v=0, which is the
boundary point.

Z(v)

0.8

v

5 10

Figure 4.7 Illlustration of the network output gradient 9z/0v.
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Figure 4.8 Derivative 0z/0v.

1 1—z
However, 1+ ¢ “=1/z and ¢ ¥ = ——1=—— Substituting these into
the above equation: z z
0z (1—2)lz

The third derivative is 0v/0b, which indicates the sensitivity of the
weighted sum of the inputs v to any changes in the output neuron weights.
There are two weights, by and b;. Because

v = [90 + bl.y’ (48)
v _
b, 7
aw : (4.9)
ob,

Thus, the derivative depends on the weight, whether it is the bias or the
hidden-output neuron weight.

Now that all three derivative components have been obtained, the
required error derivative with respect to the two weights can be presented as

OF
by (z—nDz(l—2)=p

(4.10)

0E
G_bl =(EZ—Hz(1—2)y =py.

The symbol p is used in the equation in subsequent calculations for
simplicity, as it was used by Smith [4].
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Example problem continued (see Section 4.4.1). For the example
problem (z=0.536, t=0.707, y = 0.612)

STE =(z—0z(1—2)=p =(0.536—0.707) (0.536) (1 — 0.536) = — 0.042
o

S8 = py = (—0.042) (0.6120) = — 0.026.
ab,

A graphical illustration of the square error surface (Equation 4.3)
with respect by and b, is presented in Figure 4.9 with the current weights
(by=—0.1 and b, =0.4) and resultant error gradient denoted on the
surface. For this graph, the current input x=0.7853, the target output
t=0.707, and the input-hidden weights of a;=0.3 and a; =0.2. The
optimum weights seem to be further down from this point. By taking a
slice of the error surface at these fixed values of by and b, separately, as
shown in Figure 4.10 and Figure 4.11, it can be seen that the gradients
just calculated are indeed negative at this location on the surface. The
error curve is more nonlinear with respect to by than b;.

4.4.1.2 The Error Gradient with Respect to the
Hidden-Neuron Weights

The required derivatives here are 0E/0a, and 0E/da,. Again, there is no
direct link, so the chain rule must be used. Starting from the error, this
derivative can be formulated as

dz dv dy

RN ARIN )
da

Square error

Figure 4.9 The square error surface with respect to by and b,.
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Figure 4.10 The square error with respect to b, depicted on a slice through the
error surface at b; = 0.4.

- 05

where a is either a, or a;. It can be seen that in this formulation, the chain
rule is extended far back to the input. This section will again examine these
components separately.

The set of derivatives within brackets in Equation 4.11 is 0E/dy. The first
two derivatives of this set are already known as p, and only the last
component, which indicate the sensitivity of the weighted sum of the inputs,
v, to the changes in the hidden-neuron output, is required. This can be easily
calculated because v = by + b, y, resulting in

v

— =, 412
3 1 (4.12)

Square error
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‘ by
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Figure 4.11 The square error with respect to b, depicted on a slice through the
error surface at by = —0.1.
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Substituting the three derivatives for the bracketed expression in
Equation 4.11

9E _OE 0z v _ ., (4.13)

dy 0z dv 9y
The second component of dE/0a is 0FE/0u, which is simply the derivative
of the hidden-neuron logistic function with respect to the weighted sum of
the inputs to the hidden neuron. This component is analogous to the
previous derivation of the derivative of the output neuron logistic function,
and can be written as
dy

where y is the hidden-neuron output. The last component is du/0a, and it
depends on the type of weight considered. Because u = ay+ a;x:

a_u = x

da,

ou : (4.15)
a&lo

Putting the three components together yields the error derivatives for the
bias and the input-hidden-neuron weights as
0E
9a, =pby1—y)x = gx
(4.16)

oE
—_— 1 —_— = .
daq pPoy(1—y) =q

Again for simplicity, the symbol g has been used to represent pb; y (1—1y).

Example problem continued (see Section 4.4.1 and Section 4.4.1.1). For
this example problem (p= —0.042, b; = 0.4, y = 0.612, x = 0.7853)

;7]5 = pby(1— y) = g = (— 0.042)(0.4)(0.612)(1 — 0.612) = — 0.004
0
0E
. = pbiy(1— y)x = gx = (— 0.004)(0.7853) = — 0.00314.
1

The square error surface with respect gy and a; and the gradient at
current weights for the given x and ¢ and the given hidden-output weights of
by = —0.1 and b, = 0.4 is shown in Figure 4.12. Slices of the error surface
taken at the current weights (a9 =0.3 and a;=0.2) are presented in
Figure 4.13 and Figure 4.14. The figures show that the gradients are indeed
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Figure 4.12 The square error surface with respect to a, and a;.

negative, and that there is quite a distance to traverse down the error surface
to reach the optimum values for a, and a;, for which the error is at

a minimum.
Repeating the procedure for the second input—output pair {x, # = (1.571,

1.00) yields the following values for the gradients:

0E

— =—0.0104
daty

dF
— =—0.0163
Jda,

0E

— =-—0.114
ab, 5
0E
— = —0.0742.
ab, /

The output and square error are
z = 0.5398
Square error £ = 0.1059. (from Equation 4.2)

The MSE for the two patterns are (0.014640.1059)/2 = 0.0602.

The error derivatives with respect to all the weights that must undergo
transformation during training have now been obtained for two
examples. These are ay, a,, by, and by, and their respective error derivatives
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Figure 4.13 The square error with respect to weight a, for a; = 0.2.

are 0E/0ay, OE/0a,, 0E/0b,, and 0E/0b,. With these, it is now possible to
apply the learning rules to modify the weights in the next section.

4.4.1.3 Application of Gradient Descent in Backpropagation
Learning

The error gradients derived in the previous section are the components of
the total derivative at a point on the error surface, with respect to each of
the individual weights that define the error surface. Gradient descent
dictates that the error should be minimized in the direction of the steepest
descent, indicated by the opposite direction to the previously calculated
gradients; to accomplish an incremental adjustment of all of the weights,
this must be done simultaneously with each gradient. This can be done in
two ways: example-by-example or on-line learning, in which the weights

Square error
0.015}
0.0145¢

0.014 |

0.0135¢}

0.0125}

Figure 4.14 The square error with respect to weight a, for ap = 0.3.
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are adjusted after every training pattern; and batch or off-line learning, in
which learning (i.e., weight adjustment) occurs after all of the training
examples have been presented to the network once.

The most widely used method is batch learning, in which learning
happens in such a way that the overall error with respect to the whole
training set decreases incrementally in an average sense, whereas in
example-by-example learning, the network learns to minimize error for
every example. For complex problems, this may lead to oscillations or
instability, and could take longer than batch learning to arrive at the
optimum weight values. Both approaches will be treated here.

4.4.1.4 Batch Learning

Because batch learning involves learning after the whole training set has
been presented to the network, it is necessary to store the gradients for all
of the examples, and to find the average or the resultant gradient after the
whole set has been processed. The error is minimized in the direction of
the descent indicated by this resultant gradient. To highlight how this
method works, imagine a slice of the error surface along one weight axis.
Then imagine presenting one training example and calculating the square
error E and the gradient 0E/0w for this weight. The w can be either a
hidden or an output neuron weight. Now present the next training
example, calculate E, find the gradient, and repeat this process for
all examples.

Because the square error varies with the input, as shown in Equation 4.3,
there is a new error surface, corresponding new values of error, and
gradients for each training pattern for the weights at their current locations.
This is illustrated in Figure 4.15a for a few hypothetical input patterns, in
which the complete error curves for two input patterns are shown (for
clarity, those for the other patterns are not shown). The gradients 0F/0w are
denoted by short arrows. All the gradients thus obtained for an epoch are
shown in Figure 4.15b, in which the length of the arrow indicates the
magnitude and the arrow head indicates the direction (+ or —) of the error
gradient with respect to the weight at the current location. The total of all
the gradients is shown as a dashed arrow in Figure 4.15b, and
represents the average sensitivity of the error to changes in this one weight
for the whole training set. This total gradient, d,,, for epoch m (note that an
epoch is one pass of the whole training set), can be presented
mathematically as

N
o0E
-y -
n= min
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Figure 4.15 An error gradient with respect to one weight: (a) gradient for several
input patterns with error curves for only two input patterns illustrated, and
(b) gradient for the whole training set and total derivative d,, (dashed arrow) for
epoch m.

which is basically the sum of the gradient for each of the n examples of the
mth epoch and the result is the gradient for the mth epoch.

Now imagine that the same has been done for another weight by taking a
slice of the error surface with respect to this second weight and determining
the resultant gradient. Recall that the magnitude of the error for each input
pattern is the same for all weights at the current location because this
process is slicing a multidimensional error surface. Denote the two weights
by wy and w;. Placing these two average gradients, 0E/0w, and 0E/0w,, at
the appropriate point on the error surface shows these mutually
perpendicular gradients, as seen in Figure 4.16. Because the gradient is
being used for the whole batch, the error curve in the figure represents the
MSE, which is the average error across all of the training patterns,
represented as

E=——3 (—2z) (4.18)

Therefore, when the error is minimized using the batch gradient, this
method minimizes the MSE over the whole training set. The overall or the
resultant gradient, 0E/0W, of the two batch gradients is shown by the
diagonal arrow in Figure 4.16. Its length is the magnitude of the resultant,
and the head indicates the direction of the slope. This is the gradient used in
the gradient descent method for batch learning. It is necessary to move in
the opposite direction from this arrow, as indicated in Figure 4.16, which
will be the direction of the steepest descent. It can be seen that during
descent of the slope, the two weights decrease in magnitude in search of the
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Figure 4.16 An error gradient with respect to two weights, resultant gradient and
direction of steepest descent.

bottom of the error surface. The question is how far to descend in this
direction; this is controlled by the learning rate, e.

4.4.1.5 Learning Rate and Weight Update

The learning rate indicates how far in the direction of steepest descent the
weights must be shifted per epoch. For example, if ¢ is 1.0, the distance of
the descent will be equal to the total arrow length of the resultant gradient;
after this descent, the new weights will be calculated before the next batch is
presented. For practical problems in which the error surface is generally
more nonlinear than that in Figure 4.16, a smaller learning rate must be used
to slowly and smoothly guide the descent towards the optimum weights;
therefore, ¢ is normally between 0 and 1, and indicates the proportion of
the arrow length that will be traversed in the direction of the deepest
descent. If the new increment of a weight after the epoch m is denoted by
Aw,,, the new weight for the epoch m+1, w,,+1, can be presented as

W1 = Wy, + Aw,,
(4.19)
Aw,, = —¢&d,,,

where a (—) sign indicates the descent, and ed,, represents the distance of
the descent as a portion of the gradient, d,,, for the epoch.

Now that the method has been explained, this section will address the
question of what the optimum learning rate should be. This depends on
the problem and there is unfortunately no direct way to set it other than
trial and error. Basically, the optimum learning rate should decrease the
error as quickly as possible while guiding the process smoothly down the
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Figure 4.17 The optimal learning rate for efficient error minimization.

error surface, as shown in Figure 4.17 on a slice of the error surface taken
through a weight axis. In the figure, the vertical step is the amount of
error reduction during each epoch, and the horizontal step is the
corresponding adjustment of the weight. Because the actual error surface
is multidimensional in weights and because there is an error surface for
each input pattern, it is not possible to construct the average error
surface, although it can be thought of conceptually. Thus, in order to find
the optimum learning rate, it is necessary to understand the effect of sub-
optimal learning rates, i.e., the effect of a too-small or too-large learning
rate on an average error surface.

Figure 4.18 shows the effect of a large learning rate. It shows that the
error may initially decrease, but due to the large learning rate, the weight
increments may also be so large that the global minimum of the error surface
may either be reached after a long time or the solution may oscillate around
the minimum and never reach it. Too-large a learning rate could never reach

MSE

» w

Figure 4.18 The effect of a high learning rate on learning.
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Figure 4.19 The effect of too high a learning rate on learning.

the global minimum if the weight increment is large enough to throw the
new weights to the wing of the error surface, as demonstrated in Figure 4.19.
Because the gradient is so small or closer to zero in this region, there may
not be a large enough weight increment to push it to the steeper regions,
and as a result, learning may halt [4].

Example problem continued (see Section 4.4.1 and Section 4.4.1.2).
Returning to the two-example problem to adjust the weights after the first
epoch, this section will continue with the gradients calculated in Section
4.4.1.3 and the assumed learning rate ¢ = 0.1.

Epoch 1. The sum of error gradients is

O
di* =3 — =—0.004— 0.0104 = —0.0144
da,
. O
dj" =3 —— =—0.00314— 0.0163 = — 0.01944
(3611
OE
AV =Y —— =—0.042— 0.1143 = — 0.1563
db,
O
AP =3 — =—0.026— 0.0742 = — 0.1002.
b,

The weight change after the first epoch is
Aay = —ed* =—0.1(— 0.0144) = 0.00144.

The new value of the bias weight carried forward to epoch 2 is

at = a, + Aa, = 0.3 + 0.00144 = 0.30144.
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Similarly, the new values for a,, by, and b, can be determined as

ai =a, + Aa, = a; — ed{" =0.2— (0.1)(— 0.01944) = 0.2019
B = by + Aby = by— ed” =—0.1— (0.1)(— 0.1563) = —0.0844
b} = b, + Ab, = b, — ed = 0.4— (0.1)(— 0.1002) = 0.410.

Thus, the new adjusted weights after epoch 1 are

ai = 0.3014
a? = 0.2019
by = — 0.0844
b? = 0.410.

These new weights are used to calculate the network output for the next
epoch and the process is repeated until the error decreases to an acceptable
level, or until the network output reaches the target value. The square error
from Equation 4.2 for the two patterns and the MSE after epoch 1 with the
new weights are

Pattern 1: (0.7583,0.707) = 0.01367
Pattern 2: (1.571,1) = 0.1033
MSE = (0.01367 + 0.1033)/2 = 0.0585,

which is smaller than the initial MSE of 0.0602.

Epoch 2. Using the above weights, the average error gradient was
calculated using the same procedure; it was found to be

E
dy = Zj—ao = —0.00399 — 0.0105 = — 0.01449

IE
s Za—al =—0.00312— 0.0165 = — 0.0196

OF
dP? =Y~ =—0.04106 — 0.1127 = — 0.1538
b,
) OE
dy =3 — =—0.0251—0.0732 = — 0.0983,

b,
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and the weight changes and new weights after epoch 2 are
Aaf = 0.00145 a3 = 0.3029
Aai = 0.00196  aj = 0.2039
Ab; = 0.01538 by = —0.069
Ab} =0.00983 b’ = 0.4198.
The total error for the two patterns is
MSE = (0.0128 + 0.10085)/2 = 0.0568,

which is smaller than that after the first epoch. The above results may be
verified by repeating the process followed in epoch 1.

4.4.1.6  Example-by-Example (Online) Learning

The previous example illustrated the weight change after two epochs with a
sample of two training patterns. It is also possible to change the weights
after each presentation of a training pattern. By changing the weights after
each pattern, they could bounce back and forth with each iteration, possibly
resulting in a substantial amount of wasted time. This happens because the
training examples are randomized and therefore the next example could be
from anywhere in the input—output space, requiring random changes to the
weights, which might offset the changes already made to the weights. For
some problems, this method may yield effective results [5] and it may be the
most suitable method for online learning, in which learning or updating is
required as and when data arrives in real time. However, for complex
mapping problems, the random movement of weights may cause instability
problems [4].

The random oscillation of the weights can be minimized by batch
training, in which weight adjustment is based on the total error derivative
over the whole training set as described in the previous two sections. This
allows for weight changes that are correct on average, and the error over the
whole training set decreases in an average sense. This section does not
include a hand calculation of example-by-example learning, but the reader
is encouraged to try the method on the two-input patterns and to compare
the difference between batch and example-by-example learning. Another
averaging method, called momentum, will be discussed next.

4.4.1.7 Momentum

As illustrated in Section 4.4.1.5 and Section 4.4.1.6, batch learning using MSE
helps to improve the stability in the gradient descent approach in its search
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for optimum weights. Momentum is another averaging approach that
provides stability when reaching the optimum weights during learning
[4,14], and can be very useful for some problems, especially in online
learning. This method basically tags the average of the past weight changes
onto the new weight increment at every weight change, thereby smoothing
out the net weight change. Recall that batch learning used the sum of current
error derivatives to compute the current weight increment. The idea behind
momentum is to use the exponential average of all of the previous weight
changes to guide the current change. This is presented mathematically in
Equation 4.20:

Aw,, = pAw,,_, — (1 — wed", (4.20)

where u is a momentum parameter that should be between 0 and 1, and
Aw,,_, is the previous weight change during the preceding epoch.
Therefore, u indicates the relative importance of the past weight change on
the new weight increment, Aw,,. The second term on the right contains the
usual amount of weight change for epoch m, considering the current total
derivative alone for the weight w, d,,. However, it is now weighted by
(1—pw), indicating the amount of influence it has on the proposed weight
change (Aw,,) relative to that of the past change. Thus, the current gradient
and the past weight change together decide how much the new weight
increment will be. For example, if u is equal to 0, momentum does not
apply at all, and the past history has no place. If it is equal to 1, the current
change is totally based on the past change. Values of u between 0 and 1
result in a combined response to weight change. However, note that the
influence of the past weight change incorporates that of all previous
weight changes as well, because Equation 4.20 is recursive in that each
previous weight change would depend on the change prior to that, all the
way back to the first change, as shown below:

Awm = ,qum—l - (1 - /.L)é‘d,u,;
Au]m—l = :qum—Z - (1 - /”L)Edu}*l
Aw,,—; = pAw,,—3— (1 — pedl_,, (4.21)

Aw, = (1 — wedy’.

By recursively substituting the relevant Aw components in each of the
above equations up to the first one, the past weight change Aw,,,—, can be
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expressed as
Aw,,y = " (1= wedy — u" (1= wedy — p" (1 — pyeds’
— o= (1 — wed,, ;. (4.22)

Thus, with momentum, all of the past weight changes are exponentially
averaged with the current required change. The recent weight changes
influence the current weight update much more than the very distant
changes. For example, the proportion of the influence of the weight change
in the epoch m — 1 to that of epoch 1 is ™~ ':u. Momentum can be used with
both batch and online learning. In batch learning, it can provide further
stability to the gradient descent. Momentum can be especially useful in online
learning to minimize oscillations in error after the presentation of
each pattern.

Example problem continued (see Section 4.4.1 and Section 4.4.1.5). This
section will now return to the practical example to apply momentum. Using
the previously calculated weight changes after the first epoch {0.00144,
0.00194, 0.01563, 0.01002} and the gradients for epoch 2 presented in
Section 4.4.1.5, the new weights for epoch 2 obtained for e=0.1 and u =
0.5, for example, would be

Adaj = phay — (1= ped;’
Aa(z) = 0.5(0.00144) — (1 — 0.5)(0.1)(— 0.01449) = 0.00144.
Similarly
Aai = 0.5(0.00194) — (1 — 0.5)(0.1)(— 0.0196) = 0.00195
AbE = 0.5(0.01563) — (1 — 0.5)(0.1)(— 0.1538) = 0.0155
Ab? = 0.5(0.01002) — (1 — 0.5)(0.1)(— 0.0983) = 0.00992.
The new weights after the momentum-based adjustment will be
ay = al + Aaj = 0.30144 + 0.00144 = 0.3029
ay = ai + Aai = 0.2019 + 0.00195 = 0.2038
b} = b} + Abf = —0.0844 + 0.0155 = — 0.0689
b} = b} + Abi = 0.410 + 0.00992 = 0.4199.
The MSE from Equation 4.18 for the two patterns is now
MSE = (0.0128 + 0.1008)/2 = 0.0564,

which is slightly smaller than the MSE after the second weight update
(0.0568) without momentum.
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Figure 4.20 A steep error surface in the form of a ravine requiring stabilized
descent.

In practical terms, momentum stabilizes the learning process. Basically, if
the previous cumulative change has been in the same direction as suggested
by the current direction, momentum accelerates the current weight change
(hence the name momentum) and if the previous cumulative change has
been in the opposite direction, it dampens the current change. This is
particularly useful for error surfaces on which the optimum weights are at
the bottom of a ravine that has steep sides and a flat floor, as shown in
Figure 4.20 [4].

When the search path is partway down a side of the ravine, the
direction of steepest descent points across the ravine, whereas
the optimum weights lie almost perpendicular to it, in the direction of
the ravine. Even batch averaging may not solve this, because the search
path could still oscillate, jumping back and forth across the ravine until it
hits the floor and then slowly find its way towards the optimum.
Momentum can help quickly subdue the oscillations and slowly guide the
search down the steep slopes until the optimum weights are reached with
minimum oscillation. This is possible because, as the search jumps back
and forth across the ravine, the required weight changes have alternating
signs, thus averaging out to a small actual weight change during an epoch,
which allows the network to settle down to the bottom of the ravine where
it can accelerate, picking up momentum in the flatter region and
periodically cruising up the side of the ravine. However, it will be
squashed again due to the alternating signs of the required weight change,
producing small actual changes.

Smith [4] states that such error surfaces, in which the optimum weights
lie in a ravine whose floor becomes gradually flatter and flatter, are not
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uncommon in practice. Thus, momentum can be useful in some cases.
However, it can be detrimental in cases in which the error surface takes
the shape of a bowl. In this case, by the time the search approaches the
bottom of the bowl, the process has accumulated enough momentum to
push the search path off to the other side of the bowl, where it would
turn back and return to the other side; it would oscillate in this
fashion indefinitely.

So far, the mechanism behind backpropagation learning has been
presented. Specifically, this chapter has examined the learning rate that
controls the step size along the steepest descent. Weights are adjusted by
adding this portion of the weight increment to the previous weight. Training
can use either example-by-example or batch learning. Example-by-example
learning may lead to oscillations and wasted time in some situations, which
can be prevented by averaging. Batch learning and momentum are two
such methods.

In batch learning, the error derivative of a weight during an epoch is
summed over all of the training patterns to produce a weight change that is
correct on average. The momentum, in contrast, exponentially averages all
of the previous weight increments and tugs it to the current required weight
change to produce a final weight change that is stable enough to facilitate
even a descent down an error surface resembling a ravine to reach its
minimum. Batch learning and momentum can be combined in such a way
that the learning rate and momentum apply to epoch-based gradients and
weight changes, respectively. Batch learning with or without momentum is
the preferred method when error backpropagation learning is used.
Momentum could provide stability in online learning; however, it should
be used with caution, as it could lead to large oscillations when the error
surface is a smoothly shaped bowl.

4.4.2 Example: Backpropagation Learning Computer
Experiment

Hllustration of the effect of the learning rate and momentum. In the previous
example started in Section 4.4.1, a small neural network with one input, one
output, and one hidden neuron was trained by hand, using two training
patterns from the first quarter of the sine function. Here, the same network
and the same function will be used, but more input—output examples will be
added to the existing two to allow for a computer experiment to find out the
effect of the learning rate and the momentum. Figure 4.21 shows the data; 12
input—output patterns are now being used.

The weights will be initialized with the same random values used earlier
for this example: a,=0.3, a;=0.2, by= —0.1, b, =0.4. The network
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Figure 4.21 Training data for backpropagation.

approximation of the target output with the initial weights is shown as a
solid line in Figure 4.22, and it is extremely poor.

The network was first trained by varying the momentum while the
learning rate was held constant at 0.1. The error reduction as the training
progresses in each of these cases is shown in Figure 4.23. One example is
also given in which the learning rate has increased to 0.2, with a momentum
of 0.9. Recall that momentum exponentially averages all of the past weight
changes, and that if the direction of the average past changes and the current
suggested direction are the same, momentum allows for rapid changes, but
that if they are different (i.e., when oscillating around a minimum in the
error surface), it dampens the rate of weight change.

Figure 4.23 shows that the momentum has a significant effect on the
network performance, indicated by the behavior of the mean error and

0.25¢ ¢

0.2 0.4 0.6 0.8 1
-0.25}

-0.5¢
-0.75}

-1t

Figure 4.22 Initial network performance superimposed on training data.
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Figure 4.23 The effect of momentum on learning.

the minimum mean error reached. For the learning rate of 0.1, a momentum
of 0.9 gives the best performance, and 0.1 gives the worst performance. This
is because this problem is simple, and with a smaller learning rate high
momentum can be used. The dashed line shows that increasing the learning
rate further to 0.2 with momentum held at 0.9 has a drastic effect, with very
large oscillations that take the error far beyond the scale of the y-axis. For
this example, a learning rate and momentum of 0.1 and 0.9 provide the best
solution. In Figure 4.24, further trials around this best parameter set are
made to study the effect of changing the learning rate for a constant
momentum of 0.9. From this figure it is evident that the original learning

Mean error
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06 ‘I \ .
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021

Learning rate,
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—=—0.1,0.9
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Figure 4.24 The effect of learning rate on error.
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Figure 4.25 Network output superimposed on data for learning rate of 0.1: (a)
momentum = 0.1, (b) momentum = 0.5, and (c) momentum = 0.9.

parameter set of 0.1 and 0.9 for the learning rate and momentum,
respectively, is still the best.

Figure 4.25 shows the trained network performance for the three
momentum values of 0.1, 0.5, and 0.9 for a learning rate of 0.1. It shows that
a momentum of 0.9 is the best, but that between 0.5 and 0.9, there is only a
slight change in the model.

So far, a simple one-input, one-hidden neuron, and one-output
network has been used to derive the formulae for the gradients and
to illustrate the concepts of learning. A similar approach applies to
any network configuration; in the following section these formulae are
derived for networks with many inputs, hidden neurons, and output neurons.

4.4.3 Single-Input Single-Output Network with
Multiple Hidden Neurons

A network with multiple hidden neurons can approximate any nonlinear
function of one input variable. Two such examples are presented in
Chapter 3, Section 3.3.2. These involve modeling a square wave and seasonal
species migration requiring two or more hidden neurons. The formulae
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Figure 4.26 One-input, many hidden-neuron, one-output network.

derived in the previous section can be easily extended to this and to more
general cases. For this particular case, there are as many hidden-output
weights as there are hidden neurons, as shown in Figure 4.26, and derivatives
must be computed for each of these. Analogous to the one-hidden neuron
case, these can be derived as follows:

0E
3 —P=GE=021-2)

0E 0E

—_— . —_— . . aE —_— (4.23)
Gb, gy, TV g = P

where y, ..., y, are hidden-neuron outputs. Similarly, the error gradient with
respect to the hidden-neuron weights can be derived as

ot dE _ O0E _

dai —6]1,6%2 B 42,---,6610” — M

oE . oE - 0B N (4.24)
day, h " day, e T day, I

where

a1 = pbyyi(1 = 1) g2 = pby y,(1 = 3); .54, = pby y,(1—py,).  (4.25)

4.4.4 Multiple-Input, Multiple-Hidden Neuron, and
Single-Output Network
When more than one input is used in a multilayer network, a

multidimensional function can be approximated. The details of processing
in such networks are given in Chapter 3, Section 3.4 for a two-dimensional
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Figure 4.27 Weights for m-input, n-hidden neuron, and one-output network.

network using two-dimensional logistic functions. Examples of two-
dimensional prediction and classification are presented in Chapter 3,
Section 3.4.3. For m inputs and 7 hidden neurons, there are mXn input-
hidden-neuron weights, » hidden-neuron bias weights, 7 X 1 hidden-output
neuron weights, and one bias weight for the output neuron (Figure 4.27), with
respect to which an error derivative must be calculated. However, because
many of these have already been dealt with in the previous cases, only the
connection weights from the extra inputs to the hidden neurons need be
discussed. This section will demonstrate that these can be added easily:

0E 0E 0E
— =1 X, = (X ., —— =, X
dar, q1%1 dairy q2Xq dar, dnX1
(4.26)
0E 0E 0E
—— = Xy = Xy ey —— = X
adml ql a m2 qz 6 mn q

4.4.5 Multiple-Input, Multiple-Hidden Neuron,
Multiple-Output Network

This situation represents the general case of a network with many output
classes, used for classification as shown in Figure 4.28. An example of a
three-class classification is presented in Chapter 3, Section 3.4.3.2, in which
each class is represented by two clusters. The network error for a
multioutput network is the combined error at each of the & output neurons,
represented by Ey, B, ..., Ep,.
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Figure 4.28 A general case of a network with several outputs.

The total network error, E, is sum of the MSE at each output neuron and
is expressed as
K

2
E=E+E + -+ E —M”[Z(zlk ,,e)], (4.27)

where N is the total number of training patterns, K is the number of output
neurons, and z;, and t;;, are the predicted output and target output of the kth
output neuron for the input pattern ¢. With this modification, the process
remains similar to the previous derivations. The main difference is that each
hidden neuron contributes to the error at each output node. The derivatives
with respect to output neuron bias weights now take the form of

G_E_ =(z1— tz(1— 2z G_E_
7 =D =&~ H)a 1“”’(%0;3 = Dr

= (zp — t)z(1 — z), (4.28)

where 2z, t1; 2p, and 1, are the network output and target output values for
nodes 1, ..., k, respectively. It can easily be seen that the hidden-output
weights produce following error derivatives:

0E . 0E
7 —P1y1’---’ablk = Dr)1

(4.29)
1)) 0E

m :plyn;-'- abﬂ/e pkyn'
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The hidden-neuron weight derivatives are now affected by the error at all
output neurons. This is because the hidden-neuron outputs are sent to all of
the output neurons, and thus contribute to the error at each output neuron.
The error contributed by each hidden neuron to the output neurons is
accumulated at each hidden neuron by backpropagation. The resulting
error gradients for the bias weights are expressed as

OE k
E i [(p1o11 + -+ pporp)I (1 — ) = lE pibli]yl(l — 1)
01 —

i=1

o0E
day,,

k
=4qn = [(plbnl + - +pkbn/e)]yn(l _yn) = lzpibfli]yn(l _yn)9

i=1
(4.30)

where the sum of the contributed error by the hidden neuron i is shown in
square brackets. The gradients with respect to the other input-hidden
weights 0£/0a;; are derived in exactly the same manner as given in Equation
4.26, using the new values of ¢, ..., q,, calculated from Equation 4.30. This
concludes the determination of the error derivative for a general case, and
the backpropagation learning that was illustrated for a simple network
applies to any network.

4.4.6 Example: Backpropagation Learning Case
Study—Solving a Complex Classification Problem

This section will present an example to explain how backpropagation
works on a complex problem. It will look at a classification problem
provided by Haykin [5]. The task is to classify the data represented by two
normal distributions, depicted in Figure 4.29, into two classes. There are
two dimensions, x; and Xx;, so the problem involves two-dimensional
Gaussian distributions. For the first distribution, representing Class 1, the
mean values of both x; and x, are zero; thus the mean vector is [0, 0]. The
variance of the distribution is 1.0. For the second distribution, the two
mean values are 2.0 and 0.0, and variance is equal to 4.0. Both classes are
equiprobable (i.e., the class probabilities p; = p, = 0.5). The training data
shown in the bottom image of Figure 4.30 consists of uniformly distributed
random points generated from each of the two distributions. The data for
individual classes is shown separately in the top and middle images of
Figure 4.30. There is a significant overlap between the two classes, and
inevitably there will be a significant probability of misclassification.
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Figure 4.29 Input probability distributions for two overlapping classes. (From
Haykin, S., Neural Networks: A Comprehensive Foundation, 2nd Ed., Prentice
Hall, Upper Saddle River, NJ, 1999.)

The solution is not simple as it requires nonlinear classification boundaries
to separate the two classes.

Because this is a two-dimensional problem, there are two inputs, x; and
X5. The first simulation results are for two hidden neurons, and the results
from three runs for three different training dataset sizes are summarized in
Table 4.2. The learning rate is a small nominal value set at 0.1, and
momentum is 0. The number of epochs for each run is set so that the total
number of training iterations (total number of individual input patterns over
all epochs) is constant. This way, any irregularity arising from the use of
different training dataset sizes is averaged out. The classification rate in
Table 4.2 is for an independent test set containing a total of 32000 data
points equally representing the two distributions. The training results and
the classification rate, based on the independent data set for a network
containing four hidden neurons, were found to be similar to the two-hidden
neuron case, indicating that there was no additional gain from the use of
four neurons.

In the next stage of the simulation, the effect of different combinations of
learning rate and momentum on the two-hidden neuron network
performance will be investigated. Each combination was trained with the
same set of initial weights and the same training datasets. Figure 4.31a
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Figure 4.30 Data for classification: Class 1 data (top), class 2 data (middle), and
joint Class 1 and Class 2 data (bottom) (From Haykin, S., Neural Networks:
A Comprehensive Foundation, 2nd Ed., Prentice Hall, Upper Saddle River, NJ,
1999.)

through Figure 4.31d show the decrease in the ensemble-averaged MSE as
learning progresses for various learning rates and momentum values.
Figure 4.31a shows the four ensemble-averaged learning curves
corresponding to four momentum values (0, 0.1, 0.5, and 0.9) for a
fixed learning rate of 0.01. It shows that for all cases, the MSE drops as
the number of training epochs increases. However, the drop is fastest for
u=0.9. The drop becomes progressively slower as momentum decreases,

Table 4.2 Classification Results for Two Hidden Neurons

Training Get ~ Number of Probability of Correct
Run Number Size Epochs MSE Classification (percent)
1 500 320 0.2199 80.36
2 2000 80 0.2108 80.33

3 8000 20 0.2142 80.47
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and the top-most curve is for zero momentum, meaning that only the
learning rate applies. What these results reveal is that, for this
problem, when a very small learning rate is used, a very high momentum
helps to converge at optimum solution much faster than lower
momentum values. The best results are achieved in 100 epochs, whereas
with no momentum term, more than 600 epochs are required to produce
a similar output.

Figure 4.31b through Figure 4.31d graphically present the effect of
increasing the learning rate on the outcome of the same problem. In
Figure 4.31b, learning performance is illustrated for a fixed learning rate
of 0.1, which is ten times larger than in the previous case. Here, the first
noticeable difference is that the high momentum (u=0.9) has failed to
provide the minimum error, indicating that a high momentum is not
appropriate as the learning rate increases. The best learning performance
is given by w=0.5, for which case the minimum possible MSE is
achieved in 20 epochs. As the learning rate increases to 0.5 (five times
larger than in the last case), the high momentum has a devastating effect
on the learning performance, as shown in Figure 4.31c. Not only does
u=0.9 fail to reach even its prior limits of MSE, but the high momentum
has also led to oscillations, indicating that the acceleration is large
enough to make the search path oscillate around the minimum
indefinitely, never converging to the optimum. In this case, a small
momentum (u=0.1) produces the best result and reaches a constant
MSE level in about ten epochs.

The last panel of Figure 4.31d shows the damaging influence of a
high momentum (0.9) when accompanied by a larger learning rate (0.9).
Here, the oscillations are far too great to reach even the values attained
in the previous stage. However, the best solution is achieved in about
ten epochs without momentum. Now, what is the best combination of
learning rate and momentum for this problem? In Figure 4.32, the best
learning curves from the four cases are plotted together to determine the
overall best learning curve. The figure shows that the best curve is
produced by the learning rate and momentum combination of 0.5 and
0.1. The fact that the range of the minimum MSE achieved for the
various combinations of these two parameters is not large indicates that
the error surface for this problem is relatively smooth [5]. This
conclusion is also supported by the fact that the high momentum is
counterproductive for this problem when accompanied by a high rate
of learning.

Twenty-fold cross validation of model performance. The above
presentation provided an in-depth look at the influence of the learning
parameters on the backpropagation learning performance. The actual
performance of the optimal network must also be measured in practical
terms, which in this case would be an indication of classification accuracy.
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Figure 4.32 Best learning curves from different training trials. (From Haykin, S.,
Neural Networks: A Comprehensive Foundation, 2nd Ed., Prentice Hall, Upper
Saddle River, NJ, 1999.)

However, a network output trained with a finite training set is stochastic in
nature. This is typical of complex data drawn from natural or biological
systems. Therefore, in the next stage of simulation, 20 independent
networks with two hidden neurons and different initial random weights
were trained with the optimum learning parameters found in the previous
stage for a new training dataset size increased to 1000 from each class. These
networks were tested on the same set of test data that had previously been
used and which comprised 32000 observations, equally representing the
two classes.

The average classification accuracy on the test data was determined
using the ensemble average, as presented in Table 4.3, which shows that
the network average accuracy is approximately 80 percent, with a
minimum average MSE of 0.2277. The table also shows the standard
deviation of the classification accuracy and the MSE for the 20 networks.
The extremely small standard deviation for both parameters indicates
that all of the networks have produced very similar results. Figure 4.33

Table 4.3 Ensemble Performance Measured from a 20-Fold Cross Validation

Performance Measure Mean Standard Deviation

Probability of correct classification 79.7 percent 0.44 percent
Final MSE 0.2277 0.0118
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Figure 4.33 Classification boundary for three best networks superimposed on
Bayesian classification boundary (solid circle). (From Haykin, S., Neural Networks:
A Comprehensive Foundation, 2nd Ed., Prentice Hall, Upper Saddle River, NJ,
1999.)

shows the classification boundaries (in input space) and classification
accuracy for the three best networks from the set of 20 networks. For
visual clarity, only the classification boundaries are shown without input
data. Figure 4.33 also shows the classification boundary for the Bayesian
statistical classifier (circular) on the same data. The Bayesian model has
provided a classification accuracy of 81.51 percent. Thus, the network
performance in this case is comparable to the performance of the
Bayesian Classifier.

A Bayesian classifier is a statistical classifier that involves the class
probability distributions (likelihood) to obtain a posteriori probabilities, i.e.,
the classification of an input [5,14]. The Bayesian classification boundary is
the intersection between the two Gaussian data distributions. Because in
this case the two class distributions are symmetric Gaussian distributions,
the classification boundary is circular, as illustrated in Figure 4.33.
Figure 4.34 shows the classification boundaries from the three poorest
networks from the 20-network ensemble, along with their classification
rates and Bayesian classification boundaries. As stated earlier, because there
is a considerable class overlap, a significant probability of misclassification
is inevitable.
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Figure 4.34 Classification boundary for the three poorest networks superimposed
on Bayesian classification boundary (solid circle). (From Haykin, S., Neural
Networks: A Comprehensive Foundation, 2nd Ed., Prentice Hall, Upper Saddle
River, NJ, 1999.)

4.5 Delta-Bar-Delta Learning (Adaptive Learning
Rate) Method

In backpropagation learning, discussed above, the same learning rate
applies to all of the weights. Therefore, all of the weights change at the same
rate. However, in reality, some weights may be closer to the optimum or
have a stronger influence on the error than the others and, therefore, more
flexibility and a higher speed of convergence could be achieved if each
weight were to be adjusted independently in an adaptive manner. The
adaptive learning rate method, popularly known as delta-bar-delta and also
as TurboProp, developed by Jacob [6], proposes such variable learning rates
for different weights. In this method, each weight has its own learning rate
and is adjusted during each iteration as follows: if the direction in which the
error decreases at the current point, as indicated by the error gradient, is
the same as the direction in which the error has been decreasing recently,
then the learning rate is increased. However, if the current direction in
which the error decreases is opposite to the recent direction in which the
error has been decreasing, the learning rate is decreased [4].

Basically, this method requires that the sign of the current error gradient
for a weight be compared with its recent history. In batch learning, which is
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the most preferred method, the current error gradient for an epoch m is the
resultant derivative over the whole training set, d,,,. The recent history of the
direction in which the error has been decreasing up to epoch m is expressed

by fn as
fm = Hfm—l + (1 - H)dm—ls (431)

which is basically the exponential average of all of the past error derivatives,
a concept which is similar to that used in momentum. The 6 is the weighting
on the exponential average of the past derivatives and 1—6 is the weighting
on the last derivative; these weightings determine whether the most recent
gradients or the distant ones have a stronger influence on the f,,, i.e., the
direction in which the error has been decreasing recently. The duration of
“recent” is determined by the value of 6, which is a constant between
0and 1.

If 6 is equal to zero, only the gradient in the previous epoch
defines what ‘recent’ means, and there is no effect of the earlier
gradients. If it is equal to one, the recent direction is totally defined by
all of the gradients up to and excluding the very last gradient, and is equal
to the exponential average of those derivatives. Intermediate values of
0 put intermediate weightings on the most recent and past
derivatives. For example, if 0 is 0.3, f,,, = 0.3f,,—1 + 0.7d,,—1; but because
Jm—1=03f,_2+ 0.7d,,_> and so on, by back substituting, the current
fm=0.7d,,_1 +0.21d,, , + 0.063d,, 5 + ... back to epoch 1. Thus, the more
recent derivatives are weighted more heavily than the early ones. In this
way, [, can be calculated for each weight in the network. To see
whether or not the recent direction is similar to that indicated by the
current derivative, f,, is multiplied by d,,. If f,,d,, is positive, the recent
and the current directions are the same and the weights can be adjusted
at an increased rate. If it is negative, the current derivative is opposite to
the recent average direction, indicating that some minimum on the
error surface has been passed, and in consequence, the weights should
be adjusted more slowly. The delta-bar-delta method reflects this
concept by allowing larger changes in the learning rate (e) in the
former case, in which f,d,, is positive, and allowing only smaller
adjustments in the latter case, for which f,,d,, is negative, as shown in
Equation 4.32:

e = Em—1 + K fOV dmfm >0 (4 32)
" Em—1 X ¢ fOV dm/;n S O’

where k and ¢ are parameters whose values are between 0 and 1. Once the
new learning rate is decided for epoch m, the backpropagation algorithm is
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used to determine the new weight change as:
Aw = —e¢,,d, (4.33)

or with the momentum term:
Aw = uAw,, | — (1 — ,u)smdm. (4.34)

Smith [4] states that the learning process is not highly sensitive to the
choice of the values for k, ¢, and 6, and suggests a set of values that work well
for a wide range of problems as

k=01, ¢=056=07. (4.35)

Because the method uses a separate adaptive learning rate for each
weight, learning can occur rapidly. Smith [4] states that it is not uncommon
to achieve the target error in one tenth of the time used by back-
propagation learning with an optimum learning rate. A notable advantage
of the delta-bar-delta method is that training generally does not require
searching for the optimum parameters through trial and error, and
therefore only one training session is required. For some problems,
however, this may not be the case, and some trial and error may be
required to find the parameters.

4.5.1 Example: Network Training with Delta-Bar-Delta—
A Hand Computation

In this section, the delta-bar-delta method will be applied to the problem
that was started in Section 4.4.1 and continued throughout this chapter
to Section 4.4.1.7. Recall that it involves a one-input, one-output network
with one hidden neuron, shown in Figure 4.4a, and is used to model
the data from the quarter of the sine wave plotted in Figure 4.4b.
This computation will begin with the same initial weights and the two
input—output patterns extracted from the data, as given in Table 4.1 in
Section 4.4.1. These two input—output patterns are {0.7853, 0.707} and
{1.571, 1.0}, and the initial weights are a,= 0.3, a;, =0.2, by= —0.1, and
by =0.4.

Here, the delta-bar-delta method will be applied after the first weight
update using backpropagation (Section 4.4.1.5), which provides a history of
weight update. Usually when this method is applied, the initial weight
update is either picked up as random values or set to zero to initiate the
process, and after several epochs it begins to perform as it should, using the
correct history of the weight updates.

Two input—output pairs are given, and assume that the current weights
are the weights after the first epoch using standard backpropagation
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(Section 4.4.1.5). These weights are

a3 = 0.3014
a? = 0.2019
(4.36)
by = — 0.0844
b7 = 0.410.

This calculation will use an initial learning rate of 0.1 for all of the
weights, as was used to adjust the above weights. In practice, they can be set
to random initial values. To apply this method it is necessary to calculate the
total error gradient for the second epoch, which has already been done
during the second epoch in Section 4.4.1.5, in the case in which
backpropagation was used:

dy’ =—0.01449
dy' =—0.0196
) (4.37)
dy’ =—0.1538
dl = —0.0983.

Having obtained the current gradients o5, all that remains to do is
to calculate f, from Equation 4.31. Assume that f; is zero. From
Equation 4.31:

So=10f + (1= 0)d,

This needs to be applied to each weight; d; is the overall gradient
for each weight in the first epoch, which for a,, a,, by, and b, were found
to be —0.0144, —0.01944, —0.1563, and —0.1002, respectively (see
Section 4.4.1.5). Calculate f, values for each weight with § =0.7:

ay = f5" = (1= 0.7)(— 0.0144) = — 0.00432
ay— f3" = (1= 0.7)(— 0.01944) = — 0.00583
by— /3" = (1= 0.7)(= 0.1563) = — 0.0469
b, — [ = (1— 0.7)(— 0.1002) = — 0.03.
Next, it is necessary to find whether the direction in which the error

has been decreasing is the same as the direction given by the current
batch error gradient. For this, f, is multiplied by the corresponding d. For
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the four weights, fd, will be
S0.dS = (= 0.00432)(— 0.01449) = 0.0000625
S.dst = (— 0.00583)(— 0.0196) = 0.000114
SPdl = (= 0.0469)(— 0.1538) = 0.00721
Sdy = (= 0.03)(— 0.0983) = 0.00295.

Because all of the above values are greater than zero, the previous
and the current directions of error decrease are the same, and the weights
can be adjusted by a large amount, using the learning rates given by the
first condition in Equation 4.32. The new learning rates for the four
weights are

e =014 0.1=0.2
e =014 0.1=0.2
e =01401=02
e =014+01=0.2.

The new learning rate is the same for all of the weights for the next
epoch, because f.d is positive for all of the weights. However, in repeated
training, f.d for some weights can become negative as they adapt to the
target function; in that situation, the learning rate for these weights must
be cut down by half (i.e., by ¢, which is taken to be 0.5). Returning to the
problem, the new weight changes after the second epoch are

Aad = —e™d5" =—(0.2) (— 0.0145) = 0.0029
Aa? = —(0.2) (— 0.0196) = 0.00392
Ab; = — (0.2) (— 0.1538) = 0.0308
Ab? = — (0.2) (— 0.0983) = 0.0197.
The new weights are
a; = ai + Aaj = 0.30144 + 0.0029 = 0.3043
ai = 0.2019 + 0.00392 = 0.2058
bi = — 0.0844 + 0.0308 = — 0.0536
b? = 0.410 + 0.0197 = 0.4297.
The new MSE for the two input—output patterns with the new weights is

E = (0.0119 + 0.0984)/2 = 0.0551,
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which is smaller than that obtained after the second epoch from back-
propagation with the learning rate only (0.0568) and the combined learning
rate and momentum (0.0564).

Although for the two examples used here there was no visible change in
the MSE between the backpropagation and delta-bar-delta methods, it is
common for the delta-bar-delta method to achieve a target error level in
one-tenth of the number of epochs required by backpropagation with an
optimal learning rate [4]. This is because in the delta-bar-delta method, the
learning rate is adjusted for each weight depending on how it contributes to
the reduction in error, whereas in backpropagation, the same learning rate
applies regardless of the relevance of the individual weights.

4.5.2 Example: Delta-Bar-Delta with Momentum—
A Hand Computation

Momentum can also be applied to the weight change, as was shown in
Equation 4.34 and repeated here:

Aw = ,LLALUm,1 —(1- M)smdm'

The past weight changes for epoch 1 from the backpropagation example
were 0.00144, 0.001944, 0.01563, and 0.01002 for a,, a;, by, and by,
respectively (see Section 4.4.1.5). Using a momentum, u=0.5, and
substituting the past weight changes, the current learning rate calculated
for each weight, and the average error gradients into the above equation,
new weight increments would be

Adai=ula —(1—p)e®ds® =(0.5)(0.00144) — (1 —0.5)(0.2)(— 0.01449) =0.00217
Aaj=plaj —(1—pe” dy' =(0.5)(0.001944) — (1 —0.5)(0.2)(—0.0196) = 0.00293
ABE = uAby—(1—w)e™ d? =(0.5)(0.01563) — (1—0.5)(0.2)(—0.1538) = 0.0232
Ab} = puAb} —(1—we” dl =(0.5)(0.01002) — (1—0.5)(0.2)(— 0.0983) = 0.0148.

The new weights are
ay = a3 + Aaj = 0.30144 + 0.00217 = 0.3036
ai =0.2019 + 0.00293 = 0.2048
by = — 0.0844 + 0.0232 = — 0.0612
b} = 0.410 + 0.0148 = 0.4248.
The new MSE for the two input—output patterns is
E = (0.0123 + 0.0996)/2 = 0.0559,
which is slightly higher than the MSE obtained without momentum (0.0551).
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Thus, the momentum is too high for this case; however, there are only two
input patterns (see Table 4.1 in Section 4.4.1) in this hand calculation.

4.5.3 Network Training with Delta-Bar-Delta—
A Computer Experiment

This section will apply the delta-bar-delta method to the problem that was
started in Section 4.4.1 and continued throughout this chapter up to Section
4.5.1. Recall that it involves a one-input, one-output network with one
hidden neuron, as shown in Figure 4.4a, and is used to model data in
Figure 4.4b, which was extracted from the first quarter of the sine wave. This
section will use the same initial weights given in Table 4.1, Section 4.4.1;
these are ag = 0.3, @, = 0.2, by = —0.1, and b, = 0.4. The initial learning rate
for each weight is set to 0. Figure 4.35 shows the decrease of the square root
of mean square error (RMSE) over 100 epochs.

As illustrated in Figure 4.35, the error initially shows a sharp decrease,
then decreases more moderately, slowing towards the end. It also
shows that for the current learning parameter settings, the MSE oscillates
initially, but is smoothed out as training progresses. The final RMSE
reached was 0.00527, and the final learning rates were 0.644, 3.59, 1.488,
and 1.403 for ay, ay, by, and by, respectively. The final weights for these
connections were —0.85, 2.345, —0.413, and 1.528, respectively.

Figure 4.36 shows how the learning rate adapts from random starting
points during the course of learning for input-hidden and hidden-output
weights. It can be seen that all four weights have distinct learning rate
values; moreover, the regular weights (@, and b;) have higher learning rates
than do the corresponding bias weights, indicating that the regular weights
influence the output more significantly than do the bias weights.

RMSE

0.6
0.5
0.4
0.3
0.2
0.1

Epochs
20 40 60 80 100

Figure 4.35 An error (RMSE) decrease with training for the delta-bar-delta
(adaptive learning rate) method for 100 epochs.
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Figure 4.36 The learning rate adaptation for individual weights in the delta-
bar-delta method: (a) input-hidden weights and (b) hidden-output weights.
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Figure 4.37 A trained network output from the delta-bar-delta method (solid line)
superimposed on data.

The network output superimposed on the data is shown in Figure 4.37,
which demonstrates a perfect match.

4.5.4 Comparison of Delta-Bar-Delta Method
with Backpropagation

By adjusting k, ¢, and 6, the smoothness of the curves and the
convergence rate can be altered; however, this exercise illustrates how the
delta-bar-delta method iteratively adapts the learning rate to control an
efficient descent down the error surface to reach a global minimum.
Figure 4.38 compares the performance of backpropagation with delta-bar-
delta, showing that the delta-bar-delta method can reduce the error
quickly, but that for this example, the backpropagation method is faster
initially. However, at the end of 100 epochs, the delta-bar-delta error is 12
percent smaller than that yielded by backpropagation. This can be
significant for more complex problems.
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Figure 4.38 A comparison of the performance of backpropagation and delta-bar-
delta methods.

4.5.5 Example: Network Training with Delta-Bar-Delta—
A Case Study

Demonstration of the performance of delta-bar-delta on complex data. To
demonstrate the performance of the delta-bar-delta method and to compare
it with standard backpropagation, this section provides the results of a study
conducted by Haykin [5] to classify two-dimensional data distributed in two
classes, as shown in Figure 4.39a. Class C; consists of points inside the area
marked C; and Class C, contains data from the area marked C,. The task for
the neural network is to decide whether an input pattern belongs to Class C,
or C,. The following network with two hidden-neuron layers has been used
for this problem:

Number of inputs = 2
Number of neurons in the first hidden layer = 12
Number of neurons in the second hidden layer = 4

Number of neurons in the output layer = 2.

Figure 4.39b shows the randomly selected training data and Figure 4.39¢
shows the randomly selected test data used to evaluate the performance of
the network after training. There are 100 points from each class in the
training set and the test dataset contains 482 points from Class C; and 518
from Class C,, for a total of 1000 data points in the test set.

The network has been trained with both backpropagation and delta-bar-
delta methods using the same initial weights. For the backpropagation, both
the learning rate and the momentum are 0.75, and for the delta-bar-delta
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Figure 4.39 Data for pattern classification using multilayer perceptron: (a)
distribution of classes C; and C5; (b) 100 training data points each from classes C,
and C;; (c) test data for evaluating trained networks (482 from C; and 518 from C,).

method, the momentum is 0.75, the initial learning rate for all of the weights
is 0.75, k=0.01, ®=0.2, and §=0.7. A comparison of the training
performance with respect to the mean square error reduction for the two
methods for 3000 epochs is shown in Figure 4.40, which shows that for the
same initial conditions, the delta-bar-delta outperforms the backpropaga-
tion by an order of magnitude.

The performance of the two methods has been compared at an
instance of training after 150 epochs using the previously mentioned
test dataset containing 1000 randomly selected data from the two classes.
Figure 4.41a and Figure 4.41b illustrate the correctly classified data
for backpropagation and the delta-bar-delta method, respectively.
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Figure 4.40 A comparison of batch update learning curves from backpropagation
and delta-bar-delta methods.

These demonstrate that the delta-bar-delta method learns the classification
more quickly. For example, Figure 4.41a indicates that, with back-
propagation, the shapes of the classes have not been fully developed in
150 epochs and thus the network misclassifies a total of 474 of the 1000
data points in the test dataset (i.e., 52.6 percent classification accuracy). In
contrast, the well-developed shapes of the two classes can be seen in

Figure 4.41 A comparison of classifiers trained with delta-bar-delta and
backpropagation: (a) classification success for backpropagation; (b) classification
success for delta-bar-delta after 150 epochs.
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Figure 4.41b, indicating that with the delta-bar-delta method, the network
has learned to separate the overlapping regions and to classify the data in
these regions rather early with much greater success, with only 96
misclassified data points, resulting in a classification accuracy of 90.4
percent.

4.6 Steepest Descent Method

In the steepest descent method, the error is reduced along the negative
gradient of the error surface, similar to the backpropagation and delta-
bar-delta methods. However, the learning rate ¢, which is the same for all of
the weights, is adapted internally during training [7]. Recall that in the delta-
bar-delta method, the learning rate is adapted for each weight, and in
backpropagation, it is fixed throughout learning. The method of updating
the learning rate in steepest descent is different from that used in delta-bar-
delta. Specifically, starting with an initial value, ¢ is doubled in each step
(trial epoch). This yields a preliminary update for the weights. The MSE is
calculated as usual for the updated weights corresponding to the current
learning rate. If the MSE does not decrease with this learning rate, the
weights return to their original values, the learning rate is halved, and
training is continued. If the MSE still does not decrease, ¢ is halved
repeatedly until a learning rate is reached at which the MSE decreases. The
final weight adjustment is made only after a learning rate that reduces the
MSE is obtained. At this point, ¢ is doubled again and a new step is started,;
the whole process is repeated over and over. The search continues in this
fashion and terminates within the predefined number of training epochs if
the decrease in error with respect to the previous step is smaller than a
specified level, E;,, or if the value of ¢ falls below a specified limit, €., as
shown in Equation 4.38:

E(wm)_ E(wm—H) <FE.
E(w,,) oo (4.38)
e<le

min-

where E(w,, and E(w,,+,) are the errors for the previous and current
epochs, respectively. Ey;, and ey, are thresholds specified by the user.

4.6.1 Example: Network Training with Steepest
Descent—Hand Computation

In this section, this method will be applied to the problem started in
Section 4.4.1 and continued throughout this chapter. Recall that it involves
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a one-input, one-output network with one hidden neuron, shown in
Figure 4.4a, and is used to model the data from a quarter sine wave, plotted in
Figure 4.4b. The calculations begin using the same initial weights and the two
input—output patterns extracted from the data given in Table 4.1 in Section
4.4.1. These two input—output patterns are {0.7853, 0.707} and {1.571, 1.0}; the
initial weights are aq = 0.3, a; = 0.2, by= —0.1, and b, = 0.4.

Because the reader already knows how to compute the sum of the
error gradients, only a summary of the training results will be presented
here in Table 4.4 to show how and when the learning rate changes.
Starting with an initial rate of 20, it is doubled at the start of the first
epoch. Then, within an epoch, several trial epochs (steps) are used to
obtain the weight increments for that epoch.

4.6.2 Example: Network Training with Steepest
Descent—A Computer Experiment

Comparison with delta-bar-delta and backpropagation. This section will
apply the steepest descent method to the problem started in Section 4.4.1
and continued throughout this chapter up to Section 4.6.1. Recall that it
involves a one-input, one-output network with one hidden neuron, shown
in Figure 4.4a, and is used to model the data in Figure 4.4b, which was
extracted from the first quarter of the sine wave. This section will use the
same initial weights given in Table 4.1, Section 4.4.1; these are aq,=0.3,
a,=0.2, b= —0.1, and b; = 0.4. All of the data in Figure 4.4b will be used
to iteratively train the network.

In Figure 4.42, the RMSE for steepest descent training is presented, along
with those from the delta-bar-delta and backpropagation methods. It shows
that the error in steepest descent decreases dramatically in five epochs,
demonstrating the effectiveness of the method. Note, however, that for this

RMSE
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Figure 4.42 Comparison of steepest descent learning with the backpropagation
and delta-bar-delta methods.
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Figure 4.43 Output of network trained with steepest descent superimposed
on data.

method, one epoch consists of many trail epochs, within which the learning
rate is incrementally adjusted until the error decreases below that of the
previous step. Therefore, a direct comparison with the other two methods
on the basis of the number of epochs is not wholly appropriate. At the end
of 100 epochs, the RMSE has gone down to 0.0051 compared with 0.00527
and 0.0067 from the delta-bar-delta and backpropagation methods,
respectively. The final error reached in steepest descent is 28 percent less
than that reached by backpropagation.

The final weights obtained from the steepest descent are {ag, aq}
={—0.78, 2.5} and {by, bi}=1{—0.465, 1.54}. For comparison, these
weights from delta-bar-delta are {a,, a,}={—0.85, 2.345} and {by, by}
={—0.413, 1.528}. The weights produced by backpropagation are
lay, a}={—1.087, 2.82} and {b,, by} ={—0.303,1.347}. The network
performance is superimposed on the data in Figure 4.43, showing that this
set of weights also produces a network that fits the data perfectly.

4.7 Second-Order Methods of Error Minimization
and Weight Optimization

In second-order methods, the curvature of the error surface, denoted by the
second derivative of the error surface, is used to more efficiently guide the
error down the error surface. This section will turn to a simpler second-order
method, called “QuickProp,” which was proposed to speed up the
convergence process of backpropagation learning. It illustrates the concepts
of second-order error minimization in a simple way, using only the first
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derivative. The subject of second-order methods will be dealt with properly
in Section 4.7.2.

4.7.1 QuickProp

QuickProp was developed by Scott Fahlman in 1988 [8]; the method
implicitly uses the curvature and directly involves the slope of the error
surface at a point defined by the current weights. Because the curvature is
implicit, the second derivative is not used in the calculation, as it will be in
more advanced methods discussed later. The implementation of QuickProp
is illustrated on a slice through the error surface along one weight axis in
Figure 4.44.

The method follows this argument: the objective of learning is to
quickly find the optimum weights at which the error derivative is zero.
Suppose the derivative after the last epoch, m—1, was d,,,_,, and that it
led to a weight change of Aw,,_;, as shown in Figure 4.44. If the
derivative for the current epoch m is d,,, the required weight change Aw,,
that leads to a zero derivative is calculated using basic algebraic concepts as
follows:

d,
A =—" _Aw,,_;. 4.
Wy, dmfl _ dm Wp—1 ( 39)

In Equation 4.39, the term (d,,,—1 —d,,/Aw,,,—1) is an approximation of
the curvature, which is the derivative of the gradient of the error surface at
weight w. Thus, the higher the curvature, the lower the weight update, and
vice versa. Because the error surface is defined by the actual data, the weight
change after an epoch normally does not lead to the optimum weights
where the gradient of the error is zero. Therefore, the method is repeated

Error

m-1

dm
! 1 -
AW, AW Target derivative = 0
1 ]
' i~ ,
L p Weight
Wm Wm—1 w

Figure 4.44 lllustration of QuickProp learning method that implicitly involves
curvature of error surface.



168 m Neural Networks for Applied Sciences and Engineering

over many epochs until the optimum weights producing the target level of
minimum error are reached. Thus, the weight changes are obtained without
the use of a learning rate and momentum, or any of the learning parameters
of the adaptive learning rate approach. According to Smith [4], the rate of
convergence with QuickProp is similar to that for adaptive learning rate
(delta-bar-delta).

4.7.1.1 Example: Network Training with QuickProp—
A Hand Computation

In this section, QuickProp will be applied to the problem started in
Section 4.4.1 and continued throughout this chapter. Recall that it involves
a one-input one-output network with one hidden neuron, shown in
Figure 4.4a, and is used to model the data plotted in Figure 4.4b. The
calculations will begin with the same initial weights and the two input—
output patterns extracted from the data, given in Table 4.1, Section 4.4.1.
There are two bias weights and two regular weights in the network, which
must be optimized. The two input—output patterns are {0.7853, 0.707}
and {1.571, 1.0}, and the initial weights are a, = 0.3, a; = 0.2, by = —0.1, and
by =0.4.

Because the method requires a previous weight change, it can be either
assumed to be zero or some small random initial value; in this calculation,
weight updates after the first epoch using backpropagation involving only
the learning with a value of 0.1 will be used. Previously, the derivatives,
weight changes, and actual modified weights were obtained after epoch 1
for this example (see Section 4.4.1.5 and Section 4.4.1.2); these are
repeated here.

For epoch 1:

d¥ =—0.0144 d" =—001944 d’ =—0.1563 d' =—0.1002
Aa} = 0.00144; Aa} = 0.001944; Ab) =0.01563; Ab} = 0.01002.

The adjusted weights after epoch 1:

ag = 0.30144; aj = 0.2019; b5 =—0.0844; b = 0.410.

The MSE after first epoch 1 is 0.0585.
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For epoch 2:
a 2 a b,
d =3 =—-001449; d$" =—0.0196; do =—0.1538;
da,
d? = —0.0983.

Now that all the information about the error derivatives and weight
updates after epoch 1 and the error derivates for epoch 2 have been
obtained, QuickProp can be used to calculate the update for one weight
after epoch 2:

ds
Aai = ng = —0.01449 X 0.00144/(— 0.0144 — (—0.01449))
1~ 9
= —0.2318.
Similarly
das
Aa? = Wm} = —0.0196 X 0.001944/(— 0.01944 — (— 0.0196))
1~ %
=—0.2381
d>
AbE = mAbﬂ) = —0.1538 X 0.01563/(— 0.1563 — (— 0.1538)) = 0.9615
1~ "
bl
Ab? 4

= WA% = —0.0983 X 0.01002/(—0.1002 — (—0.0983) = 0.518.
1 2

Thus, the new weights are
a; =0.30144 — 0.2318 = 0.0694
a’ =0.2019 — 0.2381 = —0.0362
by = — 0.0844 + 0.9615 = 0.8771

b} =0.410 + 0.5184 = 0.9284
MSE = 0.02519.

The new MSE is much smaller than that achieved by the other methods,
which shows that QuickProp reduces the error more efficiently. The process
is repeated over and over through the epochs until the desired error level is
achieved or the error does not change any further.
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4.7.1.2  Example: Network Training with QuickProp—
A Computer Experiment

The QuickProp method will be applied to the problem previously started in
Section 4.4.1 and continued throughout this chapter up to Section 4.7.1.1.
Recall that it involves a one-input, one-output network with one hidden
neuron, as shown in Figure 4.4b and used to model the data in Figure 4.4b.
This is extracted from the first quarter of the sine wave. The same initial
weights will be used as given in Table 4.1 in Section 4.4.1. These are
ap=0.3,a,=0.2, b= —0.1, and b, = 0.4. All data in Figure 4.4b will be
used to train the network iteratively. There are two bias weights and two
regular weights in the network to be optimized.

Starting with the same initial weights, the network was trained using
QuickProp for 100 epochs. Figure 4.45 shows how error decreases with an
increasing number of epochs. There are large oscillations in error that are
stabilized towards the end of training.

4.7.1.3 Comparison of QuickProp with Steepest Descent,
Delta-Bar-Delta, and Backpropagation

The performance of QuickProp is compared with the other three
methods—backpropagation, delta-bar-delta, and steepest descent—in
Figure 4.406. It is evident from this example that QuickProp is very efficient
because there are no parameters to adjust at all and the error goes down
much faster initially than for backpropagation and delta-bar-delta. However,
this momentum is not continued because the oscillations of the MSE and the
final error after 100 epochs is only 0.015. This error is larger than what is
obtained from backpropagation (0.0067), delta-bar-delta (0.00527), or

Mean error
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0.3
0.2

0.1

Epochs
20 40 60 80 100

Figure 4.45 Error reduction during training with QuickProp.
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Figure 4.46 Comparison of QuickProp with backpropagation, delta-bar-delta,
and steepest descent.

steepest descent (0.0051). These methods outperform QuickProp at the end
because of their ability to fine tune their parameters, something that
QuickProp cannot do.

The predicted output from the network trained with QuickProp is shown
in Figure 4.47 and is superimposed on the actual data showing some misfit.

In QuickProp, the curvature of the error surface is implicitly involved.
The more advanced methods that explicitly use the curvature information
are known to produce greater acceleration and accuracy. The following
section will address second-order methods and will put backpropagation in
context by showing that it is a simplified version of a general problem of
optimization. In order to put error minimization in context, the concepts
involved in second-order methods of error minimization will be addressed.

z—network output and t
1t

0.8

0.6
0.4

0.2

0.25 05 0.75 1 1.25 1.5

Figure 4.47 Network output from QuickProp superimposed on data.
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4.7.2 General Concept of Second-Order Methods
of Error Minimization

In second-order methods, the slope and the curvature at the current point in
weight space is determined [11,12,14]. The slope, which is the first derivative
of error, indicates the rate of change of error (i.e., how fast the error is
decreasing at the current point). The curvature indicates the rate at which
the slope itself changes (i.e., curves) at the current weights. Therefore, the
curvature indicates the deceleration of error. For example, consider the two
error curves in Figure 4.48. The slopes are equal at the point where the two
curves touch as indicated by the arrow. However, their curvatures are
different. If the current weight is at the point where the two curves touch, it
is closer to the minimum of the dashed curve with a larger curvature than it
is to the solid curve with a smaller (flatter) curvature. This idea is used in the
second-order error minimization methods.

The curvature of the error surface at a point is expressed by the second
derivative of error with respect to the weights i.e., 9°E/0w’, which is
obtained by differentiating the error derivative 0E/0w, with respect to
a weight. In general, the distance to the optimum weights can be
estimated by dividing the derivative by the second derivative. This gives
the distance required for the deceleration (curvature) of the error to bring
the speed of error change (slope) to zero. Thus, the change in a weight can
be expressed as

JdE/dw
Aw T (4.40)
Before proceeding with the second-order methods, all error minimiz-
ation methods should be put in perspective first so that the first-order
methods can be seen in light of the second-order methods.
In training feedforward networks, the structure of the network is chosen
first. This includes the number of inputs, number of hidden layers, and

Error

P Weight

Figure 4.48 Two error surfaces of different curvature.
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hidden neurons in each layer, the number of output neurons, and the
activation functions of all neurons. Weights are then initialized to random
values, the training data is presented to the network repeatedly, and the
weights are adjusted incrementally until the MSE decreases gradually. The
MSE depicted as a function of weights w, E(w), is

1 N , 1 N
Bw) = <> =21 =D It —f,x)) (4.41)
i=1 i=1

Where the network output z; for the ith input pattern x; is expressed as a
function f of weights and the input, ¢, is the target output, and N is the
number of training patterns. Note that 2 has not been used in the
denominator of the formula in order to be compatible with the neural
network program used to illustrate the application of the second-order
methods [7]. Training or learning involves finding the set of weights w that
minimize the MSE. All error minimization methods are alike in that they are
iterative. Starting with the initial values for the weights, they incrementally
update the weights in the negative direction of the gradient as

w,, = W, — eRd,,, (4.42)

where m is the current epoch, ¢ is the learning rate, and d,,, is the sum of
error derivatives over an epoch or batch. The only new parameter in
second-order methods is R, which has several variants of second derivative
of error. This is very useful in changing the search direction from a negative
gradient to a more favorable direction. Recall that backpropagation,
delta-bar-delta and steepest descent all use negative gradient [7]. Thus, in
Equation 4.42 two parameters, ¢ and R, can change, and it is in choosing ¢
and R that various training methods differ.

When R =1 a gradient descent method is obtained that solely follows
the direction of the negative gradient of the error surface without using any
curvature information. In the steepest descent method, one learning rate, ¢,
applies to all weights. During learning, it is adapted by starting with a larger
value, and ¢ is halved in each epoch until a value that reduces the error is
reached. Backpropagation is another variant of gradient descent and also
uses a single learning rate for all weights; however, it stays constant during
learning. Delta-bar-delta, or the adaptive learning rate method, is another
variant of gradient descent in which the learning rate for each weight is
unique and is adapted during learning, thereby efficiently altering individual
weights according to how significantly each affects the output. If R is not
equal to 1 in Equation 4.42 but contains curvature information, more
advanced second-order learning methods result. Examples include the
Gauss—Newton method, the Levenberg—Marquardt method, and conjugate
gradient methods. The following section will discuss the Gauss—Newton and
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Levenberg-Marquardt methods in further detail. Backpropagation, delta-
bar-delta, and steepest descent are all special cases (first-order) of a general
optimization problem of weight adaptation [9,10].

4.7.3 Gauss—-Newton Method

The Gauss—Newton method is a fast and reliable method for a wide range of
problems [5,7,14] and it explicitly involves the curvature of the error surface.
The curvature is specified by the second derivative of the error function
with respect to a weight. If the second derivative is denoted by d°, then
d® = 9°E/0w’. The R in Equation 4.42 for the Gauss—-Newton method is the
inverse of the second derivative, i.e., 1/d°. Therfore, the weight change Aw,,
for a particular epoch m is given by
Aw,, = —ej—’f. (4.43)
m
Closer examination shows that this formula is similar to that used for
weight adaptation in QuickProp; however, the actual, not an approxi-
mation of the curvature is used. At each epoch, the learning rate ¢ is set
to 1, and is only accepted if the MSE decreases for this value. Otherwise,
it is halved over and over again until a value for which the MSE decreases
is attained. Then the weights are adjusted and a new epoch begins.
Because this whole process is done automatically as part of the algorithm,
it avoids having to search for an optimal learning rate parameter through
trial and error by the user. The termination criteria are similar to those in
the steepest descent method and are repeated below:

E(wm) - E(wm+1) B
E(w,) - (4.44)
ele

— €min>»

where E.;, and &, are minimum acceptable levels for the MSE and
learning rate, respectively.

The next section shows in detail how this method is implemented. As
already discussed, the idea of training when there is an arbitrary number
of weights becomes what is shown in Equation 4.42 and is repeated
below:

Wy = Wy—q — €Rd,,,

where R is the inverse of the second derivative of error, and d,, is the sum
of the error gradient for each weight across all patterns. It is already
known how to obtain d,, and the next step is to obtain R.

If there is only one weight, R is simply 1/ds. When there are many
weights, it is easier to represent the whole set of second derivatives for all
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weights in a matrix form. This particular matrix of second derivatives is
called the Hessian matrix and is denoted by H. R in Equation 4.42 is the
inverse of H, or 1/H, also denoted as H™ . This matrix formulation can be
used efficiently to obtain the necessary weight change for all weights
simultaneously. This idea is presented in Equation 4.45 for an arbitrary
network. The MSE E is

1Y 2
E = N ; (t; — zi(o;, wy))7, (4.45)

where #; and z; are the target and network output, respectively, for the ith
input pattern, and NV is the number of input patterns. The network output is
a function of weights, w;, that are adjusted during training and inputs, x;.
By differentiating the error twice with respect to the weights, the second
derivative or curvature of error surface at the current location of each
weight is obtained. The first derivative of error is

0E 2 —dz
= > {(;i — z,.)< a;) } (4.46)
i i=1 i

which simplifies to

0E 2 & —0z;
dow,; N Z {ei( dw; > } 447

i=1

where ¢ is the error (#;— z;) for an individual input pattern 7. Differentiating
Equation 4.46 with respect to the weights again will have

62E 2 N _ aZZi aZ,v aZl-
H= dw;dw; _N; {(fi— Z;) (aw{aw]) + <— awi> <— aw]) } (4.48)

There are two parts to Equation 4.48 that describe the curvature of the
error function. The first part can cause computational instability problems
when H is inverted to obtain R., To avoid these problems, the Hessian
matrix is approximated by the second part of the equation as

PE 2 ¢ 9z, 9z
H=_"" == S 44
dw,dw; N ; { < aw) ( aw]) } (449)

which for a network with a single weight becomes

2 N[0z
H_Nz<aw{> ) (4.50)

i=1
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For a single weight, the computation is simple because the first
derivative is squared for each training pattern and the curvature is
obtained by calculating the mean, or H, R is simply the inverse of H
(i.e., R=(1/H)=H ). For an arbitrary number of weights, the full form
of the approximated Hessian is a matrix containing the product of the
derivative of output, with respect to each pair of weights, w; and wy;, as
shown in Equation 4.49.

4.7.3.1 Network Training with the Gauss—Newton Method—A
Hand Computation

The Gauss—Newton method will now be applied to the problem previously
started in Section 4.4.1 and continued throughout this chapter for illustrating
learning concepts. Recall that it involves a one-input, one-output network
with one hidden neuron, as shown in Figure 4.4a, that is used for modeling
the data plotted in Figure 4.4b. Start with the same initial weights and the
two input—output patterns extracted from the data as given in Table 4.1 in
Section 4.4.1. The two input-output patterns are: {0.7853, 0.707} and
{1.571, 1.0} and the initial weights are a,=0.3, a; =0.2, b= —0.1, and
b1 = 0.4. There are two bias weights and two regular weights in the network
to be optimized.

The sum of the first derivative d,,, for the first epoch of the two input
patterns as found in previous learning methods are (see Section 4.4.1.5)

d,, = {— 0.0144,— 0.01944, — 0.1563,— 0.1002}. (4.51)

With respect to the four weights, the first derivative of the error is (from
Equation 4.3)

2718~ @t @y,
(1 + 2718 (@t ax))2

2.718 @t ax)p, 5
O (14 2.718 (@+a)?2

e = : (4.52)

1
1+ 2,718 @t ax)

where e is replaced with 2.718.
To obtain H, multiply the derivative with respect to each weight by
itself and other derivatives to obtain the two bracketed derivatives in
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Equation 4.49, (0z,/0w;)(0z;/0w)). Thus

[(0.16)2.7187 0+ 049 (0.16)2.7187 0 045 (0.4)2.7187 03+ 02 (0.4)2.7187 03+ 029 7
1+ 2_7187(0.3+ 0.2x)4 1+ 2.7187(0.3+ 0.2x)4 1+ 2.718*(0.3+ 0.2x)2 1+ 2'718*(0.3+ 0.2x)3

(0.16)2.718~ 0 0,2 (0.4)2.718 7031 029 (0.4)2.7187 03+ 029
9z 0z 1+ 2.7187(0'5+ 0.2x)4 1+ 2.7187(0'5+ 0.2x)2 1+ 2.718—(().3+ 0.2x)3
dw; dw; - 1
L 1+2_7187(0.5+O.2x)
1
(1 + 2.718_(O'S+ 0,2\‘))2

(4.53)-

By substituting the two inputs to each component in the matrix,
summing the two outcomes, and multiplying by (2/N) as in Equation 4.49,
the Hessian matrix is obtained as

0.0011 0.0012 0.0115 0.0072

0.0012  0.0016 0.0134 0.0085
H= , (4.54)
0.0115 0.0134 0.1235 0.0779

0.0072  0.0085 0.0779 0.0491

where the first entry is the (2/N) Y X,(0z/0a,)? where N is the number
of input patterns which is 2 in this example . The second entry in the first
row is (2/N) Zﬁil(az/aao)f(az/aal),-, and so on. It is difficult to invert this
matrix by hand; therefore, Mathematica® [13] is used to obtain it. R
becomes

—=109 57 79 =119
| -1 55 85 —12
R=H'=10 . (4.55)
0 —32 —34 6

19 —43 —76 10

By substituting for R and d,,, from Equation 4.51 into Equation 4.42 with
a learning rate of 1, the preliminary weight increments for the four weights
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after the first trial epoch are

—109 57 79 —1197 [ —0.0144
- —16 55 85 —12||—0.01944
Aw,, =—Rd,, =—10

0 —32-34 6 —0.1563
19 —43 —7.6 10 —0.1002

—256

—48

= s | (4.50)
16

The new weights obtained by adding the increments to the original
weights are {—255.7, —47.8, 7.9, 16.4}. The resulting MSE (from Equation
4.41) is 0.021. Thus, the preliminary update has decreased the error from
0.0602; therefore, a new epoch is started with a learning rate of ¢ = 1.0 and
the process is repeated. Although the error is low, weights are too high
due to large values in R that are caused by numerical instabilities
because only two input patterns were used. However, this is corrected
when more inputs are used in the computer experiment conducted in the
next section.

4.7.3.2 Example: Network Training with Gauss—Newton
Method—A Computer Experiment

In this section, the Gauss—Newton method is applied to the problem
previously started in Section 4.4.1 and continued throughout this
chapter up to Section 4.7.3.1. Recall that it involves a one-input, one-
output network with one hidden neuron, as shown in Figure 4.4a, and
used to model data in Figure 4.4b extracted from the first quarter of the
sine wave. We use the same initial weights as given in Table 4.1 in
Section 4.4.1, which are a,=0.3, a; =0.2, by = —0.1, and b; =0.4. All of
the data in Figure 4.4b will be used to train the network iteratively. There
are two bias weights and two regular weights in the network to
be optimized.

The training performance is shown in Figure 4.49 that illustrates
how the error decreases with the epochs. The figure shows that the
termination criteria are achieved in seven epochs that produce a
minimum RMSE of 0.005, similar to the error reached in the steepest
descent method. The Gauss—Newton method, however, reaches the
error quicker.
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Figure 4.49 Training performance with the Gauss—-Newton method.

The final weights reached by the Gauss—Newton method are
dag= —0.84, a, =2.56, by= —0.43, and b; = 1.5.

The network output and the target data are superimposed in Figure 4.50
and shows a perfect agreement.

One possible drawback of this method is that there might be a situation
where it is difficult to always achieve learning rates that decrease error,
causing the weight updates to sometimes be in the positive gradient
direction. This is due to the nature of the second derivative of the error
surface. For example, if the first derivative is positive at a point but the
second derivative is negative, indicating that the curve is getting concave
approaching maxima, then the weight update would be positive and would
lead to an increased error. This is illustrated in Figure 4.51.

The slope d,, at the point indicated in the figure is positive but the
curvature d,, is negative. For this point, the Gauss—Newton weight update
(—e(d,,/dy)) is positive and leads to an increased error. Therefore, when the
second derivative is negative, another method such as the steepest descent

t, z

0.8
0.6
0.4
0.2

025 05 0.75 1 1256 15

Figure 4.50 Network output from the Gauss—Newton method superimposed on
target data.
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Figure 4.51 A second derivative of error surface that could lead to increased
error.

must be used for the weight update. Furthermore, a naive application of
second-order methods is risky because numerical instabilities in the
inversion of the Hessian matrix can lead to problems [4]. To improve
these conditions and guarantee a downhill path on the error surface, the
more advanced Levenberg-Marquardt method has been proposed [14].

4.7.4 The Levenberg-Marquardt Method

This method improves the solution to problems that are much harder
to solve by only adjusting the learning rate repeatedly, as implied in the
Gauss—Newton method that incorporates both first and second derivatives
of error. Instead of adjusting ¢, the Levenberg—Marquardt (LM) method sets it
to unity and a new term e’ is added to the second derivative term, where e
is the natural logarithm [7,14]. For example, a network with a single weight
w, R, which is the inverse of the second derivative in Equation 4.42,
becomes [1/(d;, + eM] and the new weight update for epoch m for this
weight can be expressed as

dy,

_ 4.
s, + e (4.57)

Aw,, =

Because we use the Hessian matrix to denote all second derivatives of
error with respect to each weight, the Hessian is modified as

H =H+ 'L (4.58)

R then becomes

1
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where I is an identity matrix. The general formula for the weight change of
all weights for epoch m can be expressed in matrix form as

d
A =" s 4.60
“n =T H,, + D (4:00)

where d,, is the sum of the first derivative of error and H,,, is the Hessian
matrix for epoch m. The term e’ produces a conditioning effect to the
second derivative such that the error never increases in situations where the
Gauss—Newton method can result in an increased error (see Section 4.7.3.2),
thereby improving the stability of the solution.

In the LM method, A is chosen automatically until a downbhill step is
produced for each epoch. Starting with an initial value of A, the
algorithm attempts to decrease its value by increments of AA in each
epoch. If the MSE is not reduced, A is increased repeatedly until a down
hill step is produced. When A is small, the LM method is similar to the
Gauss—Newton method in that the second term (conditioning term) in
the denominator is small and, therefore, the second derivative plays an
important role in the weight update equation. By attempting to reduce 4
initially, the LM method essentially attempts to use both the first and
second derivatives of error in order to utilize their combined
effectiveness, as illustrated in the Gauss—Newton method. The first
derivative is already in the numerator.

However, when A is large, the method is similar to steepest descent in
that the conditioning term in the denominator of the weight update
equation becomes large. Thus, the effect of the second derivative of error is
not significant compared to that of the first derivative, and the error is
reduced almost entirely along the direction of the negative error gradient, as
illustrated in the steepest descent method. The LM algorithm resorts to this
approach and uses a larger A when the weight change leads to an increased
error that is caused by climbing up the error surface due to problems
associated with the second derivative of error as previously mentioned.
Thus, the LM method is a hybrid algorithm that combines the advantages of
the steepest descent and Gauss—Newton methods to produce a more
efficient method than either of these two methods. The training
terminates prior to the specified number of epochs if the following
conditions are met:

A> 10AX + Max[H],

E(wm) - E(wm.l,_ 1) <FE. (461)
E(wm) = Lmin>
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where Max([H] is the maximum eigenvalue of the Hessian matrix, which
guarantees that a solution is reached in a stable manner down the error
curve. (Refer to Chapter 6 for a discussion on eigenvalues.) The first
condition in Equation 4.61 specifies the maximum step size AA allowed,
guaranteeing the stability of the solution, and the second criterion states that
training stops if the proportion of error change between two consecutive
epochs becomes less than the minimum specified error. The latter condition
is similar to the steepest descent method and is specified by the user.

4.7.4.1 Example: Network Training with LM Method—A Hand
Computation

The LM method can be applied to the problem previously started in Section
4.4.1 and continued throughout this chapter. Recall that it involves a one-
input, one-output network with one hidden neuron, shown in Figure 4.4a,
and used for modeling the data plotted in Figure 4.4b. Start with the same
initial weights and the two input—output patterns extracted from the data as
given in Table 4.1 in Section 4.4.1. There are two bias weights and two regular
weights in the network to be optimized. The two input—output patterns are
{0.7853, 0.707} and {1.571, 1.0} and initial weights are a,=0.3, a, =0.2,
by=—0.1,and b, =0.4.

For the two input-output (x, #) pairs, the modified Hessian matrix H',
which is (H+e'D), is

0.0011 + e* 0.0012 0.0115 0.0072
, 0.0012 0.0016 + e*  0.0134 0.0085
H = . (4.62)
0.0115 0.0134 0.1235 4+ e*  0.0779
0.0072 0.0085 0.0779 0.0491 + e*

This is similar to H for the Gauss—Newton method; however, now there
is an e* term added to the diagonal terms. By denoting the inverse of
this Hessian matrix by R and inverting it with A=35, as illustrated in
Mathematica [13], the following R is obtained:

0.1353 —0.000022  —0.0002 —0.00013
— 0.000022 0.1353 0.00024 —0.00015
R = . (4.63)
— 0.0002 — 0.00024 0.133 —0.0014
—0.00013 — 0.00015 —0.0014 0.1344

The conditioning effect of the added diagonal term can be ascertained by
comparing R in Equation 4.63 with R in the Gauss—Newton method
(Equation 4.55) that does not have the extra diagonal term. The terms in
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Equation 4.63 are much smaller and all of the off-diagonal terms are close
to zero.

Because the first derivative of error d,, for epoch 1 has been computed
already for the two input—output patterns and is found to be d,,=
{—0.0144, —0.01944, —0.1563, —0.1002} for the four weights (see Section
4.4.1.5), the weight update can be calculated from Equation 4.42 as

Aw,, = —Rd,
0.1353 —0.000022 —0.0002 —0.000137 [—0.0144
— 0.000022 0.1353 0.00024 —0.00015 | | —0.01944

- 0.0002 —0.00024 0.133 —0.0014 —0.1563
—0.00013 —0.00015 —0.0014 0.1344 —0.1002

0.0019

0.0026

N 0.0207

0.0132

(4.64)

The new weights for the second epoch will be the value of the weight
increment added to the respective original weights. The resulting weight
vector is {0.3019, 0.2026, —0.0793, 0.4132}. This results in an MSE of 0.0579,
which is smaller than the initial MSE of 0.0602.

4.7.4.2 Network Training with the LM Method—A Computer
Experiment

The LM method can be applied to the problem previously started in
Section 4.4.1 and continued throughout this chapter up to Section 4.7.4.1.
Recall that it involves a one-input, one-output network with one hidden,
neuron, shown in Figure 4.4a, and used to model data in Figure 4.4b
extracted from the first quarter of the sine wave. The same initial weights
are used, as shown in Table 4.1 in Section 4.4.1. They are a,=0.3, a; =
0.2, by= —0.1, and b; = 0.4. Use all of the data in Figure 4.4b to train the
network iteratively. There are two bias weights and two regular weights
in the network to be optimized.

The training over epochs brings the RMSE down to 0.005 in five
epochs, as illustrated in Figure 4.52a. This minimum error is similar to that
achieved by the Gauss—Newton method; however, the LM method reaches
the minimum error sooner (see also Figure 4.53). The final weights were
do= —0.84, a, =256, by= —0.43, and b; =1.5. These weights are
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Figure 4.52 Results from the Levenberg-Marquardt method: (a) training
performance and (b) network output superimposed on target data.
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Figure 4.53 A comparison of training performance for Levenberg-Marquardt,
Gauss-Newton, steepest descent, delta-bar-delta, and backpropagation methods
in mapping the first quarter of the sine function.

comparable to those obtained when using the other methods. The target
data are superimposed on the network output in Figure 4.52b, which
indicates a perfect fit.

4.7.5 Comparison of the Efficiency of the First-Order and
Second-Order Methods in Minimizing Error

How do the second-order methods compare with the first-order methods?
The results from backpropagation, delta-bar-delta, the steepest descent
method, the Gauss—Newton method, and the LM method are plotted
together in Figure 4.53 and are compared. Because the Gauss—Newton
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and LM methods took less than ten epochs in order to decrease
to a minimum error, the performances of the five methods in the first ten
iterations are compared in this figure, which reveals that the LM method is
the most efficient (largest dashed line) followed by the Gauss—Newton
method (second largest dashed line). These two methods are superior to
the steepest descent method (third largest dash line), which also brings
the error down in almost five epochs. The delta-bar-delta and back-
propagation methods (smallest dashed line and solid line) lag behind the
first three methods considerably. Therefore, the performance of the
training methods used on this simple differs, and the LM, Gauss—Newton,
and steepest decent methods are an order of magnitude faster than the
delta-bar-delta and backpropagation.

Note that the efficiency of the second-order methods (LM and
Gauss—Newton) is gained at a considerable computational cost. This is
because computing and inverting the Hessian matrix for large networks
trained with a large number of training patterns can be costly
computationally and time consuming. Moreover, inverting the Hessian
matrix can cause numerical instability problems and the methods may
not perform satisfactorily. In these situations, first-order methods such
as the steepest descent, backpropagation, and delta-bar-delta can
provide effective solutions, although they may take longer to converge.
This is because methods such as backpropagation allow a comprehen-
sive search in the parameter (weight) space through their learning
parameters.

4.7.6 Comparison of the Convergence Characteristics
of First-Order and Second-Order Learning Methods

This section will extend the computer experiment previously addressed in
order to compare the search path on the error surface traversed by
backpropagation, the steepest descent, the Gauss—Newton, and
LM methods. These methods will be used to extract the underlying
pattern in another data set. In order to visually evaluate the performance,
the data shown in Figure 4.54 will be used so that it can be modeled with
a simple single-neuron network with only two weights (bias and a regular
weight), as illustrated in Figure 4.55. The activation function of the output
neuron is logistic. Error is a two-dimensional surface with the
two weights.
The output of this network can be expressed as

1

Y= 14 e Wotwix)”’ (465)
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Figure 4.54 Example data to compare convergence characteristics of different
learning methods.
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Figure 4.55 One-input, one-output network.

where w, and w; are bias and input—output weights, respectively. The 50
data points in Figure 4.54 were generated for the values of w,=1.5 and
wy, = —2.0 in Equation 4.65.

The MSE for this case is

1 , 1 1 2

Note that 2 has been omitted in the denominator to be compatible
with the neural networks program used to generate the results. Plot this
error surface for a range of w, and w; values in the neighborhood of the
optimum values of 1.5 and —2.0, which were used to generate the
data. The error plotted in Figure 4.56 is the RMSE and resembles
actual errors.

All four training methods, backpropagation, steepest descent,
Gauss—Newton, and LM, should converge to weight values of wy=1.5
and w; = —2.0 when training with random initial values. The underlying
pattern in the data is extracted from the four methods and the error
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Figure 4.56 Error surface for the weights around the neighborhood of optimum

values of (1.5, —2.0).

surface is plotted around these optimum values to find out how efficiently
the different methods traverse the error surface down to the optimum
values. The results are presented for each method in the next four sections.

4.7.6.1 Backpropagation

The network was first trained using backpropagation training, and the
path followed for 200 epochs is shown in Figure 4.57a for a learning rate
of ¢=0.1 and momentum u=0.9. Figure 4.57b shows the same for
e=0.1 and p=0. In the first case with a high momentum, the iteration
path continues from the top of the error surface. The iteration path is not

Figure 4.57 Iteration path for backpropagation training: (a) ¢ = 0.1 and u = 0.9;
(b) e=0.1 and u=0.
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in the most efficient direction to the optimum weights but is from a
distance and bypasses it. The path then moves away and later turns
around as it tries to approach the optimum toward the end of the 200
specified training epochs. This highlights an interesting point in that the
optimum weights would be found eventually. In the latter case where no
momentum is used, the path slowly follows the slope of the error surface.
Again, the iteration path is not in the most efficient direction but at a
distance from the optimum. It then reaches a valley and moves towards
the optimum from that point and will eventually reach the optimum
weights with more training epochs.

The RMSE for the whole training is shown in Figure 4.58 for the two
above cases. Figure 4.58a shows how the error first decreases as weights
become closer to the optimum for the high momentum and later increases
as the path bypasses it and later reverses the direction. Even if the training
were to stop at the point where the error is at a minimum, it would still not
produce the optimum weights, as indicated in Figure 4.57. Figure 4.58b
shows that error decreases continually when moving towards the optimum
when the momentum = 0.

4.7.6.2 Steepest Descent Method

The training path taken in each epoch by the steepest descent method is
shown in Figure 4.59. Figure 4.60 shows how the error changes with
each epoch.

Figure 4.59 shows that convergence is very slow at the end of the
training, but it eventually approaches the true optimum weight values
(1.5, —2.0). Figure 4.60 illustrates that it will converge slowly and smoothly
to the minimum in about 30 iterations (epochs).

RMSE RMSE
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3
02 0.2
0.1 01
0 20 40 60 80 100120 140160180200 0 20 40 60 80 100120 140160180200
(a) Iterations (b) Iterations

Figure 4.58 Training performance for backpropagation: (a) ¢ =0.1 and p = 0.9;
(b) e=0.1 and u=0.
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Figure 4.59 Training path for the the steepest descent algorithm.
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Figure 4.60 Training performance for the steepest descent algorithm.

4.7.6.3 Gauss—Newton Method

The performance of the Gauss—Newton algorithm on the same data set is
shown in Figure 4.61. Recall that this method uses the second derivative of
error and the learning rate is adjusted automatically.

The above figure illustrates that the Gauss—Newton method is more
efficient than the steepest descent method and backpropagation in that it
traverses the slope of the error surface more efficiently. However, the
downhill path it follows is not the most effective. As shown in Figure 4.62,
this algorithm also reaches convergence quicker than either of the two
previous methods and requires about seven epochs. It also produces a more
controlled descent towards the optimum weights.
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Figure 4.61 Training path followed by the Gauss—Newton algorithm.
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Figure 4.62 Reduction of error with epochs for the Gauss—Newton algorithm.

4.7.6.4 Levenberg-Marquardt Method

Finally, we test the performance of the LM algorithm on the data set.
Figure 4.63 shows the training path and Figure 4.64 illustrates how error
decreases with each iteration. The training path follows the downhill slope
of the error surface almost perfectly, which is a significant improvement
over the Gauss—Newton algorithm. The algorithm also converges a little
faster than the Gauss—Newton method and requires only four iterations.
This illustration clearly highlights the differences among the four
training algorithms. It demonstrates that the LM method is superior to the
other three methods. It is faster and more efficient when converging to
optimum weights for this simple problem. The Gauss—-Newton method is
the next best choice in terms of finding an efficient downhill path and the
time it takes to converge. Both of these methods that use the first and
second derivative of error proved to be superior to the steepest descent
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Figure 4.63 Training path for the Levenberg-Marquardt algorithm.
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Figure 4.64 Training performance for the Levenberg-Marquardt algorithm.

method and backpropagation that rely only on the first derivative. The
third best is the steepest descent algorithm, which performs better than
backpropagation. The former three methods do not require trial and error
and have yet produced a superior performance to backpropagation.
Backpropagation required more training epochs than the 200 that was
specified for both cases of learning parameters, one representing a small
learning rate with a high momentum and the other a small learning rate
without any momentum. Results show the damaging effect of momentum
for this example. The fact that the backpropagation algorithm did not
converge in this session illustrates that trial and error is indeed needed until
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appropriate learning parameters that lead to optimum weights sooner are
found. Even with appropriate values for learning rate and momentum, the
method will find the optimum weights slower than the other methods for
the problem presented here.

4.8 Summary

In this chapter, six training methods were discussed: backpropagation,
adaptive learning rate (delta-bar-delta), the steepest descent, QuickProp,
the Gauss—Newton method, and the Levenberg—Marquardt method. The
first three are first-order methods in that they use the first derivative of
error (slope) and follow the gradient descent approach. The latter three
methods are second-order methods and they rely on both first and second
derivative of error (slope and curvature) in the search for the optimum
weights. The Gauss—Newton method has the disadvantage of moving in
the direction of an error increase in some situations when the second
derivative is negative. The LM method addresses this problem by reverting
to the steepest descent method and using only the first derivative when
the second derivative becomes negative.

The second-order methods provide faster solutions because of the
incorporation of an extra second derivative of error information and
automatic internal adjustments that are made to the learning parameters.
However, this comes at a substantial computational cost of the calculation of
the second derivative of error, Hessian, H, and inverse of Hessian, R,
especially for a network with a large number of weights. First-order methods
may provide solutions for a variety of problems, yet they can take longer to
train, especially during backpropagation training where learning parameters
are found by trial and error. For some problems, these may be found relatively
easily; however, some other problems may require extensive searching. The
first-order methods do give the user the flexibility and direction to improve
their analysis when higher order methods may fail to converge because of the
numerical instability in the handling of the second derivative.

Problems

1. For the network training example started in Section 4.4.1, calculate
error gradients for epoch 2 and verify that the final values and
weight adjustments given in Section 4.4.1.5 of the text are correct.

2. Train the example network in Section 4.4.1 with the two input—
output patterns given using online (example-by-example) learning.
Compare the results for batch learning presented in the text with
those from example-by-example learning (refer to Section 4.4.1.6).
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3. Explain how momentum adds stability to the search process in error
minimization. When is high or low momentum useful?

4. What is the goal of adaptive learning rate or the delta-bar-delta
method?

5. What concepts are used in the implementation of the delta-bar-delta
method? What are its advantages over backpropagation?

6. In what way are the concepts of momentum and delta-bar-delta
similar?

7. What are the main problems associated with backpropagation and
delta-bar-delta and how does the steepest descent method address
these? What is the advantage of the steepest descent method?

8. Explain the concepts of first-order and second-order
error minimization.

9. What are the advantages of second-order methods?

10. Explain the difference between the Gauss—Newton and Levenberg—
Marquardt methods. Which method is superior and why?
11. What are some disadvantages of second-order methods?
12. For a problem of choice, implement different learning methods and
assess their effectiveness.
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Chapter 5

Implementation of Neural
Network Models for
Extracting Reliable
Patterns from Data

5.1 Introduction and Overview

Implementing a model to extract patterns from data requires close attention
be paid to various aspects of model development such as testing
generalization ability, minimizing model complexity, testing robustness of
models (i.e., stability of model parameters), and selecting relevant inputs.
This chapter focuses on generalization, structure optimization, and
robustness of multilayer neural networks; Chapter 6 deals with input
selection. Chapter 7 details uncertainty assessment in relation to model
parameters, outputs, and network sensitivities to weights and inputs.

First, a model is developed and calibrated to ensure its adequacy. The
model is then tested on new data to ensure its generalization ability.
A training dataset is used for validation (i.e., calibration by assessing and
fine tuning) the model. Generalization means how well a validated
model performs on to unseen data and is tested on an independent
test dataset. The purpose of validation is to ensure generalization ability
of a model.

195
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A model that does not fit the data enough has limited representation,
causing lack of fit (bias), and one that fits the data too much models noise as
well as leading to overfitting (variance). These occurrences are called bias—
variance dilemma, and both situations increase generalization error.
Therefore, a tradeoft between these two extremes is sought in reducing
generalization error. This bias and variance tradeoff is addressed in
Section 5.2. Two approaches for improving generalization, early stopping
and regularization, are presented in Section 5.3. The effect of initial random
weights, random sampling, and the number of hidden neurons is also
presented in Section 5.3; and the nonuniqueness of weights for these cases
is addressed. Furthermore, to shed light on the nonuniqueness of weights, a
detailed explanation of hidden neuron activation for these cases is
presented to illustrate the network’s consistent approach toward a solution
regardless of the initial random weights, random sampling, and the number
of hidden neurons.

Structural complexity is a crucial aspect of model development, meaning
that the ideal model has the optimum number of model parameters
(i.e., weights). Structural complexity is particularly crucial for neural
networks because they tend to have a large number of free parameters
that make them very powerful nonlinear processors. A way to address this
issue is to prune irrelevant weights and neurons from a network. Section 5.4
details some approaches for pruning multilayer networks. Another
important aspect of model development is ensuring that the model
parameters are stable and consistent. Section 5.5 addresses trained
networks’ robustness of weights.

5.2 Bias—Variance Tradeoff

Data collected from many real-world problems or natural systems almost
always contains random variations or noise. In many situations, a model that
learns to distinguish general trends from the noise in the data is desired. This
property is called “generalization ability of a model.” Figure 5.1a illustrates a
model that generalizes well, captures the required pattern, and reliably
predicts unseen data. This generalization ability is crucial if it is to be useful
in decision-making where reliable predictions for inputs not seen before by
the model are essential.

The generalization is particularly important for neural networks such as
multilayer networks. If allowed to be too flexible, the multilayer networks
can strictly follow the data, thereby fitting the noise as well resulting in
overfitting, as shown in Figure 5.1b. This error introduced by noise is called
“variance contribution to the model misfit.” The more flexible a model is, the
larger the risk of overfitting. This overfitting adversely affects the
generalization ability on unseen data. On the other hand, a model with
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Figure 5.1 Bias—variance dilemma: (a) a model that generalizes well, (b) a model
that overfits due to too much flexibility, and (c) a model that underfits due to lack
of flexibility.

too little flexibility may not be able to capture essential features in the data,
thereby underfitting. A lack of flexibility introduces bias contribution to the
misfit of the model. This situation is illustrated in Figure 5.1c where the
model has not found the required trend. The correct amount of flexibility is a
compromise between these two sources of error and is called bias—variance
tradeoft [1,2].

5.3 Improving Generalization of Neural Networks

To avoid overfitting, the flexibility of a neural network must be reduced.
Flexibility comes from the hidden neurons, and as the number of hidden
neurons increases, the number of network parameters (weights) increases
as well. The larger the number of weights, the larger the flexibility. On the
other hand, there must be enough neurons to avoid bias or underfitting.
There are several ways to handle bias—variance tradeoff and all involve a
second validation dataset.

1. Exbaustive search: Although more time consuming, the simplest way
is to search for the optimum number of neurons is by trial and error.
Each time, the performance on a validation dataset must be tested.
The one that gives the minimum error on the validation set has the
optimum number of neurons.

2. Early stopping: The idea here is that a model overfits if it has too
much flexibility that is expressed by the number of free parameters
(i.e., weights). Weights are called free parameters because they are
allowed to change during training, and they define the network’s
degrees of freedom. If the weights are allowed to grow enough
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during training and then stop training at this point, it is possible to
restrain the network from overfitting. In this approach, a fixed and
large number of neurons is used, and the network is trained while
testing its performance on a validation set at regular intervals.
Initially, the model error on both the training and validation sets
would decrease. At some point, the model generalizes the best.
Beyond that point, overfitting sets in. Here, the error on the validation
set is the minimum, and it starts increasing with further training, as
shown in Figure 5.2. However, an error on the training set would still
continue to decrease because overfitting continues to minimize the
error on the training set. At the point where overfitting sets in, the
weights are taken to be the optimum weights that provide the best
generalization on unseen data [2,4].

Regularization: Another approach to avoid overfitting is regulariz-
ation. In regularization, a parameter larger than zero is specified, and
a regularized performance index is minimized instead of the original
mean square error (MSE). This performance index is derived by
adding a sum of square weights term to the original MSE term. In
neural networks applications, this type of regularization is often
called weight decay. The idea is to keep the overall growth of weights
to a minimum in such a way that weights are pulled toward zero. In
this process, only the important weights are allowed to grow, and
others are forced to decay [1-4].

Exhaustive search, although guaranteed to find the optimum number of
weights if they exist, is not very practical for all problems. In early stopping
and regularization, a network has more weights than are necessary with not
all of them optimized as in the first method. Therefore, only a subset that
becomes the most sensitive to the output is effectively used. The latter two
methods are presented in detail next. A logical extension of early stopping
and regularization is to prune irrelevant weights so that the simplest possible
network structure remains. This topic is treated later in the chapter.

Error A
Validation

44— error

Training
error

P Epochs

Figure
errors.

5.2 Early stopping for improving generalization—training and validation
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5.3.1 lllustration of Early Stopping

A simple, one-dimensional example illustrates how the early stopping
method works. The data was generated from a cyclical pattern shown along
with the data in Figure 5.3; x is the input and ¢ is the target data representing
the cyclical pattern. The data shown in the figure was first generated from
this pattern, and random noise from a Gaussian distribution with mean 0
and standard deviation of 0.25 was added to each data point to create a
noisy dataset of 30 observations. The task of the neural network model is to
recognize the pattern depicted by the solid line from the data in the
presence of noise.

A two-hidden-neuron model appears to fit the data; however, a
multilayer perceptron (MLP) with four hidden neurons with logistic
activation (Figure 5.4a) is used to demonstrate the concept of early
stopping. The network output z produced by the initial random weights is
shown with the original cyclical pattern superimposed on the data in
Figure 5.4b, which shows a very poor fit.

To use early stopping, the dataset is randomly divided into two sets. For
this example, each set has 15 patterns. The network is trained with the
Levenberg—Marquardt method, which is a powerful second-order method
discussed in Chapter 4. Training is done with the training set as usual, but
the MSE on the validation set is calculated at regular intervals. The training
progress in terms of reduction of root mean square error (RMSE) with
epochs is shown in Figure 5.5, where the solid line depicts error on the
training set and the dashed line shows error on the validation set. In this
figure, iteration is an epoch that is one pass of the whole training dataset
through the network.
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Figure 5.3 Cyclical pattern and noisy data generated from it.
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Figure 5.4 Four-hidden-neuron network and initial network output: (a) network
configuration, (b) initial network output (solid line) superimposed on training data
and target pattern (dashed line).

Figure 5.5 shows that the error on both datasets decreases initially, and
after two epochs, validation error increases. The weights at the point where
the validation error is minimum are the optimum weights that produce the
best model that has optimized the bias—variance tradeoff. The network
output for these optimum weights is superimposed on the original pattern
and the training data in Figure 5.6.

Figure 5.6 shows that the network output is very close to the true target
pattern, indicating that it has recognized the correct trend in the noisy data.
The fact that the curve does not rigidly follow the data too closely means that
overfitting has been avoided. The fact that the data follows the general trend
very closely indicates that the network has enough flexibility to avoid bias
(lack of fit).

RMSE

0.1

0 5 10 15 20 25 30 35 40 45 50
Iterations

Figure 5.5 Training progress on the training and validation data.
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Figure 5.6 Network output for weights obtained from early stopping (solid line)
and the original cyclical pattern (dashed line) superimposed on training data.

The MSE on noisy validation data is 0.30 and on the true target pattern is
0.108. The error on the true pattern is calculated from the data generated
from the target pattern without using noise. This error indicates the
closeness of the model to the true target pattern; however, the error on noisy
data highlights the closeness of the predicted pattern to target noisy data, a
portion of which was used to model the network. The results indicate that
the model output is much closer to the true target pattern uncorrupted by
noise than to the noisy validation data. These results show that the network
not only has prevented overfitting, but it also has identified the true pattern
that was deliberately corrupted with noise.

For comparison, training also continued until error on the training data
reached the minimum possible level denoted by the solid line in Figure 5.5.
The network output for the weights that produced the minimum error on
the training set at the final epoch is shown in Figure 5.7, along with the
original true pattern and the noisy training data. It clearly shows a poorer
model than the one obtained from early stopping. This network output is
overfitted and has poor generalization ability.

Figure 5.7 demonstrates that the solid line goes rigidly through almost all
the data points, illustrating overfitting. For the fully trained network, MSE on
training data has gone down to 0.107, indicating that the error between the
prediction and noisy training data is very small. However, the generalization
error on the validation data is now 0.318 and on the true pattern is 0.166.
Both are higher than those for the optimum configuration obtained by early
stopping (0.30 and 0.108, respectively). The fully trained network error on
the true target pattern now is 54 percent, larger than the optimum network.
Thus the fully trained model rigidly fits noisy data compared to that obtained
from early stopping; therefore, it is too far from the actual pattern that
generated data.
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Figure 5.7 The output of the overfitted network with the weights obtained at the
end of the training period (solid line) and the original target pattern (dashed line)
superimposed on training data.

Figure 5.8 shows how weights change in the initial ten epochs of
training. The initial weights were small random values closer to zero. The
error on the validation set is minimum at epoch 2. The optimum weights are
at this point, and they are among the smallest weights compared to those
beyond epoch 6 when two hidden-output weights start to increase sharply.

Further training up to 50 epochs dramatically increases these weights, as
shown in Figure 5.9. This figure demonstrates that the large weights, with
some reaching 20 000, are in deed the cause of overfitting. Thus, early

Weights
100 -

75 K
50 ,/

25 Ve

-100 g

Figure 5.8 Weight update during first ten epochs (overfitting sets in at epoch 2;
two weights that increase drastically at epoch 6 are two hidden-output weights).
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Figure 5.9 Weight change for the whole training period (two weights have
become too large and others are comparatively much smaller).

stopping prevents overfitting by keeping weights from growing beyond the
point of generalization.

5.3.1.1 Effect of Initial Random Weights

A well-trained network must reach the global absolute minimum error on
the error surface. In some cases, there may be several local minima, and the
solution can get trapped in these, resulting in suboptimal conditions with
larger errors. The same network analyzed in the previous section was
trained with three different initial conditions (weights) to study the
robustness of the results. Different initial weights put the network at
different initial locations on the error surface, and they can help determine if
the minimum error and weights achieved are for a local minimum or the
global minimum. We have already trained with one set of initial weights for
which the results are presented in Figure 5.6 and Figure 5.7 (this will be
called initialization 1), so we will do two more trials with different random
initializations. In Figure 5.10, the initial network output (a), optimum
network output achieved using early stopping (c), and the fully trained
network output (d) are shown for the second initial random weight
configuration. The training performance is shown in Figure 5.10b.

The RMSE for the optimum model on validation data is 0.301 and on the
true target pattern is 0.117. These are very similar to those for the first
initialization (0.30 and 0.108, respectively). For the fully trained network,
error on training data is 0.118, similar to that for the first initialization (0.107)
with both weight initializations leading to overtfitting of the fully trained
networks. The errors on validation data and true pattern for the fully trained
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Figure 5.10 Random weight initialization 2: (a) initial network output (solid line)
superimposed on target pattern (dashed line) and training data, (b) root mean
square error performance during training (solid line—training, dashed line—
validation), (c) optimum network output from early stopping, and (d) fully trained
(overfitted) network output.

network are 0.364 and 0.162, respectively, which are similar to the
corresponding values in the first weight initialization (0.318 and 0.166).
The fully trained network error on the true pattern now is 38 percent higher
than the corresponding optimum network error. Results for the third weight
initialization are shown in Figure 5.11.

The third weight initialization produced an optimum network similar to
those in the two previous cases (RMSE on validation data and target pattern
are 0.299 and 0.111, respectively), but the final network is still very similar to
the optimum (i.e., no visible overfitting). This is also evidenced from the
training performance shown in Figure 5.11b, where cross validation error
does not increase and training error does not decrease with further training
as in the other two cases. For the fully trained network, RMSE on both
validation and true pattern is 0.306 and 0.1163, respectively, similar to those
for the optimum network. The error of the fully trained network on the true
target pattern is now only 4.7 percent higher than that for the optimum
network. Also, because overfitting has been naturally prevented, the RMSE
from the fully trained network on training data is now higher (0.1607) than
for the two previous cases where it was 0.107 and 0.118, respectively.
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Figure 5.11 Random weight initialization 3: (a) initial network output (solid line),
(b) root mean square error change with epochs (solid line—training, dashed line—
validation), (c) optimum network output from early stopping, and (d) fully trained
network output (all network outputs are superimposed on target pattern (dashed
line) and training data).

Therefore, overfitting can be expected in a majority of the cases; however,
optimum networks are similar to, and resilient to, random initial weight
configurations for this problem.

All three initial conditions have produced similar results in that the
optimum networks generalize well. They have similar errors on the
validation data and the true pattern indicating that a global minimum has
been reached in all three cases. However, in the first two cases, the final fully
trained networks seriously overfit the data. In the last case, there is no
overfitting at all, indicating that the evolving weight structure has restrained
the network and guided toward the global optimum. Certain random initial
weights can prevent overfitting, and this situation may correspond to an
initial correlated weight structure resembling that of the optimum network.
When there are more than enough hidden neurons, the weights become
correlated because of redundancy. The correlated structure of weights gives
rise to more than one possible set of optimum weights. Some initial weight
configurations could be attracted to a possible optimum weight configur-
ation from the beginning, with the result that overfitting is avoided.
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5.3.1.2  Weight Structure of the Trained Networks

Table 5.1 lists hidden and output weights for the three cases of
weight initialization.

Table 5.1 shows that the final weights for the three initializations are
different from each other. This demonstrates that there are many possible
combinations of values for the 13 free parameters that can produce
the desired outcome. As previously stated, this outcome is attributed to the
redundancy because of the correlation of weights. Basically, any set of
weights that preserves its correlation structure is a candidate solution. This
issue is visited later after further investigation into the network’s behavior is
conducted. Focus now turns to the behavior of the hidden neurons in the
optimum model obtained from cross validation with early stopping for the
three cases. (Cross validation refers to calibration of a model built on
training data with a validation dataset.) The hidden neuron activations for
the three weight initializations are presented in Figure 5.12 for comparison,
and these aid in understanding the network’s observed behavior.

The first and second initializations have produced similar activations
where two sigmoid functions have negative slopes and two have positive
slopes. All show their active regions in the input space between —5 and 5.
However, in the last plot, all four neurons have negative slopes, and only
two are highly active in the input range. This network did not overfit during
training. The reason for this is that its flexibility has been dampened by the
two neurons that have activations with flatter slopes (contributing less to
weight change), leaving two neurons to fit the data. In the first two cases,
because all neurons are active, training has to be stopped at the appropriate
time to prevent overfitting because of excessive network capability.

A comparison of the three plots in Figure 5.12 reveals that the optimum
number of hidden neurons for the data is two. All three networks have found
these two neurons that have activations with a negative slope in the three
plots. In the first two networks, the two neurons that have activation with a
positive slope are the cause of overfitting that is prevented early by the early

Table 5.1 Optimum Weights for Three Random Weight Initializations

Weight Neuron 1 Neuron 2 Neuron 3 Neuron 4
Initial @01, a11) b (@02, a12) by (@03, @13) b3 (@04, @14) b Bias b
1 (—0.73, —0.89) (0.91, 0.72) (0.31, —0.50) (—0.40, 1.3) —10.1
—0.46 2.59 11.47 53
2 (1.27, 0.97) (0.09, —2.19)  (1.23, —1.17) (—0.6, 0.47) 6.0
2.36 —1.6 —35 =11
3 (=043, —0.1) (0.62, —1.13) (0.04, —0.34) (—0.33, —0.81) 111

—66.3 —3.7 41.7 —8
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Figure 5.12 Hidden neuron activation for the three random weight initializations:
(a) random initialization 1, (b) random initialization 2, (c) random initialization 3
(no overfitting).

stopping method. Because their active regions are in the input space of the
data, further training would lead to continuity of activation of these two
neurons. In the third network, however, the two redundant neurons weakly
contribute to weight change, and they do not cause overfitting.

5.3.1.3 Effect of Random Sampling

The effect of different training samples is demonstrated to address the
robustness of networks in relation to different training samples. In many real
situations, only a sample from the population of data is available, and the
model must give the assurance that results are robust even though only one
particular training dataset is used for training. Results have already been
shown for one case of training and validation datasets in the two previous
sections for the network in Figure 5.4a in Section 5.3.1. The data shown
along with the original pattern in Figure 5.3 is called “random sample 1.” The
first random weight initialization from Figure 5.4b (random weight
initialization 1) is used in the following two experiments so that only the
datasets change although everything else remains the same.

The two experiments are conducted by repeating the training process
twice with data generated from the same true pattern shown in Figure 5.3,
but with different random noise values added to the data generated from it.
Random sample 2 is shown in Figure 5.13a along with the true pattern.
Figure 5.13b-Figure 5.13f presents initial network output, training
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performance, optimum network output, fully trained overfitted network
output, and the weights in the initial epochs of training, respectively, for the
training and validation data sampled from random sample 2. The best
network is obtained at epoch 2 (Figure 5.13f) where the weights are the
smallest beyond what they grow resulting in overfitting. The RMSE on
validation data and true pattern for the model obtained from early stopping
(Figure 5.13d) are 0.270 and 0.130, respectively, where they are 0.423 and
0.277, respectively, for the fully trained model. Error of the fully trained
network on the training data is 0.147.
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Figure 5.13 Network performance for random sample 2: (a) original pattern and
data, (b) initial network performance (solid line) superimposed on target pattern
(dashed line) and training data, (c) training performance (solid line—training,
dashed line—validation), (d) optimum network output, (e) final overfitted network
output, and (f) weights in the initial training epochs (optimum weights occur at
epoch 2).
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For random sample 3, the optimum network output, training
performance, final network output, and the weights in the initial epochs,
respectively, are shown in Figure 5.14a—Figure 5.14d. The network behavior
on this dataset is interesting. As shown, the network has experienced very
little overfitting compared to the first two random samples. The minimum
error on the validation set occurs at epoch 7 as shown in Figure 5.14b and
Figure 5.14d; Figure 5.14d demonstrates that for this case, initial weights are
too small and must grow to a point to capture essential trends in the data. It
also shows that weights are stable beyond epoch 7 where they grow in a
restrained manner. This again points out that even in a network with a large
number of weights, complete training may not lead to severe overfitting in
some cases, depending on the manner that the initial weights grow in
response to data.

Because in this experiment all three networks had similar initial weights
corresponding to weight initialization 1 in the previous section, the effect of
random weights has been eliminated. Therefore, the restraint in the growth
of weights up to the optimum and not growing beyond this point in this case
must have been driven by the data itself. The hidden neuron activation
patterns for this network that did not overfit are shown in Figure 5.15a. This
activation configuration is similar to that of the networks whose capacity to
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Figure 5.14 Network performance for random sample 3: (a) optimum network
output superimposed on training data, (b) training performance (solid line—
training, dashed line—validation), (c) final fully trained network output (solid line)
superimposed on true pattern (dashed line) and training data, (d) weights in the
initial training epochs (optimum weights occur at epoch 7).
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Figure 5.15 Data and hidden neuron activation for the case without overfitting:
(@) hidden neuron activation for the optimum network that does not experience
overfitting and (b) random data sample 3 that led to the controlled growth of
weights to prevent overfitting.

overfit was restrained by early stopping in the previous experiment where
the effect of random weight initialization was studied (see Figure 5.12). This
indicates that data has regularized the weights by appropriately shifting the
active regions of hidden neuron functions to naturally obtain the optimum
configuration for them. Such regularization works for data that represents the
original pattern uniformly throughout the input space (i.e., the network has
no choice but go through the cloud of data). The data in random sample 3 is
presented in Figure 5.15b. This concept of controlled growth of weights and
subsequent stabilization is used in the method called regularization
that helps directly find optimum weights that improve generalization and
is shown later in the chapter.

The results from explorations with random sampling indicate that the
network is robust in finding the optimum weights with different random
training samples. The optimum networks do not follow the data too closely,
as do the overfitted networks. However, for some datasets, overfitting may
not set in. The optimum network in this case is still reliable. This occurs
because for such a sample, some weight regularization has naturally come
into effect leading to controlled growth of weights up to the point of best
generalization and naturally stopping further growth. It appears that
regularization in the network trained with random sample 3 was caused
by the data, indicating that the network is sensitive to training data. The next
section discusses how to impose regularization from outside as part of
model fitting so that regularization takes effect compulsorily,
not accidentally.

Generally, the more data obtained, the better the generalization and the
less the overfitting. This idea is schematically illustrated in Figure 5.16. In
regions of the input space that have many observations, the noise will smear
the data patterns, making it difficult for the network to precisely fit
individual data points. Thereby, the network is forced to go through the
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Figure 5.16 Noise in data that helps prevent overfitting and improve
generalization.

center of the data cloud preventing overfitting. However, in regions where
the data are sparse, it can overfit. To take advantage of this situation, noise
can be artificially added to data to improve generalization. For example, if a
small random noise is added to each input pattern as it is presented to the
network, it will be difficult for the network to follow each data point exactly.
In fact, Siestma and Dow [2,5] have shown that, in practice, training with
noise leads to improvements in network generalization.

Table 5.2 shows the optimum weights achieved for the three random
datasets. The first row shows the results for the first network in the
earlier experiment where the effect of random initial weights was tested
(see Table 5.1).

The sets of weights in Table 5.1 and Table 5.2 represent different
networks. Some networks show some similarity in weights; however, they
are not generally similar. Predictions from all the networks are good. As
previously explained, the reason for this is that redundancy in weights forms
a correlation structure, and this provides latitude for individual weights to
change while preserving the correlation structure of the weights. There are
many such possibilities. Therefore, it is important to remove such
redundancies to obtain models that are robust and consistent and that
have optimum complexity.

Table 5.2 Optimum Weights for Random Data Samples

Data Neuron 1 Neuron 2 Neuron 3 Neuron 4 Bias

Initial (@1, a11) by (a2, @12) b2 (aos, a13) b (@04, a14) by b

1 (—0.73, —0.89) (0.91, 0.72)  (0.31, —0.50) (—0.40, 1.3) —10.1
—0.46 2.59 11.47 5.3

2 (—0.22, —0.22) (0.87, 0.1) (—1.3,2.1) (—1.2, 0.64) 19.8
—11 19.7 4.0 )

3 (—0.72, —0.93) (0.9, 0.68) (0.18, —0.93) (—0.42, 1.27) —23.3

—9.0 0.12 32.8 22
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Figure 5.17 One-hidden-neuron network output (solid line) superimposed on
true pattern (dashed line) and data.

5.3.1.4 Effect of Model Complexity: Number of Hidden Neurons

Bias—variance dilemma can be resolved by externally controlling model
complexity through adjustment of number of hidden neurons. The effect of
the number of neurons is examined to evaluate the effectiveness of
early stopping.

Single hidden neuron. Figure 5.17 shows the data, initial pattern (dashed
line), and a fully trained network output (solid line) for one hidden neuron.
With one neuron, the network has captured the trend only in a small region
of the pattern.

Two bidden neurons. The improvement of the network output with the
addition of another neuron is shown in Figure 5.18. This did not result in

Figure 5.18 Fully trained two-hidden-neuron network output (solid line) super-
imposed on actual pattern (dashed line) and training data.
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Figure 5.19 Hidden neuron activation for the two-hidden-neuron network.

overtfitting either; therefore, a fully trained network is the optimum. This
occurs, as Figure 5.18 shows, because a fully trained two-hidden-neuron
network output is similar to the one obtained with four hidden neurons
trained with early stopping until the validation error starts to increase.

The two-neuron network was trained starting from several initial
conditions, and overfitting did not result for any of the conditions, showing
that the network is not too rigid. The outputs of the optimum and fully
trained networks for all trials were identical. The hidden-neuron activation
for a typical two-hidden-neuron network is shown in Figure 5.19. It is
evident that this particular combination of neuron activation has been
dominant in all the previous networks, regardless of the number of hidden
neurons, as illustrated in Figure 5.12 and Figure 5.15a.

Three bidden neurons. Next, the network was trained with three hidden
neurons starting from different initial conditions. In four out of five times,
overfitting did not set in. Only once did some slight overfitting result.
The optimum network prediction was identical to that with two neurons. The
hidden-neuron activation for three neurons in a nonoverfitted network is
shown in Figure 5.20a. The output of the only overfitted network is shown in
Figure 5.20b with the smallest dashes. The output of the network obtained
from early stopping (solid line) for this case and the true pattern (intermediate
dashes) is also shown. Results indicate that the three-neuron network is on
the border line beyond where serious overfitting invariably occurs.
Figure 5.20a also points out the dominant trend of the two sigmoid functions
with negative slopes that recurred in all previous networks.

5.3.1.5 Summary on Early Stopping

Overfitting is a common outcome of a network with a large number of free
parameters. In the preceding sections, the effectiveness of early stopping in
obtaining best network weights that produce the best generalization
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Figure 5.20 Three-hidden-neuron network performance: (a) hidden-neuron
activation for a nonoverfitted network, (b) optimum network output (solid line)
superimposed on its overfitted network output (smallest dashed line), actual
pattern (intermediate dashed line) and training data.

(i.e., least error on data not used for training) was investigated. Research
found that early stopping effectively finds optimum weights beyond which
overfitting sets in. The robustness of early stopping with respect to changes
in initial random weights and randomness in the training and validation data
was checked. It was revealed that in all cases, early stopping produced a
network that generalizes well. In all but two cases, complete training lead to
severe overfitting.

Overtfitting is a result of weights growing too large. In the two cases
where there was no serious overfitting, weights reached stable values even
in fully trained networks. The first of these was from trials with random
initial weights, indicating that there are regions in the weight space that can
evolve naturally into optimum weights and stay around these values
resisting change in further training. Such weights would be the ideal set of
weights that preserve the correlation structure of weights naturally.
However, the initial conditions for these optimum weights are not known
a priori; therefore, early stopping provides an effective way to find the set of
weight that provides best generalization.

In the second case, similar nonoverfitting conditions were aroused by
the quality of the data that led to robust weights resistant to overfitting.
Specifically, if noise is present in data in such a way that the network is
forced to go through the cloud of data, overfitting is prevented. A similar
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situation can be artificially created by adding random noise to inputs each
time they are presented to the network. Generally, the larger the dataset, the
better the generalization; however, typically, the datasets may not be large
enough, and it may not be possible to realistically estimate the sample size
needed to prevent overfitting, especially when there are many input
variables affecting the outcome. In such situations, a method such as early
stopping is needed to improve generalization.

In the next section, regularization that prevents the growth of relevant
weights beyond the point of best generalization while suppressing the
growth of irrelevant weights is examined.

5.3.2 Regularization

The examples used to demonstrate early stopping in the previous sections
indicate that overfitting is a result of weights becoming too large. Two
network trials there led to controlled growth of weights until the end of
training without relying on early stopping. Regularization is a method
proposed to do this effectively as part of model fitting by limiting the
flexibility of a network [2,4]. It attempts to limit the number of efficient
parameters (weights) by minimizing the sum, W, of a regularization term
and MSE instead of MSE alone as given in Equation 5.1:

W =MSE+06Y uj, (5.1)
=1

where the second term in the equation is a regularization term, w; is a
weight in the total set of m weights in the network, and ¢ is a regularization
parameter. Basically, regularization keeps the weights from getting large by
minimizing the sum of square weights along with sum of square error. It
pulls the weights that have only a marginal influence on error toward zero
while keeping the weights that efficiently minimize the error. The amount of
regularization is controlled by the constant parameter 6, and the larger the 9,
the more important the regularization becomes.

In the following example on regularization, the same problem is used that
was used to study the early stopping method in Section 5.3.1. The original
pattern and the noisy data generated from it using a Gaussian distribution
with 0 mean and standard deviation of 0.25 are repeated in Figure 5.21.

Here, the same network, initial weights, and training and validation data
are used as those used for illustrating early stopping with the first set of
random initial weights in Section 5.3.1. There are four hidden neurons with
logistic transfer function in the hidden neurons and a linear output neuron
(Figure 5.4a). The network is trained using the Levenberg—Marquardt
method, and the validation set is used as a guide, as in the early stopping
method. The network was trained with three values of regularization
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Figure 5.21 Original pattern and noisy data generated from it.

parameter. Figure 5.22 shows the best results obtained (for ¢ value of
0.0001) after testing several ¢ values.

Results show that the network training completes in six epochs, and the
optimum network is obtained at epoch 4. Weights initially increase, but they
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Figure 5.22 Network results for regularization parameter 0.0001: (a) training
progress (solid line—training data, dashed line—validation data), (b) optimum
network output (solid line) for weights at epoch 4 superimposed on original
pattern (dashed line) and noisy data generated from original pattern and
(c) network weights for the first six epochs.
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Figure 5.23 The weights from early stopping alone and with regularization
(6 =10.0001) superimposed on initial weights: (a) input-hidden weights and
(b) resultant of hidden-output weights plotted against bias weight b,.

decrease with training and remain constant beyond epoch 4. Training has
ended much more quickly (in six epochs) with regularization because the
weights do not change after epoch 4, demonstrating the effectiveness of the
method. The optimum weights obtained from early stopping alone and with
regularization for this case are shown superimposed on initial weights in
Figure 5.23a and Figure 5.23b for input-hidden neurons and hidden-output
neurons, respectively.

Figure 5.23 shows that the initial input-hidden weights are too small and
must grow. Regularization has grown (relaxed) the weights more than early
stopping to find the optimum values. This is evidenced by the weights in
Figure 5.23a and Table 5.3 that show all but one input-hidden weights are
larger for the best regularization parameter of 0.0001 found from trial and
error than those for early stopping alone. Results for training with two other
values of generalization parameter are also presented in Table 5.3. In
contrast, the magnitude of most of the hidden-output weights obtained from
regularization is only half that produced by early stopping, as shown in
Figure 5.23b where, for clarity, b, is plotted against the resultant of all

Table 5.3 Comparison of Optimum Input-Hidden Weights from Early
Stopping Alone and with Regularization

Method/Weights ao an ap an aos a ags ET

Early stopping —0.73 —-0.89 091 072 031 —-05 —-04 13

Regularization —097 —-1.85 0.29 106 253 —070 —0.76 1.93
(0.00071)

Regularization —0.51 —0.93 0.82 0.69 068 —051 —0.44 154
(0.001)

Regularization —1.67 059 027 -04 011 —148 —042 177

(0.01)
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Table 5.4 Comparison of Optimum Hidden-Output Weights and Network
RMSE from Early Stopping and Regularization

Method/Weights bo b4 bs b3 by Validation RMSE

Early stopping —10.13 —0.46 259 114 5.29 0.30

Regularization —135 —2.04 —3.71 3.66 2.90 0.276
(0.0001)

Regularization —3.65 —3.08 —1.54 7.47 3.17 0.30
(0.001)

Regularization ~ —0.50 —3.35 263 —155 167 0.285
(0.01)

hidden-output weight values, i.e., \/ bt + b3 + b3+ b; from regularization

and early stopping conditions. The actual values of hidden-output weights
are shown in Table 5.4 along with the RMSE for several values of the
regularization parameter. Initial weights used for both layers were small
random values closer to zero.

As far as the equivalence of early stopping and generalization is
concerned, Table 5.4 shows that a performance (validation RMSE) similar to
that obtained from early stopping (RMSE =0.3) is given by the
regularization parameter 0.001. For this situation, the optimum weights
and validation sample error are shown in Table 5.3 and Table 5.4 and the
training performance, network output, and weight evolution are shown in
Figure 5.24.

Figure 5.24 indicates that a good generalization with a regularization
parameter of 0.001 results. Final input-hidden and hidden-output weights
are shown in Figure 5.25.

For the regularization parameter of 0.001, less relaxation on input-
hidden weights and hidden-output weights is noted compared to those for
optimum 6 value of 0.0001. This means that more control is put on keeping
the weights small. The input-hidden weights are similar to those obtained
from early stopping alone for this regularization parameter. Figure 5.26
shows results for regularization parameter of 0.02. It shows that weights are
now pulled toward zero, resulting in poor model predictions because of
bias (i.e., lack of fit).

A further increase of ¢ to 0.1 makes the model completely incapable of
finding optimum weights, as shown in Figure 5.27. As the figure shows,
when the regularization parameter is too high, more emphasis is put on
keeping weights small. Thus, weights are pulled much more strongly
toward zero than necessary, to the detriment of model performance causing
severe bias.
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Figure 5.24 Network results for regularization with 6 =0.001: (a) training
progress (solid line—training data, dashed line—validation data), (b) optimum
network output (solid line) for weights at epoch 2 (found using validation set)
superimposed on original pattern (dashed line) and noisy data generated from
original pattern and (c) network weights for the first three epochs.
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Figure 5.25 The weights from early stopping alone and with regularization
(6 =0.001) superimposed on initial weights: (a) input-hidden weights and (b)
resultant of hidden-output weights plotted against bias weight to output neuron.
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Figure 5.26 Model performance for regularization parameter 6 of 0.02:
(@) training progress (solid line) and validation performance (dashed line),
(b) model predictions (solid line), original pattern (dashed line) superimposed on
noisy data generated from the original pattern, (c) weight change during training,
and (d) optimized input-hidden weights from early stopping and regularization.

As explained, a good generalization parameter effectively finds optimum
weights more quickly than early stopping, but larger values can restrict the
growth of weights, severely deteriorating the model performance because
of a lack of fit. To put this in perspective, a comparison of regularization’s
and early stopping’s performance is shown in Figure 5.28.

Figure 5.28 shows the effect of regularization parameter on the
regularized training criterion, W, and the RMSE on both training and
validation data. The top line is for W (regularized criterion), and the next
two are for RMSE. Also shown in this figure is the validation error from early
stopping shown as a horizontal dashed line drawn for the purpose of
comparison. The figure shows that below a certain value of the
regularization parameter (about 0.02 in this case), optimizing weights
using regularization is superior to that using early stopping.

Because the regularization training criterion (W) has an extra sum of
square weight component added to MSE, Wis larger than RMSE, as shown in
the figure. The effect of regularization on RMSE has an exponential form for
this example.
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Figure 5.27 Model performance for regularization parameter of 0.1: (a) training
progress (solid line) and validation performance (dashed line), (b) model
predictions (solid line), original pattern (dashed line) superimposed on noisy
data generated from the original pattern, (c) weight change during training,
(d) optimum input-hidden weights from early stopping and regularization
superimposed on initial random weights.

5.4 Reducing Structural Complexity of Networks
by Pruning

The previous two sections presented two methods of keeping weights
small: early stopping and regularization. In early stopping, training is
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Figure 5.28 Effect of regularization parameter on the regularized training
criterion (W) and root mean square error (RMSE) on training (tr), and validation
(val) data. Horizontal line depicts the root mean square error for early stopping
(ES), drawn for the purpose of comparison with regularization.
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stopped when the error on the validation set starts to increase. Weights at
this point are the optimum weights. Further training beyond this point
makes weights grow very large. In regularization, a regularization parameter
equal to the sum of square of weights is minimized along with MSE. The
advantage of this method is that training takes less time, and once the
optimum weights are reached, they do not continue to grow. Both these
methods use all weights in training and do not reduce the structural
complexity of the model. As shown, when more than optimum weights are
in the network, different training sessions produce different sets weights.
This needs to be resolved to make a model transparent and to make realistic
conclusions from the model outcomes. One way of achieving this goal is to
reduce the structural complexity of networks so that only the essential
weights and neurons remain in the model. An approach to this is
network pruning.

Several approaches have been proposed to prune networks. Reed [0]
presents the first survey of pruning methods where some simple intuitive
methods based on the value of weights and neuron activation values have
been proposed. For example, the concept of “goodness of factor” [7]
assumes that an important neuron is one that frequently excites and has
large weights to other neurons. The concept of “consuming energy”
assumes that important units excite neurons in the next layer [7]. The
weakness of these two methods is that when a neuron’s output is more
frequently zero than one, that unit might be removed as unimportant
although this may not be the case. Magnitude-based pruning (MBP) is based
on the assumption that small weights are irrelevant [5,7]. However, small
weights may be important when compared to larger weights because the
latter may cause saturation in hidden and output neurons due to their large
magnitudes pushing the activation into less active regions of neuron transfer
functions. Some later developments are optimal brain damage (OBD) [8]
and its variants, optimal brain surgeon (OBS) [9,10] and optimal cell damage
(OCD) [11]. These methods perform sensitivity analysis on training error to
prune weights. More recently, analysis of variance of sensitivity of error or
output to network parameters [12] has been proposed to efficiently prune
weights, neurons, and inputs. In the next section, the concepts involved in
two methods, OBD and variance analysis of sensitivity, are detailed, and
their application to pruning networks to retain a network with the least
structural complexity is illustrated.

5.4.1 Optimal Brain Damage

In this method, weights that are not important for input—output mapping are
selected and removed. The importance or saliency of a weight is measured
based on the cost of setting a weight to zero [3,6]. The saliency of a weight
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can be computed from the Hessian matrix introduced with the Gauss
Newton and Levenberg—Marquardt learning methods in Chapter 4
(see Equation 4.48). Recall that the Hessian is the second derivative of the
network error with respect to a pair of weights, w;, w;, as repeated in
Equation 5.2:

’E

H —.
dw,; 0w,

(5.2)

l.],:

This matrix is nonlocal in that it uses the derivative with respect to a pair
of weights and for large networks can become computationally costly. A
local approximation to this that uses only the diagonal terms involving
individual weights can be used as follows to overcome this problem. Then
the saliency s; of a weight w; can be computed as

2
= 5.3)
2
where H;; denotes the diagonal entries of the Hessian matrix, that contain
the square of the derivative of network error with respect to each of the
individual weights, w;. Thus, H;; indicates the acceleration of the error with
respect to a small perturbation to a weight, w,. By multiplying Hy; by w7, an
indication of the total effect of w; on the error is obtained. The larger the s;,
the larger the influence of w; on error. The other entries of the Hessian
matrix are assumed to be zero; therefore, the second derivative with respect
to weights other than itself is ignored. This implies that the weights of the
network are independent, which may not be true for a network that has
more than the optimum number of weights. To apply this method, a flexible
network should be trained in the normal way and saliency computed for
each weight. Then, weights with small values of saliency are removed. This
may lead to pruning of weights as well as neurons. The reduced network
must be trained again with the weights that are kept, starting with their initial
values. The trained simplified network should perform as well as the
optimum network with larger number of weights. The application of the
OBD method is illustrated next.

5.4.1.1 Example of Network Pruning with Optimal Brain Damage

This method is now applied to the previous four hidden neuron optimum
network trained with a regularization parameter of 0.0001 using the
Levenberg—Marquardt training method to model the noisy data generated
from an original pattern. The original network is shown in Figure 5.4a and
the true pattern and noisy data generated from it are given in Figure 5.3
and repeated in Figure 5.21. For the trained network, calculated saliency
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Table 5.5 Saliency (Importance) of Weights in the Network (the Higher the
Saliency, the More Important the Weights Are)

apq ar dp2 A12 Aoz @13 dpa A4 by b4 b, bs b,
0.034 0.08 0.018 0.286 1.66 1.48 0.04 0.13 1.82 1.65 5.99 9.45 347

for all 13 weights is given in Table 5.5. Basically, the second derivative of
error is calculated for each weight in the trained network, and saliency is
computed from Equation 5.3.

Network pruning stage 1 (40 percent of weights pruned). Saliency values
in Table 5.5 indicate that all hidden-output weights have high saliencies.
However, weights ag1, ag,, dos, and a;; have the smallest saliency values.
These four weights are deleted from the network. This removal amounts to
deleting all input-hidden weights to neuron 1, eliminating neuron 1, and
removing bias weights of hidden neurons 2 and 4. However, when neuron 1
is eliminated, weight b, is automatically eliminated. Because b; has the
smallest saliency of all the hidden-output weights, b, is eliminated as well so
that neuron 1 is completely eliminated. This amounts to removing five out of
13 (i.e., 40 percent) weights, leaving a total of three hidden neurons and
only eight weights. This removal reduces the elasticity or complexity of the
network considerably. The reduced network was retrained, starting with the
corresponding initial weights from the original training. The network
performance is shown in Figure 5.29.

The RMSE on the validation set (Figure 5.29a) for the pruned network is
0.292, comparing well with the performance of the best network that had an
RMSE of 0.276 and the second best network that had an RMSE of 0.285 using
regularization (Table 5.4). Thus, the selective weight removal based on
saliency can produce results comparable to a full network. As indicated in
Figure 5.29b, the network has generalized well and is comparable to the
best full network.

Figure 5.29¢ indicates that the remaining weights all achieve conver-
gence in 14 epochs, but training now takes longer. The final weights thus
converged are compared to those from early stopping and initial weights in
Figure 5.29d. In this figure, the weights that have been eliminated are shown
as having a value of zero. It shows that the new weights are quite different
from those obtained from early stopping. Recall that the lowest validation
RMSE for early stopping was 0.3 (Table 5.4), indicating that the pruned
network obtained with regularization performs better. In the pruned
network, hidden neurons 2 and 4 have only input-hidden weights active.
Only hidden neuron 3 has both bias and input-hidden weights.

Network pruning stage 2 (54 percent weights removed). After the first
pruning stage, new saliencies for the remaining weights of the retrained
network can be calculated as before, and these, along with the new weights,
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Figure 5.29 Performance of the pruned network with regularization parameter
0.0001: (a) training progress (solid line) and validation performance (dashed line),
(b) model predictions (solid line), original pattern (dashed line) superimposed on
noisy training, data generated from the original pattern, (c) weight adaptation
during training, and (d) final input-hidden weights of the pruned network
superimposed on those from early stopping and initial weights for the full network.

are presented in Table 5.6. Now weight a4 has very low saliency of 0.086.
If this weight is removed, neuron 4 is eliminated, and weight b; must be
eliminated because neuron 4 feeds through &, to the output neuron. Now,
b4 saliency (3.16) is the smallest of all values for hidden-output weights.
Neurons 1 and 4 and the links associated with them are eliminated.
Altogether seven weights outof 13 (i.e., 54 percent) are eliminated with a total
of six remaining (i.e., two weights of hidden neuron 3, one weight of hidden
neuron 2, and three output weights including bias). The full network is now
reduced to a two-hidden-neuron network. The network was trained with
these six weights; and the resulting training performance, target and
predicted outcomes, progress of weight adaptation, and final optimum

Table 5.6 Weights of Pruned Network (40 Percent Weights Removed) and
Their Saliency

a1y aops aiz a4 bg b, bs bs

Weight 0.388 342 —0777 1.71 —2.02 —-337 280 2.67
Saliency  0.358 1.36 1.04  0.086 4.08 3.53 6.22 3.16
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Figure 5.30 Performance of the pruned network with 54 percent weights (seven
weights) eliminated and six weights remaining (regularization parameter 0.0001):
(@) training performance, (b) model predictions (solid line), original pattern
(dashed line) superimposed on noisy data, (c) weight adaptation during training,
and (d) final input-hidden weights of the pruned network superimposed on those
from early stopping and initial weights for full network.

input-hidden weights are shown in Figure 5.30. Results indicate that this
simpler network takes even longer to train than the previously
pruned network.

The RMSE on validation data is now 0.285, smaller than that of the network
with five weights removed (RMSE (validation) = 0.292) yet close to that of
the full model with an RMSE of 0.276 on the validation set (see Table 5.4).
The training RMSE of 0.208 is, however, slightly higher than that of the full
model (0.1805) and the network with five weights removed (RMSE
(training) = 0.173). With seven (or 54 percent) weights removed, the
reduced network still generalizes well. This two-hidden-neuron network
with validation RMSE of 0.285 performs better than the original two-hidden-
neuron model trained earlier (validation RMSE = 0.301) in the assessment of
the effect of hidden neurons in Section 5.3.1.4 and presented in Figure 5.18.
Because the optimum number of neurons is not usually known, a judgment is
made. What is known from pruning can be considered as a
good approximation.

Network pruning stage 3 (70 percent weights eliminated). To see if the
network can be further pruned, the weight saliencies can be calculated on
the reduced model for the six remaining weights. These are presented in
Table 5.7.
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Table 5.7 Weights of Pruned Network after Removing 54 Percent
Weights and Their Saliency

Welght aio ap3 a3 bo b2 b3
Saliency  0.078 1.28 1.39 28.7 3.10 18.03

Now, the saliency of weight a;, (0.078) is very small. If this is dropped,
hidden neuron 2 is removed, and b, must also be removed. As shown, b, has
the smallest saliency (3.102) of all hidden-output weights. If these two
weights are removed, the result is four weights and one hidden neuron. One
neuron is not enough to model the nonlinear function, as illustrated in
Figure 5.31. It shows that removing hidden neuron 2 has a severe impact on
the network performance. This exercise shows that there is a definite
threshold for the architecture of the simplest network that generalizes well
before the network performance is severely impacted. It also shows the
sensitivity of the network to the removal of an essential neuron. Removal of
the last neuron completely deteriorated the performance of the network.

The OBD method systematically removes weights that do not
significantly contribute to the network output. To find these weights, it
uses the second derivative of the network output with respect to a weight.
In this example, the original four neurons can be reduced to two, and
the original 13 weights can be reduced to six while maintaining the
same level of generalization as the original model that has much
greater flexibility.
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Figure 5.31 Performance of the pruned network with 70 percent (or nine) weights
eliminated leaving only four weights associated with one hidden and output
neuron (regularization parameter 0.0001). Model predictions (solid line), original
pattern (dashed line) superimposed on training data.
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Figure 5.32 Sensitivity of network output to input (a) first derivative (gradient)
and (b) second derivative (curvature).

The output of the pruned network with two neurons is

2.63 5.86

— —536+ .
z 53 1+ e—1.84x 1+ 0‘34560.39996

(5.4)

The sensitivity of the network output to inputs is expressed by the first
derivative (gradient) and second derivative (curvature) of network output
with respect to inputs. For the pruned network, these can be calculated from
Equation 5.4, and the resulting gradient and curvature are shown in
Figure 5.32a and Figure 5.32b. In the case of multiple inputs, sensitivities are
given by the partial derivative of the output with respect to each input.

Figure 5.32a shows that the output is highly sensitive to the input in the
vicinity of x = 0, as indicated by the high gradient in this region. The original
target function in Figure 5.3 and Figure 5.21 confirm this. Because this is a
nonlinear function, the sensitivity of output to input is not constant but
situation dependent (i.e., dependent on x). In contrast, for linear models
such as linear regression, the sensitivity is a constant that is the coefficient
associated with that input in the model, and it is the partial derivative of the
output with respect to that input when there are more than one inputs.
Therefore, in nonlinear models, situation dependency must be incorporated
in the assessment of both the contribution of inputs to output and in
selecting relevant inputs. The maximum and minimum of second derivative
of a function show the exact locations where the output function changes
direction (points of inflexion). These points in Figure 5.32b correspond to
the points where the true function changes direction. Thus, the pruned
network has captured the intrinsic trend, underlying the true pattern
represented by the noisy data. These ideas will be further used to prune
irrelevant inputs, hidden neurons, and output neurons as this
chapter continues.
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This section presented how OBD method uses saliency or importance of
weights to remove irrelevant weights. In the process, weights and neurons
can be eliminated. In this method, sensitivity analysis is performed with
respect to the training error. It results in the use of the second derivative or
curvature of the error surface with respect to a weight to compute a saliency
measure for each weight that reflects the influence small perturbations to the
weight have on the network error. Next, variance analysis of sensitivity
(gradient) for network pruning is studied.

5.4.2 Network Pruning Based on Variance of
Network Sensitivity

The objective of pruning is to downsize the model to the level of least
complexity that still provides the best generalization. In this section, a method
that uses the variance analysis of the sensitivity of the output of the network to
the perturbation of its parameters, as proposed by Engelbrecht [12], is
explored. Sensitivity denotes the derivative or gradient. Hornik et al. [13] and
Gallant and White [14] showed that when the network model converges
toward the target function, all the derivatives of the network also converge
toward the derivatives of the underlying target function. This is also demon-
strated in Figure 5.32 for the example in the previous section. Therefore,
output sensitivity (8z/00) can be effectively used for assessing the
relevance of parameter ¢ that can be a weight, an input, or a hidden neuron
output. Engelbrecht [12] states that the two approaches to sensitivity analysis,
using error function and output function, lead to the same results in terms of
parameter relevance. However, sensitivity analysis using output function is
much simpler.

In variance analysis of sensitivity, a parameter # can be an input (x),
hidden-neuron activation (y) or weight (z). As discussed in Chapter 4, error
gradient of a network depends on the inputs meaning that each input
pattern results in a unique gradient. The same is true for output (2)
sensitivity so each input pattern results in a unique value for parameter
sensitivity (0z/0w, 0z/0y, 0z/0x, etc.). In the variance of network sensitivity
approach, it is proposed to compute a “variance nullity measure” that tests
whether the variance in parameter sensitivity over all input—output patterns
is significantly different from zero. If the variance in parameter sensitivities is
not significantly different from zero and the mean sensitivity across all
patterns is small, the corresponding parameter has little or no influence on
the output of the neural network over all the patterns. This measure is used
in a hypothesis test using chi square (x?) distribution to test statistically if a
parameter should be pruned. The hypothesis simplifies to testing if the
expected (mean) value of sensitivity of a parameter over all patterns is zero,
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as will be demonstrated later. First, an expression for the expected (mean)
value must be found. Then, the test statistic following the approach of
Engelbrecht [12] must be developed.

If the sensitivity with respect to a parameter is denoted by S,, then
variance of S, denoted by 0'?0 can be expressed as

Z (Sﬁl MSg
2
o = (55)
where ug, is the mean sensitivity over the total N input patterns and i is the
pattern number. Equation 5.5 can be simplified to

N N N
SO(Sgi— 2Spims, + 15 D Sh > S

P _ i=1 — 2u i=1
S N N SN

s, = ke = K3
(5.6)

This yvields an expression for the expected value of sensitivity with
respect to parameter 6, ug,, in the form of

ws: = K3, + 05, (5.7)

which consists of a bias Component s (i.e., mean of sensitivity square),
and a variance component, O-g‘a Both must be zero for irrelevance of a
parameter. Equation 5.7 states that the mean or expected value of sensitivity
square is the square of mean value of sensitivity plus variance of the
sensitivity. Because the chosen hypothesis involves both mean and
Varunce the test of ps2 =0 would encompass testing both ,u. =0 and
O'S = 0. To test the hypothesw two hypotheses must be tested:

(1) Ho: gy, =0
(2) Hy: a2 =0. (5.8)

If the first hypothesis is rejected, a parameter is relevant and cannot be
pruned. If accepted, then the second hypothesis also must be tested because
large positive and negative values of sensitivity can cancel each other and
produce a sum close to zero, indicating that the parameter is not significant.
In fact, this may not be true. Therefore, testing the second hypothesis is
critical and it makes sense to do this first.

For testing the second hypothesis, relevance of a parameter, v, is
defined in terms of parameter variance nullity. This is the statistical nullity of
the variance of the sensitivity of the output to a network parameter
calculated over patterns i=1, ..., Nand is expressed as
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_(N— 13,

2
0%

755 s (59)

where 0’%0 is the variance of the sensitivity of the network output to
perturbation of parameter # as before and ¢} is a value close to zero. The
Jﬁﬁ for one output network and N input patterns can be estimated from

N _
> (S5, — Sp)°
i=1

2
Osg = N—1

, (5.10)

where S, is the mean of parameter sensitivity S, over the sample of N
patterns:

N
> Sa,
= i=1

Sy =

A1
N (5.11)

The hypothesis that the variance is close to zero is tested for each
parameter 6 with the null hypothesis:

Hy: a5, = 0p. (5.12)

Since g3 cannot be made zero in Equation 5.9, the variance, afﬁ, cannot be
hypothesized as exactly zero. Instead, a small value close to zero is chosen
for 3, and the alternative hypothesis becomes

Hi: O'i/ < 0(2). (5.13)

A parameter is pruned if the alternative hypothesis is accepted. Under
the null hypothesis, the variance nullity measure in Equation 5.9 follows a
x*(N—1) distribution where N—1 is the degrees of freedom for N patterns. A
lower critical x? value 7., obtained from x*distribution tables, is

2
Ye = XN—1,(1—a/2)»

where « is the level of significance. For example, if « = 0.05, it means that
the acceptable level of incorrectly rejecting the null hypothesis five times
out of 100. Smaller « values result in a stricter pruning algorithm. The
hypothesis is tested for each parameter. If v, <. for a particular parameter,
the alternative hypothesis is accepted, and the parameter is pruned.
Otherwise, the null hypothesis is accepted, and the parameter is not pruned.
The success of pruning depends on the value of ¢f. If it is too small, no
parameter is pruned. If it is too large, even the relevant parameters will be
pruned. Therefore, it is good to start with a small value and increase it if no
parameters are pruned. Engelbecht [12] uses an initial value of 0.0001 that is
incremented ten-fold in every pruning step.
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Concerning the first hypothesis that ,u,ga =0, it is not essential to do this
step separately because in the test of variance nullity and checking the
performance of the pruned network, this step is taken care of automatically.
For example, if mean sensitivity and variance are both close to zero for a
weight, the variance nullity measure will prune that weight, and the reduced
network will perform satisfactorily. If variance is greater than zero but mean
is approximately zero, variance nullity would not allow for that weight or
parameter to be pruned. In the third case, if variance is approximately zero
but mean is larger than zero, a weight should not be pruned. Although
variance nullity measure does not specifically test for this case, a part of the
pruning process is to test that the pruned network performance is
acceptable. If the results are not acceptable, the previous network
architecture is restored, preventing the elimination of relevant parameters.
Therefore, only hypothesis test 2 can be used where variance nullity
measure is tested for eliminating irrelevant parameters.

5.4.2.1 lllustration of Application of Variance Nullity in Pruning
Weights

Here, the variance nullity measure is applied to the nonlinear approximation
problem studied in the previous sections to see how efficiently the method
reduces the complexity of the network. Recall that the problem is one-
dimensional, and data was generated from the pattern shown in Figure 5.3
and also in Figure 5.21 by adding a small noise generated from a Gaussian
distribution with mean 0 and standard deviation 0.25. The original network
had four hidden neurons (Figure 5.4a), and the optimum network obtained
from regularization is used here (see Section 5.3.2 and Figure 5.22). Both
training and validation datasets had 15 observations each.

Network pruning with variance nullity measure—stage 1. The variance
nullity measure requires the calculation of gradient (sensitivity) of the
network output to each of the weights. Because gradients were discussed in
Chapter 4, the concept is used straightaway and applied to the optimum
network shown in Figure 5.22. The combined training and validation datasets
(30 observations) is used for this analysis, and the sensitivity of output with
respect to each weight for all input patterns resulting in 30 sensitivity values
for each of the 13 weights are obtained. The variance of the sensitivity ‘7?0 for
each weight across all patterns is presented in Table 5.8. The critical x* for this
case for & =0.01 is X301, 0.995) = 13.12. Initially, a small value of 0.01 for o3
was used in Equation 5.9 to obtain 7y, which is the x* test statistic for the 13
weights. This indicated that only b, has a x* test statistic (0) smaller than the
critical value of 13.2. Therefore, at this level of ¢, null hypothesis is accepted
for all weights but rejected for b,. Therefore, only b, can be pruned. Instead,
o was increased to 0.1, and the resulting x” test statistic and the difference
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Figure 5.33 Chi-square test statistic for variance of sensitivity of output to
weights.

between the test and critical x* are also shown in Table 5.8. The negative
values for the difference indicate the weights that can be pruned.

Table 5.8 indicates that agy, dq1, d14, and by weights have smaller test
values than the critical values. Therefore, the alternative hypothesis
(Eq. 5.13) is accepted for these, and weights can be pruned. Note that this
result is partially similar to that from the weight saliency measure in OBD in
Section 5.4.1. Results from the variance nullity test are graphically presented
in Figure 5.33, where bars indicate the test values in ascending order, and
the horizontal line represents the critical x* value.

Values below the horizontal solid line are the weights that can be
pruned. Neurons 1 and 4 are eliminated (note that the results for a4 are on
the border line); however, this means that weights b, and b; must also be
eliminated with the two hidden neurons. Because neuron 3 is not deleted, b5
cannot be deleted; by is left in to compensate for the deleted output weights.

(a) (b)

Figure 5.34 Pruned network based on variance nullity measure and its
performance: (a) pruned network, (b) trained pruned network output super-
imposed on target pattern and training data.
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Judgment must be used in the decision to prune weights or neurons. The
reduced network after pruning six weights (a1, a4, do1, Aos, b1, and by) is
shown in Figure 5.34a.

The pruned network was retrained with regularization, and the training
and validation RMSE for the pruned network are 0.195 and 0.272,
respectively, and the validation RMSE is slightly better than that (0.276)
for the best full network obtained from regularization in Section 5.3.2.
Because this problem requires at least two neurons, further pruning is not
necessary. Thus, the variance nullity measure pruned the network more
efficiently for this example than did the OBD method using weight saliency.

5.4.2.2  Pruning Hidden Neurons Based on Variance
Nullity of Sensitivity

The variance nullity measure can be applied to prune hidden neurons
directly based on the sensitivity of network output to hidden-neuron
activation. This is an efficient way to reduce the complexity of a network.
Recall that for the aforementioned networks, the notation used for this
sensitivity is 9z/0y, where z is the network output and y is the hidden
neuron activation. If linear activation is used in the output neuron, the
sensitivity 0z/0y will be equal to the corresponding hidden-output weight
(see derivations in Chapter 4) and does not change across all patterns. For
this reason, if variance nullity measure for hidden neuron activation is used,
a nonlinear activation function for the output neuron must also be used. The
arc tan (i.e., tan~ ') function for output activation is used in this example for
illustrating the concept. The output from the optimum network obtained
from training with regularization is shown in Figure 5.35.

How to obtain 0z/0y is discussed in detail in Chapter 4 and therefore the
details are skipped here. Presented in Table 5.9 is the variance of the
sensitivity values for the four hidden neuron activations (34, 2, V3, and y0.
Following the same idea as for individual weights, the hypothesis is tested
that variance in the sensitivity of output to hidden neuron activation is close
to zero. The x? test statistic for the four neurons relative to the critical value is
shown in ascending order in Figure 5.36 for ¢3=0.001and 0.01,
respectively. These values for the two cases are also presented in
Table 5.9. The critical x* value for a =0.01 is xéo_l, 0.995) = 13.12.

Figure 5.36a shows that neuron 4 can be pruned, and Figure 5.36b
shows that both 1 and 4 can be pruned. This leaves neurons 2 and 3
reducing the network to the exact configuration resulted from variance
nullity measure on weight sensitivity. This illustrates that the approach is
robust. Retraining the reduced network, the results shown in Figure 5.37 are
obtained where the network output is superimposed on the target pattern
where noisy data shown in the figure was generated.
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Figure 5.35 Four-hidden-neuron network output with arctan output activation
function (solid line) superimposed on target pattern (dashed line) and noisy data
generated from the target pattern.

Table 5.9 Variance of Sensitivity of Output to Hidden-Neuron Activation and
x? Test Statistic

Y1 Y2 Y3 Ya
Variance 0.0035 0.007 0.017 0.000193
x> (62 =0.001) 103 206 503 5.6
x* (62=0.01) 10 20 50 0.56
x x
500 50
400 40
300 30
200 20
100 10
(@) p ,Tl 3 " Hid. output (b) ] ,jl 3 " Hid. output

Figure 5.36 Variance nullity measure for sensitivity of output to hidden-neuron
activation (0z/9dy) for significance level («) of 0.01: (a) 05 = 0.001, which indicates
that one neuron has variance of sensitivity close to zero; (b) o3 =0.01, which
indicates that two neurons have variance close to zero (critical x? for a = 0.01 is
X(230_1, 0.995) = 13.12).
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Figure 5.37 Output of the pruned network (hidden neurons 1 and 4 removed)
obtained from variance nullity measure on the sensitivity of output to hidden
neuron activation, superimposed on target pattern and noisy data.

Figure 5.37 shows a good fit to data. The validation RMSE for the pruned
network is 0.277 and for the full network was 0.276 (Section 5.3.2),
indicating that generalization of the pruned network is as good as that of the
original full model.

The network pruning must be done in stages, and if a pruned network
performance is not satisfactory, the original configuration must be restored.
If the pruned network performs better or satisfactorily, then further pruning
can be done until the performance deteriorates. In this example, at least two
neurons are needed so the network will not be further pruned.

The pruning process can also be extended next to removing redundant
inputs based on sensitivity of network output to inputs. In the example,
there is only one input and, therefore, it cannot be extended to illustrate this
point. However, Engelbrecht [12] successfully applied the method to
eliminate redundant inputs. Moreover, Engelbrecht [12] tested the variance
nullity measure on several real-world examples, including three medical
problems, showing that the method is superior to OBD [8], OBS [9,10], and
MBP [5,7]. The latter (magnitude based pruning) involves removing weights
that have small values; however, this is not a good way to eliminate weights
because the network output can still be very sensitive to small weights.

5.5 Robustness of a Network to Perturbation
of Weights

Section 5.3.1 illustrates that depending on the randomness in initial weights
as well as in sampling of data, different weight values can result. However,
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the pattern (trend) of hidden neuron activity for these configurations can
still be very similar, regardless of the differences in the values of actual
weights. It appears that it is not the actual weight values that matter; rather,
their correlations [15]. This gives a network with many weights latitude to
assume a range of values while producing the desired response. Thus, with
redundant weights in a network, there is more than one possible set of
weights that preserve the correlation structure. A pruned network would
eliminate redundant weights, narrowing down the possible solutions to a set
of optimum weights. Even so, inherent random noise in training could cause
the weights to fluctuate. A good network can be expected to be stable
against perturbation of weights. To test this idea, random noises of
increasing magnitude are added to the trained weights of the pruned
network in the previous section to see how the network performs.

The weights in the pruned network were perturbed by adding noise
from Gaussian distributions with zero mean and a range of standard
deviation: 0.01, 0.05, 0.1, and 0.2. Because approximately six standard
deviations contain about 99 percent of the observations, these distributions
add noise within + 3 percent, + 15 percent, +30 percent, and + 60 percent
of the individual weight values. For a particular noise distribution, the
amount of noise added to each weight is random within the possible range.
The network output for these perturbations is shown in Figure 5.38 where
the bottom solid line is for a standard deviation of 0.2 providing the
maximum perturbation of +60 percent. The curves for the other three
perturbations are quite close to each other, indicating that the weights are

0.5
[ ]

e )
N > N\ 4

-1 L 28

Figure 5.38 Resilience of the pruned network output to perturbation of weights
simulated by adding Gaussian noise with zero mean. (Bottom solid line is for noise
standard deviation of 0.2 and top three solid lines are for standard deviations of
0.01, 0.05, and 0.1. Dashed line is the target pattern from which noisy data was
generated.)
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Table 5.10 Training and Validation RMSE for Various Noise
Levels Applied to Optimum Weights of Pruned Network

Standard Deviation of Training Validation
Gaussian Noise Distribution RMSE RMSE
0.01 0.204 0.277
0.05 0.199 0.297
0.1 0.297 0.330
0.2 0.770 0.707

quite robust to random errors up to 30 percent of their mean. The network
response shifts while still maintaining the general trend at the noise level of
0.2 standard deviation that perturbs the weights randomly by + 60 percent.

Training and validation RMSE for various noise conditions are given in
Table 5.10, showing that network performance is robust against noise up to
noise standard deviations of 0.1 causing up to £30 percent random
perturbation to the weights. At the highest standard deviation of 0.2, the
error is unacceptable and corresponds to the bottom curve in Figure 5.38.

5.5.1 Confidence Intervals for Weights

Because weights are robust against perturbation with noise levels even up to
+30 percent, confidence intervals for the weights were built [16]. This is
illustrated for a noise level of +15 percent added to weights from a
Gaussian distribution with 0.05 standard deviation. Several sets of weights
need to be drawn with each representing one network. Ten sets of weights
around the optimum weights were generated using the noise distribution.
The mean and the standard deviation of the weights are shown in
Table 5.11.

From the results in Table 5.11, 95 percent confidence intervals can be
constructed using methods of statistical inference based on sampling
distribution using

- S )
(1— a)Cl = wtt,, ﬁ, (5.11a)

Table 5.11 Mean and Standard Deviation of Network
Weights Perturbed by +15 Percent Around the Optimum

ap2 a2 aop3 az by b, bs

Mean —0.49 208 144 —054 —573 296 6.02
SD 0.051 0.046 0.053 0.037 0.05 0.033 0.027
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Table 5.12 Upper and Lower Confidence Interval (Cl) Limits for the
Optimum Weights

@] ap2 a ap3 a3 by b, bs
Upper —0.455 2.1 1.48 —0.515 —5.7 2.98 6.04
Lower —0.523 2.05 1.41 —0.566 —5.77 2.94 6.01

where @ is the mean value of a weight, s,, is the standard deviation of that
weight, and 7 is the sample size. In this case, there are 11 observations.
The £, ,,—1 is the ¢ value from the ¢ distribution for 1 — « confidence level and
degree of freedom (dof) of n—1. For &« = 0.05 and dof = 10, ¢ value is 2.228.
For the mean and standard deviation given in Table 5.11, confidence
intervals for each of the seven weights are constructed and these are
presented in Table 5.12.

If the network output is plotted with these lower and upper limits for
weights, upper and lower limits for network performance can be
constructed. These upper and lower confidence limits are presented in
Figure 5.39 along with the training data, target pattern, and network output
for the mean (optimum) weights.

The results in Figure 5.39 indicate that mean and confidence limit values of
the weights produce output patterns that preserve the trend of the target
pattern. The network outputs follow the target pattern more closely than they
follow the noisy data, indicating that noise has been eliminated and that the

Figure 5.39 Network output for the lower and upper confidence limits for the
individual weights. The smaller dashed line is the network performance with mean
(optimum) weights and the two solid lines are network output for the upper and
lower 95 percent confidence limits for the weights. The medium dashed line
represents the target pattern from which noisy data was generated.
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networks have found the general trend of the target pattern. The original
target pattern in some regions is outside the confidence bands, but the
network only sees the noisy data, not the pattern. The network’s task is made
more difficult by adding a reasonably large noise to the only 15 observations
extracted from the target pattern for training and another 15 for cross
validation. For a larger sample size or for data with less noise, there is no
doubt that the network will approximate the target pattern even better. Recall
that a standard deviation of 0.25 was used for the noise distribution when the
original data was extracted from the target pattern (see Section 5.3.1).

The perturbation of network weights to obtain a weight distribution
for each weight as done here is a simple way to introduce randomness to
weights. A random Gaussian noise was added to the optimum weights
obtained through training so the perturbation is around a fixed optimum
set of weights. In Chapter 7, how Bayesian statistics [2,17] can be used
to assess uncertainty of network weights and obtain a probability
distribution of weights within a theoretical framework where the
optimum network weights become the set that is most plausible (i.e., has
the highest probability) is studied. This framework is also used to
assess uncertainty of output errors and sensitivity of outputs to inputs in
Chapter 7 [18,19].

5.6 Summary

This chapter presents a detailed treatment of network development and
assessment of networks’ robustness. The first issue dealt with is the bias and
variance tradeoff that addresses the issue of having suboptimal models that
either underfit (bias) or overfit (variance) the data. A model that does
not have adequate flexibility underfits, and one with too much flexibility
overfits. What is desired is a model that has the required flexibility and
generalizes well for unseen data.

Presented are two methods used for resolving this problem: early
stopping and regularization. In early stopping, training stops when error on a
validation set starts increasing. In regularization, an additional regularization
parameter is added to the square error criterion, and its purpose is to keep
weights from growing, which is the cause of overfitting. Through these
discussions, the chapter illustrates the effect of initial random weights and
random sampling of data. In addition, the problem of nonuniqueness of
weights for these cases is addressed. Furthermore, to shed light on the
nonuniqueness of weights, the hidden neuron activation for various cases of
initial random weights and random sampling is graphically presented to
illustrate the consistency of the approach that a network takes toward a
solution regardless of the number of hidden neurons, random weights, or
random sampling.
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Regularization and early stopping produce networks that generalize
well, but they are not the optimum in terms of least structural complexity.
The simplest possible nonlinear model that generalizes the best is the goal
of modeling data. One approach to achieving such optimum models is
pruning. This chapter presents approaches to pruning networks (weights
and neurons), and it illustrates two pruning methods, optimal brain
damage (OBD) and variance nullity measure, in detail. The robustness of
the pruned networks is tested by perturbing optimum weights through
adding various amounts of random noise to them. This chapter shows that
the weights obtained from regularization are robust even up to %30
percent noise. Finally, confidence intervals are obtained for weights based
on a sample of networks weights extracted from the set of optimum
weights by adding noise. From these, upper and lower confidence bounds
for network performance are obtained.

Problems

1. Explain the importance of model validation and testing and the
specific aspects of model development they address.

2. How do bias and variance affect the generalization ability of a
neural network? What are the causes of error in these two situations?

3. What is the basis of the early stopping method used for improving
generalization?

4. How can data, and sometimes noise, help optimize model
performance? What is the basis for this feature?

5. What is the aim of regularization, and how is it achieved? Explain
the difference between early stopping and regularization.

6. Various approaches can be taken to prune networks for optimizing
structural complexity. What fundamental concepts are used in
pruning? Propose some other potential approaches for improving
the efficiency of pruning.

7. Using a dataset of your choice, separate it into training, validation,
and testing. Perform early stopping and/or regularization on an
initial feedforward MLP network using training and validation data
and test the model with test data.

8. If possible, prune the network trained in Problem 7 to obtain the
best possible model, and compare the results against actual
test data.

9. Extract the optimum weights from the network in Problem 8 or
Problem 7 and obtain an analytical expression for the prediction
model. Understand how the prediction is affected by the inputs by
plotting the model response against inputs.
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10. Extract sensitivity of output to inputs (dz/dx) over the whole
database. Comment if this result and trends found in Problem 9
are compatible.

11. Test the robustness of the model in Problem 8 to perturbation of
weights by adding random noise to the optimum weights and
using these in the model to generate predictions.

12. Generate confidence intervals for the weights, and check if the
target response is captured within the confidence bands.

13. Interpret your model in terms of the objectives of the model
development task. Are the results meaningful?

14. Compare the model with that obtained from a linear method such as
linear regression or any other nonlinear method on the same data.
Comment on the advantages or disadvantages of the neural model.
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Chapter 6

Data Exploration,
Dimensionality
Reduction, and Feature
Extraction

6.1 Introduction and Overview

An important first step in modeling is data exploration. This includes
data visualization for qualitative assessment of trends and relationships, data
cleaning, dimensionality reduction, and extracting relevant inputs and
features that help subsequent modeling. Neural networks for prediction
and classification, such as multilayer networks including multilayer
perceptron (MLP) and radial basis function (RBF) networks, are nonlinear
processors that map inputs nonlinearly to outputs. They do this by the use of
hidden layer neurons linked with inputs. The greater the number of inputs,
the greater the number of weights linking inputs to hidden neurons. This
can adversely affect model accuracy. For example, the greater the number of
free parameters (i.e., weights), the more demanding is the process of
optimizing these weights.

Finding the information most relevant to a problem is generally called
feature extraction. What is really necessary is a model that has only the
relevant inputs or features of a problem that lead to the least number of free

245
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parameters producing the best model with adequate generalization for the
given data. Therefore, by removing redundant inputs, for example, the
model can be kept more simple. Another problematic aspect of inputs can
be multicollinearity where input variables correlate with one another. The
correlation structure of inputs leads to nonuniqueness of solution, i.e., the
existence of more than one solution for the weights due to interaction
between inputs that translate their correlations to weights, thereby
complicating the optimization of the free parameters. Furthermore,
correlated inputs make a network operate in a dimension reduced from
the original. For example, if there are 7 variables and d variables are highly
correlated, then essentially there are (n—d+1) independent variables.
The correlated variables can be grouped together, or a representative
from this group may be sufficient to incorporate the effect of the whole
group on the outcome. A model can be greatly simplified if input variables
are independent.

Furthermore, it is not uncommon to encounter practical situations with
many variables but few observations because of the nature of the problem
or difficulty in collecting data. When a network is trained for such cases with
many variables, there will be sparse areas or areas without data in the input
space because of the lack of data, causing the network to experience
difficulties in adequately estimating the large number of free parameters
resulting in a suboptimal solution. In these situations, reducing the number
of input variables may be essential.

In many cases, values of some input variables are expressed by large
magnitudes whereas others may be quite small. This discrepancy can lead to
faulty interpretation by the model because larger weights are adopted for
inputs with larger magnitudes, thereby masking the influence of variables
with smaller magnitudes. This may require normalization of the input data
so that all variables fall in a similar range.

This chapter addresses these important aspects of data preprocessing
and illustrates most of the concepts using an example dataset involving
thermal conductivity in wood in relation to moisture content, density, and
temperature. Histograms, scatter plots, correlation plots, parallel visualiza-
tions, and projections of multidimensional data onto two dimensions are
presented in Section 6.2 as an aid to understand the character, trends, and
relationships in data. Correlation and covariance are used to measure
strength of relationships and dispersions in data, respectively, as illustrated
in Section 6.3. Section 6.4 presents several approaches to normalization:
standardization, range scaling, and whitening. The latter allows normal-
ization of correlated multivariate data.

A great deal of attention is paid to input selection and dimensionality
reduction for improving model development and accuracy. The use of
statistical tools such as partial correlation, multiple regression, and best
subsets regression for input selection are explained in Section 6.5; and
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principal component analysis and partial least squares regression are
presented as suitable methods for dimensionality reduction and feature
extraction in Section 6.6. Outlier detection and noise removal in multivariate
data are addressed in Section 6.7 and Section 6.8. Various approaches to data
preprocessing presented in the chapter are further demonstrated using an
example case study involving a real application in Section 6.9. The positive
effect of preprocessing on structural complexity and model accuracy is also
demonstrated using this case study.

The following example illustrates the methods of data exploration
discussed in Section 6.2 through Section 6.7.

6.1.1 Example: Thermal Conductivity of Wood in Relation
to Correlated Input Data

The example problem involves exploring thermal conductivity data of wood.
In many temperate countries, wooden homes are quite common, and an
attractive aspect of wood is that it is a good thermal insulator. The thermal
conductivity of a material indicates how much heat is conducted by it, and
one with low thermal conductivity is a good insulator. To properly design
wooden homes for winter comfort, it is important to know its thermal
conductivity accurately. Thermal conductivity of wood depends on density
that varies within and across wood species, moisture content, and tempera-
ture. Thermal conductivity must be determined from carefully planned
experiments, so in our sample there are only 35 observations obtained for a
variety of species [1]. In the dataset, the temperature range is between 0 and
100°C; however, most of the observations have been made for a constant
temperature of 29°C. The moisture content ranges from 0 to 91.1 percent, and
density ranges from 294 to 930 kg m ™. The thermal conductivity for these
conditions ranges from 0.0731 to 0.3744 (Wm~ ' K~ ). Five input-output
pattern vectors extracted from the dataset are shown in Table 6.1.

Table 6.1 A Sample of Five Records from the Dataset for Thermal
Conductivity and Related Variables

Moisture Density

Species Temp. (°C) (percent) (kg/m’) Conductivity (W/m K)
Ash white 29 15.6 647 0.1742
Red oak 29 12.4 697 0.1944
Japanese 20 0 294 0.0778

cedar
Japanese 25 50 800 0.2132

beech

Silver birch 100 0 680 0.25
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6.2 Data Visualization

An important but problematic aspect of dealing with multidimensional data
is visualization of data. When the dimension is greater than three, the
standard methods of visualization become insufficient. However, visualiza-
tion provides important qualitative clues as to the significance and
interaction of the variables. Scatter plots, histograms, parallel visualizations,
and projections to reduced dimensions are some popular methods of data
visualization. This section explores these visualization methods for the
example described in the previous section involving thermal conductivity of
wood and its relationship to density, moisture content, and temperature.

6.2.1 Correlation Scatter Plots and Histograms

Visualization of data is an important first step in data analysis and modeling. It
can give clues as to the level of nonlinearity, patterns and trends in data and
interactions among variables. Figure 6.1 shows plots of all data for the thermal
conductivity analysis [2]. The diagonal histograms show the distribution of the
individual variables with gray level intensity highlighting correspondence
to the value of the output variable, thermal conductivity, denoted by K.
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Figure 6.1 Histograms and correlation scatter plots of data highlighting the
distribution and the relationship of input variables to themselves and to output
variable.
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For example, high density (Dens) and high moisture contents (M) are
associated with high conductivity depicted by lighter shades of gray in
histograms. However, the pattern is not so clear for temperature (7).
Conductivity increases marginally from minimum to maximum temperature,
but there is a much larger variation for 29°C represented by the tallest column
inthe histogram. The off-diagonal scatter plots show how individual variables
relate to one another with the gray level highlighting the correspondence to
conductivity-K. They show that conductivity is positively correlated with
density and moisture content. Furthermore, moisture and density are also
positively correlated. A dominant feature in the data is the large scatter, which
is common in data from biological, ecological, and natural systems.

6.2.2 Parallel Visualization

Parallel visualization is a useful way to visualize multidimensional data.
Figure 6.2 shows a parallel plot of data in the thermal conductivity dataset
and their interdependencies and highlights how the three variables—
temperature, moisture content, and density—together affect conductivity.
It shows that high density and high moisture content combination produces
high conductivity. The bottom part of the graph shows low conductivities,
and the upper part shows high conductivities. Temperature does not have a
range of values to cover the whole span, but it can be expected that higher
temperature will lead to higher conductivity, especially in combination with
high density and moisture content. As can be seen, lack of data along the
temperature axis creates sparse data areas for modeling, an effect that can
cause difficulties in the parameter estimation process.

T M Dens Conduct-K
100 91.1 930 0.3744

N

0 0 294 0.0731

Figure 6.2 Parallel coordinates visualization depicting the range of the variables
and their interdependencies highlighted with respect to the value of the output
variable (the lighter the shade of the lines, the higher the conductivity).
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6.2.3 Projecting Multidimensional Data onto
Two-Dimensional Plane

Another powerful visualization method is self-organizing maps (SOMs)
where higher-dimensional data is projected onto a two-dimensional (2-D)
grid consisting of cells [3]. Chapter 8 is devoted to this topic, so the
theoretical issues is not explored here, but the concept is illustrated for the
thermal conductivity data discussed in the previous section. Figure 6.3
presents the results of projections of each variable vector, consisting of
temperature, moisture content, density, and thermal conductivity, onto a
map consisting of 25 (5X5) cells.

These maps are based on the similarity or closeness of the vectors of
variables, which are projected so that vectors that are closer together in
multidimensional space are also closer together in the 2-D plane, so the
projection preserves the spatial correlations (or topology) in the data.
Components (variables) of the projected vectors can be visualized
separately in component maps as shown in Figure 6.3 where individual
cells correspond across maps. For example, the maps in Figure 6.3 can be
aligned (or placed on top of one another) for comparison and analysis of
correspondence. Gray level highlights the correspondence to thermal
conductivity-K. These reveal again that high moisture content and high
density lead to high conductivity, but temperature has not such a clear

T M
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5 88.89 5 71.29
77.78 62.38
4 66.67 4 53.47
3 | 55.56 3 44.56
44.44 35.64
2 33.33 2 26.73
2222 17.82
1 11.11 1 8.91
0 0
~— [aV) (e} < n ~— [aV] [s0} < n
Dens Conduct-K
915.8
5 846.71 5
777.62 4
4 708.53
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3 570.36 3
501.27
2 432.18 2
1 363.09 1
294
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Figure 6.3 Visualization of variables according to their relation to conductivity
using self-organizing map projections (lighter shades denote higher conductivity).
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relevance to other variables. The maps thus show qualitatively how inputs
are related to thermal conductivity throughout their range.

6.3 Correlation and Covariance between Variables

The correlation coefficient 7 is a measure of the strength of relationship
between two variables. The higher the correlation coefficient, the stronger
the relationship. The correlation coefficient for two variables x; and x, with
mean X; and X, can be expressed as [4,14,21]

N
;(XU — X))y — X3)

(6.1)

" N N
Z:l (%01, — 9_51)2 231 (%2 — 9?2)2

i=

The linear correlation coefficients for the variables in the thermal
conductivity dataset are illustrated in the bar chart in Figure 6.4, which
shows that conductivity is highly correlated with density (0.775), is
reasonably highly related to moisture content (0.647), and has little
correlation to temperature (0.172).

The correlation matrix depicting correlation between all four variables is
presented in Table 6.2.

The correlation matrix is symmetric with the diagonal values represent-
ing the correlation of a variable to itself, which is 1.0. Off-diagonal values are
the correlations between pairs of variables denoted by the labels indicated
in the first row and column. Moisture content (M) and density (Dens) are
correlated at 0.583, but density has very little correlation with temperature
(T) (—=0.077), and moisture is weakly and negatively related to temperature
(—0.221). Thus, judging by the correlation, conductivity is mainly
influenced by density and moisture content, and these are reasonably

Conduct-K Conduct-K
Dens Dens
M M
T T

0 0.2 0.4 0.6 0.8 1

Figure 6.4 Correlation graph for the three independent variables—density,
moisture content, and temperature—and the dependent variable, thermal
conductivity, K.
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Table 6.2 Correlation Matrix for the Input and Output

Variables

T M Dens K
T 1.0 —0.221 —0.077 0.172
M —0.221 1.0 0.583 0.647
Dens —0.077 0.583 1.0 0.775
K 0.172 0.647 0.775 1.0

Table 6.3 Covariance Matrix for the Three Input

Variables

T M Dens
T 543 —141 —351
M —141 753 3117
Dens —351 3117 37 888

highly correlated. Temperature has a weaker relationship to all the variables
and is especially weak in its correlation to density.
The covariance of two variables is expressed by [4,14,21]

N

1
COV = N—1 ;(xlz — X))y — X3). (6.2)

Basically, the two expressions within parentheses in Equation 6.2 each
compute the difference between the value of an input variable and its mean.
When two variables coincide (i.e., x; = x»), the result is the covariance of
one variable with respect to itself, which is its variance. When x; # x,, the
result is the covariance between the two variables. The covariance matrix
containing the covariance between each pair of the three input variables is
presented in Table 6.3. As with the correlation matrix, the covariance matrix
is symmetric. Here, the diagonal values represent the variance of each
variable, and off-diagonal values represent the covariance between pairs of
variables denoted by the labels in the first row and column. Covariance is a
measure of how two variables co-vary in relation to one another. When two
variables are not related, their covariance is zero. If two variables move in
the same direction, covariance is positive and if they move in opposite
directions, it is negative. Table 6.3 indicates a high positive covariance
between moisture content (M) and density (Dens) and smaller negative
covariance between these and temperature (7).

Data including spread, trends, relationships, correlations, and covari-
ances helps clarify the problem to determine appropriate strategies for
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normalization of data and extract relevant inputs and features for model
development. These issues are addressed next.

6.4 Normalization of Data

Figure 6.2 indicates that variables in the thermal conductivity dataset have
very dissimilar ranges. When variables with large magnitudes are combined
with those with small magnitudes, the former can mask the effect of the
latter due to the sheer magnitude of the inputs leading to larger weights
associated with them. Normalization puts all inputs variables in a similar
range so that true influence of variables can be ascertained.

6.4.1 Standardization

There are many ways to normalize data. A simple approach is to standardize
the data with respect to mean and the standard deviation using a linear
transformation. This transforms all variables into a new variable with zero
mean and unit standard deviation. To do this, each input variable is treated
separately, and for each variable x; in the training set, the mean X; and
variance o7 are calculated using

1 &
92, = N Z.X'ln
n=1
L (6.3)
2 _ n__ =\2
0 _N_IZ:(xz xl)
n=1
where n=1, ..., Nis the pattern number. With the mean and the standard
deviation ¢;, each input variable is normalized as
xP—x
Xy == 1 (6.4)
g

where x7; is the normalized (transformed) value of the nth observation of
the variable x;. The new transformed variable now has zero mean and unit
standard deviation. The actual range of the data depends on the original
data, but most data fall within £ 2¢. For prediction problems, the target
output is also normalized using the same procedure for consistency. With
the normalization, the inputs and target variables are of the same order;
therefore, final weights will also be of order unity. This, furthermore,
prevents weights from growing too large and causing training problems
in situations where large weights throw the current training into a flat area of
the error curve as discussed in Chapter 4.
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Table 6.4 Standardized Values for Thermal Conductivity and Related
Variables Presented in Table 6.1

Species Temp Moisture Density Conductivity

White ash —0.222 —0.204 0.327 —0.083

Red oak —0.222 —0.321 0.584 0.1611

Japanese —0.608 —0.772 —1.49 —1.25
cedar

Japanese —0.393 1.05 1.11 0.388
beech

Silver birch 2.82 —0.772 0.496 0.833

Look at the thermal conductivity dataset to understand how to do
this normalization. The means for the four variables—temperature,
moisture content, density, and thermal conductivity—represented in vector
form are

X = —1{34.2,1.20,583,0.1811}. (6.5)

Similarly, the standard deviations for the same variables represented in
vector form are

o, = {23.29,27.45,194.6,0.0827}. (6.6)

The rescaled data xy; for those in Table 6.1 using Equation 6.4 is shown
in Table 6.4.

Now variables are unit free and have a similar range that varies between
+ 3 with 0 mean and a standard deviation of 1. The correlations established
earlier are not altered by this standardization.

6.4.2 Simple Range Scaling

Another simpler approach is to fix the minimum and maximum values for
the normalized variables to 0 and 1 or 1 and —1, respectively. In this case,
the mean and the standard deviation of the normalized inputs vary from one
input variable to another, but the observations stay in the same range.
A simple linear transformation in the range from 0 to 1 is
xn — ‘xl 'lem (6.7)

Ximax — Ximin

where X, and X, are the minimum and the maximum values of the
variable x;. A similar transformation can be made for any desired range,
e.g., —1 or 1, or any other. For the example thermal conductivity problem,
each of the four variables were transformed using Equation 6.7, and the
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resulting mean and standard deviation for the variables are

x = {0.342,0.233, 0.455, 0.358}

6.8
g, = {0.233,0.30,0.306, 0.275} ©8)

The above linear transformations are done for each individual variable
separately without any consideration given to the correlations among data.
The whole set of input variables can be considered together and linear
transformations that take into account the correlations among inputs can be
done. One such method is called whitening [5]. Table 6.2 shows that the
variables in the example thermal conductivity dataset are correlated. The next
section examines how whitening transforms these correlated data.

6.4.3 Whitening—Normalization of Correlated
Multivariate Data

To illustrate this method, the whole set of input variables & must be
considered, so denote the whole group of input variables by vector
X ={xy, Xo,...,%,1 where x; is the ith input variable. With this vector
arrangement, the mean and variance of each input variable and the
covariance between sets of two input variables can be calculated efficiently.
Then the mean values can be put into a mean vector X = {X, X», ..., X} and
the variances and covariances into a covariance matrix (COV) as follows:

1o
X=NZX”

n=1

R 6.9)
COV =—— n;(x” - " — %)

In Equation 6.9, COV is a symmetric matrix of size kX k, where & is the
number of input variables. When two variables coincide in the second
equation, the result is the variance, and when they are dissimilar, the result is
the covariance between the two variables. In the second equation, (x"—X)
is a vector containing the difference between each variable and its mean for
the k variables in the nth input pattern. Thus, it is of length k. 7" denotes
transpose, which in this case is the row format of the difference vector. The
multiplication of a vector by its transpose is called the outer product and in
this case results in a matrix of size kX k (see the Appendix for an example
illustrating transpose of a vector and outer product). This is for one input
pattern. If this is done repeatedly for all input patterns, all the corresponding
entries are summed, and the sum is divided by N — 1, then the operation in
Equation 6.9 is performed. The result is the covariance matrix for the
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dataset. Using vectors, covariance matrix can be calculated more efficiently
compared to treating each pair of variables separately as in Equation 6.2.

The COV matrix (see Table 6.3) can be transformed into a new matrix
that corresponds to a set of new rescaled variables that have unit
variance and are independent of one another. Therefore, covariance
between two new variables is zero. This is accomplished by the well-known
eigenvalue decomposition method or principal component analysis (PCA),
which can be found in many statistical or mathematical software [4-7].
Therefore, mathematical details are kept to a minimum and the concept is
emphasized and illustrated using an example. The PCA is represented by

COV u; = Auy, (6.10)
where jth rescaled variable represents the variance (also called the
eigenvalue) of the rescaled variable and u; represents a vector containing
the coefficients or the weights indicating the proportion of all the original
variables that make up the jth new variable. The value of the jth rescaled
variable is obtained from a linear combination of the original variables using
these weights. The u; is called an eigenvector, and there are as many
eigenvectors as there are input variables.

Each eigenvector u; defines the direction of a new axis for the jth rescaled
variable called a principal component so that all new axes are perpendicular
to each other. This makes the covariance between the rescaled variables zero,
meaning that they are uncorrelated. Thus, this process essentially
decorrelates the original input variables and creates new variables from
them independent of one another.

Figure 6.5 illustrates schematically the original distribution and the
whitened distribution for the case of two input variables x; and x;. In the
original distribution, x; and x, are correlated. The new rescaled variables,
represented by u; and u,, are perpendicular to each other and uncorrelated.
The #; is parallel to the major direction of the data in the original

X A

distribution

Whitened distribution

P x,

Figure 6.5 Schematic illustration of the distribution of original correlated data
and whitened uncorrelated data.
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Table 6.5 Eigenvectors for the Input Data

T M Dens
uq —0.0096 0.0831 0.996
u, 0.775 —0.629 0.06
us 0.632 0.772 —0.058

distribution, thereby capturing most of the variance in the original data. The
Uy is parallel to the minor direction of the original data and captures the
variance of the data in that direction. Thus the new rescaled variables
represented by #, and u, capture all the variance in the original data while
removing the correlation between x; and x;.

In the case of the thermal conductivity problem, the COV matrix for the
three variables of temperature, moisture content, and density is given in
Table 6.3. The COV matrix shows that three variables are not independent
because covariance (off-diagonal terms) is not zero. This was transformed
using Equation 6.10, and the resulting three eigenvectors, u1, 1, and us, are
given in the matrix of eigenvectors in Table 6.5. Each vector consists of the
weights or coefficients that transform the original variables to the new
coordinate system.

The transformation results in three new variables called principal
components (PCs). The first PC is expressed by w4, the second PC by #,, and
the third by us. These are perpendicular to each other and therefore
uncorrelated. The variance of the ith new variable (PC) is given by the
eigenvalue 4;, and these were found to be 38151, 630, 402, respectively, for
the first, second, and third PCs. The first PC always captures the largest
amount of the variance of original data, the second PC captures the largest
amount of the residual variance, and so on.

To obtain the transformed variables, the original variables are multiplied
by the weights (also called loadings) shown in Table 6.5. The first row
defines the weights for the first PC depicted by u,, and second and third
rows contain the weights for the second and third PCs depicted by u, and
us3. Prior to this, weights are normalized by dividing by the corresponding
standard deviation (or square root of eigenvalue, \//Tj) of each PC. For
example, the first eigenvalue is 38 151; therefore, the standard deviation of
the first PC is 195.32. Each loading in the first row in Table 6.5 is divided by
195.32 to normalize the first PC. The normalized coefficients for the three
PCs are given in Table 6.6. These are denoted by u}, u5, and u}.

The normalized coefficients are multiplied by the original variables
scaled to zero mean to obtain the values for each PC. To transform the
original variables to zero mean, simply subtract the corresponding mean
value from the values of each of the original variables, (i.e., x;—X; where the
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Table 6.6 Normalized Eigenvectors for the Input Data

T M Dens
uﬁ —0.0000492 0.03086 0.0315
uh 0.000425 —0.025 0.038
ué 0.0051 0.0024 —0.0029

latter is the mean of the ith input variable). Mean values given in Equation
6.5 are repeated below:

% = {34.2,1.20,583,0.1811}. (6.11)

The calculation for the first data vector in the dataset in Table 6.1 will
now be performed. The values of the three zero-mean original input
variables can now be calculated, and these are {—5.2, —14.4, 64} denoted
by vector x;={x};,x5;,x%5}. The normalized first eigenvector is given
by u} = {u}, u',, u}3}, and from the first row of Table 6.6, its values are u} =
{—0.0000492, 0.0308642, 0.0315057}. Thus, the equation for the value of the
first component, PCy, also called the PC score for the first PC, can be written as

PC; = uj Xy + uhoxhy + ujzxs
= —0.0000492 X (— 5.2) + 0.03086 X (— 14.4) + 0.0315 X 64 = 1.57.

The values of the second and third PCs corresponding to the same input
pattern are computed similarly by multiplying the second and third row,
respectively, of Table 6.6 by the component of the same input vector.
Repeating this process for all the rescaled original input vectors results in the
three PCs for each of these input vectors. Now the variance of these PCs is
unity, and the mean is zero. Figure 6.6a shows a plot of the distribution of two
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Figure 6.6 Illustration of rescaling of the original input distribution with
whitening: (a) original distribution of two variables (moisture content and density)
and the whitened distribution with unit variance and zero mean shown with
respect to first two PCs and (b) enlarged view of whitened distribution.
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original variables (moisture content and density) rescaled to zero mean
superimposed on the whitened (transformed) distribution (denoted by
triangles shown at the origin) of the first two components represented by u}
and u},. Because of the scale difference, the form of the whitened distribution
cannot be ascertained from this figure; therefore, in Figure 6.6b it is shown
separately to demonstrate the form of the distribution that has unit variance
and zero mean. All the transformed variables are within a circle.

6.5 Selecting Relevant Inputs

In practical problems, there can be many independent and dependent
variables. The first approach considered in many modeling problems is
linear regression. This is done using methods such as least squares
regression to obtain a mathematical expression relating the output to several
input variables. In such regression models, the number of predictor
variables determines the number of model parameters and, therefore, the
complexity of the model. In neural networks, as presented in Chapter 3,
Chapter 4, and Chapter 5, the model complexity is governed by the number
of hidden neurons and hidden layers in addition to the number of predictor
variables. This gives the modeler greater control in choosing a model with
adequate complexity to model the problem. However, overfitting is a
problem when a model has too many free parameters (weights). As
presented in Chapter 5, overparameterized models can fit the original data
well but can yield poor generalization.

In a neural network model, overfitting can be lessened by reducing the
number of input variables and hidden neurons [16]. As presented in Chapter
5, early stopping and regularization are two methods used to reduce
overfitting using external control over the size of the weights [5,7,8]. This
does not reduce the number of free parameters and also does not address
redundant or irrelevant variables. Chapter 5 also illustrates several network
pruning [9,10,20] methods, and these reduce model complexity by
eliminating irrelevant neurons, weights, and inputs. This section examines
ways to reduce the number of input variables from the beginning.

In linear regression, for example, too many predictor variables can
adversely affect the predicted outcome. Adding a redundant variable to the
least squares equation almost always increases the variance of the predicted
outcome [13]. Thus, too many variables can make a model very sensitive to
noise or small changes in a highly correlated dataset and consequently
make it less robust. Therefore, selecting a suitable subset of variables from
the original set can be crucial. Some methods that can be used for this
purpose are scatter plots, simple and partial correlation coefficients,
coefficient of determination, and Mallow’s C, statistic. These topics are
discussed next.
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6.5.1 Statistical Tools for Variable Selection
6.5.1.1 Partial Correlation

A scatter plot reveals relationships between variables in a dataset, as shown
in Figure 6.1. Points lying on a line indicate a linear relationship, a curved set
of points denotes a nonlinear relationship, and absence of a pattern
indicates that the two variables are uncorrelated. Linear correlation
coefficients indicate the strength of the linear relationship between two
variables. However, this technique alone is not enough for multivariate data
because other variables in the set can affect the correlation of two variables,
thereby altering the correlation structure. In such situations, partial
correlation can be used to measure the linear association between the two
variables while adjusting the effects of other variables by holding them
constant[11,14]. The partial correlation is calculated from the matrix of simple
correlation coefficients, an example of which is presented in Table 6.2 for the
problem of thermal conductivity in relation to density, moisture content, and
temperature. Suppose the correlation between two variables x; and y; is Ry;.
The partial correlation, 7y, for the two variables is given by
—Cy

= (6.12)

'TaG

where Cj; is the inverse of the simple correlation coefficient R; (i.e.,
Clj = 1/Rl/)

Returning to the problem on wood thermal conductivity, the inverse of
the correlation matrix in Table 6.2 gives the values shown in the diagonal
and the top right triangle of Table 0.7 utilizing symmetry. The simple linear
correlation coefficients are repeated in the bottom left triangle of Table 6.7,
again taking advantage of the symmetry of the correlation matrix.

With the values in Table 6.7, partial correlation can be calculated using
Equation 6.12, and these are presented in Table 6.8.

The partial correlation matrix in Table 6.8 has a similar structure to the
original correlation matrix, which indicates that in this three-variable case, the
simple correlations are not influenced significantly by the other variables.
The reason for this is that only moisture and density are significantly related

Table 6.7 Inverse of the Correlation Coefficients Cj;
(Diagonal and Top Right Triangle) and Simple Linear Corre-
lation Coefficients R (Bottom Left Triangle)

T M Dens
T 1.055 0.281 —0.082
M —0.221 1.59 —0.906

Dens —0.077 0.583 1.522




Data Exploration, Dimensionality Reduction, and Feature Extraction m 261

Table 6.8 Partial Correlation Coefficients rj; (Diagonal and
Top Right Triangle) and Simple Correlation Coefficients R;;
(Bottom Left Triangle)

T M Dens
T —1.0 —0.216 0.064
M —0.221 —1.0 0.582
Dens —0.077 0.583 —-1.0

and temperature is weakly related to both variables. For datasets consisting of
many variables, the influence of other variables on the correlation between
two variables can be significant. This is illustrated in a case study later in
the chapter.

6.5.1.2 Multiple Regression and Best-Subsets Regression

Another approach to input selection is multiple regression analysis where a
model that linearly fits the output to the input variables is developed
through least squares regression. The R* or the multiple coefficient of
determination represents the portion of the variability of the output
explained by the predictor variables. A value of R near 1 indicates a perfect
model, and the variables capture all the variance of the outcome. A value
near zero indicates a poor model, and the input variables are irrelevant to
the outcome. Inputs can be selected based on this approach, but the
variance of the predicted output can increase with the inclusion of
additional predictor variables. This can cause difficulty in selecting a subset
when the number of variables in candidate subsets varies. In such situations,
criteria that penalize model complexity are more useful in subset selection.
Criteria such as Mallow’s C, statistic [15] have been widely used to evaluate
model complexity. This statistic suggests as the criterion the standardized
total squared error computed as

SS.
Cp = (40;)) — (n—2p), (6.13)

Sserror, total

where SSe;qr, p is the residual error for a multiple linear regression subset
model with p inputs, and SSe;ror, 1ol 1S the residual error for the model with
all 7 inputs. The correct model has C, value equal or smaller than p and a
wrong model has a C, value larger than p due to a bias in the parameter
estimation. Minimizing C,, over all possible regression can give the best
subset model. Good models typically have a (p, C,) coordinate close to a 45°
line on a C,, versus p plot.

Regarding the thermal conductivity problem, if models are run with
all possible subsets of inputs, the results for the most relevant subsets
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Figure 6.7 C, (Mallow’s) statistic versus p plot from best subset regression for
predicting wood thermal conductivity.

(others had higher C, values) illustrated in Figure 6.7 show that the best
model has all the variables in the model. This case is denoted by the dot
lying near the 45° line (note that the scales of the two axes are different).

6.6 Dimensionality Reduction and Feature
Extraction

6.6.1 Multicollinearity

In previous sections, several methods of data rescaling have been explored.
The objective of rescaling and normalizing is to make the range of all the
variables similar. In whitening, normalization is done for correlated
variables by transforming them into new uncorrelated variables with zero
mean and unit variance. These methods primarily focus on rescaling. It is
very common to encounter collinearity (correlation) between measure-
ments in data. An example of this is illustrated in previous sections where a
simple analysis of correlation and covariance on multivariate data
is presented.

Using collinear measurements in inferential modeling can potentially
lead to high prediction variance and ill conditioning [17]. Furthermore, as
discussed previously, highly correlated data provides redundant input
dimensions to the network causing it to operate, in effect, in a reduced space
while having to do redundant computations with redundant weights and
neurons. Therefore, it is useful to reduce dimensionality so that the essential
correlations of the data are preserved while lower dimensional features
characteristic of data are extracted from the original data. Basically, original
correlated variables are transformed to fewer uncorrelated variables where
the original correlations are embedded. An approach used to address
multicollinearity in multivariate data is principal component analysis (PCA),
which was already used in data rescaling with whitening. There, the focus is
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not on dimensionality reduction, but on data transformation. However, the
basic idea still applies.

6.6.2 Principal Component Analysis (PCA)

In PCA, correlated data is linearly combined to form new variables (PCs)
that are uncorrelated and ordered according to the portion of the total
variance in the data accounted for by the PCs. The first few components
retain the variation in all original variables. In dimensionality reduction, an
additional step is used to select the required number of PCs and use these
uncorrelated variables in the model instead of the original correlated inputs
[23]. Thus data is compressed so that only the essential information is
retained in the new variables. In this process of dimensionality reduction,
the portion of variance accounted for by each PC is examined.

As presented in Section 6.4.3, PCA involves decomposition of the
covariance matrix of the original dataset so that the original coordinate
system of correlated variables is transformed to a new set of uncorrelated
variables called PCs. The actual transformation is done through eigenvectors
also called loadings or weights. Each eigenvector contains loadings for each
of the original variables that transform them to the new variables (PCs). The
values of the new variables are called scores (or PC scores) that are obtained
by projecting the original inputs onto the eigenvectors (i.e., multiplying
original inputs with corresponding loadings).

Eigenvalues denote the variance of the new variables (PCs), and they are
in descending order. Therefore, the first PC represented by the first
eigenvector captures the largest amount of variation in the original data,
each subsequent PC captures the largest amount of remaining variance, and
so on. The amount of variation captured by each PC is given by their
corresponding eigenvalues. Theoretically, there are as many PCs as there
are input variables, but because the first few PCs capture most of the
variance, a threshold maximum variance can be defined as a suitable cutoff
point (90 percent, 95 percent, etc.) taking into account the noise and
variance in the data to select an adequate number of PCs that sufficiently
represent the original data while discarding the rest. Recall that each PC is a
linear combination of all the input variables. The selected PCs can then be
used as inputs to a neural network as an alternative to using the original
variables. This approach will result in a network with less complexity as the
number of inputs to the model is substantially reduced. Using uncorrelated
PCs also helps prevent overfitting in neural networks while original inputs
are appropriately represented in the network. This is demonstrated later in
the chapter through a case study.

The method will now be applied to the example problem involving
wood thermal conductivity affected by three variables: temperature,
moisture content, and density. However, the standardized inputs will be
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used with zero mean and unit standard deviation to do the PCA because
the variables have dissimilar ranges. If variables with largely dissimilar
ranges are used without standardizing, variables with large magnitudes
will overshadow the effect of those with smaller magnitudes, thereby
misrepresenting the real effects of multicollinearity. The standardized
data is shown in Table 6.4, and it is obtained by subtracting the mean
from the data and dividing by the standard deviation. The mean and the
standard deviation of the data are presented in Equation 6.5 and
Equation 6.6. The PCA is done on the covariance matrix of the
standardized variables [16]. For the standardized variables, the covariance
matrix is the same as the correlation matrix, and the PCs are extracted
from this matrix. The resulting eigenvalues are

{1.65,0.95,0.40},

which account for (55 percent, 31 percent, and 13.3 percent,
respectively) variance across the whole input dataset. The eigenvectors
representing principal components u; and their loadings thus obtained
are presented in Table 6.9.

According to Table 6.9, the first PC (represented by the first row) strongly
features both moisture content and density, which is realistic. This suggests
that density and moisture content are correlated so that one represents the
other, or alternatively they can be combined, along with temperature, into a
PC using the loadings. The second component strongly features tempera-
ture, indicating that it correlates much less with the other variables. The total
variance accounted for by the first two components is 86 percent. Whether
this accuracy is sufficient depends on the problem, and if it is not sufficient,
more components need to be added. In this example, it amounts to using all
three components, which is the same as the number of original variables.
However, the new variables are uncorrelated. The third PC adds the last 13.3
percent variance, and it again strongly features moisture content and density
which account for the residual variance after the variance of the first two
components are taken into account. The eigenvalue plot (scree plot) for
the components shown in Figure 6.8 illustrates the variance captured by
each component.

Table 6.9 Principal Components (u;-) and Their
Loadings Extracted from the COV Matrix of the
Standardized Variables

T M Dens
uq 0.311 —0.69 —0.65
U, 0.93 0.093 0.345

us —0.176 —0.718 0.673




Data Exploration, Dimensionality Reduction, and Feature Extraction W 265

Eigenvalue
2

15
1
0.5

Component

Figure 6.8 Eigenvalue plot (scree graph) from PCA analysis based on COV matrix
of standardized variables.

Figure 6.9a provides an illustration of the loadings depicting the
direction of the original variables with respect to the first two principal
directions, which shows that the density and moisture content axes are
closer to the first principal direction. The closeness of moisture content and
density axes reflects the correlation between the two variables. The first
component is dominated by these two. The temperature axis is close to the
second principal direction and almost perpendicular to the direction of
density and moisture content, indicating low correlation between
temperature and the other two variables. Temperature dominates the
second component.

Figure 6.9b presents the principal scores obtained by transforming all
original input variables using the corresponding component loadings.
Recall that these scores are computed by multiplying the loadings by the
corresponding input variables (e.g., PC; = uy1x; + uy5x; + uy3x3, where uy;is
the ith component of the first eigenvector, and x1, x;, and x5 are the three
original variables). It is clear that most of the data lies along the general
direction indicated by moisture and density showing that they account for
most of the data variation. Temperature is almost perpendicular to it, as
indicated by its having been featured strongly in the second component.

In many PCs, it is not uncommon to encounter tens, hundreds, or
sometimes thousands of input variables, and correlation between many of
the variables is inevitable. In such situations, there are as many PCs as there
are input variables, yet because of the correlations between variables, few
components will capture the total variance in the data so that these will be
retained and others discarded.

How many PCs must be selected mainly follows rule of thumb and is
ad hoc, and the justification is that they are intuitively plausible and work.
For example, the variables that are highly correlated with the output must be
in the PCs chosen. A method that is commonly used to select the number of
PCs is to define a threshold cumulative percentage variance that must be
reached by the set of PCs. This threshold is problem dependent and can
range from 75 to 90 percent.
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Figure 6.9 Loadings plot and principal scores. (a) Loadings plot of original input
variables with respect to first two principal directions and (b) principal scores
(transformed values) of original data superimposed on the loadings plot with
respect to first two principal directions.

The cumulative variance of all PCs is equal to the total (combined)
variance of all original variables. Thus

p
> ;=25 (6.14)

1 j=1

J

where the left-hand expression is the sum of variance / of all p PCs and the
right-hand expression is the sum of variances S of all p original variables. The
percentage of variance accounted for by the first # PCs can be expressed as

k
>l l;
j=1 j=1
e = 1002"— =100

™=~

(6.15)

Sji

M
<~

J

Il
-
~.

Il
-



Data Exploration, Dimensionality Reduction, and Feature Extraction W 267

Eigenvalue
8

6
4
2

‘ Component number
0 2 4 6 8

Figure 6.10 Scree graph from a PCA analysis with nine input variables.
(From Warne, K., Prasad G., Rezvani S. and Maguire L., Engineering Applications
of Artificial Intelligence, 17, 871, 2004. With permission from Elsevier.)

By choosing a threshold value for #;, for example in the range between 70
and 95 percent, kK number of PCs that contain most of the information in the
original variables set can be retained. The threshold value generally
decreases as the number of original variables increases or the number of
observations increases [12].

Another rule for selecting an adequate number of PCs is based on the
scree graph [18]. The scree graph is a plot of eigenvalues versus the PC
number as shown in Figure 6.8. The rule suggests looking for the point
beyond which the scree graph is more or less straight, not necessarily
horizontal. The number of PCs in the example thermal conductivity problem
is not adequate for illustrating this point; therefore, a new plot with more
inputs and more PCs relevant to another problem is shown in Figure 6.10 for
demonstration purposes.

The curve in Figure 6.10 approaches a straight line, and the first point in
this straight line is the last component to be retained. For the above plot, the
third, fourth, and fifth components account for 96.2, 98.1, and 99 percent,
respectively, of the total variance. Figure 6.10 indicates that PCs beyond three
or four components lie on a more or less straight line. Although this method is
less subjective than using a threshold variance, some judgment is still needed
because the first point on a straight line may not be clearly discerned from the
scree graph. Away to overcome this problem and boost confidence may be to
use an approach similar to that of cross validation. The number of PCs in the
prediction of the output is increased successively until the overall prediction
does not improve with the addition of an extra PC. The number of PCs is then
the minimum number required for optimal prediction. The optimum number
chosen must be the one that satisfies all the criteria discussed here; hence,
these can be used together to facilitate the best choice.

6.6.3 Partial Least-Squares Regression

Multivariate statistical projection methods such as partial least squares
(PLS) overcome the overfitting problem by performing regression on a
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Figure 6.11 Results from partial least square regression on wood thermal
conductivity data.

smaller number of orthogonal latent predictor variables that are linear
combinations of the original variables. This results in reliable predictions
based on well-conditioned parameter estimates [4,11,21]. These can also
be useful in preliminary analysis, preprocessing of input data, or feature
extraction. The orthogonal latent predictors are similar to PCs, and PLS
performs analysis of variance (ANOVA) on these predictors. The results
for the example problem relating to wood thermal conductivity are
presented graphically in Figure 6.11, which shows that regression on two
components captures 87 percent of the variance. The last component,
although accounting for 13 percent of the total variance, does not
improve the R* (Figure 6.11) value of the model.

6.7 Outlier Detection

In data preprocessing, variables are usually scaled so that important
variables with small magnitudes are not overshadowed by those with larger
magnitudes. Then the data is usually tested for outliers, which may be
caused by a measurement error or a genuine observation that differs from
the rest of the data for unknown reasons. Outliers severely distort the results
if they are included in model development. Therefore, outliers need to be
identified and eliminated from the training set before modeling.

Trimming and Winsorizing are two simple approaches for removing
outliers from single variables. They involve sorting each variable and
removing or modifying a small percentage (typically 1-5 percent for large
datasets) of extreme values of the variable [22]. Only the extreme values of
one variable of the input vector are modified at a time. In trimming, most
extreme values are set to missing. In Winsorizing, most extreme values are
given a value closer to the mean, often three standard deviations from the
mean, or the last good value for the variable in the dataset [22]. Replacing
all values larger than the 99th percentile or smaller than the first percentile
with the values of those limits is also done. Trimming or Winsorizing can
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remove a large majority of trivial outliers caused by erroneous measure-
ments, badly transcripted data, nonworking instruments, etc. However,
there may be real and interesting extreme values that deviate less severely
but still need to be considered as outliers and, therefore, scrutinized and
kept from further modeling. However, this requires methods for outlier
detection in multivariate data [22].

Methods for detecting outliers in multivariate data are less extensive
compared to those for single variables [11]. PCA as discussed earlier is
one approach. Although outliers must be detected early on during
preprocessing, the discussion was delayed until PCA was thoroughly
explained. As presented in Section 6.4.3 and Section 6.6.2, PCA involves a
transformation of the original data to an orthogonal coordinate system
represented by PCs where each successive component accounts for a
decreasing amount of variance in the original data. The first few PCs
capture the largest amount of variation, whereas the last few PCs refer to the
directions associated with small variance. The outliers inflate variance and
covariance in the data, so the first few PCs can highlight these if they are
present in the data. Specifically, the outliers that are detectable from a plot of
the first few PCs are those that inflate variances and covariances [11]. Joliffe
[12] proposes the following test statistics for detecting these outliers:

p
2 _ 2
di; = Z Zik
k=p—q+1
p 2
Zip
d3 = l—‘ (6.16)
k=p—q+1
- 2
2 _
dy; = E LeZie
k=p—q+1

where z;, is the kth PC score for the ith observation, p is the number of
variables, g represents the number of low variance PCs (for example,
variance less than one from PCA based on the COV matrix of
standardized variables), and [, is the variance of the kth PC. The first
two statistics detect observations that do not conform to the correlation
structure of the data, and the last statistic detects those observations that
inflate the variance of the data. As can be seen, the test statistics are
calculated for each original observation 7, and those observations whose
test statistic deviates by more than three standard deviations from the
mean statistic are considered outliers. For the example relating to wood
thermal conductivity, the plot of the first two PCs shown in Figure 6.9b
does not indicate any outliers; however, a case study in Section 6.9 shows
how this feature is used to remove outliers.
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6.8 Noise

In most datasets almost all variables contain noise. Thus there is a relevant
part and a noise part to a variable. In modeling, the relevant parts of
variables are expected to interact forming the model. Noise in data should
be attenuated as much as possible. As a first step, a linear filter can be
used on both independent and dependent variables to remove drift and
high-frequency disturbances that adversely affect model development.
Removing excessive noise from the variables therefore helps subsequent
model development. Latent variable models such as PCA and PLS regression
estimate the relevant part and noise of each variable in a set of variables and,
therefore, are suitable for noise removal in multivariate data.

One source of noise can be due to error of measurement or experimental
reproducibility. When such error comprises the majority of the noise, mildly
weighted (partial) least squares, after trimming and Winsorizing, may be
adequate [22]. However, measurement error is usually just a small part of
noise. Additional correlated noise over observations and variables is
common. Then unweighted (partial) least squares will be less risky than
most other approaches [22].

Using the methods discussed in this section, a suitable subset of inputs or
features can be selected with consideration given to the adequacy of the
selected inputs or features, outlier removal, and attenuation of noise.
The other component of model adequacy is the model itself represented by
the network type and architecture. The next section presents a case study
involving multivariate inputs and illustrates the use of most of the
preprocessing methods discussed so far in the chapter.

6.9 Case Study: Illustrating Input Selection and
Dimensionality Reduction for a Practical Problem

Estimating the quality of substrates used in medical packaging products.
Some of the techniques for input selection and dimensionality reduction
discussed in the previous sections will now be applied to a real-world
problem. The study described here has been reported by Warne et al. [11].
It presents data conditioning, input selection, PCA-based dimensionality
reduction, and neural network model development systematically.

The problem domain for this case study is the coating industry, which
supplies medical packaging products. Packaging requires that the substrate
such as paper or plastic be coated. A water-based adhesive is used to coat
the substrate, and the wet-coated material called web is dried in an oven
furnace that has three drying zones. The purpose of drying is to control the
quality of the adhesion measured by an industry standard quality measure
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called anchorage. It is crucial for the industry that the best possible
anchorage consistent with the industry standard is produced by the coating
process. The substrate, guided by rollers, moves in sheet form throughout
the process of coating, drying, chilling, inspecting, and rewinding onto rolls.
Thirteen variables affect anchorage. Data has been generated for the full
range of variables that involved perturbing the normal operating values by
+5 percent. Several hours of data consisting of 600 observations have
been collected.

6.9.1 Data Preprocessing and Preliminary Modeling

Outlier detection. Using the statistics given in Equation 6.16, 27 observa-
tions whose test statistic deviated by more than three standard deviations
from the mean have been deleted reducing the dataset to 573 observations.

Influential input selection. The desired model is the one that estimates
anchorage, which is the quality measure of the coating. Using process
knowledge, two variables have been eliminated as irrelevant. For the
remaining set, scatter plots and simple and partial correlations were
obtained for each of the dependent and independent variable combi-
nations. The simple and partial correlation between the variables and
anchorage is shown in Table 6.10. Some of these variables relate to the
oven, some to coating, and the rest to the web itself. It shows that
simple correlation coefficients are very high for some variables but partial

Table 6.10 Variables Influencing Anchorage as Identified by Correlation

Variable Predictor Correlation Partial Correlation
Number Variable Coefficient Coefficient

1 Zone 3 temperature —0.935 0.670

2 Zone 2 temperature —0.909 0.822

3 Zone 1 temperature —0.905 0.673

4 Web temperature —0.770 0.436

5 Rewind tension —0.465 0.295

6 Oven tension —0.462 0.372

7 Coat weight —0.418 0.305

8 Unwind tension —0.268 0.293

9 Applicator speed —0.002 0.317
10 Coating tension 0.146 0.327
11 Web (line) speed 0.148 0.301

Source: From Warne, K, Prasad G., Rezvani S., and Maguire L., Engineering
Applications of Artificial Intelligence, 17, 871, 2004. With permission from Elsevier.
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Figure 6.12 G, versus p plot. (From Warne, K., Prasad G., Rezvani S., and
Maguire L., Engineering Applications of Artificial Intelligence, 17, 871, 2004. With
permission from Elsevier.)

correlation coefficients are lower, indicating the existence of multi-
collinearity. Furthermore, partial correlation coefficients indicate that
the 2nd and 3rd variables are more influential than the first one that has
the largest simple correlation coefficient.

The variables in Table 6.10 were then subjected to C,, statistical analysis
to test their suitability for inclusion in a smaller subset of variables that
estimate anchorage. The C,, statistic was calculated for all possible
combinations of variables in Table 6.10. The variables considered in each
subset are the set that produced the smallest C,, statistic out of all possible
combinations for that number of inputs in the subset. The plot of C, versus p
(the number of predictor variables) is shown in Figure 6.12 for some
relevant subsets. The sets with C, statistic on or close to the 45° degree line
are indicators of a good model that accounts for most of the variation
in anchorage.

According to Figure 0.12, there are several subsets with the C,
statistic close to the line with the ten-variable subset being the best.
However, the subset with seven variables (C,, = 6.4) was selected because it
involves fewer variables, and the extra three variables in the ten-variable
subset are weakly correlated with the output. The seven variables are
the first seven in Table 6.10.

Model development. A three-layer neural network was trained using
backpropagation with the seven variables as input and seven input neurons
inasingle hidden layer. The training performance of the network is illustrated
in Table 6.11 which shows the training mean square error (MSE), model
accuracy (percent), validation MSE, and prediction variance at various stages
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Table 6.11 Performance Measures for Neural Network

Training Accuracy

Validation

Iterations MSE Percent MSE Prediction Variance

50 0.0291 76.38 0.54 1.1271
100 0.0248 76.9 0.487 0.677
400 0.01818 80 0.456 0.468
700 0.0131 73.07 0.467 0.519
1000 0.0131 73.46 0.553 0.521
1500 0.0091 71.65 0.62 0.561
5000 0.0039 69.23 0.633 0.698

10 000 0.00292 65.99 0.635 1.1248

Source: From Warne, K, Prasad G., Rezvani S., and Maguire L., Engineering
Applications of Artificial Intelligence, 17, 871, 2004. With permission from Elsevier.

of training. As can be seen, the training MSE decreases throughout the
training, but overfitting sets in after 400 iterations when model accuracy is
highest (80 percent) and validation MSE (0.456) and prediction variance
(0.468) are lowest.

The predicted outcome of the best model is shown in Figure 6.13 along
with the laboratory measured anchorage for the times the data was
collected. The prediction accuracy is 80 percent with error accounting for
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Figure 6.13 The predicted outcome of the best model using original input
variables. (From Warne, K., Prasad G., RezvaniS., and Maguire L., Engineering Appli-
cations of Artificial Intelligence, 17, 871, 2004. With permission from Elsevier.)
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Table 6.12 Result of PCA

Percent Variance Captured by PCA Model

PC No. Eigenvalue Variance (percent) Total Variance (percent)
1 8.297 75.431 75.431
2 1.935 17.591 93.022
3 0.349 3.181 96.203
4 0.216 1.963 98.167
5 0.093 0.843 99.010
6 0.057 0.523 99.533
7 0.027 0.253 99.786
8 0.011 0.09 99.883
9 0.007 0.063 99.946

10 0.005 0.049 99.996

1 0.0004 0.004 100

Source: From Warne, K, Prasad G., Rezvani S., and Maguire L., Engineering
Applications of Artificial Intelligence, 17, 871, 2004. With permission from Elsevier.

the high discrepancy between the prediction and experimental values for
some observations.

Multicollinearity and dimensionality reduction. In the previous
analysis, the most influential variables are selected and used in the
model. However, multicollinearity in data is not explicitly addressed.
Serious multicollinearity effects can lead to suboptimal models. To test
this, PCA on the set of input variables has been performed. The results
from the PCA are presented in Table 6.12. It shows 11 PCs and their
corresponding eigenvalues (variance), percent total variance accounted
for by each PC, and the total variance accumulated by the PCs up to that
PC in the list. It shows that five PCs take into account 99.01 percent of the
total variance.

The scree graph of variance versus component number is shown in
Figure 6.14. As discussed previously, how many PCs must be selected is
mainly determined by rule of thumb and ad hoc, and the justification is that
they are intuitively plausible and work. For example, the variables that are
highly correlated with the output must be in the PCs selected. A method
commonly used to select the number of PCs is to define a threshold
cumulative percentage variance that must be reached by the set of PCs. This
threshold is problem dependent and can range from 75 to 95 percent.
Another approach is to check the scree graph and select the point where the
graph becomes more or less horizontal. A third approach to determine the
number of PCs required is cross validation where the number of PCs that
produces the least validation error is found through testing.
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Figure 6.14 The scree graph of variance versus component number. (From Warne,
K., Prasad G., Rezvani S., and Maguire L., Engineering Applications of Artificial
Intelligence, 17, 871, 2004. With permission from Elsevier.)

In this case study, all three methods have been used. The first two
rules were used to select a subset of PCs, and the selected subset was
then subjected to cross validation to select the number of PCs to produce
optimal results. Catell [18] suggests 70 percent as the threshold variance, and
if it is adopted for this case, only one component is retained. Others have
suggested cut-off points ranging from 70 to 95 percent [11], which
significantly affects the number of PCs retained. The scree graph in
Figure 6.14 indicates that beyond three or four PCs, the graph is more or
less a straight line. Table 6.12 points out that beyond four PCs, the
difference in variation between the two successive components is fairly
constant. Both three and four PCs were retained, and cross validation
was conducted to determine the best number to provide the least
validation error.

6.9.2 PCA-Based Neural Network Modeling

After the desired number of PCs is retained, neural networks can be trained
with these PCs as input instead of the original variables. This architecture is
illustrated in Figure 6.15.

The smaller number of PCs results in a less complex network, and the
orthogonal transformed variables (PCs) that are linear combinations of
original variables overcome the problem of overfitting commonly
encountered in neural networks. The network has three or four inputs
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Figure 6.15 The PCA-based neural network architecture. (From Warne, K., Prasad
G., Rezvani S., and Maguire L., Engineering Applications of Artificial Intelligence,
17, 871, 2004. With permission from Elsevier.)

corresponding to the number of PCs, two hidden neurons, and one neuron
in the output layer; and this structure remains fixed to compare different
input selection techniques discussed previously. Training was done using
backpropagation. The results for the network with three inputs are shown in
Figure 6.16a along with the laboratory-measured mean value for anchorage.
The comparison of network performance with three and four PCs is
illustrated in Figure 6.16b. The mean squared error for training and
validation data using the PCs is shown in Table 6.13.

The advantage of using the PCs in a network is that they remove the
effect of multicollinearity that could lead to ill conditioning (numerical
instability in generating a solution) and high prediction variance. Now that
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Figure 6.16 Comparison of network performance with laboratory-measured
anchorage: (a) performance with three PCs, (b) performance with three and four
PCs superimposed on laboratory measurements. (From Warne, K., Prasad G.,
Rezvani S., and Maguire L., Engineering Applications of Artificial Intelligence, 17,
871, 2004. With permission from Elsevier.)
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Table 6.13 Performance Measures for PCA-Based Neural Networks Using
Different Number of PCs as Inputs

PC-3 PC-4
Validation Validation
Training Accuracy Prediction Training Accuracy  Prediction

Iterations MSE MSE  (percent)  Variance MSE MSE (percent) Variance

50 0.073441 0.538 73.95 0.604 0.089401  0.145 85.50 0.401
100 0.06225  0.4805 77.80 0.467 0.088209 0.144 85.98 0.372
400 0.0625 0.435 78.95 0.458 0.06969  0.146 85.27 0.378
700 0.05499  0.356 81.99 0.429 0.058081 0.144 85.34 0.387

1000 0.0522 0.33 82.10 0.448 0.063504  0.1305 86.10 0.359
1500 0.052 0.19 84.20 0.38 0.045796 0.14 85.44 0.388
5000 0.05095 0.126 87.80 0.362 0.044524  0.142 85.40 0.401
10000 0.0384 0.111 88.90 0.344 0.042849  0.156 83.34 0.404

Source: From Warne, K, Prasad G., Rezvani S., and Maguire L., Engineering
Applications of Artificial Intelligence, 17, 871, 2004. With permission from Elsevier.

network training with an input set with collinear variables (original best
predictors) as well as a set of orthogonal variables (PCs) has been carried
out in this case study, the effect of multicollinearity can be studied.
Table 6.11 and Table 6.13 show remarkable differences for the non-PCA-
and PCA-based methods. For instance, Table 6.11 clearly shows that for the
non-PCA approach training error continues to decrease, but the validation
error decreases initially and then starts increasing after 400 iterations
(epochs). This indicates that the network starts overfitting at this point, as
shown in Figure 6.17 which compares the training and validation for non-
PCA- and PCA-based approaches.

The PCA-based approach, in contrast, almost eliminates overfitting. It
can be seen that both the training and validation errors decrease and level
off to a constant value which is particularly evident for the network with
three PCs. Another important observation relates to prediction variance. The
PCA-based networks show an improvement in prediction variance,
indicating that collinearity exists within the data and must be addressed in
the development of robust inferential models. The results show that PCA is
suitable for dealing with this issue.

With regard to how many PCs are optimal, Table 6.13 indicates clearly
that three PCs as inputs are the best because for this case, both MSE and
prediction variance are the smallest. This illustrates that the choice of the
number of PCs is important, and although more PCs may capture more of
the variance in the original data, this may not always result in an improved
model.
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Figure 6.17 (a) Training and (b) validation errors for non-PCA- and PCA-based
modeling approaches. (From Warne, K., Prasad G., Rezvani S., and Maguire L.,
Engineering Applications of Artificial Intelligence, 17, 871, 2004. With permission
from Elsevier.)

6.9.3 Effect of Hidden Neurons for Non-PCA- and
PCA-Based Approaches

So far in this case study, the number of neurons has been fixed to compare
the effect of different approaches to input selection and feature extraction.
The effect of the number of hidden neurons and layers has also been
investigated, and the prediction (validation) error for networks with 2, 3, 4,
5, 6, 7, and 8 neurons for the non-PCA- and PCA-based approaches are
shown in Figure 6.18.

Figure 6.18 highlights some interesting observations. For the non-PCA-
based approach, prediction error decreases as the number of neurons
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Figure 6.18 Effect of number of hidden neurons on the prediction error for non-
PCA- and PCA-based approaches. (From Warne, K., Prasad G., Rezvani S., and
Maguire L., Engineering Applications of Artificial Intelligence, 17, 871, 2004. With
permission from Elsevier.)

increases from two to five and increases thereafter. This means that five
neurons are optimal; beyond five neurons gives the network too much
flexibility, and further increasing the number of hidden neurons makes them
mimic and memorize the data, thereby eroding prediction accuracy further.
However with PCs as inputs, two hidden neurons are optimal, as opposed to
five in a non-PCA case. Furthermore, the prediction MSE increases only
slightly and plateaus quickly with further increase in the number of hidden
neurons indicating the resilience of the PCA-based networks. It was also
found that increasing the number of hidden layers increases the MSE for
both approaches.

6.9.4 Case Study Summary

This case study presents a systematic framework for the development of
inferential models from correlated data. The problem involves developing a
robust model to assess a quality measure (anchorage) of adhesive coated
substrates used for medical packaging from 11 influential variables. The
results show clearly that neural network performance can be significantly
improved by incorporating a PCA initialization model to the inferential
model. In this particular case, PCA reduced the dimensionality from eleven
to three, which accounted for 96 percent of the variation in the original
process variables and produced the optimum network performance.
Moreover, the PCA addressed the issue of multicollinearity within data
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and eliminated overfitting. The optimum number of hidden neurons for the
PCA-based network is fewer than that required for a network with original
variables, and further increases beyond the optimum number of neurons
result in only a small effect on prediction error. Because the number of
inputs is significantly reduced, the network architecture is less complex and
training time is reduced.

6.10 Summary

This chapter addresses some important aspects of data preprocessing and
illustrates the concepts using examples. The positive effect of preprocessing
on structural complexity and model accuracy is also demonstrated using a
case study. Histograms, scatter plots, correlation plots, parallel visualizations,
and projections of multidimensional data onto two dimensions are presented
as an aid in understanding the character, trends, and relationships in data.
Correlation and covariance are used to measure strength of relationships and
dispersions in data. Data normalization is helpful in putting the values of all
variables in a similar range so that the influence of those with smaller values is
not masked by that of the variables with higher values. This chapter presents
several approaches to normalization: standardization, range scaling, and
whitening. The latter allows normalization of correlated multivariate data.

A great deal of attention is paid to input selection and dimensionality
reduction for improving model development and accuracy. The use of
statistical tools such as partial correlation, multiple regression, and best
subsets regression for input selection are explained, and PCA and partial least
squares regression are presented as suitable methods for dimensionality
reduction and feature extraction. Outlier detection and noise removal in
multivariate data are also addressed in this chapter. Various approaches to
data preprocessing presented in the chapter are further demonstrated using
an example case study involving a real application. The case study illustrates
that dimensionality reduction leads to less complex models with higher
generalization ability than those using original correlated input data. The
validity of this approach for a more complex problem [20] is illustrated in
Chapter 7.

This chapter deals with linear approaches to input selection and feature
extraction (except for self-organization maps). These have been widely
used in data preprocessing. However, in many biological and natural
systems, correlations can be highly nonlinear and approaches that capture
these nonlinear trends are advantageous in input selection in feature
extraction. Some of the emerging techniques for nonlinear data preproces-
sing—Partial Mutual Information, Self-Organizing Maps, Generalized
Regression Neural Networks and Genetic Algorithms—are presented in
detail in Chapter 9, Section 9.10.1.
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Problems

1.

11.

12.

What is correlation, and what does it measure?

What information does covariance convey about multivariate data?
For a multivariate dataset of choice, obtain histograms and scatter
plots and learn as much as possible about the statistical nature
(mean, standard deviation, etc.) and trends in data.

For the data in Problem 3 above, determine correlation coefficients
and covariances, and learn as much as possible about the variables
that are influential in predicting the output and those that are
strongly correlated.

What is the purpose of normalization of data?

Ascertain if any normalization is useful for the data in Problem 3 and
use all or suitable normalization methods discussed in Section 6.4
on the data. Would one method be more advantageous than the
others? Try any other methods that you are familiar with.

Apply the input selection methods presented in Section 6.5 (partial
correlation, multiple regression, best subsets regression) or any
other method that you know, and select the inputs that influence
the output most.

Train a multilayer network with original inputs and the best subset
of inputs, and scrutinize the difference. Is there any advantage in
input selection?

What is dimensionality reduction, and how is it useful in modeling?
Explain purpose of principal component analysis and the basic idea
behind PCA.

For the data in Problem 3, perform PCA, and select the appropriate
number of PCs.

Train a new model with the selected PCs, and compare the results
with that based on the best subset of influential variables.
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Chapter 7

Assessment of
Uncertainty of Neural
Network Models Using

Bayesian Statistics

7.1 Introduction and Overview

A rigorous statistical approach requires not only a good estimation of the
model outputs but also an uncertainty estimate of the model parameters
(i.e., weights). This assessment must include individual uncertainties
and the correlation structure of these uncertainties. This is the common
approach to investigating the reliability of a model. In addition, uncertainty
of model predictions (i.e., output errors) must be evaluated for assessing the
reliability of predictions, especially if they are to be used in decision making
or as input to other models, which is common. Moreover, rigorous estimates
of the sensitivities, such as sensitivity of output(s) to inputs can provide
useful information about relevant inputs and an estimate of their
contribution to the model predictions.

Although neural networks have been used to model complex
phenomena, until now tools for assessing the uncertainty of neural network
statistical models have been limited. In this chapter, uncertainty estimate
tools for neural networks in real-world applications based on Bayesian
statistics are discussed. The uncertainty assessment tools provided here can
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be used for a variety of probabilistic quantities related to the overall
uncertainty of neural network models, i.e., weights, output errors,
sensitivities for “automatic relevance” detection in selecting more relevant
inputs, and “novelty detection” to monitor outliers.

This chapter presents a detailed treatment of uncertainty assessment of
neural network models. These methods for neural networks are in their
infancy. In Section 7.2.1, the standard training criterion involving square
error and weight regularization used in network training (see Chapter 5) is
shown to be a special case of a more realistic case where variance of noise
and initial weights are used to regularize the training criterion. That standard
error minimization is equivalent to minimizing negative log likelihood in
statistical parameter estimation is also demonstrated. Using these concepts,
the optimum weights obtained from regular network training are put in
a Bayesian context to obtain a posteriori probability distribution functions
(PDFs) for the final weights of a network in Section 7.2.2 to Section 7.2.4. In
this formulation, the optimum weights obtained from network training are
the most probable or maximum a posteriori weights and the weight
distribution represents the uncertainty in weights.

In Section 7.2.5, the derivation of the PDF of weights using a case study
involving estimation of geophysical parameters that drive Earth’s atmos-
pheric radiative transfer phenomena from satellite data is illustrated.
A sample of weights extracted from the PDF is presented to illustrate their
behavior and correlation structure. The weight distribution is used to
generate uncertainty estimates for output error that is divided into
model error and intrinsic noise. These two aspects are treated in detail in
Section 7.3.1 and illustrated using the case study.

The last section of the chapter (Section 7.4) involves uncertainty
estimation of network input-output sensitivities for the purpose of
selecting inputs that significantly influence the outputs. Approaches to
determine the influence of inputs to outputs of a feedforward network are
presented in Section 7.4.1 with examples in Section 7.4.2. A theoretical
treatment of uncertainty of sensitivities is given in Section 7.4.3 and
illustrated through an example case study in Section 7.4.4. Specifically,
a detailed treatment of the effects of multicollinearity in inputs and outputs
on network training and outcomes is presented in Section 7.4.4.1 and it is
shown that the principal component (PC) decomposition of inputs and
outputs produces networks that have more stable sensitivities than those
using regular inputs and outputs that are correlated (Section 7.4.4.2 to
Section 7.4.4.5). The sensitivities obtained from principal component
analysis (PCA)-based networks also have smaller standard deviations
indicating less uncertainty in their values. The PCA approach produces
a much clearer view of how inputs are linked to outputs and therefore
relevant inputs can be identified with more confidence. A summary of the
chapter is presented in Section 7.5.
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7.2 Estimating Weight Uncertainty Using
Bayesian Statistics

In neural network training, some quality criterion, such as mean square
error or an additional regularization term, is minimized. This finds a single
set of values for the network weights. The Bayesian approach considers a
PDF in weight space representing the relative degree of belief in different
values for the weight vector [1]. This weight PDF is initially set to some prior
distribution A(W), as shown in Figure 7.1. When no prior information is
available, it is set to a uniform distribution. After the data (D) has been
observed, it can be converted to a posterior distribution (P(W|D)) using
Bayes’ theorem. The optimum network weights found from minimizing the
quality criterion are the most probable weights represented by Wyp in
Figure 7.1. The posterior distribution of weights can then be used to
evaluate uncertainties of predictions of the trained network for new values
of inputs. The weight distribution can also be used to assess other
uncertainties such as network sensitivities.

To demonstrate the relevance of Bayesian statistics, the usual approach
to training neural networks is revisited and then Bayesian concepts are
introduced appropriately.

7.2.1 Quality Criterion

As discussed in Chapter 4, the square error is the most commonly used error
criterion. A regularization term (i.e., sum of square weights) has been added
to the square error term in the “weight decay” scheme so that the weights are
kept small; large weights are often the cause of learning instability and they
lead to poor generalization. The combined error criterion is repeated in a

A posterior distribution of weights

Probability A / P(wlID)
A priori distribution of weights
P P(w)
» Weight
Wup

Figure 7.1 Initial and posterior weight distributions.
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compact form in Equation 7.1:
E(w) = BEp(w) + aE(w), (7.1)

where Ep(w) is the square error term and E(w) is the weight decay term
expressed as

Ep(w) == ZZ@ -

n=1k=1

1 2

E(w) = Ezwi,
i=1

where ¢ is the kth desired output component and yj, is the #th component
of the neural network output vector for the nth input—output pattern. N is
the total number of observations and K is the number of output components
(desired outputs). The term 8 in Equation 7.1 is the relative weight given to
the square error term and « is that of the weight decay. However, the real
meaning of # is that it represents the inverse of the observation noise
variance for all outputs and « is linked to the a priori general variance of
the weights.

The expression for E(w) in Equation 7.2 is a simplification of a more
realistic expression. For example, consider the case of a single output. The
error &, measured as the difference between the target 7 and predicted y is
often supposed to follow a Gaussian distribution with a mean of zero and
variance ¢”. The ideal variance for the error distribution is called “intrinsic
noise” or the “natural variability” of the output variable y. If ¢* is known, its
inverse a (i.e., a=1/¢%) can be incorporated into the square error quality
criterion Ep(w) as a normalization term:

(7.2)

N

& 1

where &7 is the error for the nth input pattern, i.e., &y = (" —)"). When no
information is available on ¢* prior to training, it w111 be dropped and this
error criterion becomes the first expression in Equation 7.2, which is simply
the sum of square error for the difference between target and predicted
outputs. When there is more than one output, error distribution is
multivariate with a separate error variance for each output. In this case,
the error covariance among pairs of outputs in the error term must be
considered and this is efficiently accomplished by using the covariance
matrix. The ideal covariance matrix C;, for this multivariate error distribution
is the intrinsic noise or the natural variability of the variable vector y. If Cy, is
known, its inverse C;; =A;, can be incorporated into the square error

Ep(w) =

l\)lr—\
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quality criterion Ep(w) as

%w-—2<>mn" (7.4)

n=1

where Ay, is a matrix containing the inverse of the noise variance for each
output. The g} is the error vector for the nth input-output pair and (s")T
the transpose of the error vector organized in a row for easier mampulann
of the error vectors to obtain the square error. As explained for the one-
output case, when no information is available on C;, prior to training, it
will be dropped and the error criterion becomes the first expression in
Equation 7.2.

As far as the regularization using weight decay is concerned, a similar
expression can be developed. Weight decay implies that one choose a
Gaussian a priori weight distribution for weight uncertainty [2]. This means
that each weight has an a priori Gaussian weight distribution. Consider the
case of a single weight w. If the a priori variance o7 of the weight is known,
its inverse a, (i.e., a, = 1/a?) can be introduced as a normalization term into
the weight decay term E(w) of the error criterion in Equation 7.2 in a similar
manner to that used for incorporating intrinsic variance into the square error
criterion:

E(w) = =%@M (7.5)

1
20

a5,

If the prior weight distribution (W) is unknown, a uniform distribution
is assumed, as illustrated in Figure 7.1 for the case of a single weight. Then,
a, is dropped from Equation 7.5 and it is reduced to the commonly used
weight decay term with sum of square weights in Equation 7.2.

Many weights involve a multivariate weight distribution. If the
covariance matrix of the a priori distribution of network weights is C,
then its inverse C;' (i.e., C;' = A,) can be used in the weight decay term as

E(w) = %wT-Ar-w, (7.6)

where w is the weight and T denotes transpose. The expression on the right
hand basically repeats the modified decay term shown in Equation 7.5
efficiently for each of the weights in the network using the covariance for
all the weights. The covariance matrix C, of a priori distribution of weights
has a different variance for each weight w; and describes a structure of
correlation between them. If the prior weight distribution p(W) is unknown,
a uniform distribution is assumed for each weight as illustrated in Figure 7.1
for the case of a single weight. Then, A, is dropped from Equation 7.6 and it
is reduced to the commonly used weight decay term with sum of square
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weights in Equation 7.2. Figure 7.1 and Equation 7.5 illustrate for a
single weight that learning in a general sense involves transforming the
initial weight distribution to a posterior distribution of the final weight,
where the Wyp is the most probable (MP) weight that is determined from the
usual network training methods. Equation 7.6 extends this concept for the
multiple output case.

The parameters A;, and A,, representing the inverse of output error
(observation noise) variance and inverse of the a priori variance of weights,
respectively, are called “hyperparameters.” As can be seen, the « and 8
terms are simplified forms of the inverse of the relevant covariance matrices,
i.e., a is a weight for the regularization term and is linked to the a priori
general variance of the weights and f# represents the inverse of the
observation noise variance for all outputs. This is obviously a poorer and
less general formulation than the more realistic matrix formulation;
however, it is difficult to estimate hyperparameters A, and A, and a method
to estimate these very important parameters is described later in this chapter.

7.2.2 Incorporating Bayesian Statistics to Estimate
Weight Uncertainty

The classical neural network theory can now be linked with Bayesian
statistics. In statistical parameter estimation, two approaches are commonly
used: maximum likelihood and Bayesian parameter estimation methods. In
fact, it can be shown that the mean square error criterion used thus far in
network training is motivated from the principle of maximum likelihood.
The goal of network training is to model the underlying generator of
data. The most complete description of the generator of data is the
expression of the joint probability p(x,?) in the joint target—input space. The
joint distribution using Bayes’ rule can be decomposed as [1,2]

plx, 1) = p(t|x)p(x), 7.7)

where p(#|x) is the probability density of ¢ given that x takes a particular
value and p(x) is simply the probability density of x. The goal is to estimate
plx,p) from data. Assuming that each data point is drawn independently and
probabilities can therefore be multiplied, the likelihood for a training
pattern {x"”, "} can be expressed as

N
I = Hp(tnlxn)p(xn)’ (78)

n=1

where IT denotes multiplication over the N training patterns. In maximum
likelihood, it is attempted to maximize L. However, instead of maximizing
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the likelihood, it is more convenient to minimize the negative logarithm
of the likelihood

E=—InL= —Z In p(2"|x") — Z In p(x"), (7.9)

where E is called the error function. The second term in Equation 7.9 does
not depend on the network weights and it therefore can be dropped so that
the error function becomes

E ==Y "Inp("|x"). (7.10)

In the error function, an error term (—In p(#|x")) for each pattern 7 is
summed over all patterns. The goal is to minimize E and this constitutes the
likelihood approach for parameter estimation. The #is a continuous variable
in the case of prediction and a class label in the case of classification. That
this is equivalent to sum of square error criterion will now be demonstrated.

7.2.2.1 Square Error

In parameter estimation, it is assumed that the target variable ¢ can be
expressed by a deterministic function f(x) with added Gaussian noise ¢. The
deterministic function can be obtained by any means and here it is treated as
a neural network regression model. For a single output case this can be
expressed as

t=f(x)+e (7.11)

and illustrated in Figure 7.2a. As shown in the figure, the error, which is the
difference between the predicted outcome from f(x) and target ¢, is assumed
to follow a normal distribution with zero mean and standard deviation
o that does not depend on x (i.e., uniform variance or homoscedasticity).

p o
t t o/ ©
A A 0 /o
° /o o 0\
[e (o)
y (%) o SR y(x) 5 0 yow)
° "% o ° fx) ° "% o °
o o o (o)
> X > X
(a) %o (b) %o

Figure 7.2 Target function and network approximations: (a) target function
y=f(x) to be approximated from data and (b) neural network approximation
y(x,w) of target function.
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Thus the error distribution can be expressed as a normal distribution with
zero mean and standard deviation ¢ in the usual way:
_@?

1
ple) = 7275 =¢ 202 (7.12)
o

Assume that the unknown function f(x) is approximated with a neural
network model y (x,w) where x is input and w is weight. A trained network
function must go through the mean of the target for any values of x, as
shown in Figure 7.2b. For example, the network output for a given value of
X is the mean of the target values for x,. Due to noise, there can be many
target values for a given value of x.

The distribution of the target values for a given value of x is the
conditional distribution of target values for that x depicted by p(¢|x). This
distribution is essentially the noise distribution around the mean of the
target values for a given value of x; as illustrated in Figure 7.3 for a particular
value of x,. For the case of random noise and optimum model, this
distribution is Gaussian with standard deviation equal to noise standard
deviation ¢. The mean is the mean of the targets approximated by the
network output. In regression it is assumed that variance of this distribution
is constant across all value of x when the dataset becomes large.

The mean of the target for any value of x can be expressed as

f(x) = yx,w) =t—e. (7.13)

Thus, the conditional distribution of targets p (#lx) can be expressed as a
normal distribution with the mean as given in Equation 7.13 and standard
deviation ¢ in the usual way:

Pllx) = ———e 2 =———e (7.14)

Xo

Figure 7.3 Conditional probability distribution of target data for a given value of x.
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where y (x,w) is expressed as y for clarity. Thus, with the optimal regression
model, the conditional distribution of targets for a given value of x is the
noise distribution. Now, taking the logarithm of Equation 7.14:

2
— 1
—(tzajz/) —Eln 2t —Ino. (7.15)

In p(tlx) =

This expression can be substituted into the negative log likelihood
expression in Equation 7.10 to obtain

1 N

N
— n__,n\2 v
E = Y 3:1 " =»"Y+Nlno+ 5 In 27. (7.16)

The second and third terms in Equation 7.16 do not depend on weights
and can therefore be dropped in error minimization with respect to weights.
Thus, the negative log likelihood function becomes

l’\lr

1 n
E =:§;3-j{:(z — ™2 (7.17)
n=1

Equation 7.17 can be further simplified by omitting 1/¢*, which is
constant. The standard square error minimization equation

1 & 5
E=—§ /=yt 18
me ) (7.18)

is then obtained. Therefore, the mean square error criterion is a simplified
form of negative log likelihood. Therefore, minimizing square error is
equivalent to minimizing negative log likelihood (or maximizing
likelihood).

Having found w*, one can also find the optimum value for the error
variance ¢° by minimizing E in Equation 7.16. This can be performed
analytically to obtain

dE 1 & 5 1
_ = —_— t” — *\n N_ = O
e 3 ﬂgzl{ Yo, ™)'y + ;=0

L& (7.19)
2 __ *\72 n2
o ——57;§;£y0&zu )y ="},

which states that the optimum value for ¢* is the residual value of the mean
square error function at its minimum.

After a network is trained, weights are fixed at the optimum values
obtained from the learning process. To assess uncertainty of weights, a
weight distribution for the trained network must be obtained. This
distribution is called an a posteriori weight distribution and is illustrated
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in Figure 7.1 as p(w|D) for the case of a single weight, where wyp is the
optimum weight obtained from error minimization. Bayesian statistics
provides a framework for generating these distributions. To do this,
the intrinsic uncertainty of targets will first be examined and the concepts
derived there will be used to generate a posterior PDF for weights.

7.2.3 Intrinsic Uncertainty of Targets for Multivariate
Output

In model prediction there is usually a discrepancy between the target ¢ and
prediction ). As presented in Section 7.2.2, the conditional probability
P(t]x,w) represents the variability of target  for a given input x and weight w.
This variability results from a variety of sources, including the error in the
model linking x to t (i.e., error in weights) or the observational noise on x
and . If the trained neural network fits the data well, the intrinsic variability
of the target is evaluated by comparing the target output ¢ for each input x
with the predicted output y. The expression for the case of a single output
was given in Equation 7.14, where it is represented by a conditional PDF
with a mean of zero and variance of ¢*. For the multivariate output case, this
distribution can generally be approximated by a Gaussian distribution with
zero mean and covariance C;, that measures the covariance between errors
for different output components. Thus, the variability of targets or the output
conditional probability for a given x in the case of multiple outputs can be
expressed as a multivariate normal distribution (analogous to Equation 7.14)
using the multivariate error Ep(w) represented in Equation 7.4:

1 _agra .
P(t|lx,w) = € 1A ey (7.20)

where €, is the error vector for the prediction y, 8; is the transpose of g,. A;,
is the inverse of covariance matrix C;, of the intrinsic error for different
output components, as given in Equation 7.4. The Z is used to denote the
constant normalization factor in the expression for a normal distribution
which now becomes 1/(21)*"?|C;,|"* where Cj, is the covariance matrix.
The likelihood of the model, i.e., the likelihood of the model adequately
representing the data, can be expressed by evaluating the output
conditional probability (Equation 7.20) over the entire training database
that includes target output vector ¢ for each input pattern x”. If the whole
set of " is denoted by D, then the likelihood of the model P(D|x,w) is the
multiplication of the conditional probabilities for each of the target patterns
1, assuming that they are independent:

]\7
P(Dlx, w) = Hp(z‘”lx",w) (7.21)

n=1
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where IT denotes multiplication. This provides the probability distribution
for the output variability for the entire dataset. Substituting Equation 7.20
into Equation 7.21 and simplifying:

N -
N 1 ! ()
1 1" A 1 _Ezsv A8y
p(Dl.X‘, w) = | | Ee 26 Aing)" ﬁe =1 , (7.22)

n=1

and substituting the expression in Equation 7.4:
1 .
P(D|x,w) = e Ep(w), (7.23)

This simply states that the smaller the square error criterion Ep, the more
likely that the output data set D is generated from the model (i.e., closer all
predictions y are to target 7). The likelihood of the model depends on inputs
X, but because the weights are of interest and the distribution of x is not, x is
dropped from the subsequent expression. Focus will now be on p(D|w),
which is the likelihood of the model given the weights. With this
information, the probability distribution of weights can now be derived.

7.2.4 Probability Density Function of Weights

In neural network training, a point estimate of the model parameters w is
searched. This is the optimum weight vector. In the Bayesian context,
uncertainty of the weights is described by a probability distribution. This is
called the a posteriori distribution of weights, or conditional probability of
weights given data p(w|D), as shown in Figure 7.1, and expressed using
Bayes’ rule as

P(Dlw)p(w)
= R 24
p(w|D) D) (7.24)

where p(D|w) is the likelihood of the model already derived in Equation 7.23
and p(w) is the a priori probability of weights. When no prior information is
available, a uniform distribution is used for p(w), as illustrated in Figure 7.1.
The p(D) is the data probability that does not depend on weights. Therefore,
the latter two components can be considered as constant normalization
factors and the expression for p(D|x,w) in Equation 7.23 can be used to get
pw|D) as

1 — )
pwlD) = —g e (7.25)
Z
where Z; is a new constant normalization term including those for p(D) and
p(w). This is an expression for the a posteriori weight distribution containing
the square error criterion Ep(w). To obtain Ep(w), an approximation is used.
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Because w* is known after training, the error criterion around the optimum
weights Ep(w*) can be expanded using a second-order Taylor expansion, as
illustrated graphically in Figure 7.4.

This gives an expression for the square error term for weights w in the
vicinity of w* as

1
Ep(w) = En(w*) + b"-Aw + EAwT-H-Aw (7.26)

where Ep(w®) is the minimum of MSE for the optimum weights, Aw=
w—w*, bis the Jacobian (first derivative) of Ep(w) with respect to weights,
i.e., gradient (0Ep(w))/0w, for each weight. The second term on the right
hand side of Equation 7.26, b"- Aw, is the amount of error increase based on
the gradient for a small increment in weight by Aw around w*. The T is the
transpose. Because gradients are zero at the optimum weights, the linear
term b" - Aw drops from Equation 7.26. The third component in the equation
is the amount of error increase due to a small increment in weight Aw
based on the curvature expressed by H, the Hessian matrix, which is the
second derivative of error term with respect to weights, i.e., the curvature
(0*Ep(w))/(dw; dw;) with respect to a pair of weights w; and w;. (A full
treatment of gradlents and the Hessian is given in Chapter 4.) Thus, a
second-order approximation to the weight distribution incorporating only
the curvature effects can be obtained by substituting Equation 7.26 into
Equation 7.25 as

p(wlD) _ i e—ED(w*)—%Aw"'vHAw
Z (7.27)
o e—%Aw‘r-HAw.
In the last expression, o denotes proportionality and this simplification is
possible because Ep(w?*) is constant at the optimum weights. This means that
the a posteriori distribution of weights follows a Gaussian distribution with

Ep(w)
Eow-w+
ED(W*)
< Aw—>
» W
(w* — Aw) w*

Figure 7.4 Taylor series expansion of Ep(w) around optimum weight w*.
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mean w* (note that Aw=w—w*) and covariance matrix H™ !. With the mean
and variance expressed this way, the probability distribution for the weights
can be generated with the w* obtained from training and the Hessian matrix
determined as discussed in Chapter 4. This probability represents the
plausibility for the weight w, not the probability of obtaining w from
the learning algorithm. Because the calculation of the Hessian is addressed in
Chapter 4, it will not be discussed further here.

7.2.5 [Example Illustrating Generation of Probability
Distribution of Weights

7.2.5.1 Estimation of Geophysical Parameters from Remote
Sensing: A Case Study

To illustrate the use of the concepts described for obtaining probability
distribution for the weights, a case study reported by Aires [2] is presented.
The study involves estimation of geophysical parameters that drive Earth’s
atmospheric radiative transfer phenomena from the data collected through
remote sensing. These parameters are Earth surface skin temperature 7, the
integrated water vapor content WV, and microwave surface emissivities Ey,.
They are the required parameters for models representing the radiative
transfer phenomenon. To make good atmospheric and climatological
predictions relating to this phenomenon, reliable estimates for these
geophysical parameters are needed. Direct estimation is not easy due to
the complexity of the physical process; therefore, an indirect method must
be used.

The goal of the study is to apply neural networks for remote sensing of
these surface and atmospheric parameters where a nonlinear multivariate
neural network regression model represents the inverse radiative transfer
function. This type of problem is called “inverse parameter estimation,”
where the parameters of a process are estimated from the known outcomes
of the process [15-17]. In direct methods, outcomes are predicted from
known parameters. The task for the neural network model is to retrieve T,
WV, and E, between 19 and 85 GHz frequencies from the remotely
measured microwave brightness temperatures (7B) obtained from satellite
data. Thus, the parameters are retrieved from indirect radiative measure-
ments obtained from satellite data. The emissivities (E,,) are described by
seven measurements made by seven different frequency/polarization
channels, making the total number of network outputs equal to nine
variables (T;, WV, and seven E,, components). The inputs are 7B measured
at the same seven frequencies for which surface emissivities are retrieved
and surface temperature (7lay) (i.e., eight indirect inputs).
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The database has been produced from global clear-sky data collected
from satellite images with 1239187 pixels repeatedly sampled every
3 hours, from July 1992 to June 1993 over land between 60°S and S80°N.
Basically, from the satellite images, microwave brightness temperature (78)
has been determined and the coincident geophysical parameters have been
matched to the 7B from various available sources to complete the database
consisting of eight inputs and nine outputs. When a model is developed
from these data, it would relate the inputs to a parameter space that allows
estimation of the geophysical properties for a particular combination
of inputs.

Neural network development. The learning database consisted of 20 000
randomly selected observations from the very large database. Sample size
was reduced because the computation of Hessian is time consuming. Of the
20000 observations, 15000 were used for training and model calibration
and 5000 for testing generalization behavior. The number of neurons in the
hidden layer was estimated by monitoring generalization error for different
choices and the optimal number was kept.

The network was multiplayer perceptron (MLP) with 17 inputs; these
were the seven original input variables plus the first guesses for the nine
parameters to be retrieved. Using experiential knowledge, initial guesses
can be estimated and using these as inputs can help a model narrow its
search space for the optimum weights. The hidden layer had 30 neurons and
the output layer had nine neurons corresponding to the nine geophysical
parameters to be retrieved. The channels from which the seven inputs
were obtained have a Gaussian instrumental noise of 0.6°K standard
deviation. The inputs and outputs were first centered and then
normalized. The weights of the network were initialized prior to training
using a uniform distribution between —1 and 1. The network was trained
with conjugate gradient descent, a second-order learning method with
improved search direction. Training was done using training data and the
separate test dataset was used for assessing generalization behavior. The
trained network with optimum weights w* statistically represents the inverse
radiative transfer equation. Because the database was constructed in such a
way that it was representative of the whole domain, the network is valid for
all observations.

Results. Figure 7.5 presents plots of the first guesses and retrieved
parameters against target data for three parameters: 7;, WV, and E,, for
19 GHz vertical polarization (E,,79V). The figure shows that for each of
these parameters, the network retrievals are concentrated along the
diagonal, indicating that they are closer to the target than the first guesses.
A similar observation was made for the other six parameters.

Posterior distribution of network weights. A rigorous model parameter
estimation should be followed by sensitivity analysis. A model can only be
trusted when its sensitivities to all the employed hypotheses are known.
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Figure 7.5 Scatterplots of network output for three geophysical parameters: first
guess (gray) and retrieved (black) parameters against actual parameters. (From
Aires, F., Journal of Geophysical Research, 109, D10303, 2004.)

Here, the sensitivity analysis is performed by estimating the uncertainty of
the network weights. To derive the PDF of network weights, the Hessian
must be estimated, which when inverted gives the covariance matrix of
weights. The nature of the Hessian matrix is related to the structure of
network weights. For example, by definition, the Hessian is the second
derivative of error with respect to weights, as treated in detail in Chapter 4.
For two different weights w; and w;, the Hessian is a depiction of how error
gradient with respect to w; is sensitive to wj, i.e., how independent (or
correlated) the weights are. If two weights are independent, the Hessian will
be zero (or small) and if they are related, the Hessian will be large.
Therefore, the nondiagonal entries of the Hessian matrix, representing two
nonidentical weights w; and wj, indicate whether the weights in the network
are independent.

Ideally, weights should be independent and therefore nondiagonal
entries should be zero (or minimum). The diagonal terms that represent
rate of change of a gradient with respect to the same weight can be small
or large. The Hessian for this problem indicated that the weights between
input and hidden layer are more related than those between hidden and
output layers. After H is inverted, it becomes the covariance matrix of
network weights. For this structure of Hessian, the uncertainty of weights
between hidden-output layers is larger than that between the input-
hidden layers.

By using the Hessian, the PDF of weights was obtained from
Equation 7.27. The w* with plus or minus two standard deviations are
shown in Figure 7.6 for the first 100 weights in the top figure and for all
the 821 weights in the bottom figure. Weights from 510 to 819 are for
hidden-output layer connections and these are obviously more variable
than the input-hidden weights. This is because the first stage of processing
at the hidden layer is high-level processing that encompasses the non-
linearity of the network, whereas the second stage of processing at the
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Figure 7.6 The mean network weights w*, and w* plus or minus two standard
deviations of weights for the first 100 weights corresponding to input-hidden
layer (top figure), and for all 821 weights with 510-819 indicating hidden-
output layer weights. (From Aires, F., Journal of Geophysical Research, 109,
D10303, 2004.)

output layer is low level, involving just a linear postprocessing of the
hidden-layer outputs.

Interpretation of weight uncertainty. From the distribution of weights,
sets of weights can be drawn for analyzing uncertainty. Each set represents a
particular network. Together, the sets of weights represent the uncertainty of
all network weights. Four sets of weights (mean plus three sets) extracted
from the weight distribution are shown in Figure 7.7.

In Figure 7.7, one sample is one network and it shows that the weights of
the three networks follow each other closely. Even if the sets of weights are
included within the large variability of the two standard deviations
envelope, the correlation constraints prevent any random oscillations due
to noise from imposing a structure on them. In other words, the weights
have considerable latitude to change but their correlations restrict them to
following a strong dependency structure. This explains why different weight
configurations can produce the same outputs.
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Figure 7.7 Mean (optimum) network weights and three samples of weights
simulated from the a posteriori distribution of weights for the first 50 input-hidden
weights (top) and for 50 weights corresponding to hidden-output layer (bottom).
(From Aires, F., Journal of Geophysical Research, 109, D10303, 2004.)

When there are many weights (in this study the number is 819, but it can
be thousands), an efficient sampling strategy must be used to sample
weights. The four sets of weights (mean plus three sets) shown in Figure 7.7
were extracted from the weight distribution using eigen-decomposition-
based sampling (i.e., PC). In eigen-decomposition, principal components of
weights are derived so that a lesser number of PCs than the actual number of
weights are used while preserving the weights and their correlation
structure in the PCs. From these, sets of weights can be extracted. Refer to
Chapter 6 for a detailed treatment of PCA.

The pattern of the weights depicted in Figure 7.6 and Figure 7.7
indicates that the structure of the weight correlations, not the actual values,
is the most important for the processing in the network. For example, if the
difference between two inputs is a good predictor, then as long as the two
weights linked to these inputs perform the difference, the absolute value of
the weights is not essential. Another source of uncertainty for the weights
arises from the fact that some permutations of neurons have no impact on
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the network. For example, if two hidden neurons in the network are
permuted, the network output would not change. This is because the
sigmoid transfer function used in the hidden neurons is saturated for
weighted sum of inputs entering it that are too high or too low; therefore,
change in weight going to such a neuron would have a negligible effect on
its output.

Some of the reasons why network weights can vary and still provide a
good model that generalizes well have been explained. Results indicate that
the variability of the network weights can be considered as a natural
variability that is inherent to the neural technique. From the user’s point of
view, the uncertainty that this variability produces in the network outputs
(or even more complex quantities such as sensitivities of output to inputs) is
more important than the variability of weights.

The case study described involved the development of tools to provide
insights into how the neural network model actually works and how the
network outputs are estimated. These novel developments draw neural
network techniques closer to better understood classical regression
methods in which it is standard practice to estimate uncertainties of the
parameters and it is completely mandatory before using the model. The
availability of similar statistical tools for investigation of internal structure
puts neural networks on a stronger theoretical and practical base and
presents them as a natural alternative to some traditional regression
methods with the advantage of nonlinear modeling.

The a posteriori PDF of the network weights derived here is useful in
investigating many types of uncertainties. In the next case study, the
probability distribution of the network sensitivities are investigated on the
basis of the PDF of weights described here. Another important application
of the PDF of network weights is the comparison of different network
models in light of the observations [3].

7.3 Assessing Uncertainty of Neural Network
Outputs Using Bayesian Statistics

A technique to estimate the uncertainty of network weights as proposed and
demonstrated by Aires [1] was presented in the previous section. In this
section, these weight uncertainty estimates will be used to compute
uncertainties in the network outputs (i.e., correlation structure of the output
errors and error bars). A rigorous model development requires not only
good quality outputs but also an uncertainty estimate of the outputs, such as
error bars and correlation structure of the error. This is especially important
where output accuracy is paramount in subsequent decision making, or
where the outputs are subsequently used as inputs into other models that
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use the estimated uncertainties, such as in meteorological and
climatological models.

The reliability of network predictions is important for any application.
For classical linear regression, the method of confidence intervals (CIs) is
well established. For nonlinear models, such approaches are more recent
and for neural networks they are rare. For neural networks, only root mean
square error (RMSE) of the generalization error is used, but this single
quantity is an average estimate and not situation dependent (i.e., does not
vary with inputs). The RMSE is good for linear problems. Situation
dependency, however, is more realistic for complex nonlinear relationships.
Bootstrap techniques have been used to estimate CIs for neural networks,
but they require a large number of computations. Rivals and Personnaz [4,5]
introduced CIs based on least-squares estimation. Here, a Bayesian statistics
approach to estimate errors for multiple outputs is presented. Earlier, the
Bayesian approach to estimating uncertainties in network weights
characterized by the PDF of weights was demonstrated. This PDF of
weights can be used to provide a framework for the characterization and
analysis of various sources of network errors, such as output errors and
sensitivities. These concepts are presented by extending the case study
described in Section 7.2.5.1.

7.3.1 Example Illustrating Uncertainty Assessment
of Output Errors

Estimation of geophysical parameters from remote sensing: a case study.
The application of the approach for assessing uncertainty in network
outputs using the same remote sensing problem described previously in
Section 7.2.5.1 is demonstrated. It involves the retrieval of geophysical
parameters that drive the Earth’s atmospheric radiative transfer phenomena
from satellite data collected over land. These parameters are 7;, WV, and E,,.
A case study is presented here as reported by Aires et al. [6].

7.3.1.1 Total Network Output Errors

The network error can be divided into two sources: (1) errors due to
network weight uncertainty (i.e., model uncertainty), and (2) error from
all remaining sources (i.e., intrinsic noise that includes random error
due to measurement noise, error due to finite resolution of the
observation system, etc.). The model uncertainty itself results from
imperfections in data, nonoptimum network structure and nonoptimum
learning algorithms. These two uncertainty quantities for the model and
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intrinsic noise can be estimated. First, however, the total network output
error will be examined.

After learning, a network with good generalization behavior is obtained.
Model parameters are the optimum denoted by w*. The network output
errors can be computed as g,=7-) over the database, where 7 is the target
and y is the network output; the output error follows a Gaussian distribution
with zero mean.

7.3.1.2  Error Correlation and Covariance Matrices

For each output variable, the mean and variance of error can be calculated
along with covariance of error between outputs. Thus, the total output error
covariance matrix, Cy, can be obtained from the model using the dataset and
this covariance matrix of error describes the PDF of error. The diagonal
terms of this matrix are the error variance of each output variable and oft-
diagonal terms are the covariance of output errors for pairs of output
variables. If the output variables are independent (i.e., not correlated), the
off-diagonal terms are zero.

In the remote sensing problem described here, the nine outputs of the
network correspond to 7;, WV, and E,, for the seven frequency/polarization
channels. The frequency ranges from 19 to 85 GHz and polarization can be
either vertical or horizontal. For the trained network, the output error
covariance matrix, along with the correlations, are shown in Table 7.1 for
the nine output variables. The right/top triangle in the table denotes error
correlations and the left/bottom triangle presents error covariances. The
diagonal values are the variance of the error for individual output
parameters. The table clearly indicates that some errors are highly
correlated. For this reason, it is a mistake to monitor the error bars although
they are easier to understand because correlation structure can distort
individual output patterns. Aires et al. [6] state that the correlation of errors in
Table 7.1 demonstrates the expected behavior among the parameters. For
example, errors in 7 are negatively correlated with the other errors and
errors in WV are weakly correlated with other errors. Correlations between
emissivity errors are always of the same sign and are high for the same
polarization (vertical or horizontal) and decreases as the difference in
frequency increases.

7.3.1.3  Statistical Analysis of Error Covariance

The correlations present in Table 7.1 make it necessary to understand
uncertainty in multidimensional output space. This is more challenging than
determining individual error bars but is also much more informative [6]. To
statistically analyze C, PCA was used that decomposes the covariance
matrix into eigenvectors (PCs) that are decorrelated (orthogonal). This
means that the set of eigenvectors constitutes a set of error patterns such



m 303

Assessment Uncertainty of Neural Networks

('v00T ‘Y0€0LA

‘601 ‘yo1easay [eaisAydoan jo jeuinof “g-pA ‘Mossoy pue D quadld “4 ‘sally :92/n0S) ‘ploq ul aJte ¢ uey} Jay3iy anjea ainjosqe
UE U}IM SUOIJR[1400) "ddUBLIBA 9} SOAIS [euOSeIp ay) ‘@dueLIeAOD 104 S1 9|SueLI} WO03I0G/3J3] pUe uoe|a110 104 st 9|3uew) doyaydu ayy

£90000°0 ¥¥0000°0 £¢0000°0 020000°0 ¥¢0000°0 ¢20000°0 £10000°0 €€6L10°0— 906£00°0— HS8"1
620 9¥0000°0 200000 €20000°0 £¢0000°0 0200000 0200000 Sv6100°0— 59684000 — AG8"7
290 990 §20000°0 020000°0 0c¢0000°0 0200000 8100000 ¥96¢000— 06¢500°0— H/e"1
050 00 180 ¥¢0000°0 €20000°0 8100000 1.¢0000°0 6701000 LZ1900°0— ALEMT
50 L0 L0 80 1€0000°0 0200000 ¥20000°0 0¥L€00°0 ¥/¢900°0— ATTHT
950 090 180 €0 (74 ¥20000°0 6100000 €VLL00'0—  19C500°0— H6L"7
o 09°0 VL0 69°0 880 LL0 ¥2¢0000°0 6/1€00°0 ¥6¢900°0 — A6L"MT
80— 8L'0— SL0— 500 L0 90'0— 910 9€880L VL €L1LC6EL— M
ce0— 61°0— c<L0— ¥8'0— 90— cL0— £8°0— ¥C0— 0L68EL'C °1
HS8"1 AS8MT H/g"3 ALEYT Az H6L"3 A6L™T M °1

aseqeje( Yy} J13A0 pajew)sy 10413 IndinQ HI0M)aN JO XLIJeW UOE[2LI0D) puk ) XLiJepy dUBLIBAOD  |°Z d|qel



304 m Neural Networks for Applied Sciences and Engineering

0.6 T T T T T T T
04

o -
2
=} 02}
@ § OR-
5] S
e N
8 £
5 4 802
z K S
S =3
3 | E 0414
3 , .
8 / 06 —— Component 1 ooy
o —— Network output errors v — — - Component 2 |
& sof s ‘ . \

/ === Neural network uncertainty 08l \/ — - — Component 3 ]

P Intrinsic errors v, |- Component 4
40 L L L L L L L 1 L L L L L L L
1 2 3 4 5 6 7 8 9 To WV Eq19V En19H En22V En37V Eq37V En85V En85H

(a) Cumulated number of eigenvalues (b) Neural network output

Figure 7.8 Principal component decomposition of total error covariance matrix:
(@) Variance of the original output error explained by the PCs; (b) loadings of the
first four PCs with respect to errors of actual output variables. (From Aires, F.,
Prigent, C., and Rossow, W.B., Journal of Geophysical Research, 109, D10304,
2004.)

that the contribution of each of these patterns to the total error is
decorrelated [6,7]. Each pattern represents a proportion of the total error
variance. For example, the curve denoted by “network output errors” in
Figure 7.8a presents the cumulative percentage of variance explained by the
PCs of Cy. The components 1 and 2 explain 55 percent and 30 percent,
respectively, of the total error variance which means that the errors are
concentrated in the first two components. The other curves of this figure
will be explained shortly.

Figure 7.8b illustrates the factor loadings (i.e., weights or coefficients) of
the first four PCs for the actual output variable errors. Recall that these
weights indicate the relative importance of the variable to the PC. For
example, the first component is mainly related to 7; and emissivities with
vertical polarization. Negative weight for 7; and positive weights for
emissivities are consistent with the correlations in Table 7.1 that indicate that
T, and emissivities are anticorrelated. WV dominates the second component,
along with emissivities for channels that are sensitive to WV, specifically
19 GHz and 85 GHz with horizontal polarization.

7.3.1.4 Decomposition of Total Output Error into Model
Error and Intrinsic Noise

Network output errors due to model parameter uncertainty. The output
error described in the previous section is the total error consisting of model
error and intrinsic noise. To obtain the covariance of the output error due to
weight (model) uncertainty, Bayesian statistics can be used. For example,
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the probability of outputs can be expressed as

ptlx, D) = Jp(tlx, w)-p(w|D)dw (7.28)

where D is the set of target outputs # in the database corresponding to inputs
x, i.e., dataset containing pairs of {x", t""}. The expression in Equation 7.28
represents the output uncertainty taking into account the weight uncertainty
(distribution). The first component on the right hand is the conditional
probability distribution of the targets and represents the noise distribution as
given in Equation 7.20 that has the form

1 s TOA. - )
p(t|x, w) = Ee FE=p(0,w))" - Ay - (=p(x,w)) (7.29)

where y(x,w) is the network function. The second component in
Equation 7.28 is the a posteriori PDF of weights expressed in Equation
7.27 and repeated here:

1 1A H-As
p(lU|D) _ ﬁe En(w*)—3Aw" -H-Aw (7.30)

Substituting Equation 7.29 and Equation 7.30 into Equation 7.28:

1 [ 1y yeew)™ A - —IALTH-Aw
p(l‘|X, D) - - Je F(t—=y(e,w))" - Ay - (t y(x,u))).e SAw'-H Au/dw (7.31)
z
where the constant term ¢®") | which contains the square error term for
optimum weights, has been put together with the other constant normali-
zation factors in z. Introducing a first-order expansion of the neural network

function, y(x,w), about w* gives
Y, w) = plx, w) + G Aw, (7.32)

where G is the first derivative of network output with respect to weights at
the optimum weights w*, i.e. G= (Iy(x, w)/(0w,—,~), which is a WXM
matrix where W is the total number of weights and M is total number of
outputs. Substituting Equation 7.32 into Equation 7.31 and simplifying
(details not shown) gives

lg

Pltl, Dyoc e 38 Coes (7.33)

where
C,=C,+G"-HG. (7.34)

The C, in Equation 7.34 is the total output error covariance matrix
already presented in Table 7.1 and the above derivation has decomposed
it into two components: (1) intrinsic error covariance matrix C;,, which
in a single output case is the variance of the output error ¢7, that was
explained in Section 7.2.3, and (2) covariance matrix for the model errors C,,
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Figure 7.9 Uncertainty of network outputs dominated by variance of intrinsic
noise compared to uncertainty of network weights.

expressed by G'-H ™ '-G. The latter is the error variance due to network
uncertainty (i.e., uncertainty of weights). Recall that H™ ' is the covariance
matrix of weight uncertainty explained under “Posterior distribution of
network weights” in Section 7.2.5.1, where the example case study was first
introduced. For the case of one weight and one output, the covariance of the
model error simplifies to

N2
&) 0

For a single weight w and single input—output case, the effect of the
intrinsic noise and weight uncertainty on the uncertainty of network output,
which is P(t|x,D) where D is the target data in the data set, is schematically
illustrated in Figure 7.9 and Figure 7.10 [1]. The mean of the predicted
output Yyp is from the optimum weight that is the most probable weight wyp
in Bayesian formalism. Figure 7.9 depicts a case where the noise

Yvp \ /\

/ _____________ = yixw)

P(wID)
N

Wwp

Figure 7.10 Uncertainty of network outputs dominated by uncertainty of network
weights compared to variance of intrinsic noise.
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contribution dominates the output uncertainty compared to model error. In
Figure 7.9, y (x,w) is model prediction and the two lines depict plus or minus
1 standard deviation of the noise (). It also shows a posteriori distribution
of weights P(w| D), which is very narrow in relation to noise distribution.
Therefore, in this case, width of the distribution of network outputs is
primarily determined by the noise.

Figure 7.10 depicts a case where model error contribution dominates
output uncertainty compared to intrinsic noise. In this case, the a posteriori
distribution of weights is larger than the noise distribution and the width of
the distribution of network outputs is dominated by the distribution of
network weights.

The two error components for the example case study can now be
analyzed using the concepts presented here.

Network output errvors due to model uncertainty, C,,. Because the
optimum network structure is known, the gradient with respect to weights G
is easily calculated. As presented in Section 7.2.5.1, the inverse Hessian,
H ', is the covariance of the PDF of network weights. Recall that the
Hessian is a matrix containing the second derivative of network error with
respect to a pair of weights. Table 7.2 represents the covariance matrix of
error associated with uncertainty of weights, G'-H™'-G, computed for the
whole database. The top right triangle presents the correlation of output
errors due to model uncertainty.

Although some of the bottom left values representing covariance matrix
are close to zero (artifact due to ranges of variables being different to
each other), the correlation structure is still apparent from the top right
portion where the correlation coefficients are presented. The correlation
of errors due to model uncertainty has a relatively small magnitude
(maximum of 0.55). However, the structure of these is similar to the
correlation structure for the global error covariance matrix in Table 7.1,
with the same signs for correlation and similar relative values
between variables.

This covariance matrix was decomposed using PCA to find error patterns
(PCs) involved in this component of error. The curve depicted by neural
network uncertainty in Figure 7.8a shows the cumulative percentage error
variance due to model uncertainty explained by the PCs, indicating that first,
second, and third components account for 40, 30, and 10 percent,
respectively, of variance, indicating that the model error variance is spread
across several significant components. Figure 7.11a shows the behavior
(loadings) of the first four PCs.

The overall behavior of the first component is rather similar to that of the
global error covariance matrix in Figure 7.8b, except for the sign. For
example, the first PC is related to 7; and emissivities in vertical polarization
with positive weight for 7; and negative weight for E,,. The behavior of
component 2 is very similar to that of the global error covariance matrix and
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Figure 7.11 Principal component decomposition of model error and intrinsic noise
covariance matrices: (a) loadings of the first four PCs of model error covariance
matrix with respect to errors of actual output variables, (b) loadings of the first four
PCs of intrinsic noise covariance matrix with respect to errors of actual output
variables. (From Aires, F., Prigent, C., and Rossow, W.B., Journal of Geophysical
Research, 109, D10304, 2004.)

features WV and emissivities, especially the higher frequency channels that
are more sensitive to water vapor. The third component is mostly related to
low frequency emissivities in horizontal polarization. The second and third
components together account for model error variance stemming from
WV and related emissivities in horizontal polarization; the first component
mainly accounts for 7; and emissivities for vertical polarization, especially
the low-frequency ones.

Network output errors due to intrinsic noise of observations. Because the
total error covariance matrix, C,, and that for the error due to model
uncertainty, C,,, are known, the covariance matrix for the intrinsic error can
be found by subtracting the latter from the former:

C,=C,—C, (7.36)

averaged over the whole database. This covariance matrix and correlations
among intrinsic noise in the nine output variables are presented in Table 7.3,
where the top right portion shows the correlation and the bottom left
portion presents the covariance structure.

Table 7.3 indicates that intrinsic error correlations can be very large,
reaching 0.99. The structure of the correlation matrix is interestingly
similar to that of the global error matrix, Cy, except for the larger values.
The PCA shows that most of the error variability (90 percent) is captured
by the first PC, as shown in the graph denoted by intrinsic errors in
Figure 7.8a, meaning that the number of degrees of freedom in the
intrinsic output error variability is limited. Figure 7.11b shows that the first
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component is mostly related to 7; with a negative loading and to
emissivities with similar loadings. Thus, most of the intrinsic noise variance
is due to these variables. The second component shows a remarkable
similarity to the second component of the total error covariance matrix Cy.
It is mainly related to WV and the emissivities at high frequencies. These,
however, account for only about 10 percent of the total intrinsic
noise variance.

7.4 Assessing the Sensitivity of Network Outputs
to Inputs

Neural networks nonlinearly relate several inputs to one or more outputs.
How can the influence of individual variables to outputs be rated? For this
purpose, the sensitivity of output(s) to inputs provides vital information.
The sensitivity of a network can be easily expressed as the partial derivative
of the network output with respect to inputs. They are very important in that
they allow statistical validation of how a trained neural network model
derives the outputs from inputs. These in essence reflect the trends captured
by the model and highlight the internal working of a model that correctly
captures essential relationships in the data. From a validated model, the
output sensitivity can be used to determine the most influential variables.
Moreover, these sensitivities are useful in identifying nonrobust models and
are therefore useful in model selection.

7.4.1 Approaches to Determine the Influence of Inputs
on Outputs in Feedforward Networks

The existing approaches to determining the importance of input variables to
the output of a feedforward network can be grouped into two classes. One
is based on the magnitude of weights and the other is based on sensitivity
analysis [8].

7.4.1.1  Methods Based on Magnitude of Weights

Methods based on the magnitude of weights group together those
approaches that are exclusively based on the values of the weights to
estimate the relative influence of each input variable on each of the
network outputs. These methods involve the calculation of the product
of the weighs (a;) between input i and hidden neuron j, and b, between
hidden neuron j and output neuron k, for each of the hidden neurons
and then summation of the products. A representative of this type is
given by
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ol I
J=1 i“ﬁ W
Qi = , (7.37)
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where m is the number of hidden neurons and 7 is the number of inputs [9].
The )2 a,; is the sum of the weights between 7 inputs and neuron j. The
Qi is the relative influence of input variable x; on output y, in relation to
the rest of the input variables. The sum of relative influence of all inputs
must be equal to 1.0, and thus it represents the percentage contribution of
inputs to outputs.

A variant of the weight-based approach is the weight product [10] that
incorporates the ratio of the value of input variable x; and value of output
Vi to the sum of the weight products as

X o
Nz j=1

where WPy, is the influence of the input variable x; on the output y,.
However, analysis based on weights is not the most effective method for
determining the influence of variables [8].

7.4.1.2  Sensitivity Analysis

Sensitivity analysis is based on the effect observed in the output y,, due to a
small change in input x;. The greater the observed effect, the greater the
sensitivity of output to that input (i.e., the greater the influence of the input).
The input sensitivity, also called the Jacobian, is obtained by the partial
differentiation of the output with respect to each of the inputs. Because
different input patterns can provide different sensitivity values, the mean
value is used to represent the overall sensitivity of an output to an input.

Sensitivity analysis can also be carried out with respect to the effect
observed in error due to changes in input x;. A common approach to this
sensitivity analysis is to clamp the input variable of interest x; to a fixed
value, usually the mean, and compare the effect of this on the output error
to the original error when the input variable is not clamped. The greater
the effect of clamping an input on output error, the greater the importance of
that input to the output.
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7.4.2 Example: Comparison of Methods to Assess
the Influence of Inputs on Outputs

Montano and Palmer [8] generated data for three input variables (X3, X5,
and X3) and the output Y from the following expression for comparative
study on different methods for assessing the contribution of input variables:

Y = 0.0183¢™™ + tanh(X;) + eN(0,0.01) (7.39)

where the function between Yand X, is exponential with a range between 0
and 1, and the function between Y and Xj is a hyperbolic tangent with a
range between — 1 and 1. A random error ¢ is added to the above expression
from a normal distribution with mean zero and standard deviation of 0.1.
The output variable was rescaled to a range between 0 and 1. The X; is not
featured in the expression and therefore does not make any contribution to
the output.

The datasets consist of 500 patterns in the training set, 250 in the
validation set, and 250 in the test set. The network has three inputs, two
hidden neurons, and one output. Hyperbolic activation is used in the
hidden neurons and linear activation in the output neuron. The network
was trained with backpropagation with a learning rate of 0.25 and
momentum of 0.8. The validation set was used to obtain the best network
and the test set was used to assess the contribution of variables. To use the
weight-based methods, weights were extracted from the trained network.
To determine the weight product, WP;, the mean over all input patterns in
the test dataset was used; this is because each input pattern gives a different
WP, value. The sensitivity analysis requires the partial derivative of network
output(s) to inputs (Jacobians). (How to obtain the partial derivatives is
explained in Chapter 4.) The results from the three approaches (percentage
influence Q;, weight product WP,, and sensitivity analysis) are presented in
Table 7.4. For the latter two approaches, means and standard deviations are
presented. Similar to WPy, sensitivity also varies with input patterns and
therefore mean sensitivity must be used to assess the influence of an input.

Table 7.4 Comparison of Three Methods for Assessing the Contribution of
Inputs to Output

WP; Sensitivity Analysis
Q; (percent) Mean SD Mean SD
X4 1.395 0.009 0.025 0.005 0.003
Xo 23.27 0.374 0.366 0.199 0.038

X3 75.34 3.194 3.906 1376 0.665
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Results in Table 7.4 show that the three methods have correctly
established the significance of input variables identifying the hierarchy
among the inputs, with X3 being the most influential, followed by X, and a
negligible influence of X;. For example, percentage contribution (Q;) shows
that the X5 contribution is 75.34 percent, X, contribution is 23.27 percent
and X; contribution is only 1.395 percent. The weight product and
sensitivity analysis methods have also captured the correct order of
importance of variables; however, with these two methods, mean values
can take any value between —o and +a. In terms of reliability, sensitivity
analysis is more accurate than the weight-product method because the
standard deviation of sensitivities is much smaller than that from weight
product. In the sensitivity analysis method, the more randomness there is in
function Y, the larger the standard deviation of the sensitivity. In the next
section, the discussion on sensitivity analysis is extended to assess the
uncertainty of sensitivities. First, however, the issues surrounding inputs and
outputs in general in relation to network structure are examined to shed
light on the uncertainty of network output sensitivity to inputs.

7.4.3 Uncertainty of Sensitivities

There are several concerns in relation to neural network model structure in
assessing uncertainty. These stem from the fact that models are trained to
obtain a good statistical fit of inputs to output(s), but no constraints are
generally applied to the internal structure. Statistical inference is often
considered to be an ill-posed inverse problem [9,10] and consequently,
many solutions can be found for the network parameters (weights) that
provide satisfactory outputs. One of the reasons for the nonunique solution
is that multicollinearity can exist among the variables. Such relationships are
also a major problem in linear regression and can lead to very unstable
regression parameters that drastically vary from one trial to another [9].
Partial derivatives are the equivalent of the linear regression parameters, so
it can be expected that in a neural network the partial derivatives
(sensitivity) can be highly variable and unreliable in the presence of
multicollinearity although output statistics are very good.

The solution to multicollinearity and all robustness problems in general
is to use some form of regularization [13]. Many regularization methods exist
that reduce the complexity (degrees of freedom) of a model resulting from
multicollinearity or excessive model flexibility. One method of regulari-
zation involving weight decay that controls the magnitude of the
weights, and weight-pruning methods that reduce the degrees of freedom
of a model were discussed in Chapter 5. Reducing the number of inputs is
one direct method of regularization that can also be used as a model
selection tool. However, Aires et al. [11] states that the introduction of
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redundant information in the input to a network can be useful in reducing
observational noise, as long as the network is regularized in some way. One
efficient method of eliminating multicollinearity while keeping most of the
variables is PCA, which linearly combines the inputs to produce new inputs
that are not correlated to each other. The same approach can be applied to
remove correlations among output variables in the case of multiple outputs.
In this representation, where correlations among inputs and outputs are
suppressed, the solution is expected to be unique, meaning that the
sensitivities should be more reliable and physically more meaningful.
Furthermore, the PCA representation suppresses part of the noise during
data compression, such that initial PCs represent the real variability of the
output and the remaining PCs are more likely to be related to Gaussian
noise of the instrument (or measurement) error, or to very minor variability
(i.e., unimportant information) [11].

7.4.4 Example Illustrating Uncertainty Assessment
of Network Sensitivity to Inputs

Estimation of geophysical parameters from remote sensing: a case stud).
The use of the concepts of network sensitivities for estimating the relevance
of inputs and related network uncertainties in conjunction with PCA will be
demonstrated. The work presented here was reported by Aires et al. [11] and
is a continuation of the case study started in Section 7.2.5.1 and continued in
Section 7.3.1. Recall that the objective is to retrieve 7;, WV, and E,, from
satellite data. The emissivities are described by seven measurements
made by seven different frequency/polarization channels, thereby making
the total number of outputs equal to nine variables (7;, WV, and seven
E,, components). The inputs are microwave brightness temperature (7B)
measured at the same seven frequencies for which surface emissivities are
retrieved and Tlay (i.e., eight indirect inputs). As noted in Section 7.2.5.1, it
has been possible to come up with first guesses for the nine outputs so that
the search for the optimum model can be made efficient. These first guesses
were also used as inputs, thus the total inputs were 17. The problem is to
retrieve the nine parameters (outputs) from 17 inputs.

7.4.4.1  PCA Decomposition of Inputs and Outputs

In PCA, new components are derived from original variables by multiplying
them by eigenvectors that contain factor loadings (i.e., coefficients) for each
of the original variables. If the original set of inputs and output variable
vectors are denoted by x and y, respectively, and the corresponding set of
means are denoted by X, , then the expression for the jth PC denoted by
vector X} can be expressed as
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(7.40)

where s, and s, are standard deviation vectors of inputs and output
variables, respectively, and u; and v; are the jth eigenvector for the inputs
and outputs, respectively. The T denotes transpose. For a dataset with N
input and output patterns, there are N values for each x/ and ;. As can be
seen from Equation 7.40, each original variable is standardized by
subtracting its mean and dividing by its standard deviation. The u; and v,
are derived from the covariance matrix of the standardized
original variables.

The dataset contained 20 000 input and output vectors. Input and output
variables showed multicollinearity as illustrated in Section 7.3.1 and
therefore PCA was appropriate. The results of PCA for the inputs and
outputs are shown in Table 7.5, where the first column indicates the number

Table 7.5 Cumulative Percentage Variance of Inputs and
Outputs Accounted for by the Number of PCs

Number of PCA Cumulative Cumulative
Components Explained Variance Explained Variance
Used for Inputs (percent) for Outputs (percent)
1 42.50 57.6844
2 68.23 941111
3 81.94 98.1895
4 86.38 99.4994
5 90.56 99.9346
6 92.64 99.9675
7 94.47 99.9910
8 96.09 99.9974
9 97.49 100.0000
10 98.35 -
11 99.01 -
12 99.46 -
13 99.78 -
14 99.87 -
15 99.94 -
16 99.98 -

—_
N

100.00 -
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of PCs and the second and third columns represent the cumulative
explained variance (percent) for inputs and outputs, respectively.

Figure 7.12 shows the first four significant PCs (loadings) for the
inputs. In this study it was assumed that PCs that are at the bottom of
the list (higher-order) describe instrumental noise and unimportant
information.

The first PC, which explains 42.5 percent of the total variance according
to Table 7.5, is dominated by the first guess of 7; and regular inputs of 7B
with very similar weights for all frequencies. The differences between the
information carried by horizontal and vertical polarization channels are
represented by the second component. The first guess for WV only
dominates in the fourth component.

Figure 7.13 shows the first four PC basis functions for the output data.
The first component explains more than half of the variance of the original
set of outputs (see Table 7.5) and is dominated by 7; and E,, with similar
weights for all E,,. The WV, as well as the differences in E,, polarizations, are
represented in the second component. These two PCs together account for
94 percent of the variance of the outputs.

05—

~..._.|— Component 1
-=-- Component 2
--=- Component 3
-------- Component 4

Principal component

6 7 8 9 1011 12 13 14 15 16 17
Neural network input

12 3 4 5

Figure 7.12 Loadings for the 17 original input variables in the first four principal
components of input covariance matrix. (The inputs are, respectively, T,
WV, TB19V, TB19H, TB22V, TB22H, TB37V, TB37H, TB85V, TB85H, and first
guesses for the parameters of F,, 19V, E,,19H, E,22V, E,,37V, E,37H, E,85V, E,85H,
and Tlay.) (From Aires, F., Prigent, C., and Rossow, W.B., Journal of Geophysical
Research, 109, D10305, 2004.)
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Figure 7.13 Loadings for the nine original output variables in the first four
principal components of output covariance matrix. (From Aires, F., Prigent, C., and
Rossow, W.B., Journal of Geophysical Research, 109, D10305, 2004.)

Aires et al. [9] state that even if the PCA is only optimal for datasets
that follow Gaussian distributions, it can still be used for more complex
distributions with satisfactory compression levels. Applying PCA to
non-Gaussian data results in non-Gaussian distributions for the PCA
components. Figure 7.14 shows the first four output PC distributions,
which indicate that some distributions are skewed (C and D) and may
have positive kurtosis, i.e., platykurtic (Figure 7.14d), or negative
kurtosis, i.e., leptokurtic (Figure 7.14c). This makes the use of a
nonlinear model, such as neural networks, even more important. Dealing
with non-Gaussian distributed data requires a model that is able to
incorporate the complex and nonlinear dependencies in the data.
Furthermore, extreme events can occur that are represented by very
strong absolute values for some PCs. If these are considered outliers, they
can be removed using multivariate outlier detection methods discussed in
Chapter 6.

To check if the PCs of outputs are consistent with physical data, the
original data was projected, as shown in Figure 7.15, onto the first two PCs
that represent most (94 percent) of the variability. In the figure, clouds of
points are represented by one-sigma (standard deviation) contour lines for
clarity, meaning that the mean and the standard deviation of the represented
Gaussians are the mean and the standard deviation of the cloud of data
points. As can be seen, the projection onto principal space differentiates
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Figure 7.14 Histograms of first four principal components of the outputs. (From
Aires, F., Prigent, C., and Rossow, W.B., Journal of Geophysical Research, 109,
D10305, 2004.)

different land surface types in a set of Gaussian modes that are well
separated and physically consistent.

PC maps, such as that shown in Figure 7.15, can therefore be used for
clustering and classification because they provide physically meaningful
interpretations. For example, the negative first component values, such as
those for rainforest, mean that for this vegetation type, 7y (earth surface
skin temperature), is above mean value. Recall that principal scores are
calculated by multiplying the PC loadings (see Figure 7.13) by the
corresponding value for the original standardized input variables. (Recall
also that the original variables are standardized by subtracting the mean
and dividing by the standard deviation.) The loading on the Tj in the first
component is negative in Figure 7.13. Therefore, for the scores shown in
Figure 7.15 to be negative for the rainforest, the standardized values of
the output 7; must be positive in this case. This can happen only if 7 is
above the mean for rainforest.

In contrast, tundra has a positive first component, indicating that 7; is
below the mean value. Similarly, the second component is highly positive
for the rainforest, indicating that WV is higher than the mean in the
equatorial regions, as expected. This is because the loading on WV in the
second component is positive. It is known that surface types represent a
large part of variability in the parameters (outputs); the fact that PCs can
coherently separate different surfaces demonstrates the significance of the
PCA representation. This is particularly important because in the next
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Figure 7.15 One-sigma contour lines of distributions of output parameters
projected onto the first two principal components. (From Aires, F., Prigent, C., and
Rossow, W.B., Journal of Geophysical Research, 109, D10305, 2004.)

section, PCs are used to regularize network learning. The patterns that are
found by PCs will distribute the contribution of each input and each output
for a given sensitivity and it is essential that these patterns have a physical
meaning [11].

7.4.4.2 PCA-Based Neural Network Regression

As discussed in Chapter 6, the use of PCs instead of raw inputs has several
benefits: it makes the network faster to train because of the reduced
dimensionality and reduced noise level in the observations [11,12]. The
network is also less complex with fewer inputs and outputs and there are
therefore fewer parameters to be estimated. Consequently, the variance in the
determination of the actual values of weights is also reduced. Reduced
dimensions also make training simpler because the inputs are decorrelated.
As discussed earlier, correlated inputs, or multicollinearities, are known to
cause problems in model fitting; therefore, suppressing these makes the
minimization of the error criterion more efficient because it is easier to
minimize with less probability of getting trapped in a local minimum. It has
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the general effect of suppressing the uncertainty in the determination
of weights.

Selecting the number of PCs. Several methods for selecting the number
of components are discussed in Chapter 6. For neural networks,
experience shows that if the network is well regularized, once sufficient
information has been provided as input, adding more PCs as input does
not have a large effect on the retrieved results with the disadvantage of
the extra effort expended on training. In this study, a conservative
approach has been taken by keeping more components than the
denoising optimum would indicate so that all possibly useful information
is kept.

Apart from the benefits of denoising and compression, reduction of the
number of PCs has other effects on output retrieval quality. During the
learning stage, the network is able to relate each output to the inputs that
help predict it and disregard those that vary randomly. In some cases, the
number of inputs is so large (few thousands) that compression is essential
for meaningful interpretation of the network outputs in terms of inputs.
In this study, 12 components accounting for 99.46 percent of the total
variance (see Table 7.5) have been selected as inputs to the PC-
based network.

The number of PCs for network output is related to the retrieval error
magnitude for a nonregularized (non-PCA based) network. If the
compression error due to PCA is minimal compared to retrieval error,
the number of output components used is satisfactory [11]. It is not
practical to retrieve something that is, in essence, noise. Furthermore,
doing so could lead to numerical problems and interfere with the
retrieval of other more important components. In this study, five output
PCs have been used, accounting for 99.93 percent of the total variance
of the outputs (see Table 7.5). The number of input and output
components selected has other consequences, too. As presented in
Chapter 4, the Hessian, which by definition is the second derivative of
error, is used in second-order error minimization methods. The final
form of the Hessian simplifies to the second derivative of network
outputs with respect to weights. In some situations, the Hessian becomes
ill-conditioned, leading to numerical instability problems. This problem is
intimately related to the number of inputs and outputs selected for the
network [11].

Postprocessing of data after PC decomposition. Data normalization (i.e.,
standardization) is performed before PC decomposition, but a post-PC
normalization is also required. This is needed for both input and output PCs
because they have different dynamic ranges. For a particular input PC
denoted by x/;and output PC denoted by yj}, the normalized PCs (x}and y;)
are calculated as
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(7.41)

where X/, y] are the mean of input PC x; and output PC y}, respectively, and
Sx! and S/ are the corresponding standard deviations.

" Furthérmore, the importance of each of the output components is not
equal; the first component represents 52.68 percent of the total variance,
whereas the fifth component represents only 0.43 percent. Therefore, giving
the same weight to each of these components during learning could be
misleading. To correct this, a weighting equal to the standard deviation of
the component has been given to each component in the square error
criterion, i.e., multiplying square error for each component by its standard
deviation. This is equivalent to using Equation 7.4 for the error criterion
Ep(w), where A, is a diagonal matrix with diagonal terms equal to the
standard deviation of the PCs. The off-diagonal terms are zero because there
is no correlation between the PCs. Thus, the first component is 50 times
more important than the fifth component.

Retrieval of results. The PCA-regularized network structure had 12
inputs, 30 hidden neurons and 5 outputs, whereas the nonregularized
network architecture had 17, 30, and 9, respectively. The root mean square
(RMS) retrieval error for the network with PC-based inputs and outputs
was slightly higher than that for the non-PCA based network. For example,
the RMS error for T, was 1.53 compared to 1.46 for the non-PCA network.
This is expected because PCA representation reduces overfitting (variance)
and therefore, increases RMS error (bias), as illustrated in Chapter 6. The
difference in RMS error in this case is negligible.

The evolution of learning statistics for the first three output components
isillustrated in Figure 7.16, which indicates how the RMS error of the retrieval
of each output component decreases with learning iterations. It shows that
learning is unstable for some outputs with large initial oscillations due to the
complex mixing of the components that the network tries to retrieve,
meaning that each component mixes variability from each of the nine
original variables. The network decreases error in one component, and then
to reduce error in another component makes compromises that cause a
sudden hike in RMS error in another component. However, when these error
curves are translated back to the physical variables, more stable error curves
that steadily decrease with iterations are observed, as presented in
Figure 7.17 for three original outputs 7y, WV, and E,,19H. The character of
the RMS curves for the other six original outputs is similar.
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Figure 7.16 RMS error curves for the first three network output principal
components during learning. (From Aires, F., Prigent, C., and Rossow, W.B.,
Journal of Geophysical Research, 109, D10305, 2004.)

7.4.4.3 Neural Network Sensitivities

A trained network is a statistical model relating inputs to outputs. It also
provides an efficient calculation of the network derivative with respect to
inputs, which is called a network Jacobian. The Jacobian concept is
powerful in that it allows for a statistical estimation of the multivariate and
nonlinear sensitivities connecting the inputs and outputs in a given model.
Specifically, the Jacobian gives the global mean sensitivities for each
retrieved output parameter thereby indicating the relative contribution of
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Figure 7.17 RMS error curves translated for three original network outputs during
learning (curves for the other six variables are similar). (From Aires, F., Prigent, C.,
and Rossow, W.B., Journal of Geophysical Research, 109, D10305, 2004.)
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each input to the retrieval of that output parameter. For a nonlinear model,
the Jacobian is situation dependent, meaning that it is not constant, but
depends on the input vector; the mean is therefore given over the whole
batch of input vectors.

Because the inputs are normalized, the network Jacobian would also be
normalized quantities. The Jacobian for the original physical quantities
(0y;/dx;) (the sensitivity of output y; to input x,) can be obtained using
Equation 7.40 and Equation 7.41 with the chain rule of differentiation:

dy _ dy dy' dy” ox" ox' (7.42)
ox  dy dy" ox" ox' ox’ '

where x and y are original input and output vectors, X’ and y’ are the PCs
and x" and y” are standardized PCs. From Equation 7.40, by putting all
eigenvectors for inputs together in a matrix U and those for outputs in 'V, each
of the derivatives in Equation 7.42 can be derived as

dy s ay’ x" 1 ox'’ Ut
WOV WY W s s U

Substituting the derivatives in Equation 7.43 into Equation 7.42:

"

dy
ox"

dy

= s U sy, (7.44)
ox

=8y [VT]_lsy/-

which translates the derivatives (dy”/dx”) based on standardized PCs to
those with respect to original variables, (dy/0x). In Equation 7.44, x is the
vector of n original inputs {x;, X5,..., X,,} and Y is the vector of k original
outputs {yy, ya,..., yu and sy and sy are the vectors of standard deviations
of original inputs and outputs. The U and V are the matrices of
eigenvectors (sets of u; and v; given in Equation 7.40) derived from the
covariance matrices of original inputs and original outputs, respectively.
Recall that u; contains loadings for each original input in the ith input PC
and v; contains loadings for each original output in the jth output PC.
The left side of Equation 7.44 is a matrix containing the sensitivity of
each original output y; to each of the original input variables x; To
compare sensitivities between variables with different variation charac-
teristics, their standard deviations (sy, Sy) in Equation 7.44 can be
suppressed so that for each input and output variable, normalization by
their standard deviation is used. The resulting nonlinear Jacobians
indicate the relative contribution of each input to the retrieval of a given
output variable.
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7.4.4.4  Uncertainty of Input Sensitivity

In an investigation of the sensitivity (Jacobian) of the network, its
uncertainty or variance must be considered. Uncertainty is expressed as
PDFs and PDFs of the Jacobians are therefore necessary. There is no direct
way to estimate PDFs of Jacobians, so simulations must be used to indirectly
obtain these quantities using the network weight uncertainties. After
training, the maximum a posteriori (MAP) weights w* are obtained, which
are also the most probable weights. With these weights, the mean or MAP
Jacobian corresponding to the most probable weights can be obtained.
However, the mean Jacobian is not sufficient for real sensitivity analysis and
uncertainty in this estimate is needed.

Even if uncertainty estimates are not of interest, using only w* to directly
estimate other dependent quantities may not be optimal. This is because in
a high dimensional space, the densest areas of the weight distribution
(location where the probability is higher) can be far from the most probable
state, which is the MAP state. In fact, the high dimensions make the masses
of PDFs more on the periphery of the density domain and less at the center
[11]. Nonlinearity can also distort the distribution of estimated quantities
such as weights. This is another reason why it is better to use a sample of
weights from the weights PDF. Weight PDFs have already been derived
in Section 7.2.4 using Bayesian statistics and can therefore be used for
assessing uncertainty in network sensitivities.

As mentioned previously, without a priori information, the internal
regularities of the network have no constraints, which can lead to high
variability of the Jacobians that must be assessed. To estimate these
uncertainties, 1000 samples of weights were extracted from the weights PDF
using a Monte Carlo simulation that is designed to sample mostly the
significant part of the weight space. Sampling a PDF in high dimensional
weight space (819 weights in this study) can be very time consuming, and
methods such as Monte Carlo simulations are needed for efficient sampling.
One sample is one set of values for the 819 weights in the network (i.e., one
network). For each weight sample ', the mean Jacobian over the entire
dataset was calculated. With 1000 samples, there were 1000 mean Jacobian
values for each output-input combination (dy;/dx;), which comprises the
Jacobian matrix (dy/dx). These are used to obtain the PDF for each
individual component of the Jacobian in (dy/dx) (i.e., all (dy;/dx;)
components). From these PDFs, the mean and standard deviation of each
Jacobian can be obtained; these are shown in Table 7.6 for the non-PCA-
based network. These values indicate the relative contribution of each input
to the retrieval of a given output parameter. In the table, rows are inputs and
columns are outputs. The latter half of the input variables in the first column
represents the first guesses for the output variables.
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Figure 7.18 Twenty samples of five sensitivities from non-PCA regularized

network (g—;: TR o 6E,?,£57V a:si?sv) (top) and their PDFs (bottom). (From

Aires, F., Prigent, C., and Rossow, W.B., Journal of Geophysical Research, 109,
D10305, 2004.)

Table 7.6 indicates that the variability of the Jacobians is large in that they
can be up to several times the mean value. For most cases, Jacobian value is
not in the confidence interval (the symbol * above a number indicates the
sensitivities with positive 5 percent significance tests), meaning that the
actual value is not significant. In the table, sensitivities higher than 0.3 are in
bold. In linear regression, nonsignificant parameters are often an indication
that multicollinearity exists.

Twenty samples of five sensitivities (normalized) extracted from the
sensitivity PDFs, along with the distribution of these sensitivities, are shown
in Figure 7.18. They confirm that sensitivities are highly variable and the
distributions of Jacobian show that most of them are not statistically
significant. The reason for such uncertainty could be the interference of
multicollinearity during the learning process resulting from the introduction
of compensation phenomena. For example, if two correlated variables are
used to predict an outcome, then learning has some indeterminacy,
meaning that it can give more emphasis to the first input and compensate for
it by underallocation in the second correlated variable. This can be
reciprocated from one epoch to another and therefore the two



328 m Neural Networks for Applied Sciences and Engineering

corresponding sensitivities can be highly variable from epoch to epoch. The
output prediction could be just as good for both cases, but the internal
structure (e.g., Jacobians) of the model would be different. Because these
structures are of interest in assessing relative contribution of inputs, the
problem must be addressed.

First, to see if multicollinearity is at the root of such large uncertainty in
Jacobians, correlation between the sensitivities were determined and given
in Table 7.7.

Table 7.7 shows that some sensitivities are indeed significantly
correlated, indicating that correlated sensitivities are related following
the compensation principle. For example, correlation between (d7,/07B
19V) and (9T,/0TB22V) is larger in absolute value than 7; to high
frequency TB. The negative sign of this relationship can be explained
by the fact that 7B719V and 7TB22V are highly correlated. For example, a
large sensitivity of 7, to TB19V is compensated for in the network by a
low sensitivity to 7B22V, giving rise to a negative correlation between
the two sensitivities. Although the absolute values of correlation are not
high, when added, these correlations define quite a complex and strong
dependency structure among sensitivities. This is a sign that multi-
collinearities exist and consequent compensations are occurring in
the network.

7.4.4.5 PCA-Regularized Jacobians

Now that the structure of sensitivities of the nonregularized network that
uses original inputs is known, it can be compared with the sensitivity
structure for PCA-regularized network. The mean and standard deviations
for sensitivity of output PCs to input PCs in the PCA-based network
described in Section 7.4.4.2 are given in Table 7.8. These results are much
more stable and satisfactory than those for the non-PCA network. Compare
the standard deviations in Table 7.8 and Table 7.6.

Table 7.8 shows some high sensitivities and they were all significant to
the 5 percent confidence level. This sensitivity matrix also highlights how
the network relates inputs to outputs. For example, the first output
component is highly related to the first input component with a sensitivity
of 0.81, but also to the third component with a sensitivity of 0.51. This
indicates that the network has to nonlinearly transform input components
to retrieve the output components. As the number of the important
output components increases, the number of input components increases,
too; however, higher order input components (i.e., higher than fifth) have
limited impact. It must be noted that even if the mean sensitivity of an
input component is low for the major output components, an input
component can have an impact on the retrieval of output components in
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Table 7.8 Global Mean Regularized Neural Sensitivities, y;"/x/", of Output
Principal Components to Input Components

NN outputs
NN inputs ~ Compo 1° Compo 2 Compo 3 Compo 4 Compo 5

Compo1 —0.81+0.01 —0.254+0.01 0.53%£0.01 —0.05+0.01 —0.03£0.01
Compo2 —0.21£0.01 —0.691+0.01 —0.621+0.01 0.16+0.01 0.10+0.02
Compo 3 0.51+0.01 —0.65+0.01 0.411+0.01 0.4740.01 0.02+0.01
Compo 4 0.17+0.01 —0.46+0.01 0.05+0.01 —0.44+0.01 —0.07+0.01
Compo5 —0.06+0.01 0.044+0.01 —0.00+0.01 —0.02+0.01 0.77+0.01
Compo 6 —0.01£0.01 0.024+0.01 0.01£0.01 0.02+0.01 0.07+0.01
Compo7 —0.01£0.01 0.02+0.01 —0.01£0.01 —0.02+0.01 0.10£0.01
Compo8 —0.03%£0.01 —0.10+0.01 0.01+0.01 —0.04%£0.01  —0.0540.01
Compo 9 0.01+0.01 0.02£0.01 —0.01£0.01 —0.00+0.01 —0.25+0.01
Compo 10 —0.01£0.01 0.03%+0.01 0.00+0.01 0.02+0.01 0.1210.01
Compo 11 —0.14£0.01 0.224+0.01 —0.01+0.01 0.05+0.01 0.25+0.01
Compo 12 0.10+0.01 —0.18+£0.01 0.10£0.01 0.08+0.01 —0.14%0.01

Columns are network outputs, y;”, and rows are network inputs, x;”. Sensitivities
with absolute value higher than 0.3 are in bold. *Compo refers to PCA component.
(Source: Aires, F., Prigent, C., and Rossow, W.B., Journal of Geophysical Research,
109, D10305, 2004.)

some situations, such as shown in bold for the output component 5. This
is because the nonlinearity of a network makes it situation dependent
(dependence on the input vectors) and therefore an input component can
be valuable in some situations.

The Jacobians in Table 7.8 are in the PC space and therefore cannot be
compared directly with nonregularized sensitivities in Table 7.6. Therefore,
PCA-based sensitivities were transformed to those for actual physical
variables using Equation 7.44 and presented in Table 7.9 for comparison
with Table 7.6. In Table 7.9, rows are the original input variables and
columns are the original output variables. The latter half of the variables in
the first column represents the first guesses for the retrieved
output variables.

The uncertainty of mean sensitivities is extremely low now, and most
of the mean sensitivities are significant to the 5 percent level. Compare
again the standard deviations in Table 7.9 and Table 7.6. These results
illustrate that PCA has resolved the problem of multicollinearity by
suppressing them in the network. Because the interferences among
variables are suppressed, the standard deviation of each sensitivity is very
small compared to those found for a non-PCA network (Table 7.6). Further-
more, these sensitivities are physically more meaningful. For example,
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Figure 7.19 Twenty samples of five sensitivities from PCA regularized network

(3;; arg;—?v (,T‘;Esv 65:;57‘, afigssv) (top) and their PDFs (bottom). (From Aires, F.,

Prigent, C., and Rossow, W.B., Journal of Geophysical Research, 109, D10305,
2004.)

retrieved 7, is sensitive to 7B at vertical polarization for the low
frequencies and to the first guess of T;. The sensitivity of retrieved T; to
the first guess emissivities is weak regardless of the polarization
and frequency.

Information on WV clearly comes from the 85 GHz horizontal
polarization channel. The sensitivity of WV to TBS85H is almost twice as
large as that to first guess WV, indicating that the most relevant
information for the retrieval of WV is extracted from this channel. The
sensitivity of the retrieved emissivities depends on the polarization. For
example, vertical polarization emissivities are more directly related to first
guess of T, and 7BV whereas those for horizontal polarization are
dominated by their first guess emissivity. Thus, the sensitivity matrix
clearly illustrates how the network extracts information from the inputs in
the retrieval of outputs.

A sample of these sensitivities and their PDFs are presented in Figure 7.19
and the comparison of the corresponding figure for non-PCA network in
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Figure 7.18 confirms the robustness and stability of the Jacobians from the
PCA regularized network. Aires et al. [11] states that such PCA regularized
neural networks have robust Jacobians even if the network architecture,
such as number of hidden neurons, is changed. This illustrates the
significant impact of PCA regularization on the reliability and robustness
of network Jacobians and the network model. In addition to helping
understand how the network links inputs to outputs, the sensitivity matrix
can help refine the model by revealing inputs that are insignificant for the
prediction of an outcome.

7.4.4.6 Case Study Summary

This section presented a framework for the characterization, analysis, and
interpretation of Jacobians and their uncertainties in any neural network-
based parameter estimation and illustrated the concept using a case study.
The Jacobian of a nonlinear model is a powerful concept [14] and the study
illustrated its use to understand the sensitivities of network outputs to inputs
and investigate the relative contribution of each input to a given output.
PDFs of sensitivities were developed by Monte Carlo simulations involving
sampling (1000 times) of sets of weights from the weight PDFs derived from
Bayesian statistics and analyzing the corresponding network sensitivities.
The results showed that without PCA regularization, sensitivities are highly
variable and exhibit multicollinearity. PCA regularization makes them very
stable and robust and helps extract physically meaningful relationships from
sensitivities. This was made possible by the suppression of multicollinea-
rities among original input and output variables in the PCA representation of
both inputs and outputs. This representation also made it easy to explain the
variability of the output parameters caused by different land cover types.
The PCA-based approach makes both the learning process more stable and
Jacobians more reliable and physically meaningful.

7.5 Summary

This chapter presents a detailed treatment of uncertainty assessment of neural
network models. These methods for neural networks are in their infancy.
First, the standard error criterion used in regular network training is shown to
be a simplified version of a more realistic case where variance of noise and
initial weights are used to regularize error minimization. It was also
demonstrated that the standard error minimization is a special case of
minimizing negative log likelihood in statistical parameter estimation.
Based on these developments, the optimum weights obtained from regular
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network training were placed in Bayesian context to obtain a priori PDFs for
the final weights of a network. In this formulation, the optimum weights
obtained from network training are the most probable or maximum a
posteriori weights, and the distribution represents the uncertainty in weights.

The derivation of PDF of weights is illustrated using a case study
involving estimation of geophysical parameters that drive Earth’s radiative
transfer phenomena from satellite data. A sample of weights extracted from
the PDFs are presented to illustrate their behavior and correlation structure.
The weight distribution is used to generate uncertainty estimates for output
error that is divided in to model error and intrinsic noise. These two aspects
are treated in detail in the chapter and illustrated in the case study.

The latter part of the chapter involves uncertainty estimation of network
input—output sensitivities so that significant inputs can be identified.
A detailed treatment of the effect of multicollinearity in inputs and outputs
is presented and it is shown that the PC decomposition of inputs and outputs
produces networks that have more stable sensitivities than those using
regular inputs and outputs that are correlated. The sensitivities obtained
from PCA-based networks also have smaller standard deviation, indicating
less uncertainty in their values. The PCA approach produces a much clearer
view of how inputs are linked to outputs and therefore how relevant inputs
can be identified with more confidence.

Problems

1. Explain the reasons for nonunique solution for weights in
feedforward networks.

2. What quantities do  and « in the regularized training criterion in
Equation 7.1 approximate? Explain the meaning and significance of
these quantities.

3. What is intrinsic error of targets and what are the sources of it? What
can be learned from error covariance matrix for a multiple output
situation? What is the structure of an ideal error covariance matrix?

4. What is an a priori distribution of weights and a priori weight
covariance? What can be learned from a weight covariance matrix?

5. Show that the square error minimization is a special case of
minimizing negative log likelihood.

6. What are the statistical characteristics of intrinsic uncertainty of
targets for multivariate outputs?

7. What are the mean and covariance of an a posteriori distribution of
weights. How can they be obtained?

8. What information does the a posteriori weight covariance matrix
convey about the relationship between weights? What is an ideal
weight covariance matrix?
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10.

11.

12.

13.

14.

15.

16.

17.
18.

For a multivariate problem of choice, train an appropriate multilayer
network and obtain the maximum a priori weights. Compute the
Hessian matrix for the network and assess the correlation structure of
the weights using the Hessian.

For the network in Problem 9, obtain weight covariance matrix by
inverting the Hessian and then determine the PDF of weights. Assess
the behavior of a selected subset of network weights. One set
represents one network. What can you say about the variability of
weights?

For the data in problem 9, use the PC decomposition on inputs and
outputs and select an appropriate number of input and output
components. Train a network and obtain a new probability
distribution for the weights. Compare the weight distributions from
the PCA-based network and the non-PCA network in Problem 9.
On what basis can the prediction error from a model be decomposed
into model error and intrinsic error? How can these be minimized?
Obtain estimates for model error and intrinsic error for the models in
Problems 9 and 11. Compare the results.

What concepts are used in assessing the influence of inputs on the
outputs and selecting relevant inputs?

Derive the expression for network sensitivity (Jacobian) in
Equation 7.44. Simplify it to one input, one output, and one hidden
neuron network.

Obtain sensitivities from the non-PCA- and PCA-based networks in
Problems 9 and 11, respectively, and compare the results in terms of
stability and uncertainty. Select the most significant inputs from
the sensitivities.

What are some advantages of PCA-based networks?

What are the advantages of uncertainty assessment of networks? How
can uncertainty be minimized?
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Chapter 8

Discovering Unknown
Clusters in Data with
Self-Organizing Maps

8.1 Introduction and Overview

Unsupervised networks are used to find structures in complex data. For
example, they can locate natural clusters and one- or two-dimensional
relationships in data in a natural way without using an externally provided
target output. This is useful because there are many real-life phenomena in
which the data is multidimensional and its structure and relationships are
unknown a priori; in these situations, the data must be analyzed to reveal
the patterns inherent in it. The reason for this is that there are many complex
processes in biology, ecology, and the environment that are understood
either partially or not at all. However, it is possible to observe these
processes and to gather data with relative ease, but to make sense of this
data it must be synthesized into coherent and meaningful structures.

For example, what weather patterns drive certain ecological processes?
What is the underlying amino acid sequence that produced the specific
structure of a protein? What types of species—insects, fish, plants, and so
on—assemble together, and what are the conditions under which they form
assemblages? All these and many other open-ended problems in the natural
world do not have desired outputs; the data must be explored deeply to find
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meaning in it and to extract answers from it. Unsupervised networks do this
by projecting high-dimensional input data onto one- or two-dimensional
space to represent it in a compact form so that its inherent structure and
patterns can be interpreted meaningfully and validated visually [1]. The task
of unsupervised networks presented in this chapter is to perform this
projection. Recall that in feedforward networks such as the multilayer
perceptron (MLP), each input vector must accompany a desired or target
output. In unsupervised networks, targets are not involved; unsupervised
networks bear that name because only the inputs are used.

This chapter presents a detailed discussion of unsupervised networks
with an emphasis on self-organizing map (SOM) networks, highlighting their
internal workings, practical examples, and new developments in the field.
Section 8.2 presents the structure of unsupervised competitive networks;
Section 8.3 introduces learning in these networks. Implementation of
competitive learning is illustrated with examples in Section 8.4. A range of
topics pertaining to SOMs are formally introduced in Section 8.5. Specifically,
Section 8.5.1 will address learning in SOMs to illustrate SOM training using
neighborhood operations for topology preservation in one-dimensional
networks, with examples and a real-life case study. The discussion is
extended to two-dimensional SOMs in Section 8.5.2, which presents a variety
of topics, including map training, preservation of the spatial proximity of data
on the map through neighborhood features, quantization (or map error), and
the distance matrix (U-matrix) using examples of two-dimensional data.

The SOM concepts are further extended and illustrated in Section 8.5.4,
with an application to multidimensional data; this section addresses topics
including: map training and analysis of final map structure (Section 8.5.4.2
and Section 8.5.4.3); the quality of representation of input probability
density of data by a map; the projection of input data onto a trained map
(Section 8.5.4.5); and the quality of retrieval of inputs (Section 8.5.4.6 and
Section 8.6.1.1). The chapter then continues to cover classification with maps;
cluster formation on the map; the optimization of clusters (Section 8.5.5); and
map validation (Section 8.5.6), using examples. In Section 8.6, SOM concepts
are further expanded to include evolving SOMs, a strategy which is proposed
to evolve a map to a desired size and complexity; this model is able to address
the limitations of the regular SOM with a fixed-size map. Several approaches
to evolving maps are presented, with examples.

8.2 Structure of Unsupervised Networks

An unsupervised network usually has two layers of neurons: an input layer
and an output layer. The input layer represents the input variables, x;,
X, ..., X, for the case of 7 inputs. The output layer may consist of neurons
arranged in a single line (one-dimensional) or a two-dimensional grid,
forming a two-dimensional layer. These two forms are shown in Figure 8.1.
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Figure 8.1 Unsupervised network structures: (a) one-dimensional and (b) two-
dimensional network configurations.

The main feature of an unsupervised network is the weights that link the
inputs to the output neurons. These weights are the free parameters of a
network; learning involves adapting these weights. Each output neuron
receives inputs through the weights that link it to the inputs, so the weight
vector has the same dimensionality as the input vectors. The output of each
neuron is its activation, which is the weighted sum of inputs (i.e., linear
neuron activiation). The objective of learning is to project high-dimensional
data onto one- or two-dimensional output neurons on the basis of their
activation in such a way that each output neuron incrementally learns to
represent a cluster of data. The weights are adjusted incrementally; the final
weights of neurons representing the input clusters are called codebook
vectors or weights. These weights are found by unsupervised
learning mechanisms.

8.3 Learning in Unsupervised Networks

Unsupervised learning is a central part of our daily life: every day, the
human brain naturally implements unsupervised learning. Humans are
accustomed to synthesizing a myriad of information and organizing it into
compact forms, such as perception, recognition, and categorization, that are
meaningful to our lives. One key question addressed by early researchers of
neural networks was how the neurons in the human brain facilitate this
natural self-organization of information. An important contributor in this
area was Frank Rosenblatt [2], who introduced the concepts of unsupervised
or competitive learning as a possible learning mechanism in the brain, as
presented in Chapter 2. These and other of his pioneering ideas led to the
development of the perceptron and the first implementation of learning in
neural networks, as discussed in Chapter 2.

To explain how the human brain recognizes similar patterns and
distinguishes them from dissimilar patterns, Rosenblatt [2] proposed a model
of competitive learning between neurons. In his model that attempts to
mimic this brain function, neurons inhibit each other by sending their
activation as inhibitory signals, the goal being to win a competition for the
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maximum activation corresponding to an input pattern. The neuron with
the maximum activation then represents the input pattern that led to its
activation. This neuron alone becomes the winner and is allowed to adjust
its weight vector by moving it closer to that input vector; however, the
neurons that lose the competition by succumbing to the inhibition are not
allowed to change their weights. Another neuron may become the winner
for another input pattern; this neuron gets to adjust its weights, moving them
closer to the input pattern for which it was the winner. Over time, the
individual output neurons learn to specialize, responding to a specific set of
inputs. This idea of competitive learning is presented in Figure 2.9 of
Chapter 2, in which the original perceptron hypothesis is applied to vision.

8.4 Implementation of Competitive Learning

The implementation of competitive learning in a simple network will now
be presented. First, the number of output neurons must be determined. In
many cases, the number of data clusters is unknown; it is therefore
necessary to use a reasonable estimate based on the current understanding
of the problem. When there is uncertainty, it is better to have a larger
number of output neurons than the possible number of clusters because
redundant neurons can be eliminated. The problem determines the
dimensionality of the input vector. As with feedforward networks such as
MLP, the larger the number of input variables, the larger the number of
weights and hence the higher the complexity of the network, which is
undesirable. After the number of input variables and output neurons has
been set, the next step is to initialize the weights. These may be set to small
random values, as was done in the MLP networks. Another possibility is to
randomly choose some input vectors and use their values for the weights.
This has the potential to speed up learning. Now that the structure of the
networks has been defined, learning can commence.

8.4.1 Winner Selection Based on Neuron Activation

In competitive learning, an input is presented to the network and the winner
is selected based on the neuron activation (i.e., net input into a neuron).
This involves the presentation of an input vector x (with components x;,) to
the network and the computation of the net input (w), which is the weighted
sum of inputs, into each of the neurons. Thus

n
u, = sz‘jxp (8.1)
i=1

where Xx; is the ith input variable, w; is the weight from input x; to output
neuron j, and # is the dimensionality of the input. Once each output neuron
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has computed its activation, competition can begin. There are several ways
this can happen; a simple way is for each neuron to send its signal in an
inhibitory manner, with an opposite sign to other neurons. Once each
neuron has received signals from the others, each neuron can compute its
net activation by simply summing the incoming inhibitory signals and its
own activation. If the activation drops below a threshold (or zero), that
neuron drops out of the competition. As long as more than one neuron
remains, the cycle of inhibition continues until one winner emerges; its
output is set to one. This neuron is declared the winner because it has the
highest activation and it alone represents the input vector.

8.4.2 Winner Selection Based on Distance to Input Vector

The competition described above can be implemented much more simply
by using the concept of distance between an input and a weight vector. By
scaling the weights and inputs so that their relative lengths (|[x|| and |[w|])
are one, then it can be shown that a weight that is closer to an input vector
would cause a larger activation than one that is far away from the vector.
This is because the net input in Equation 8.1 can also be presented as
lIx|lllwll cos 8, where @ is the angle between the input vector x and the
weight vector w. For [[w]| =1, ||x]| = 1, the inputs that are closer to w will
make a smaller angle, leading to higher value of cos 6 and consequently a
higher net input. This is illustrated in Figure 8.2. In this case, the input and
weight vectors are normalized to unit length by dividing each component of
the vector by its length. For example, if the two components representing
two input variables of an input vector are 3.0 and 4.0, then the length of the
vector is \/(3°+4%) =5 and, therefore, the normalized vector components
are 3/5 and 4/5. The length of the normalized vector is 1.0.

Thus, the competition will eventually be won by the neuron associated
with the weight that is closest to an input, which will consequently have the
highest activation. A simple measure of the closeness of a weight to an input
vector is the Euclidean distance between them; this is defined as

(8.2)

Figure 8.2 Closeness between an input vector x and weight vector w.
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where d; is the distance between the input vector x and the weight vector w;
associated with the jth output neuron. This is illustrated in Figure 8.3, in
which the subscript j has been dropped for clarity. Once the distance
between an input vector and all the weights has been found, the neuron
with the smallest distance to the input vector is chosen as the winner, and its
weights are updated so that it moves closer to the input vector, as

Aw, = Bx—w)) = d, (53)

where § is the step length (or learning rate), which indicates what portion of
the distance between the two vectors (input and weight) the weight vector
must cross towards the input vector. The updated weight w' (dashed line) is
also shown in Figure 8.3, in which w” is the weight of a winning neuron
before the update. The other weights remain unchanged. When the inputs
are processed and the weights adjusted based on a distance measure such as
the expression in Equation 8.3, the clustering resulting from competitive
learning is analogous to cluster analysis in statistics. The weights associated
with each neuron represent a cluster center representing the inputs that are
closest to it. For example, if an input vector closest to a cluster center is
presented to the trained network, the winning neuron will be the one with
weights representing that cluster center.

8.4.2.1 Other Distance Measures

The most widely used distance measure is Euclidean distance. Other related
measures include correlation, direction cosines, and city block distance.
Correlation is a measure of the similarity between two vectors; in the case of
the similarity between an input vector and a weight vector, correlation
simply is the weighted sum of the inputs. The higher the weighted sum, the
higher the correlation, and the more similar the two vectors. The direction
cosine is the angle between two vectors, and as shown in Figure 8.2, when
the two vectors have unit lengths, the larger the cosine angle, the closer the
two vectors are to each other. City block distance is the sum of the absolute
values of the difference between corresponding vector components

n
(e, d;= > Ix; _Wz_']'l)~
=1

Figure 8.3 Illustration of weight update in competitive learning.
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Figure 8.4 Two-dimensional input data with six distinct clusters. (Data sourced
from Mathematica—Neural Networks, Wolfram Research, Inc., Champaign, IL.)

8.4.3 Competitive Learning Example

This section will present a computer experiment to promote understanding
of unsupervised learning. Figure 8.4 depicts a two-dimensional input
dataset with six distinct clusters, which was extracted from Mathematica—
Neural Networks [3]. Two inputs are denoted x; and X,. In this case, the
cluster structure is obvious and six neurons are needed in the output layer.
Thus, the network structure has two inputs and six output neurons, as
shown in Figure 8.5.

There are six sets of weights associated with the six output neurons.
Before training, these need to be initialized to random values. Figure 8.6
shows the initial weight vectors superimposed on the data. It can be seen
that the position of these vectors is far from the cluster centers.

The objective of training is to evolve weights so that they each assume the
center position of a cluster. Consequently, each neuron with its respective
weights is more sensitive to inputs in its own cluster than to other inputs and

1 2 3 4 5 6
QOO O Q.0

7

X, X

Figure 8.5 Unsupervised one-dimensional network configuration for the data in
Figure 8.4.
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Figure 8.6 Initial random weight vectors (crosses) superimposed on data.

thus becomes the winner for inputs from its cluster. For this to happen, each
weight vector should represent a cluster whose inputs are closer to the
corresponding weight vector than to the weight vectors representing other
clusters. Unsupervised or competitive learning facilitates such movement of
weights to respective cluster centers through either recursive or
batch learning.

8.4.3.1 Recursive Versus Batch Learning

Unsupervised networks can be trained in either recursive or batch mode. In
recursive mode, the weights of the winning neurons are updated after each
presentation of an input vector, whereas in batch mode, the weight
adjustment for each neuron is made after the entire batch of inputs has
been processed. In the latter case, the weight update for each input vector is
noted, but the weights are not changed until all the input patterns have been
presented. Afteran epoch (i.e., one pass of the whole training dataset through
the network), the average weight adjustment for each neuron is computed
and the weights are changed by this amount. In this method, the weights are
adjusted such that the distance between a representative weight vector and
the inputs in the cluster it represents decreases in an average sense.
Conceptually, this is similar to the batch learning in multiple layer networks
presented in Chapter 3 and Chapter 4. Training terminates when the mean
distance between the winning neurons and the inputs they represent is at a
minimum across the entire set of clusters, or when this distance
stops changing.

8.4.3.2 Illustration of the Calculations Involved in Winner Selection

Before examining the results from training this network, a small hand
calculation will be performed to determine the distance, find the winner
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neuron, and adjust the weights recursively for two randomly selected input
patterns from the data shown in Figure 8.4. The two patterns are

Input 1: (—0.035,0.030); Input 2: (—0.033,1.013).

The random initial weight vectors extracted from the neural network
program (Mathematica— Neural Networks [3)) for the six output neurons are

[0.805 1.234]
0.520 0.977
0.574 0.963
1.027 1.023
1.106 0.893
| 0.514  0.626 |

The distance between an input and a weight vector is calculated by
computing the difference between their respective vector components,
summing the square of these differences, and finding the square root of the
sum. Thus, the distance d; between the first input vector and the weight
vector of the first output neuron is

dy = 1/(—0.035— 0.805)2 + (0.03 — 1.234)> = 1.468.

The distance d, between the first input vector and the second output
neuron weight vector is

d, = v/(—0.035— 0.52)2 + (0.03 — 0.977)2 = 1.098.

Similarly, the distance from the same input vector to the other four
output neuron weight vectors, ds, d4, ds, and dg, can be calculated; they are
1.115, 1.455, 1.431, and 0.810, respectively. Thus, the first input pattern is
closest to the weight vector of output neuron 6, which will be the winner.

The weight update for this neuron, using Equation 8.3 for a learning rate
or step length 8 of 0.1, is

Awg = B(x — W)
= 0.1 X [(=0.035,0.03) — (0.514, 0.626)]
= 0.1 X [(=0.035— 0.514), (0.03 — 0.620)]
= (—0.055,—0.059).
Following the same procedure for the second input pattern yields the
following distances between the second input vector and each of the six

output neuron weight vectors: 0.866, 0.554, 0.609, 1.06, 1.146, and 0.665.
The second output neuron, with the minimum distance of 0.554 from the



346 m Neural Networks for Applied Sciences and Engineering

input vector, is the winner. Its weight vector update is

Aw, = B(x— Wy)
= 0.1 X [(—0.033 — 0.520), (1.013 — 0.977)]
= (—0.055,—0.0036).

The training criterion is the mean distance (the sum of the squared
distance) between all the inputs and their respective winning neuron
weights which represent the cluster centers. For this small dataset with two
input vectors, the training criterion is

mean dist = 0.810% + 0.554% = 0.963.

The objective of training is to minimize the mean distance over iterations.

This is an illustration of the training process in recursive mode with only
two input patterns. Training with the whole dataset in batch mode involves
finding the winning neuron for each input pattern and calculating the weight
change for the winning neuron. After the whole dataset has been presented
once (i.e., one epoch), the total increment for each weight is determined and
the weights are updated. As training progresses, the mean distance will
decrease because during each epoch, as the weights are moved closer to the
inputs in the cluster they represent. The mean distance will eventually reach a
minimum, at which point training stops. The mean distance D between all
inputs and their respective cluster centers represented by the weight vector of
each of the winning neurons, can be expressed as

k
D= Z Z (X” — Wl.)z, (84)

i=1 nec;

where x” is the nth input vector belonging to cluster ¢;, whose center is
represented by w;, i.e., the weight vector of the winning neuron representing
cluster ¢;. There are k clusters. The two summations mean that the distance is
computed over all clusters and all input patterns in clusters. This distance D is
minimized over the learning epochs. Turning to the example problem, it will
now be demonstrated how the network performs on the data.

8.4.3.3 Network Training

Using Mathematica—Neural Networks (3], the network in Figure 8.5 was
trained with random initial weights until the mean distance was minimized.
Figure 8.7 shows the training performance, indicated by how quickly the
mean distance decreases with each epoch. In this figure, one iteration
represents an epoch. It shows that training was complete in seven epochs,
reaching a minimum mean distance of 0.065.
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Figure 8.7 Reduction in mean distance with training epochs during
network training.

Itis now possible to see the position of the new weights and how well they
represent the data clusters. In Figure 8.8, the final weights (denoted by
crosses) are superimposed on the data, and the weights have indeed assumed
the position of cluster centers, indicating that training was successful.

Now each of the six output neurons is sensitive to inputs from its cluster, so
for any new input presented to the network, the neuron representing the
cluster that the input belongs to will be highly active and declare itself the
winner. In this manner, it is possible to determine to what cluster any
unknown input vector belongs. Figure 8.9 presents the same training results
as Figure 8.8, but in a slightly different way. Here also, the final weights are
superimposed on the data, but with a label indicating the class or category
label for each cluster. These labels denote the output neurons in the map in
Figure 8.5, where the leftmost neuron is labeled 1 and the rightmost neuron 6.

Unsupervised clustering
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Figure 8.8 Final output neuron weights of the trained network superimposed
on data.
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Figure 8.9 Classification regions, called Voronoi cells, that define classification
boundaries for each output neuron, superimposed on data; the numbers denote the
label of an output neuron in the network in Figure 8.5 and indicate the position of
final weights that represent cluster centers.

It can be seen that the neurons in the trained network represent data clusters
randomly, i.e., neurons that are closer in the physical network in Figure 8.5 do
not represent clusters that are closer together in input space in Figure 8.9.
More importantly, Figure 8.9 shows the classification (or influence) region of
each output neuron. These regions are called Voronoi cells.

Voronoi cells are enlarged regions around input clusters, and are like
input catchments for the output neurons representing clusters. If an input
falls within a Voronoi cell, the corresponding output neuron will become
active, indicating that the input belongs to that cluster. The Voronoi cells are
determined by the distances between weight vectors. Specifically, if the
positions of two winning neurons in Figure 8.9 are joined by a line, its
perpendicular bisector meets other bisectors to form regions resembling a
honeycomb. This division of the input space is called Voronoi tessellation,
and the individual regions are the resulting Voronoi cells [1].

It is interesting to observe how, during training, the weights evolve from
the initial random positions to cluster centers. This can be seen from the
intermediate results of training as the weights gradually change their
positions; as the weight vector for each of the output neurons moves in
search of a cluster center, its path is denoted by a dashed line, as shown by
Figure 8.10. It can be seen that each weight can follow either a linear or a
nonlinear path to its destination.
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Figure 8.10 Evolution of weights from initial positions to cluster centers during
training (lines trace the position of weights at intermediate stages of training).

8.5 Self-Organizing Feature Maps

It has been accepted that competition among neurons is the mechanism
responsible for self-organization in the brain [5]. It is known that the human
brain is a self-organized entity, in which different regions correspond to spec-
ific aspects of human activity; moreover, these regions are organized such that
tasks of a similar nature, such as speech and vision, are controlled by regions
that are in spatial proximity to each other [5]. This preservation of spatial
organization is called topology preservation, and was incorporated into
competitive learning in artificial neural networks during the early 1980s by
Kohonen [4,25], who invented self-organizing feature maps (SOFMs or SOMs,
also called Kohonen’s maps). In SOFMs, not only the winner neuron but also
neurons in the neighborhood of the winner adjust their weights together so
that a neighborhood of neurons becomes sensitive to a specific input. This
neighborhood feature helps to preserve topological characteristics of inputs.
This is an important aspect in the implementation of self-organization, as
many phenomena in the natural world are driven by spatially correlated pro-
cesses or attributes. Therefore, inputs that are spatially closer together must
be represented in close proximity in the output layer or map of a network.

8.5.1 Learning in Self-Organizing Map Networks

In SOFM learning, not only the winner but also the neighboring neurons
adjust their weights. Neurons closer to the winner adjust weights more than
those that are far from it. Thus, we need to define the size of the neighborhood
as well as by how much the neighbor neurons must adjust their weights.

8.5.1.1 Selection of Neighborhood Geometry

There are several ways to define a neighborhood. Linear, square, and
hexagonal arrangements shown in Figure 8.11 are the most common. If only
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Figure 8.11 Neighborhood definitions: (a) linear (b) square, and (c) hexagonal
neighborhood surrounding a winning neuron (solid circle denotes winner and
empty circles denote neighbors).

the most immediate neighbors of the winner are considered, the distance,
also called radius 7, is 1. If two levels of adjacent neighbors are considered,
then the radius is 2. For example, in the linear case, a radius of 1 includes
one neighbor to the right and one to the left of the winner. A radius of 2
would include two neighbor neurons each to the left and right of winner,
making a total of four in the neighborhood. In the case of a square map,
aradius of 1 includes all neurons separated by one step from the winner and
includes eight neurons as shown in Figure 8.11b. A hexagonal neighbor-
hood is associated with a map where neurons are arranged in a hexagonal
grid. For a radius of 1, this includes six neurons; a radius of 2 will encompass
another layer of neurons located an additional step away.

8.5.1.2 Training of Self-Organizing Maps

Training an SOM follows in a similar manner to the standard winner-takes-
all competitive learning. However, a new rule is adopted for weight
changes. Suppose that for a random n-dimensional input vector x with
components {X;, X, ..., X,,}, the position of the closest codebook vector of
the winning neuron is identified and indexed as {iyiy, jwin! On the map. Then
all the codebook vectors w; of the winner and neighbors are adjusted to w/
according to

wj/» =w, + BNS[x—w,], (8.5)
where NS is the neighbor strength that varies with the distance to a neighbor
neuron from the winner and @ is the learning rate as described previously.
Neighbor strength defines the strength of weight adjustment of the
neighbors with respect to that of the winner as presented in the next section.

8.5.1.3 Neighbor Strength

With the neighbor feature, all neighbor codebook vectors are shifted
towards the input vector; however, the winning neuron update is the most
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Figure 8.12 Gaussian neighbor strength function.

pronounced and the farther away a neighbor neuron is, the less its weight
update. The NS function determines how the weight adjustment decays with
distance from the winner. There are several possibilities for this function and
some commonly used functions are linear, Gaussian, and exponential.
The simplest form of NS function is the linear decay function, where
the strength decreases linearly with distance from the winning neuron. The
Gaussian form of the NS function makes the weight adjustments decay
smoothly with distance, as shown in Figure 8.12, and is given by

20°
where d;; is the distance between the winning neuron i and any other
neuron j, and ¢ is the width of the Gaussian. This width is usually defined in
terms of the radius of the neighborhood and the width of the function
shown in Figure 8.12 is 20. The strength is maximum (1.0) at the winning
neuron, which is positioned at the center of Figure 8.12. The distance from
the winner must be extracted accordingly.
The exponential decay NS function is given by

—d?,
NS = Exp [—1‘7}, (8.6)

NS = Exp[—kd,], 8.7)

where k is a constant. For = 0.1, the form of the function is shown in
Figure 8.13 where the strength is maximum at the winning neuron which is
positioned at the center of the figure; the distance from the winner must be
extracted accordingly.

8.5.1.4 Example: Training Self-Organizing Networks with
a Neighbor Feature

To gain confidence in the method, the six-cluster problem that was solved
with competitive learning in Section 8.4.3 will be revisited. The data is
presented in Figure 8.4 and the network in Figure 8.5. Assume the same
initial weights and one of the input patterns used previously in
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Figure 8.13 Exponential decay neighbor strength function.

Section 8.4.3.2 in this exercise. The only differences are that a neighbor-
topology-defining distance d from a neighbor to winner, and neighbor
strength NS that depends on distance d, are introduced. For this example,
the exponential NS function given in Equation 8.8 is used. There are six
codebook vectors, and for convenience in a hand calculation, an initial
neighborhood size of two (i.e., two neighbors each to the left and right of
winner) will be used.

NS = Exp[—0.1d]. (8.8)
The neighbor strength function in Equation 8.8 behaves as in Figure 8.14

for d=2.
The initial codebook vectors repeated from Section 8.4.3.2 are

[0.805 1.2347
0.520 0.977
0.574 0.963
(8.9)
1.027 1.023
1.106 0.893
| 0.514  0.626 |

The input pattern will now be processed and the weights will be
adjusted using the neighbor feature.

Iteration 1: Input 1: (—0.035,0.030). Previously, in Section 8.4.3.2, the
codebook vector 6 was the winner for this input pattern and only its weights
were adjusted. Here, however, the neighbor codebook vectors will also be
adjusted according to NS. The neighborhood size is two, but neuron 6 has
only two neighbors to the left and none to the right (see Figure 8.5).
Therefore, only neurons 4 and 5 adjust their weights. Assume that the
learning rate is 0.5.
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Figure 8.14 Exponential neighbor strength function for neighborhood size of 2.

Weight update for neuron 6:
From Equation 8.8 and Figure 8.14: NS = 1.0; 6= 0.5;

x = (—0.035,0.030); w(0) = (0.514, 0.620).
From the weight update equation (Equation 8.5):

W]/- =W, + NS(x—w)) (8.10)

we(1) = (0.514,0.626) + 0.5 X 1.0[(—0.035,0.03) — (0.514,0.626) |

= (0.514,0.626) + (—0.2745,—0.2979) = (0.239,0.328).

Weight update for neuron 5:
From Equation 8.8 and Figure 8.14, for distance d =1, NS = 0.9048;

8=0.5;
x = (—0.035,0.030); ws(0) = (1.106, 0.893);

ws(1) = (1.106,0.893) + 0.5 X 0.9048[(—0.035,0.030) — (1.106,0.893)]

= (1.106,0.893) + (—0.51658,—0.390403) = (0.590,0.5026)

Weight update for neuron 4:
From Equation 8.8 and Figure 8.14, for distance d=2, NS =0.8187;

6=0.5:
x = (—0.035,0.030); w4(0) = (1.0275, 1.0235);
w,(1) = (1.0275,1.0235) + 0.5 X 0.8187[(—0.035,0.030) — (1.0275, 1.0235)]

= (1.0275,1.0235) + (—0.435053,—0.406696) = (0.5924,0.6168)
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This completes the weight adjustment of the winner and the neighbors in
a large map for input 1. The process is repeated for all the inputs until the
mean distance from inputs to representative cluster centers (codebook
vectors) does not change or becomes acceptable. Now that the method for
adjusting weights in a neighborhood has been demonstrated, an efficient
method to obtain distance to the winner from neighbors in a large map will
be discussed.

8.5.1.5 Neighbor Matrix and Distance to Neighbors
from the Winner

When the map is large, an efficient method is required to determine the
distance of a neighbor from the winner to compute neighbor strength. As
shown in Figure 8.11, linear, square, and hexagonal neighborhoods are
common. From these neighbor configurations, the distance can be
determined. For example, the distance to the immediate neighbor is one,
and to the next immediate neighbor is two, etc. To compute these distances,
a neighbor matrix (NM), also called distance matrix, can be designed that
defines the organization and size of the neighborhood of neurons around
the winner and identifies the distance between the winning neuron and the
neighbor neurons.

Suppose that a map consists of a single layer of four neurons. A neighbor
matrix for this map that considers all neurons on the map as neighbors can
be designed as

NM =[3,2,1,0,1,2,3], (8.11)

in which a distance of zero is given to the position ¢ of the winner in the
neighbor matrix. In this example with three neurons, ¢ =4 (i.e., fourth
position in the neighbor matrix). The numbers in the matrix indicate the
distance from the winner. For example, if the winner is the leftmost neuron
on the map, all three adjacent neurons to the right of it are neighbors and the
distance to the rightmost neuron is 3. Similarly, if the winner is the rightmost
neuron, all three adjacent neurons to the left of it are neighbors and the
distance to the leftmost neuron is 3. Basically, the neighbor matrix translates
this information to a template for efficient extraction of the distance from the
winner to all neighbors in the neighborhood. The neighbor matrix’s use will
now be demonstrated.

Suppose that the coordinate (position) of the winner on the actual map is
indicated by iw,. Then the distance between the winner and any neighbor
neuron at position 7 on the map is found by matching the coordinates of the
winner 7, with position ¢, designated for the winner in the neighbor matrix
template, indicated by zero. In other words, the neighbor template is
matched with the map so that the position of the winner on the map
coincides with the designated center position of the winner on the template.
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For example, if the winner is the very first of the four neurons (Ieftmost) on
the map, then its coordinate 7y, = 1 and the neighbor template is positioned
so that zero distance is matched with the first neuron. It is found that there
are three neighbors to the right of the first neuron. Where there are no
neurons physically on the map to match the positions on the template, these
positions are ignored. The distance d between the winner iy, and any
neuron 7 can be found from

d = NM[c— i, + i]. (8.12)

Thus, for the leftmost winning neuron, the distance to the immediate
neighbor at position i = 2 on the map is

d=NM[4—1+ 2] =NM[5] =1,

where NM[5] is the number in the fifth location in the neighbor matrix
template, which is 1. Similarly, for the neighbor at position 7 = 3 on the map:

d =NM[4— 1 + 3] = NM[6] = 2.

Two-dimensional maps will be formally studied in Section 8.5.2, but the
design of a neighbor matrix for a two-dimensional map will be introduced
here to complete the discussion. For a map of 12 neurons arranged in three
rows and four columns, as shown in Figure 8.15, the neighbor (or distance)
matrix for a rectangular neighborhood is

3222223
32111 23

NM=[3 2101 2 3 (8.13)
32111 2 3
13 2 2 2 2 2 3]

where zero indicates the position of the winning neuron in the template.

(1.1

G~ G——Q
@- @ @ @
R -

(3:4)

Figure 8.15 A map of 12 neurons arranged in three rows and four columns.
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The numbers indicate the distance from the winner. This template is used to
find the distance between the winning neuron and its neighbors by
matching the coordinates of the winner on the map with its designated
position in the neighbor matrix (i.e., center). This is basically superimposing
the template on the two-dimensional map so that its center coincides with
the winning neuron.

Suppose that the horizontal and vertical coordinates of the
winner neuron on the two-dimensional map in Figure 8.15 are indicated
by (iwin, Jwin). Then the distance between the winner and any neighbor
neuron at position (7, /) is found in a manner similar to that used for a linear
neighborhood as

d =NM [[Cl — Iywin T % €2~ Jfwin +f]]s (8.14)

where {c;, ¢,} is the position of the winner in the neighbor matrix NM
(Equation 8.13), which indicates the neighborhood organization for the 3 x4
map. For this case, ¢; = 3 and ¢, = 4.

To illustrate how the distance to a neuron is determined, suppose that the
winner is found to be the neuron at the position (1, 1) (i.e., top left corner) on
the map in Figure 8.15. Thus, iy, = 1 and jui, = 1. Now, if the neighbor
matrix template is superimposed so that its center coincides with the winning
neuron, it can be seen that the bottom right quarter of the matrix spans the
whole map, indicating that for this size NM, all neurons on the map are
neighbors. With the known position of the center, that is {c;, ¢,} = {3, 4}, we
can extract the distance to all neighbors. For example, the distance to the
neuron at the location of {1, 4} on the map, (i.e., i =1 and j = 4, which is the
last neuron on the first row of the map) from the winner located at iy, = 1
and jyin =1, is

d=NM[3—1+ 1,4— 1+ 4] =NM[3,7] = 3,

where NM([3,7] refers to the position indicated by the third row and seventh
column in the neighbor matrix in Equation 8.13, which indicates that d = 3.
This way, the distance to all neighbors from the winner can be obtained
efficiently by matching the template with the winning neuron on the physical
map so that the position indicating zero distance coincides with the winner.

In training SOMs, several other features are used for efficient
convergence and fine tuning of maps. One is that the neighborhood size
shrinks during learning so that only the winner or its immediate neighbors
remain in the neighborhood. The other is that the learning rate also decays
during training so that the accuracy of representation of the input space by
the map becomes more refined. These topics will be discussed in the next
two sections and the application of these features in training of SOMs will be
illustrated through an example case study.
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8.5.1.6  Shrinking Neighborhood Size with Iterations

A large initial neighborhood guarantees proper ordering and placement of
neurons in the initial stages of training to broadly represent spatial
organization of input data. However, subsequent shrinking of neighbor-
hood is required to further refine the representation of the input probability
distribution by the map. A larger initial neighborhood is necessary because
smaller initial neighborhoods can lead to metastable states corresponding to
local minima [1,6]. Therefore, the size of a large starting neighborhood is
reduced with iterations and there are several forms that can be used for
shrinking the neighborhood size. Equation 8.15 shows a linear function
commonly used for this purpose:

g, = ay(1—HT), (8.15)

where g, is the initial neighborhood size, g, is the neighborhood size at
iteration ¢, and T'is the total number of iterations that would bring g, to zero
(i.e., only the winner) or few desired number of neurons. The T can be
adjusted to reach the desired neighborhood size. For example, Equation
8.15 with 7= 1000 produces a linear decay of the neighborhood size with
iterations as shown in Figure 8.16, where the initial size of 50 neurons in the
neighborhood is reduced to zero, leaving only the winning neuron after
1000 iterations.

Exponential decay is another form used for adjusting neighborhood size
with iterations, as given by

o, = ooExp[—1#/T], (8.16)

where o, is the width of the neighborhood at iteration #, o, is the initial
width of the neighborhood, and T is a constant that allows exponential
function to decay to zero with iterations. This is illustrated in Figure 8.17,
where initial neighborhood of size 10 decays to the winner after 300
iterations for 7'=50.

Neighborhood
50
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20
10

Iterations
200 400 600 800 1000

Figure 8.16 Linear decay of neighborhood size with iterations.
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Figure 8.17 Exponential decay of neighborhood width with iterations.

The o, in Equation 8.16 can be substituted into Equation 8.6 so that the
decay in neighborhood size is integrated into the NS function as

NS(d,t) = Exp [—d,%]-/ZJ,Z] = Exp [—di//2{aoEXp(—t/T)}2], (8.17)

where NS(d,® indicates that the neighbor strength changes not only
with distance d, but also with the neighborhood size, which shrinks with
iterations ¢. An illustration of how the neighborhood shrinks with iterations
is given in Figure 8.18. Specifically, an initial neighbor strength function with
g0 = 20, as shown in Figure 8.18a, shrinks to that shown in Figure 8.18b after
1500 iterations for a value of 7= 800 in Equation 8.17.

In the next section, learning rate decay is addressed and both learning
rate and neighborhood decay are integrated into the original weight update
formula presented in Equation 8.5.

8.5.1.7 Learning Rate Decay

The step length, or the learning rate (, is also reduced with iterations in self-
organizing learning and a common form of this function is the linear decay,

Neighbor strength
Neighbor strength 1

0.5

Distance Distance

0 10 30 4o rom winner o 10 50 aofrom winner

(a) (b)

Figure 8.18 Neighbor strength decay during training: (a) initial neighbor strength
and (b) final strength indicating that only the winner or few neighbors are involved
in the weight update.
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given by
B = Bo(1 = #T), (8.18)

where B, and (, are the initial learning rate and that at iteration ¢,
respectively. 7'is a constant that brings the learning rate to zero or a very
small value at the end of the specified number of ¢ iterations. Another form is
the exponential decay of the learning rate given by

B = BoExp[—1t/T], (8.19)

where T'is a time constant that brings the learning rate to a very small value
with iterations.

A general guide is to start with a relatively high learning rate and let it
decrease gradually but remain above 0.01. For 8, = 0.1 and 7, = 1000, for
example, the learning rate decay from Equation 8.19 is shown in Figure 8.19.

8.5.1.8 Weight Update Incorporating Learning Rate
and Neighborhood Decay

Learning rate and neighborhood decay can now be integrated into the
original weight update formula in Equation 8.5. Thus, the weight update
after presenting an input vector X to a SOM incorporating both
neighborhood size and learning rate that decrease with the number of
iterations can be expressed as

wi(t) = w,(t— 1) + B(t)NS(d, 1) [x(1) — w,(t— D)], (8.20)

where w;(?) is the weight update after 7 iterations, w,(1—1) is the update
after the previous iteration, G(#) is the learning rate variation with iterations ¢,
and NS(d, p) is the neighbor strength as a function of distance d from the
winner to a neighbor neuron at iteration ¢. The x(#) is the input vector
presented at the #th iteration.

0.1

0.08
0.06
0.04

Learing rate

0.02

200 400 600 800 1000
Iterations

Figure 8.19 Exponential decay of earning rate.
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8.5.1.9 Recursive and Batch Training and Relation
to K-Means Clustering

Similar to competitive learning, training in SOM networks can be done in
recursive or batch mode. In recursive mode, weights are adjusted after each
input pattern has been presented and in batch mode weight adjustments are
accumulated and one adjustment is made after an epoch. In batch mode,
the unsupervised algorithm without neighbor feature becomes equivalent to
K-means clustering. When the neighbor feature is incorporated, it allows
nonlinear projection of the data as well as the very attractive feature of
topology preservation, by which regions closer in input space are
represented by neurons that are closer in the map. For this reason it is
called a feature map.

8.5.1.10 Two Phases of Self-Organizing Map Training

Training is usually performed in two phases: ordering and convergence. In
the ordering phase, learning rate and neighborhood size are reduced with
iterations until the winner or a few neighbors around the winner remain. In
this phase, topological ordering of the weight vectors takes place.
Depending on the iterations required, careful consideration must be given
to the choice of learning rate and neighborhood function. A recommen-
dation is that the learning rate parameter should begin with a relatively high
value and should thereafter gradually decrease, but must remain above 0.01.
The neighborhood size should initially cover almost all neurons in the
network when centered on a winning neuron and then shrink slowly with
iterations. Depending on the problem, the ordering phase may take few
to thousands of iterations, during which, neighborhood size is allowed
to reduce to a few neurons around the winning neurons or just the
winner itself. For a two-dimensional map of neurons, therefore, the initial
neighborhood size o, in Equation 8.16, for example, can be set to the radius
of the map. The time constant 7 in Equation 8.16 must be
chosen accordingly.

In the convergence phase, the feature map is fine tuned with the shrunk
neighborhood so that it produces an accurate representation of the input
space [0]. This phase may also run from a few to hundreds or thousands of
iterations. In this phase, learning rate is maintained at a small value, on the
order of 0.01, to achieve convergence with good statistical accuracy. Haykin
[6] states that the learning rate must not become zero because the network
can get stuck in a metastable state that corresponds to a feature map
configuration with a topological defect. The exponential decay learning rate
(Equation 8.19) prevents the network from getting stuck in metastable states
because the learning rate never becomes equal to zero, thereby allowing the
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map to slowly approach convergence. With linear learning rate decay in
Equation 8.18, however, this is not the case. The NS function should contain
only the nearest neighbors of the winning neuron and may slowly reduce to
one or zero neighbors (i.e., only the winner remains).

8.5.1.11 Example: Illustrating Self-Organizing Map Learning
with a Hand Calculation

The six-cluster problem used previously for illustration of competitive
learning (Section 8.4.3.2) and self-organization (Section 8.5.1.4) is now
revisited, but a neighbor strength that depends on the topology
(i.e., distance to winner) that decays with iterations is introduced along
with a learning rate that also decays with iterations. The data is presented in
Figure 8.4 and the network is presented in Figure 8.5. The same two inputs
and same initial weights will be used that were introduced in Section 8.4.3.2.
There are six codebook vectors; for convenience in a hand calculation, an
initial neighborhood of size 2 (i.e., two neighbors each to the left and right
of winner) will be used, as will three iterations in which neighbor size
becomes zero and only the winner remains. The same exponential NS
function used in the previous calculation with self-organization in Section
8.5.1.4 (Equation 8.8 repeated here) will be used here:

NS = Exp[—0.1d], (8.21)

where d is the distance. This function behaves as in Figure 8.20.
A simple learning rate formula will now be introduced and adjusted

according to

2

3+t

B, (8.22)

where ¢ is the iteration number [3]. For three iterations, learning rate drops,
as shown in Figure 8.21, from 0.5 to 0.333.

Neighbor strength
1

0.975
0.95
0.925
0.9
0.875
0.85

0.825 Distance
0.5 1 1.5 2

Figure 8.20 Exponential neighbor strength function for an initial neighborhood
size of 2.
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Figure 8.21 Learning rate decay in three iterations.

Lastly, the neighborhood size variation with iteration ¢, must be set. A
linear neighborhood decay function will be used here:

o, =oo(1—1tIT), (8.23)

where o, is the initial neighborhood size, T is a constant, and ¢ is current
iteration. This function behaves as shown in Figure 8.22 for three iterations
with 7= 3. In three iterations, neighbor size drops to zero and only the
winner remains.

All necessary parameters have now been attained and training with the
initial codebook vectors can continue with the two input vectors. The initial
codebook vectors are repeated here:

[0.805 1.2347
0.520 0.977
0.574 0.963
(8.24)
1.027 1.023
1.106  0.893
10514 0.626 |

Iteration 1: Input 1: (—0.035, 0.030): As previously demonstrated in
Section 8.5.1.4, codebook vector 6 was the winner for this input pattern
and the winner and neighbors adjusted their weights. Here, however, the
neighbors’ codebook vectors will be adjusted according to the NS and
learning rate decay functions selected for this purpose. Initial neighbor-
hood size from Equation 8.23 and Figure 8.22 is two, but neuron 6 has
only two neighbors to the left and none to the right. Therefore, only
neurons 4 and 5 adjust their weights.
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Figure 8.22 Neighborhood size decay in three iterations.

Weight update for neuron 6:
From Equation 8.21 and Figure 8.20, NS = 1.0;
from Equation 8.22 and Figure 8.21, §=0.5:

x = (—0.035,0.030); w(0) = (0.514,0.620).
From the weight update equation (Equation 8.20):
wi(t) = wi(t — 1) + B(ONS(d, H[x(1) — w;(t — 1)] (8.25)

we(1) = (0.514,0.626) + 0.5 X 1.0[(—0.035,0.03) — (0.514,0.626)]

= (0.514,0.626) + (—0.2745,—0.2979) = (0.239,0.328).

Weight update for neuron 5:
From Equation 8.21 and Figure 8.20, for distance =1, N§= 0.9048;
£=0.5;

x = (—0.035,0.030);  ws(0) = (1.106, 0.893);
ws(1) = (1.106,0.893) + 0.5 X 0.9048[(—0.035,0.030) — (1.106,0.893)]
= (1.106,0.893) + (—0.51658,—0.390403) = (0.590, 0.5026).

Weight update for neuron 4:
From Equation 8.21 and Figure 8.20, for distance d =2, NS = 0.8187;
6=0.5:

x = (—0.035,0.030); w4(0) = (1.0275,1.0235);
w,4(1) = (1.0275,1.0235) + 0.5 X 0.8187[(—0.035, 0.030) — (1.0275, 1.0235)]

= (1.0275,1.0235) + (—0.435053, —0.406696) = (0.5924, 0.6168)
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This completes the weight adjustment of the winner and the neighbors
for input 1. Input pattern 2 is now presented.
Iteration 2: Input 2: (—0.033, 1.013): Omitting the details, the distances
from input to the six codebook vectors calculated from Equation 8.2 are
presented.

Distance = (0.8664, 0.5544, 0.6092, 0.7406, 0.8057, 0.7376)
Winner = neuron 2

Because the neighbor size changes with iterations, for 1= 2, d=1 from
Equation 8.21 and Figure 8.22. Only the nearest neighbors update weights.
Neuron 1 is to the left and neuron 3 to the right of neuron 2. Therefore, these
get updated. Since the learning rate decreases with iterations, the new
learning rate 8 from Equation 8.22 and Figure 8.21 is 0.4.

Weight update for neuron 2:
From Equation 8.21 and Figure 8.20, NS = 1.0;
from Equation 8.22 and Figure 8.21, § = 0.4:

X = (—0.033,1.013);  w,(0) = (0.5203,0.9774);
w,(1) = (0.5203,0.9774) + 0.4 X 1.0[(—0.033, 1.013) — (0.5203, 0.9774)]

= (0.5203,0.9774) + (—0.2213,0.01447) = (0.2990, 0.9919)

Weight update for neuron 1:
NS = 0.9048 for d =1.0; 8= 0.4:

X = (—0.033,1.013);  w;(0) = (0.805, 1.234);
wi(1) = (0.805,1.234) + 0.4 X 0.9048 [(—0.033,1.013) — (0.805, 1.234)]

= (0.805,1.234) + (—0.3033,—0.0798) = (0.5017, 1.154).

Weight update for neuron 3:
NS = 0.9048 for d=1.0; 8= 0.4:

x = (—0.033,1.013);  w;(0) = (0.5742,0.9634);
w;(1) = (0.5742,0.9634) + 0.4 X 0.9048[(—0.033,1.013) — (0.5742, 0.9634)]

= (0.5742,0.9634) + (—0.2198, 0.01815) = (0.354, 0.9815).

The two input patterns have now been presented and the weights have
been updated recursively. The last iteration with input pattern 1 will now be
performed, followed by an examination of the results to see if self-
organization has begun.
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Tteration t=3: Input 1: (—0.035, 0.030):
Distance = (1.24595,1.01825, 1.02825, 0.859255, 0.783708, 0.405178)

Winner = neuron 6

From Figure 8.22, neighborhood size o, =0 for ¢ = 3; only the winner
updates weights.
Weight update for neuron 6:

From Equation 8.22 and Figure 8.21, § = 0.333:

NS = 1.0;
we(1) = (0.239,0.328)
wo(1) = (0.239,0.328) + 0.333 X 1.0[(=0.035,0.03), (0.239,0.328)]
= (0.239,0.328) + (~0.0915,—0.0993) = (0.1478, 0.2287).

The codebook vectors after three training iterations are

[0.501 1.154]
0.299  0.992
0.354 0.981
0592 0.617
0.590 0.502
0148 0.229 |

It can now be determined if the codebook vectors have begun
ordering themselves. Figure 8.23 shows a plot of these codebook (weight)
vectors superimposed on the original data. They indeed appear to have
ordered themselves even with such a small number of iterations and only
two input patterns, as indicated by the fact that all codebook vectors
have experienced neighborhood operations resulting in the ordering of
class labels. Compare this result with Figure 8.9 that shows the position
of codebook vectors when the neighborhood feature is not incorporated.
There, class labels are not in sequential order, indicating the absence of
preservation of neighbor relations.

Interestingly, topology preservation quickly takes effect in self-
organizing learning. If more inputs and a larger number of iterations are
used, codebook vectors would move towards cluster centers while
preserving topological relationships (i.e., order of classes that are
neighbors). To illustrate this, the training is completed with all the data
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Figure 8.23 Ordering of codebook vectors for only two input patterns and a total
of three iterations during which neighborhood size shrinks from 2 to 0.

and the map is trained until convergence. The performance during
computer training is shown in Figure 8.24, which shows that the network
achieves convergence in about 40 epochs, reaching a minimum mean
distance of 0.15. In the figure, iterations denote epochs.

The final codebook vectors superimposed on the data are shown in
Figure 8.25. It shows that except for one, all vectors have found cluster
centers. The codebook vectors have been ordered such that the rightmost
cluster is cluster 1 and the number increases towards the left. For this reason,
the codebook vectors form an orderly topology when they are connected,
indicating that the clusters that are closer in the input space are also closer
on the map.

In situations such as the one presented here, where one cluster is not
properly represented, it is beneficial to have more output neurons than
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Figure 8.24 Complete training performance with all data.
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Figure 8.25 Final output neuron codebook vectors representing cluster centers
superimposed on data (output neurons are connected in an orderly fashion
indicating topology preservation on the map).

clusters. This helps the codebook vectors find all possible centers and unused
vectors can be easily removed. The same data was trained with eight neurons
on the map grid and the mean distance decreased to 0.05 in about 40 epochs.
The new vectors superimposed on data are shown in Figure 8.26a.

Figure 8.26a shows that with eight vectors, there is perfect clustering.
Once again, the vectors have been ordered such that the rightmost cluster is
cluster 1 and the number increases towards the left. Cluster 6, at the left
bottom corner, is the last cluster. There is one vector between clusters 1 and

SOM clustering

SOM clustering

0 0.5 1 1.5 2 0 0.5 1 1.5 2
() X (b) X

Figure 8.26 Training SOM with eight codebook vectors: (a) position of final
codebook vectors and map topology, (b) evolution of codebook vectors during
training as indicated by their position (initial codebook vectors are at the center of
the figure).
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2 and another one just beyond cluster 1. These can be removed so that there
are six vectors organized in a topology-preserving manner.

The movement of codebook vectors towards clusters during training is
shown in Figure 8.26b, which illustrates the position of codebook vectors at
some selected training iterations from the beginning to the end. The initial
random vectors are at the center of the figure. Careful examination of
Figure 8.26b reveals the neighborhood operations in action, especially
compared to Figure 8.10, where the network was trained without
neighborhood considerations.

8.5.1.12  SOM Case Study: Determination of Mastitis Health
Status of Dairy Herd from Combined Milk Traits

The application of SOM is illustrated in this section with a case study
conducted at Lincoln University in New Zealand. It involves the
determination of the health status of dairy cows in terms of the state of
progression of mastitis—a bacterial infection in the udder—from milk traits.
Mastitis is probably the most important disease affecting the dairy industry. It
not only affects the yield and composition of milk, but it also affects the
welfare of cows due to increased use of antibiotics and physical damage to
the udder. Therefore, accurate detection of mastitis in the early stages of
infection is important [26,27]. Mastitis is known to affect milk in various
ways. These include changes in electrical conductivity (EC), somatic cell
populations, and other traits such as fat and protein percentages in milk. As
the bacterial infection progresses, the number of somatic cells that
counteract the infection increases, leading to high somatic cell count
(SCO), and electrical conductivity increases due to chemical changes in milk
and elevated temperature resulting from bacterial activity. The SCC and EC
are the most widely used indicators in the diagnosis of mastitis in the dairy
industry. However, it is believed that better insights can be gained of the
mastitic status of a cow at a specific time using several traits related to
milk composition.

In a study over a period of 14 weeks, 107 cows from a farm were
assessed for several of these milk traits to study the incidence of mastitis in
the herd from the beginning until the middle of lactation [26]. Quarter
(udder) milk samples from all four quarters of each cow were collected
weekly from each cow, resulting in a total of 6848 quarter milk observations.
These were analyzed for EC, fat percentage (FP), protein percentage (PP),
SCC, and microbiological profile.

To reduce the n