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Preface

A consequence of the revolutionary advances in microelectronics is that prac-
 tically all control systems constructed today are based on microprocessors and
sophisticated microcentrollers. By using computer-controlled systems it is pas-
sible to obtain higher performance than with analog systems, as well as new
functionality. New software tools have also drastically improved the engineering
efficiency in analysis and design of control systems.

Goal of the book This book provides the necessary insight, knowledge, and
understanding required to effectively analyze and design computer-controlled
systems.

The new edition This third edition is a major revision hased on the advances
in technology and the experiences from teaching to academic and industrial
audiences. The material has been drastically reorganized with more than half
the text rewritten. The advances in theory and practice of computer-controlled
systems and a desire to put more focus on design issues have provided the
motivation for the changes in the third edition. Many new results have been
incorporated. By ruthless trimming and rewriting we are now able to include
new material without increasing the size of the book. Experiences of teaching
from a draft version have shown the advantages of the changes. We have been
very pleased to note that students can indeed deal with design at a much earlier
stage. This has also made it possible to go much more deeply into design and
implementation.

Another major change in the third edition is that the computational tools
MaTLAB® and SIMULINK® have been used extensively. This changes the peda-
gogy in teaching substantially. All major results are formulated in such a way
that the computational tools can be applied directly. This makes it easy to deal
with complicated problems. It is thus possible to deal with many realistic design
issues in the courses. The use of computational tools has been halanced by a
strong emphasis of principles and ideas. Most key results have also been illus-

trated by simple pencil and paper calculations so that the students understand
the workings of the computational tools.

vii
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Qutline of the Book

Background Material A broad outline of computer-controlled systems is
presented in the first chapter. This gives a historical perspective on the devel-
opment of computers, control systems, and relevant theory. Some key points of

the theory and the behavior of computer-control systems are also given, together
with many examples.

Analysis and Design of Discrete-Time Sysiems It is possible to make dras-
tic simplifications in analysis and design by considering only the behavior of the
system at the sampling instants. We call this the computer-oriented view. It is
the view of the system obtained by observing its behavior through the numbers
in the computer. The reason for the simplicity is that the system can be de-
scribed by linear difference equations with constant coefficients, This approach
i3 covered in Chapters 2, 3, 4 and 5. Chapter 2 describes how the discrets-time
systems are obtained by sampling continuous-time systems. Both state-space
models and input-output models are given. Basic properties of the models are
also given together with mathematical tools such as the z-transform. Tools for
analysis are presented in Chapter 3.

Chapter 4 deals with the traditional problem of state feedback and ob-
servers, but it goes much further than what is normally covered in similar
textbooks. In particular, the chapter shows how to deal with load disturbances,
feedforward, and command-signal following. Taken together, these features give
the controller a structure that can cope with many of the cases typically found
in applications. An educational advantage is that students are equipped with
tools to deal with real design issues after a very short time.

Chapter 5 deals with the problems of Chapter 4 from the input-output
point of view, thereby giving an alternative view on the design problem. All
issues discussed in Chapter 4 are also treated in Chapter 5. This affords an
excellent way to ensure a good understanding of similarities and differences
between stete-space and polynomial approaches. The polynomial approach also
makes it possible to deal with the problems of modeling errors and robustness,
which cannot be conveniently handled by state-space techniques.

Having dealt with specific design methods, we present general aspects of
the design of control systems in Chapter 6. This covers structuring of large
gystems as well as hottom-up and top-down techniques.

Broadening the View Although many issues in computer-controlled systems
can be dealt with using the computer-oriented view, there are some questions
that require a detailed study of the behavior of the system between the sam-
pling instants. Such problems arise naturally if a computer-controlled system is
investigated through the analog signals that appear in the process. We call this
the process-oriented view. It typically leads to linear systems with periodic coef-
ficients. This gives rise to phenomena such as aliasing, which may lead to very
undesirable effects unless special precautions are taken. It is very important to
understand both this and the design of anti-aliasing filters when tnvestigating
computer-controlled systems. Tools for this are developed in Chapter 7.
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When upgrading older control equipment, sometimes analog designs of
controllers may be available already. In such cases it may be cost effective to
have methods to translate analog designs to digital control directly. Methods for
this are given in Chapter 8.

Implementation 1t is not enough to know about methods of analysis and de-
sign. A control engineer should also be aware of implementation issues. These
are treated in Chapter 9, which covers matters such as prefiltering and compu-
tational delays, numerics, programming, and operational aspects. At this stage
the reader is well prepared for all steps in design, from concepts to computer
implementation,

More Advanced Design Methods To make more effective designs of con-
trol systems it is necessary to better characterize disturbances. This is done in
Chapter 10. Having such descriptions it is then possihle to design for optimal
performance. This is done using state-space methods in Chapter 11 and by using
polynomial technigues in Chapter 12. So far it has been assumed that modeis

of the processes and their disturbances are available. Experimental methods to
obtain such models are deseribed in Chapter 13.

Prerequisites

The book is intended for a final-year undergraduate or a first-year graduate
course for engineering majors. It is assumed that the reader has had an intro-

ductory course in automatic control. The book should be useful for an industrial
audience.

Course Configurations

The book has been organized so that it can be used in different ways. An n-
troductory course in computer-controlled systems could cover Chapters 1, 2, 8,
4, 5, and 9. A more advanced course might include all chapters in the book A
course for an industrial audience could contain Chapters 1, parts of Chapters
2,3, 4, and 5, and Chapters 6, 7, 8, and 9. To get the full henefit of a course, it

1s important to supplement lectures with problem-solving sessions, simulation
exercises, and laboratory experiments.

Computational Tools

Computer tools for analysis, design, and simulation are indispensable tools
when working with computer-controlled systems. The methods for analysis and
design presented in this book can be performed very conveniently using Mar-
LAB®. Many of the exercises also cover this. Simulation of the system can sim-
ilarly be done with Simnon® or SIMULINK®. There are 30 figures that illus-
trate various aspects of analysis and design that have been performed using
MatLAR®, and 73 fignres from simu)ations using SIMUTINK®. Macros and m-
files are available from anonymous FTP from ftp.control.lth.se, directory
/pub/bocks/ces. Other tools such as Simnon® and Xmath® can be used also,
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Supplements

Complete solutions are available from the publisher for instructors who have
adopted our book. Simulation macros, transparencies, and examples of exami-
nations are available on the World Wide Web at http://www.control. 1th.se;
see Education/Computer-Controiied Systems.

Wanted: Feedback

As teachers and researchers in automatic control, we know the importance of
feedback. Therefore, we encourage all readers to write to us about errors, po-
tential miscommunications, suggestions for improvement, and also about what
may be of special valuable in the material we have presented.
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Computer Confirol

1.1 Introduction

Practically all control systems that are implemented today are based on com-
puter control. It is therefore important to understand computer-controfled sys-
tems well. Such systems can be viewed as approximations of analog-control
systems, but this is a poar approach because the full potential of computer con-
trol is not used. At best the results are only as good as those obtained with
analog control, It is much better to master computer-controlled systems, so that
the full potential of computer control can be used. There are also phenomena
that occur in computer-controlled systems that have no correspondence in ana-
log systems. It is important for an engineer to understand this, The main goal
of this book is to provide a solid background for understanding, analyzing, and
designing computer-conirolled systems,

A computer-controlled system can be described schematicallyas in Fig. 1.1.
The output from the process y(i) is a continuous-time signal. The output is
converted into digital form by the analog-to-digital (A-D) converter. The A-D
converter can be included in the computer or regarded as a separate unit, ac-
cording to one’s preference. The conversion is done at the sampling times, £,.
The computer inlerprets the converted signal, {¥(¢;)}, as a sequence of num-
bers, processes the measurements using an algorithm, and gives a new se-
quence of numbers, {u(¢;)}. This sequence is converted to an analog signal by
a digital-to-analog (D-A) converter. The events are synchronized by the real-
time clock in the computer. The digital ecomputer operates sequentially in time
and each operation takes some time. The D-A converter must, however, produce
a continuous-time signal, This is normally done by keeping the control signal
constant between the conversions. In this case the system runs open loop in
the time interval between the sampling ingtants because the control signal is
constant irrespective of the value of the output.

The computer-controlled system contains both continnous-time signals and
sampled, or discrete-time, signals. Such systems have traditionally been called
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Figure 1.1 Schematic diagram of a computer-controlled system.

sampled-data systems, and this term will be used here as a synonym for com-
puter-controlled systems.

The mixture of different types of signals sometimes causes difficulties. In
most cases it is, however, sufficient to describe the behavior of the system at
the sampling instants. The signals are then of interest only at discrete times.
Such systems will be called discrete-time systems. Discrete-time systems deal
with sequences of numbers, so a natural way to represent these systems is to
use difference equations.

The purpose of the book is to present the control theory that is relevant to
the analysis and design of computer-controlled systems. This chapter provides
some background. A brief overview of the development of computer-control tech-
nology is given in Sec. 1.2. The need for a suitable theory is discussed in Sec. 1.3.
Examples are used to demonstrate that computer-controlled systems cannot be
fully understood by the theory of linear time-invariant continuous-time systems.
An example shows not only that computer-controlled systems can be designed
using continuous-time theory and approximations, but also that substantial im-
provements can be ohtained by other techniques that use the full potential of
computer control. Section 1.4 gives some examples of inherently sampled sys-

tems. The development of the theory of sampled-data systems is outlined in
Sec. 1.5.

1.2 Computer Technology
The idea of using digital computers as components in control systems emerged
around 1950. Applications in missile and aircraft control were investigated first.
Studies showed that there was no potential for using the general-purpose digital
computers that were available at that time. The computers were too big. they
consumed too much power, and they were not sufficiently reliable. For this

reason special-purpose computers—digital differential analyzers (DDAs)—were
developed for the early aerospace applications.
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The idea of using digital computers for process control emerged in the
mid-1950s. Serious work started in March 1956 when the aerospace company
Thomson Ramo Woodridge (TRW) contacted Texaco to set up a feasibility study.
After preliminary discussions it was decided to investigate a polymerization
unit at the Port Arthur, Texas, refinery. A group of engineers from TRW and
Texaco made a thorough feasibility study, which required about 30 people-years.
A computer-controlled system for the polymerization unit was designed based
on the RW-300 computer. The control system went on-line March 12, 1959, The
system controlled 26 flows, 72 temperatures, 3 pressures, and 3 compositions.
The essential functions were to minimize the reactor pressure, to determine
an optimal distribution among the feeds of 5 reactors, to contrel the hot-water
mnflow based on measurement of catalyst activity, and to determine the optimal
recirculation.

The pioneering work done by TRW was noticed by many computer manu-
facturers, who saw a large potential market for their products. Many different
feasibility studies were initiated and vigorous development was started. To dis-
cuss the dramatic developments, it is useful to introduce six periods:

Pioneering period ~ 1955
Direct-digital-control period =~ 1962
Minicomputer period = 1967
Microcomputer period ~ 1972
General use of digital control ~ 1980
Distributed control =~ 1990

It is diffieult to give precise dates, because the development was highly di-
versified. There was a wide difference between different application areas and
different industries; there was also considerable overlap, The dates given refer
to the emergence of new approaches,

Pioneering Period

The work done by TRW and Texaco evoked substantial interest in process in-
dustries, among computer manufacturers, and in research organizations. The
industries saw a potential tool for increased autoration, the computer indus-
tries saw new markets, and universities saw a new research field. Many feasi-
bility studies were initiated by the computer manufacturers because they were
eager to learn the new technology and were very interested in knowing what a
proper process-control computer sheuld look like. Feasibility studies continued
throughout the sixties.

The computer systems that were used were slow, expensive, and unreliahle.
The earlier systems used vacuum tubes. Typical data for a computer around
1958 were an addition time of 1 ms, a multiplication time of 20 ms, and 2 mean
time between failures (MTBF) for a central processing unit of 50-100 h. To make
full use of the expensive computers, it was necessary to have them perform many
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tasks. Because the computers were so unreliable, they controlled the process by
printing instructions to the process operator or by changing the set points of
analog regulators, These supervisory modes of operation were referred to as an
operator gulde and a set-point control.

The major tasks of the computer were to find the optimal operating condi-
tions, to perform scheduling and production planning, and to give reports ahout
production and raw-material consumption. The problem of finding the best op-
erating conditions was viewed as a static oplimization problem. Mathematical
models of the processes were necessary in order to perform the optimization.
The models used—which were quite complicated-—were derived from physical
models and from regression analysis of process data. Attempts were also made
te carry out on-line optimization.

Progress was often hampered by lack of process knowledge. It also became
clear that it was not sufficient to view the problems simply as static optimization
problems; dynamic models were needed. A significant proportion of the effort
in many of the feasibility studies was devoted to modeling, which was quite
time-consuming because there was a lack of good modeling methodology. This
stimulated research into system-identification methods.

A lot of experience was gained during the feasibility studies. it became
clear that process control puts special demands on computers. The need to re-
spond quickly to demands from the process led to development of the interrupt
feature, which is a special hardware device that allows an external event to
interrupt the computer in its current work se that it can respond to more ur-
gent process tasks. Many sensors that were needed were not available, There
were also several difficulties in trying to introduce a new technology into old
industries.

The progress made was closely monitored at conferences and imeetings
and in journals. A series of articles describing the use of computers in process
contrel was published in the journal Control Engineering. By March 1961, 37
systems had been installed. A year later the number of systems bad grown to
159. The applications invalved control of steel mills and chemical industries and
generation of electric power. The development progressed at different rates in
different industries. Feasibility studies continued through the 1960s and the
1970s.

Direct-Digital-Cantrol Period

The early installations of control computers operated in a supervisory mode, ei-
ther as an operator guide or as a set-point control. The ordinary analog-control
equipment was needed in both cases. A drastic departure from this approach
was Inade by Imperial Chemical Industries (ICI) in England in 1962. A complete
analog instrumentation for process control was replaced by one computer, a Fer-
ranti Argus. The computer measured 224 variables and controlled 129 valves
directly. This was the beginning of a new era in process control: Analog technol-
ogy was simply replaced by digital technology; the function of the system was
the same. The name direct digital control (DDC) was coined to emphasize that
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the computer-controlled the process directly. In 1962 a typical process-control
computer could add two numbers in 100 s and multiply them in 1 ms. The
MTBF was around 1000 h.

Cost was the major argument for changing the technology. The cost of an
analog system increased linearly with the number of control loops; the initial
cost of a digital system was large, but the cost of adding an additional loop
was small. The digital system was thus cheaper for large installations. Another
advantage was that operator communication could be changed drastically; an
operator communication panel could replace a large wall of analog instruments.
The panel used in the ICI system was very simple—a digital display and a few
buttons.

Flexibility was another advantage of the DDC systems. Analog systems
were changed by rewiring; computer-controlled systems were changed by repro-
gramming. Digital technology also offered other advantages. It was easy to have
interaction among several control loops, The parameters of a contral loop could
be made functions of operating conditions. The programming was simplified by
introducing special DDC languages. A user of such a language did not need
to know anything about programming, but simply introduced inputs, outputs,
regulator types, scale factors, and regulator parameters into tables. To the user
the systems thus looked like a connection of ordinary regulators. A drawback
of the systems was that 1t was difficult to do unconventional control strategies.
This certainly hampered development of control for many years.

DDC was a major change of direction in the development of computer—
controlled systems. Interest was focused on the basic control functions mstead
of the supervisory functions of the earlier systems. Considerable progress was
made in the years 1963-1965. Specifications for DDC systems were worked out
jointly between users and vendors. Problems related to choice of sampling period
and control algorithms, as well as the key problem of reliahility, were discussed
extensively. The DDC concept was quickly accepted although DDC systems often
turned out to be more expensive than corresponding analog systems.

Minicomputer Period

There was substantial development of digitel computer technology in the 1960s.
The requirements on a process-control computer were neatly matched with
progress in integrated-circuit technology. The computers became smaller, faster,
more reliable, and cheaper. The term minicomputer was coined for the new com-
puters that emerged. It was possible to design efficient process-control systems
by using minicomputers.

The development of mlmcomputer technology combined with the increas-
ing knowledge gained about process control with computers during the pio-
neering and DDC periods caused a rapid increase in applications of computer
control. Special process-control computers were announced by several manufac-
turers. A typical process computer of the period had a word length of 16 bits.
The primary memory was 8-124 k words. A disk drive was commonly used as a
secondary memory. The CDC 1700 was a typical computer of this period, with
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an addition time of 2 s and a multiplication time of 7 ys. The MTBF for a
central processing unit was about 20,000 L.

An important factor in the rapid increase of computer control in this peried
was that digital computer control now came in a smaller “unit.” It was thus
possible to use computer control for smatler projects and for smaller problems,
Because of minicomputers, the number of process computers grew from about
5000 in 1970 to about 50,000 in 1975,

Microcomputer Period and General Use of Computer Control

The early use of computer control was restricted to large industrial systems
because digital computing was only available in expensive, large, slow, and
unreliable machines. The minicomputer was still a fairly large system. Even
as performance continued to increase and prices to decrease, the price of a
minicomputer mainframe in 1975 was still about $10,000. This meant that a
small system rarely cost less than $100,000. Computer control was still out
of reach for a large number of control problems. But with the development of
the microcomputer in 1972, the price of a card computer with the performance
of a 19756 minicomputer dropped to $500 in 1980. Another consequence was
that digital computing power in 1980 came in quanta as small as $50. The
development of microelectronics has continued with advances in very large-scale
Integration (VLSI) technology; in the 1990s microprocessors became available
for a few dollars. This has had a profound impact on the use of computer control,
As a result practically all controliers are now computer-based. Mass markets
such as automotive electronics has also led to the development of special-purpose
computers, called microcontrollers, in which a standard computer chip has been
augmented with A-D and D-A converters, registers, and other features that
make it easy to interface with physical equipment.

Practically all control systems developed today are based on computer
control. Applications span all areas of control, generation, and distribution
of electricity; process control, manufacturing; transportation; and entertain-
ment. Mass-market applications such as automotive electronics, CD players,
and videos are particularly interesting hecause they have motivated computer
manufacturers to make chips that can be used in a wide variety of applications.

As an illustration Fig, 1.2 shows an example of a single-loop controller for
process control. Such systems were traditionally implemented using pneumatic
or electronic techniques, but they are now always computer-based. The con-
troller has the traditional proportional, integral, and derivative actions (PID),
which are implemented in a microprocessor. With digital control it is also pos-
sible to obtain added functionality. In this particular case, the regulator is pro-
vided with automatic tuning, gain scheduling, and continuous adaptetion of
feedforward and feedback gains. These functions are difficult to implement with
analog techniques. The system is a typical case that shows how the function-

ality of a traditional product can be improved substantially by use of computer
control.
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Figure 1.2 A standard single-loop contreller for process control, (By cour-
tesy of Alfa Laval Automation, Stockholm, Sweden.}

Logic, Sequencing, and Control

Industrial automation systems have traditionally had two components, con-
trollers and relay logic. Relays were used to sequence operations such as startup
and shutdown and they were also used to ensure safety of the operations by pro-
viding interlocks. Relays and controllers were handled by different categories
of personnel at the plant. Instrument engineers werc responsible for the con-
trollers and electricians were responsible for the relay systems. We have already
discussed how the controllers were influenced by microcomputers. The relay sys-
tems went through a similar change with the advent of microelectronics. The
so-called programmable logic controller (PLC) emerged in the beginning of the
1970s as replacements for relays. They could be programmed by electricians
and in familiar notations, that is, as rungs of relay contact logic or as logic
(AND/OR} statements. Americans were the first to bring this novelty to the
market, relying primarily on relay contact logic, but the Europeans were hard
on their heels, preferring logic statements. The technology became a big success,
primarily in the discrete parts manufacturing industry (for obvious reasons).
However, in time, it evolved to include regulatory control and data-handling
capabilities as well, a development that has broadened the range of applica-
tions for it. The attraction was, and is, the ease with which controls, including

intraloop dependencies, can be implemented and changed, without any impact
on hardware.
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Distributed Control

The microprocessor has also had a profound impact on the way computers were
applied to coniro! entire production plants. Il became economically feasible to
develop systems consisting of several interacting microcomputers sharing the
overall workload. Such systems generally consist of process stations, controlling
the process; operator stations, where process operators monitor activities; and
various auxiliary stations, for example, for system configuration and program-
ming, data storage, and so on, all interacting by means of some kind of commu-
nications network. The allure was to boost performance by facilitating parallel
multitasking, to improve overall availahility by not putting "all the eggs in one
basket," to further expandability and to reduce the amount of control cabling.
The first system of this kind to see the light of day was Honeywell’s TDC 2000
(the year was 1975), but it was soon follewed by others. The term "distributed
control” was coined. The first systems were oriented toward regulatory control,
but over the years distributed contrel systems have adopted more and more of
the capabilities of programmable (logic) controllers, making today’s distributed
control systems able to control all aspects of production and enabling operators
to monitor and control activities from a single computer console.

Plantwide Supervision and Controi

The next development phase in industrial process-control systems was facili-
tated by the emergence of common standards in computing, making it possible
to integrate virtually all computers and computer systems in industrial plants
into a monolithic whole to achieve real-time exchange of data across what used
to he closed system borders, Such interaction enables

¢ top managers to investigate all aspects of operations

= production managers to plan and schedule production on the basis of cur-
rent information

» order handlers and liaison officers to provide instant and current informa-
tion to inquiring customers

» process operators to loock up the cost accounts and the quality records of
the previous production run to do better next time

all from the computer screens in front of them, all in real time. An example of
such a system is shown in Fig. 1.3. ABB's Advant OCS (open control system)
seems to be a good exponent of this phase. It consists of process controllers with
local and/or remdte 170, operator stations, information management stations,
and engineering stations that are interconnected by high-speed communica-
tions buses at the field, process-sectional, and plantwide levels, By supporting
industry standards in computing such as Unix, Windows, and SQL, it makes
interfacing with the surrounding world of computers easy. The system features
a real-time process database that is distributed among the process contrallers
of the system to avoid redundancy in data storage, data inconsistency, and to
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Information-Handling Capabilities

Advant OCS offers basic ready-to-use information management functions such
as historical data storage and playback, a versatile report generator, and a
supplementary calculation package. It also offers open interfaces to third-party
applications and to other computers in the plant. The historical data-storage
and -retrieval service enables users to collect data from any system station at
specified intervals, on command or on occurrence of specified events, performs
a wide range of calculations on this data, and stores the results in so-called
logs. Buch logs can be accessed for presentation on any operator station or
be used by applications on information stations or on external stations for a
wide range of purposes. A report generator makes it possible to collect data for
reports from the process datahase, from other reports, or the historical database.
Output can be generated at specified times, un occurrence of specified events,
or on request by an operator or software application. Unix- or Windows-based
application programming interfaces offer a wide range of system services that
give programmers a head start and safeguard engineering quality. Applications
developed on this basis can be installed on the information management stations
of the system, that is, close enough to the process to offer real-time performance.

The Future

Based on the dramatic developments in the past, it is tempting to speculate
about the future. There are four areas that are important for the development
of computer process control.

* Process knowledge

* Measurement technelogy
¢ Computer technology

» Control theory

Knowledge about process control and process dynamics is increasing slowly but
steadily. The possibilities of learning about process characteristics are increas-
ing substantially with the instailation of process-control systems because it is
then easy to collect data, perform experiments, and analyze the results. Progress
in system identification and data analysis has also provided valuable informa-
tion.

Progress in measurement technology is hard to predict. Many things can be
done using existing techniques. The possibility of combining outputs of several
different sensors with mathematical models is interesting, It is also possible to
obtain automatic calibration with a computer. The advent of new sensors will,
however, always offer new possibilities.

Spectacular developments are expected in computer technology with the
intreduction of VLSI. The ratio of price to performance will continue to drop
substantially, The future microcomputers are expected to have computing power
greater than the large mainframes of today. Substantial improvements are also
expected in display techniques and in communications.
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Programming bas so far heen one of the bottlenecks. There were only
marginal improvements in preductivity in programming from 1950 to 1970. At
the end of the 1970s, many computer-controlled systems were still programmed
in assembler code. In the computer-controi field, it bas been ¢ustomary to over-
come some of the programming problems by providing table-driven software.
A user of a DDC, system is thus provided with a so-called DDC package that
allows the user to generate a DDC system simply by filling in a table, so very
litle effort is needed to generate a system. The widespread use of packages
hampers development, however, because it is very easy to use DDC, but it is a
major effort to do something else. So only the well-proven methods are tried,

Control theory has made substantial progress since 1955, Only some of this
theory, bowever, has made its way into existing computer-controlled systems,
even though feasibility studies have indicated that significant improvements
can be made. Model predictive control and adaptive control are some of the the-
oretical areas that are being applied in the industry today. To use these theories,
it is necessary to fully understand the basic concepts of computer control. One
reason for not using more complex digital controllers is the cost of program-
ming. As already mentioned, it requires little effort to use a package provided
by a vendor. It is, however, a major effort to try to do something else. Several
signs show that this situation can be expected to change. Personal computers
with interactive high-level languages are starting to be used for process control.
With an interactive language, it is very easy to try new things. It is, however,
unfortunately very difficult to write safe real-time control systems. This will
change as hetter interactive systems hecome available.

Thus, there are many signs that point to interesting developments in the
field of computer-controlled systems. A good way to be prepared is to learn the
theory presented in this book.

1.3 Computer-Control Theory

Using computers to implement controllers has substantial advantages. Many of
the difficulties with analog implementation can be avoided. For example, there
are no problems with accuracy or drift of the components. It is very easy to
have sophisticated ealculations in the control law, and it is easy to include logic
and nonlinear functions. Tahles can be used to store data in order to accumulate
knowledge about the properties of the system. It is also possible to bave effective
user interfaces.

A schematic diagram of a compuler-controlled system is shown in Fig. 1.1.
The system contains essentially five parts: the process, the A-D and D-A con-
verters, the control algorithm, and the clock. Its operation is controlled by the
clock. The times when the measured signals are converted to digital form are
called the sampling instants; the time between successive samplings is called
the sampling period and is denoted by h. Periodic sampling is normally used,
but there are, of course, many other possibilities. For example, it 1s possihle to
sample when the output signals have changed by a certain amount. It is also
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possible to use different sampling periods for different loops in a system. This
18 called multirate sampling.

In this section we will give examples that illustrate the differences and the
similarities of analog and computer-controlled systems. It will be shown that
essential new phenomena that require theoretical attention do indeed occur.

Time Dependence

The presence of the the clock in Fig. 1.1 makes computer-controlled systems
time-varying. Such systems can exhibil behavior that does not occur in hinear
time-invariant systems.

Exampie 1.1 Time dependence in digital filtering

A digitai filter is a simple example of a computer-controlled system. Suppose that

we want to implement a compensator that is simply a first-order lag. Such a com-
penszator can be implemented using A-I) conversion, a digital computer, and D-A

(a}

Hu M g
—at AD =1 Computer = D-A
i | i
Clock
{b)
1
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Figure 1.4 (a) Block diagram of a digital filter. (b) Step responses (dots)
of a digital computer implementation of a first-order lag for different delays
in the input step (dashed) compared with the first sampling instant. For
cornparison the response of the correspending continuous-time syatem (solid)
is also shown.
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conversion. The first-order differential equation is approximated by a first-order
difference equation. The step response of such a system is shown in Fig. 1.4. The
figure clearly shows that the sampled system is not time-invariant because the
response depends on the time when the step occurs. If the input is delayed, then
the output is delayed by the same amount only if the delay is a multiple of the
sampling period. .

The phenomenon illustrated in Fig. 1.4 depends on the fact that the system is
controlled by a clock {compare with Fig. 1.1). The response of the system to an
gxternal stimulus will then depend on how the external event is synchronized
with the internal clock of the computer system.

Because sampling is often periodic, computer-controlled systems will often
result in closed-loop systems that are linear periodic systems. The phenomenon
shown in Fig. 1.4 is typical for such systems. Later we will illustrate other
conseguences of periodic sampling.

A Naive Approach to Computer-Controlled Systems

We may expect that a computer-controlled system behaves as a continuous-
time system if the sampling period is sufficiently small. This is true under very
reasonable assumptions. We will illustrate this with an example,

Example 1.2 Controlling the arm of a disk drive

A schematic diagram of a disk-drive assemhly is shown in Fig, 1.5. Let J be the
moment of inertia of the arm assembly. The dynamics relating the position y of

the arm to the veltage u of the drive amplifier is approximately described by the
transfer function

Glo) = -+ (1.3)

where & is a constant. The purpose of the contrel system is to control the posi-
tion of the arm so that the head follows a given track and that it can be rapidly
moved {0 a different track. It is easy te find the benefits of improved control. Better
trackkeeping allows narrower tracks and higher packing density. A faster control
system reduces the search lime, In this example we will focus on the search prob-
lem, which is a typical servo problem. Let u, be the command signal and denote

Laplace transforms with capital letters. A simple servo controller can be described
by

:EE[; a1 h

Uls) 8- K

Y(s) (1.2)

s+ a

S —— i y

E Controller Amplifier Arm T

Figure 1.5 A system for controlling the position of the arm of a disk drive.
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Figure 1.6 Simulation of the disk arm servo with analog (dashed) and
computer vontrol {solid). The sampling period is h = 0.2/,

This controller is a two-degree-of-freedom controller where the feedback from the

measured signal is simply a lead-lag filter. If the controller parameters are chosen
as

a=2w.-,
b=wgf2
Jw?
K=2-72
.k

a closed system with the characteristic polynomial

P(s) = &% + 2unys” + 2wEs +
18 obtained, This system has a reasonable behavior with a settling time to 5% of

5.52/wy. See Fig. 1.6. To obtain an algarithm for a computer-controlled system, the
contro] Jaw given by (1.2) is first written as

Uls) = LLS Udls)~ KY(5) + K 2= b Yis) = K (g U.(s)- Y{s) +X{s)>

1! 5+da

This ¢ontrol law can be written as

ity = K Gt =510 1))

{1.3]
éf = - — b}
dt = -ax + (II Y

To obtain an algorithm for a control computer, the derivative dx/dt is approximated
with a difference. This gives

ﬂﬁi}};ﬂﬂ = —ax{t) + (a - b)y(t)
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Clock

Algorithm

Figure 1.7 Scheduling a computer program.

The following approximatien of the continuous algorithm (1.3) is then obtained:

u(ty) = K (g ue[fk}—y{t&)‘i'x(fﬂ) (14

1ty + h) = #{ts) + b (a - B)y(8) —ax{ts))

This control law should be executed at each sampling instant. This can be accom-
plished with the following computer program.

y: = adin(in2) {read process value}
u:=K*{a/bruc-y+x),
dout (u} {output contrel signal}

newx:=xth*x{{a-b)*y-a*x)

Arm position y is read from an analog input. Its desired value u, is assumed to he
given digitally. The algorithm has one state, variable x, which is updated at each
sampling instant. The control law is computed and the value is converted to an
analog gignal. The program is executed periodieally with period k by a scheduling
program, as illustrated in Fig. 1.7. Because the approximation of the derivative by
a difference 1s good if the interval & is small, we can expect the behavior of the
computer-controlled system to be close to the continuous-time system. This is il-
lustrated in Fig. 1.6, which shows the arm positions and the control signals for the
systems with k = 0.2/mw;. Notice that the control signal for the computer-controlled
system is constant between the sampling instants. Alsc notice that the difference
between the outputs of the systems is very small, The computer-controlled system
has slightly higher overshoot and the settling time to 5% is a little longer, 5.7 /@y
instead of 5 5/6. The difference hetween the systems decreases when the sampling
period decreases. When the sampling period increases the computer-controlled sys-
tem will, however, deteriorate. This is illustrated in Fig. 1.8, which shows the be-
havior of the system for the sampling periods 2 = 0.5/@w; and & = 1.08/ax. The

response is guite reasonable for short sampling periods, but the system becomes
unstable for long sampling periods. n

We have thus shown that it is straightforward to obtain an algorithm for com-
puter control simply by writing the continuous-time control law as a differential
equation and approximating the derivatives by differences. The example indi-
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Figure 1.8 Simulation of the disk arm servo with computer control having
sampling rates (a) h = 0.5/ and (b) 2 = 1.08/wy. For comparisen, the
signals for analog control are shown with dashed lines.

cated that the procedure seemed to work well if the sampling period was suffi-
ciently small. The overshoot and the settling time are, however, a little larger for
the cornputer-controlled system. This approach to design of computer-controlled
systemns will be discussed fully in the following chapters.

Deadbeat Control

Example 1.2 seems to indicate that a computer-controlled system will be inferior
to a continuous-time example, We will now show that this is not necessarily the
case. The periodic nature of the control actions can be actually used to obtain
control strategies with superior performance.

Example 1,3 Disk drive with deadbeat control

Consider the disk drive in the previous example. Figure 1.9 shows the behavior of
a computer-contrelled system with a very long sampling interval & = 1.4/@,. For
comparison we have also shown the arm position, its velocity, and the contro) signal
for the continuous controller used in Example 1.2. Notice the excellent behavior of
the computer-controlled system. It settles much quicker than the continuous-time
system even if control signals of the same magnitude are used. The 5% settling time
1§ 2.34/wy, which is much shorter than the settling time 5.5/@ of the continuous
system. The cutput also reaches the desired position without overshoot and it
remains constant when it has achieved its desired value, which happens in finite
time. This behavior cannot be obtained with continuous-time systems because the
solutions te such systems are sums of functions that are products of polynomials
and exponential functions. The behavior obtained can be also described in the
following way: The arm acceleratss with constant acceleration until is is halfway to
the desired position and it then decelerates with constant retardation. The control
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Figure 1.8 Simulation of the disk arm servo with deadbeat control (solid).
The sampling period is A = 1.4/ax. The analog controller from Example 1.2
15 also shown {dashed).

strategy used has the same form as the control strategy in Example 1.2, that is,
ulte) = tou (6a) + f1tte (Le-1) ~ 80y {te) — s17(te—1) — r1ue(ts1} (1.5)

The parameter values are ditferent. When controlling the disk drive, the system can
be implemented in such a way that sampling is initiated when the command signal
15 changed. In this way it is possible to avoid the extra time delay that occurs due
to the lack of synchronization of sampling and command signal changes illustrated
in Fig. 1.4. [
The example shows that control strategics with different behavior can be ob-
tained with computer control. In the particular example the response time can
be reduced by a factor of 2. The control strategy in Example 1.3 is called dead-
beat control because the system is at rest when the desired position is reached.
Such a contrel scheme cannot he obtained with a continuous-time controller.

Aliasing

One property of the time-varying nature of computer-controlled systems was
illustrated in Fig. 1.4. We will now illustrate another property that has far-
reaching consequences. Stable linear time-invariant systems have the property
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Figure 1.10 Simulation of the disk arm serve with analog and computer
control. The frequency w, is 1, the sampling period is h = 0.5, and there

is a measurement noise n = 0.1sin12{. (a) Continuous-time system; (h)
sampled-data system.

that the steady-state response to sinusoidal excitations is sinusoidal with the
frequency of the excitation signal. It will be shown that computer-controlled
systems behave in a much more complicated way because sampling will create

signals with new frequencies. This can drastically deteriorate performance if
proper precautions are not taken.

Example 1.4 Sampling creates new freguencies

Consider the systems for contral of the disk drive arm discussed in Example 1.2.
Assume lhat the frequency ax 15 1 rad/s, let the sampling period be & = 0.5/,
and assume that there is a sinuscidal measurement noise with amplitude 0.1 and
frequency 12 rad/s. Figure 1.10 shews interesting variables for the continuous-time
system and the computer-controlled system. There is clearly a drastic difference
between the systems. For the continuous-time system, the measurement noise has
very little influence on the arm position. It does, however, create substantial con-
trol action with the frequency of the measurement noise. The high-frequency mea-
surement noise is not noticeable in the control signal for the computer-controlled
system, but there is also a substantial low-frequency component.

Te understand what happens, we can consider Fig. 1.11, which shows the
control signal and the measured signal on an expanded scale. The figure shows
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Figure 1.11 Simulation of the disk arm servo with computer control. The

frequency w, is 1, the sampling period is & = 0.5, and there is a measurement
noise # = 0.1sin 12¢.

that there is a considerable variation of the measured signal over the sampling
period and the low-frequency variation is obtained hy sampling the high-frequency

signal at a slow rate. "

We have thus made the striking observation that sampling creates signals with
new frequencies. This is clearly a phenomenon that we must understand in
order to deal with computer-controlled systems. At this stage we do not wish
10 go into the details of the theory; let it suffice to mention that sampling of a
signal with frequency @ creates signal components with frequencies

Ogampled = Rs T @ {1.6)

where @, = 27/k is the sampling frequency, and » is an arhitrary integer.
Sampling thus creates new frequencies. This is further discussed in Sec. 7.4.

In the particular example we have w, = 47 = 12,57, and the measurement
signal hag the frequency 12 rad/s. In this case we find that sampling creates a
signal component with the frequency 0.57 rad/s, The period of this signal is thus
11 5. This is the low-frequency component that is clearly visihle in Fig. 1,11,

Example 1.4 illustrated that lower frequencies can be created hy sampling.
It follows from (1.6} that sampling also can give frequencies that are higher than
the excitation frequency. This is illustrated in the following example.

Example 1.5 Creation of higher frequencies hy sampling

Figure 1.12 shows what can happen when a sinuscidal signal of frequency 4.9 Hz
19 applied to the system in Example 1.1, which has a sampling peried of 10 Hz. Tt
follows from Eq. (1.6) that a signal component with frequency 5.1 Hz is created by
sampling. This signal interacts with the original signat with frequency 4.9 Hz to

give the beating of 0.1 Hz shown in the figure. .
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Figure 1.12 Sinusoida! excitation of the sampled system in Example 1.5.
(a) Input sinusoidal with frequency 4.9 Hz, (b) Sampled-gystem output. The

sampling period is 0.1 s. (e} Qutput of the corresponding continuous-time
system.

There are many aspects of sampled systems that indeed can be understood by
linear time-invariant theory. The examples given indicate, however, that the
sampled systems cannot be fully understood within thet framework. It is thus
useful to have other tools for analysis.

The phenomenon that the sampling process creates new frequency com-
ponents is called aliasing. A consequence of Eq. (1.6) is that there will be low-
frequency components created whenever the sampled signal contains frequen-
cies that are larger than half the sampling frequency. The frequency ox = ©,/2

i5 called the Nyquist frequency and is an important parameter of a sampled sys-
tem,

Presampling Filters or Antialiasing Filters

To avoid the difficulties illustrated in Fig. 1.10, it is essential that all signal com-
ponents with frequencies higher than the Nyquist frequency are removed before
a signal is sampled. By doing this the signals sampled will not change much
over a sampling interval and the difficulties illustrated in the previous exam-
ples are avoided. The filters that reduce the high-frequency components of the
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signals are called antialiasing filters. These filters are an important component
of computer-controlled systems. The proper selection of sampling periods and
antialiasing filters are important aspects of the design of computer-controlled
systems,

Difference Equations

Although a computer-controlled system may have a quite complex behavior, it
15 very easy to describe the behavior of the system at the sampling instants, We
will illustrate this by analyzing the disk drive with a deadbeat controller.

Example 1.6 Difference equations
The input-output properties of the process Eq. (1.1} can be described by
2

ylte) = 2y(tear) + ¥(tx-g) = % (H(tkul) + u(fk-z)) (L7)

This equation is exact if the control signal is constant over the sampling intervals.
The deadbeat control strategy is given by Eq. (1.5) and the closed-loop system thus
can be described by the equations.

Ht4) = 25(60-1) + Htu-a) = @{ulti 1) + u(xk_g))

(18)
wteos) + Tiulty_2) = Il (te-1) ~ Sox(te1) — S1y{es)

where & = kh*/2J. Elimination of the control signal u between these equations
gives

YUte) + (1 = 2 + asp) (1) + (1 —2n +a(s+ 31}))’[*&-2) +(ry + a81)y{te3)

=< (uc(tg. W+ ur(tk-2})

The parameters of the deadbeat controller are given by

] ;075
135 25J

NETy T I
0.75  15J

B == ——
a kh?

A

*T a2

With these parameters the closed-loop system becomes

¥(ty) = %(ﬂc (te-1) + ur(rk—ﬁj)

It follows from this equation that the output is the average value of the past two
values of the command signal. Compare with Fig. 1.9. L]
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The example illustrates that the behavior of the computer-controlled system at
the sampling instants is described by a linear difference equation. This obser-
vation is true for general linear systems. Difference equations, therefore, will
be a key element of the theory of computer-controlled systems, they play the
same role as differential equations for continuous systems, and they will give
the values of the important system variables at the sampling instants. If we
are satisfied by this knowledge, it is possible to develop a simple theory for
analysis and design of sampled systems. To have a more complete knowledge
of the behavior of the systems, we must also analyse the behavior between the
sampling instants and make sure that the system variables do net change too
much over a sampling period.

Is There a Need for a Theory for Computer-Controlled Systems?

The examples in this section have demonstrated that computer-controlled sys-
tems can be designed simply by using continuous-time theory and approximat-
ing the differential equations describing the controllers by difference equations,
The examples also have shown that computer-controlled systems have the poten-
tial of giving control schemes, such as the deadbeat strategy, with behavior that
cannot be obtained by continuous-time systems, It also has been demonstrated
that sampling can create phenomena that are not found in linear time-invariant
systems. It also has heen demonstrated that the selection of the sampling pe-
riod is important and that it is necessary to use antialiasing filters, These issues
clearly indicate the need for a theory for computer-controlled systems.

1.4 Inherently Sampled Systems

Sampled models are natural descriptions for many phenomena. The theory of

sampled-data systems, therefore, has many applications outside the field of com-
puter control.,

Sampling due to the Measurement System

In many cases, sampling will occur naturally in connection with the measure-
ment procedure. A few examples follow.

Example 1.7 Radar

When a radar antenna rotates, information about range and direction is naturally
obtained once per revolution of the antenna. A sampled model is thus the natural
way to describe a radar system. Attempts to describe radar systems were, in fact,
one of the starting points of the theory of sampled systems. n

Example 1.8 Analytical instruments

In process-control systems, there are many variables that cannot be measured on-
line, so a sample of the product is analyzed offline in an analytical instrument
such as a mass spectrograph or a chromatograph. .
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Figure 1.13 Thyristor control circuit.

Example 1.9 Economic systems

Accounting procedures in economic systems are often tied to the calendar. Although
transactions may occur at any time, information about important variables s ac-
cumulated cnly at certain times—for example, daily, weekly, monthly, quarterly, or
yearly. ]

Example 1.10 Magnetic flow meters

A magnetic flow meter is based on the principle that current that moves in a
magnetic field generates a voltage. In a typical meter a magnetic field is generated
across the pipe and the voltage is measured in a direction orthogonal to the field.
To compensate for electrolytic voltages that often are present, it is common fo
use a pulsed operation in which the field is switched on and off periodically. This
switching causes an inherent sampling. u

Sampling due to Pulsed Operation

Many systems are inherently sampled because information is transmitted using
pulsed infoermation. Electronic circuits are a prototype example. They were also

one source of inspiration for the development of sampled-data theory. Other
examples follow.

Example 1.11 Thyristor control

Power electronics using thyristors are sampled systems. Consider the cireuit in
Fig. 1.13. The current can be switched on only when the voltage is positive. When
the current is switched on, it remains on until the current has a zero crossing. The
current is thus synchronized to the periodicity of the power supply. The variation
of the ingition time will cause the sampling period to vary, which must be taken
care of when making models for thyristor circuits. [

Example 1.12 Riological systems

Biolagical systems are fundamentally sampled because the signal transmission in
the nervous system is in the form of pulses. a

Example 1.13 Internal-combustion engines

An internal-combustion engine is a sampled system, The ignition can be viewed as

a clock that synchronizes the operation of the engine. A torque pulse is generated
at each ignition, ]
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Figure 1.14 Particle accelerator with stochastic cooling.

Example 1.14 Particle accelerators

Particle accelerators are the key experimental tool in particle physics. The Dutch
engineer Simnon ven der Meer made a major improvement in accelerators by
introducing feedback to control particle paths, which made it possible to increase
the beam intensity and to improve the beam quality substantially. The method,
which 18 called stochastic cooling, was a key factor in the successful experiments
at CERN. As a result van der Meer shared the 1984 Nobel Prize in Physics with
Carlo Rubbia.

A schematic diagram of the system is shown in Fig. 1.14. The particles enter
into a circular orbit via the injector. The particles are picked up by a detector at a
fized position and the energy of the particles is increased by the kicker, which is
located at & fixed position. The system is inherently sampled because the particles
are only observed when they pass the detector and control only acts when they

pass the kicker.
From the point of view of sampled systems, it is interesting to observe that
there is inherent sampling both in sensing and actuation. n

The systems in these examples are periodic because of their pulsed operation.
Periodic systems are quite difficult to handle, hut they can be considerably
simplified by studying the systems at instants synchronized with the pulses—
that is, by using sampled-data models. The processes then can he described as
time-invariant discrete-time systems at the sampling instants. Examples 1.11
and 1.13 are of this type.
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1.5 How Theory Developed

Although the major applications of the theory of sampled systems are currently
in computer control, many of the problems were encountered earlier. In this
section some of the main ideas in the development of the theory are discussed.
Many of the ideas are extensions of the ideas for continuous-time systems.

The Sampling Theorem

Because all computer-controlled systems operate on values of the process vari-
ables at discrete times only, it is very important to know the conditions under
which a signal can be recovered from its values in discrete points only. The
key issue was explored by Nyquist, who showed that to recover a sinusoidal
signal from its samples, it is necessary to sample at least twice per period. A
complete solution was given in an important work by Shannon in 1949. This is
very fundamental for the understanding of some of the phenomena oceuring in
discrete-time systems.

Difference Equations

The first germs of a theory for sampled systems appeared in connection with
analyses of specific control systems. The behavior of the chopper-bar galvanome-
ter, investigated in Oldenburg and Sartorius (1948), was one of the earliest con-
tributions to the theory. It was shown that many properties could be understood
by analyzing a linear time-invariant difference equation. The difference equa-
tion replaced the differential equations in continuous-time theory. For example,
stability could be investigated by the Schur-Cohn method, which is equivalent
to the Routh-Hurwitz criterion.

Numerical Analysis

The thecry of sampled-data analysis is closely related te numerical analysis.
Integrals are evaluated numerically by approximating them with sums. Many
optimization problems can be described in terms of difference equations. Ordi-
nary differential equations are integrated hy approximating them by difference
equations. For instance, step-length adjustment in integration routines can be
regarded as a sampled-data control problem. A large body of theory is avail-
able that is related to computer-controlled systems. Difference equations are an
important element of this theory, too.

Transtorm Methods

During and after World War II, a lot of activity was devoted to analysis of
radar systems. These systems are naturally sampled because a position mea-
surement is obtained once per antenna revolution, One prohlem was to find
ways to describe these new systems. Because transform theory had been so
useful for continuous-time systems, it was natural to try to develop a similar
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theory for sampled systems. The first steps in this direction were taken by
Hurewicz (1947). He introduced the transform of a sequence f(kh), defined by

Z{f(Rh)} = > 2 *f(kh)
k=0

This transform is similar {0 the generating function, which had been used so
successfully in many branches of applied mathematics. The transform was later
defined as the z-fransform by Ragazzini and Zadeh (1952). Transform theory
was developed independently in the Soviet Union, in the United States, and in
Great Britain. Tsypkin (1949) and Tsypkin (1950) ealled the transform the dis-
crete Lapluce transform and developed a systematic theory for pulse-controlled
systems based on the transform. The transform method was also independently
developed by Barker (1952) in England.

In the United States the transform was further developed in a Ph.D. dis-
sertation by Jury at Columbia University. Jury developed tools both for analysis
and design. He also showed that sampled systems could be better than their
continuous-time equivalents. (See Example 1.3 in See. 1.3.) Jury also empha-
sized that it was possible to obtain a closed-loop system that exactly achieved
steady state in finite time, In later works he also showed that sampling can
cause cancellation of poles and zeros. A closer investigation of this property
later gave rise to the notions of observability and reachability.

The z-transform theory leads to comparatively simple results. A limitation
of the theory, however, is that it tells what happens to the system only at the
sampling instants. The behavior between the sampling instants is not just an
academic question, because it was found that systems could exhibit idden oscil-
lations. These oscillations are zero at the sampling instants, but very noticeable
in between,

Another approach to the theory of sampled system was taken by Linvill
{1951). Following ideas dve to MacColl {1945), he viewed the sampling as an
amplitude modulation. Using a describing-function approach, Linvill effectively
described intersample behavior. Yet another approach to the analysis of the
problem was the delayed z-transform, which was developed by Tsypkin in 1950,
Barker in 1951, and Jury in 1956. It is also known as the modified z-transform.

Much of the development of the theory was done by a group at Columbia
University led by John Ragazzini. Jury, Kalman, Bertram, Zadeh, Franklin,
Friedland, Krane, Freeman, Sarachik, and Sklansky all did their Ph.D. work
for Ragazzini.

Toward the end of the 1950s, the z-transform approach to sampled sys-
tems had matured, and several texthooks appeared almost simultaneously: Jury
{1958}, Ragazzini and Franklin (1958), Tsypkin (1958), and Tou (1959). This
theory, which was patterned after the theory of linear time-invariant continuous-
time systems, gave good tools for analysis and synthesis of sampled systems. A
few modifieations had to be made because of the time-varying nature of sampled

systems. For example, all operations in a block-diagram representation do not
commute!



Sec. 1.5 How Theory Developed 27

State-Space Theory

A very important event in the late 1950s was the development of state-space
theory, The major inspiration came from mathematics and the theory of ordinary
differential equations and from mathematicians such as Lefschetz, Pontryagin,
and Bellman. Kalman deserves major credit for the state-space approach to
control theory. He formulated many of the basic concepts and sclved many of
the important problems. -

Several of the fundamental concepts grew out of an analysis of the problem
of whether it would be possible to get systems in which the variables achieved
steady state in finite time. The analysis of this problem led to the notions of
reachability and observability, Kalman's work also led to a much simpler formu-
lation of the analysis of sampled systems: The basic equations could be derived
simply by starting with the differential equations and integrating them under
the assumption that the control signal 1s constant over the sampling peried. The
discrete-time representation is then obtained by only considering the system at

the sampling points. This leads to a very simple state-space representation of
sampled-data systems.

Optimal and Stochastic Controd

There were also several other important developments in the late 1950s. Bell-
man (1957) and Pontryagin et al. {1962) showed that many design problems
could be formulated as optimization problems. For nonlinear systems this led to
nonclassical calculus of variations. An explicit selution was given for linear sys-
tems with quadratic loss functions by Bellman, Glicksherg, and Gross {19568).
Kalman (1960a) showed in a celehrated paper that the linear quadratic probiem
could be reduced to a solution of a Riccati equation. Kalman alse showed that
the classical Wiener filtering problem could be reformulated in the state-space
framework. This permitted a “sciution” in terms of recursive equations, which
were very well suited to computer calculation.

In the beginning of the 1960s, a stochastic variational problem was for-
mulated by assuming that disturbances were random processes. The optimal
control problem for linear systems could be formulated and solved for the case
of quadratic loss functions. This led to the development of stochastic control
theory. The work resulted in the so-called Linear Quadratic Gaussian (LQG)
theory. This 1s now a major design tool for multivariable linear systems.

Algebraic System Theory

The fundamental problems of linear system theory were reconsidered at the
end of the 1960s and the beginning of the 1970s. The algebraic character of the
problems was reestablished, which resulted in a better understanding of the
foundations of linear system theory, Techniques to solve specific problems using
polynomial methods were another result {see Kalman, Falb, and Arbib (1969),

Rosenhrock (1970), Wonham (1974), Kuéera (1979, 1991), and Blomberg and
Ylinen (1983)].
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System Identification

All techniques for analysis and design of control systems are based on the avail-
amlity of appropriate modcls for process dynamiecs. The success of classical con-
trol theory that almost exclusively builds on Laplace transforms was largely
due to the fact that the transfer function of a process van be determined ex-
perimentally using frequency response. The development of digital control was
accompanied by a similar development of system identification methods. These
allow experimental determination of the pulse-transfer function or the differ-
ence equations that are the starting point of analysis and design of digital
control systems. Good sources of information on these techniques are Astrom

and Eykhoff (1971), Norton {1986), Ljung (1987), Soderstrim and Stoica (1989),
and dJohansson (1993).

Adaptive Control

When digital computers are used to implement a controller, it is possible to im-
plement more complicated control algorithms. A natural step is to include both
parameter estimation methods and control design algorithms, In this way it is
possible to obtain adaptive control algorithms that determine the mathematical
models and perform control system design on-line. Research on adaptive control
began in the mid-1950s, Significant progress was made in the 1970s when feasi-
bility was demonstrated in industrial applications. The advent of the micropro-
cessor made the algorithms cost-effective, and commercial adaptive regulators
appeared in the early 1980s, This has stimulated vigorous research on theoret-
ical issues and significant product development. See, for instance, Astrém and

Wittenmark (1973, 1980, 1995), Astrom (1983b, 1987), and Goodwin and Sin
(1984).

Automatic Tuning

Controller parameters are often tuned manually. Experience has shown that it
is difficult to adjust more than two parameters manually. From the user point of
view 1t is therefore helpful to have tuning tools built into the controllers. Such
systems are similar to adaptive controllers. They are, however, easier to design
and use, With computer-based controllers it is easy to incorporate tuning tools.

Such systems also started to appear industrially in the mid-1980s. See Astrém
and Hagglund (1995).

1.6 Notes and References

To acquire mature knowledge about a field it is useful to know its history and
to read some of the original papers. Jury and Tsypkin (1971), and Jury (1980),
written by twe of the originators of sampled-data theory, give a useful per-
spective. Early work on sampled systems is found in MacColl {1945), Hurewicz
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(1947), and Oldenburg and Sartorius (1948), The sampling theorem was given
in Kotelnikov (1933} and Shannon {1949).

Major contributions to the early theory of sampled-data systems were ob-
tained in England by Lawden {1951) and Barker (1952);in the United States by
Linvill (1951), Ragazzini and Zadeh (1952), and Jury (1956); and in the Soviet
Union by Tsypkin (1949) and Tsypkin {1950).The first textbooks on sampled-
data theory appeared toward the end of the 1950s. They were Jury (1958),
Ragazzini and Franklin {1858), Tsypkin {1958), and Tou (19569). A large num-
ber of textbooks have appeared since then. Among the more common ones we
can mention Ackermann (1972, 1996), Kuo (1980), Franklin and Powell (1989),
and [sermann (1989, 1991).

The idea of formulating control problems in the state space also resulted
in a reformulation of sampled-data theory. Kalman (1961} 1s seminal.

Some fundamental references on optimal and stochastic control are Bell-
man (1857}, Beliman, Glicksberg, and Gross (1958), Kalman (1960a), Pontrya-
gin et al. (1962), and Astrém (1970). The algebraic system approach is discussed
in Kaiman, Falb, and Arbib (1969), Rosenbrock (1970), Wonham {1974}, Kuéera
(1979, 1991, 1993), and Blomberg and Ylinen (1983).

System identification is surveyed in Astrém and Eykhoff (19871}, Ljung and
Soderstrom (1983), Norton {1986), Ljung {1987), Séderstrém and Stoica (1989),
and Johansson (1993}. Adaptive control is discussed in Bellman (1961), Astrom
and Wittenmark (1973, 1980, 1985), Astrom (1983b, 1987), Goodwin and Sin
(1984), Gupta (1986), and Astrém and Hagglund {1995).

A survey of distributed computer systems is found in Lucas {1986). In
Gustafsson, Lundh, and Siderlind {1988), it is shown how step-length control
in numerical integration can be regarded as & control problem. This is also
discussed in Hairer and Wanner (1991).

Many additional references are given in the following sections. We also
recommend the proceedings of the IFAC Symposia on Digital Computer Appli-
cations to Process Control and on Identification and System Parameter Estima-
tion, which are published by Pergamon Press.
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Discrete-Time Systems

21 Introduction

Mathematical models for computer-controlled systems are introduced in this
chapter. A key idea is to show how a continuous-time system can be transformed
into a discrete-time system by considering the behavior of the signals at the
sampling instants,

In this chapter the system is studied as seen from the computer. The com-
puter receives measurements from the process at discrete times and transmits
new control signals at discrete times, The goal then is to descrihe the change in
the signals from sample to sample and disregard the behavior between the sam-
ples. The use of difference equations then becomes a natural tool. It should be
emphasized that computer-oriented mathematical models only give the behavior
at the sampling points—the physical process is still a continuous-time system.
Looking at the problem this way, however, will greatly simplify the treatment.
We will give formulas that allow a computation of intersample behavior, but a
full treatment of process-oriented models, which takes continuous-time behavior
into account, is given in Chapter 7.

One point that must be treated with some caution is that the sampled-
data system is time-varying (see Example 1.1). This problem is also discussed
in Chapter 7. In this chapter the problem of time variation is avoided by study-
ing the signals at time instances that are synchronized with the clock in the
computer. This gives models described by difference equations in state-space
and input-output forms. Section 2.2 gives a description of the sampling mecha-
nism. Section 2.3 treats the problem of finding the discrete-time representation
of a continupus-time state-space model by using zero-order-hold devices. The in-
verse problem of finding the continuous-time system that corresponds to a given
discrete-time system is also treated in Sec. 2.3. The general solution of forced
difference equations i1s given in Sec. 2.4. Sections 2,5 and 2.6 deal with trans-
formation of state-space models and the connection between state-space and
input-output models. Shift operators are used to describe input-output mod-
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els. Shift-operator calculus is equivalent to the use of differential operators for
continuous-time systems. The discrete-time equivalent of the Laplace transform
is the z-transform, which is covered in Sec. 2.7.

The treatment of state-space models in Sec. 2.3 covers the multivariable
case. The discussion of input-output models is, however, restricted to single-
input-single-cutput systems. Extensions to the multivariable case are possible,
but are not used in this book because they require the mathematics of polyno-
mial matrices.

In order to design computer-controlled systems, it is important to under-
stand how poles and zeros of continuous-time and discrete-time models are
related. This is treated in Sec. 2.8. The selection of sampling period is discussed
in Sec. 2.9. Rules of thumb based on the appearances of transient responses are
given in terms of samples per rise time.

2.2 Sampling Continuous-Time Signals

According to dictionaries, sempling means “the act or process of taking a small
part or quantity of something as a sample for testing or analysis.” In the context
of control and communication, sampling means that ¢ continuous-time signal is
replaced by a sequence of numbers, which represents the values of the signal at
certain times.

Sampling is a fundamental property of computer-controlled systems be-
cause of the discreta-time nature of the digital computer. Consider, for example,
the system shown in Fig. 1.1. The process variables are sampled in connec-
tion with the analog conversion and then converted to digital representation for
processing. The continuous-time signal that represents the process variables
18 thus converted to a sequence of numbers, which is processed by the digital
computer. The processing gives a new sequence of numbers, which is converted
to a continuous-time signal and applied to the process. In the system shown in
Fig. 1.1, this is handled by the D-A converter. The process of converting a se-
quence of numbers into a continuous-time signal is called signal reconstruction.

For the purpose of analysis, it is useful to have a mathematical description
of sampling. Sampling a continuous-time signal simply means to replace the
signal by its values in a discrete set of pointe. Let Z be the positive and negative
integers Z = {...,-1,0,1,...} and let {# : & ¢ Z} be a subset of the real
numbers called the sampling instants. The sampled version of the signal f is
then the sequence {f(t,) : € Z}. Sampling is a linear operation. The sampling
instants are often equally spaced in time, that is, ¢, = & - k. This case is called
periodic sampling and h is called the sampling period, or the sampling time.
The corresponding frequency f; = 1/h (Hz) or w, = 2a/h (rad/s) is called the
sampling frequency. 1t is also convenient to introduce a notation for half the
sampling frequency fx = 1/(2k) (Hz) or wn = #x/h (rad/s), which is called the
Nyquist frequency.

More complicated sampling schemes can also be used. For instance, dif-
ferent sampling periods can be used for different control loops. This is called
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multirate sampling and can be considered to be the superposition of several
periodic sampting schemes.

The case of periodic sampling is well understood. Most theory is deveoted
to this case, but systems with multirate sampling are becoming more important
because of the increased use of multiprocessor systems. With modern software
for concurrent processes, it is also possible to design a system as if it were
composed of many different processes running asynchronously. There are also
technical advantages in using different sampling rates for different variables,

2.3 Sampling a Continuous-Time State-Space System

A fundamental problem is how to describe a continuous-time system connected
to a computer via A-D and D-A converters. Consider the system shown in
Fig. 2.1. The signals in the computer are the sequences {u(fz}} and {y(t)}].
The key problem is to find the relationship between these sequences. To find
the discrete-time equivalent of a continuous-time system is called sampling a
continuous-time system. The model obtained is also called a stroboscopic model
because it gives a relationship between the system variables at the sampling
instants only, To obtain the desired descriptions, it is necessary ta describe the
converters and the system. Assume that the continugus-time system is given in
the following state-space form:

d
= = Ax(t) + Bu(t (2.1)

x
t
y(t) = Cx(t) + Du(t)

The system has r inputs, p outputs, and is of order n.

Zero-Order-Hold Sampling of a System

A common situation in computer control is that the D-A converter is so con-
structed that it holds the analog signal constant until a new conversion is
commanded. This is often called a zero-order-hold eircuit. It is then natural

Clock

{utty)} u(t) ¥t) {yin}
—={ DA =1 System =1 A-D

Figure 2.1 Block diagram of a continuous-time system connected to A-D
and D-A converters.
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to choose the sampling instants, £, as the times when the control changes. Be-
cause the control signal is discontinuous, it 18 necessary {o specify its behavior
at the discontinmties. The convention that the signal is continuous from the
right is adopted. The control signal is thus represented by the sampled signal
{ulty) : k= ...,-1,0,1,...}. The relationship between the system variahles at
the sampling instants will now be determined. Given the state at the sampling
time t;, the state at some future time ¢ is obtained by solving (2.1). The state
at time ¢, where iy, <t < t,,;, is thus given by

t
x{t) = M ity) + [ M Bu(s) ds'

Ji;

"
— Al ] Alt-s") 7.1
= ¢ :c[t]+/e ds Bu(ty)
S * (2.2)

f-ty
_ AUty 4 [ % ds Bu(ty)
Jo
= Dt te)x{te) + T{E t)uity)

The second equality follows because u iz constant between the sampling in-
stants.

The state vector at time ¢ is thus a linear function of x(#;} and u(¢,}). If
the A-D and D-A converters in Fig. 2.1 are perfectly synchronized and if the
conversion times are negligible, the input u and the output y can he regarded as

being sampled at the same instants. The system equation of the sampled system
at the sampling instants is then

x{te) = PlEgar te)x(ty) + Tltgaa. te)ul(ty)

y(ty) = Cx(ty) + Duft;) (2.3)

where
(D(tkﬂ.fk) _ EA[u.T;—m

froi—tg
(e e} = f EASdS B
1]

The relationship between the sampled signals thus can be expressed by the
linear difference equation, (2.3). Notice that Equation (2.3) does not invelve
any approximations. It gives the exact values of the state variables and the
output at the sampling instants because the control signal is constant between
the sampling instants. The model in (2.3) is therefore called a zero-order-bold
sampling of the system in (2.1). The system in (2.3) can also be called the
zero-order-hold equivalent of (2.1).

In most cases I = (. One reason for this is because in computer-controlled
systems, the output y is first measured and the contrel signal u(¢;) is then
generated as a function of yi¢,). In practice it often happens that there is a
significant delay between the A-D and D-A conversions, However, it is easy to
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make the necessary modifications. The state vector at times between sampling
points is given by (2.2). This makes it possible tc investigate the intersample
behavior of the system. Notice that the responses between the sampling points
are parts of step responses, with initial conditions, for the system. This implies
that the system is running in open loop between the sampling points,

For pericdic sampling with period &, we have ¢, = k- h and the model of
(2.3) simplifies to the time-invariant system

x(kh + k) = Ox(kh) + Tu(kR)

y(kh) = Cx(kh) + Du(kh) (2.4)

where

@ = o4
k 2.5
l“=/ et ds B 25)
a

It follows from (2.5) that

dd(2)

(t
Tdt
dr(t)

dt

®(t)B

The matrices @ and I therefore satisfy the equation

g}[dlét) l"J(It)] _ [d’{{)ﬁ) l“)(rt)] [‘; Ig]

where [ is a unit matrix of the same dimension as the number of inputs. The

matrices ®{k) and I'(A) for the sampling period & therefore can he obtained
from the block matrix

[«I)((}h) rgh)] _ exp([*; ‘3] h) (2.6)

How to Compute dband I’

The calculations required to sample a continuous-time system are the evaluation
of 2 matrix exponential and the integration of a matrix exponential. These can
be done in many different ways, for instance, by using the following:

 Numerical calculation in MATLAB® or MATRIX,®
* Series expansion of the matrix exponential

¢ The Laplace transform—the Laplace transform of exp(Az) is (s — A)™!
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» Cayley-Hamilton’s theorem (see Appendix B)
» Transformation to diagonal or Jordan forms

» Symbolic computer algebra, using programs such as Maple® and Mathe-
matica®,

Calculations by hand are feasible for low-order systems, rn < 2, and for
high-order systems with special structures. One way to simplify the computa-
tions is to compute

Ihy BV A
ot Tt ar

k 2 223 Phit]
.},zfemds: ARY  A%h e
0

The matrices & and I" are given by

d=I+AY
r=%8

Computer evaluation can be done using several different numerical algorithms
in MATLAB® or MaTRIXy®.

Example 2.1 First-order system

Consider the system

dx
i =ax+ fu

with o # 0. Applying Egs. (2.5) we get
D= eah
' B
]“=[ e dsfl = = (¢ - 1)
a (24

The sampled system thus becomes

a(kh + R) = e™ x(kh) + g (6% — 1)u(kh)

Example 2.2 Double integrator
The double integrator (see Example A.1 in Appendix A) is described by

dx_ (01 0
at=lo oj*t 1)

y={1 0}
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Hence

1 &
¢=€A;‘:I+Ah+A2h2,/2+---=[1 0]+[0 h]:[ ]

01 00 01
hz
B
T:/ [s]dsz E]
o &1 b

The discrete-time model of the double integrator is

hﬁ
1 h "
x = x kh
(kh+ k) [0 1] [kh)+{i]u{ ) 21
y(kh) = [1 0] x(kh)
]

Example 23 Motor
A simple normalized model of an electrical DC motor (see Example A.2 in Ap-

pendix A) is given by
dr (-1 0 N 1
at 1 0] o))"
y:[l} l]x

The Laplace transform method gives

i =

- 0
+1 0} 1 (s 0 s+1
[a)yt=|° = =
ol =4) [—1 s] sis+1)[1 s+1] ! 1
s{s+1) s
Hence
-~k 0
Gme™ Vsl —ale | ©
¢ S
and
h -t 1-— -
l"=/ [ ? dv = [ ¢ ]
I 1-¢* h—1+e"
where £7! is the inverse of the Laplace transform. [
The Inverse of Sampling

Sampling a system defines a map from continuous-time systems, as in (2.1},
to discrete-time systems, as in {2.4). A natural question is if and when it is

possible to get the corresponding continuous-time system from a discrete-time
description.
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Example 24 Inverse sampling
Consider the first-crder difference equation

x(kh + k) = ax(kh) + bu(kh)

From Example 2.1 we find that the corresponding continucus-time system 1s ob-

tained from
e(lh =

ﬁ ol

-C-l.'- {8 - 1) =b
This gives

1
a = -}I Ina

- Ina L

R |
This example shows that a continuous-time system with real coefficients is obtained
only when a is positive. n

To investigate the process of sampling in the general case we note that it follows

from {2.6) that
A B]_lln @ r]
0 0) h 0 I

where In (-) is the matrix logarithmic function. The continuous-time system
is thus obtained by taking the matrix logarithm function of a block matrix.
Computation of matrix logarithm is discussed in Appendix B. From the Cayley-
Hamilton theorem it must be assumed that the logarithm exists only when the
matrix & does not have any eigenvalues on the negative real axis. There is also
a nonunigueness in the matrix logarithmic function for complex arguments,
which is illustrated by the following example,

Example 2.5 Harmonic oscillator
The discrete-time system

l1-cosah

gin o

cosah sinoh
—sinal cosah

x(kh+ h) = [ ] x(kh) + [

can be obtained by sampling a continuous-time system with
0 w 0
- 0 @

m=a+2m£-n n=01,...
h
In this case the inverse prohlem has many solutions (compare Examples A3 and
B.1). This is generally the case if the matrix & has complex eigenvalues. Notice that
there always exists a unique @ in the interval —~wy < @ < wy, where @y = z/hk
1s the Nyquist frequency associated with the sampling period 4. "

]umm

where
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Sampling a System with Time Detay

Time delays are common in mathematieal models of industrial processes. The
theory of continuous-time systems with time delays is complicated because the
systems are infinite-dimensional.

It is, however, easy to sample systems with time delays because the control
signal is constant between sampling instants, which makes the sampled-data
system finite-dimensional. Let the system he described by

dx(t)
dt

= Ax(t) + Bu(t - 1) (2.8)

It is assumed initially that the time delay 7 is less than or equal to the sampling
period. The zero-order-hold sampling of the system (2.8) will now be calculated.
Integration of (2.8) over one sampling period gives

kh+h
x(kl + h) = e**x(kh) + f M= By (e’ - 1) dy’ (2.9)
kh

Because the signal u(?) is piecewise constant over the sampling interval, the de-
layed signal u(f— ) is also piecewise constant. The delayed signal will, however,
change between the sampling instants (see Fig. 2.2). To evaluate the integral
of {2.9), it is then convenient to split the integration interval into two parts so

 u(t)  S—

1 ]

e .'

1 1 !

: i : E

S S S
\ : : : t

{ Delayed | _f R

signal :""1 ! !

) ] P 1

] 1 ] 1
e

\ l . :

1 ] i 1
1 { i 1 o
kh—h  kh  kh+h RR+2R t

Figure 2.2 The relationship among u(t), the delayed signal u(t - ), and
the sampling instants.
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that u(t — r) is constant in each part. Hence

kh+h
/ e.ﬁ(’lh+h—s'}Bu(sr _ ‘I') dsr
kh

khtT kh+h
= / eMkMA=Y B d' (k- h) + / AR g’ u(kh)
kh kh+t

= Tyu{kh— h) + Tou(kh)

Sampling the continuous-time system (2.8) thus gives

s(kh + R) = ®x(kh) + Tou{kh) + T1u{kh — h} (2.10)
where
B — Ak
T
To= ]0 e*ds B (2.11)

T
= e"‘“‘"’f e** ds B
)

A state-space model of (2.10) is given by

[x(kh+h)] _ [tb I‘l] [ x(kh) ] N [Fu] u(kh)

u(kh) 0 0 u(kh — h) 1

Notice that r extra state variables u{kk ~ ), which represent the past values
of the control signal, are introduced. The continuous-time system of (2.8) is
infinite dimensional; the corresponding sampled systera, however, is a finite-
dimensional system. Thus time delays are considerably simpler to handle if the
system is sampled, for the following reason: To specify the state of the system,
it i3 necessary to store the input over a time interval equal to the time delay.

With zero-order-hold reconstruction, the input signal can be represented always
by & finite number of values.

Example 2.6 First-order system with time delay
Consider the system

dx(t} N
—dt-*— = crx(r] -}-ﬁu[t 1')

with & # 0. Assume that the system is sampled with period h, where 0 < 7 < h.
Equation {2.11) gives

¢ =qg=e*
h-r ﬁ
g =by = ./ e*fds=— [e“{h'r) - 1)
[y o

T
MN=b= alh—r) / ™ B ds = p_ ah L 0lh—1)
1=by=e A Bds=" (e ~e"t0)
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The zampled system is thus

x{kh + k) = ax(kh) + bou(kh) + bulkh - h)

Example 2.7 Double integrator with delay
The double integrator in Example 2.2 with a time delay 0 < 7 < h gives

® = oM = [1 h]
0 1

d 1 h- L I
rlzeﬂfﬁ—ﬂ/ e""dsB:[ r] 7= T(h z)
0 0 1 T T

-t (h_f)g
rg=/ ﬁdstB: [ a2 ]
0 h—1

Longer Time Delays

If the time delay is longer than A, then the previous analysis has to be modified
a little. If

t=(d-Dh+t" 0<7'<h
where d is an integer, the following equation is obtained:
x(kh + h) = ®x(kR) + Toulkh — (d ~ 1)) + T'yu(kh — dh)

where Ty and I'y are given by (2.11) with 7 replaced by 7’. The corresponding
state-space description is

( x(kh+k) Y (0 T, Ty - 0) x(kh) \  (0)
u(kh —(d—1)h) 0 0 I - ol tulkh—dh) 0
: =1 o : + | o | ulkh)
u(kh ~ k) 6 0 0 Il | u(kh—2h) 0
u ufkhy  } L0 0 0O 0} \ukh-k) ) \I]

(2.12)

Notice that if 7 > 0, then d - r extra state variables are used to describe the
delay, where r is the number of inputs. The characteristic polynomial of the
state-space description is A" A (1), where A(4) is the characteristic palynomial
of ®.

An example illustrates use of the general formula.
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Example 2.8 Simple paper-machine model
Determine the zero-order-hold sampling of the system (see Example A4).

dx(t)
dt

with sampling interval & = 1. In this cage d = 3 and ' = 0.6, and (2.12) becomes

= -I(f) + H(f - 26]

x(k+ 1) = Dx(k) + Tyulk - 2) + Mulk - 3)
where
® =e¢! =0,3679

4
Iy = f e*ds = 1-e ™ =0,3297
0

06
M= e'o"‘] elds = e - et = 0.5024
0

System with Internal Time Delay

In the previous derivation it is assumed that the time delay of the system is
at the input (or the output) of the system. Many physical systems have the
structure shown in Fig. 2.3, that is, the time delay is internal. Let the system
be described by the equations

Si: d:t;t(t) = Aixy(¢) + Bru(t)
di’l((;)) = Cixy(t) + Dyu(?) (2.13)
Sy: dzt = Agxp(t) + Bausa(t)

u(t) = y1(t - )

It is assumed that u(2) is piecewise constant over the sampling interval 4. We
now want to find the recursive equations for x;(kh) and x(kh).

Sampling (2.13) when 7 = 0 using the sampling period & gives the parti-
tioned system

(isnen) = (s oun) (zian) + () vt

We have the following theorem.

L/_.-_. Sl N =87 ug__ S2 ._/-.-...y_

Figure 2.3 System with inner time delay.
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THEOREM 2.1 INNER TIME DELAY  Periodic sampling of the system (2.13)
with the sampling interval 2 and with 0 < 7 < h gives the sampled-data

representation
x1(kh + h) = @ {h)x1(kA) + T1(R)u(kh)
xe(kh + h) = ®.x((Rh - k) + ®(h)x2(kh) (2.14)
+Tyu(kh — h) + Ta(h — 7)u(kh)
where

oty =t (=12

!
Oz (t) = / AP By ettt g
4]

3
Ty} = / eV B, ds
SO

t (2.15)
Tyit) = f e ByCiT(t ~ 8) ds
0
Dy = Qu(R)Pi(h - 1)
Ty = ®a(RIT(h - 7} + Dy (h - 7)T1(7) + B2(h - 7)T2(7)
Reference to proof of the theorem is given at the end of the chapter. N

Remark. The sampled-data system (2.14) for the time delay 7 is obtained
by sampling (2.13) without any time delay for the sampling intervals &, £ - 1,
and 7. This gives &,, ®y, s, I, and I’y for the needed sampling intervals,

This implies that standard software for sampling systems can be used to obtain
(2.14).

Intersample Behavior

The discrete-time models (2.3) and (2.4) give the values of the state variables
and the outputs at the sampling instants ¢,. The values of the variables be-
tween the sampling pointe are also of interest. These values are given by (2.2).

Other ways of obtaining the intersample behavior are discussed in: Sec. 2.7 and
Chapter 7.

2.4 Discrete-Time Systems

The previous section showed how to transform a continuous-time system into
discrete-time form. In most of the remaining part of this chapter we will dis-
regard how the difference equation representing the discrete-time system has
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been obtained. Instead we will concentrate on the properties of difference equa-
tions. Time-invariant discrete-time systems can be described hy the difference
equation

x(k +1) = Gx(k) + Tulk)

y(k) = Cx(k) + Du(k) (2.16)

For simplicity the sampling time is used as the time unit, k = 1.

Solution of the System Equation

To analyze discrete-time systems it is necessary to solve the system equation
{2.16). Assume that the initial condition x{ko} and the input signals u(kq), u(ko+

1],... are given. How is the state then evolving? It is possible to solve (2.16) by
simple iterations.

x(ky + 1} = Dx{ky) + Tulko)
x(ko + 2) = ®x(ky + 1) + Tutko + 1)
= D2x(kg) + OTu(ko) + Tulky + 1)

. (2.17)
x(k) = O*Foy(ho) + ORI (ko) + - + Tulk - 1)

k-1
= FFix(h) + Z d*=-1Tu())
F=ko

The solution consists of two parts: One depends on the initial condition, and
the other is a weighted sum of the input signals. Equation (2.17) clearly shows

that the eigenvalues of ® will determine the properties of the solution, The
eigenvalues are obtained from the characteristic equation

det(i] — @) = 0

Esample 2.9 Solution of the difference equation
Consider the discrete-time system

w(k+1) = [’11‘ fﬂ) x{k)

T
with (0} = [1 1] .1t is easily verified that

and

(%) [ i
x =
§jj=1 ,1:-1,1{1 + Af ]



4 Discrete-Time Systems Chap. 2

If |4 < 1,f = 1, 2, then z(k) will converge to the origin. If one of the gigenvalues
of @ has an absolute value larger than 1, then one or both of the states will diverge.
"

2.5 Changing Coordinates in State-Space Models

Consider the discrete-time system (2.16). We will now discuss how new coordi-
nates can be introduced. Assume that T is a nonsingular matrix and define a
new state vector z(k) = Tx{k). Then

2{k+1) = Tx(k + 1) = TOx(k) + TTu(k) = T®T '2(k) + TTu(k)
= Oz(k) + Tu(k)

and

y(k) = Cx(k) + Du(k) = CT*2(k) + Du(k) = Cz(k) + Du(k)

The state-space representation thus depends on the coordinate system chosen
to represent the state. The invariants under the transfermation are of interest.

THEOREM 2.2 INVARIANCE OF THE CHARACTERISTIC EQUATION The char-
acteristic equation

det (A1 - ) = 0

is invariant when new states are introduced through the nonsingular transfor-
mation matrix T.

Proof.

det(A] - @) = det(ATT ™! - TOTY = det T det(1] - d)det T
= det(] - B)

To find a transformation matrix is the same as solving for the n? elements of T
from the linear set of equations

Th = T

Coordinates can be chosen to give simple forms of the system equations,
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Diagonal Form

Assume that @ has distinct eigenvalues. Then there exists a T such that

A {
TOT ' = _
0 An
where A; are the eigenvalues of ®. The computation of T is discussed in Sec. 3.4.
In this case a set of decoupled first-order difference equations is obtained.

2’1(k + 1) = ).]_Z](k] +ﬁ1u(k)

o+ 1) = Auzn(h) + Baald)
¥R = 1)+ - + Puzal¥)

The solution to the system of equations is now simple. Each mode will have the
solution

k-1
afk) = Aka{0) + Y AR Bulj) (2.18)
J=0

Example 2.10 Diagonal form
Consider the motor in Example 2.3 with & = 1. Using the transformation

11
J [1.4142 0]

- [1.0000 0
0 0.3679]

gives

I = ! C=[1 -0707
- [0.8940] B [ e ]
Jordan Form

If & has multiple eigenvalues, then it is generally not possible to diagonalize
®. Let @ be a n x n matrix and introduce the notation

A1 0 . 0)
0 4 1 0
Ly(4) = .
0 0 1 1
\ 0 0 A,
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where L, is a k xk matrix. Then there exists a matrix 7' such that

Ly, (A1) 0

Ly,{43)
ToT ! = _ (2.19)

0 Lkr[&r)

with 21 + k2 + - + &, = n. The 4; are the eigenvalues of ®, not necessarily
distinct. Equation (2.19) is called the Jordan form. See Appendix B. In this
form the transformed matrix, ®, has the eigenvalues in the diagonal and some
I's in the superdiagonal.

2.6 Input-Output Models

A dynamic system can be described using either internal models or exter-
nal models. Internal models—for instance, the state-space models discussed
in Sec. 2.3—describe all internal couplings among the system variables. The
external models give only the relationship between the input and the output of
the system. In this section, it is first shown that the input-output relationship
for a general linear system can be expressed by a pulse-response finction. It is
then shown that shift-operator caleulus can be used to derive input-cutput rela-
tionships directly, which leads to characterization of the input-output behavior
in terms of pulse-transfer operators.

The Pulse Response

Consider a discrete-time system with one input and one output, The input and

putput signals over a finite interval can be represented as finite-dimensional
vectors

U= (u©) -~ u(N—l}]T
T
Y= {50 - yN-1)

The general linear mode! that relates Y to U can then be expressed as

Y=HU+Y,

where H is an N x N matrix. Y, accounts for the initial conditions. If the
relation between U and Y is causal, the matrix H must be lower triangular.
The element h(k,m) of H is thus zero if m > k. The input-output relationship
for a general linear gystem can be written as

b
(k) = Y Bik,myuim)+ y,(k)

m=0
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where the term y, is introduced to account for initial conditions in the system.
The function A{k,m) is called the pulse-response function, or the weighting func-
tion, of the system. The pulse-response function is a convenient representation,
because it can easily be measured directly by injecting a pulse of unit magnitude
and the width of the sampling interval and recording the output. For zero ini-
tial conditions, the value h{k, m) of the pulse response gives the output at time
k for a unit pulse at time m. For systems with many inputs and outputs, the
pulse response is simply a matrix-valued function. For time-invariant systems,
the pulse response is a function of 2 — m only, that is,

h(k,m) = hik - m)

It i5 easy to compute the pulse response of the system defined by the state-space
model in (2.16). It follows from (2.17) that

k-1
y(k) = CO*Pox(kg) + Y COFITu(j) + Dulk)

J=ky

The pulse-response function for the discrete-time system is thus

0 k<0
h(k)=¢D k=0 (2.20)
CotIr k1

The pulse response is a sum of functions of the form
Re{P(k)A}}

where P is a polynomial in %, and A; are the eigenvalues of the matrix @,
The pulse response has the following property.

THEOREM 2.3 INVARIANCE OF PULSE RESPONSE  The pulse response (2.20)
is invariant with respect to coordinate transformations of the state-space model.
Proof.  Introduce new coordinates z = T, The pulse response of the
transformed system is then, for k 2 1,
k(k) = GO*IT = CT-YTOT-Y-17T
= CTITO*IT7170 = COMT = h(k)

D = D has to be added for & = 0. "

If h(k) # O for only a finite number of k, then the system is called a finite
impulse-response (FIR) system. This implies that the output only will be influ-
enced hy a fiuite number of inputs.
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Shift-Operator Calcuius

Differential-operator calculus is a convenient tool for manipulating linear differ-
ential equations with constant coefficients. An analogous operator calculus can
be developed for systems described by linear difference equations with constant
coefficients. In the development of operator calculus, the systems are viewed as
operators that map input signals to output signals. To specify an operator it
is necessary to give its range—that is, to define the class of input signals and
to describe how the operator acts on the gignals, In shift-operator calculus, all
signals are considered as doubly infinite sequences {f(k):k=--—1,0,1,...}.
For convenience the sampling period is chosen as the time unit.
The forward-shift operator is denoted by ¢. It has the property

af (k)= fl+ 1)

If the norm of a signal is defined as

I £ = sup|f (R

or

LFIP=Y f(k)

h=—o0

it follows that the shift operator has unit nerm. This means that the calculus
of shift operators is simpler than differential-operator calculus, because the
differential operator is unbounded. The inverse of the forward-shift operator is

called the backward-shift operator or the delay operator and is denoted by g 1.
Hence

g (k)= flk~1)

Notice that it is important for the range of the operator to be doubly infinite
sequences; otherwise, the inverse of the forward-shift operator may not exist.
In discussions of problems related to the characteristic equation of a system,
such as stahility and system order. it is more convenient to use the forward-shift
operator. In discussions of problems related to causality, it is more eonvenient to
use the backward-shift operator. Operator calculus gives compact descriptions
of systems and makes it easy to derive relationships among system variables,
hecause manipulation of difference equations is reduced to a purely algebraic
problem.

The shift operator is used to simplify the manipulation of higher-order
difference equaticns, Consider the equation

ylk+na)+aiy(k+na—1)+ - + anay{k)

= bgb:[k-ﬁ- nb}+ +b,,bu[k) (2.21)
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where na > nb. Use of the shift operator gives
(@ + aig" '+ o+ ana)ylk) = (Bog™ + = + bag)u(k)
With the introduction of the polynomials
Alz) =2 + a1z o +ap
and
B(2) = boz™ + 52"+ -+ by,
the difference equation can be written as

Alq)y(k) = B{q)uik) (2.22)

When necessary, the degree of a polynomial can be indicated by a subscript,

for example, An,(q). Equation (2.22) can be also expressed in terms of the
backward-shift operator. Notice that (2.21) can be written as

yky+ ey -1+ - +apgy(k-na) = boulk—d) + - +bppulk — d — nb)

where d = na — nb is the pole excess of the system. The polynomial
A(z)=1+a12+ - +a,2™ = 2CAY)

which is obtained from the polynomial A by reversing the order of the coeffi-

cients, is called the reciprocal polynomial. Introduction of the reciprocal poly-
nomials allows the system in (2.22) to be written as

Agy(k) = B* (g ulk - d)

Some care must be exercised when operating with reciprocal polynemials be-
cause A" 1s not necessarily the same as A. The polynomial 4(z) = z has the
reciprocal A*(z) = z-z7! = 1. The reciprocal of A* is A™(2) = 1, which is
different from A. A polynemial A(z) is called self-reciprocal if

A Difficulty

The goal of algebraic system theory is to convert manipulations of difference
equations to purely algebraic problems. It follows from the definition of the
shift operator that the difference equation of {2.22) can be multiplied by powers
of g, which simply means a forward shift of time, Equations for ghifted times can
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also be multiplied by real numbers and added, which corresponds to multiplying
Eq. (2.22) by a polynomial in g. If (2.22) holds, it is thus also true that

Clg)Alq)y(k) = C{g)B(g)u(k)

To obtain a convenient algebra, it is also useful to be able to divide an equation
like (2.22) with a polynomial in ¢, For example, if

Alg)y(k) =0

it would then possible to conclude that
y(k) =0

If diviston is possible, an equation like {2.22) can be solved with respect to v(k).
A simple example shows that it is not possible to divide by a polynomial in g
unless special assumptions are made.

Example 2.11 Role of initial conditions
Consider the difference equation

y(k + 1) - ay(k) = u(k)

where |a| < 1. In operator notation the equation can be written as

(g - a)ylk) = u(k) (2.23)

If y(ky} = yo it follows from (2.17) that the solution can be written as

e (2.24)

=gty + Y auk - )

i=]
A formal solution of the operator equation (2.23) can be obtained as follows:

1 g
— = ull) =

y(k) =

1-ag? ulk)

Be«;ause g~ has unit norm, the right-hand side can be expressed as a convergent
series.

yk) = g (T +aqg™ + &g+ - Julk)

o e

i=]

It is clear that solutions in (2.24) and (2.25) are the same only if it is assumed
that ys = 0 or that & - ky — . n
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It is possible to develop an operator algebra that allows division by an arbitrary
polynomial in g if it is assumed that there is some kg such that all sequences
are zero for & < ky. This algebra then allows the normal manipulations of
multiplication and division of equations by polynomials in the shift operator as
well as addition and subtraction of equations. However, the assumption does
imply that all initial conditions for the difference equation are zero, which is
the convention used in this book. (Compare with Example 2.11.)

If no assumptions on the input sequences are made, it is possible to develop
a slightly different shift-operator algebra that allows division only by polynomi-
als with zeros inside the unit disc. This corresponds to the fact that effects of
initial conditions on stable modes will eventually vanish. This algebra is slightly
more complicated because it does not allow normal division.

The Puise-Transfer Operator

Use of operator caiculus allows the input-output relationship to be conveniently
expressed ag a rational function in either the forward- or the backward-shift op-
erator. This function is called the pulse-transfer operator and is easily obtained

from any system description by eliminating internal variables using purely al-
gebraic manipulations. '

Consider, for example, the state-space model of (2.16). To obtain the input-

output relationship, the state vector must be eliminated, It follows from (2.16)
that

x(k+ 1) = qx(k) = Ox(k) + Tulk)
Hence
(I - D)x(k) = Tufk)
This gives
y(k) = Cx(k) + Duk) = (C(ql ~ &)+ D)u(k)
The pulse-transfer operator for the system (2.16) is thus given by
H{g)=C(gl -®)'T+D

The pulse-transfer operator can be also expressed in terms of the backward-shift
operator.
H'g™) = C{I-¢7'®)'¢"'I'+ D = H(q)

The pulse-transfer operator for the system of (2.16) is thus a matrix whose

elements are rational functions in g. For a system with one input and one
output,

H(g)=C(gI - @)+ D = ;‘:% (2.26)
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If the state vector is of dimension n and if the polynomials A(g) and B{g) do
not have common factors, then the polynomial A is of degree n. It follows from
(2.26) that the polynomial A is also the characteristic polynomial of the matrix
¢, which means that the input-output medel can be writien as

y(B)+ary(k- 1)+ - +a,yk~n) = boulk) + - + bpu(k—n)

where q; are the coefficients of the characteristic polynomial of @. The most com-
mon case in computer-control systems is that by = 0, that is, there is no direct
term in the discrete-time model. Usually ¥(%) is measured first, and then w(k)is

determined. Then y(k) cannot he influenced by u(k) even if the continuous-time
gystem has a direct term,

Example 2.12 Double integrator
Consider the double integrator in Example 2.2 when % = 1. From (2.26)

_ ¢g-1 -1 Y7 (05) 05+l 08¢ +qgD)
Hig} = [1 0][ 0 q—l] [1]_ (g-12 .1-2g-1+¢g°%

.
Example 2.i13 Double integrator with time delay

Use & = 1 for the double integrator and introduce a time delay of 0.5 5. Then from
{2.10) and Example 2.7,
H(g) = Clgl - 9)(Iy + T1g™)
g-1 -1
[ ) 0] 0 g-1 [ 125 + 0.375¢" ]
(q-1)2 0.5+ 0.5~}
_0125(¢* +6g+1)  0125(g '+6¢7 % +¢7?)
T oale-2g+1) 0 1-20+g?

M

Section 2.5 shows that different state-space representations can be used. Of
course, this does not change the input-output model.

THEOREM 2.4 INVARIANCE OF THE PULSE-TRANSFER OPERATOR  The pulse-
transfer operator H(g) for the siate-space model (2.16) is independent of the
state-space representation.

Proof.  Given the pulse-transfer operator
Hg =Clgl-®)'T+D
and a transformation matrix T, In the new coordinales
H(@)=Clgl-d)'T+D=CTYTT" - TOT"HY'TT + D
= CT! (T(qf —(D)T“I)_ITF +D=CT'T(gl- &) IT17r + D
=Clqgl-®)"'r+D = H{g)
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The input-output models of a system with a zero-order hold can be obtained
by using (2.5} and (2.26). In order to simplify the computation of the pulse-
transfer operater H{g), it is convenient to use Table 2.1, which gives H(q) for
some standard systems. ' ‘

Programs for computer algebra such as Maple® and Mathematica® are
very convenlent for performing sampling because the result is obtained in al-
gebraic form and it can easily be converted to computer code. This approach
makes tables ohsolete and it also reduces the potential sources of mistakes in
manual calculations.

Poles and Zeros

The poles of a system are the zeros of the denominator of H(g), the characteristic
polynomial A(g). The zeros are obtained from B(q) = 0, the poles of the inverse
system. For instance, the system in Example 2.12 has one zero in ~1; the system
has two poles in 1,

Time delay in a system gives rise to poles at the erigin. The system in
Example 2.13 has three poles: two in 1, and one at the origin. There are two
zer08: —3+ /8.

The interpretations of poles and zeros are discussed in Sec. 2.8.

The Order of a System

The order of a system is the same as the dimension of a state-space repre-
sentation or, equivalently, the number of poles of the system. Notice that it is
important to use the forward-shift form to determine the order because of the
time delays. The determination of the. poles, zeros, and order of a system are
occasions when it is important to use the forward-shift form.

2.7 The z-Transform

In the analysis of continuous-time systems the Laplace transform plays an im-
portant role. The transformation makes it possible to introduce the iransfer
function and the frequency interpretation of a system. The combination of time-
domain and frequency-domain aspects gives an increasing understanding of sys-
tems. The discrete-time analogy of the Laplace transform is the 2-transform—a
convenient tool to study linear difference equations with or without initial con-
ditions,

The z-transform maps a semi-infinite time sequence inte a function of a
complex variable. Notice the difference in range for the z-transform and the
operator calculus. In the operator calenlus we consider double-infinite time se-
quences. The main difference is because the z-transform also takes the initial
values into consideration. The variable z is a complex variable and should be
distinguished from the operator ¢.



Discrate-Time Systems Chap. 2

Table 2.1 Zero-order hold sampling of a continuous-time system, G(s). The ta-
ble gives the zero-order-hold equivalent of the continuous-time system, G(s), pre-
ceded by a zero-order hold. The sampled system is described by its pulse-transfer
operator. The pulse-transfer operator is given in terms of the coefficients of

big" !+ bag" %+ - + by

Hig) =
(@) Qi+ agtl 4 4o,
G(s) H{q) or the coefficients in f(q)
1 h
s g-1
1 hi(g+ 1)
st 2(¢-1)?
1 g-1. (-1)* g" q
5 g !al—I»% m! dat \ g —ech
e-sh q—l
a 1 - exp(—a#)
$+a g - exp(-ah)
a by = ;1]1 (@h—1+e)  pyp= =(1-¢ " _ ahe ™)
S(3+a] ay = __(1 + e-uh) ap = -ah
e br=1-e"*1+ak) by=e " +ah-1)
(s + a)t 4y = —2e-ah gy = e~2h
s : (g — 1}he-o*
G+ ap (g iy
e e~ot) — g(1— et
1 _—
. b-a
a
1—e-b “oh _ B(] .. g=ah\p bA
(s +a)(s+ b) bzza( <) Lo
b-a
a#fb

ay = —(e7 + e™%h)

ag = -ln+blh
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Table 2.1 continued

85

G(s) H(q) or the coefficients in H{g)
by = e _eth (1 e )e/b—{1—e¢)c/a
(s+¢) £ a-b
{s+a){s+d) _ & {athik b—e¢ _p, =8
p b= 5 ba-5)° @ ala—b)
a; = _ gtk _e—bh ag = e—{a+b)h

2
@y

s + 2L wos + W}

blzl—a(ﬂ+%’—°y) w=wn/1-0% (<1

bgtazﬁ-a(ﬂ}f—ﬂ) o = ¢ ¢Wh
@
a; = =208 B = cos (wh)

ay = o’ : ¥ = sin(wh)

52 + 2L wos + o

b= %e—ﬁuﬁh sin{wh) be = —by

a1 = —2e 5 cos (wh) gy = ¢ KO0

(lllzwowl—gz

0l by=1-cosah by =1-cosah
5% + gl ay=-2cosah  ay=1
1 .
3 b= = sinah bgz—lSiﬂﬂh
s? + a? ’ ¢
a)= —2cos ah a; =1
1-a h 1 ah
b= *"(E‘a) a=e
At 2\ A
; b= (1-0) (5= ) g (14l
2 «a a
s2(s +a)

by = —

1 o1
&—z(a—l)+ah(§+a)

ﬂ]z—(a+2] ag=2a+1 Q3 = —(x
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DEFINITION 2.1 2-TRANSFORM  Consider the discrete-time signal {f(kh):
k=0.1,...}. The z-transform of f(kh) is defined as

o)

Z{f (kh } F(z) = Zf (kh)z (2.27)

k=0

where z is a complex variable. The z-transform 01" f is denoted by Zf or F. The
inverse transform is given by

fkh) = j{ F(z)z"1dz (2.28)
where the contour of integration encloses all singularities of F(z). .

Example 2.14 Transform of a ramp
Consider a ramp signal defined by y{k%) = &k for & > 0. Then

Y2} =0+ hz ' +2hz 1 o =Rz +227%+ )=

(z-1)2 =

Some properties of the z-transform are collected in Table 2.2, Notice that the
formulas for forward and backward time shifts are not the same, This is a
consequence of the assumption that the time sequences are semi-infinite.

The z-transform can be used to solve difference equations; for instance,

x(k + 1) = dx(k) + Tu(k)
y(k) = Cx(R) + Dulk)
If the z-transform of both sides is taken,

Zz x(k+1) =2z (Zz“kx(k) ) Zmz x(k) + il‘z‘ku(k}
k=0

Hence
z(X(z} -x(m) = OX (2} + TU(2)
X(2) = (o - @)™ (z.x(O) + FU(z))
and
Y(2) = Clel - @) 22x(0) + (C(zI ST D) U(z)
The pulse-transfer function can now he introduced.

HzY=C{I-0)'T+D (2.29)

which is the same as (2.26) with g replaced by z. The time sequence y(k) can now
be obtained using the inverse transform. The following theorem is analogous to
that of continuous-time systems.
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Table 2.2 Some properties of the z-transform.

1. Definition.
(s ¥)

Fiz)=Y f(kh)z*
k=t

2. Inversion.

f(kh) = -2% jﬁ F(2)*dz

3. Linearity.

Zaf + g} = alf + g
4, Time shift.

Z{qf} =2 "F 1

2{q"f} = 2"(F - F1) where Fy(z) = Y- fli)z™,
5. Initial-value theorem.

f(0) = lim Fz

6. Final-value theorem.

If (1-271)F(2) does not have any poles on or outside the unit circle, then
gim f(kh) = ]in}(l -2 HF(2).

7. Convolution.

k
Z{f+g} - Z{Z Fin)g (k- n)} = (2f)(Zg)
n=0

THEOREM 2.5 The pulse response of (2.20) and the pulse-transfer func-
tion (2.29) are a z-transform pair, that is, Z{h(k)} = H(z). N

Computation of the Pulse-Transfer Function

The pulse-transfer function can be determined directly from the continuous-
time transfer function. Let the system be described by the transfer function
((s) preceded by a 2ero-order hald (see Fig. 2.4). The pulse-transfer function is

{ulkh)} Zero-order | 4(f) Gls y(r,)/{y(kh)}
hold G

H(z)

- —|

Figure 2.4 Sampling a continuous-time system.
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uniquely determined by the response to a given signal. Consider, for instance, a
unit-step input. The sequence {u{kh)} is then a sequence of ones and the signal

u(t) is then also a unit step. Let Y(s) denote the Laplace transform of y(t), that
s,

Let the sampled output {y(kh)} have the 2-transform ¥ = Z{£'Y}. Division
of ¥ by the pulse-transfer function of the input, which is z/(z — 1), gives

Hiz) = (1-7Y)¥()

The pulse-transfer function is now obtained as follows:
1. Determine the step response of the system with the transfer function G(s).
2. Determine the corresponding z-transform’of the step response.
3. Divide by the z-transform of the step function.

By using this procedure the following formula can he derived:

z—-1 1 [ g G{s)
= =i ) 7ot s (2.30)

If the transfer function G(s) goes to zero at least as fast as {s|™? for a large s
and has distinet peles, none of which are at the origin, we get

sh _
Hiz) = Z . }esh Res {e s 1} Gis) 231)
where s; are the poles of G(s) and Res denotes the residue. A proof of this for-
mula is given in Sec. 7.8. If G(s) has multiple poles or a pole in the origin, (2.31)
must be modified to take multiple poles into consideration when caleulating the
residues. Table 2.3 shows some time functions and the corresponding Laplace
and z-transforms. The tahle can thus be used to combine steps 1 and 2. Tables
in textbooks are usually found in this form.

Warning. Notice that Zf in Table 2.3 does not give the zero-order-hold
sampling of a system with the transfer function £f. Examine Table 2.1. It is 2
very common mistake to believe that it does. The desired pulse-transfer funetion
is obtained through the procedure given,

Shift-Operator Calculus and z-transforms

There are strong formal relations between shift-operator calcutus and calcula-
tions with z-transforms. When manipulating difference equations we can use
either. The expressions obtained look formally very similar. In many textbooks
the same notation is in fact used for both. The situation is very similar to the
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Table 2.3 Some time functions and corresponding Laplace and z-trans-
forms. Warning: Use the table only as prescribed!

f Lf Zf
S(k) (pulse) - 1
1 z
1 k20 (step) R 1
1 hz
kh s (z - 1)2
1 2 1 hiz(z + 1)
2 (kh) s 2(z-1)°
k] T T 2
1+sT z-eHT
s{1+sT) (z—1)(z— e */T)
tw zsinwh
0wk
sinwkh §¢ + @° 22 - 2zcoswh + 1

difference between the differential operator p = d/d¢t and the Laplace trans-
form s for continuous-time systems. First, we may notice that g is an operator
that acts on sequences and z is a complex variable. From a purely mathematical
point of view, it clearly makes sense to make a distinction between such differ-

ent objects. There is, however, also a good system-theoretic reason for making
a distinction. We illustrate this by an example.

Example 2.15 Pole-zero cancellations
Consider the difference eguation

y(k+ 1)+ ay(k) = ulk + 1) + au(k) (2.92)

If (2.32} is considered as a dynamical system its pulse-transfer function is obtained
as

Hiz) =212
i+a

The last equality is obtained because z is a complex variable. We may be thus
misled to believe that the system (2.32) is identical to

y(k) = u(k) (2.33)
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This is clearly not true because the difference equation (2.32) has the solution
yik) = (~a)ly(0) +ulk) k21

which is identical to (2.33) only if the initial condition y(0) is zero. It may be rea-
sonable to neglect the initial conditions if | < 1, but not reasonable if |af > 1. We
thus have the situation that from a system-theoretic point of view, the expression

z+a

2+a

can be considered equal to one if |a] < 1 but not otherwise. If equation (2.32) is
solved using shift-operator calculus we obtain formally

(g +a)y(k} = (g + a)ulk)
Notice that we cannet divide hy g + a because g is an operator. s

The conclusion that we can draw from the simple example is that the algebras
of z-transforms and shift operators are different. In z-transforms calculus we
can divide with an arbitrary expression, but this is not allowed in shift-operator
calculus. The system-theoretic interpretation is that we may throw away some
modes in the system with z-transform calculus by cancellation factors. This may
make sense if the canceled factors correspond to stable modes, but it may be
strongly misleading if the canceled factors are unstahle. Another manifestation
of this effect will be given in the discussions of the notions of observability and
centrollability in Chapter 3.

Mcditied z-transform

The behavior between sampling points can be investigated using the modified
z-transform. This is the ordinary z-transform, but a time delay mh, which is

a fraction of the sampling period 15 introduced. The modified z-transform is
defined as follows,

DEFINITION 2.2 THE MODIFIED 2-TRANSFORM  The modified 2-transform
of a continuous-time function is given by

=

Flz,m)=Y z*f(kh—h+mh)y 0gmg1 (2.34)
k=0

The inverse transform is given by

finh-h+ mh} = QL [ F(z,m)2" dz
.

Tt

where the contour T encloses all singularities of the integrand. "

The modified z-transform is useful for many purposes-for example, the inter-
sample hehavior can easily be investigated using these transforms. There are
extensive tahles of modified z-transforms and many theorems about their prop-
erties (see the References).
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2.8 Poles and Zeros

For single-input-single-output finite-dimensional systems, poles and zeros can
be conveniently obtained from the denominator and numerator of the pulse-
transfer function. Poles and zeros have good system-theoretic interpretation. A
pole z = g corresponds to a free mode of the system associated with the time
function z(k} = a*. Poles are also the eigenvalues of the system matrix ®. The
zeros are related to how the inputs and outputs are coupled to the states.

Zeros can also be characterized by their signal blocking properties. A zero
z = g means that the transmission of the input signal u(%) = a* is blocked
by the system. This interpretation can be used to define zeros in terms of the
state-space equation, It follows from (2.16) that the input u (k) = uga® gives the
state x(k) = xpa' and zero output if z = e such that

dt[zI—CD -Tr 0
o =
C D

Poles

Consider a continuous-time system described by the nth-order state-space model

dx

— = Ax+ B

g - o E (2.35)
y=0Cx

The poles of the system are the eigenvalues of 4, which we denote hy 4,{4),i =
1,...,n. The zero-order-hold sampling of (2.35) gives the discrete-time system

x(kh + k) = ®x(kh) + Tu(kh)
y{kh) = Cx(kh)

Its poles are the eigenvalues of &, 4;(d), \iltf,‘fl,r...; ,n. Because @ = exp(Ah} it
follows from the properties of matrix functions, (sée Appendix B) that

(@) = hiAR (2.36)

Equation (2.36) gives the mapping from ¢he continupus-time poles to the dis-
crete-time poles, Figure 2.5 illustrates a mapping of the complex s-plane into the
z-plane, when 2 = exp(sh), For instance, tk left haif of the s-plane is mapped
into the unit disc of the z-plane. The map is'not bijective—several points in the
s-plane are mapped into the same point in the z-plane (see Fig. 2.6). This is
. an illustration of the aliasing effect discussed in Example 1.4, For poles inside
the fundamental strip S, in Fig. 2.6, there is a simple relationship between
continuous- and discrete-time poles. (Also compare with Example 2.5.)
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Figure 25 The conformal map z = exp(sh).

3xlh |
nlh hﬁh\\\\
: px
-nlh X ﬂ#////
2
-3l h

Figure 2.6 Each strip in the left half of the s-plane is mapped into the unit
disc. This means that the pair of poles, py and p;, are both mapped into the
pair p.
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(a) (h) T
1 .m 1 -c.mﬁ-.
0 -. 0 [ ]
0 5 0 5
{e) (d)
1 s Vo f e s s 1 L] . . [ L]
0 0
0 ] 0 ]
Time Time

Figure 2.7 Step responses of the discrete-time system in Example 2.16 for
different values of A when { = 0.5 and i, = 1.83, which gives the rise time
T.=1{(a)h=0125(b) h = 0.25, (c} h = 0.5, and (d) h = 1.0,

Example 2.16 Complex poles

Consider the continuous-time system

o

$? + 2 w8 + Wf

(237}

The poles of the corresponding discrete-time system are given by the characteristic
equation

Zrgzia, =0

where

a) = —2et* gog (1/ 1-¢2 mgh)

ag = g S0k

(Compare with Table 2,1.) Figure 2.7 shows the step responses of the discrete-time
gystem for different values of the sampling interval when @y = 1.83 and { = 0.5.
Figure 2.8 gives a more detailed picture of how the continucus-time poles of {2.37)

are mapped into the vnit circle for different values of { and woh when the system
18 sampled. a

Zeros

1t is not possible to give a simple formula for the mapping of zeros. If a contin-
uous-time transfer function is viewed as a rational function, it has zeros at the
zerog of the numerator polynomial and d zeros at infinity, where d is the pole
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Imagmmary axis
=
on

Real axis

Figure 28 Loci of constant { (solid) and wph {dashed) when (2.37) is
sampled.

excess for the continuous-time transfer functicn—that is, the difference between
the number of poles and the number of zeros. The discrete-time system has, in
general, n - 1 zeros; compare Examples 2.12 and 2.13. The sampling procedure
thus gives extra zeros.

For short sampling periods, a discrete-time system will have zeros in

h

zi e’

where the s;’s are the zeros of the continuous-time system. The r = d — 1 zeros
introduced by the sampling will go to the zeros of the polynomials Z, in Tahte 2.4
as the sampling interval goes to zero, because for large s, the transfer funetion
of the continuous-time system is approximately given by G(s) = s~¢.

Example 217 Second-order system
Consider the continuous-time transfer function
2
(s +1)(s+ 2}
Using Table 2.1 gives the zero of the pulse-transfer function

C(L—e et - (1 - g7H)e

T T Ao (I_e

When k is small

z-=1+3h
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Table 2.4 Numerator polynomials,
Z4, when sampling s79.

d Ly
1

1

2  z+1

3 22+dz+1l
4 21122411241

5 2'+262% +662% + 262 + 1

and when h approaches zero, the zero moves to —1. The zero moves toward the
origin when / is increased. The zero for small values of & also can be obtained from
Table 2.4. The pole excess of the continuous-time system is d = 2. The discrete-
time system will have a zero at z = -1 when h goes to zero. "

Systems with Unstable Inverses

A continuous-time system with a rational transfer function is nonminimum-
phase if it has right half-plane zeros or time delays. Analogously, a discrete-
time system is often defined to be nonminimum-phase if it has zeros outside the
unit disc. That definition implies that a time delay does not make the system
nonminimum-phase. On the other hand, time delays do not pose the same severe
problems as they do for continuous-time systems. For discrete-systems it is
therefore more relevant to talk about systems with or without stable inverses,
which are defined as follows.

DEFINITION 2.3 1INSTABLE INVERSE A discrete-time system has an un-
stable inverse if it has zeros outside the unit dise. .

A continuous-time system with a stable inverse may become a discrete-time
system with an unstahle inverse when it is sampled. It follows from Table 2.4
that the mverse system is always unstable if the pole excess of the continuous-
time system is larger than 2, and if the sampling period is sufficiently short.
Further, a continuous-time nonminimum-phase system will not always become

a discrete-time system with an unstable inverse, as shown in the following
example.

Example 2,18 Stability of inverse system changes with sampling
The transfer function

8(1 - s)

C) = ST+ 3]
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has an unstable zero s = 1, Sampling the system gives a discrete-time pulse-
transfer function with a zero:

Bo-2h _ Qp-th | -5k
1-9e-% + Be 3

21 = -

For h = 1.25,2, = -1, for larger A, the zero is always inside the unit circle and
the sampled system has a stahle inverse. »

2.9 Selection of Sampling Rate

Proper selection of the sampling rate is a very important issue in computer-
controlled systems. Too long a sampling period will make it impossible to re-
construct the continuous-time signal. Too short a sampling period will increase
the load on the computer. The problem of sample-rate selection was touched
in Sec. 1.3. The choice of the sampling period strongly depends on the purpose
of the system. We will return to this question many times in the book. This
section only relates the sampling-rate selection to the poles of the open-loop
continuous-time system.

It is useful to characterize the sampling period with a variable that is
dimension-free and that has a good physical interpretation. For oscillatory sys-
tems, it is natural to normalize with respect to the period of oscillation; for
nonoscillatory systems, the rise time is a natural normalization factor.

We now introduce N, as the number of sampling periods per rise time,
T,

N, = B
where T, is the rise time. For first-order systems, the rise time is equal to
the time constant. It is then reasonable to choose N, between 4 and 10. For

a second-order system with damping { and natural frequency @y, rise time is
given by

T = waiewtmop
where { = cos ¢. For a damping around { = 0.7, this gives
oph ~02-06

where @ 18 in radians per second.
Figures 2.7 and 2.9 illustrate the choice of the sampling interval for dif-
ferent signals. It is thus reasonable to choose tbe sampling period so that

T,
N,z —=~4t010
h
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Figure 2.8 Dlustration of the sample and hold of a sinusoidal and an ex-
ponential signal. The rise times of the signals are T, = 1. The number of
samples per rise time is (a) N, = 1, (b) ¥, = 2, (¢) N, = 4, and (d) N, = 8.

Example 2.19 Pole-zero variation with sampling interval

Consider the system

1

Gls) = (s+1){(s2+s+1)

(2.38)

Figure 2.10 shows the step response of the system. Assume that the system is
sampled with period k. Figure 2.11 shows how the poles and zeros of the sampled-
data system vary with the sampling period. Sampling intervals close to zero give
three poles close to 1. Further, the continuous time system has a pole excess of 3.
This implies that the zeros for short sampling intervals are close to the roots of

P 442+41=0

See Table 2.4. The poles and zeros approach the origin when the sampling interval
is increased. The sampled-data system has a stable inverse if & > 2.24. The rules
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0 1 1
0 5 10 15
Time

Figure 2.10 Step response of the system (2.38).

of thumb for the choice of the sampling interval give that a reasonable choice is
h = 0.5. Compare with Figure 2.10. .

2.10 Problems

2,1 Consider the system
dx
dt
y=¢x

= —gx + bu

Let the input be constant over periods of length k. Sample the system and discuss
how the poles of the discrete-time system vary with the sampling interval A,

2,2 Derive the discrete-time system corresponding to the following eontinuous-time
systems when a zero-order-hold circuit is used:

{(a)

B
&8
I
—
|
HD
L R
el
=
+
p—
-
e
=

d*y _ dy du
A TR
T Al T

diy
de
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Figure 2,11 Poles (x) and zeros {O) when the system (2.38) is sampled
with & = 0, 0.2, 0.5, 1, 2, and 3.

23 The following difference equations are assumed to describe continuous-time sys-
tems sampled using a zero-order-hold circuit and the sgampling period k. Determine,
if possible, the eorresponding continuous-time systems,

(a)
y(kh) - 0.5y(kh — h) = 6u(kh — k)

(b)

0 -03 0.7
y(kh) = [1 1] 5(kh)

«{kh + b) = ['0'5 ! ]x(kh)+ [0'5] u(kh)

(¢)
y{kh) + 05y (kk - ) = 6u(kh - b)
24 Consider the harmonic oscillator [see Example A.3 or Problem 2.2(a)]. Compute

the step response at 0, A, 2k, ... when the sampling period is (a) k = 7/2, (b)
h = x/4. Compare with the continuous-time step response.

2.5 Sample the system

1
s*(s + 2Ms + 3)

using & zero-order-hold cireuit and £ = 1.

Gls) =
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2.6 Consider the systern in (2.1). Assume that the input is a sum of impulses at the
sampling instants, that is,

u(t) = Y 8(t- khju(kh)

Determine the discrete-time representation.

2.7 Find the transformation matrix, 7T, that transforms the state-space representation
of the double integrator (2.7) into diagonal or Jordan form.

28 Determine the pulse-transfer function of the systam

x(kh + B) = [0[')5 '2'2] x(kh) + [f] u(kh)

y(kh) = [ 10 ] x(kh)

2.9 Many physical systams can be described by the form

dx (-a b ] N f
E = ¢ _d X g U
where a, b, ¢, and d are nonnegative. Derive a formula for the sampled-data system

when using a zero-order hold. (Hint: Show first that the poles of the systam are
real.)

2.10 Figure 2.12 shows a system of two tanks, where the input gignal is the flow to the
first tank and the output is the level in the second tank. Use of the levels as state
variables gives the system

dx -(0.0197 ] 0.0263 ]
—_— = X+ /4
d = | 00178 —0.0129 ] [ 0

¥ = [0 1 ] x
(a) Sample the system with the sampling period 4 = 12,

(h} Verify that the pulse-transfer operator for the system is

0,030 + 0.026
Hilg) = 4 - 165¢ + 068

2.11 The normalized motor is described in Example A.2 Show that the sampled system
i8 deseribed hy (A.6). Determine the following:

(a) The pulse-transfer function.
{b) The pulse rezponse.
{c) A difference equation relating the input and the output.

(d) The variation of the poles and zeros of the pulse-transfer function with the
sampling period.
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Figure 2,12 The two-tank process.

2,12 A continuous-time system with the transfer function
1
G_ 5] = — e—sr
(5) = 3

is sampled with £ = 1 when 7 = 0.5.

(a) Determine a state-space representation of the sampled system. What is the
order of the sampled system?

(h) Determine the pulse-transfer function and the pulse response of the sampled
gystem.

() Determine the poles and zeros of the sampled system.

2.13 Solve Problem 2.12 with

1
G(S) = s—_l_—l' e""

and h=1and r =15
2.14 Consider the sampled system

y(k+ 1) = ay(k) + bu(k — 3) + byu(k ~ 4)

where the sampling interval is 1 s. Show that the system may be cbtained by
sampling the system

dy(t) _
T ~ay(t) + bul{i - 1)
where

1 aby + by

R Ly
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2.15 Consider the system
y(k) - 05y(k—1) = u(k — 9} + 0.2u(k - 10)
Determine the polynomials A(g), B(g), A'(g™"), and B"(g"") in the representations
Alg)y(k) = Blghu(k)
and
A'(g hy(k) = B*(g"ulk - d)

What are d and the order of the system?
2.16 A filter with the pulse-transfer operator

H{gY=bo+big !+ +b,g™"

is called a finite impulse-response (FIR) filter.

(a) Determine the order of the system.
(b} Determine the poles of the filter and make a state-space representation of the
filter.

2.17 Use the z-transform to determine the output sequence of the difference equation
ylk+2) - 16y(k + 1) + 0.5y(k) = u(k + 1)

when u{k) is a step at k = 0 and when y(0) = 0.5 and y(-1) = 1,
2.18 Verify that

1 B22{z + 1)
Z{ﬁlkh}z} = FrESiE

Compare with Table 2.3 and use that to determine the pulse-transfer function of
the double integrator (see Example A.1).

2.19 Use (2.30} to determine the pulse-transfer function of (a) the system in Problem 2.1
and (b) the normalized motor (see Example A.2).

2.20 Show that a curve of constant damping { in the s-plane is a logarithmic spiral in
the z-plane when using the mapping 2 = exp(sk). That is, the distance to the origin
can be written as r = ae™®, where @ is the angle.

221 If § < @, then
s+f

s§+

is called a lead network (i.e., it gives a phase advance). Consider the discrete-time
system

z+h
Z+a
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{a) Determine when it is a lead network.

(b) Simulate the step response for different pole and zero locations.
2.22 Consider the system

z+h
(1+8)(z2~- 11z +04)

The pole location corresponds to a continuous-time system with ﬂamping ¢ =07
Simulate the system and determine the overshoot for different values of b in the
interval {-1,1).

2.23 Consider the stable continuous-time system

_s+b

Gls) = —

5st+a

where a # b. Sample the system with the sampling period 4. Derive conditions for
when the sampled system will have a stable inverse,

2.24 Consider the discrete-time system

bz + by
zni-l(z -—t‘l)

H{z) =

This system is obtained hy sampling a continuous-time system with the transfer
function

Ke—sl'

Gls) = 157

using the sampling interval A. Show that

T=-kilng
K = b] +bz
l-a
_ h ﬂb1+bg
r=nh lmr:elrl a(by + by)

2.25 Use (2.30) to determine the pulse-transfer function associated with

2.26 Use Eq, (2.30) to show that the pulse-transfer function obtained with zero-order-
hold samplings of the transfer function

1
Gls) =
is given by
H(Z) - h Bﬂ{z)

Al (z- 1)
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where
B,(z) = B2+ Bt o 4 B

and

k
b ;Z(_l)a..un(’;f) k=127
i=1

Furthermore show that
Bz} =1
Baz) =z +1
By(z) = 2% +4z + 1
By(z) =22 + 112" + 112 + 1
Bs{z) = 2* + 262° + 662% + 262% + 1
Bg(z) = 2° + 572" + 302:° + 3022% + 572 + 1

2.27 Derive Eq. (2.31) from (2.30}.
2.28 Solve the difference equation

y(RY = y(k-1)+ y{(k-2) k=23, ..

when y{0) = y{1) = L. [The numbers y(k) are called Fibonacci numbers.]
2.28 Determine the poles and zeros (with multiplicity) of the system

y(k) — 05y(k — 1) + y{k ~ 2) = 2u(k - 10) + uik - 11)

2,30 Which of the following discrete-time systems can be obtained by sampling a causal
continwous-time system using a zerc-order hold?

1 1
Hy(g) = 7= 08 Hy{q) = 7108

g-1 2¢* -0.79-0.8
Hy(q) = {7+ 08) Hi(g) = —W—

231 Determine the pulse-transfer operater obtained by sampling

2(s +2)

Gls) = (s+1)(s+3)

with & = 0.02,

2.32 Sample the contmuous-time system

%E‘J _ [i 2] *(t) + [;]u[z—O.Z)

using the sampling interval & = 0.3. Determine the pulse-transfer operator.
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2.33 Coensider a linear system with the transfer function

a
G,(s)= —
(s} s+a

Sampling the system gives the pulse-transfer function

1- e--nh

Letting a — oo, we get

and
, 1
Hy(z) = lim H,(z) = .

Notice that H,.(z) is not the pulse-transfer function obtained by sampling the
system with the pulse-transfer function G, (s} = 1. Determine conditions on the
transfer function G, (s} such that sampling commutes with limit operations.

2.11 Notes and References

The early texts on sampled-data systems dealt exclusively with input-output
models and transform theory Jury (1958), Ragazzim and Franklin (1958}, and
Tsypkin (1958). The state-space approach used in this chapter offers signifi-
cant simplifieations. With a zero-order hold, the control signal is constant over
the sampling period and the discrete-time model is obtained simply by inte-
grating the state equations over one sampling period. This prohlem formulation
was introduced in Kalman and Bertram (1958). It took some time before this

approach found its way into textbooks. Because of its simplicity it is now the
predominant approach.

Transformation of state variables and canonical forms is standard ma-
terial in state-space theory. These results are very similar to the correspond-
ing results for continuous-time systems. A more detailed treatment is given in
Kailath (1980). Historically, the input-output approach preceded the state-space
approach. A direct treatment from this puint of view is given in the classic texts
Just mentioned. The multivariable case is discussed in Rosenbrock (1970} and
Kutera (1979, 1991).

The z-transform is extensively discussed in Jury (1958, 1982) and Doetsch
(1971). These references contain large tables of z-transform pairs. A table of
zero-order-hold equivalent transfer functions (compare with Table 2.1) is given
in Neuman and Baradello (1979).

The relationship between the zeros of continuoug and sampled systems
is discussed in Astrom, Hagander, and Sternby (1984). The theorems for the
limiting zeros for large and small sampling periods are given in this paper.
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Theorem 2.1 is proved in Wittenmark {1985b}. A generalization to the sampling
of a system with several time delays is found in Bernhardsson (1393).
Programs for computer algebra such as Maple® and Mathematica® are
discussed, for instance, in Char (1992) and Wolfram (1988). For MATLAB® and
MATRIXx® we refer to the manuals for the programs.
Properties of matrices and transformations are found, for instance, in
Gantmacher (1960), Bellman (1970), and Golub and Van Loan (1989).



3

Analysis of
Discrete-Time Systems

3.1 Introduction

Previous chapters have shown how continuous-time systems are transformed
when sampled. In this chapter we will develop the key tools for analyzing
discrete-time systems. Stability, sensitivity, and robustness are introduced in
Secs. 3.2 and 3.3. The concepts of controllahility, reachability, and observabil-
ity, which are useful for understanding discrete-time systems, are discussed in
Sec. 3.4. Simple feedback loops and their properties are treated in Sec. 3.5. Sim-
ulation is used throughout the text because it is a very important tool for the

analysis of sampled-data systerns—for instance, in investigating intersample
behavior.

3.2 Stability

The concept of stability is very important when analyzing dynamic systems.
It is assumed that the notion of stability is known from basic texts in control
theory. Only the basic definitions are given here.

Definitlons

Stability is first defined with respect to changes in the initial conditions. Con-
sider the discrete-time state-space equation (possibly nonlinear and time-var-
ying)

x(k+ 1) = f(x(k).k) (3.1)

77
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Let x%(%) and x(k) be solutions of (3.1) when the initial conditions are x"(kp)
and x(kg). respectively. Further, let |} - || denote a vector norm.

DEFINITION 3.1 STABILITY The solution x°(%) of (3.1} is stable if for a
given £ > 0, there exists a &(¢€,£y) > 0 such that all solutions with {[x(ko) -
®O(ky)|| < & are such that [|x(k) — xo(k)|| < £ for all k 2 ky. .

DEFINITION 3.2 ASYMPTOTIC STABILITY ~ The solution x°(k) (3.1} is asymp-
totically stable if it 15 stable and if § can be chosen such that ||x(ko) - x°(ko}|| <
d implies that \jx(k) ~ x°(k))| = 0 when & — . ]

From the definitions, it follows that stabilityin general is defined for a particular
solution and not for the system, The definitions also imply that stability, in
general, is a local concept. The interpretation of Definitions 3.1 and 3.2 is that
the system is (asymptotically) stable if the trajectories do not change much if
the Initial condition is changed by a small amount.

Stability of Linear Discrete-Time Systems

Consider the linear system
LR+1) =05k 2%0) =’ (3.2)

To investigate the stability of the solution of (3.2), the initial value is perturbed.
Hence

b+ 1) = dx(k)  2(0)=a
The differsnce £ = x —~ x* satisfies the equation
ik+1) = Oi(k)  #0)=a-d (3.3)

This implies that if the solution 1 is stable, then every other solution is also
stahle. For linear, time-invariant systems, stability is thus a property of the
system and not of a special solution.

Tbe system (3.3} has the solution

i(k) = @*5(0)

See (2.17). If it is possible to diagonalize ®, then the solution is a combination
of terms A%, where A;,i = 1,...,n are the eigenvalues of ®; see (2.18). In the
general case, when @ cannot be diagonalized, tbe solution is instead a linear
combination of the terms p;(k)A*, where p;(%) are polynomials in % of order one
less than the multiplicity of the eorresponding eigenvalue. To get asymptotic

stability, all solutions must go to zero as & increases to infinity. The eigenvalues
of & then have the property

|j.;]¢:1 i:l,....n

wbich is formulated as the following theorem.
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THEGREM 3.1 ASYMPTOTIC STABILITY OF LINEAR SYSTEMS A discrete-time
linear time-invariant system (3.2) is asymptotically stable if and only if all
eigenvalues of @ are strictly inside the unit disk. "

Stability with respect to disturbances in the initial value has already been de-
fined. Other types of stability concepts are also of interest.

Input-Output Stability

DEFINITION 3.3 BOUNDED-INPUT BOUNDED-OUTPUT STABILITY A linear
time-invariant system is defined as bounded-inpui-bounded-output (BIBO)} sta-
ble if a bounded input gives a bounded output for every initial value. "

From the definition it follows that asymptotic stability is the strongest concept.
The following theorem is a result.

THEOREM 3.2 RELATION BETWEEN STABILITY CONCEPTS  Asymptotic sta-
bility implies stability and BIBO stability. »

When the word stable is used without further qualification in this text, it nor-
mally means asymptotic stability.

It 15 easy to give examples showing that stability does not imply BIBO
stability, and vice versa.

Example 3.1 Harmonic oscillator
Consider the sampled harmonic oscillator (see Example A.3)

h in wh 1- h
(kb +R) = [ swR - sme ] x(kh)+[ cos@ ] u(kh)
—gindah coswh sin

y{kh) = [1 o] x(kh)

The magnitude of the eigenvalues is one. The system is stable because [|x(kh)| =
|%{0)|| if we(kk) = 0. Let the input be a square wave with the frequency @ rad/s.
By using the z-transform, it is easily seen that the output contains a sinusoidal
function with growing amplitude and the system is not BIBO stable. Figure 3.1
shows the input and ovtput of the system. The input signal is exciting the system
at its undamped frequency and the output amplitude is growing. ]

Stability Tests

It follows from Theorem 3.1 that a straightforward way to test the stability of
a given system is to calculate the eigenvalues of the matrix ®. There are good
numerical algorithms for doing this. Well-established methods are available,
for instance, in the package LAPACK, which is easily accessible in most com-
puting centers. The routines are also included in packages like MaTLAB®. The
eigenvalues of a matrix then can be calculated with a single command.
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Figure 3.1 Input and output of the system in Example 3.1 when @ = 1,
h = 0.5, and the initial state is zero.

It is, however, also important to have algebraic or graphical methods for
investigating stability. These methods make it possible to understand how pa-
rameters in the system or the controller will influence the stability, The following
are some of the ways of determining the stabilify of a discrete-time system:

¢ Direct numerical or algebraic computation of the eigenvalues of @
* Methods based on properties of characteristic polynomials

* The root locus methed

» The Nyquist criterion

+ Lyapunov's method

Explicit calculation of the eigenvalues of a matrix cannot be done conve-

niently by hand for systems of order higher than 2. In some cases it is easy to
calculate the characteristic equation

AlZ) = eg2" +a12" '+ - +g,=0 (3.4)
and investigate its roots. Recall from Sec. 2.6 that the characteristic polynomial
is the denominator polynomial of the pulse-transfer function. Stability tests can
be obtained by investigating conditions for the zeros of a polynomial to be inside
the unit disc.

It is also useful to have algebraic or graphical conditions that tell directly if
a polynomial has all its zeros inside the unit disc. Such a criterion, which is the
equivalent of the Routh-Hurwitz criterion, was developed by Schur, Cohn, and
Jury. This test will be described in detail in the following section. The calculation
of the coefficients of the characteristic polynomial from the elements of a matrix
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18 poorly conditioned. If a matrix is given, it is therefore preferable to calculate
the eigenvalues directly instead of calculating the characteristic equation,

The weil-known root locus method for continuous-time aystems can be used
for discrete-time systems also. The stability boundary is changed only from the
imaginary axis to the unit circle. The rules of thumb for drawing the root locus
are otherwise the same, The root locus method and the Nyquist criterion are
used to determine the stability of the closed-loop system when the open-loop
gystem 13 known.

Jury’s Stability Criterion

The following test is useful for determining if Eq. (3.4} has all its zeros inside
the unit disc. Form the table

o 5| v @p-1 Qg
ap
n p-1 - Q1 ag oy = —
&9
R
)
h—1 a-1 n=1 | o
an—l a‘n—2 (10 Up-1= -1
a4
0
a4y
where
=1 & k
8, =0 — Ny
_ ki k
oy = ag/ag

The first and second rows are the coefficients in (3.4) in forward and re-
verse order, respectively. The third row is obtained by multiplying the second
row by @, = a,/uq and suhtracting this from the first row. The last element in
the third row is thus zero. The fourth row is the third row in reverse order. The
scheme is then repeated until there are 2n + 1 rows. The last row consists of
only one element. The following theorem resuits.

THEOREM 3.3 JURY'S STABILITY TEST If gp > 0, then Eq. (3.4) has all
roots inside the unit disc if and only if all af, £ =0, 1,..., r — 1 are positive. If

no af is zero, then the number of negative ¢! is equal to the number of roots

outside the unit disc, »

Remark. 1f all af are positive for £ =1, 2,..., n — 1, then the condition
ag > 0 can be shown to be equivalent to the conditions

A(1) >0
(~1)"A{~1) >0

These conditions constitute necessary conditions for stability and hence can be
used before forming the table.
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Figure 3.2 The stability area for the second-order equation (3.5) as a func-

tion of the coefficients #, and a.

Example 3.2 Stability of a second-order system
Let the characteristic equation be

ARy =22 +aiz+ay =0

Jury’s scheme is

1 a1 (3]
as /8] 1 oy = a3
1—a§ ﬂ](l—ﬂ‘.g]
!
a{l-a 1-al o) =
1( 2] 2 1 1+ﬂ2
1
| g Gi-e)
1+a2

All the roots of Eq. (3.5) are inside the unit circle if

1-05>0

1~ ((1+a9)?-ad) > 0

].+C12

This gives the conditions

gy <1
gy > -1+ 4

g > ~1 -1,

The stability area for the second-order equation is shown in Fig. 3.2.

Chap. 3

(3.8)
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Nyquist and Bode Diagrams for Discrete-Time Systems

Consider the continuous-time system G(s). The Nyguist curve or frequency re-
sponse curve of the system is the map G{iw) for w € [0, o0). This curve is drawn
in polar coordinates (Nyquist diagram) or as amplitude and phase curves as a
function of the frequency (Bode diagram). In the discrete-time case we have a
similar situation. Consider a system with the pulse-transfer function H{z). The
Nyquist or frequency curve is given by the map H{e'®*) for wh € [0, 7], that is,
up to the Nyquist frequency. Notice that it is sufficient to consider the map in
the interval wh € {-7, ] because the function H(e'**) is periodic with period
2rn/h.

In the continuous-time case, the Nyquist curve G(i@) can be interpreted
as the stationary amplitude and phase when a sinusoidal signal with frequency
w is applied to the system. In the discrete-time case, higher harmonics are
generated; see Example 1.4. This will make the interpretation of H{e'®*) more
complex as is further discussed in Chapter 7.

Example 3.3 Frequency responses

Consider the continuous-time system

~ i
T+ 14541

G{s) (3.6)

Zero-order-hold sampling of the system with h = 0.4 gives the discrete-time system

His) - 0.066z + 0.055
) * T -Taos 70571

The frequency curve is given by H(e*). Figure 3.3 shows the Nyquist diagram
and Fig 3.4 shows the Bode diagram for the continueus-time system and for the
discrete-time system. The difference between the continuous-time and discrete-
time frequency curves will decrease when the sampling period is decreased. The
connection between the frequency curves of the discrete-time and continuous-time
syatems s further discussed in Sec. 7.7. [

The Nyquist Criterion

The Nyquist criterion is a well-known stability test for continuous-time systems.
It is based on the principle of arguments. The Nyguist criterion is especially
useful for determining the stability of the closed-loop system when the open-
loop system is given. The test can easily be reformulated to handle discrete-time
gystems.

Consider the discrete-time system in Fig, 3.5, The closed-loop system has
the pulse-transfer function

(Y@ HE)
- Uz} 1+H(2)

Hci(z}
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Figure 3.3 The frequency curve of (3.6) (dashed) and for (3.6) sampled
with zero-order hold when k = 0.4 (solid).
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Figure 3.4 The Bode diagram of (3.6) (dashed) and of (3.6) sampled with
zero-order hold when 4 = 0.4 (solid).
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Hfz)

1 |

Figure 3.5 A simple unit-feedback system,

The characteristic equation of the closed-loop system is
L+ H(z) =0 (3.7)

The stability of the closed-loop system can be investigated from the Nyquist
plot of H{z). For discrete-time systems, the stability area in the z-plane is the
unit disc instead of the left half-plane. Figure 3.6 shows the path I, encircling
the area outside the unit disc. The amall indentation at z = 1 is to exclude the
integrators in the open-loop system. The mapping of the infinitesimal semicircle
at z = 1 with decreasing arguments from 7/2 to —z/2 is mapped into the H{z)-
plane as an infinitely large circle from ~nz/2 to nz /2, where n is the number
of integrators in the open-loop system. If there are poles on the unit circle other
than for z = 1, those have to be excluded with small semicircles in the same
way as for z = 1. The map of the unit circle is H{e"*) for wh € (0,27).

The stability of the closed-loop system now can be determined by investi-
gating how the path T', is mapped by H(z). The principle of arguments states
that the number of encirclements N in the positive direction around (—1,0) by
the map of T, is equal to

N=Z-P

where Z and P are the number of zeros and poles, respectively, of 1 + (2)
outside the unit disc. Notice that if the open-toop system is stable, then P = (

i Im
v
I
I
NI
VI V| Re
Reseo VII

Figure 3.6 The path T, encircling the area outside the unit disc.
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Figure 3.7 The map of I", into the H(z)-plane of the system in Example 3.4,
when K = 1. The solid line is the Nyquist curve,

and thus N = Z. The stability of the closed-loop system is then ensured if the
map of I, does not encircle the point (-1,0). If H.4{z) = 0 when z —» «, the
parallel lines III and V do not influence the stability test, and it is sufficient to
find the map of the unit circle and the small semicircle at z = 1. The Nyquist
criterion can be simplifled further if the open-loop system and its inverse are
stable. Stability of the closed-loop system is then ensured if the point {-1,0) in
the H (z)-plane is to the left of the map of H(¢'*") for wh = 0 to 7—that is, to
the left of the Nyquist curve.

Example 34 A second-order system
Consider a system with sampling period % = 1 and the pulse-transfer function

025K

HE) = -9
then

1.5(1 - cosw) — 2zin’w - isin@(2o0s @ — 1.5)
{2 — 2cos w){1.25 + cos @)

H(e") = 025K

The map of [, is shown in Fig, 3.7. The solid line is the Nyquist curve, that is,
the map of H(g') for w = 0 to x. Notice that the sampled-data system has a
phase shift that is larger than 180° for some frequencies. From the figure it can be
found that the Nyquist curve crosses the negative real axis at —0.5. The closed-loop

system is thus stable if K < 2. ]
Relative Stability

Amplitude and phase margins can be defined for discrete-time systems analo-
gously to continuous-time systems.
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DEFINITION 3.4 AMPLITUDE MARGIN  Let the open-loop system have the
pulse-transfer function H{z) and let @, be the smallest frequency such that

arg H{e"™") = —r

and such that H(e***) is decreasing for @ = @,. The amplitude or gain margin
is then defined as

1

Amarg - |H{e‘w°h]|

DEFINITION 3.5 PHASE MARGIN  Let the open-loop system have the pulse-
transfer function H(z) and further let the crossover frequency @, be the smallest
frequency such that

[H(e ") = 1
The phase margin ¢mare is then defined as

@marg = T+ arg H(eiw’ﬁ}
a

In words, the amplitude margin is how much the gain can be increased before
the closed-loop system becomes unstable, The phase margin is how much extra
phase lag is allowed before the closed-loop system becomes unstable.

The amplitude and phase margins are easily determined from the Nyquist
and Bode diagrams,

Example 3.5 Amplitude margins

Consider the system in Example 3.3. The continuous-time system has an infinite
amplitude margin. The closed-loop sampled-data systam will, however, be unstable
with 4 proportional controller if the gain is larger than 7,82, The finute-amplitude
margin for the diserete-time systein is due to the phase lag introdiiced by the zero-
order hold. The difference betwcen the discrete-time system and the continuous-
time system will decrease when the sampling interval is decreased. N

The phase margin can be used to select the sampling period, Allowing the phase
margin to decrease by 5 to 15° compared with the continuous-time system at
the crossover frequency gives one rule of thumb,

Lyapunov’s Second Method

Lyapunov’s second method is a useful tool for determining the stability of nonlin-
ear dynamic systems. Lyapunov developed the theory for differential equations,
but a corresponding theory also can be derived for difference equations. The
main idea is to introduce a generalized energy function called the Lyapunov
function, which is zero at the equilibrium and positive elsewhere. The equilib-

rium will be stable if we can show that the Lyapunov function decreases along
the trajectories of the system.
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Vix{k+1)

Figure 3.8 Geomeinrie illustration of Lyapunov's theorem,

The first step to show stability is to find the Lyapunov function, which is
defined as follows:

DEFINITION 3.6  LYAPUNOV FUNCTION  V (x) is a Lyapunov function for the
system

x(k+ 1} = f(x(k))  f(0)=0 (3.8)
if
1. ¥V(x)is continuous in x and V(0) = 0.
2. V(x} is positive definite.
3. AV(x) = V(f{x)) - V{x) is negative definite.

A simple geometric illustration of the definition is given in Fig. 3.8. The level
curves of a positive definite continuous function V are closed curves in the
neighborhood of the origin. Let each curve be labeled by the value of the function.
Condition 8 implies that the dynamics of the system is such that the solution

always moves toward curves with lower values. All level curves encircle the
origin and do not intersect any other level curve.
From the geometric interpretation it thus seems reasonable that the exis-

tence of a Lyapunov function ensures asymptotic stability. The following theo-
rem is a precise statement of this fact.

THEOREM 3.4 STABILITY THEOREM OF LYAPUNOV  The solution x(k) = 0

is asymptotically stable if there exists a Lyapunov function to the system (3.8).
Further, if

0 < @(llxlh) < Viz]

where @(}jx{|) > 0 as (|jx]|) — oo, then the solution is asymptotically stable for
all initial conditions, .
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The main obstacle to using the Lyapunov theory is finding a surtable Lyapunov
function. This is in general a difficult problem; however, for the linear system
of (3.2), it is straightforward to determine quadratic Lyapunov functions. Take
V(x) = xTPx as a candidate for a Lyapunov function. The increment of V is
then given by

AV(x) = V(®x) - V{x) = x"0TPOx — " Px
= x"(®TP® - P)x = -7 Qx

For V to be a Lyapunov function, it is thus necessary and sufficient that there
exists a positive definite matrix P that satisfies the equation

O"PO P =-Q (3.9)

where @ is positive definite. Equation (3.9) is called the Lyapunov equation. It
can be shown that there is always a solution to the Lyapunov equation when
the linear system is stable. The matrix P is positive definite if € is positive
definite. One way of determining a Lyapunov function for a linear system is
to choose a positive definite matrix @ and solve the Lyapunov equation. If the
solution P is positive definite then the system is asymptotically stable.

Example 3.6 Lyapunov function
Consider the discrete-time system

x(k+1) = [ 040 ] x(k)
~-04 06
Using
i0
@ [0 1]

gives the solution of the Lyapunov equation

b [ 119 -035
1 -025 205

Figure 3.9 shows the level curves of ¥V (x) = 7 Px and trajectories for some starting

values of x. The trajectories are such that for each step, the state is reaching a
value of V with a lower value, .

3.3 Sensitivity and Robustness

It is of interest to investigate the sensitivity of a system to perturbations, which
may be introduced because of component tolerances. Because the designs of con-
trol systems are based on simplified models, it is also interesting to know how
accurate the model has to be for the design to be successful. The Nyquist theo-
rem can give good insight into these problems. In this section we will investigate
the sensitivity of the closed-loop system to disturbances and perturbations in
the components of the system.
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State x,
=

Siate x;

Figure 3.8 Level curves of V{x) and trajectories for different initial values
of the system in Example 3.6. The sampling points are indicated by dots.

Sensitivity

We will first determine the sensitivity of a closed-loop system with respect
to changes in the open-loop pulse-transfer function, Consider the system in
Fig. 3.10. The closed-loop system has a feedforward filter H;; from the reference
signal and a feedback controller Hy,. There are also an input load disturbance
v and measurement noise e. The primary process autput is x, and the measured
signal is y. The pulse-transfer operator from the inputs to y is given by

_HyH O H 1
A DAL TR S I

where the loop-transfer function is defined as L = Hy, H. The closed-loop pulse-

_Hﬂ:

1

Figure 3.1¢ Closed-loop system with feedback and feedforward controliers.
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transfer function from the reference signal u, to the cutput y s

_ HyH
Ty L
The sensitivity of H,; with respect to variations in H is given by
dH ., _ Her
dH (1+ L)

The relative sensitivity of H,; with respect to H thus can be written as

dH.; 1 gg_jd_g
H, 1+LH °~H

The pulse-transfer function § is called the sensitivity function and also can be
written as

1 dlegHy
5= 1+L  dlogH (3.10)
The transfer function
L
T=1-8§=—" .
5 1+L (3.19)

15 called the romplementary sensttivity function.

The different transfer functions from the inputs u,, v, and ¢ to the signals v,
x, and u show how the different signals are influenced by the input signals. The
sensitivity function can be interpreted as the pulse-transfer function from e to
y or as the ratio of the closed-loop and open-loop pulse-transfer functions from

v to y. The complementary sensitivity function is the pulse-transfer function
with opposite sign from e to x.

Robustness

We will now consider the situation when the degign of the controller is based on
the nominal model H, but the true open-loop pulse-transfer function is H°(z).
The closeness of H to H® needed to make the closed-loop system stahle is of
concern. Consider the simple closed-loop system in Fig. 3.10 with H(z) replaced

by H%(z). The pulse-transfer function of the closed-loop system is
H ff H 0 (z )

Hal2) = 100

(3.12)

The poles of the closed-loop system are thus the zeros of the function
f(z) = 1+ Hp(2)H'(2)
= 1+ Hy(2)H(z) + Hys(2)H'z) - Hps{2)H (2)
=1+ Hpy(2)H(z) + Hp(2)[H'(2) - H(2)]
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If

leb (H“[z} "H(z])\ < 1+ L(2)| =

H
Ay 3.13
Hﬂ' |H gyl (3.13)

on the unit circle, then it follows from the principle of variation of the argument
that the differences hetween the number of poles and zeros outside the unit dise
for the functions 14 £ and 1 + £° are the same,

The relative precision needed for stability robustness is obtained by divid-
ing (3.13) by L

— {I" |

iHﬂ(z) ~H{z)

z r

c[e].

where the last equality is obtained from (3.11). The complementary sensitive
function thus makes it possible to determine bounds for stability robustness.
The following theorem results,

THEOREM 3.5 ROBUSTNESS 1  Consider the closed-loop systems S and S¢
obtained by applying unit negative feedback around systems with pulse-transfer
functions H and H®, respectively. The system S° is stable if the following con-
ditions are true:

1. S is stable.

2. H and H° have the same number of poles outside the unit disc.
3. The inequality (3.13} is fulfilled for |2] = 1.

The result shows that it is important to know the numher of unstable modes in
order to design a regulator for the system, The theorem ig, however, conserva-
tive. The inequality also gives the frequency range in which it is important to
have a good description of the process. Notice in particular that the precision
requirements are very modest for the frequencies where the loop gain is large.
Good precision is needed for frequencies where H%(z) ~ 1.

A closely related result that gives additional insight is obtained as follows.
The pulse-transfer function of the closed-loop system given in (3,12) can also be
written as

1
Ha= 17 1/

The poles of the closed-loop system are thus given by the zeros of the function
) 1
Hp (z) HY(z)

S PN SR N
Hi(2)H(z)  Hpp(2)H%z) Hpl2)H(2)

fule)=1
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1t follows from the principle of variation of the argument that the differences
between the zeros and poles outside the unit disc of the functions 1+ 1/£° and
1+ 1/L are the same if

1 .
1+ Y7 (3.14)

<

on the unit circle. The following result is thus obtained.

THEOREM 3.6 ROBUSTNESS 2  Consider the closed-loop systems S and
§° obtained by applying unit negative feedback around systems with the pulse-
transfer functions H and H°, respectively. The system $° is stable if the fol-
lowing conditions are trye:

1. S is stable.
2. H and H" have the same number of zeros outside the unit disc,

3. The inequality (3.14} is fulfilled for |z| = 1.

The theorem indicates the importance of knowing the number of zeros
outside the unit disc. The theorem shows that stability can be maintained in
spite of large differences between H and H® provided that the loop gain is large.

From the conclusions of Theorems 3.5 and 3.6, the following rules are

obtained for design of a feedback system based on approximate or uncertain
models.

It is important to know the number of unstable poles and zeros.

It is not important to know the model precisely for those frequencies for
which the loop gain can be made large.

It is necessary to make the loop gain small for those frequencies for which
the relative error AH/H is large.

It is necessary to have a model that describes the system precisely for
those frequencies for which HY(z) =~ -1.

3.4 ControHability, Reachability, Observability, and Detectability

In this section, two fundamental questions for dynamic systems are discussed.
The first is whether it is possible to steer a system from a given initial state
to any other state. The second is how to determine the state of a dynamie
system from observations of inputs and outputs. These guestions were posed
and answered by Kalman, who also introduced the concepts of controllahility

and observability, The systems are allowed to he multiple-input-multiple-output
systems.
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Controllability and Reachability

Consider the system

x(k+1) = Ox{k) + Tulk)

(3.15)
y(k) = Cx(k)

Assume that the initial state x(0) is given. The state at time n, where n is the
order of the system, is given by

x(n) = @"x(0) + & Tu(0) + - + Tu(n-1)

= 0"x(0) + WU (3.16)
where

W, = (r or .. o'r)

U= (u"(r-1) ... uT(o)]T

[Compare with Eq, (2.17).] If W, has rank », then it is possible to find n equa-
tions from which the control signals can be found such that the initial state is
transferred to the desired final state x(r}. Notice that the solution is not unique
if there is more than one input signal. In the literature, controllability is defined
in different ways; the following definition will be used in this text.

DEFINITION 3.7 CONTROLLABILITY The system {3.15) 1s controllable if it
15 possible to find a control sequence such that the origin can be reached from
any initial state in finite time. .

A concept related to controllability is reachability, which is defined as follows.

DEFINITION 3.8 REacHABILITY  The system (8.15) is reachable if it is

possible to find a control sequence such that an arbitrary state can be reached
from any initial state in finite time. .

The two concepts, however, are equivalent if @ is invertible. Reachability will
be discussed here primarily. Controllability does not iraply reachability, which
is seen frem (3.16). If @"x(0) = 0, then the origin will be reached with zero
input but the system is not necessarily reachable.

The following theorem follows from the preceding definition and calcula-
tions.

THEOREM 3.7 REACHABILITY The system (3.15) is reachable if and only
if the matrix W, has rank n. n

HKemark. The matrix W, is usually referred to as the controllability me-
trix hecause of its analogy with continuous-time systems.
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Example 3.7 A controllable system which is not reachable

The system
x(k + 1) = ®a(k) + Tu(k)
where
00 1
@= [1 0] Iﬂ:[o]
is reachable because
10
He = [ 0 1 ]
has full rank. Assume that I is changed to I'" = [0 1 ] ; then
m:[UO]
10

and the system is not reachable. The system is, however, controllable because
@® = 0. The origin is reached in two steps for any initial condition by using
u(0) = (1) = 0. .

By the Cayley-Hamilton theorem it is found from (3.16) that all states that can
be reached from the crigin are spanned by the columns of the controllability

matrix W,. This implies that the reachable states belong to the linear subspace
spanned by the columns of W,.

Example 3.8 Reachable subspaces
Given the system

xk+1) = [*0125 (1]] x(k) + [_;Ps]u(k) x(0) = [i]

is it possible to find a control sequence such that x7(2) = [ -05 1 ] ? From
(3.6),

%(2) = ©2x(0) + DTu(0) + Tu(l)

or

()= (5]« [Las) st

which gives the condition

05u(0) + u(1) = —4
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One possible sequence of controls is #{0) = ~2 and u(1} = -3, Assume instead
that #7(2) = [ 05 1 ] . This gives the system of equations

[;3] = [_;_5] (0.5u(0)+u(1))

which does not have a solution. The reason, of course, is that the system is not
reachable. The controllability matrix is
05 ]
-0.25

1
W, =
[ -05

By starting at the origin, it is pessible to reach only these points of the state space
that belong to the subspace spanned by the vector [1 - 0.5]7. In the example, it
is possihle to reach other points due to the effect of the initial value. [

Assume that new coordinates are introduced by a nonsingular transformation
matrix T {compare with Sec, 2.5). In the new coordinates,

W, - [r &r &:n—lf']
- [Tr TOT-ITT ch"-lT-lTr] (3.17)
- TW,

If W, has rank n, then W, also has rank n. This means that the reachahility of
a system is independent, of the coordinates.

Controllable Canonical Form

Assume that @ has the characteristic equation

det(Al - @)= A"+ A" '+ 4@, =0 (3.18)

and that W, is nonsingular. Then there exists a transformation such that the
transformed system is

4

-a; ~do —0y_1 ~Cy ) (1)
1 0 0 0
zk+1)=| ¢ 1 0 0 |z(k)+ (k)
: : (3.19)
L 0 0 1 0 F. L 0 Fa
vk = (b by ] 2(k)

which is called the controllable canonical form. The advantage of this form
is that it is easy to compute the input-output model and to compute a state-
feedback-control law. There are simple ways of finding the transformation to
controllable canonieal form.
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For a single-input system it follows from (3.17) that the transformation
matrix to the controllable canonical form is T = W, W1 where W. is the con-
trollability matrix for the representation (3.19). The following example shows
that the inverse of the controllability matrix has a simple form.

Example 3.3 The inverse of the controllability matrix
Consider the third-order system

=] =—ds; =—ajz 1
xk+1)=1 1 0 0 ¢ xfk)+ |0] u(k)
0 1 0 0

which is in controllable form. The controllability matrix is

1 —aq ﬂ'f-ag
Wc=[r oT ¢ﬂr]= 0 1 -q

0 0 1
The inverse is given by
1 a) dag
W;l =0 1 3]
0 1

The example can be generalized to the nth-order case, where

1oay e - ayg 8, )
0 1 2y - dya Gys
W=
1 ay
y 0 1]

Trajectory Following

From the preceding definitions and caleulations, it is possible to determine a
control sequence such that a desired state can be reached after at most n steps of
time. Does reachability also imply that it is possible to follow a given trajectory
in the state space? Assume that any x(k) is given and that it is necessary to
get to x(2 + 1). From (3.16) it can be seen that this is possible only if T has
rank 7, that is, it is necessary but not sufficient to have n input signals, For
a single-input-single-output system it is, in general, possible to reach desired
states only at each nth sample point, provided that the desired pointe are known
n steps ahead.
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It is easier to make the output follow a given trajectory. Assume that the
trajectory is given by u,(4). The control signal u then should satisfy

y(k) = %2:; u(h) = u(k)
or
ulh) = etk (3.20)

Assume that there are d steps of delay in the system. The generation of u(&) is
then causal only if the desired trajectory is known d steps ahead. The control
signal then can he generated in real time. The control signal thus is obtained by
sending the desired output trajectory through the inverse system A/B. Equation
(3.20) has a unique solution if the signal u.(k) is such that there exists a kq such
that (k) = 0 for all 2 < ky (compare with Sec. 2.6). The signal  is bounded if
u. is bounded and if the system has a stable inverse.

Observability and Detectability

To solve the problem of finding the state of a system from observations of the
output, the concept of unobservable states is introduced.

DerFINITION 3.9 UNOBSERVABLE STATES The state x° # 0 is unobservable
if there exists a finite £, > n ~ 1 such that y(k) = 0 for 0 < k < k, when
x(0) = 2" and ufk) = 0 for 0 < k < ky. u

The system in (3.16) is observable if there is a finite & such that knowledge of
the inputs x(0), ... ,u(k - 1) and the outputs y{0), ... , y(k — 1) is sufficient to
determine the initial state of the system. Consider the system in (3.15). The
effect of the known input signal always can be determined, and there is no loss
of generality to assume that u(k) - 0. Assume that y(0),y(1),... ,y(n - 1) are
given. This gives the following set of equations:

¥(0) = Cx(0)

y(1) = Cx(1) = Cdx(0)

y(n—1) = CO" x(0)
Using vector notation gives

2(0) = : (3.21)
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The state x(0} can be obtained from (3.21) if and only if the observability matrix

C

Cd
W=t (3.22)

C(Dn—]

has rank n. The state x(0) is unobservable if x(0) 18 in the null space of W,. If
two states are unobservable, then any linear combination is also unohservable;
that is, the unobservable states form a linear subspace.

THEOREM 3.8 OBSERVABILITY  The system (3.15) is observable if and only
if W, has rank n. n

DEFINITION 3.10 DETECTABILITY A system i8 detectable if the only unoh-

servable states are such that they decay to the origin. That is, the corresponding
eigenvalues are stable, »

The test of observahility given by Theorem 3.8 is equivalent to that of observ-
ability for continuous-time systems. It is straightforward to show that the ob-
servahility matrix is independent of the ¢oordinates in the same way as in the
controllability matrix.

Example 3.10 A system with unobservable states
Consider the gystem

dhal) = [1.1 -0.3] ik

10
W) = [1 —0.5] x(k)

The observahility matrix is

C 1 -05
%= (oo} < |
Cod 06 -03
The rank of W, is 1, and the unobservable states belong to the null space of W,,
that is, [0.5 1]. Figure 3.11 shows the output for four different initial states.

All imtial states that lie on a line parallel to [0.5 1] give the same output [see
Fig. 3.11(b) and (d)]. n

Ohservable Canonical Form

Assume that the characteristic equation of ® is (3.18) and that the observability
matrix W, is nonsingular. Then there exists a transformation matrix such that
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Figure 3,11 The output of the sysiem in Example 3.10 for the initial states

(a) 05 17, {b) {15 057, {c)[25 0JF,and {d) [t

the transformed system is

f —ay
—ay

z{k+1) =
—la-1
vy
ﬁ@:ZlO

o

fo ) (- aaa

0 - 0
0
0 - 1
0 - 0)
o]qm

z(k) +

rbl‘
bs

bn—l

\bn,}

~05)".

u(k)
(3.23)

which is called the abservable canonical form. This form has the advantage that

it is easy to find the input-output model and to determine a suitable obgerver.
The transformation in this case is given by

where W, is the observability matrix for the representation (3.23).

Remark. The observable and controllable forms are also called compan-

ion forms.

Example 3.11 A second-order system
Consider the following system, which is written in ohservable canonical form:

xk+1) = [_(Il 1] x(k) + [Z] u(k}

—ily 0

ﬂﬂ:[lﬂ]ﬂﬂ
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The pulse-transfer operator is
-1y (b
b ) (e)
a2y q by

1 b
1 [1 (}} q ] [ 1]
g% + a1q + ag -0y §+0; by

o bgrby  bhigt 4 bag?
P+ag+ay  l+aygt+ag?

H{q)

Thus the a,’s and b,s in the canonical form are defining the polynomials A and

B, respectively, This is true for nth-order systems also, in both observable and
controllable form. [

Kalman’s Decomposition

The reachable and the uncbservable parts of a system are two linear subspaces
of the state space. Both subspaces are independent of the coordinates in the
state space. Kalman showed that it is possible to introduce coordinates such
that a system can be partitioned in the following way:

by & 0 O I
0 @y 0 0 0
E+1) = (k) + uik
H ) Dy Oy D3z Dy (#) Iy (k)
0 @yp 0 Dy, 0

(k) = [c1 C; 0 0] x(k)

where @y, [, and C; are matrices of suitable orders. The state space is parti-
tioned into four parts, which correspond to states that are reachable and observ-

able, not reachable but observable, reachable and not observable, and neither
reachable nor observable,

By simple algebraic manipulations, the pulse-transfer operator is given by
H{g) = Ci1(ql - ®1)"'I,

The pulse-transfer operator is thus determined by the reachable and observable
part of the system, The following theorem summarizes these results.

THEOREM 3.9 KALMAN'S DECOMPOSITION A linear system can be parti-
tioned into four subsystems with the following properties:

Sy Observable and reachable subsystem

S+ Observable but not reachable subsystem

Ssr  Not observable but reachable subsystem

Ss; Neither observable nor reachable subsystem
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Figure 3.12 Block diagram of the Kalman decomposition when the system
is diagonalizable.

Further, the pulse-transfer function of the system is uniquely determined hy
the subsystem that is both observable and reachable, "

A block diagram for the decomposition is given in Fig, 3.12, which shows how
the subsystems are interconnected. The figure also shows that the input-output
relationship iz given only by the subsystem S,,,.

Loss of Reachablllty and Observability Through Sampling

Sampling of a continuous-time system gives a discrete-time system with system
matrices that depend on the sampling period. How will that influence the reach-
ability and observability of the sampled system? To get a reachable discrete-time
system, it is necessary that the continuous-time system also be reachable, be-
cause the allowable control siguals for the sampled system—piecewise-constant
signals—are a subset of the allowable control signals for the continuous-time
system,

However, it may happen that the reachability is lost for some sampling pe-
riods, The conditions for unohservability are more restricted in the continuous-
time case because the output has to he zero over a time interval, whereas the
sampled-data output has to be zero only at the sampling instants. This means
that the continuous output may oscillate between the sampling times and re-
main zero at the sampling instants. This condition is sometimes called hidden
osctilation. The sampled-data system thus can he unohservable even if the cor-
responding continuous-time system is observable,

The harmonic oscillator can be used to illustrate the preceding discussion.

Example 3.12 Loss of reachability and observability
The discrete-time model of the harmonic osallator is given by (see Example A.3)

(kb B) = [ cos wh Smwh]x h)+[1~cosmh]uk)

—sin@h cos wh sin &

y{kh) = [ 10 ] x(kh)
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The determinants of the controllability and observability matrices are

det W, = -2sinwh{l - cos wh)

and
det W, = sinwh

Both reachability and observability are lost for w4 = nz, although the correspond-
ing confinuous-time system given by (A.7) is both controllahle and observahle. m

The example shows one obvious way to lose observability and/or reachahility. If
the sampling period is half the period time {or a multiple thereof} of the natural
frequency of the system, then this frequency will not be seen in the output.

The rules of thumb for the choice of the sampling period given in Chapter 2
are such that this situation should not occur. The rules imply about 20 samples
per period, not 2.

Observability and/or reachability are lost when the pulse-transfer operator
has common poles and zeros. The poles and zeros are functions of the sampling
interval. This implies that there will be common factors only for isolated values
of the sampling period. A change in sampling peried will make the system
ohservable and/or reachable again.

3.5 Analysis of Simple Feedback Loops

In this section the effect of feedback on stability, transient, and steady-state
behavior is discussed. Simple feedback systems, as in Fig. 3.10, are primarily
considered. Several advantages are obtained by using feedback in continuous-

time as well as in discrete-time systems, Feedback, for instance, can do the
following:

¢ Improve the transient behavior of the system
* Decrease the sensitivity to parameter changes in the open-loop system

* Eliminate steady-state errors if there are enough integrators in the open-
loop system

o Decrease the influence of load disturbances and measurement errors

The stability of closed-loop systems can be investigated using the tools
given in Sec. 3.2. The root locus method is a suitable tool for analyzing sim-
ple feedback loops. Because feedback will change the poles of the system, it is

important to understand the coupling between the discrete-time poles and the
transient behavior of the system, This is treated in Sec. 2.8,

Character of Disturbances

It is customary to distinguish among different types of disturbances, such as
load disturbances, measurement errors, and parameter variations.
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Load disturbances. Load disturbances influence the process variables.
They may represent disturbance forces in a mechanical system—for example,
wind gusts on a stabilized antenna, waves on a ship, load on a motor. In process
control, load disturbances may be quality variations in a feed flow or variations
in demanded flow. In thermal systems, the load disturbances may be variations
in surrounding temperature. Load disturbances typically vary slowly. They may
also be periodic—for example, waves in ship-control systems.

Measurement errors. Measurement errors enter in the sensors. There
may be a steady-state error in some sensors due to errors in calibration. How-
ever, measurement errors typically have high-frequency components. There may
also be dynamic errors because of sensor dynamics. There may also be compli-
cated dynamic interaction between sensors and the process. Typical examples
are gyroscopic measuremente and measurement of liquid level in nuclear reac-
tors. The character of the measurement errors often depends on the filtering in
the instruments. It is often a good idea to look at the instrument and medify
the filtering so that it fits the particular problem.

Parameter variations. Linear theory is used throughout this book. The
load disturbance and the measurement noise then appear additively. Real sys-
tems are, however, often nonlinear. This means that disturbances can enter in
a more complicated way. Because the linear models are obtained by linearizing
the nonlinear models, some disturbances then also appear as variations in the
parameters of the linear model.

Simple Disturbance Models

There are four different types of disturbances—impulse, step, ramp, and sinu-
svid—that are commonly used in analyzing control systems, These disturbances
are illustrated in Fig. 3.13 and a discussion of their properties follows.

The impulse and the pulse., The impulse and the pulse are simple ide-
alizations of sudden disturbances of short duration. They can represent load
disturbances as well as measurement errors, For continuous systems, the dis-
turbance is an impulse (a delta function}; for sampled systems, the disturbance
is modeled as a pulse with unit amplitude and a duration of one sampling period.

o - -t —_. N -

Pulse Step Ramp Sinusoid

Figure 3.13 Idealized models of simple disturbances.
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L

T —— i

Figure 3.14 Generation of the reference value using a dynamic system
with a pulge input.

The pulse and the impulse are also important for theoretical reasons be-
cause the response of a linear continuous-time system is completely specified by
its impulse response and a linear discrete-time system by its pulse response.

The step. The step signal is another prototype for a disturbance (see

Fig. 3.13). It is typically used to represent a load disturbance or an offset in a
measurement.

The ramp. The ramp is a signal that is zero for negative time and in-
creases linearly for positive time (see Fig. 3.13). It is used to represent drift-
ing measurement errors and disturbances that suddenly start to drift away.
In practice, the disturbances are often bounded; however, the ramp is a useful
idealization.

The sinusoid. The sine wave is the prototype for a periedic disturbance.
Choice of the frequency makes it possible to represent low-frequency load dis-
turbances, as well as high-frequency measurement noise.

Generation of disturbances. It is convenient to view disturbances as

being generated by dynamic systems (see Fig. 3.14). It is assumed that the
input to the dynamic system is a unit pulse d,, that is,

In order to generate a step, use H,(q) = ¢/(g — 1); to generate a ramp, use
Hy(q) = q/(q - 1)% and & sinusoid from a harmonic oscillator (compare Exam-
ples A.1 and A.3 in Appendix A). From an input-output viewpoint, disturbances
may be descrihed as impulse responses. Disturbances also may be regarded as
the responses of dynamic systems with zero inputs but nonzero initial condi-
tions. In both cases the major characteristics of the disturbances are descrihed
by the dynamic systems that generate them. The approach, of course, can be
applied to continuous-time, as well as discrete-time, systems,



106 Analysis of Discrete-Time Systems Chap. 3

Steady-Siate Values

When analyzing control systems, it is important to calculate steady-state values
of the cutput and of the error of the system. Assume a simple feedback system,
as shown in Fig. 3.5. To generalize, it can be assumed that -1 in the feedback
path is replaced hy - Hz(q). The error e{k) is then given by

1 1
" ThgEL <P T

e{k) e (k) (3.24)

The final-value theorem (Sec. 2.7, Table 2.2} can be used to calculate the
steady-state value of e(%). Notice, however, that the stability of the system must
be tested before the final-value theorem can be used. If the input signal is a
step, the steady-state error can be calculated simply by putting ¢ = 1 in (3.24).

The number of integrators in the open-loop system determines the class of
reference values that can be followed without steady-state errors. If the open-
leop system has p integrators, then the error will be zero in steady state (pro-
vided that the closed-loop system is asymptotically stable) for reference signals
that are polynomials in & of order less than or equalto p - 1.

Example 3.13 Steady-state errors for step and ramp inputs
Consider the syslem

g—-05

yik) = Hlgulk) = o =600

u(k)

Closing the system, as in Fig, 3.5, gives

(g-08)(g-1)

W= o8- 1 re-05 ¥

Assume that i, is a unit step, Because the closed-loop system is stable, the final-
value theorem can be used to show that the steady-state error is zero. This can be
seen simply by putting ¢ = 1. Another way is to observe that the open-loop system
contains one integrator, that is, a pole in +1. If u, is a unit ramp, use Table 2.3 in

Sec. 2.7 to find the z-transform of the ramp. The steady-state error is then given
by

o (z-08)(z-1) z{1-z1)
Jim e(k) = lim (t-0B)(z-1)+2-05 (z-1)

= 0.4

Simulation

Simulation is a good way to investigate the behavior of dynamic systems—for
example, the intersample behavior of computer-controlled systems. Computer
simulation is a very good tool, but it should be remembered that simulation and
analysis have to be used together. When making simulations, it is not always
possible to investigate all combinations that are unfavorable, for instance, from
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the point of view of stability, observability, or reachability. These cases can be
found through analysis,

It is important that the simulation program be so simple to use that the
person primarily interested in the results can he involved in the simulation and
in the evaluation of the simulation results.

In the beginning of the 1960s, several digital simulation packages were de-
veloped. These packages were basically a digital implementation of analog sim-
ulation. The programming was done using block diagrams and fixed-operation
modules. Later programs were developed in which the models were given di-
rectly as equations.

It is important to have good user-machine communication for simulations;
the user should be able to change parameters and modify the model easily. Most
simulation programs are interactive, which means that the user interacts with
the computer and decides the next step based on the results obiained so far.
One way to implement interaction is to let the computer ask questions and the
user select from predefined answers. This is called menu-driven interaction.
Another possihility is command-driven interaction, which is like a high-level
problem-solving language in which the user can choose freely from all commands
availablein the system. This is also a more flexible way of communicating with
the computer, and it is very efficient for the experienced user, whereas a menu-
driven program is easier to use for an inexperienced user.

In a simulation package, it is also important to have a flexihle way of
presenting the results, which are often curves. Finally, to be able to solve the
type of problems of interest in this hook, 1t is important to be able to mix
continuous- and discrete-titne systems.

Examples of simulation packages are MATLAE® with SIMULINK®, MATRIXy®,
and Simnon®, Because these packages are readily available we will not describe
any of them in detail. However, we urge the reader to use simulation to get a
good feel for the behavior of the computer-controlled systems that are described
in the text. For the figures in the book we have used MATLAB® with SIMULINK®.

Macros for these figures are available through anonymous ftp; see the Preface
of the book.

Control of the Double Integrator

The double integrator (Example A.1) will be used as the main example to show
how the closed-loop behavier is changed with different controllers. The pulse-
transfer operator of the double integrator for the sampling period & = 1 is

05(g+1)
Hylg) = ——=~
Assume that the purpose of the control is to make the output follow changes in

the reference value. Also assume that the process is controlled by a computer
using proportional feedback, that is,

(3.25)

uw]:K@AH—ﬂM)=Kﬂh K50
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Figure 3.18 The root locus of {3.26) when K > 0.

where u, is the reference value. The characteristic equation of the closed-loop
gystem is

(@-1)°+06K(g+1) = g* + (05K - 2)g + 1 + 05K = 0 (3.26)

Jury’s stability test (compare with Example 3.2) gives the following con-
ditions for stability:

1+08K <1
1+05K > -1+05K-2
1+058K > ~-1-058K+2

The closed-loop system is unstable for all values of the gain X. The root locus
is shown in Fig. 3.15.

To get a stable system, the controller must be modified. It is known from
continuous-time synthesis that derivative action improves stability, so propor-
tional and derivative feedback can be tried also for the discrete-time system.

We now assume that i is possible to measure and sample the velacity ¥ and
use that for feedback; that is,

u(k) = K(e[k) - Tuy(k)) (3.27)

(see Fig. 3.16). To find the input-output model of the closed-leop system with
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Figure 3.18 Discrete-time controller with feedback from position and ve-
locity of the double integrator.
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the controller (3.27), observe that
dy
-(E =u
Because u is constant over the sampling intervals,
y(k+1) - (k) = u(k)

or
3 = — ulb) 3.28)

Equations (3.25), (3.27), and (3.28) give the closed-loop system

05K (g+1)
(q-1)g- 1+ T;K)+05K(q+1)

yk) = e (k) (3.29)

The system is of second order, and there are two free parameters, K and T,
that can be used to select the closed-loop poles. The closed-loop system is stable
if K >0, T; » 05, and TyK < 2. The root locus with respect to K of the
characteristic equation of (3.29} is shown in Fig. 3.17 when Ty = 1.5.

Let the reference signal be a step. Figure 3.18 shows the continuous-time
output for four different values of K. The behavior of the closed-loop system
varies from an oscillatory to a well-damped response. When K = 1, the poles
are In the origin and the cutput is equal to the reference value after two samples.
This is called deadbeat control and is discussed further in Chapters 4 and 5.
When K > 1, the output and the control signal oscillate hecause of the discrete-
time pole on the negative real axis. The poles are inside the unit circle if K <
4/3.

To determine the closed-loop response, it is important to understand the
connection between the discrete-time poles and the response of the system. This
is discussed in Sec. 2.8. From Fig. 2.8 it can be seen that K = 0.75 corresponds
to a damping of { = 0.4. The distance to the origin is a measure of the speed
of the system,

The behavior of the double integrator with some simple controllers has
been discussed; the results can be peneralized to more complex systems. Also,
the importance of analysis and simulation has been illustrated.
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Figure 3.17 The root locus of the characteristic equation of the system in
{3.29) with respect to the parameter K when Ty = 1.5,

Practical Aspects of the Choice of the Sampling Period

Selection of the sampling period in sampled systems is a fundamental problem
that will be discussed several times in this book. The proper choice depends on
the properties of the signal, the reconstruction method, and the purpose of the
system, In a pure signal-processing problem, the purpose is simply to record a
signal digitally and to recover it from its samples. A reasonable criterion for
selection may then be the size of the error between the original signal and the
reconstructed signal. In signal-processing applications it can be justified to have
sampling rates of several hundred samples per peried.

A rational choice of the sampling rate in a closed-loop control system
should be based on an understanding of its influence on the perfermance of
the control system. It seems reasonable that the highest frequency of interest
should he closely related to the bandwidth of the closed-loop system. The selec-
tion of sampling rates then can be based on the bandwidth or, equivalently, on
the rise time of the closed-loop system. Reasonable sampling rates are 10 to 30
times the bandwidth, or 4 to 10 per rise time, which may seem slow in relation
to the typical signal-precessing problem. Comparatively low sampling rates can
be used in control problems because the dynamics of many controlled systems
are of low-pass character and their time constants are typically larger than the
closed-loop response times. The contribution to the output from one sampling
period then depends on the pulse area; it is comparatively insensitive to the
pulse shape.
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Figure 3,18 The continuous-time output of the system in Fig. .16 when
Ty =15and (a) K =05, (b} K =075, (¢) K = 1, and (d) K = 1.25,

Hidden Osclllations

Figure 3.18 shows that the continuous-time output of the process may have
oscillations that are not seen at the sampling points, These are called hidden
oscillations, or intersample ripple. Simulation is an effective tool for finding hid-
den oscillations. The modified z-transform or (2.34} also can be used to calculate
the continuous-time output between the sampling instants; however, it is also
enlightening to do some analysis.

The intersample ripple is essentially determined by the open-loop dynam-

ics because the system operates in open loop hetween the sampling points. Two
cases can be distinguished.

¢ Qscillation in the continuous-time output of an open- or closed-loop system
when there is no oscillation in the control signal
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» Oscillations between the sampling points caused by an oscillation in the
control signal

The first case of intersample ripple may oceur if observability of the open-
loop system is lost due to sampling. The pulse-transfer function then has can-
celed poles and zeros. The effect of the canceled modes is then not seen at the
sampling instants. There may then be hidden oscillations if the continuous-time
open-loop system has oscillatory modes and if the sampling period matches the
frequency of these modes. This type of hidden oseillation occurs only for certain
values of the sampling period. A change in the sampling interval makes the
gystem observable and the oscillation can be seen in the sampled output. The
oscillation frequency is often lower in the sampled signal than in the continuous-
time signal. To detect this type of intersample ripple, it is necessary to check
the observability of the sampled-data system (compare with Example 3.12).

Example 3.14 Hidden oscillation in an open-loop system

Consider a continuous-time system with the transfer function

1 4
+
s+1  (s+0022 4+ 52

G(s) =

Sampling this system with h = 2 gives the pulse-transfer function

1—a+0.{]125
z e 2 @

Hiz) =

where ¢ = ¢7% and & = e 0%,
The oscillatory part of the continuous-time system has the frequency x and

damping of 0.02, The sampling frequency is #, which implies that the oscillation
18 sampled only once per period.

The discrete-time system is of second order and the continucus-time system
18 of third order. The cancellation of peles and zeros that are oscillatory is an
indication that hidden oscillation may occur. Figure 3.19 shows the step response
of the continuous-time system. The sampling points are indicated by dots. The
system behaves like a second-order system at the sampling points. Figure 3.19
also shows the sampled cutput when 4 = 1.8. The oscillation is now clearly seen
in the sampled output although it now appears at a lower frequency. "

The second type of hidden oscillation occurs if there are poorly damped zeros
in the open-loop system that are canceled by the controller. In this case, the
oscillation can be seen in the control signal. This type of hidden oscillation will

not be detecied if the sampling period is changed, provided that the design is
still such that the process zeros are canceled.

Example 3.15 Controller-induced hidden oscillation

The double integrator previously used in this section can be used to show how a

controlier may introduce hidden oscillations. The model of {3.25) can be written as
the difference equation

y(k) = 2p(k — 1) - y(k - 2) + 0Bulk - 1) + 05u(k - 2)
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Figure 3.19 Step response of the system in Example 3.14. {a} Continu-
ous-time (solid line) and sampled output (dots) when {a) 2 = 2; (b) A = 18.

Let the purpose of the control be to follow the reference trajectory u.{k). If the
control signal is chosen such ‘that the right-hand side is equal to the reference
value at time % - 1, the following causal controller is obtained:

249 —
uib) = 2ty - 2D g 330)
The closed-loop system is given by
glg-1}
= k
2 (g+1{g®-2¢+1-(-2g+1)) el#)
- L = k- )

The output is equal to the reference value after ane step, By using the controller in
(3.27) with K = 1and 7; = 1.5, it took two steps. The step response and the control
signal when using the contrel law (3,30} are shown in Fig. 3.20. At the sampling
points, the system has the desired performance, but there is an oscillation in the
continuous-time output. This hidden osciliation is caused by the oscillation in the
conitrol signal. It is thus important to simulate a system in order to investigate the
behavior between the sampling points.

The closed-loop system is of third order, the process has two modes, and the
controlier has one mode. The zero on the stability boundary is canceled hy a pole.
This mode is not ohservable in the closed-loop discrete-time system. Thiz means

that observability of the closed-loop system has been lost by an improper chaice of
the controller. a

To summarize, there are no hidden oscillations if the unohservable open-loop

modes are not oscillatory and if unstable or poorly damped process zeros are
not canceled by the regulator.
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Figure 320 The step response and the control signal of the double inte-
grater when the controller of (3.30) is used.

3.6 Problems

3.1 Determine if the following equations have all their roots inside the unit disc;
(a) 22— 152+ 09 =0
(b) 2* 322 +2: -05 =0
() 2 -222 422 -05=0
(d} 2* + 522~ 0252 -125 =0
{e) 22~ 172 +172-07 =0
3.2 Consider the system in Fig. 8.5 and let

K
He) = 02 04

K>0

Determine the values of K for which the closed-loop system is stable.

33 Consider the system in Fig. 3.21. Assume that the sampling is done periodically
with the period % and that the D-A converter holds the control signal constant over

H.(q) e Hig)

-1

4

Figure 321 Closed-loop system for Problem 3.3.
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the sampling interval. The control algorithm iz azsumed to be
(k) = K (u.(kh — 7} — y(bh — T))

where K >0 and 7 is the computation time. The transfer function of the process
18

1
G{S) = ;
(a} How large are the values of the regulator gain, K, for which the closed-loop

system is stable if 7 = 0 and r =< A7

{b} Compare this system with the corresponding continuous-time systems, that
is, when there is a continuous-time proportional controller and a time delay
in the process.

34 Determine the Nyquist curve for the system

3.5 From the system

xfk + 1} = [i ?] x{k) + [;] u(k)
y(k) = [0 1] x(k)

the following values are obtained

Determine the value of the state at & = 3,
3.6 I the following system (a) obeervable, (b) reachable?

2(k+1) = [065 :;:] (k) + [i] u(k)

y{&) = [2 ~—4] (k)

3.7 Is the following system reachable?

xlk+1) = [; 0?5] x(k) + [i ;] u(k)

Assume that a scalar input ' (k) such that

i =] von

18 introduced. Is the system reachable from u’(%)?
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3.8 Given the system
01 2 0
afk+1)=10 0 3| x(k)+ | 1| u(k)
0 00 0

(a) Determine a control sequence such that the system is taken from the initial
stata x7 {0} = [ 11 1] to the origin.

{b} Which is the minimum number of steps that solve the problem in (a)?

(¢} Explain why it is not possible to find a sequence of control signals such that
T
the state [ 1 11 ] 1s reached from the origin.

3.8 Verify the formula for W, ? given in Example 3.9 for an nth-order systam.
3.10 The system

xik + 1) = &x(k) + Tu(k)
has been obtained from the system
Z(k + 1) = Fz(k) + Gulk)
by a linear transformation
z=Tx

(a) Use the result in Sec. 3.4 to derive a formula for T when dim(u) = 1 and
dim(u) =r.

(b) Use the result ta solve Problem 2.7.

3.11 Determine the stability and the stationary value of the output for the system de-
scribed by Fig. 3.21 with

1
fla) = 9(g—05)

when . is a step function and (a) H, (q) = K (proportional controller), X > 0; and
(b} H.(q) = Kg/(g — 1) (intagral controller), K > 0.

3.12 Consider the system in Prohlem 3.11. Determine the steady-stata error hetween
the command signal, 4., and the output when , is a unit ramp, that is, z, (k) = k.
Assume that H, is (a) a proportional controller and (b) an integral controller.

3.13 Sample the system

s+1

Gl) = 270571

and determine the sampling intervals for which the respense of the system will
have hidden oseillations. Verify by simulations.
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3.14 Consider the tank system with the pulse-transfer operator given in Problem 2.10(b),
that is, when the system is sampled with & = 12.

{a) Introduce a controller as in Fig. 3.21. Let the command input be a step and
determine the steady-state error when using a proportional controller K and
an integral contreller K/{1 - 4~ 1).

(b} Simulate the system using the controllers in (a). Investigate the influence
of the controller gain K. Determine K such that the poles of the closed-loop
system correspond to a damping of { = 0.7.

3.15 Consider the system in Fig. 3.5. Derive a formula for the velocity error coefficient.
That is an expression for the steady-state error when the reference signal u, is a
unit ramp.

3.16 Determine the values of K > 0 for which the system

4q—1+q—2
R =K b
Yo = K o2 YW

is stable under simple feedback,
3.17 Determine a coordinate transformation z = T'x that transfers the system
k= () sme () w
2k +1) =
| 3 x(k) + 4] u(k)
y(k) = [5 6] x(k)

to controllable canonical form and to observable canonical form.

3.18 Assume that the continuous-time system (CT)

dx

— =4

i x+ Bu
¥y=0Cx

is sampled and gives the discrete-time system (DT)

x(kh + h) = Dx(kh) + Tu(kh)
y{kh) = Cx(kh)

Consider the following statements:

(a) CT stable = DT stable
(b) CT unstable = DT unstable
(c) CT stable inverse = DT stable inverse

p—

d) CT unstable inverse = DT unstable inverse
(e} CT controllable = DT controllable

(f) CT observable = DT observable

(g) CT pole excess r = DT pole excess r
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Which statements are true for the following cases:

(i} All sampling intervals & > 0.
(tiy All A > O except for isolated values.
(iit) Neither (¥) nor (ii).

3.19 Consider the system

0 -3 2 0
xk+1)= {3 =12 7 | xkt+ | 1| ulk)
6 -21 12 2

Determine whether

{a) the system is reachable,
{b) the system is controllable.

3.20 Given the system
(q* + 0.4q)y(k} = ulk)
{a) For which values of K in the proportional controlier
ull) = Kl (k) - y(k)

is the closed-loop system atable?

{b) Determine the stationary error #, — y when u, is a step and when K = 05 in
the controller in (a).

3.21 Assume that the system

y(k) ~ 1.2y(k - 1) + 05y(k - 2) = 0.4tk ~ 1) + 0.8u(k - 2)
i8 controiled by
u(k) = —-Ky(k)

{a) Determine for which values of K the closed-loop system is stable.
{b) Assume that there is a computational delay in the controller, that is,

u(k) = -Ky(k -1}

For which values of K is the closed-loop system now stable?

3.7 Notes and References

Original papers on tests for checking if a polynomial has all its poles inside
the unit circle are Schur (1918) and Cohn {1922). Jury’s test is a simplification
of the Schur-Cohn test and is found in Jury and Blanchard (1961). A simple
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proof of Jury’s test is found in Astrom (1970). The use of the Lyapunov theory
for discrete-time control systems is introduced in Kalman and Bertram (1960),
Controllability and observability are concepts introduced by Kalman in connec-
tion with analysis of optimal control systems. See Kalman (1961) and Kalman,
Ho, and Narendra {1963). The hidden oscillations and their cause are discussed
in Jury (1957) and Sanchis and Albertos (1995).

General aspects of simulation are discussed in Gordon (1969}, Astrém
(1983a), Kheir (1988), Cellier (1991), and Mattsson, Andersson, and Astrom
(1993).
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Pole-Placement Design:
A State-Space Approach

4.1 introduction

This chapter presents design methods based on internal models of the system.
The methods developed in this chapter can be viewed as solutions to specific,
idealized control problems. The solutions give insight into the nature of control
prablems. They also show that many of the concepts introduced earlier are use-
ful. Control design involves compromises between conflicting goals. We capture
this by intreducing so-called design parameters that have to be chosen by the
designer. See Sec. 4.2, In this chapter we will develop a collection of design
methods that are called pole placement from the point of view of state feed-
back, The name pole placement refers to the fact that the design is formulated
in terms of obtaining a closed-loop system with specified poles. The methods
will be developed gradually. In Sec. 4.3 we will discuss an idealized regulation
problem, It is assumed that all state variables are measured and the distur-
bances are widely spaced impulses. In Sec. 4.4 we will discuss the problem of
reconstructing the states from measured outputs. This leads to the introduction
of observers. By combining the observers with the state feedback obtained in
Sec. 4.3, we ohtain a solution to the regulation problem for the case of output
feedback in Sec. 4.5. We will also generalize the disturbances by considering
disturbances that are obtained as outputs of dynamic systems whose inputs are
impulses. In this way we can deal with the classical cases of disturbances that
are steps and sinusoids as well as many other cases. This alse gives a very
natural way to intreduce integral action. So far we have only dealt with the
regulation problem. In Sec, 4.6 we will discuss the servo problem, that is, how
to obtain a system that can also follow command signals. This problem can also
be well captured in the state-space formulation. By comhining the result with

120



8ec. 4.2 Control-System Design 121

the previous results we obtain a controiler that can follow command signals
and reject disturbances acting on the system. The controller structure obtained
is very interesting because the different tasks of the controller are naturally
separated. The design procedure is illustrated in Sec. 4.7 with an application to
control of simple robotics system.

4.2 Control-System Design

Many different factors have to be considered in the design of a control system,
for example:

» Attenuation of load disturbances

+ Reduction of the effect of measurement noise

¢ Command signal following

+ Variations and uncertainties in process behavior

Load disturbances are disturbances that drive the process away from its desired
behavior, Measurement noise is a disturhance that corrupts the information
about the process obtained from the sensors. Process disturbances can enter
the system in many different ways. It is convenient to consider them as if they
enter the system in the same way as the control signal; in this way they will
excite all modes of the system. For linear systems it also follows from the su-
perposition principle that the assumption is not very critical, The measurement
noise will be injected into the process through the control law. The command
signal following expresses the property of the system to respond to eommand
gignals in a specified way.

Control prohtems can broadly speaking be classified into regulation prob-
lems and servo problems. The major issue in the regulation problem is to com-
promise between reduction of load disturbances and the fluctuations ereated
by the measurement noise that is injected in the system due to the feedback.
The command signal following is the major issue in servo problems. The major
ingredients of a design problem are

» Purpose of the system

* Process model

¢ Model for disturbances

¢ Model variations and uncertainties
* Admissible control strategies

* Design parameters

It is difficult to find design methods that consider all the preceding issues men-
tioned. Most design methods focus on one or two aspects of the prohlem and the
control-system designer then has to check that the other requirements are also
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Figure 4.1 Block diagram of a typical control system.

satisfied. To do this it is necessary to consider the signal transmission from com-
mand signals, load disturbances, and measurement noise to process variables,
measured signals, and control signals. This is illustrated in the block diagram
of Fig. 4.1. Compare with Fig. 3.10. In this chapter we will develop a design
method based on state models whase purpose is to obtain a specified closed-loop
characteristic polynomial of the system, At first sight it may seem unnatural to
apecify the problem in this way. It will lead, however, to simple design methods
that will give considerable insight into the structure of good control systems.
The design method is very easy to apply for low-order systems, but it may be
difficult to choose the poles properly for systems of high order. The structure
of the controller is also the same as the one obtained with more sophisticated
design methods, which will be discussed later.

We will start with a simple design prohlem and gradually make it more
and more realistic. The problem is specified as follows.

The process. It is assumed that the process to be controlled can be
deseribed by the model

dx
pri Ax + Bu {4.1)

where u represents the control variables, x represents the state vector, and A
and B are constant matrices. Further, only the single-input-single-output case
will be discussed. Because computer control is considered, the control signals
will be constant over sampling periods of constant length. Sampling the system
in Eq. (4.1) by the methods described in Sec. 2.3 gives the discrete-time system

x(kk + k) = Ox(kh) + Tu(kh)
where the matrices @ and I' are given by

k
P = oAt T:[ e ds B
b

To simplify we will write the system as

x(k + 1) = Dx(k) + Tulk) (4.2)
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The argument of a signal is thus not real time but instead the number of sam-
pling intervals. We call this the sempling-time convention. We will use real time
whenever there are possibilities for confusion.

Disturbances. Initially it will be assumed that the disturbances acting
on the process are impulses that occur irregularly, and that the impulses are
so widely spread that the system settles between the impulses. Because the
impulses are far apart and the effect of an impulse is simply to change the
process state, the disturbance can be represented hy an initial state. Later we
will extend the results to much more general disturbances that are generated
from dynamic systems whose inputs are impulses. Typical examples are steps,
ramps, and sinuseidal signals.

Process uncertainty. Uncertainties in the elements of the matrices A
and B can be dealt with in the state-space formulation, but it is not easy to deal
with other forms of unmeodeled dynamics. A discussion of process uncertainties
therefore will be given later when more appropriate tools have been developed.

The criterion, When discussing regulation problems it will be assumed
that the criterion is to hring the state to zero after perturhations in the initial
condition. In the pole-placement formulation, the rate of decay of the state is
given indirectly by specifying the poles of the closed-loop system. Servo problems
will be dealt with by requiring that the signal transmission from command
signal to process variables is close to a behavior specified by a model.

Admissible controls., Because feedback solutions are desired, it is nec-
essary to specify the information available for generating the control signal.
When the properties of the system are specified by its closed-loop peles, it is
natural to require that the feedback is linear. Several different versions will be
discussed. We will start with the ease when all state variables are measured

directly without error. The admissible controls are then a linear feedback of the
form

u(k) = —Lx(k) (4.3)

This assumption will be relaxed later in Sec. 4.5, where it will be assumed that
only outputs are available for control. For discrete-time systems it is also of
interest to consider the case when there are delays in the measurements.

Design parameters. In the formal specification of the problem, the de-
sign parameters are the sampling period and the desired closed-loop poles. It
18 rare that a user of a control system can give specifications in terms of these
parameters. Therefore, the designer must be able to relate the design parame-
ters to quantities that are more meaningful to the user. For this purpose, it is
often useful to consider the time histories of the state variables and the control
variables. It is particularly useful to discuss the trade-off between the magni-

tude of the control signals and the speed at which the system recovers from a
disturbance.
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4.3 Regulation by State Feedback

A simple regulation problem is discussed in this section, It is assumed that the
system is described by Eq. (4.1). Initially we also assume that the sampling
period is given so that the process can be desenibed by the discrete-time system
{4.2}. Tbe disturbances are assumed perturbations in the initial state of the
system. The purpose is to find a linear feedback law of the form (4.3) so that the
closed-loop system has a specified characteristic equation. This will guarantee
that the disturbances decay in a specified way.

This problem may seem overly simplistic as a repregentation of a control-
system design problem. The solution is, however, very simple and the problem
can be generalized successively to make assumptions more and more realistic.

An Example

To introduce the design method and to illustrate the influence of the design
parameters, a special case is first discussed.

Example 4.1 Pole placement for the double-integrator plant
By using the sampling-time convention, the sampled double-integrator plant is

described by
1 & h*f2
x(k+1}2(0 1]x(k}+[ }: ]u{k}

A general linear feedback can be described by
L= "-!1.'(1 - IQ_IQ_

With this feedbhack, the closed-loop system becomes

A

x(k+1) = [

1-4R%2 h—1.h%/2
1A%} L (k)
Lk 1-5Lh

The characteristic equation of the closed-loop system is

9 2
22+(£—1;—+12h—2)z+(!-1-;4—f2h+1) =0

Assume that the desired characteristic equation is
ZHpzip =0
This leads to the following linear equations for f; and I;:

J 2
—]2?1— thh-2=p
{1h?

—2——zgh+1 = s
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These equations have the solution

1
L= ] (1+p1 + )
(4.4)

1
L= ﬁ(3+P1"P2}

In this example it is always possible to find controller parameters that give an
arbitrary characteristic equation of the closed-loop system. The linear system of
equations for /; and 5 has a solution for all values of p; and p;. ]

The General Casa

The solution of the pole-placement problem now will be given for systems with
one input signal. Let the system be described by (4.2) and let the characteristic
polynomial of the matrix @ be

1

2"+a2" ++a,

Assume that the system (4.2) is reachable. It then can be transformed to reach-
able eanonical form by changing state variables through the transformation
z = Tx, and the transformed state equation becomes

z(k+ 1) = ®z(k) + Tu(k) (4.5)
where
[(—a) =03 -+ ~—Gp-1 =—Gp) 1 W
1 | 0 0 0
b= 0 1 0 0 Ir=1}0 (4.6)
[ O o - 1 0 ) 0y

The coefficients of the characteristic polynomial that determines the closed-loop

poles appear explicitly in this representation. It is also easy to see how the
characteristic polynomial is modified by state feedback. It follows from (4.6)
that the feedback law

uz—f-z:—[Pl—fh p2—ag - Pn-ﬂn]i’! (4.7)
gives a closed-loop system with the characteristic polynomial
P2)=2"+pi2"' + - +p, (4.8)

To find the solution to the original problem we simply have to transform back
to the original coordinates. This gives

u=-Lz=-LTx=-Lx (4.9)
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It remains to determine the transformation matrix T. A simple way of deter-

mining this matrix is based on a property of the reachability matrices. Let W,
be the reachability matrix of the system {4.2), that is,

W.=r or . ovir) (4.10)

and let W, be the reachability matrix of the system (4.5). The matrices are
related through W, = TW,.. The reachability matrix thus transforms in the
same way as the coordinates. It thus follows that

T=WW! (4.11)

and a straightforward caleulation gives

1 al PR an-l

e e

Wchlz e . [412)
0o 0 - 1

Compare with Example 3.9. Summarizing, we find that the solution to the de-
sign problem is given by a linear state feedback with the gain

L= [P1"f11 pp—oy pn—an]WcWe'l (4.13)

This equation can be expressed in a slightly different way by the following
result.

THEOREM 4.1 POLE-PLACEMENT USING STATE FEEDBACK  Consider the sys-
tern of (4.2). Assume that there is only one input signal. If the system is reach-
able there exists a linear feedback that gives a closed-loop system with the
characteristic P(z). The feedback is given by

u(k) = —Lx(k)
with

L= [Pl—al P2—-az - Pn—an]W.:W{l
= [0 0 1) WP(@) w14

where W, and W, are the reachability matrices of the systems (4.2) and {4.5),
respectively.
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Proof.  To prove the result we first observe that
P@) =" +pd" 4 4 pd = (o —a)® 4+ (pn - an)]

where @ is the system matrix of the transformed system (4.5). The second
equality is obtained by using the Cayley-Hamilton theorem. Introduce e' as the

row vector that has all elements equal to zero except the ith element, which
is 1. We have

¢d = ¢t
It then follows from Eq. (4.7) that L = ¢"P(®) and we get
L =LT = ¢"P(TOT 1T = &'TP(d} = ' W, W, ' P(d)
It follows from (4.12) that e"W.! = ¢” and Eq. (4.14) is obtained.

Kemark 1. Equation (4.14) is called Ackermann’s formula.

Remark 2. Notice that the pole-placement problem can be formulated as
the following abstract problem. Given matrices & and T, find a matrix L such
that the matrix ® - I'L has prescribed eigenvalues.

Remark 3. Notice that it follows from (4.11) and (4.12) that

T1= [r er+aT - O+ g™ 24 +an_1T] (4.15)

|
The theorem is illustrated by an example,

Example 42 Double integrator

Consider the double-integrator plant in Example 4.1. Assume that the desired
characteristic polynomial is given by P(z) = 2% 4 pyz + po. We have

R*/2 8h%/2
W= (roor) - [0
and
_— [-1;;12 15/h ]
‘ 1/ ~05/h
The characteristic polynomial of the matrix @ is 22 — 22 + 1. Hence

1 + 2h
P(®) = &% 4 p,@ + pyl = [ + 014 pa +pih ]
¢ l+p+p;

Ackermann’s formula {4.14} now gives

L= [o 1 ] WoIP(d) = [ 1/ -0.5/h] P(®)
- [1+p1 TPy 34+pi-py ]
h? 2h
which is the same result obtained by the direct calculation in Example 4.1. "

To solve the pole-placement problem it was assumed that the system 1s reach-
able. The following example illustrates what happens when this is not the case.
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Example 4.3 An unreachable system

The system

e +1) = [0{’)5 0?3] x(k) + [;] ulk)

ie not reachakble because
det W, dt[l 0'5] 0
= (e =
e 0 0
The control law & = -l;2; — lsx; gives a closed-loop system with the characteristic
equation
(z-05+{){z-03)=0

The open-loop pole in 0.5 can be changed to an arbitrary value by changing the
parameter /;. The second pole (.3, which corresponds to the nonrcachable state,
cannot be changed. .

Practical Aspects

It is easy to solve the pole-placement design problem explicitly. Notice that
reachability is a necessary and sufficient condition for solving the problem. To
apply the pole-placement design method in practice, it is necessary to under-
stand how the properties of the closed-loop system are influenced by the design
parameters—that is, the closed-loop poles and the sampling period. This is il-
lustrated by an example.

Example 4.4 Choice of design parameters

Consider the double-integrator plant. Instead of using the parameters p, and
p2 of the characteristic equation we will introduce two other parameters, which
have a more direct physical interpretation. If the desired discrete-time system is
obtained by sampling a second-order system with the characteristic polynomial
§° + 2L ws + @ we find that

P = —2e75% cos (wh\/l——ﬁ)

py = %

where w is the natural frequency and ¢ is the damping (compare with Exam-
ple 2.16). The parameter { influences the relative damping of the response and @
influences the response speed. To discuss the magnitude of the control signal, it is
assumed that the system has an initial position x, and an initial velocity vy. The
initial value of the control signal is then

H(O) = —I1Ig - Igl)n

If the sampling period is short, then the expressions for p, and p, can be approxi-
mated using series expansion. The following approximation is then obteined:

u(0) = -1y + 2L awy



Sec. 4.3 Regulation by State Feedback 129

Input

=
L

T,
!

!

I

I

|

|

I

i

|

Input
=

0 5] 10 15 0 ) 10 15
Time Time

Figure 4.2 Responses of the elosed-loop system in Example 4.4. The initjal
condition is ¥7(0) = [1 1], and the parameter values are wh = 0.44 and
¢ = 0.707. The outputs for sampling periods © = 0.5 (dashed-dotted), w = 1
(dashed), and @ = 2 (solid) are shown in (a), and the correaponding control
signals are shown in (b), (¢), and {d), respectively.

The expression shows that the magnitude of the control signal increases with
inereasing . Thus an increase in the speed of the response of the system will
require an increase in the control signals, If the bounds on the control signal and
typical disturbances are known, it is possihle to determine reasonable values of w.
The consequences of different choices of @ when x; = 1 and vy = 1 are illustrated
in Fig. 4.2. A larger @ gives a faster system but also larger control signals.

The selection of sampling perieds for open-loop systems was discussed in
Sec. 2.9. It was suggested that the sampling period can be chosen such that

N.om4-10

where N, is the number of samples per rise time. Applying the same rule to closed-
loop systems we find that the sampling period should be related to the desired

behavior of the closed-loop system. It is convenient to introduce the parameter N
defined by

2r

oW e (4.16)

This parameter gives the number of samples per peried of dominating mode of
the closed-loop system, Figure 4.3 shows the transient of the system for different
values of N. There are small differences between the responses for N > 10. The
responses obtained for N' > 20 are indistinguishable in the graph.

Figure 4.3 shows the responze to an initial condition when an impulse distur-
hance has entered the system just before the sampling, In reality the disturbances
of course may enter the system at any time. With a long sampling period it will

N
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Figure 4.3 Responses of the closed-loop system in Example 4.4, The ini-
tial condition is x7{0) = {1 1], and the parameter values are @ = 1 and
{ = 0.707. The outputs obtained for N = 5 ({dashed-dotted), N = 10
(dashed), and N = 20 (s0lid) are shown in (a), and the corresponding control
signals are shown in (b), (¢), and {d}, respectively.

then take a long time before the disturbance is detected. To illustrate this we will
repeat the simulation in Fig. 4.3 but it will be assumed that the disturbance comes
just after a sampling. This implies that the disturbance acts for a full sampling
period before it is detected. Figure 4.4 shows the response of the system when the
system is disturbed immediately after the sampling, that is, when x(0+) = [1 1]7.
Notice the significant difference compared with Fig. 4.3. In this case the results for
N = 20 are much better than the results for N = 10. It is reasonable to choose N
in the range N ~ 25 to 75. This corresponds towk = 01260 0.36 for { = 0.707. =

These examples show that even if we take a discrete-system peint of view by only
considering what happens at the sampling instants, it is necessary to keep the
time-varying nature of sampled systems in mind to make the correct assessment
of the results. Particular care should be given to simulations used to assess the
performance of the systems. To investigate the effect of the sampling period it is
useful to consider cases in which disturbances are introduced both immediately
before and immediately after the sampling instants. The differences can be quite
noticeable, as is indicated by a comparison of Figs. 4.3 and 4.4. Based on the
simulations performed we suggest that the sampling period be chosen as

wh =011t006 (4.17)

where @ is the desired natural frequency of the closed-Joop system. Longer
sampling periods can be used in those rare cases in which the sampling can be
synchronized to the disturbances.
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Figure 4.4 Responses of the closed-loop system in Example 4.4, The ini-
tial condition is x"(0+) = [1 1), and the parameter values are w = 1
and ¢ = 0.707. The outputs obtained for N = 5 (dashed-dotted), N = 10
(dashed), and N = 20 {solid) are shown in (a}, and the control signals are
shown in (b}, {c), and (d), respectively. The disturhance is immediately after
the first samphing. Notice the significant difference compared to Fig. 4.3.

Deadbeat Control

If the desired poles are all chosen to be at the origin, the characteristic polyno-
mial of the closed-leop system becomes

P(z)=2"

The Cayley-Hamilton theorem then implies that the system matrix ¢, = ®—TL
of the clesed-loop system satisfies

O =0

4

This strategy has the property that it will drive all the states to zero in at most
n steps after an impulse disturbance in the process state. The control strategy
is called deadbeat control. Compare with Example 1.3 in Chapter 1.

It follews from Ackermann’s formula, Eq. (4.14), that the deadbeat strategy
is given by

L= [o 0 1]W;1¢D” (4.18)

If the matrix @ is invertible we get

-1
L={o - 0 1] (e omir .. or ) (4.19)
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Table 4.1 Control signals for deadbeat control of a double inte-
grator with (0} = col [1, 1] and different sampling periods.

h 100 10 1 0.1 0.01

w(0) -00151 -0.16 -25 -115 -10,150
u(h) 00051 006 15 105 10,050

In deadbeat control there is only one design parameter—the sampling pe-
riod. Because the error goes to zera in at most n sampling periods, the settling
time is at most nh. The settling time is thus proportional to the sampling pe-
riod £. The sampling period also influences the magnitude of the control signal,
which increases drastically with decreasing sampling period. This fact has given
the deadbeat control an undeservedly bad reputation. It is thus important to
choose the sampling period carefully when using deadbeat control. The dead-
beat strategy is unique to sampled-data systems. There i8 no correspending
feature for continuous-time systems. The following example demonstrates some
properties of deadbeat control,

Example 4.5 Deadbeat control of a double integrator

Consider a double-integrator plant. It follows from Eq. (4.19) that the deadbeat
control strategy is given by u = —l,x; — lpx; with

1 3
I]‘:— £2="2"E

If the process has the initial state x{0) = col |xo, 2], it follows that

Xy tg

u(0)=—ﬂﬂi—ﬁ u(h)=ﬁ+§_}_l

Notice that the magnitude of the control signal increases rapidly with decreasing
sampling period. Also notice that for small £, the control signals #(0) and u(h)
have opposite signs and approximately equal magnitude. The desired effect is thus
obtained as & result of subtracting two large numbers. This is further llustrated
in Table 4.1, which gives the control signals for xy = 1 and vy = 1. It therefore
can be expected that the deadbeat strategy is quite sensitive for amall sampling
periods. The cutput and the control signals are shown in Fig. 4.5. In this case the
first sampling is at ¢ = 04 The disturbance thus cccurs immediately before the
sampling. .

More General Disturbances

It is highly desirable to handle other disturbances than impulses or equivalently
perturbed initial states. One way to do this is to consider disturbances that are
generated by sending impulses to dynamic systems. In this way it is possible
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Figure 4.5 Responses of the closed-loop system in Example 4.5 with a dead-

beat controller. The initial condition is x7(0) =
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and the control signals obtained in the different cases are shown in (b), (¢),
and (d}, respectively.
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to capture many different types of disturbances such as steps and sinuscids. To
be specific, assume that the system is described by

dx
dt

=Ax+Bu+v

where v is a disturbance described by

dt

= A,

v = Cow

with given initial conditions. The matrix A,, typically has zeros on the imaginary
axis or in the right half plane. A common case is that the disturbance v is a

constant, This is captured hy A, = 0; another case is sinusoidal disturbances,
which correspond to

Am-_'[

0
— iy

&
0

|

It is assumed that w can be measured. This assumption will be relaxed later.
We introduce the augmented state vector

|

x

w

|
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and we find that the system can be described by

ile)-(ow) () (o)e
dt \w 0 A, w 0

Thus we have a problem of the same form as the basic pole-placement problem.
There is, however, one important difference: The system of (4.20) is not com-
pletely reachable. The poles associated with the description of the disturbance—
that is, the eigenvalues of A, —¢annot be influenced by the feedback. This is
very natural because the disturbances are exogenous variables that are not in-

fluenced by the control. Compare with Example 4.3. Sampling the system gives
the following discrete-time system:

xe+1)) (@ D x(k) r
o) = (6 o) (o) + o) v
The general linear-state feadback is given by
u(k) = ~Lx({k) - Lyw(k) (4.21)

This control law gives the following closed-loop system:

x{k + 1) = (@ - TL)x(k) + (D, - T L, )w(k) 499
wik + 1) = ® (k) (4.22)
which tells how the closed-loop system is influenced by the control. Notice that
the contral law 1n (4,21) can be interpreted as a combination of a feedback term
Lz and a feedforward term L,w from the measured disturbances. If the pair
(¢, ') is reachable, the matrix L can be chosen so that the matrix ® — I'L has
prescribed eigenvalues. This would ensure that the term of the solution that is
caused by the initial values decays properly. The matrix &, cannot be influenced
by feedback. The effect of the disturbance on the vector x can, however, be
reduced by a proper choice of the vector L,,, which should be chosen so that

the matrix ¢,,, - 'L, is small. In some cases it is possible to make this matrix
zero. We illustrate this by an example.

Example 4.6 Constant input disturbance

Congider the situation with a constant disturbance that acts on the process inpaut,

The matrix @, then becomes the 1dentity and we have ®,, = I'. The system is
described hy

x(k+ k) = (& - TL)x(k) + T(1 - L, (k)
wik+ h) = wik)

The effect of the disturbance v on x is thus eliminated by choosing L, = 1. ¥
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Compulational Aspects

The state feedback can be determined by the method used in Example 4.1 for
low-order systems. The procedure is simply to introduce a general state feedback
with unknown coefficients, determine the characteristic polynomial, and equate
it with the desired characteristic polynomial. A set of linear equations for the
feedback coefficients is then obtained. The equations can be always solved if the
system is reachable. It is also possible to use Ackermann’s formula, Eq. (4.14),
to calculate the state feedback. This formula is, however, not well suited for
very precise numerical calculations. As a rule, any method using computation
of powers of matrices should be avoided. There are other ways to compute the
feedback matrix L that are better for numerical caleulations. These methods
also work for multivariable systems. In MATLAE® there is a command place for
solving the problem that is based on sound numerical methods,

4.4 Observers

It is unrealistic to assume that all states of a system can be measured, partic-
ularly if disturbances are part of the state as in Eq. {4.20). It is therefore of
interest to determine the states of a system from available measurements and
a model. It is assumed that the system is described by the sampled mode}

x{k + 1) = dx(k) + Tulk)

y(k) = Cxlh) 4.25)

The problem is thus to calculate or reconstruct the state x(k) from input and
output sequences y{k), y(k - 1), ..., u{k), u(k 1), ... is considered next. In
Sec. 3.4 it was shown that this is possible if the system is observable.

Direct Calculation of the State Variables

The problem was solved in Sec. 3.4 for the special case when there are no inputs.
We will now extend this solution slightly and it will be shown that the state can
be computed directly from past inputs and outputs. For simplicity it is assumed
that there is only one output. The output y(k) = Cx{k) obtained at sampling
instant % gives one linear equation for determining the state variable, Using
information from n different sampling instants b, k—1,..., k—n 41 gives the
following linear equations.

yh-n+1)=Cx(k—n+1)
ylk~n+2)=Chdx(k-n+1)+Clulk—n+1)

y(&)=CO" x(k—n+ 1)+ CO"Tulk—n+ 1)+ + Cluk - 1)
(4.24)
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By intreducing the vectors I/,_; and Y,

y(k—n+1) w(k—n+1}
y{k—n+2) u(k—n+2)
Y, = : U1 = .
y(k) u{k-1)

whose components are past inputs and outputs, Eq. (4.24) can be written as
Vi=Wexlk—n+1)+ W, Uy

where the matrices W, and W, are given by

(€ ) (0 0

Cco Ccr 0 0

W,=| C®* w,=| Cor cr 0
\, Cd’ﬂ_l J A, Cfb“"zr C‘Dn_ar e Cr F.

The matrix W, is invertible if the system is observable; we can then solve for
#(k — n + 1) and ohtain

I(k -n+ 1) = W;lYk - WJIWuUk_l

The state has thus been obtained in terms of future outputs and measurements.
Repeated use of Eq. (4.23) gives

x(R)=9""2(k—n+ 1) + D" Tu(k—n+1)+---+Tu(k-1)
and we find that
x(k) =AY, - B, Uy, (4.25)
where

A, =0"lwl B, = [cbﬂ—ﬁr ¢ﬂ-3r...r] o'WW, (4.26)

The state vector x(%) is thus a linear combination of y(k), ¥(k—1),..., y(k—n+1)
and u(k ~1), u{k—2),..., u(k —n + 1). We illustrate by an example.
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Example 4.7 Double integrator
For the double integrator we have

¢=[; "1"] r=[h2}:2] c=(1 0]

y(k) = x,(k)

¥k) = x (k- 1) + hxo{k - 1) + %u(k— 1)

2

=ylk-1+ h(:c-z[k) - hu(k}) + %H(k -1

Henee

Selving these equations with respect to x; and x; we get

k) = y(k)

iy o Tk

h g ulk-1)

The first component x; is equal to the measured value and the second component
%o is obtained by taking differences of the output and adding a fraction of the
control signal, ]

Reconstruction Using a Dynamic System

Let n be the order of the system. The direct ealeulation we have just performed
gives the state after at most n measurements of input-output pairs. The disad-
vantage of the method is that it may be sensitive to disturbances; the operations
done on the data are typically to form differences, as illustrated in Example 4.7,
It is therefore useful to have other alternatives that are less sensitive to noise.

Consider the system (4.23). Assume that the state x is to he approximated
by the state x of the model

#(k+ 1) = DER) + Tulk) (4.27)

which has the same input as the system of (4.23). If the model is perfect in the
sense that the elements of the matrices ® and T are identical to those of the
system (4.23) and if the initial conditions are the same, then the state % of the
model of (4.27) will he identical to the state x of the true system in (4.23). If
the initial conditions are different, then % will converge to x only if the system
(4.27) is asymptoticalty stable.

Reconstruction by Eq. (4.27} gives the state as a function of past inpute.
The reconstruction can be improved by also using the measured outputs. This
can he done by introducing a feedback from the difference between the measured
and estimated outputs, y — C£. Hence

fk+1]k) = @E(k | k- 1) + Tu(k) + K(y(k) ~Cik| k- 1)) (4.28)
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where K is a gain matrix. The notation x{k + 1 | £} is used to indicate that it
is an estimate of x(k + 1) based on measurements available at time k, that is,
a one-step prediction. Notice that the feedback term K([v{k) - Ci(k | k- 1)]
gives no contribution if the output predicted by the model agrees exactly with

the measurements. To determine the matrix X we introduce the reconstruction
erTor

fFrx-% (4.29)

Subtraction of {4.28) from (4.23) gives

Be+11k) :@i[Mk—l)—K(}r{k)— Ci(klk—l)) = (@ - KC)#k|k-1)
(4.30)

Hence if K is chusen so that the system (4.30) is asymptotically stable, the error
% will always converge to zero. By introducing a feedback from the measure-
ments in the reconstruction, it is thus possible to make the error go to zero even
if the system of {4.23} is unstable. The system in (4.28) is called an observer for
the system of (4.23) because it produces the state of the system from measure-
ments of inputs and outputs. It now remains to find a suitable way to choose
the matrix K so that the system (4.28) is stable. Given the matrices ® and C,
the problem is to find a matrix K such that the matrix @ ~ K C has prescrihed
eigenvalues. Because a matrix and its transpose have the same eigenvalues,
the prohlem is the same as finding a matrix K7 such that &7 - CTKT has
prescribed eigenvalues. However, this problem was seived in Sec. 4.3 in con-
nection with the pole-placement problem; see Theorem 4.1. If those results are
translated, we find then that the problem can be solved if the matrix

WD = (cToeTcT .. (oryeT)

has full rank. Notice that W, is the observability matrix for the system of (4.23).
The result can be expressed by the following.

THEOREM 4.2 (OBSERVER DYNAMICS  Consider the discrete system given
by Eq. (4.23). Let P(z) be a polynomial of degree n, where n is the order of
the system. Assuming that the system is completely observable, then there

exists a matrix K such that the matrix ® — K C of the observer (4.28) has the
characteristic polynomial P(z). C

Computing the Observer Gain

The determination of the matrix K in the observer (4.28) is the same mathe-
matical problem as the problem of determining the feedback matrix I in the
pole-placement problem. The practical aspects are also closely related. The selec-
tion of the observer poles is a compromise between sensitivity to measurement
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errors and rapid recovery of initial errors. A fast observer will converge quickly,
but it will also be sensitive to measurement errors.

Determining the matrix K is the dual of finding the gain matrix L for pole
placement by state feedback, This problem is solved by Ackermann’s formula,
Theorem 4.1. By using the relations

LsKT W.ow' oo

1t follows from Equation (4.13) that K is given by

KT - [o 0 1] VAR

or
T
K:P(cb)w;l[o 0 1] (4.31)

The characteristic polynomial of ® — KC is then P(z). The duality with pole

placement also implies that K is especially simple to determine if the system
18 in obgervable form.

Notice, however, that Ackermann’s formula is poorly conditioned numeri-
cally. The MatLAB® procedure place is based on better numerical methods. This
procedure will also give the observer gain for systems with many measurements.

A Deadbeat Observer

If the observer gain K is chosen so that the matrix ® ~ KC has all eigenvalues
zero, the observer is ealled a deadbeat observer. This observer has the property
that the observer error goes to zero in finite time, actually in at most n steps,
where n is the order of the system. The deadbeat observer is equivalent to the

observer given by Eq. (4.25), which was obtained by a direct caleulation of the
state variables.

We illustrate design of an observer by determining an observer for the
double integrator.

Example 4.8 Full-order observer for the double integrator
Consider a double-integrator plant. The matrix & - KC is given by

ooomre= (3] (1) o)+ (150

Thus the characteristic equation is given by
22—(2—k1]2+1—'k1+k2h = {
Let the desired characteristic equation be

ZHpiztpy =0
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The following equations are obtained:

2=k =-p
1 — k] + kgh =y
These linear equations give
k] =2 +pl

ky = (1+py+ pa)/h
The deadbeat observer is obtained by setting p; = p; = 0. This gives

k1=2
ky = 1/h

and the observer becomes
Bk + 1) = 51(8) + hia(h) + 2(5(8) — 2a(h))
. . 1 .
ok +1) = &glk) + 1 (k)= 2 (k)
Straightforward calculations give

f1(k+1) = 2y(k) - y(k - 1)

y{k) — y(k-1)

n(k+1)=
J‘:g( ) h 2

An Alternative Observer

There are many variations of the observer given by Eq, (4.28). The observer has
a delay, because (% | & — 1} depends only on measurements up to time k — 1.
The following ohserver can be used to avoid the delay:

k()= 0&(k—1)k-1) + Tu(k-1)
+K[y{k) - C(Ql:‘c(k~ 1|k —1)+Tu(h— 1))] (432)
= (I =KC) (®#{(h=1]h~1) + Tu(k - 1)} + Ky(k)
The reconstruction error when using this observer is given by
F(k | k) = x(k) — (k| B) = (@ —KCO)#(k—1 |k —1)

This equation is similar to (4.30), and from the definition of the chservability
matrix W,, it is found that the pair (b, C®) is observable if the pair (®, C) is
observable. This implies that ¢ — KC® can be given arbitrary eigenvalues by
selecting K. Further,

y(k) = Ci(k | k) = Ci(k| k) = (I - CK)CO#(k~1) h—1)
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If the system has p outputs, then [ - CK is a p x p matrix; X may be chosen
such that CK = I if rank (C) = p. This implies that Ci(k | k) = y(k), which
means that the output of the system is estimated without error. This will make
it possible to eliminate p equations from {4.32), and the order of the observer

will be reduced. Reduced-order observers of this type are called Luenberger
observers.

Example 4.9 Reduced-order ohserver for the double integrator
The observer (4.32) applied to the double integrator gives the equations

o (l-k RA-R)) L
x(k|k)_[ e l_hkz]x(k 11k-1)
(1= kp)htf2 k
" [h{l—hkzﬂ)] wE-1)v [kz] Y

If I - CK = 0—that is, if k; = 1—then the first equation is reduced to
i1(k| k) = y(k)

The reduced-order observer is now given by the second equation, which can be
simplified to

Bk R) = (1 hbo)dalk—1|k - 1)
N kz(y(k) — (k- 1)) +h(1— Bko/Dulk - 1)

By choosing 43, the reduced-order observer can be given an arbitrary eigenvalue.
For instance, if 2, = 1/h, the deadbeat response, then the same result is obtained
as when making the direct calculation in Example 4.7. .

4.5 Output Feedback

In Sec. 4.3 the pole-placement problem was solved in the special case when all
state variables are measured directly. In Sec. 4.4 the problem of finding the
states from the system output was solved. It is now natural to combine the
results of these sections to obtain a solution to the pole-placement problem for
the case of output feedback. Let the system be described by

x(k + 1) = dxtk) + Tu(k)
(k) = Cx{k) 4.83)

A linear feedback law relating 1 to y such that the closed-loop system has
given poles is desired. The disturbances are first assumed to he impulses or
equivalently unknown initial states.
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x u ¥
-L =1 Process

Observer

Figure 4.6 Block diagram of a controller obtained by combining state feed-
back with an ohserver.

The admissible control law is such that u(k) is a function of y(k - 1),
yik~2),...,ulk-1), u(k-2),.... If all state variables are measured, it 18
shown in Sec. 4.3 that the feedback

u{k) = —Lx{k)

gives the desired poles. When the state cannot be measured, it seems intuitively
reasonahle to use the control law

u(k) = -Li(k|k-1) (4.34)
where £ is obtained from the observer

£+ 1] k) = @i(k |k — 1)+ Tulk) + K(y[k] ~ Cifk| k- 1)) (4.35)

Thus the feedback is a dynamic system of order r. Notice that the dynamics are
due to the dynamics of the chserver. A block diagram of the feedback is shown
in Fig. 4.6.

Analysis of the Closed-Loop System
The closed-loop system has desirable properties. To show this, introduce

f=x-1

It follows from Eqs. (4.33) and (4.34) that the closed-loop system can be de-
scribed by the equations

xk+1) = (®-TL)x(k)+TLx{k| k- 1) 436
b+ 1k)=(®@-KCO)i(k|k-1) (4.36)
The closed-loop system has order 2n. The eigenvalues of the closed-loop sys-
tem are the eigenvalues of the matrices ® - UL and @ — KC. Notice that the
eigenvalues of @ - T'L are the desired closed-loop poles obtained by solving the

pole-placement problem in Sec. 4.3 and the eigenvalues of @ — K C are the poles
of the observer given in Sec. 4.4.
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(a) 5

Position

(b)

Position
[=idr }
Velocity
<

0 51 10 0 5 10
Time Time

Figure 4.7 Control of the double-integrator plant using estimated states.
The states and the estimated states are sbown for a (a) second-order ob-
server; (b) reduced-order cbserver.

This solution to the pole-placement problem has many nice symmetries.
The solution to the state feedback and the observer are dual problems. The
same numerical algorithm can be used to find the feedback gain L and the
observer gain K. It is also attractive that the solution of the full problem can be
split into two smaller problems. The separation of the problem is very useful.
It also justifies that the closed-loop poles are separated into two groups, one is
associated with the state feedback and the other with the observer.

Notice that the observer contains a model of the process internally. This is
a special case of the internal-mode! principle, which says that a good controller
contains a model of the controlled system.

The controller can also be viewed as a hlack box that generates the control
signal from the process output. The controller described by (4.34) and (4.35) can
be represented by the nth-order pulse-transfer function from measured output
¥ to control signal u:

Hz)=-Lzl-0+TL+KC)'K (4.37)

Example 410 Output feedback of the double integrator

Consider the double-integrator plant. Assume that the feedback vector L is deter-
mined as in Examples 4.2 and 4.4 with the closed-loop natural frequency w = 1,
the damping { = 0.7, and h = 0.44. This gives L = [0.73, 1.21]. First assume
that the observer is designed as in Exarmple 4.8 with the poles of the observer in
z = 0.75. Figure 4.7(a) shows the true and the estimated states when the esti-
mated states are used in the control law. Figure 4.7(b) shows the states in full
lines and the estimate of the second state in dots when the reduced-order observer
in Example 4.9 1s used. The observer pole is in 2 = 0.75. n
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Extensions

The problem discussed can be extended in many different directions. The con-
troller given by Eq. (4.34) has a time delay of one sampling pericd. The reason
for this is that the feedback is based on an observer that gives x(k | 2~ 1).It is
possible to obtain a controller without extra delays by using instead the control
law

u(k) = —Li(k | k) (4.38)

where 2{k | k) is ohtained from the observer given by Eq. (4.32). The properties
of the system obtained is analogous to the case that has just been investi-
gated, so the details are left as exercises. See the problem section at the end of
this chapter. Notice, however, that the feedback matrix L does not have to be
changed when we change the observer. This is a very nice consequence of the
separation of the problem into a state feedback and an observer.

More Realistic Disturbance Models

The controller based on a state feedback and an observer is interesting but it
is still not very useful in practice. The reason is that the assumption about the
disturbances made in Sec. 4.3 has been too simplistic. To generalize the problem
it is therefore assumed that the system is described by

dx
a—f-:Ax+Bu+v
y=Cx

where v i3 a disturbance acting on the process. The disturbance », which typi-
cally has much energy at low frequencies, is modeled as

diw
@ A
v =Cpw

The matrix A, typically has eigenvalues at the origin or on the imaginary axis.
We now introduce the augmented state vector

(o)
=
w
The augmented system c¢an be described by
d ( x ] _ [A C. x B
di lw)] L0 4, w ¥ 0 ] ¢

= (e o) ;)

(4.39)
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Compare with (4.20). Sampling this system gives the following discrete-time

system:
wen) (o 37) L)+ (o) <@

(k)
v={c o] [im

The disturbance states w are not reachable from the centrol signal but the
complete state is observable from the output if the system (4.33) is observable.
The control law is a linear feedback from all state variables, that is,

u(k) = —Li(k)— Lyti(k) (4.40)

where z and i are obtained from the observer

(S0 (375 () () ()
. e(k) = y(k) - C2(k) (442)

Notice that the state of the observer is composed of estimates of the states of
the process and the disturbances and that the control signal contains a feedback
from the estimated disturbance state 1.

The closed-loop system is described by

x(k +1) = (& = TLyx(k) + (®r, — TLyp)w - TLE(R) ~ TLpi
wik + 1) = Guw(k)

Bk +1) = (® - KC)E(R) + (k)

Bk + 1) = Oy i(k) - K,Ci(k)

(4.43)

Notice that the disturbance state w is observable but not reachable. The equa-
tions for the closed-loop system give useful insight into the behavior of the
system. The matrix L ensures tbat the state x goes to zero at the desired rate
after a disturbance. A proper choice of the gain L, reduces the effect of the
disturbance v on the system by feedforward from the estimated disturbances .
This feedforward control action is particularly effective if the matrix &, - TL,
can be made equal to zero. The observer gaing X and K, influence the rate at
which the estimation errors go to zero. A block diagram of the system is shown

in Fig. 4.8,
Integral Action

The special case of a constant but unknown disturbance acting on the process
input is very common. It leads to a solution where the controller has integral
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b3 | Process

)

Ohserver

Figure 4.8 Block diagram of a controller with state feedback from esti-
mated disturbance states,

action, To see this consider the case of a system with a single input and a
constant disturbance at the process input. In this case we have w = v and
@, = 1. In addition if the disturbance actz on the process input we get ¢, = I.
It then follows from Eq. (4.43) that L,, = 1 gives perfect cancellation of the load
disturhance, Assuming that there are ne measurement errors the controller
described by Eqs. (4.40) to (4.42) becomes

u(k) = -La(k) - Lyo(k) = ~Li(k) ~ o (k)

ik +1) = ®ilk) + F( bk} + u(kJ) + Ke(k) (4.44)
bk + 1) = 6(k} + Kpe(k)
e(k) = y(k) - Cx(k)

Notice that the estimation of the disturbance is obtained simply by integrating
the error of the state estimate. A block diagram of this controller is shown in
Fig. 4.9. The diagram shows clearly how the disturbance v is reduced by its
estimate 0, which is obtained by integrating the observer error. There is an
integrator in the disturbance observer. In Fig. 4.2 there is, however, feedback

around the integrator. To see more clearty that the mntmller has integral action
Eq. {4.44) is rewritten as

u(k) = —LE(k) - 0(k)
#(k+1) = (® -TL)&(k)+ K(y(k) - cseua))
B(k +1) = 6(k) + K (y(k) - c:e(k))

Notice that the estimate # of the process state is the same as in the case when
there are no disturbances; compare with Eq. (4.28). We now introduce

Hyz)= (2 -¢ +TL+KC) 'K (4.45)
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Process

£ |Disturbance
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State
Observer

Figure 4.9 Block diagram of a controller with state feedback and an ob-

server with integral action. The pulse-transfer function of the disturbance
observer is K,./(z — 1).

LH_(z) is the transfer function of the controller for a system with state feedback
given by Eq. (4.37). The input-output relation of the controller (4.44) is then

1

Ulz)=—|LH,(2) +

- K. (1- CHx{z))] Y(z) (4.46)

The expression shows that the controller has integral action. Notice that integral
action is obtained through the observer that estimates a constant disturbance
acting on the process input, We will illustrate by an example.

Example 4.11 Output feedback with integral action of the double integrator

Consider the double-integrator plant. Assume that the feedback vector L is deter-
mined as in Examples 4.2 and 4.4 with the closed-loop natural frequency @ = 1,
the damping ¢ = 0.7, and # = 0.44. This gives L = [0.73, 1.21}. The initial vale
of the state i3 2(0) = [1 1)7. The controller and the observer are implemented
as in (4.44). The three ubserver poles are placed in z = 0.75. Figure 4.10 shows
the behavior of the system. The response is now slower and more oscillatory than
without the estimated disturbance as in Fig. 4.7, It is, however, clearly seen that

the controller now has integral action and can eliminate constant input-load dis-
turbances. a

4.6 The Servo Problem

Only the regulator problem has been discussed so far. The criteria have been
to eliminate impulse disturbances and to drive the states of the system to zero.
The serve problem is another important prototype prohlem. For that problem
the objective is to make the states and the outputs of the system respond to
command signals in a specified way.
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Figure 4,10 Simulation of the system in Example 4.11. (a) Output ¥, (b)
input ©, and (c) disturbance v (dashed) and estimated disturbance J (solid).

A Naijve Approach

A simpie way to obtain the desired response to command signals is to replace
the regular state feedback u(k) = —L#(k) by

u(k) = —LE(k) + Louo (k) (447)

where i, is the command signal. To investigate the response of such a controller
we consider the closed-loop system that is described by

x(k +1) = (Dx( )+ Tu(k)
y(k) = Cx(k)
Bk + 1) = DE(k) + Tu(k)+ ( (k) - Ci(k))
u(k) = —LE(k) + Lou,(k)

(4.48)

A block diagram of the system is shown in Fig. 4.11. Eliminating » and intro-
ducing the estimation error # = x — £ we find that the closed-loep system can
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Figure 4,11 Block diagram that shows a simple way of introducing com-
mand signals in a controller with state feedback and an ohserver.

be described by

a(k + 1} = (@ ~TL)x(k) + TLE(k) + T Lou.(k)
i(k+1)=(® - KC)x(k) (4.49)
y(k) = Cx{k)

Notice that the chserver error is not reachable from u,. This makes sense he-
cause it would be highly undesirable to introduce command signals in such a
way that they will cause observer errors.

It follows from Eq. (4.49) that the pulse transfer from the command signal
to the process output is given by

Hy(2)=C(eI -& 4+ TLy'TL, = L, Ble) (4.50)

An(2)

This can be compared with the pulse-transfer function of the process

B(z)
Afz)

The fact that the polynomial B(z) appears in the numerator of both transfer
functions can be seen by transforming both systems to reachable canonical form.
Compare with the derivation of Ackermann'’s formula given by Eq. (4.14).

The closed-loop system obtained with the control law given by Eq. {4.47)
hag the same zeros as the plant and its poles are the eigenvalues of the ma-
trix @ — L. From the previous discussion we have found that the rejection
of disturbances are also influenced by L. Sometimes it is desirable to have a
controller where disturbance rejection and command signal response are totally
independent. To obtain this we will use a more general controller structure that
1s discussed later. Before doing this we will show how to introduce integral
action in the controller {4.47).

H{z) = (2l —®)"'I' =

(4.51)
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Integral Action

To obtain a controlier with integral action we use the same idea as in Sec. 4.5
and introduce a constant disturbance v at the process input. The controller then
becomes

ulk) = ~La(k) - (k) + Loclk)
ik + 1) = O3(k) + T{o(8) + ull)) + K (y(B)-CiR)) (45
B(k+1) = H(k) + Kw(y(k} _ C.f[k))

These equations can also be written as

u(k) = —Li(k) - 0(k) + Louc(®)
Ak +1) = (® - TL)£(R) + TLou (k) + K (y(k) - Ci(k)) (4.53)
ik +1) = (k) + Ko (y(k) - Ci(h))

A comparison with Eq. {4.44) shows that command signal following is obtained
by a very simple modification of the systems discussed previously.

A Two-Degree-of-Freedom Controller

Practical control systems often have specifications that involve hoth servo and
regulation properties. This is traditionally solved using a two-degree-of-freedom
structure, as shown in Fig. 4.12. Compare with Fig. 3.10. This configuration
has the advantage that the servo and regulation problems are separated. The
feedback controller Hp, is designed to ohtain a clesed-loop system that is insen-
sitive to process disturbances, measurement noise, and process uncertainties.
The feedforward compensator H; is then desigued to obtain the desired servo

properties. We will now show how to solve the servo prohlem in the context of
state feedback.

S R e
o

g
-l -Hp b ¥ | Process

Figure 4.12 Block diagram of a feedback system with a two-degree-
of-freedom structure.
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Figure 4,13 A two-degree-of-freedom controller based on state feedback
and an observer.

A Controller Structure

In a state-space design it is natural to assume that servo performance is spec-
ified in terms of a model that gives the desired response of the output or the

state variables to changes in the command signal. This can be specified with
the model

Xk + i) = Oy (k) + Tpuc(k)

4,54
It is then natural to use the control law
u(k) = L{xn(k) - 2(k)) +2pp(k) (4.55)

where x,, is the desired state, and u; i a control signal that gives the desired
output when applied to the vpen-loop system. The coordinates must be chosen
so that the states of the system and the model are compatible. In actual ap-
plications it is often useful to choose them so that the components of the state
have good physical interpretations.

The term up, = L{xy - Z) represents the feedback and u;; represents
the feedforward signal. Equation (4.55) has a good physical interpretation, The
feedforward signal u,; will ideally produce the desired time variation in the
process state. If the estimated process state & equals the desired state x,,, the
feedback signal L(x,, — &) is zero. If there is a difference between % and x,,,
the feedback will generate corrective actions. The feedback term can be viewed
as a generalization of error feedback in ordinary control systems, because the
error represents deviations of all state variables and not just the output errors.
A block diagram of the system is shown in Fig, 4,13

Generation of the Feedforward Signal

Given the model (4.54) it is straightforward to generate the desired states. It
remainsg to discuss generation of the signal u ;. Let the pulse-transfer functions
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of the process and the model be H(z) and H,(2), respectively. If the signal

Hu(q)
urp(h) = i) 7o delk) {4.56)

could be generated 1t would give the desired result, several conditions are re-
quired for this. The model H,, must be stable, the pole excess of the model must
not be less than the pole excess of the process, and unstable process zeros must
also be zeros of the model,

In the single-input-single-output case the generation of u sy is particularly
simple if the order and the zeros of the model and the process are the same.
Assume that H(z) = B(z)/A(z) and H,{z) = AB{z)/An(z) then Eq. (4.56)
becomes

- A(q) _ ((11 - a’ln)q“_l o (an _ aﬂm)
(4.57)

The signal u/; then can be generated from the states of the reference model.
Generation of feedforward signals is simplified even further if the reference
model (4.54) has reachable canonical form, that is,

(—al' —af ... -a, -a™) (A
1 o ... 0 0 0

¢, =] 0 1 ... 0 0 r,=190 (4.58)
L0 0 ... 1 o | L 0 )

It then follews from Eq. (4.57) that

Upp = /'luc(k) + C'ffxm UE) {459}

where
Cer = [ﬂl-ﬂ'f' az -Gy - an—aﬁ] (4.60)

Having obtained the closed-form solution we can obtain other representations
by transforming the state variables.

A full discussion of design of feedforward compensatmn is outside the scope
of this book. Let it suffice to mention that it is often useful to introduce non-
linearities in the feedforward path so that the system is not driven too hard in
response to command signals. Because the signal s/ is used mostly to get the
system to move rapidly in the right way it is also possible to use approximate
process models; small deviations are easily handled by the feedback.
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Putting It All Together

By combining the soluticns to the regulation and servo problems we have a
powerful controlier, which is described by

u(k) = usr(k) + up (k)
tre{k) = /’»(ue(k) + Cffxm(k))
gy (k) = L(xm(k) - J‘E(k]) ~ Lb(R)
(B + 1) = ®2(R) + Douib(k) + Tu(k) + Ke(k) (4.61)
wik + 1) = yi0(k) + Kue(k)
e(k) = y(k) - Cx(k)
2k + 1) = O (k) + Tite (k)

This controller captures many aspects of a control problem such as load-disturb-
ance attenuation, reduction of effects of measurement noise, and command
signal following. The responses to load disturbances, command signals, and
measurement noise are completely separated. The command signal response
is determined by the reference model. The response to load disturbances and
measurement noise 1s influenced by the observer and the state feedback. It can
be adjusted by the matrices L, L, K, and K,,. The fact that all estimated
states are compared with their desired behavior gives a good possibility to ex-
ercise accurate control. A block diagram of the closed-loop system is shown in
Fig. 4.14.

The controller given by Eq. (4.61) can be represented in many different
ways. All representations are equivalent hecause the system is linear and time-
invariant. In practice it is useful to use nonlinear reference models, actuators
and converters may be nonlinear, and there may be nonlinear effects in the

. | Model and g
—-= Feedforward

X " u
Generator —"'-(Z) L fo 5 Process ¥

by Observer

Figure 4,14 Block diagram of a general controller tbat combines model
following with feedback from estimated states, and disturbance states. Com-
pare with Figs. 4.8 and 4,13,
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computations such as roundoff, In such cases the different structures may have
drastically different properties.

Useful insight is obtained by introducing the difference between the esti-
mated state £ and the state of the model x,,. Assume that the systems are given
in reachable canonical forms and that the model and the process have the same
zeros. We can then choose C,, = C and ', = AT'. We now introduce

=%, —% (4.62)
It follows from Eqgs. {4.23) and (4.61) that
é(k+1) = ®,x,(k) + Tpuc(k) - i(k) - Oy (k) - Tulk) - Ke(k)
= ®é(k) — Ok} + (D, — Dlxn(k) + ATu. (k) - Tu(k) - Ke(k)

Only the first element of the vector (®,, ~ ®)xn(k) + ATu (k) is different from
zero. This element is given by

(a1 — al )xm1 + (a2 — a5 Yotmg + - + (@n ~ 07 }2mn + Aue = A(Crpxm + 1)

Furthermore we have

£(k) = y(k) - Ci(k)
= y{k) - Cz(k) + Cxn (k) - Cxm(k)
= y(k) - ym(R) + Cé(k)

We now introduce
w(k) = ugolk) + g (k)
where
urrlk) = A(Crpen(h) + uelk) )
and the controller (4.61} becomes
ulk) = upmlk) + uprlk)

upr(k) = A(cﬁxm(k) N uc[k))
up(k) = Lé(k) - Lyiv(k)

6k + 1) = ®é(k) - Guutb(k) - Tups (k) + K (30 (k) - (8) - Ci(h))
(k +1) = Gui(k) - Ky (ym(k) - y(k) - Cé(h))
ik + 1) = Qpxy (k) + Thuc(k)

(4.63)

In the special case of a constant input disturbance we have w = v, &, = 1,
®.,, = T. In this case the controller will have integral action. To see this clearly
we will regrite Bq. {4.63) for the controller.
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Figure 4.153 Another representation of the general controller structure
with feedback from estimated states, disturbance states, and model follow-

ing. Compare with Fig. 4.14

After straightforward algebraic manipulations we obtain

ul(k) = upp{k) + uss(k)
ure(k) = ;.(cffxm(k) + uc(k))
urp(k) = Lé{k) - i(k)
A , (4.64)
é(k+1) = (& — 'L — KCé(k) +K(ym(k)— y(k))

5(k+ 1) = d(k) —Kw(ym{k) — (k) ——Ce’{k))
Xm(k + 1) = Ppxy(k) + Tpu k)

The transfer function from y—y,, to é is given by Eq. (4.45). A block diagram of
the controller is shown in Fig, 4,15. We will illustrate the ideas by controlling
the double integrator.

Example 4.12 Control of the double integrator

Consider the double-integrator plant and assume that there is a process distur-
bance in the form of an unknown constant that is acting on the process input. Let
the feedhack vector L is determined as in Examnples 4.2 and 4.4 with the closed-
loop natural frequency @ = 1, the damping { = 0.7, and & = 0.44. Figure 4.18
shows the control of the double integrator when using the controller (4.64}, There
is first an input load disturbance at time ¢ = 5, and then a change in the reference
value to the model at ¢ = 30, The model is designed to be twice as fast as when L
is designed. The simulation shows that the regulation and servo problems can be
separated and given different dynamics, ]
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Figure 4.16 Control of thbe double integrator using the controller {4.64). (a)
Qutput {solid) and model output y,, (dots), (b) control signal, {¢) disturbance
v {dashed) and estimated disturbance ¢ (solid).

4.7 A Design Example

To tllustrate the design method we will consider control of an elastic joint in a
robot. Consider a motor with current constant k; that drives a load consisting
of two masses coupled with a spring with spring constant % (see Fig. 4.17). It
is assumed that friction and and damping can be neglecied. The input signal is
the motor current /. The angular velocities and the angles of the masses are @,
W, @1, and @z; the moments of inertia are J; and 5. It is agsumed that there
1s a relative damping, d, in the spring and that the first mass may be disturbed
by a torque v. Finaily the output of the process is the angular velocity ..

" @q
[ —=
——=1 Motor = ——
o ] Wy
Jy Jy

Figure 4.17 A flexible robot arm.
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We now introduce the states

= {1 -
X = w1/
Xy = mz/ﬂ?o

where

g = \/-k{Jl + JQ}f(JlJz)

The process is then described by

Q
2 )
¢ B -B (4.65)

a = Jl,f[Jz + Jz)

where

B = djdiaxy
B2 = d/ sy
¥ = ki/d1mg
= 1/J1ay

The following values have been used in the example: J; = 10/9,J; = 10,2 =1,
d = 0.1, and &; = 1, which gives @ = 1. With these values the process (4.65)
has three poles, py = 0 and pgs = —0.05+0.999;, and one zero, 2) = —10. Notice
that the system contains a pure integrator. The complex poles have a damping
of {, = 0.05 and a natural frequency @, = 1 rad/s. The Bede plot of the process
18 shown in Fig. 4.18 and the impulse response in Fig. 4.19.

Specifications. 1t is desired that the closed-loop system has a response
from the reference signal such that the dominating moedes have a natural fre-
quency @, = 0.5 rad/s and a damping {,,, = 0.7.

Choice of sampling interval. The desired model has a natural frequency
iy = 0.5 rad/s. Using the rule of thumb given by Eq. (4.17) gives 2 = 0.5 s as
a reasonable choice for the sampling interval. This gives a Nyquist frequency
of oy = x/h = 6 rad/s.

In practice an antialiasing filter is necessary to avoid frequency folding
of disturbances. In this first design the disturbances are disregarded and the
design is done for the plant only.
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Figure 4.18 Bode plot of the flexibie-robot-arm process,

Stata feedback design. 1t is assumed that all the states are measured.

The system is of third order, which implies that three poles can be placed using
the controller

utk) = ~La{k) + L.u.{k) {4.66)
Let the desired poles be specified by
(8% + 2 m@ms + @02) (s + @10p) = 0 (4.67)

This characteristic equation is transferred to sampled form with 2 = 0.5, The
parameter L, is determined such that the steady-state gain from u, to y is

U 1 L
0 25 50 75
Time

Figure 4.19 Impulse response of the flexible-robot-arm process
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Figure 4.20 Qutput and input when the reference signal u, is a step and
the disturbance v a short pulse.

unity, that is, no integravor is introduced in the controller. Figure 4.20 shows
the behavior of the closed-loop system when the state-feedback controller (4.66)
is used when 1 = 2. The reference signal is a step at £ = 0 and the disturbance
vis a pulse at ¢ = 25 of height ~10 and a duration of 0.1 time unit.

Observer design. It is now assumed that only the output can be mea-
sured. The other states are reconstructed using a full-state observer of the form
{4.28). The eigenvalues of @ — K C are chosen in the same pattern as the elosed-
loop poles but a factor @y farther away from the origin, that is, in continuous
time we assume that we have

(32 + 20 ooty + (G.’[].Cﬂm)z)(s + e Wy =0

This characteristic equation is transferred to sampled-data form using h = 0.5.
Figure 4.21 shows the same as Fig. 4,20 when an observer is used. The output
is shown for &g = 2. The continuous-time equivalence of the fastest pole of the
closed-loop system when using the observer is —~oa100,. For ap = 2, 1 = 2,
and @y = 0.5, we get the pole —2. This implies that the used sampling interval
(h = 0.5) is a little too long, There is, however, no significant difference in the
response when h is decreased to 0,25.

Summary. The example shows the design using state feedback and the
observer. The response to the reference value change is the same, because the
system and the observer have the same initial values, The response to the
disturbance deteriorates slightly when the observer is used compared to direct-
state feedback. The observer is twice as fast as the desired closed-loop response.
One important aspect of the control problem that has not been captured is the
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Figure 4,21 The same as Fig. 4,20, but using state feedback from observed
states when o = 2.

effect of model uncertainty. This will be discussed in the next chapter. Notice
that there is no integrator in the contreller. The steady-state error will be zere
even in the presence of a disturbance because the process dynamics has an
integrator.

4.8 Conclusions

The chapter shows how the regulator and servo design problems can be solved
using pole placement and observers. The solution has three major components:
the feedback matrix L, the observer, and the response model. The feedback
matrix L is chosen in such a way that load disturbances decay properly using
the techniques discussed in Sec. 4.3. The observer is designed by considering
the load disturbances and the measurement noise, as discussed in Sec. 4.5. The
major trade-off is between quick convergence and sensitivity to measurement
errors. The regulation properties are taken care of by the matrix L and the
observer. The response model and the inverse process model are then chosen to
obtain the desired servo performance in response to command signals.

The pole-placement design is done here for the single-input-single-output
case. With n parameters in the state-feedback vector, it is possible to place n
poles arbitrarily, if the system is reachable. In the multivariable case, there
are more degrees of freedom. This makes it possible to determine not only the

poles, but also some eigenvectors of the closed-loop system. Further details can
be found in the references.
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4.9 Problems

1.1

42

4.3

14

A general second-order discrete-time system can be written as

x(h+1) = [““ ““] (k) + [z;] u(k)

d21 2
¥k = (e o) xlh)
Determine a state-feedback controller of the form
u(k) = -Lx(k)
such that the characteristic equation of the clozed-loop system is
2 epizips =0

Use the result to verify the deadbeat controller for the double integrator given in
Example 4.5.

Given the gystem

ak+1) = {;g gi] x(k) + [;] (k)

y(k) = [ 1 1] x(k)
Determine a linear state-feedback controller
u(k) = =Lx(k)

such that the closed-loop poles are in 0.1 and 0.25.

Determine the deadbeat controller for the normalized motor in Example A.2. As-
sume that x(0) = (1 1]7. Determine the sample interval such that the control

signal is less than one in magnitude. It can be assumed that the maxinum value
of u(k)isat k = 0.

Consider the continuous system.
dx [—3 1 ] [0)
— = T+ u
dt o0 -2 1
y=(10)=
Sampling the system with A = 0.2 gives

rons % 2] (02) e

(a) Determine a state-feedback control law such that the closed-loop characteristic
polynomial is

22 - 0,63z + 0.21
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4.5

4.6

4.9

48

Pole-Placement Design: A State-Space Approach Chap. 4
(b) Determine the corresponding continuous-time characteristic polynomial and
discuss the choice of the sampling peried.
(¢) Simulate the closed-loop system when x{0) = [1 0]7.
The system

o= (02 9 e 12

ylk) = [n 1 ] x(k)
represents the normalized motor for the sampling interval A = 0.25. Determine
observers for the state based on the output by using each of the following.

{a) Direct calculation using (4.25),
(b) A dynamic system that gives %(% 4 1| k) using (4.28).
(¢) The reduced-order abserver.

Let the observer be of the deadbeat type; that is, the poles of the ohserver should
be in the origin.

Determine the full-state observer hased on (4.28) for the tank system in Prob-

lem 2.10. Choose the ohserver gain such that the observer is twice as fast as the
open-loop system.

Consider the observer of (4.32) and let the control law be given by
ulk) = ~Lz(k | k)
Show that the resulting controller can be written as

wik+1) = Oyuw(k) + T, y(k)
u(k) = Cow(k) + Doy(k)

where

(I-KC)®-TL) T,=(I-KC){®-TL)K
-L D,=-LK

b,
C,
Given the discrete-time system

= [958 e () e 1) i

y(&) = ( 1 o] x(k)
where v is & constant disturbance. Determine controllers such that the influence of
v can be eliminated in steady state in each case,

{a) The state and v can be measured.
(b} The state can he measured.
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{c) Only the output can be measured.
4.9 Consider the two-tank system in Problem 2.10 for A = 12 5.

{a) Determine a state-feedback controller such that the closed-loop poles are given
by the characteristic equation

22155 +064=10

This correspends to { = 0.7 and @ = 0.027 rad/s.

(b} Introduce a command signal and determine a controller such that the steady-
state error between the command signal and the output is zero in steady state;
that is, introduce an integrator in the system.

{t} Simulate tbe system using the regulators in (a) and (b).
4.10 Consider the double integrator with a load disturbance acting on the process in-
put. The disturbance ¢an be described as a sinusoid with frequency @y, but with

unknown amplitude and phase. Design a state-feedhack controller and an observer
such that there is no steady-state error due to the sinuscidal perturbation.

4,11 Consider the discrete-time process

x@+n:[? &]ﬂﬂ+[”uﬁ)

ﬂﬂ:[ﬂl]ﬂﬂ

(a) Determine a state deadheat controller that gives unit static gain, that is,
determine 7. and L in the controller

ulk) = Lu, (k) - Lx(k)

{b) Determine the stability range for the parameters in L, that is, use the con-
troller from {a} and determine how much the other parameters may change
before the closed-loop system becomes unstable.

4.12 Consider the system

ok + 1) = [Dfi 2?] ﬂk]+[i] w(k)}

y:[lO]ﬂH

ta) Determine the state-feedback controller r{4) = L u. (k) — Lx(k) such that the
states are brought to tbe origin in two sampling intervals,

(b) Is it possible to determine a state-feedback controller that can take the system
from the origin to x(k) = {2 B|"?

(c) Determine an observer that estimates the state such that the estimation error
decreases as p{k) - 0.2¢.
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4.10 Notes and References

Pole placement was one of the first applications of the state-space approach.
One of the first to solve the problem was J. Bertram in 1959. The first published
solution is given in Rissanen (1960). Treatment of the multivariable case of pole
placement can be found, for instance, in Rosenbrock (1970), Wolowich {1974),
and Kailath (1980). Observers are also described in the preceding books. The
reduced-order observer was first described in a Ph.D. thesis by Luenberger.
Easier available references are Luenberger (1964, 1971).

The servo problem and introduction of reference values are discussed in
Wittenmark (1985a). Numerical aspects of computing the state feedback and
the observer gain are discussed in Miminis and Paige (1982), Petkov, Christov,
and Konstantinov (1984}, and Miminis and Paige (1988).
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Pole-Placement Design:
A Polynomial Approach

5.1 Introduction

In this chapter we will discuss the same design problems as in Chapter 4 but
we will use polynomial calculations instead of matrix caleulations. This gives
new insights and new computational methods. In addition we will be able to
investigate consequences of errers in the model used to design the controller.
The idea of pole placement is to find a controller that gives a closed-loop system
with a specified characteristic polynomial. It is natural to explore if this can be
done directly by polynomial calculations.

We start by describing a process model and a controller as input-output
systems characterized by rational transfer functions, The design problem is then
solved in a simple setting in Sec. 5.2. The design problem is identical to the one
posed in Secs. 4.2 and 4.5, A polynomial equation is a crucial part of the solution.
This equation is investigated in Sec. 5.3, where we give conditions for selvability
and algorithms. In Sec. 5.4 we solve more realistic design problems. We consider
cancellation of poles and zeros, separation of command signal responses and
disturbance responses, and improved responses to disturbances. In Sec. 5.5 we
consider the problem of modeling errors, which is much more convenient to
deal with in the input-output formulation than in the state-space formulation.
In Sec. 5.6 we summarize results and obtain a general design procedure. Some
practical aspects are also discussed in that section.

The chapter ends with several design examples that illustrate the pro-
cedure. Control of a double integrator is discussed in See. 5.7, an harmonic
oscillator in Sec. 5.8, and a flexible robot arm in Sec. 5.9. Many other design
procedures can be expressed in terms of pole placement. This gives insight and
gives a unified view, as is illustrated in Sec. 5.10.

165
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5.2 A Simple Design Problem

We will now discuss the same simple design problem that was solved by state-
space methods in Sec. 4.6, namely, to find a two-degree-of-freedom controller for
a linear system with output feedback. The design problem is stated, and the
golution is given and illustrated by two examples. It turns cut that an algebraic
equation plays a key role in the solution. The properties of this equation will
be explored in the next section, where we also will resolve some technicalities.

A general discussion of the design problem was given in Sec. 4.2. It 13
recommended to review that section before proceeding. In this case we will
coneider command signal following, attenuation of load disturbances, and effects
of measurement noise,

It is assumed that the system has one control variable, &, and one mea-
sured output, ¥, which are related by the following input-output model:

A(g)y(k) = B(q)u(k) (5.1)

where A(g) and B(g) arc polynomials in the forward-shift operator g. It is as-
sumed that the degree of B{g) is less than the degree of A(q), that the polyno-
mials A(q) and B(g) do not have any common factors, and that the polynomial
A(q) 1s normalized so that the coefficient of the term with the highest power in
q is one. Such a polynomial is called monic.

The dynamics of the process has the pulse-transfer function B(z}/A(z),
which includes a hold circuit, an actuator, a sensor, and antialiasing filter. Recall
from Sec. 2.3 that the model of (5.1) may represent a discrete-time model of a
continuous-time system with a rational transfer function and an arbitrary time
delay.

As in Sec. 4.5 we will assume that the disturbances are widely spaced
impulses. The response of the closed-loop system can thus be judged by how
well it will respond to perturbations in initial conditions of the process.

In pole-placement design it is assumed that specifications are primarily
given by the closed-loop characteristic polynomial. In addition it may be spec-
ified that the controller should have certain properties, for example, integrai
action. The design variables are the closed-loop characteristic polynomial and
the sampling period. Notice that the sampling period appears implicitly in the
madel (5.1).

The controller has one output, u, and two inputs: the command signal, u,,
and the measured output, y. A general linear controller can be represented by

R{qJu(k) = T{(q)uc(k] — S(g)y(k) (5.2)

where R{q), 8(q}, and T{q) are polynomials in the forward-shift operator. The
polynomial R(q) can be chosen so that the coefficient of the term of highest
power in g is unity.

The control law (5.2) represents a combination of a feedforward with the
pulse-transfer function H;(z) = T(z)/R(z) and a feedback with the pulse-
transfer function Hyp(z) = S{z)/R(2). To have a causal controller it must be
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required that the degree of R(z) is larger than or equal to the degrees of S(z)
and T'(2).

Solving the Design Problem

The solution of the design problem is straightforward. We will simply determine
the characteristic equation of the closed-loop system and explore the conditions
that it has to satisfy.

Eliminating u(%) between the process model {5.1) and the controller (5.2)
gives

(A@R(@) + B()S(a) (k) = Blo)T{g)uclk) (53)
The characteristic polynomial of the closed-loop system is
A(z) = A{z)R{z) + B{2)S(z2) (5.4)

Pole-placement design thus reduces to the algebraic problem of finding poly-
nomials R{z) and S(z) that satisfy Eq. (5.4) for given A(z), B(z), and A;(z).
Equation {5.4), which plays a central role in the polynomial approach, is called
the Diophantine equation. A general discussion of this equation will be given
later. Let it suffice for now that the problem always can be solved if the poly-
nomials A(z) and B({z) do not have common factors.

Additional insight is obtained by comparing with the state-space solution
to the design problem in Sec. 4.5. There we found that the characteristic poly-
nomial A,;{z) could be factored as

Aylz) = A (2)A,(2) {5.5)

where A,(z) = det(z] — ¢ + TL) and A,(z) = det{z] - + K C}. This factor-
ization corresponds to the separation of the controller into a state feedback and
an observer. For this reason we call A,(z) the controller polynomial and A,(2)
as the observer polynomial. Recall that it was found in Sec. 4.3 that the arbi-
frary eigenvalues could be assigned to A,(z) if the system is reachahle and that
arbitrary eigenvalues could be assigned to A,(z} if the system is observable.
To complete the design it remains to determine the polynomial T(2).- To

do this we consider Eq. {5.3), which tells how the system reacts to command
signals. The pulse-transfer function from command signal to output is given by

B(2)T{z)
Acg(z)

B{z)T(z)
Ac{z)A,(2)

This equation shows that the zeros of the open-loop system are also zeros of
the closed-loop system, unless the polynomials B(z) and A,(z) have common
factors. By referring to the solution of the design problem in Sec, 4.6 it is natural
to choose the polynomial T'(z) so that it cancels the observer polynomial A,(z).

Y(z) =

Ue(z) = U.(z) (5.6)
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This implies that command signals are introduced in such a way that they do
not generate observer errors. Hence

T(2) = tohy2) (57
The response to command signals is then given by

Y(o) = 5o Ue) (53)

where the parameter # is chosen to obtain the desired static gain of the system.
For example, {0 have unit gain we havet, = A.(1)/B(1).

Summary

We have thus obtained the following design procedure,

ALGORITHM 5.1 SIMPLE POLE-PLACEMENT DESIGN
Data: A process model is specified by the pulse-transfer function B(z)/A(z),
where A(z) and B{z) do not have any common factors. Specifications are given
in terms of a desired closed-loop characteristic polynomial A, (2).

Step 1. Find polynemials R(z) and S(z), such that deg S(z) < deg R{z), which
satisfy the equation

A(2)R(2)+ B(2)8(2) = Aul2)

Step 2. Factor the closed-loop characteristic polynomial as Ay (2) = A.(2)4.{2),
where deg A,(z) < deg R(z}, and choose

T(z) = toA(2)

where #5 = A,{1)/B(1). The control law is

R{qlulk) = T(glu.(k) - S(g)y(k)

and the response to command signals is given by

A (q)y(k) = toB(q)uc(k)

There are several details that have to be investigated. The most important is the
solution of the Diophantine equation (5.4). Before doing this we will, however,
consider an example.
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Example §.1 Control of a double integrator
For the double integrator we have

Az) = 6= 1)
h2
B(z) = 0l {z+1)

and the Diophantine equation (5.4) becomes

2
(z* -2z + 1)R{z) + % (z+1)8(z) = A,(2)

The closed-loep characteristic polynomial A, is a design parameter. Both its degree
and its parameters will be selected to achieve the design goals. It is natural to look
for as simple controllers as possible. This means that we will search for polynomials
R(z) and 8(2) of the lowest order that satisfies the Diophantine equation. The

simplest case is H{z) = 1 and S(z) = sy, that is, a proportional controller, This
gives the equation

£ 2z+1+50—hz{z+1)~A[
- 9 = c!z)

which cannot be solved for an arbitrary A, (z) of second order. With a first-order
controller we have R{z} = z + ry and 8(¢) = sgz + &, which gives

2
(Z-2+1)(z+r) + % {2+ 1)(s02 +81) = Au(2)

Hence
R ; h? h*
23 + (?‘1 + "é—.’:‘u —2)2'! + (1 —2?‘1 + —2—(30 +51))2 +r + 8 E— = Adl?)

and we find that it i3 possible to select the controller coefficients ry, 5o, and 5, to
obtain an arbitrary polynomial A, (z) of third degree. Choosing

Ag(z) =2" + ;128 4 poz + pg

and identifying coefficients of powers of equal degree we find that
h2
Fi+ E’ Sg =/ + 2

2
“2r1+§‘{80+51)ng"1

h2
n+ *“2— = b3
This equation has the solutton

_3+tpi+pr-p
=

_543pi+pr-ps
0= 252

_ _3+pi—p;—3ps
§1= ——— Lt 09

2h*
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It now remains to determine the polynomial T'(z). For this purpose we will factor
the closed-loop characteristic polynomial as 4.(z) = A,{z}A.(z). The closed-leop
characteristic polynomial A,;{z) is of third order. Because a third-order polynomial
always has a real root we will select this to correspond with the ohserver polynomial
A,(2) and we have T(z) = t,A,(2), where ¢, = A{1}/B(1), [

The example shows that to solve the prohlem, the specified closed-loop char-
acteristic polynomial and consequently the controller must be of sufficiently
high orders. This can also be seen easily by simply counting equations and un-
knowng, Increaging the order of the controller with one gives an increase of
two parameters, but the number of equations only increases by one. The prob-
lem will thus be overdetermined when the closed-loop characteristic polynomial
has sufficiently high order. The increased degrees of freedom can be used to
introduce auxiliary constraints. This is illustrated by the next example.

Example 5.2 Controller with an integral action for the double integrator
Consider control of the double integrator where it is desired to have a controller
with integral action, Thiz means that the polynomial R{z} must have z — 1 as a
factor. Using the same arguments as in Example 5.1 we find that the simplest

controller of second order with an integrator is
']

Riz} = (z— 1}(z + )

5(z) = spz* +mz + 5y

Inserting this into the Diophantine equation (5.4) we obtain

h? ; h? B
4 _ oyl - & - — =
2+ (-0 + (3 Iry + 5 sn)z + (1 +3r + 5 sl)z+ nts = Aqlz)

The closed-loop system is of fourth order and we have four parameters r, s, 5,
and $» to determine. n

5.3 The Diophantine Equation

The discussion in the previous section gave some insight intoe the design prob-
lem. In particular we found that the Diophantine equation (5.4) played a central
role. We will now analyze this equation. The fundamental mathematical prob-
lem is to understand the properties of the polynomial equation

AX+BY =C (5.9)

where A, B, and C are known polynomials, and X and Y are unknown poly-
nomials. This is a well-known problem in elementary algebra. Equation (5.9) is
named after Diophantus {~ A.D. 300), who was one of the original inventors of

algebra. It has also many other names in literature, the Aryabhatta’s identity
or the Bezout identity.
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A Digression

Equatien (5.9) looks strange at first because two unknowns have to be deter-
mined frem one equation. A simpler, but related, problem from high school
algebra gives insight.

Example 5.3 The Diophantine equation

Consider the equation
B3x+2y =5 {5.10)

where x and y are integers. When does this equation have a solutien? A clue is
obtained by first considering x and y as real variables. The equation has infinitely
many solutions, which can bhe represented as points on the straight line defined
by the equation. By veturning to integers it isobvious that x = Jand y = 1is a
solution. Another solution muy be found by increasing x by 2 and decreasing y by
3. Hence, if x, and ¥, satisfy {5.10}, then another solution is given by

X=X+ 2n ,
(.11}
y=¥o-3n

where n 15 an arbitrary integer. A few solutions follow:

x =5 -3 -1 1 3 b5 7
v 10 7 4 1 -2 -5 -8
We thus find that if the equation has one solution there are infinitely many other

solutions. It follows from (5.11) that if a solution xp, ¥, 18 known, it iz possible to
add or subtract 2 from x, until a unique solution with

0<crc?
is obtained. Siruilarly, there is also a unique solution such that

0<y<3 -

Another example shows that there may not be a solution to an equation such
as (5.10).

Example 5.4 The Diophantine equation without a solution
Consider the equation

4y + By =1

where x and v are integers. Because the lefi-band side i3 an even number and
the right-hand side an odd number, it is clear that the equation does not have a
sotution, The difficulty in finding a solution is because numbers 4 and 6 have 2 as
a common factor, whereas the right-hand side does not. »

Equation (5.10) is closely related to Eq. (5.9) because the integers and the
polynomials with real coefficients obey the same algebraic rules. Both may be
multiplied and added with the usual rules. However, division of two integers
(or polynomials) does not necessarily result in an integer {or a polynomial), In

algebraic terminology this is expressed by saying that integers and polynomials
with real coefficients are rings.
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Euclid’s Algorithm

Examples 5.3 and 5.4 essentially reveal the important issues about Eg. (5.9). It
is now simply a matter of giving a formal analysis of the equation. We will first
develop a classical result in algebra, This algorithm finds the greatest common
divisor G of two polynomials A and B, The algorithm is recursive. If one of the
polynomials is zero then the other polynomial is defined as the greatest commeon
divisor 7. If this is not the case the algorithm proceeds recursively as follows.
Assume that the degree of A is greater or equal to the degree of B. Put 43 = A
and By = B. Iterate the equations

An+1 = Bn
By.1=A,mod B,

until B4y = 0. The greatest common divisor is then G = B,. Backtracking we
find that G satisfies the equation

AX+BY=0 (5.12)

where the polynomials X and Y can be found by keeping track of the quotients
and the remainders in the iferations. The link between Euclid’s algorithm and
the Diophantine equation is thus established and we have the following result.

THEOREM 5.1 EXISTENCE OF SOLUTIONS TO THE DIOPHANTINE EQUATION
Let A, B, and C be polynomials with real coefficients. Then Eq. (5.9) has a
solution if and only if the greatest commeon factor of A and B divides C. If one
solution Xg, Yy exists there are X =X + @B, and ¥ = ¥, — QA, where Q is
an arbitrary polynomial and is alse a solution.

Proof.  The proof follows directly from Euclid’s algorithm. If A and B do

not have a common factor we have G = 1. Multiplying Eq. (5.12) by C now
gives (5.9). =

Solving the Diophantine Equation

To solve the Diophantine equation we simply have to keep track of the inter-
mediate steps in Euclid’s algorithm. This can be done conveniently as follows.
At the same time we also obtain the minimum-degree solutions U and V to the
equation

AU+RBV =0 (5.13)

Equations (5.12) and {5.13) can be written as

(v v) (5)= (o) 510
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which implies that

o) od)-lowy) oo

To determine the matrices X, Y, I/, and V we can thus start with the matrix

41

and perferm elementary row operations until a matrix with a zero in the 2,1

position is obtained, that is,
g X Y
[ o U Vv ] (6.17)

The polynomials X, Y, U, and V are then obtained directly from the elements
of this matrix. This algorithm is called the extended Euclidean algorithm. It is
now straightforward to solve the Diophantine equation (5.4). This can he done
as follows.

ALGORITHM 5.2 THE D1OPHANTINE EQUATION
Step 1. Determine the greatest common divisor G of A and B and the associated
polynomials X, ¥, U, and V using the extended Euclidean algorithm. If G does
not divide C the problem has no solution.

Step 2. If G divides C a particular solution is given by

X{) =XC dJVG
Yo=YC div(G

and the general solution is given by

X=Xy+QU
0+ ¢ (5.18)
Y=Y,-QV
where @ is an arbitrary polynomial. .

COROLLARY 5.1 UNIQUE $OLUTION There are unique solutions to (5.9)
such that deg X < deg B or deg Y < degA. .

These solutions with degX < deg B is obtained from the general solution given
by Eq. (5.18) by choosing @ = X, div U.
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Causality Conditions

It follows from the analysis that there may be infinitely many solutions to the
Diophantine equation (5.4). For the Diophantine equations that appear when
solving the pole-placement problem, it is natural to intreduce some constraints
on the solution. The degrees of the polynomials S(z) and T(z) must be less than
or equal to the degree of R(z). If this is not the case the control signal at time &
will depend on values of the measured signal and the command signal at times
larger than k. We call this the causality condition.

If the time to calculate the control signal in the computer is only a small
fraction of the sampling period, it is natural to neglect the time to compute the
control signal. The causality constraint then becomes

deg R = degT = deg S (5.19)
If the computation time is one sampling period we have
degR =degT +1=degS+1

The constraint of (5.19) is normally used as a standard case. Possihle computa-
tional delays can be included in the process model instead of in the controller;
compare with Sec. 2.3.

Minimum-Degree Solution

In the control problem it is natural to select the solution of (5.4) that gives a
causal controller of lowest order. It is natural to assume that the process model
is causal. This means that deg B < deg A. Because the controller is also causal
we have deg S < degR. We will thus find the solution where the degree of
S is as low as possible. According to Corollary 5.1 we have degS < degA. If
degA = n we find that the minimum-degree solution corresponds to degS =
degR = degT = deg A, = n — 1 and deg A, = n. If we in addition require that
the controller should have integra! action we find that the controller must be of
degree n.

Relations to Linear Matrix Equations

The Diophantine equation can alse be solved using matrix calculations. Assum-
ing that the degrees of the polynomials are known, intreducing the unknown
ceeflicients of the polynomials as variables, and identifying coefficients of equal
powers of z, we obtain a linear equation that can be solved in the usual manner.
Consider, for example, Eq. (5.9). Assume that the degrees of the polynomials
ate deg Az} = deg B(z) = n and deg X(2) = deg ¥(z) = n - 1. The following
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linear equations are then obtained.

(o 0 0 -~ 0 b O 0 TR | co )
Ty o 0 v b1 bg { ERE | \ 1
(X
a2 ) ag - 0 bz b], bu e Q) ? C3
Ap-1
@n Gno1 @ped 0 Qo bu Baoy baa - by ;U =| ¢
0 ay p-1 - @I 0 bn bn—l bl Casl
0 0 ¢, - @ 0 O bp - by : Crta
\ ¥n—1/
kﬁ 0 0 U ¢ 71 0 0 D bna \ Cop_1 /

The matrix on the left-hand side, which is called the Sylvester matrix, occurs
frequently in applied mathematies. It has the property that it is nonsingular if
and only if the polynomials A and B do not have any common factors, Compare
with Theorem 5.1. Notice, however, the nonuniqueness with respect to the orders
of X and Y, Different choices of the orders of the polynemials give different
solutions X and Y, as discussed before.

The solution to the preceding linear equation can be obtained by Gaussian
elimination. This method does not use the special structure of the Sylvester
matrix, The polynomial methods based on the extended Euclidean algorithm
are faster and more efficient hecause they exploit the structure of the problem.

5.4 More Realistic Assumptions

In this section we will gradually remove several of the assumptions made when
solving the design problem in Sec. 5.2.

Cancellation of Poles and Zeros

In Sec. 5.2 it was assumed that no process poles or zercs are canceled by the
controller. In some cases it is possible to eancel process poles and zeros that

are well damped. This is done in several design methods. Assume that the

polynomials A and B are factored as
A=A*A"
B _p+B- (5.20)

where A" and B* are the factors that can be canceled. To obtain unique fac-
torizations polynomials A* and B* are chosen to he monic. In this section we
will drop all arguments indicating the independent variable in the polynomi-
als to simplify the writing. The pelynomials At and B* must have all their
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roots ingide the unit disc. Because a process pole that is canceled must be a
controller zero and vice versa, it follows that the polynomials R, §, and T have
the following structure:

i

l;

(5.21)

=

= o =
I}

-
T

It follows from Eg. (5.4) that the characteristic polynomial of the closed-loop
system is

Ay=AR+BS =A'B*"(A'R+B §)=A'B*A, (5.22)

The polynomials A* and B*, which are canceled, are thus factors of the closed-
loop characteristic polynomial A,;. It is natural to factor the characteristic poly-
nomial as A,; = A.A,, where

A. = B*A,

i A (5.23)

Cancelling the common factors in Eq. (5.22) we find that polynomials R and §
satisfy

A'R+B S =A,;=4A4, (5.24)

The minimum-degree causal controller is obtained hy choosing the unique solu-
tion with deg S < deg A~. The control (5.2} law can be written as

B*Ru=A*"Tu, - A*Sy

Hence

LA (TS
TB\R” R’

This means that we simply cancel the poles and zeros of the process and design
a controller for the reduced system as if the canceled poles were not present.

Because T = tpA,, the pulse-transfer function from the command signal to
process output is

BT 4B'B-A, tB-

Acl AEAO - Ar:

The canceled factors must correspond to stable medes. If this is not the case
the syatem \fvill have unstable modes that are unreachable or unobservable. In
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Figure 5.1 A region D such that points in the region have a minimum
relative damping and a minimum absolute damping.

practice it is useful to have more stringent requirements on allowable cancel-
lations. Sometimes cancellation may not be desirable at all. In other cases it
may be reasonable to cancel zeros that are sufficiently well damped. One way
to express this formally is to introduce a region D in the complex plane that
corresponds to modes with sufficient relative and absolute damping. Only zeros
inside ) may he canceled, An example of a region is shown in Fig. 5.1. From
Sec. 2.8 we saw that lines with constant relative damping are logarithmic spi-
rals in the z-plane and that lines with constant absolute damping are circles.

Separation of Disturbance and Command Signal Response

In Sec. 4.6 we designed a controller where the response to command signals was
completely separated from the response to disturbances. This is a nice property
hecause it gives the designer much freedom. It is straightforward to obtain a
similar controller using the polynomial approach, Let the factored model be
described by A = A*A~ and B = B*B~, where A* and B* are the dynamies
that will be canceled. Furthermore let the desired response to command signals
be given by

B
Ym = Hput, = f‘uc (525)

m

To obtain perfect model following the polynomial B~ must be a factor of B,,,
because B~ cannot be canceled. Hence B,, = B, B~. By introducing

R=A,B*'R

S = A,A*S (5.26)
T - Bm;‘iolicA+
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oA Lu
B
U, B, i § 1 u B ¥
"l a, -l R A

-1

Figure 6.2 Block diagram of the closed-loop system for the controller given
by (5.29) that admits complete separation of responses to command signals
and disturbances.

the control law {5.2) can be written as

At (BLA A, S
el it ala e R 5.7
) B+(AmR“ R") (527)
It follows from the Diophantine equation {5.22) that
AA, =A"R+B"§ (5.28)
Hence
B,A,A: Rn(A"R+B8) R.A" . BaB~S BRA" ; Bn S
AR T AR T An AR T A.B- T ALR
The control law (5.27} can thus be written as
BrA A*S
U= AB U + R*B (Y~ ) (5.29)

This controller is composed of a feedforward with the pulse-transfer function

_ BM(Z)A(Z) n BM(Z)A[Z)
T An(z)B(2) T An(z)BH(z)

and a feedback from the model error e = y,, — y with the pulse-transfer function

_ A 3(E)
B*(2)R(2)

The polynomials & and § are obtained from (5,28). The controller corresponds
to the general structure of a two-degree-of-freedom controller shown in Fig. 5.2.
The response to disturbances is governed by the polynomials A, and A, and the
response to command signals is given by the pulse-transfer function B,/A,.
Notice that the controller cannot be implemented by the separate blocks shown
in the figure, because each separate block is not causal.

Hy(z)

(5.30)

Hpyiz) (5.31)
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Ru=Tu, -8y |

Figure 5.3 Block diagram of a closed-loop system with command signals,
load disturbances, and measurement errors.

Improved Response to Disturbances

We will now modify the controller to improve its response to disturbances. For
this purpose we will assume that there is a process disturbance v that acts at
the process input and measurement noise that acts at the process output e, This

ig llustrated in the block diagram of Fig. 5.3. The system in Fig. 5.3 is described
hy the equations,

Ax = B{u+v)
y=x+e (5.32)
Ru = Tu. — Sy

Solving for the signals x, ¥, and u we get

,__ BT ___BR BS

T AR+iBS “TAR+BS' AR+BS°®

' = BT . + BR U+ AR e (5.33)
Y AR+BS“ " AR+ BS" AR+ BS '
AT BS AS

" AR+BS“ AR+BS' AR+ BS®

These equations tell how the closed-loop system responds to command signals
and disturbances. We will assume that the design is performed in such a way
that the closed-loop system is always stable. The characteristic polynomial A,; =
AR + BS then has all its roots inside the unit disc.

First, consider the situation when the load disturbance v is a step. The
steady-state response is then given by the static gain. To avoid that there is a
steady-state error we must require that the static gain from the disturhance v
to x 1s zero. This means that B{1}R(1) = 0. I tbe process itself has a nonzero
gain, that is, if B(1) # 0 then we must require that B(1) = 0. This means that
z - 118 a factor of R(2) or that the controller is required to have integral action,

Periodic signals with period n - k can he eliminated in a similar way by
requiring that 2® — 1 is a factor of B(z). This follows from the observation that
a signal with period n - & satisfies the difference equation

v((k +n)h) - v(kh) = (¢" - Du(kh) =0
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In a similar way a sinusoidal load disturbance with frequency ¢y will not give
any steady-state deviation if the polynomial R(z) has the factor z% - 2z cos wgh +
1. This follows because the sinuscid sin wyf satisfies the difference equation

y(kR) — (2coswgh) y(Rh—h)+ y(kh - 2k) =0

which can be verified by a direct calculation.

Measurement noise is typically of high {requency. The Nyquist frequency
is the highest frequency of interest in a sampled system. This corresponds to
z = —1. One way to make sure that measurement noise dees not generate large
signals is to require that the polynomial S(z) have the factor z + 1. This means
that measurement signals at the Nyquist frequency do not give any errors in
the process variable. Signals with other frequencies can be suppressed in an
analogous way by requiring that the polvnomial S(z) vanishes at other other
values of z.

To summarize we find that disturbances can be dealt with by introducing
constraints on the polynomials R and 8. Disturbances at the process input (load
disturbances) are dealt with through the polynomial B and disturbances at the
process output (measurement noise) through the polynomial S.

Examples

Two examples will be given to illustrate control-system design with the pole-
placement algorithm.

Example 55 Motor with cancellation of process zero
The pulse-transfer function of a DC motor can be written as

__Kiz-b)
H{z) = G-Te-a) (5.34}
(see Exaraple A.2), where
K=et-1+k
a=et
L B{i-eh)
b=1- eh-1+h

Notice that & < 0; that is, the zero is on the negative real axis. It is first assumed
that the desired closed-loop system is characterized by the pulse-transfer function

H.(z) = Z0+p1 +pa)

h.35
22 4+ prz+pe (5.35)

The pulse-transfer function H has a zero z = b that is not included in H,,. With
the given specifications, it is necessary to cancel the zero z = b. Factor B as
B'=z-b
B =K
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Then

BM=B 1+P1+}322

X~ K
The chserver polynomial can be chosen as
An(z)=1
The degree of the polynomials R and § are given by

deg R =deg A, +deg A, —degA =0
degS =degA-1=1

We now introduce R as a zero-order polynomial and S as a first-order polynomial
in the design eguation. The following polynomial identity is then obtained.

z-D{z-a)ro+ K(soz+8) =2 +piz +po

Equating coefficients of equal powers of 2 gives the equations

'p = 1
—(1+a)rg + Ksy = py
arg+ Ks) =py
Hence
ro=1
oo = l+a+m
VUK
-a
6 = PzK
Further

T(2) = A(z)Bnlz) = ?(iJ-’pK—'*——”‘*’] =tz

The control law can be written as

ulk) = tott. (B} — sy (k) ~ s y(k — 1) + bulk ~ 1) (5.36}

A simulation of the step response of the system is shown in Fig. 5.4. Notice the
“ringing,” or the “ripple,” in the control signal, which is caused by the cancellation
of the zerc on the negative real axis. The ripple is not noticeable in the output signal
at the sampling instants, It is, however, seen as a ripple in the output between
the sampling instants, The ampltude of the ripple in the output depends cn the
sampling period, It goes down rapidly as the sampling peried is decreased. »
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Figure 5.4 Step response for a motor with pole-placement control. The

specifications are { = 0.7 and » = 1. The sampling periods are (a) h = 0.25
and {b} A = 1.0. The process zero is canceled.

Example 56 Motor with no cancellation of process zero
Consider the same motor as in Example 5.5, but assume that the desired clozed
loop transfer function is

1+p)+pg z—-b
H = .
m(2) 1-5  Ztpztps 537}

Notice that the process zero on the negative real axis is now also a zero of the

desired closed-loop transfer function. This means that the zero does not have to be
canceled by the regulator. Factor B as

B* =1
B~ =K{z—b)

Hence,

B = 14+p; 4 py
" K(1-b)

The degree of the observer polynomial is
degA, > 2deg A —degA, —degB* —1=1

Therefore, the observer polynomial should be of &t least first degree. A deadbeat
observer is chosen:

Afz) =z
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The minimal degrees of the polynomials R and § are then given by

deg R =degA, +degAd, —degA=1
degS =degAd-1=1

The Diophantine equation can then be written as
2=z —a)(z + )+ Kz —b}(sez + 81) = 2° + pr2® + poz (5.38)
To determine ry, put z = b in {5.38). Hence,
(b= 1}b-a)(b+r)="b"+pb® +psb

which gives

b(b* + p1b + p1)
b —1)(b—a)

T1=—b+

Now put 2 =1 and z = a in (5.38). This gives

K(1-b)(so+s)=1+p1+ps
Kla - b)(sea +5) = a +p1a + pa

from which s, and s, can be determined. Further

am . 1ipitpe
T(Z) _Aan =z K(] “*b} = tUZ

The control law is then
ulk) = tou, (k) — soy(k) ~ s19(k - 1) —ru{k - 1)

Notice that this feedback law is of the same form as (5.36). However, the coefficients
are different. A simulation of the step response of the system is shown in Fig. 5.5.
A comparison with Fig. 5.4 shows that the control signal is much smoother; there

i8 no ringing. The response start is also a lLittle slower, because A, is of higher
degree than in Example 5.5. "

5.5 Sensitivity to Modeling Errors

A process model is a key element in control-system design. It is interesting
to investigate how sensitive the closed-loop system is to modeling errors and
also to determine how aceurate the model needs to be for a suceessful control
design. These problems can be approached very naturally in polynomial design.
We refer to the discussion of sensitivity and robustness in Sec. 3.3.
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(a) - (b)
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Figure 5.5 Step response of a motor with pole-placement control. The spec-
ifications are w = 1 and {' = 0.7. The sampling periods are (a} & = 0.25 and
(b} A = 1.0. The process zé7o is not canceled.

Stability Margins

Phase and amplitude margins are traditional measures that are used to ex-
press the sensitivity of a system to modeling errors. The sensitivity function
introduced in Sec. 3.3 is another measure.

__AR__ 1 _AR
" AR+BS  1+BS/AR Ay

S (5.39)

The inverse value of |.5(e'”)| represents the distance from a point of the Nyquist
curve of the loop-transfer function BS/AR to the critical point —1. The max-
imum value of |$(e*)| is thus the reciprocal of the smallest distance from the
critical point —1 to the Nyquist curve. To have a reasonable robustness against
instability, the largest value of |$(e*}] should therefore not be too large. A typ-
ical requirement is that |S{e’“)| < 2. In all design wark it is therefore useful to
investigate |5(e'”)| and make sure that it is not too large,

Control-system design is normally an iterative procedure. In a typical
case we start with a nominal design. By calculating the sensitivity function we
may find that the sensitivity is too large for some frequencies. It follows from
Eq. (5.39) that a large sensitivity can be reduced by making R or S small at
some frequencies, Making R small means that the controller gain is increased;
making S small means that the controller zain is decreased. To avoid the large
sensitivity we can introduce additional constraints on polynomials B and § in
some frequency ranges and repeat the design.
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Alternative Conditions

To further investigate the sensitivity of the closed-loop system to changes in the
process model, it is assumed that the design is based on the model H = B/A,
and the true model is H° = B°/A% From Theorem 3.5 it follows that the closed-
loop system is stable if

H{z)
Hnl2)

|H(z) - H(z)| < (5.40)

| ‘Hff(z)
Hyplz)

for |z| = 1, where it follows from (5.30) and (5.31) that H,, = t,B/A,, Hyy =
T/R,and Hyy = S/R. The relative accuracy that is needed for stability is

_ | H)Tiz)
) ‘ Hy(2)S(2)

|HE) -H@)| 1 Hpyl)
[H(z)} 7 |Hn(2)] "Hp(2)

It 1s easy to use this result. When a design is performed, the right-hand side of
(5.40) can easily be calculated for z = ¢, Notice that it does not depend on
the true pulse-transfer functior.

The condition given in (5.40) has good physical interpretation. Consider
first the ratio H/H,,. The pulse-transfer function H of the process is typically
large for low frequencies and decreases for high frequencies (see Fig. 5.6). The
desired pulse-transfer function H,, of the closed-loop system is typically unity
for low frequencies. There is a small increase around the crossover frequency
and H, decreases for high frequencies. The frequency response of H,, is also
shown in Fig. 5.6. The ratio H/H,, is easy to obtain from the figure. It is
clear from the figure that it is sufficient to have good model precision only in
certain frequency ranges. The consequences of changing the desired bandwidth
of the closed-loop system can also be determined. The requirements on the model
accuracy are relaxed if the closed-loop bandwidth is decreased. A more-precise
model will he needed if the desired bandwidth is increased. The requirements

log]H]|
log|H,,|

<

log|H,./H|

g |

Figure 56 Bode disgrams for H and H,,. The ratio H/H,,, which appears
m {5.40), is easily found in the figure.
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on mode] precision are smaller for frequencies where the feedforward gain is
larger than the feedback gain. The ratio of the feedforward- and the feedback-
pulse-transfer functions He,/Hyy = T/8 is equal to one for a controller with
error feedback.

Performance

So far we have concentrated on the influence of moedeling errors on the stability
of the closed loop. It is also possible to investigate other questions. For example,
it is interesting to see how modeling errors will influence the pulse-transfer
function from the command signals to the output. The controller obtained by
Algorithm 5.1 gives a closed-loop system with the pulse-transfer function

1
e = Bn T REAS B -1/

(5.41)
This expression shows how errors m the model are reflected in errors in the
closed-loop pulse-transfer function. It is clear from the expression that the errors
are small when the open-loop pulse-transfer functions H and H® are large.

5.6 A Design Procedure

The analysis in Sec. 5.4 bas given insight into the design problem. In particular
we have found that many factors can be taken into account simply by requiring
that the polynomials R and S have specifled factors. Poles and zeros of the
process may be canceled; compare with Eq. (5.21). Attenuation of disturbances
can be improved. For example, steady-state errors are removed by requiring
that z -1 be a factor or R(z). This means that the controller is required to have
integral action. The sensitivity function will be unity at the Nyquist frequency
if we require that 2 + 1 is a factor of 8(z). A complete separation of the responses
te command signals and disturbances can be obtained by requiring that B and
S have certain specified factors, as expressed by Bq. (5.26). Summarizing we
thus have the following general design procedure.

ALGORITHM 5.3 GENERAL POLE-PLACEMENT DESIGN
Data: A process model is specified by the pulse-transfer function B(z)/A(z),
where A(z) and B{z) do not have any common factors; the closed-loop char-
acteristic polynomial A.(z); polynomials B,(2) and S,(z), which specify given
factors of R(z) and S(z); and the pulse-transfer function B, {z)/An(z), which
gives the desired response to command signals.

Pole excess condition: deg A, (z) — deg B,.(z) > degA(z) ~ deg B(z).

Model following condition: The factor B~ of B that is not canceled by the
controller then must be a factor of B,,,, that is, B,, = B~ B,,.
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Degree condition:

deg A,y =2degA +degA,, +degRy+deg8y—1 (5.42)

Step 1. Factor the polynomials A and B as A = A*A- and B = B*B~, where
At and B* are factors that can be canceled by the controller,

Step 2. Solve the Diophantine equation
A"R4R + B~8,8 = Ay (5.43)

with respect to S and R.
Step 3. The controller is then given by

Ru = Tu, — Sy (5.44)
where
R=AnB*R4R
S=A4,4%8,8
e (5.45)
T =B,ATA,
B, = BmB_
and the closed-loop characteristic polynomiai is A,; = ATB*A, A,,. »

The degree condition is obtained in the following way. Equation (5.43) has a

minimum-degree solution with deg S = deg A~ + deg Ry — 1. Tt then follows
from Eq. (5.45) that

degS =degA™ + degA* +degA, +degRy+degS;—1
=degA+deg A, + degRy +depgS,; -1

Because deg R = deg S we obtain the condition (5.42). Comparing with the
simple design procedure in Algorithm 5.1 we find that the order of the closed-
loop system is increased with deg A, + deg R; +deg S,. The requirements are
thus coped with by increasing the order of the controller,

Calculating the Control Law

The Diophantine equation (5.43) can be salved by Euclid’s algorithm, as was dis-
cussed previously. It can, however, also be solved in the following way. Assume
that we have a solution R and $° to the equation

AR® + BS" = A, (5.46)
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and the minimum-degree solution { and V to the equation
AU +BV =0 {5.47)

Such solutions are typically obtained from the solution of a simple design prob-
lem. We introduce the polynomials R and S defined by

R=XR"+YU
(5.48)
5=X8%+YV

where X is a stable monic¢ polynomial; then
AR+ BS = XA,

If polynomials A%, and X are chosen so that Ay = AS,X , we thus find that
polynomials R and S given by (5.48) satisfy (5.43). To satisfy the compatibility
conditions X should have deg R + deg Sy. Polynomial Y will generically have
deg R; + deg §; — 1. To determine polynomial Y we impose the conditions that
R, divides R and that S, divides S. This gives the following linear equations
for determining the coefficients of polynomial Y.

X(2)R%2,) ~ Y (2)U(z] = 0 for Rd(zf)= (5.49)

X(2)8%z) + ¥ (2) Ulzi) = 0 for Syfz,)=
We illustrate the procedure by two examples.

Example 5.7 Integral action

Assume that a controller R°, S° has been designed and that we want to find
a new controtler for the same system that has integral action. Assume that the
minimum-degree solution of Eq. (5.47) is U = —B and V = A. A new closed-loop
pole is introduced at —x,; hence X(2) = z + x;. The polynomial Y(z) is then simply
a scalar yg and Eq. (5.49) become

(L+)RY1) - yoB(1) =0
This gives yy = (1+ x;)R%{1)/B(1) and the new controller hecomes
1+x1}RD(1) (2)
B(1)
(L+x)R(1)Az)
B(1)

R(2) = (z+2)R%z) -

8(z} = (24 1)8(2) +
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Example 5.8 Integral action and robustness

Consider the same problem as in Example 5.7 but assume that in addition we would
like to make sure that the sensitivity function is one at the Nyquist frequency. This
is achieved hy the conditions By =z—1 and S; = z+ 1. The polynomial X is thus
of second order and polynomial Y is of first order. The conditions (5.49) become

X{)R'(1) - (yo+ y)B(1) =0
X(-18"(-1) ~(~ye + 5)B(-1) =0

Solving these equations for y;, and y, gives

1 (X(I)R”(l) *X(—I)S“'(ﬂ))
B B(1) B(-1)

X(MRYY)  X{-1)8°(-1)
( B) | B )

h=

[0 IR =

Youla-Kucera Parameterization

The calculations made give an interesting characterization of stabilizing con-
trollers. We have the following result.

THEOREM 5.2 YOULA-KUCERA PARAMETERIZATION  Consider a system de-
scribed by the transfer function B(z)/A(z). Let 8%(2)/R%z) be a stabilizing
controller. Then all rational stabilizing controllers are described by

S(e) _ 8% + Q)AC)
R(z) R%2z)-Q(z)B(z)

(5.50)

where Q(2) is stable.

Proof.  We will first prove that the controller given by (5.50) is stable. To
do so we introduce §(z) = ¥{(z)/X{z), where X(2) and ¥{z) are polynomials. It
follows from the assumption that X (z) has all its zeros inside the unit dise. The
controller (5.50) can then be written as

5 XS'+ YA
R XRI-YB

where we have dropped the argument to simplify the writing. This controller
gives a closed-loop system with the characteristic polynomial

AR +BS = A(XR® - YB) + B(X8" + YA) = X(AR® + BS")

This polynomial has all its roots inside the unit disc because X is stable and
AR’ +BS® is also stable. To prove that all stabilizing controllers can be written
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1 u B |
- SO‘(B— —_ -] =
L R? A

Figure 5.7 Block diagram that illustrates Youla-Kucera's characterization
of all stabilizing controllers.

as (5.50) with @ stable, consider a stabilizing control S/R that gives a closed-
loop system with the characteristic polynomial

AR+ BS =C
It follows from (5.50) that
SR’ QSB = RS° + QRA

Hence

oo SEO-RS' _SRI-RS'
TAR+BS T T

which is stable because polynomial C has all its zeros inside the unit disc. =

This theorem is often quite useful in control system design because it gives a
simple way of characterizing all stabilizing controllers, The block diagram in
Fig. 5.7 illustrates the theorem.

Practical Aspects

The design procedure given by Algorithm 5.3 is a solution to a general pole-
placement design problem. The solution is specified in terms of the closed-loop
characteristic equation with auxiliary constraints on the controller polynomials.
Although the characteristic polynomial in principle can be chosen arbitrarily, it
1s necessary to choose it properly in order to obtain a controller that is not too
sensitive to medeling errors. For a practical problem a variety of requirements
must be expressed in terms of conditions on the characteristic equation. This
is straightforward for systems of low order but it may be difficult for a system
of high order. Real control-system design is typically an iterative procedure
consisting of the steps:
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1. Choose a characteristic polynomial and controller constraints Rz and Sy.
2. Determine a controller using Algorithm 5.3.
3. Evaluate the desipn.

The steps are repeated until a satisfactory result is obtained. Steps 2 and 3 are
straightforward. The difficult step is to modify the characteristic polynomial
and the controller constraints if the design 1s not satisfactory. Some detail of
the procedure will be diseussed in the following.

The Characteristic Polynomial

It 18 convenient to describe the characteristic polynomial in terms of factors of
first and second order, which are described in terms of their continuous-time
equivalents. The discrete-time equivalent of a first-order system characterized
by Als} = s+ is

Al(2)=z—a

where a = ¢~ and a second-order system A(s) = 8% +2{ wys + w} is equivalent
to

Ag{z) =22+ a1z + a3

where a; = —2¢~¢9" gog (ﬂ)gh\/l — {2), and @y = e 2%k A common choice is
then

Ac(z) = 2%A,(2) As(z)

In this case the system has three dominating poles and the remaining poles are
positioned at the origin.

It is practical to use the continucus-time parameters &, @y, and ¢ instead
of the equivalent discrete-time parameters a, a1, and ag. The designer can then
use the intuition developed for continuous-time systems and it is a simple task
to compute the discrete-time parameters.

The poles of the closed-loop characteristic polynomial are normally chosen
s0 that the dominating poles are of the same order of magnitude as the open-
loop poles. It follows from the analysis of sensitivity to modeling errors that the
closed-loop system will be very sensitive to parameter variations if the closed-
loop bandwidth is chosen much higher than the bandwidth of the open-loop
system. Compare with Fig. 5.6. The observer poles are often chosen to be a
little faster than the controller poles.

Influence of the Observer Polynomial

The effect of the observer polynomial on the transmission of disturbances is

illustrated by two examples in which we use the simple design procedure given
by Algorithm 5.1,
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(a)

1 .......................
g
'
0
0.1
0.01 0.1 1 10 0.01 0.1 1 10

Frequency, rad/s Frequency, rad/s

Figure 5.8 Bode diagrams (gain curves) for the transmission of (a) load
disturbances and (b) measurement noise for the system in Exampie 5.9.

Example 5.9 Influence of the observer polynomial 1
Consider a system with the pulse-transfer function

01

Hiz) = ——
(2) = ——
Assume that the desired pulse-transfer function from command to output is given
by
0.2
Hn(2) =
# = 08

We have thus A.(z) = z — 0.8. The observer polynomial can be chosen as A, = 1,
which gives the controller

u(k) = 2{uc(k) - y(k))

and the desired closed-loop transfer function, The process cutput is then given by
(compare with Fig. 5.3)

0.2 0.1 0.2
Xle)= -5 L)+ g Vi - ;5 EW@

The Bode diagrams for the transmission of load disturbances and measure-
ment errors are shown in Fig. 5.8, The gain from lew-frequency load disturbances

15 0.5 and from low-frequency measurement disturbances is 1. High-frequency load
and measurement disturbances are well attenuated. n

Figure 5.8 shows that the proportional feedback gives a closed-loop system that
i5 sensitive to load disturbances. A less-sensitive system can be obtained by
introducing an observer polynomial of higher degree and constraints on the
polynomial R, as shown in the next example.
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Gain

0.01 0.1 1 10 0.01 01 1 10
Frequency, rad/s Frequency, rad/s

Figure 5.9 Bode diagram for the signal transmission from (a) load dis-
turbances and (b} measurement error to process output for the controller
m Example 5.10. The chserver polynomial has a = 0.98 (solid}, a = 0.9
(dashed), a = 0.5 (dashed-dotied), and @ = 0 (dotted).

Example 5.10 Influence of the observer polynomial 2
Consider the same system and the same desired closed-loop response as in Exam-
ple 5.9. Let the observer polynomial be
Alz)=z-a
The Diophantine equation (5.4} becomes
(- Diz+r)+01{s2+ 8) = (z— a)(z-08)
Hence the following conditions are obtained.

-1+r +01sp = —a-08
-r; +0.15, = 0.8¢

Because there are two lmear equations and three unknowns, one extra condition
may be introduced. Choose ry = -1 to obtain integral action. This gives

So=12—1'0(1
31:80—10

The following expression is obtained for the process cutput.

0.2 0.1{z-1) (L2 ~a)z- 1+ 08a
X(2) = ;og Ulal+ G-a)e=08 Y T an 08)

The Bode diagrams for the signal transmission from load disturbances and mea-
surement errors to x are shown in Fig, 5.9; compare this with Fig, 5.8. By chang-
ing the observer dynamics the closed-loop system will be less sensitive for low-
frequency load disturbances, The figure shows that the effects of load disturbances
and measurement noise are strongly influenced by the ohserver polynomial A,. A
fast chserver (¢ = 0) gives & very good rejection of load disturbances, but much
measurement noise is also injected into the system. With a slow ohserver {a = 0.9),

much less measurement noise is injected into the system but the attenuation of
load disturbances is not so good. a

E(z)
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Selection of Sampling interval

The cheice of sampling interval was discussed in Sec. 4.3 for the pole-placement
design based on state feedback. The same arguments can be ueed for the method
given in this chapter. This means that the sampling interval should be chosen in
relation to the desired closed-loop behavior. Notice, however, that all closed-loop
poles must be taken into consideration. This is further discussed in the following
sectiona. The simple rule of thumb to have 4 to 10 samples per rise time of the
closed-loop aystem or 15 to 45 samples per period may be inadequate for high-
order systems where the rise time to command signals and disturbances may
be very different.

Validation

After a controller is obtained it is important to investigate the closed-loop sys-
tem obtained to determine if it satisfies all requirements. To do this we must
investigate the response to command signals and disturbances and the sensi-
tivity to modeling errors.

In the nominal case when the process model is correct it follows from
Eq. (5.33) and (5.45) that the response of the closed-loop system obtained by
Algorithm 5.3 is given by

B, BR;R B 8,8
¥= =l + v— e
Am A*Ay Ay
_Bn BR;R  AR4R
A= shbl VRl i
_AB, B §,8 AS;§

Notice that these responses are completely characterised by six pulse-transfer
functions. The properties of the system can be illustrated by time or frequency
responses. Tb get a proper assessment of the system it is important to investigate
the responses of all signals to all inputs.

Consider, for example, the response to command signals. If there are no
disturbances it follows from Eq. (5.51) that

H
u="u (5.52)

This equation gives the control signals for a desired command signal. Notice
that the ratio H,/H also appeared in the robustness analysis. Compare this
wjth Figure 5.6. The fact that very large control signals are required for a
given command signal is thus 4 very good indication that the system is highly
sensitive to modeling errors.

To judge the sensitivity to modeling errors it is useful to compute tha
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loop-transfer function

BS _ B-5,8
AR ~ A-R4R
and to evaluate amplitude and phase margins and crossover frequencies. It is
also useful to investigate the sensitivity function

1 AR _ARR
1+L AR +BS =~ A,

L= (5.53)

§=

(5.54)

5.7 Design of a Controller for the Double integrator

In pole-placement design we are primarily choosing the pelynomials A, and A.,
whose zeros are the closed-loop poles, and the sampling period. To make proper
choices it ia important to understand how they influence response to command
signals, load disturbances, measurement noise, and sensitivity to modeling er-
rors. This is illustrated in this section where we consider control of a double-
integrator plant. The design will be based on Algorithm 5.1.

Process Model
Consider a process with the transfer function
G{s) = :%

where & = 1. This could, for example, be a simplifiod model of the arm servo of
a compact disc player. The sampled pulse-transfer function is

2
H(‘)Jz"(:ﬁ)ﬂ

Specifications

The properties of the closed-loop aystem are specifiod indirectly by requiring
that the polynomial A, is the discrete-time equivalent of

#+2ws+ P
Hence

A (2) =2 - 22" cos (wh«,/l - {’) +etioh o a2 40

An observer of second order is required if we want a controller with integral
action. The observer polynomial is chosen as the discrete-time equivalent of a
continuous system with two poles at # = —a. Hence

Adg)=(z-e ™ =2 taaz + g
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Controller Design

The controller design is now straightforward. The Diophantine equation {5.4)
becomes

(z - 17R(z) + 5‘; 2+ 1S(2) = Au(2)Ad2) = Aale)

where it is required that R have a zero at 2 = 1. The minimum-degree solution
with no controlter delay is such that both R and $ are second-order polynomials,
that 1s,

S(2) = s02° + 512 + 5

Riz) =22 +rz+ry=(z+rHz 1)
Straightforward calculations give

Aci(1) - 247,(1) + 24%(1)

50 = 41
~Au(1) + 24, (1) - A7)
41 = 72
2= 4R
Agl-1
"= cé )
ry = 1- Aci(s_l}

where A,(z) and A);(2) are the first and second derivative of A.; with respect
to z. The polynomaal T is given by

T(z) = Ac(1)Ao(z) _ (1+aci +ae)Ao(2)

B(1) H?

Nominal Design

The design parameters that the user has to choose are the polynomials A,
and A,, which specify the closed-loop poles, and the sampling period k. The
closed-loop poles are parameterized in terms of {, w, and a, that is, in terms
of continuous-time equivalents. The nominal parameter values are chosen as
{ =0707T, w = 02, & = 2, and h = 1. This choice means that the observer
poles are an order of magnitude faster than the dominant poles. The sampling
rate is chosen so that wh = 0.2, according to the recommendation in Sec. 5.6.
This choice, however, does not take the observer dynamics into account, With the
chosen sampling period we have e~ = 0.135. The sampled observer poles are
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Figure 5.10 Simulation of the nommal design, which has parameters
w=02{=077, a=2andh =1

thus close to the origin, A simulation experiment is performed to iltustrate the
properties of the nominzl design. The experiment is chosen to show responses
to command signals, load disturbances, and measurement noise. A unit-step
command signal is first applied to the process. A load disturbance in the form
of a negative step with amplitude 0.05 at the plant input is then applied at time
50. Finally, a high-frequency sinusoidal measurement error e(%) = 0.01sin 2t is
introduced at time 100 to show the response to high-frequency measurement
noise. The results are shown in Fig, 5.10. Notice that frequency folding is clearly
noticeable in the control signal. The Nyquist frequency is 0.5 Hz = # rad/s and
the measurement noise has a frequency of 2 rad/s. In a practical case it would
thus be important to use a proper prefilter. This is discussed in more detail in
the example in the next section.

Changing @ and {

The polynomial A, determines the response to command signals. It also influ-
ences the response to load disturbances and measurement errors. Figure 5.11
illustrates the consequences of changing @. The results are as we can expect.
The response time and the error due to load disturbances decrease inversely
proportional to the bandwidth. When the bandwidth is increased, the control
signals also increase. The initial control signal is approximately proportional to
the square of the bandwidth. Saturation of the control signal thus limits the
admissible bandwidth.

Different choices of @ have only moderate effect on the response to mea-
surement noise. The fluctuations in the control signal are mereased a little when
the bandwidth is increased. The effects of changing damping ¢ are also as can
be expected. A command response without overshoot is obtained for { = 1.
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Figure 5.11 Simulation of pole-placement controllers when changing ®.
(a) Qutput for @ = 0.1 {dashed), 0.2 (solid), and 0.4 (dashed-dotted). (b)
Control signal when » = 0.1. (c) Control signal when @ = 0.4.

Changing Observer Poles

The observer has two poles at z = e %" or equivalently at s = —a in the
continuous-time representation. Figure 5.12 shows the effect of changing & from
its nominal value @ = 2. The figure shows that the observer poles influence
the response to load disturbances and measurement noise. The response to
command signals is, however, the same for all observer polynomials, as can be
expected. The response to load disturbances is improved when the observer is
made faster (@ = 10). The reason for this is that the disturhance is observed
faster, which implies that the control signal responds faster to counteract the
disturhance. Compare the contrel signals for & = 0.5 and & = 10 in Fig, 5.12.
Also notice that the improvement in increasing & from 2 to 10 is marginal. The
reason for this is that with the chosen sampling period an observer with o = 2
is close to a deadbeat observer. The response to load disturbances is essentially
determined hy the delay in observing the disturbance due to the sampling. The
influence of measurement noise is decreased by making the observer slower, as
is also clearly seen in Fig. 5.12. Selection of the observer polynomial is thus a
compromiise between response ta load disturbances and measurement noise,
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Figure 5.12 Simulation of pole-placement controllers when changing the
observer poles. (a) Cutput for & = 05 (dashed), 2 (solid), and 10
(dashed-dotted). (b} Control signal when & = 0.5. {c) Control signal when
a =10

Changing the Sampling Period

The sampling period was chosen so that wh = 02, where ® represented the
dominating (slowest) closed-loop poles. Figure 5.13 shows the response of the
system when the sampling period is changed. The figure is obtained by sampling
the system and calculating the control laws for different sampling periods. Fig-
ure 5.13 shows clearly that the sampling period has a significant infivence on
the response to load disturbances. The error due to load disturbances increases
with increasing sampling period and decreases with decreasing sampling period.
The reason is that with a sampled system there is always a delay in observing
and reacting to a disturbance. This is clearly noticeable in the control sigual
m Fig. 5.13. The disturbance is a step in the load applied at ¢ = 50. With a
sampling period h = 2 the control system first reacts at time ¢ = 52 when the
disturbance has generated a large error. With a sampling interval h = 0.2 the
control signal reacts much quicker before a control error is huilt up. The result
is that the overshoot in the control signal is also much smaller. The benefits
in making the sampling pertod shorter than 0.2 are marginal. The reason is
that the observer poles are at & = 2. With 2 = 0.2 the disturbance response
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Figure §.13 Simulation of pole-placement controllers when changing the
sampling period. {a) Qutput for & = 0.1 {dashed-dotted), 1 {solid), and 2
(dashed). (b) Control signal when h = 2. (c) Control signal when h = 0.1,

is esgentially determined by . It is necessary to reduce & and increase & to
further improve the response to lead disturbance,

Notice that a reasonable choice of sampling period is ak =z 0.2. We can
thus draw the important conclusion that to choose the sampling peried properly,
it is necessary to consider all closed-loop poles, not just the roots of A,.

Sensitivity to Modeling Errors

The process model has one parameter, the process gain k. Figure 5.14 illustrates
the consequences of changing the process gain for the nominal design with
k = 1. A gain change of 20% has little effect on the system, but an increase
or decrease of a factor of 2.5 is not acceptable. An interesting observation is
that the sensitivity to process changes is reduced by using a shorter sampling
period. This is illustrated in Fig. 5.15.

Additional insight into the sensitivity to modeling errors is obtained by
investigating the loop-transfer function

_Bs

LAR
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Figure 5.14 Outputs of the system with the nominal controller when the
process gain is changed. {a) & =04, (b} £ = 0.8, (c) 2 = 1.2, and (d) & = 25.

1 = - S -
H = A\
£ :
o Q
0 0
0 50 100 ] 80 100
(e) (d}
s 1 = - g 1— P
B &
S o
o
0 0
{ 50 100 0 50 100
Time Time

Figure 5.16 Outputs of the system with the controller obtained for k = 0.2
when the process gain is changed. (a) 2 = 04, (b) k = 08, (¢) 2 = 1.2, and
(d) k = 2.5,

whose Bode diagram is shown in Fig. 5.16 for systems with sampling periods 0.2
and 1. Figure 5.16 gives a good insight into the behavior of the system. The loop-
transfer function has a phase lag of —270° at low frequencies. The controllers
provide a significant phase lead to obtain a stable closed-loop system. Notice that
the phase curves of the two systems are almost the same for low frequencies.
The phase of the system with sampling period % = 1 does, however, decrease
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Figure 5.186 Bode diagram for the loop-tranafer functions L of the systems
with sampling periods & = 0.2 (dashed line) and & = 1 (solid line).

more rapidly after the maximum. With = 1 the phase margin is ¢,, = 42°;
and the closed-loop system is stable for 053 < 2 < 3.03. For £ = 0.2 the
corresponding values are ¢, = 57° and stability of the closed-loop system is

_obtained for 0.25 < k < 4, which explains the differences in robustness for
systems with different sampling rates.

0.01

10

Frequency, rad/s

Figure 517 Amplitude curve for the sensitivity function § for systems with
sampling periods & = 0.2 {dashed) and 4 = 1 {sclid line).
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A Bode diagram of the sensitivity function S is shown in Fig. 5.17. The
maximum sensitivity is 1.8 when £ = 1 and 1.3 when 2 = 0.2. The curve
indicates the frequency ranges where high model precision is required. Even if
the bandwidth of the system measured from the command signal to the output
is 0.2 rad/s, it is necessary that the process model is reasonably accurate for
frequencies up to 1 rad/s. The medel precision required in the frequency range
0.1to 1rad/s is alittle higher if the sampling pericd & = 1is used. The precision
at frequencies higher than 1 rad/s is, however, less for the system with slow
sampling. If there are considerable unmodeled dynamics at frequencies higher
than 2 rad/s, the design with £ = 1 may thus be preferable. Also notice that in

a properly designed system there will be antialiasing filters that influence the
sensitivity. This will be discussed in the next section.

5.8 Design of a Controller for the Harmonio Oscillator

The discussion of pole-placement design based on polynomial methods will be
continued in this section. The process considered is the harmonic osecillator.
Particular emphasis is given to the influence of the antialiasing filter.

Process Model

Let the process be the harmenic oscillator with the transfer function

See Example A3, The sampled pulse-transfer function is

1- B
e

Specifications

The desired response is characterized by the continuous-time characteristic
equation

st 2lws + @ =0

The sampled-data form of this polynomial is A.(z). Because the pulse-transfer
function has a zero at —1, no zero cancellation is allowed. This implies that
B* = 1and B, = const- B. It is specifled that the controller should have
integral action. This implies that the observer polynomial at least should be of
second order, We choose it as the discrete-time equivalent of

§2 + 2 e lged + 0,
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Controller Design
The Diophantine equation (5.4) is
(@ - 2z + VR() + (1- B){z + 1)8(2) = Aol2)Ad2) = P(2)
where
R(z) = (z+ )z - 1)
S(z) = 5022 + 512 + 82
P(2) = Ao(2)Aulz) = 2* + p12° + paz* + pst + pa

The controlier parameters are given by

P
Tl TR
p—r+1+24
Sp = 1-ﬁ
_p—n=28+ 21+ B)(r-1)
sy = TP
we B

The polynomial T is given by

B(1)
(a} ‘| {b)
o1 —————— 1 Somras
s 2 Y
ey &
o 5
o Lw]
0 0 -
0 20 40 0 20 40
% 2 52
A, A
S V--f=-—ﬂﬂﬂ“ 5 IF“HJ WM¥
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Time Time

Figure 5.18 Simulation of the nominal design for the harmonic oscillator
when @ = 15, Wue = 3, { = {upe = 0.7, and 2 = 0.2. (a) Without an
integrator. (b) With an integrator in the controller.
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Figure 5.19 Response of the pole-placement design for the harmeonic oscil-
lator for different observer dynamics. () Was = 4. (b) @y = 8.

Nominal Design

The nominal parameter values are chosen as { = 0.7, ® = 15, {y = 0.7,
Wobs = 3, and A = 0.2. These specifications imply that significant damping is
introduced and that the response speed is increased compared with the open-
loop system. The choice of sampling rate implies that wh = 0.3 and wgh = 0.6.
Recall the rule of thumb 0.1 < wk < 0.6. Figure 5.18 shows the output and input
when the reference sigual is a step at ¢ = 0, a step disturhance at the mput
at ¢ = 153, and discrete-time white measurement noise with standard deviation

0.01 at ¢t = 30.
Changing Observer Poles

Figure 5.19 shows the response when the observer poles are changed to w,
= 4 and 8. The load disturbance is eliminated faster with a faster observer
dynamics, but the noise sensitivity also increases.

Changing the Sampling Period

The sampling period in the nominal design was chosen such that
ﬂ)obﬁh =06

which is according to the upper limit of the rule of thumb. Figure 5.20 shows
the responses when the sampling period is changed, & = 0.1 and 1. As for the
double integrator in the previous section, the controller will respond faster after
load disturbances when the sampling interval is decreased. A too-long sampling
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Figure 5.20 Response of the pole-placement design for the harmenic oscil-
lator for sampling intervals {a)h = 0.1 and (b) h = 1.

interval will increase the deviation after the load disturbance. Also, the aliasing
effect is seen when there is measurement noise, because no antialiaging filter
is uged. The example shows that the rule of thumb for the choice of sampling
interval gives a sensible result.

Influence of Antialiasing Filter

Figure 5.18 indicates that a significant amount of measurement noise is injected
into the system. A properly designed antialiaging filter can reduce this. The filter
will, however, introduce extra dynamics into the system. The closed-loop system
will be unstable when the nominal controller is used because of the phagse lag
of the antialiasing filter. The filter dynamics should thus be considered when
designing the controller. This will be discussed in detail in Chapter 7, Bessel
filters are commonly used as antialiasing filters. One of their nice properties is
that their dynamics can be approximated with a time delay, which simplifies
the design and reduces the order of the controller. A sixth-order Besgel filter
is approximated as a delay of r = 2.7/wg. The filter bandwidth is chesen as
wp = 27, which gives ¢ = 0.43. To incorporate the delay it is necessary to
increase the order of the controller such that degR = degS = degT = 5.
Figure 5.21 shows the response with an antialiasing filter when the design is
made by approximating the filter by a delay. The measurement noise, which is
a discrete-time white-noise sequence with a sampling period of (.01, starts at
t = 30. A comparison with Fig. 5.20 shows that the fluctuations of the control
signal due to measurement noise are reduced substantially. The filter, however,
will increase the deviation after the load disturbance because of the additional
dynamics,
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Figure 5,21 Response of pole-placement design when using an antialiasing

filter. Output and input when the filter is approximated with a delay in the
design.

Robustness

The consequences of modeling errors will now be investigated. To do this it is
assumed that the real process has the transfer function

2

w kiay -

G'(s) = 0 5 {@q - 5)
P+ ag+s

instead of G(s) = w2/(5% + w2). This means that the real system has additional
phase lag that has been neglected in the design. Figure 5.22 shows the influence
of unmodeled dynamics when a; = 15 and 10 and when the nominal controller
is used. The flgure also shows the sensitivity to gain variations.

The Bode diagram for the loop-transfer function £ in the nominal case is-
shown in Fig. 5.28. The figure shows that the phase margin is reduced when the

{a) (h)
1 A
5 T" v e BEY
& iy
S 3
o
0 0
0 20 40 0 20 40
{e) (d}
> 1 3 1 7\1 \r ‘M
& o,
5 5
o
0 0
0 20 40 0 20 40
Time Time

Figure 5.22 Responses when using the nominal controller when (a)
a; =15and & = 1, {b)ay = 25 and k = 05, (c)a; = 10 and k = 1,
and (d) a; = 25 and £k = 15.
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Figure 5.23 Boede diagram for the loop-tranefer function £ for the nominal
process for the harmonic oscillator.

gain is decreased. This explains the simulations in Fig. 5.22 where the system
hecomes more oscillatory when the gain is decreased.

5.9 Design of a Controller for a Flexible Robot Arm

In this section we will discuss design of a controller for a robot arm with a flex-
ible joint. This problem was discussed in Sec. 4.7, The process that is described
hy Eq. (4.65) is of third order. It has one integrator, two poorly damped complex
poles at -0.06 4 0.999i, and one zerc -10, Guided by the analysis in Sec. 4.7

we choose a sampling period A& = 0.5 s. Furthermore we choose a second-order
antialiasing fliter

2
i

3
2 + Ldays + oy

with @y = 2 rad/s. The fllter has a gain of about 0.1 at the Nyquist frequency
@y ~ 6 rad/s,
We will consider two different controllers. One controller does not attempt

to damp the poorly damped process pole. The other will introduce active damp-
ing of the process pole.
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Figure 5.24 Pole-zero diagram for the process and the filter sampled with
n = 0.3, The leftmost zero represents the zero at -12.1314.

Sampling the Process

The poles of the filter and the process and the antialias filter are of the same
magnitude. The filter dynamics must thus be taken into account in the design.

Sampling the process and the filter with & = 0.5 gives a discrete-time
model model with

o o

Afz) = (2° - 0.7505z + 0.2466) (2% — 1.7124z + 0.9512)(z - 1)

v

filter process

B(z) = 0.1420- 1073(z + 12.1314)(z + 1.3422) (z + 0.2234)(z - 0.0023)

The poles and zeros of the sampled system are shown in Fig. 5.24.

Specifications

It is desired to cbtain a closed-loop system with a good response to command
signals. The response should be similar to a second-order system with ¢, = 0.5
rad/s and a relative damping ¢, = 0.7. These specifications were discussed in
Sec. 4.7. The system composed of the robot joint and the antialias filter is of

fifth order. The polynomial A, is thus also of fifth order. Three of the poles are
cbosen as the discrete-time equivalents of

(s + 20005 + @2) (s + 0w,)

The remaining poles are chosen as the diserete-time equivalents of the poles of
the antialiasing filter.
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Notch Filter Design

The frequency associated with the mechanical resonance o, = 1 is close to the
desired closed-loop frequency @, = 0.5. It is then necessary to take the mechan-
ical resonance into account when designing the control loop. A classic methed
for doing this is to introduce a compensating network that aveids unnecessary
excitation of the oscillatory process poles. The filter that accomplishes this is
called a notch filter because its Bode diagram has a notch at the frequency of
the undesired modes, This approach ensures that the oscillatory modes will not
be excited hy the command signals or the control action. However, it does not in-
troduce any damping of the oscillatory modes. This means that the system will
respond to excitation of the oscillatory modes in the same way as the open-loop
system. A notch filter can be designed using pole placement simply by canceling
the factor A*(z) corresponding to the oscillatory modes. In the particular case
we have

At(z) = 2% - 1.7124z + 0.9512
The Diophantine equation (5.28) is
AR + BS = A*A A,

It follows from the degree condition of the general pole-placement procedure,
Algorithm 5.3, that the closed-loop system is of order 9. The polynomial A* is
of second order, A, is of fifth order, and the chserver polynomial A, is thus of
second order. We choose A, to have the same poles as the antialiasing filter, The
controller polynomials R and S are of fourth order. Introducing § = A*S into
the preceding equation gives the following Diophantine equation for R and S.

AR+ BS = AA,

The response to command signals is given by the transfer function BT/A* A A,.
If we choose

1) - AL AL

the command signal will not excite the resonant medels A* and the steady-state
gain is une. The response of the closed-loop system when using the notch-design
controller is shown in Fig. 5.25. The reference signal is a step at ¢ = 0, and the
disturbance v is a pulse at ¢ = 25 of height —10 and a duration of 0.1 s, The
response of the system is according to the specifications. Compare with Fig. 4.20.
There is no excitation of the weakly damped modes by the reference signal or by
the control signal. However, it is unavoidable that the pulse disturbance excites
these modgs and causes the oscillation in the response. The oscillation does,
however, not introduce any control actions because of the notch filter.
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Figure 525 Response of the closed-loop system using the a controller based
on a natch filter.

Active Damping of Oscillatory Modes

With the notch-filter design the controller makes no attempt to damp the oseil-
latory medes. A new design will now be done such that the servo performance
15 the same but the oscillations are also damped. Assume that the damping of
the oscillatory modes should be changed from the open-loop damping ¢, = 0.05
to 0.707. Further assume that the damped frequency should be the same as
befeore. This corresponds to the continuous-time poles

p1z = ~0.707 +0.707

Let the corresponding discrete-time polynomial be denoted A,. Because deg A =
5 the closed-loop system is of ninth order, The polynemial A, is the same as

before and we choose the observer polynomial as A, = A;A,. The Diophantine
equation (5.28) then becomes

AR+ BS = AcAdAf

and the solution is ohtained in the usual manner. The response of the closed-
loop system is shown in Fig. 5.26. Compare Figs. 4.20 and 5.25. The servo

performance is the same as before and the oscillatory modes are now damped
by the controller.

Comparison

To obtain additicnal insight into the properties of the controller we compute
the loop-transfer functions £ for both systems. This is shown in Fig. 5.27. The
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Figure 5.26 Response of the closed-loop system using the controller de-

signed for active damping.

figure shows that the design based on a notch filler has higher gain at lower
frequencies. This can also be seen by comparing the magnitude of the first peak
of the load disturbance responses in Figs. 5.25 and 5.26. The loop-transfer func-
tion for the controller with the notch filter is, however, misleading because of
the canceled factor that does not appear in the loop-transfer function. The sys-
tem with active damping has a much higher gain around the frequency 1 rad/s,

which corresponds to the poorly damped mode.

The sensitivity functions for the systems are shown in Fig. 5.28. The figure
shows that the design with active damping is more sensitive to modeling errors

than the design based on the notch filter.

100 . ¢

Gain

0.01

0.01 0.1 1
Frequency, rad/s

10

Figure 5.27 The magnitude of the looptransfer function L. Gain is shown

with notch design (golid line) and active damping (dashed line).
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Figure 528 Amplitude curve for the sensitivity function § for a system
with notch design (solid line} and a system with active damping of the rese-
nant mode (dashed line).

5.10 Relations to Other Design Methods

Pole placement is a general approach to the design of single-input-single-output
systems. Many other design methods may be interpreted as pele-placement de-
gign. It is useful to do this hecause it gives a unified description of seemingly
different design methods. The interpretation as pole-placement also gives in-
sights into the different design metheds.

Root Locus

The root-locus method is a classical technique for the design of control systems.
The method is based on the idea of attempting to place the closed-loop poles in
desired positions. Thus it is closely related to pole placement. In this method,
polynomials R and § are first chosen as R = 1 and § = K, which correspond

to proportional control. The gain X is then changed and the roots of the char-
acteristic equation

A+KB =0

are investigated. The roots of this equation can easily be sketched for varying K .
If a reasonable pole placement cannot be obtained, the orders of the polynomials
R and & are increased uging heuristic rules. The procedure is then repeated.

The root-locus method can clearly be regarded as a pole placement tech-
nique. By applying pole placement the complexity of the controller required to
position all poles can be found directly. With pole placement all poles are posi-
tioned in one operation. The complexity of the controller is determined by the
complexity of the process model used in the design.

Error Feedback with Complete Cancellation

In some systems the process output y and the command signals u. are not
available because only the error ¢ = u, — y is measured. This case is called
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error feedback. A typical case is a CI} player in which only the deviation from
the track can be measured, This means that a two-degree-of-freedom controller
cannot be used. Mathematically it means that the polynomials S and T in the
controller are identical and the control law (5.2) becomes

Ru = S(u. - y)

Several design schemes combine error feedback with cancellation of all poles
and zeros of the process. To analyze a system assume that the process has
the pulse-transfer function B{z)/A(z) and that the desired closed-loop pulse
transfer function is B.(z]/A.(z). The closed-loop characteristic polynomial is
A(2)B(z}A.(z) and the Diophantine equation (5.4) becomes

AR + BS = ABA, (5.55)

I follows from this equation that R = BR and § = AS. To obtain the desired
closed-loop response B, must be a factor of S. The minimum-degree controller
is then S = B,, and it follows from (5.55) that

R=A -8B,
The controller thus becomes
S AB,
7 = —-—-———R(Aca 2) (5.56)

Ip this case we find that there is a very simple explicit solution to the pole-
placement problem. A severe drawback of the method is that both poles and ze-
ros of the process are canceled. To do this they must be stable and well damped.
It must also be required that they are not heavily excited by disturbances.

The Dahlin-Higham Algorithm

The Dahlin-Higham design method was popular in early digital process control
design because the calculations required for the design are very simple. It is
a special case of error feedback with complete cancellation, where the process
pulse-transfer function has the form

b
H(z) = ———
&= (557)
and the desired closed-loop response is given by
1- r
H(7) = ——— (558)
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It follows from Eq. (5.56) that the controller is

S(z) #(z-a)(1-a)

R(z) - b2z —a.) — b(1—a,) (5.59)
The control law can be written as
u(k) = 1‘6"‘° (y(k) —ay(k= 1)) + acu(k~ 1) + (1~ aJulk—d - 1) (560)

Because the algorithm is based on cancellation of all poles and zeros of the
process, no poles or zeros can be allowed outside the unit disc. There will also
be problems with ringing due to cancellation of stable but poorly damped zeros.

Smith-Predictor

The Smith-predictor is a special method of dealing with systems with time
delays. A block diagram of the controller is shown in Fig. 5.29. The controller
consists of a feedback controller G, and a loop around it that contains a process
model. The controller G. is designed as if the time delay T in the process
was absent and the feedback around the controller ensures that the system
with the time delay will be well behaved. The Smith-predictor can give a very
good response to command signals. The limitations inherent with time delays of

course cannot be avoided. We will illustrate the properties of the Smith-predictor
with an example.

Example §.11 Smith-predictor

A time-delay process is described in Example A4. The process can, for instance,
represent a paper machine. Assume that the process in (A.10) has a delay of 2
time units and that the sampling time is h = 1. The system is then desecribed by
the model

y{k+1) = 0.37y(k) + 0.63u(k — 2)

entroller

Cconteoller 7
|

G

r

|
\
|
Process model {
|

Figure 529 Block diagram of a Smith-predictor.
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Figure 530 Pl-control (dashed) and Smith-predictor control (solid) of the
process in Example 5.11 with a time delay.

(see Example 2.6), If there were no time delays, & Pl-controller with gain 0.4 and
integration time T; = 0.4 would give good control. This Pl-controller will not give
good control if the process has a time delay. To obtain good Pl-regulation, it is
necessary tp have a gain of 0.1 and T; = 0.5, The response of this controller is
illustrated in Fig. 5.30. The set point is changed at ¢ = 0 and a step disturbance
is introduced in the output at ¢ = 20. In Fig. 5.30 we also show the response of
the Smth-predictor. Notice that the step response is faster and that the system
recovers faster from tha load disturbance, "

Having found that the Smith-predictor can be effective we will now proceed to

analyze it from the point of view of pole placement. Consider a process with the
pulse-transfer function

_B@) _ Bl _ B

He) =70 = #ata - 7ae)

(5.61)

where the polynomial deg A’ > deg B.

First, design a controller for the system B (2)/A’(z) without delay to give
a closed-loop characteristic polynemial A),. The Diophantine equation (5.4) for
this problem becomes

AR + S'R' = A, (5.62)

furthermore we have TV = f4,.

Now consider the system with delay. Determine a controller that gives
a closed-loop system with the characteristic polynomial 2°A(z)A’ (z). The Dio-
phantine equation for this problem is

AR + BS = z%AA, (5.63)
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The solution is such that § = AS. Hence
R+BS =24, (5.64)
Among the infinitely many solutions to this equation we choose
§=48

_ 5.65

R=z4,-8 (5.65)
This solution is causal because degS = degA + degA’ —~ 1 and degR =d +
2degA’ ~ 1 =degA +deg At — 1. Notice that

R=2%A, -8 =2AR' +(2* - 1)BS' = AR' + (:° - 1)BS’
Furthermore 7' = AT". The controller
Ru = Tu,— Sy
then becomes
(AR' +(24- 1)BS') u=AT'u — AS'y

This control law can be written as

T.' Sr B T: S.! _ B
u=Fuc—§(y~deu):ﬁuc—ﬁ(y—(l—z d@”)) {5.66)

A comparison with Fig. 5.29 shows that the controller is the discrete-time equiv-
alent of the Smith-predictor in the figure. Notice that we can immediately con-
clude that the Smith-predictor is based on cancellation of all process poles.
Thus it can only be applied to stable processes. It is, however, easy to modify
the procedure to give a stable closed-loop system simply by replacing A on the
right-band side in Eq. (5.63) with a stable polynomial.

Internal-Model Control

The internal model controller (IMC) is a control structure that has been par-
ticularly popular in process control. A block diagram of the system is shown
in Fig. 5.31. The idea is conceptually simple and attractive. It follows from the
figure that if H, = H,,, then the signal £ does not depend on the control sig-
nal. Moreover it is identical to the disturbance ¢. Perfect compensation of the
disturbance is then obtained if H, is chosen as the inverse of H,. Such a con-
troller is not realizable and some approximate inverse is therefore chosen. It is
also common to introduce a filter Hy in the loop, as is shown in the figure. The
controller in the dashed lines has the pulse-transfer function

___HH,
1-HHLH,

c
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Figure 531 Block diagram of a process with a controller based on the
internal model principle,

The controller can be interpreted as a pole-placement controller with cancella-
tion of process poles and zeros. Assume that the process has the pulse-transfer
function

_ B
Y
where the polynomials A and B are chosen so that deg A" = deg B. Further-

more consider the ideal case when Hy, = Hy,. An approximate realizable system
inverse is then

H, (5.67)

Hy=% (5.68)
Furthermore let the filter be
B
H ==L (5.69
f Af )

Simple caleulations show that the controller is in the standard form (5.2) with
R=(AA;—A'B/)B
8 = AA'B; {5.70)
T=8

Notice that if the filter has unit static gain, that is, H;(1) = 1, it follows that

R(1} = 0, which implies that the controller has integral action.
The closed-loop characteristic polynomial is

AR +BS = A*BA; (5.71)

The closed-loop poles are thus equal to the poles and zeros of the process, the
poles of the model and the poles of the filter Hy. The poles and zeros of the
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process must thus be stable and well damped. Notice the similarities with the
Youla-Kucera parameterization in Fig. 5.7.

There are many different versions of the internal model controller. They
differ in the way the approximate inverse is computed and in the selection of
the filter H,.

The Torque Observer

The torque observer shown in Fig. 5.32 is a control scheme for motion-control
systems that is similar to the IMC. The idea is that disturbances in motion-
control systems typically appear as torques at the process input. The idea is
similar to the IMC. The transfer function H,, is a model of the process, H™ is
the noninvertible part of H,,, and H}. is an approximate inverse of H,,. The
error ¢ is identical to the disturbance torque v if H- = 1 and H, is an exact
inverse. If the process cannot be inverted exactly £ is an approximation of v. This
disturbance is then compensated by feedback through filter H;. Assume that
the pulse-transfer function is given by (5.67), that H,, = H,. Then H~ =279,
the inverse H' is given by Eq. (5.68), and the filter is given by Eq, (5.69). Simple
calculations show that the controller can be written on the standard form with

R = [szf — Bf)BR,
S =2%A;BSy+ AB:R, (5.72)
S = szfB To

If the filter has unit static gain we have Af{1) = B/(1), which implies that

R{1} = 0 and that the controller has integral action.
The closed-loop characteristic polynomial is

AR +BS =2%A;B(ARy + BSy) (5.73)
Controller v
. """ —""—7== ] Process
¢ | _ y

| 1R0:80, T : H,

l |

| |

| H | LH, |y

l |

| E |

- +
l |
I |

Figure 5.32 Block diagram of a process with a controller based on a torque
observer.
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The closed-loop poles are thus the poles of the system without the torque ob-
server, the process zeros, and the poles of the filter H;. We must thus require
that the filter is stable and that the process has no unstable zeres. It is straight-
forward to avoid these assumptions by applying a general pole-placement algo-
rithm, Also notice the similarities with the Youla-Kucera parameterization in
Fig. 5.7.

5.11 Conclusions

It is quite natural to approach pole-placement control by pelynomial caleula-
tions. In this chapter we have investigated control of the system

A generai controller can be represented as
R(q)u(k) = T(q)u.(k) - S(q)y(k)
and the design reduces to solving the Diophantine equation
A(z)R(z)+ B(2)8(z) = A, (2)

where A, (z) is the desired closed-loop characteristic polynomial. By making
analogies to the state-space approach we also found that for a simple design
problem, the closed-loop characteristic polynomial A.; can be factored into a
controller polynomial A, and an cbserver polynomial A,, This gives a very conve-
nient way to compute Luenberger observers and other reduced order observers.
The problem of cancellation of poles and zeros has also been discussed. It was
shown that requirements on attenuation of disturbances and model following
can be expressed by requiring that the polynomials R and S have specified
factors.

With the polynomial approach we also obtain a natural way to discuss
the effects of uncertainties in the process model used to design the controller.
Finally we showed that many different design techniques can be conveniently in-
terpreted as pole placement. In summary we find that the polynomial approach
is a valuable complement to the state-space approach. Tt gives additional insight
and other computetional procedures.

5.12 Problems

8.1 Use Euelid’s algorithm to determine the largest common factor of the polynomials

Biz) =2° - 22 + 1452 - 035
Afz) = 2* - 262° + 2.352% - 0.8z + 0.1
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5.2

53

b4

%

5.6
5.9

Given the pulse-transfer function

1
Hiz) = —
{z) z+a
and let the desired system be given by
(2} = 1+
z+a

{a) Determine a controller of the form (5.2) using Algorithm 5.1.
(b) Determine the characteristic polynomial of the closed-loop system.

Consider the system given by the pulse-transfer function

z+0.7

He) = 8 1o

Use polynomial design to determine a controller such that the closed-loop system
has the characteristic polynomial

22— 152 +07
Let the observer polynomial have as low order as possible and place all observer
poles in the origin. Consider the following two cases:
(a) The process zero is canceled.
(b) The process zero is not canceled.

Simulate the two cases and discuss the differences between the two controllers.
Which one'should be preferred?

For the system in Problem 5.2, assume that the feedback can be made only from
the error. Thus the controller has the form

S
) = 3 (uclh) - 5(8)
(a) Determine S/R such that the desired closed-loop system is obtained.

(b) Determme the characteristic equation of the closed-loop system and compare
it with Problem 5.2. Consider, for instance, the case when ja| > 1.

Consider the system in Problem 5.2 and assume that the closed-loop system should
be able to eliminate step disturbances at the input of the process. This means that
v in Fig. 5.3 is a step.

(2) Analyze what happens when the controller derived m Problem 5.2 is used and
when v is a step,

(b) Redesign the controller such that the specifications will be fulfilled.
Show that (541) is correct.

Consider the system in Problem 5.2 and assume that a = ~0.9 and @ = —6.5.
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(a} Use straightforward caleulations to determine the influence of modeling er-
rors. Assume that the design is made for a = —0.9 and determine the stability
of the closed-loop system if the true process has a pole in a°.

(b) Use Theorem 3.5 to determine the influence of modeling errors. What happens
when « i8 decreased?

58 Consider the system in Problem 5.2. Use (5.52) to determine the maximum value
of the contro! signal as a function of o and & when the command signal is a step.

5.9 A polynomial design for the normalized motor is given in Example 5.5 Simulate
the system and investigate the sensilivily of the design method with respect fo the
choice of the sampling interval Assume that the closed-loop specifications corre-
spond to a second-order continuous-time system with damping { = 0.7 and natural
frequency @ = | rad/s.

5.10 Consider the system described by

Ai(z)x(k) = By (2)uik)
Ay(2)y(R) = By(2)x(k)
Assume that the variable to be controlled is x{k}, but that the measured varizble is

y{k). Further assume that A, has its roots inside the unit disc. Derive a controller
of the form (5.2} such that the closed-loop system is

A(2)x(z) = Bulz)u.(k)
What are the restrictions that have to be imposed? How will uncertainties in A,
and B, influence the pulse-transfer function of the closed-loop system?
8.11 Consider the two-tank system in Problem 2.10 for & = 12 5.
(a) Use polynomial methods {0 design a controller with an integrator. Assume
that the desired closed-loop characteristic equation is

22 -1552+064 =0

This corresponds to £ = 0.7 and & = 0,027 rad/s.

{h) Redesign the controller for different values of @ and study how the magnitude
of the control signal varies with .

§.12 Consider the contro} of the normalized motor in Example A.2. Show that veloc-
ity feedback can be designed using pole-placement design. (Hint: First, design a
feedback law with position feedback enly. Show then that the control law can he
rewTitten as a combination of position and velocity feedback.}

8.13 Generalize the results in Problem 5.12 to a general process with several ougputs.
5.14 Assume that the desired closed-loop system is given as the continuous-time model

0.01
52 +0.145 + 001

Gm(s) =

(a) Choose an appropriate sampling interval.
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(b) Determine the corresponding discrete-time transfer operator. Sketch the sin-
gularity diagram for the confinuous- and the discrete-time systems, respec-
tively.

5.15 Assume that the process has the pulse-transfer operator

. 04q+03
H) = T voes

Use pole placement to design a controller satisfying the following specifications:
e Static gain =1

» Mimimal degree of the ohserver polynemial

« Cancellation of process zero

+ No integrator

¢ Desired characteristic polynomial

A =q*—07g+025

§.16 Consider the process and specifications in the previous problem. Rede the design
under the assumption that the controller has an integrator.

5.17 Consider the system

z

)= oy

Determine an error-feedback controller that places hoth poles in the origin, that is,
use the controller

Ru(k) = —Sy(k) + Tus (k)

with § = T. Show by using the Diophantine equation that there is more than
one causal controller that solves the prohlem. Assume that the observer poles are
placed at the origin. Determine two controllers that fulfill the specifications, and
determine the closed-loop zeros,

5.13 Notes and References

The polynomial approach for pole placement is treated in Wolowich (1974),
Kuéera (1979, 1991), and Pernebo {1981). The method discussed in this chap-
ter has been used in connection with adaptive pole-placement algorithms, as
in Astrém and Wittenmark {(1995). The Dahlin-Higham algorithm was derived
independently in Dahlin (1968) and Higham (1968). The internal model prin-
ciple is described in Morari and Zafiriou (1989), and Morari and Lee (1991).
The Smith-predictor is introduced in Smith (1957) and the modet algorithmic
controller is discussed in Richalet et al. (1978).

Soluticn of the Diophantine equation is discussed in Blankenship (1963),
Kutera (1979, 1991), and Jezek (1982). More about the Sylvester matrix can
be found in Barnett (1971, 1983).
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Design: An Overview

6.1 Introduction

This chapter views the control problem in a wider perspective. In practice, more
time is often spent formulating control problems than on solving them. It is
therefore useful to be aware of these more general problems, although they are
seldom discussed in textbooks.

Most control problems arise from design of engineering systems. Such
problems are typically large-scale and poorly defined. Typical tasks are design of
power plants, chemical processes, rolling mills, industrial robots, aireraft, space
vehicles, and biomedical systems. Control theory on the other hand deals with
small-scale, well-defined problems. A typical problem is to design a feedback
law for a given system, which is described by linear differential equations with
constant coeffictents, so that the closed-loop system has given poles.

A major difficulty in control-system design is to reconcile the large-scale,
poorly defined, real problems with the simple, well-defined problems that control
theory can handle. It is, however, in this intermediate area that a control engi-
neer can use creativity and mgenuity effectively. This situation is not peculiar
to control engineering. Similar situations are encountered in almost all fields
of engineering design. Control is, however, one field of engineering in which a
comparatively sophisticated theory is needed to understand the problems.

It is useful to have some perspective on the design process and a feel for
the role of theory in the design process. First, a good engineering design must
satisfy a large number of specifications, and there often are many equally good
solutions to a design problem. A goed design is often a compromise hased on
reasonable trade-offs between cost and performance. Sadly enough, it is often
true that the best is the worst enemy of the good. Consequently, when words
like optimal are used in this context, they should be taken with a grain of salt.

Another aspect is that design i3 often arrived at by interaction between
custommer and vendor. Many subjective factors—such as pride, tradition, and
ambition—enter into this interaction. This situation with regard to customer

224
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preference is particularly confused when technology is changing. Typical exam-
ples are discussions concerning pneumatic or electronic controllers or analog
versus digital control, which have been abundant in the trade journals.

What theory can contribute to the design process is to give insight and un-
derstanding. In particular, theory can often pinpoint fundamental limitations on
control performance. There are also some idealized design problems, which can
be solved theoretically. Such solutions can often give good insight into suitable
structures and algorithms,

It is also useful to remember that control problems can be widely different
in nature. They can range from design of a simple loop in a given system to
cesign of an integrated control system for a complete process. The approach to
design can also be widely different for mass-produced systems, and one-of-a-
kind systems. For mass-produced systems, a substantial effort can be made to
obtain a cheap system that will give good performance. For unique systems, it
15 often much better to install a flexible standard system and to tune it in situ.

The relation between process design and control design is also important.
Control systems have traditionally been introduced into given processes to sim-
plify or improve their operation, It has, however, become clear that much can
he gained by considering process design and control design in one context. The
availability of a control system siways gives the designer an extra degree of
freedom, which frequently can be used to improve performance or econemy,
Similarly, there are many situations where difficult control problems arise be-
cause of improper process design. An understanding of control also makes it
possible to design a process so that difficult control problems are avoided.

Some operational aspects of control systems are first discussed in Sec. 6.2,
This includes interfaces to the process, the operator, and the cemputer. Var-
ious aspects of design, commissioning, and process operation are also given.
The problems of structuring are discussed in Sec. 6.3. The basic problem is
to decompose a large, complicated problem into a set of smaller, simpler prob-
lems. This includes choice of control principles, and selection of control vari-
ables and measured variables. The commen structuring principles—top-down,
bottom-up, middle-out, and outside-in—are also discussed. The top-down ap-
proach is treated in Sec. 6.4, This includes choice of control principles and
selection and grouping of control signals and measurements, The bottom-up
approach is discussed in Sec. 8.5, including a diseussion of the elementary con-
trol structures, feedback, feedforward, prediction, estimation, optimization, and
adaptation. Combinations of these concepts are also discussed. The design of

simple loops is discussed in Sec. 6.6. Design methods for simple loops are also
reviewed.

6.2 Operational Aspects

It is useful to understand how the control system interacts with its environment.
This section discusses the interfaces between process and controller design.
Commissioning, operation, and modification of the system are also discussed.
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Process and Controller Design

In the early stages of automation, the control system was always designed when
the process design was completed. This still happens in many cases. Because
process design is largely hased on static considerations, it can lead to a process
that is difficult to control. For this reason, it 1s very useful to consider the control
design jointly with the process design. The fact that a process will be controlled
automatically also gives the process designers an additional degree of freedom,
which can be used to make better trade-offs. The process and the controller
should therefore be designed together. An example illustrates the idea.

Example 6.1 Elimination of disturbances by mixing

Elimination of inhomogeneities in a product stream is one of the major problems
in process control. One possibility for reducing the variations is to introduce large
gtorage tanks and thus increase the material stored in the process. A system with
large mixing tanks has slow dynamics. It will take a long time to change product
quality in such a system. One consequence is that the product may be off the spec-
ifications for a considerable time during a change in quality. Another possibility
for eliminating inhowmogeneities is to measure the product quality and to reduce
the variations by feedback control. In this case, it is possible to use much smaller
tanks and to get systems with a faster response. The control system does, how-
ever, become more complicated. Because the total system will always have a finite
bandwidth, small mixing tanks must be used to eliminate rapid variations. []

Stabllity Versus Controllability (Maneuverability)

It frequently happens that stability and controllability have contradictory re-
quirements. This has been evident in the design of vehicles, for instance. The
Wright brothers succeeded in the design of their aircraft because they decided to
make a maneuverable, but unstable, aircraft, whereas their competitors were
instead designing stable aircrafts. In ship design, a stable ship is commonly
difficult to turn, but a ship that turns easily tends to be unstahle. Traditionally,
the tendency has been to emphasize stability. It is, however, interesting to see
that if a control systam is used, the basic system can instead he designed for
controllability. The required stahility can then be provided by the control sys-
tem. An example from aircraft design is vsed to demonstrate that considerable
savings can be obtained by this approach.

Example 6.2 Design of a supersonic aircraft

For a high-performance aireraft, which operates over a wide speed range, the center
of pressure moves aft with increasing speed. For a modern supersonic fighter, the
shift in center of pressure can be about 1 m. If the aircraft is designed so that it
is gtatically stable at subsonic speeds, the center of mass will be a few decimeters
n front of the center of pressure at Jow speed. At supersonic speeds, the distance
between the center of mass and the center of pressure will then increase to about
1 m. Thus there will he a very strong stabilizing torque, which tends to keep the
airplane on a straight course. The torque will be proportional to the product of the
thrust and the distance between the center of mass and the center of pressure.
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To maneuver the plane at high speeds, a large rudder is then necessary. A large
rudder will, however, give a considerable drag.

There is a considerable advantage to change the design so that the center
of mass 1s in the middle of the range of variation of the center of pressure. A
much smaller rudder can then be used, and the drag induced hy the rudder is then
decreased. The drag reduction can he over 10%. Such an airplane will, however,
be statically unstable at low speeds—that is, at takeoff and landing! The proper
stability, however, can be ohtained by using a control system, Such a control system
must, of course, be ahsolutely reliable,

Current thinking in aircraft design is moving in the direction of designing an
aircraft that is statically unstable at low speeds and providing sufficient stability

hy using a control system. Similar examples are common in the design of other
vehicles. .

There are analogous cases also in the control of chemical processes, The follow-
ing is a typical case.

Example 6.3 Exothermic chemical reactor
Te obtain a high yield in an exothermic chemical reactor, it may be advantageous to
run the reactor at operating conditions in which the reactar is open-loop unstable,

Obviously, the safe operation then depends critically on the control system that
stabilizes the reactor, »

Controllability, Observability, and Dynamics

When designing a process, it is very important to make sure that all the im-
portant process variables can be changed conveniently. The word controllability
is often used in this context, although it is interpreted in a much wider sense
than in the formal controliability concepts introduced in Sec. 3.4.

To obtain plants that are controllable in the wide sense, it ig first nec-
essary to have a sufficient number of actuators, If there are four important
process variables that should be manipulated separately, there must be at least
four actuators. Moreover, the system should be such that the static relation-
ship between the process variables and the actuators is one-to-one. To achieve
good control, the dynamic relationship between the actuators and the process
variables should ideally be such that tight contrel is possible. This means that
time delays and nonminimum phase relations should be avoided. Ideally the dy-
namic relations should be like an integrator or a first-order lag, It is, however,
often difficult to obtain such processes. Nonminimum phase loops are therefore
common in the dynamics of industrial processes.

Simple dynamic models are often very helpful in assessing system dynam-
ics at the stage of process design. Actuators should be designed so that the
process variahles can be changed over a sufficient range with a good resolution.
The relationships should also be such that the gain does not change toe much
over the whole operating range. A common mistake in flow systems is to choose
a control valve that is too large, This leads to a very nonlinear relation between
valve opening and flow. The flow changes very little when the valve opening is
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reduced until the valve is almost closed. There is then a drastic change in flow
over a very small range of valve position,

The process must also have appropriate sensors, whose signals are closely
related to the important process variables. Sensors need to be located properly
to give signals that are representative for the important process variables. For
example, care must be taken not to positien sensors in pockets where the prop-
erties of the process fluid may not be typical. Time delays must also be avoided.
Time lags can oceur due to factors such as transportation or encapsulation of
temperature sensors.

Simple dynamic models, combined with observability analysis, are very
useful to assess suggested arrangements of sensors and actuators. It is also

very useful for this purpose to estimate time constants from simple dynamic
models.

Controller Design or On-Line Tuning

Another fact that drastically influences the controller design is the effort that
can be spent on the design. For systems that will be produced in large num-
hers, it may be possible to spend much engineering effort to design a controller.
A controller with fixed parameters not requiring any adjustments can then be
designed. In many cases, however, it is not economically feasible to spend much
effort on controller design, For such applications it is common to use a stan-
dard general-purpose controller with adjustahle parameters. The controller is
installed and appropriate parameters are found by tuning.

The pessibilities for designing flexible general-purpose controllers have
increased drastically with computer control. When a controller is implemented
on a computer, it is also possible to provide the system with computer-aided tools
that simplify design and tuning. In process control, the majority of the loops for
control of hiquid level, temperature, flow, and pressure are designed by rules
of thumb and are tuned on line. Systematic design techniques are, however,
applied to control of composition and pH, as well as to control of multivariable,
nonlinear, and distributed systems like distillation columns.

Interaction Among Process, Controller, and Operator

The controller and the process must, of course, work well together. A controller
is normally designed for steady-state operation, which is one operating state.
It is, however, necessary to make sure that the system will work well also
during startup and shutdown and under emergency conditions, such as drastic
process failures. During normal conditions it is natural to design for maximum
efficiency. At a failure, it may he much more important to recover and quickly
return to a safe operating condition.

In process contrel, it has been customary to use automatic regulation for
steady-state operation. In other operating modes, the controller is switehed to
manual and an operator takes over. With an increased level of automation, good
control over more operating states is, however, required.
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6.3 Principles of Structuring

As mentioned earlier, real control problems are large and poorly defined, and
control theory deals with small well-defined problems. Aecording to the dictio-
nary, structuring can mean to construct a systematic framework for something.
In this context, however, structuring is used to describe the process of bridging
the gap between the real problems and the problems that control theory can
handle.

The problems associated with structuring are very important for control-
system design. Unfortunately, these problems cannot yet be put into a complete
systematic framework. For this reason they are often avoided both in textbooks
and in research. As an analogy, structuring can be said to have the same relation
to control-system design as grammar has to composition. It is clearly impossible
to write well without knowing grammar. It is also clear that a grammatically
flawless essay is not necessarily a good essay. Structuring of contrel systems
must be based on the scientific principles given by conirel theory. However,
structuring also contains elements of creativity, ingenuity, and art. Perhaps the
best way to introduce structuring is to teach it as a creft.

The problem of structuring occurs in many disciplines. Formal approaches
have also been developed. The terminology used here is borrowed from the fields
of computer science and problem solving, where structuring of large programs
has heen the subject of much work. There are two major approaches, called
top-down and bettom-up.

The top-down approacb starts with the problem definition. The problem
is then divided into successively smaller pieces, adding more and more details.
The procedure stops when all pieces correspond to well-known problems. It is
& cbaracteristic of the top-down approach that many details are left out in the
beginning. More and more details are added as the problem is subdivided. The
buzz word successive refinement is therefore often associated with the top-down
approach.

The bottom-up approach starts instead with the small pieces, which rep-
resent known solutions for subproblems. These are then combined into larger
and larger pieces, until a solution to the large problem is obtained.

The top-down approach is often considered to be more systematic and more
logical. It is, of course, not possible to use such an approach unless the details
of the system are known very well. Similarly, it is not easy to use the bottom-
up approach unless the characteristics of the complete problem are known, In
practice, it is common to use combinations of the approaches. This is sometimes
called. an inside-out-outside-in approach.

Structuring is an iterative procedure. It will be a long time before a fully
gystematic approach to structuring is obtained, It is difficult to appreciate the
structuring problems unless problems of reasonable size and complexity are
considered. Therefore, most of the work on structuring is done in industry. It also
appears that many industries have engineers who are very good at structuring.
Students are therefore advised to learn what the “structuring masters” are
doing, in the same way as painters have always learned from the grand masters.
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6.4 A Top-Down Approach

This section describes a fop-down approach to control-system design. This in-
volves the selection of control principles, choice of control variables and mea-
sured variables, and pairing these variables.

Control Principles

A control principle gives a broad indication of how a process should be contrelled.
The control principle thus tells how a process should respond te disturbances
and command signals. The establishment of a control principle is the starting
point for & top-down design, Some examples of control principles are given next.

Example 6.4 Flow control

When controlling a valve, it is possible to control the valve position, the flow,
or both. It is simplest and cheapest to control the valve position. Because flow
18, in general, a nonlinear function of the valve opening, this leads to a system
in which the relationship between the control variable (valve position) and the
physical variable (flow) is very nonlinear. The relationship will alse change with
such variables as changing pressure and wear of the valve. These difficulties are
avoided if both valve position and flow are controlled. A system for flow control is,
however, more complicated because it requires a flow meter. »

Example 6.5 Composition control

When controlling important product-quality variables, it is normally desired to
keep them close to prescribed values. This can be done by minimizing the variance
of product-quality variations. If a flow is fed to a laxge storage tank with mixing, the
quality variations in the mixing tank should he minimized. This is not necessarily
the same as minimizing quality variations in the flow into the tank. »

Example 6.6 Control of a drum beiler

Consider a turhine and a generator, which are driven by a drum boiler. The control
system can bave different structures, as illustrated in Fig. 6.1, which sbows three
control modes: boiler follow, turbine follow. and sliding pressure control. The system
has two key control vartables, the steam valve and the oil flow. In the boiler follow
mode, the generator speed, @, is controlled directly by feedback to the turhine
valve, and the oil flow is controlled to maintain the steam pressure, p. In the
turbine follow mode, the generator speed is used instead to control the oil flow to
the boiler, and the steam valve is used to control the drum pressure. In sliding
pressure control, the turbine valve is fully open, and il flow is controlled from the
generator speed.

The boiler follow mode admits a very rapid control of generator speed and
power output because it uses the stored energy in the boiler. There may be rapid
pressure and temperature variations, however, that impose thermal strains on the
turbine and the boiler. In the turthine follow mode, steam pressure is kept constant
and thermal stresses are thus much smatles. The response to power demand will,
however, be much slower. The sliding pressure control mode may he regarded as a
compromise between boiler follow and turbine follow. ]
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{a) {b) (¢}

Figure 6.1 Control modes for a beilerturbine unit: {a} boiler follow, (b)
turbine follow, and {c} sliding pressure.

Example 6.7 Ship control

When designing an autopilot for a highly maneuverable ehip, there are many al-
ternatives for design. One possibility is to design the autopilot so that the captain
can order a turn to a new course with a specified twrning rate. Another possibility
is to specify the turning radius instead of the turning speed. The advantage of
specifying the turning radius iz that the path of the ship will be independent of
the speed of the ship. Control of the turning radius leads to a more complicated
system, because it is necessary to measure both turning rate and chip speed. =

Example 6.8 Material-balance control

Many processes involve flow and storage of materials. Although the processes are
very different, they all include material storage. The reason for introducing these
is to smooth out variations in matertal flaw. It is therefore not sensible to control
these systems in such a way that the storages have constant mass. Instead the
eriteria should he to maintain the following;

¢+ Inventories between maximum and minimum limits
* An exact long-term material balance between input and output

s Smooth flow rates n

Example 6.9 Constraint control

When designming systems, it is frequently necessary to consider several operating
conditions. This means that constraints for safety or economical conditions may
need to be considered. It may also bo necessary to consider constraints during start-
up and shutdown. The control during these sitnations is usually done with logical
controllers. Today the logical control and the analog control are often done within
the same equipment, programmable logic control (PLC) systems. This means that
there are good possibilities to integrate different functions of the control system.

The choice of a control principle is an important issue, A good control principle
can often simplify the control problem. The selection often invelves technical
and economical trade-offs. The selection of a control principle is often based
on investigations of models of the process. The models nsed for this purpose
are typically internal models derived from physical principles. It is therefore
difficult to define general rules for finding control principles.
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Choice of Control Variables

After the control principle has been chosen, the next logical step is to choose
the control variables. The choiee of control variables can often be limited for
various practical reasons. Because the selection of control principle tells what
physical variables should be controlled, it is natural to choose control variables
that have a close relation to the variables given by the control principle. Be-
cause mathematical models are needed for the selection of control principles,

these models also can be used for controllability studies when choosing control
variables.

Choice of Measured Variables

When the control principle is chosen, the primary choice of measured variables
is also given. If the variables used to express the control principle cannot be mea-
sured, it is natural to choose measured variables that are closely related to these
control variables. Mathematical models and ohservability analysis can be very
helpful in making this choice. Typical examples are found in chemical-process
control, where temperatures—which are easy to measure—are used instead of
compositions, which are difficult and costly to measure.

Pairlng of Inputs and Outputs

A large system will typically have a large number of inputs and outputs. Even
if a control principle, which involves only a few variables, is found initially,

(a)

Production supervision

Intermediate storages

Purchasing

(b} Intermediate storages

Purchasing

Figure 6.2 Material-balance control (a) in the direction of the flow and (b)
in the direction opposite to the flow.
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many variables typically must be considered once the variables that can be
manipulated and measured are introduced. With a top-down approach, a system
should be broken down inte small subsystems. [t is then desirable to group
different inputs and outputs together, sc that a collection of smaller systems
is obtained. If possible, the grouping should be done so that (1) there are only
weak couplings between the subsystems; and {2) each subsystem is dynamically
well behaved, that is, time constants are of the same magnitude and time delay,
nonminimum phase, and severe variations in process dynamics are avoided.

There are no general rules for the grouping. Neither are there any good
ways of deading if it is possible to find a grouping with the desired proper-
ties. Trial and error, combined with analysis of models, is one possibility. The
following example illustrates the pairing problem.

Example 6.10 Material-balance control

A system with material flow is shown in Fig. 6.2. The system consists of a series of
tanks, The flows between the tanks are controlled by pumps. The figure Jlustrates
two different control structures. In one structure, the flow out of each tank is
controlled from the tank level, This is called control in the direction of the flow. To
maintain balance between production and demand, it is necessary to control the
flow into the first tank by feedback from the last tank level. In the other approach,
the flow into each tank is controlled hy the tank level. Thiz is called control in the
direction opposite to the flow, This control mode is superior, because all control loops
are simple flrst-order systems and there are no stability problems. With control in
the direction of the flow, there may be instabilities due to the feedback around all
tanks. It ean also be shown thet control in the direction opposite to the flow can
be done by using smaller storage tanks. [

6.5 A Bottom-Up Approach

In the bottom-up approach, a choice of control variables and measurements
comes first. Different controllers are then introduced until a ¢losed-loop system,
with the desired properties, is obtained. The controllers used to build up the
system are the standard types based on the ideas of feedback, feedforward, pre-
diction and estimation, optimization, and adaptation, Because these techniques
are familiar from elementary courses, they will be discussed only briefly.

Feedback

The feedback leops used include, for example, simple PID controllers and their
cascade combinations. When digital computers are used to implement the con-
trollers, it is also easy to use more sophisticated control, such as Smith-predic-
tors for dead-time compensation, state feedback, and model reference control.
Feedback is used in the usuval context. Its advantage is that sensitivity to dis-
turbances and parameter variations can be reduced. Feedhack is most effective
when the process dynamics are such that a high bandwidth can be used. Many
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Figure 6.3 Reduction of disturbances by feedforward.

gystems that are difficult to implement using analog techniques may be easy to
implement using computer-control technology.

Feadforward

Feedforward is another control method. It is used 1o eliminate disturbances that
can be measured. The basic idea is to use the measured disturbance to antici-
pate the influence of the disturbance on the process variables and to introduce
suitable compensating control actions. See Fig. 6.3. The advantage compared
to feedback is that corrective actions may be taken before the disturbance has
influenced the variables. If the transfer functions relating the output v to the
disturbance w and the control u are H,, and H,, the transfer function H;; of
the feedforward compensator should ideally be

H”r = —H;le

If this transfer function is unstable or nonrealizable, a suitable approximation
is chosen instead. The design of the feedforward compensator is often based on
a simple static model. The transfer function H/y is then simply a static gain.

Because feedforward is an open-loop compensation, it requires a good pro-
cess model. With digital control, it is easy to incorporate a process model. Thus it
can be anticipated that use of feedforward will increase with digital control. The
design of a feedforward compensator is in essence a calculation of the inverse
of a dynamic system.

Selector Control

There are many cases in which it is desirable to switch control modes, depending
on the operating condition. This can be achieved by a combination of logic and
feedback control. The same objective can, however, also be achieved with a
combination of feedback controllers. A typical example is control of the air-to-
fuel ratio in boiler control. In ship boilers it is essential to avoid smoke puffs
when the ship is in the harbor. To do this it is essential that the air flow leads
the oil flow when load is increased and that the air flow lags the oil flow when
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Figure 6.4 System with selectors for control of the air-to-fuel ratio in a
boiler.

the load is decreased. This can be achieved with the system shown in Fig. 6.4,
which has two selectors. The maximum selector gives an output signal that
at each instant of time is the largest of the input signals, and the minimum
selector chooses the smallest of the inputs. When the power demand is increased,
the maximum selector chooses the demand signal as the input to the air-flow
controller, and the minimum selector chooses the air flow as the set point to the
fuel-flow controller. The fuel will thus follow the actual air flow.

When the power demand is decreased, the maximum selector will choose
the fuel flow as the set point to the air-flow contreller, and the minimum selector
will choose the power demand as the set point to the fuel-flow controller. The
air flow will thus lag the fuel flow.

Control using selectors is very commeon in industry. Selectors are very
convenient for switching between different control modes.

Prediction and Estimation

State variables and parameters often cannot be measured directly, In such a
case it is convenient to pretend that the quantities are known when design-
ing a feedback. The unknown variahles can then be replaced by estimates or
predictions. In some cases such a selution is in fact optimal. The notions of pre-
dictions and estimation are therefore important. Estimators for state variables
in linear systems can easily be generated by analog techniques. They can also
easily be implemented using a computer. Parameter estimators are more diffi-
cult to implement with analog methods. They can, however, easily be done with

a computer. Prediction and estimation are thus easier to use with computer
control.
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Optimization

Some control problems can be conveniently expressed as optimization problems.
With computer-control systems, it is possible to include optimization algorithms
as elements of the control system.

Combinations

When using a bottom-up approach, the basic control structures are combined to
obtain a solution to the contral problem, It is often convenient to make the combi-
nations hierarchically. Many combinations, like cascade control, state feedback,
and observers, are known from elementary control courses. Very complicated
control systems can be built up by combining the simple structures. An exam-
ple is shown in Fig. 6.5. This way of designing control using the hottom-up

* Feedforward

@ Vessel feed

H
Pressurizing ‘
inlet
@ — M Jacket outlet
Temp

() -F
1
(PC)

TC

—]

1 A (Variable |
structure) Selector

[

| Feed- | _ICombining ) Flow
forward umt ;LF) ;P‘ .

Figure 6.5 An example of a complicated control systern built up from sim-
ple control structures. (Redrawn from Foxboro Company with permission, )
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Figure 6.6 Block diagram of an adaptive controller obtained by combining
a parameter estimator with a design calculation.

approach is in fact the technique predominantly used in process control, Its
success depends largely on the experience and skill of the designer.

An adaptive system, which is obtained by combining a parameter estimator
with a design procedure, is shown in Fig. 6.6.

6.6 Design of Simple Loops

If a top-down approach is used, the design procedure will end in the design of
simple loops containing one or several controls, or measurements. If a bottom-up
approach is used, the design will start with the design of simple loops. There-
fore, the design of simple loops is an important step in both approaches. The
design of simple loops is also one ares in which there is substantial theary avail-
abie, which will be described in detail in the book. To give some perspective,
an overview of design methods for simple loops is given in this section. The
prototype problems of controller and servo design will be discussed.

Simple Criterla

A simple way to specify regulation performance is to give allowable errors for
typical disturbances. For example, it can be required that a step disturbance
give no steady-state error, and that the error due to a ramp disturbance be
a fraction of the ramp velocity. These specifications are typically expressed in
terms of the steady-state hehavior, as discussed in Sec. 3.5. The error coefficients
give requirements only on the low-frequency behavior. The bandwidth of the
system should therefore be specified, in addition to the error coefficients.
Another more complete way to specify regulation performance is to give
conditions on the transfer function from the disturbances to the process output,
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Figure 6.7 Expressing regulation performance in terms of variation in
quality variables.

Specifications for the Controller Problem

The purpose of regulation is to keep process variables close to specified values
in spite of process disturbances and variations in process dynamics.

Minimum-varlance control. For regulation of important quality vari-
ables, it is often possible to state objective criteria for regulation performance.
A commen situation is illustrated in Fig. 6.7, which shows the distribution of the
quality variahles. It is often specified that a certain percentage of the produe-
tion should be at a quality level above a given value. By reducing the quality
variations, it is then possible to move the set point cloger to the target. The
improved performance can be expressed in terms of reduced consumption of
energy or raw material or increased production. It is thus possible to express
reductions in quality variations directly in economic terms.

For processes with a large production, reductions of a fraction of a percent
can amount to a large sum of money. For example, a reduction in moisture
variation of 1% in paper-machine control can amount to savings of $100,000
per vear.

If the variations in quality can be expressed by Gaussian distributions,
the criterion would simply be to minimize the variance of the quality variables.
In these problems, the required control actions are irrelevant as long as they
do not cause excessive wear or excessively large signals. A control strategy

that minimizes the variance of the process output is called minimum-variance
control.
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Optimal control. Minimum-variance control is a typical example of how
a control problem can be specified as an optimization problem. In a more general
case, it is not appropriate to minimize the vartance of the output. Instead there
will be a criterion of the type

h

E | g(x(s) u(s))ds

Eiy

where x is the state variable, u is the contrel variable, and E denotes the mean
value. An example of such a criterion is given next.

Example 6.11 Ship steering

1t can be shown thai the relative increase in resistance due to deviaiions from a
straight-line course can be approximately expressed as

T
T T/ osrw)ar

where ¢ is the heading deviation, § is the rudder angle, R is the resistance, and p
is a parameter. Typical parameter values for a tanker are # = 0.014 and p = 0.1
.

Techniques for Controller Design

Regulation problems are often solved by feedback, but feedforward techniques
can be very useful if disturbances can be measured.

If the specifications are given in terms of the transfer function, relating the
output to the disturbance, it is natural to apply methods that admit control of
this transfer function. One method is pole placement, which allows specification
of the complete transfer function. This straightforward design technique was
discussed in detail in Chapters 4 and 5. It is oRen too restrictive to specify the
complete closed-loop transfer function, which is a drawback.

Another possibility is to use a frequency-response method, which admits
control of the frequency response from the disturbance to the output. Such
problems are most conveniently expressed in terms of continuous-time theory,
The controllers obtained can then be translated to digital-control algorithms
using the techniques described in Chapter 8.

If the criteria are expressed as optimization criteria, it 1s natural to use
design techniques based on optimization. Techniques based en minimizing the

variance of the process output and other types of quadratic eriteria are discussed
in Chapters 11 and 12.

The Servo Problem

In the servo problem, the task is to make the process variables respond to
changes in a command signal in a given way. Servo performance is typically
specified in terms of requirements on the step response or the frequency re-
sponse. Typical specifications for step responses include settling time and over-
shoot. Specifications can also be given in the frequency domain, for example,
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in terms of bandwidth. An alternative is to use a model that gives the desired
response to command signals.

It is often very advantageous to use a two-degree-of-freedom configuration,
because this admits a complete decoupling of the responses to disturbances and
command signals. For such systems the feedback is first designed to solve the
regulation problem and the feedforward is then designed to solve the servo
problem. Examples of this were given in Secs. 4.6 and 5.4,

6.7 Conclusions

This chapter presents an overview of the design problems, There is a large step
from the large and poorly defined problems of the real world to the small and
well-defined problems that control theory can handle. Problems of structuring
are discussed.

The notion of the control principle is introduced in order to apply the top-
down approach. It is also shown how a bottom-up approach can be used to build
complex systems from simple control structures such as feedhack, feedforward,
estimation, and optimization. Finally, specifications and approaches to the de-
sign of simple loops are discussed,

A chemical process consists of many unit operatiens, such as performed by
reactors, mixers, and distillation columns. In a bottom-up approach to control-
system design, control loops are first designed for the individual unit opera-
tions. Interconnections are then added to obtain a total system. In a top-down
approach, control principles—such as composition control and material-balance
control—are first postulated for the complete plant. In the decomposition, these
principles are then applied to the individual units and loops.

In process control the majority of the loops for liquid level, flow, and pres-
sure control are most frequently designed empirically and tuned on-line. How-
ever, control of composition and pH, as well as control of nonhnear distributed
large systems with strong interaction, are often designed with’ care.

Control systems can be quite complicated because design is a compromise
between many different factors. The following issues must typically be consid-

ered:
v Command signals
» Load disturbances
» Measurement noise
¢ Model uncertainty
s Actuator saturation
s State constrainte
o Controller complexity

There are few design methods that consider all these factors, The design meth-
ods discussed in this book will typically focus on a few of the issues. In a good
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design it is often necessary to grasp all factors. To do this it is often necessary
to investigate many aspects by simulation. The relation between process design
and controller design should also be considered.

6.8 Problems

6.1 Consider the material-balance problem shown in Fig. 6.2. Assume that each tank
{storage} i1s an integrator and that each controller is a proportional controller. Dis-

cuss the influence on the two systems when there is a pulse disturbance out from
the raw material sterage.

6.2 ldentify and discuss the use of {a) cascade control, (b) feedforward, and {c) nonlin-
ear elements in Fig. 6.5,

6.9 Notes and References

The problem discussed in this chapter touches on several aspects of problem
solving. A reader with general interests may enjoy reading Polya (1945), which
takes problems from the mathematical domain, and Wirth (1979), which applies
to eomputer programming. There is seme work on the structuring problem in the
literature on process control; see, for instance, Buckley (1964}, Bristol (1980},
Balchen and Mummé¢ (1988), and Shinskey (1988). Buckley (1978) contains
much useful material of general interest although it deals with a very specific
problem. Foss (1973) is more general in scope.

There are only a few areas in which control design and process design
have been considered jointly. Design of high-performance aircrafts is a notable
example. See Boudreau (1976) and Burns (1976).

Speafications of controller performance for simple loops are discussed in
depth in standard texts on servomechanisms; see, for instance, Franklin, Powell,
and Emami-Naeini {1994) and Dorf and Bishop (1995).
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7.1 Introduction

Mathematical models for a sampled-data system from the point of view of the
computer are developed in Chapter 2. These models are quite simple. The vari-
ables that represent the measured signal and the control signal are considered
at the sampling instanis only. These variables change in a given time sequence
in synchronization with the clock. The signals are naturally represented in the
computer as sequences of numbers, Thus the time-varying nature of sampled-
data systems can be ignored, because the signals are considered only at times
that are synchronized with the clock in the system. The sampled-data system
can then be described as a time-invariant discrete-time system. The model ob-
tained is called the stroboscopic model.

The stroboscopic model has the great advantage of being simple. Most of
tbe problems in analysis and design of sampled-data systems can fortunately
be handled by this model. The model will also give a complete description of
the system as long as it is observed from the computer, but sometimes this is
not enough. The main deficiency is that the model does not tell what happens
between the sampling instants. Therefore it is useful to have other models that
give a more detailed description. Such models are needed when the computer-
controlled system is observed from the process, for example, if a frequency re-
sponse is performed by cutting the loop on the analog side. The models required
are necessarily more complicated than those discussed in Chapter 3 hecause
the periodic nature of the system must be dealt with explicitly to deseribe the
intersample behavior.

A detailed description of the major events in a computer-controlled system
15 given in Sec. 7.2. Section 7.3 give a discussion of sampling and reconstructing
continuous-time signals. The alias problem encountered in Chapters 1 and 2 is
analyzed in Sec. 7.4. Control of a system using prediciive first-order-hold is
discussed in Sec. 7.5. The key problem when making process-oriented models is
the description of the sampling process. This is descrihed using the modulation

242
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model in Sec. 7.6. Section 7.7 deals with the frequency response of sampled-data
systems-—several unexpected things can happen. The results give more insight
into the aliasing problem. An algebraic system theory for sampled-data systems
1s outlined in Sec. 7.8. Multirate systems are discussed in Sec. 7.9.

7.2 A Computer-Controlled System

A schematic diagram of a computer-controlled system is given in Fig. 7.1, In
Chapter 2 the loop is cut inside the computer between the A-D and D-A con-
verters —for example, at C in the figure. In this chapter the loop is instead
cut on the analog side —for example, at A in the figure. The discussions of this
chapter require a more detailed description of the sequence of operations in a
computer-controlled system. The following events take place in the computer:

1. Wait for a cleck pulse.

2. Perform analog-to-digital conversion.
3. Compute control variable.

4, Perform digital-to-analog conversion.
5. Update the state of the regulator.

8. Go to step 1,

Because the operations in the computer take some time, there is a time
delay between steps 2 and 4. The relationships among the different signals in
the system are illustrated in Fig. 7.2. When the control law is implemented in a
computer it is important to structure the code so that the calculations required
in step 3 are minimized (see Chapter 9).

It 18 also important to express the synchronization of the signals precisely.
For the analysis the sampling instants have been arbitrarily chosen as the time
when the D-A conversion is completed. Because the control signal is discon-
tinuous, it is important to be precise about the limit points. The convention of

Clock

H A-D Computer L[ e D-A }—==} Process

Figure 7.1 Schematic diagram of a computer-controlled system.
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Figure 7.2 Relationships among the measured signal, control signal, and
their representations in the computer.

continuity from the right was adopted. Notice that the real input signal to the
process is continuous because of the nonzero settling time of the D-A converter
and the actuators.

7.3 Sampling and Reconstruction

In this section we will discuss sampling and reconstruction of continuous-time
signals. The periodic nature of sampled-data systems are considered.

The Sampling Theorem

Very little is lost by sampling a continuous-time signal if the sampling instants
are sufficiently close, but much of the information about a signal can be lost if
the sampling points are too far apart. This was illustrated in Examples 1.4 and
314,

It is, of course, essential to know precizely when a continuocus-time sig-
nal is uniquely given by its sampled version. The following theorem gives the
conditions for the case of periodic sampling.

THEOREM 7.1 SHANNON'S SAMPLING THEOREM A continuous-time signal
with a Fourier transform that is zero outside the interval (—wy, @g) is given
uniquely by its values in equidistant points if the sampling frequency is higher
than 2¢y. The continuous-time signal can be computed from the sampled signal
by the interpolation formula

sin{a.(t - kh)/2) & . Ot —kR)
fle) = Efkh Y _Emf(kmsmc—z—-— (1.1)
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where @, 1s the sampling angular frequency in radians per second (rad/s).
Proof  Let the signal be f and let F be its Fourier transform.

F{w) = f N e (1) dt

4]

F(t) = % / " R () do (72)
Introduce
Fy(ow) = }—11 i Flw + ko) (7.3)
k=—ou

The proof is based on the observation that the samples f(kk) can be regarded
as the coefficients of the Fourier series of the periodic function Fi{«w). This is
shown by a direct calculation. The Fourier expansion of F, is

]

Fiw)= ) Cye*h (7.4)

k=—ox

where the coefficients are given by
1 o
G~ o fo MR () do

By using the definition of the Fourier coefficients and the relations given in
(7.2) and (7.3), it is straightforward to show that

Ci = f(kR) (75)

It thus follows that the sampled signal {f(kh),2 = ...,-1,0,1,...} uniquely
determines the function Fy(®). Under the assumptions of the theorem the func-

tion F is zero outside the interval (o, wy). If @, > 2ey, it follows from (7.3)
that

RE(w) o] < %

Flw) = (7.6)
)
0 || = Es

The Fourier transform of the continuous-time signal is thus uniquely given by
F;, which in turn is given by the sampled function {f (k). k=...,-1,0,1,...}.
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The first part of the theorem is thus proved. To show Eq, (7.1), notice that it
follows from (7.2) and (7.8) that

f(t) =, 51]? /_ e F(w) dw

h a2

- Elths(w) dw
27 J_wie
h /2

_* ot e-—ikhmf ERYdw
27 _m,ﬂe k:z—ao { )

where the last equality follows from (7.4) and {7.5). Interchanging the order of
integration and summation,

%0 Wi2
f(t) = z f(kh]%[ RSN

h=- /2

= h it —iwkh
Ex Fkh) Gt

d sin{w,{t - kh)/2)
2. f(kh) (¢ — kh) /R

k=—c0

w2

it

iy {2

Because w:h = 27, Eq, (7.1) now follows. =

Kemark 1. The frequency wy = ,/2 plays an important role. This
frequency is called the Nyquist frequency.

Remark 2. Notice that Eq. (7.1) defines the reconstruction of signals
whose Fourier transforms vanish for frequencies larger than the Nyquist fre-
quency Wy = /2.

Hemark 3. Because of the factor 1/4 in Eq. (7.3), the sampling operation
has a gain of 1/4.

Reconstruction

The inversion of the sampling operation, that is, the conversion of a sequence
of numbers {f () : & € Z} to a continuous-time function £(2) is called recon-
struction, In computer-controlled systems, it is necessary to convert the control
actions calculated by the computer as a sequence of numbers to a continuous-
time signal that can be applied to the process. In digital filtering, it is similarly
necessary to convert the representation of the filtered signal as a sequence of
numbers into a continuous-time function. Some different reconstructions are
discusged in this section.
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Figure 7.3 The impulse response of the Shannon reconstruction given by
(7.7) when h = 1.

Shannon Reconstruction

For the case of periodic sampling of band-limited signals, it follows from the
sampling theorem that a reconstruction is given by (7.1). This reconstruction
is called the Shannon reconstruction. Equation (7.1) defines an inverse of the
sampling operation, which can be considered as a linear operator. It is, however,
not a causal operator because the value of f at time ¢ is expressed in terms of
past values {f(kh): k < t/h} as well as future values {f(kh): k > t/h} The
characteristics of the Shannon reconstruction are given by the function

sin (@,t/2)

A(e) = wst/2

(7.7)
See Fig. 7.3. This reconstruction will introduce a delay. The weight is 10% afier
about three samples and less than 5% after six samples. The delay implies that
the Shannon reconstruction is not useful in control applications. It is, however,
sometimes used in communication and signal-processing applications, where
the delay can be acceptable. Other drawbacks of the Shannon reconstruction

are that it is complicated and that it can be applied only to periodic sampling.
It is therefore useful to have other reconstructions.

Zero-Order Hold (ZOH)

In previcus chapters zero-order-hold sampling has heen used. This causal re-
construction is given by

iy =Fty) st <tin (7.8)

This means that the reconstructed signal is piecewise constant, continuous from
the right, and equal to the sampled signal at the sampling instants. Because
of its simplicity, the zero-order hold is very common in computer-controlled sys-
temns. The standard D-A converters are often designed in such a way that the old
value is held constent until a new conversion is ordered. The zero-order hold
also has the advantage that it can be used for nonperiodic sampling. Notice,
however, that the reconstruction in (7.8) gives an exact inverse of the sampling
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Figure 7.4 Sampling and zero-order-hold reconstruction of a continu-
ous-time stgnal,

operation only for signals that are right continuous and piecewise constant over
the sampling intervals. For all other signals, the reconstruction of (7.8) gives
an error {see Fig. 7.4).

Higher-Order Holds

The zero-order hold can be regarded as an extrapolation using a polynemial of
degree zero. For smooth functions it is possible to obtain smaller reconstruc-

tion errors by extrapolation with higher-order polynomials. A first-order causal
polynomial extrapolation gives

F0) = F)+ 72 (F0) - f(B0)  tst<tin
k~ bh=1

The reconstruction is thus obtained by drawing a line between the two most
recent samples. The first-order hold is illustrated in Fig. 7.5.

Predictive First-Order Hold
A drawback of the zero- and first-order hold is that the output is discontinuous.

T T T T ] 1 )

Figure ‘7.5 Sampling and first-order-hold reconstruction of a continu-
ous-time signal.
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Figure 7.6 Sampling and predictive first-order hold reconstruction of a
continuous-time signal.

A way to avoid this problem is to use a predictive first-order-hold. The inter-
sample behavior with this hold circuit is a linear interpolation of the sampled
values; see Figure 7.6. Mathematically the reconstruction can be described by

I 1
lpe1 — I

Fit) = Flt) + (Fe - F@))  Bst<na  (19)

Notice that this requires that f(f,;) is available at time £. For general appli-
cations the predictive first-order hold is not realizable. The value £ (2.1} can be
replaced by & prediction. Thig can be done very conveniently in a feedhack loop,
as will be discussed in Section 7.5,

7.4 Aliasing or Frequency Folding

If a continuous-time signal that has the Fourier transform F is sampled pe-
riodically, it follows from (7.4} and (7.5) that the sampled signal f(kh}),k =
...»=1,0,1,... can be interpreted as the Fourier coefficients of the function F,,
defined by (7.3).

The function F; can thus be interpreted as the Fourier transform of the
sampled signal. The function of (7.3) is periodic with a period equal to the sam-
pling frequency @,. If the continuous-time signal has no frequency components
higher than the Nyquist frequency, the Fourier transform is simply a periodic
repetition of the Fourier transform of the continuous-time signal (see Fig. 7.7).

It follows from (7.3) that the value of the Fourier transform of the sampled
signal at w is the sum of the values of the Fourier transform of the continuous-
time signal at the frequencies @ + new,. After sampling, it is thus no longer
possible to separate the contributions from these frequencies. The frequency @
can thus be considered to be the alias of @ + nw,. It is customary to consider
only positive frequencies. The frequency w is then the alias of o, — @, @, + @,
20, — 0, 20, + @,..., where 0 € @ < @y. After sampling, a frequency thus
cannot be distinguished from its aliages. The fundamental alias for a frequency
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Figure 7.7 The relationship between the Fourier transform for continuous
and sampled signals for different sampling frequencies. For simplicity it has
been assumed that the Fourier transform is real.

@n > @y is given hy

@ = [(@1+ @y) mod (@) ~ On| (7.10)

Notice that although sampling is a linear operation, it is not time-invariant.
This explains why new frequencies will be created by the sampling. This is
discussed further in Sec. 7.7.

An illustration of the aliasing effect is shown in Fig. 7.8. Two signals with
the frequencies 0.1 Hz and 0.9 Hz are sampled with a sampling frequency of
1 Hz (h = 1 8). The figure shows that the signals have the same values at the
sampling instants. Equation (7.10) gives that 0.9 has the alias frequency 0.1.
The aliasing problem was also seen in Fig. 1.11.

0 h 10
Time

Figure 7.8 Two signals with different frequencies, 0.1 Hz and 0.9 Hz, may
have the same value at all sampling instants,
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Figure 7.9 Process diagram for a feed-water heating system of a boiler.

Example 7.1 Aliasing

Figure 7.9 is a process diagram of feed-water heating in a boiler of a ship. A valve
controls the flow of water, There is a backlash in the valve positioner due to wear.
This causes the temperature and the pressure to oscillate. Figure 7.10 shows a
sampled recording of the temperature and a eontinuous recording of the pressure.

From the temperature recording one might believe that there is an oscillation
with a period of about 38 min. The pressure recording reveals, however, that the
oscillation in pressure has a period of 2.1 min, Physically the two variables are
coupled and should oscillate with the same frequency.

The temperature is sampled every other minute. The sampling frequency
is @, = 2r/2 = 3142 rad/min and the frequency of the pressure oscillation is
wy = 2x/2.11 = 2.978 rad/min. The lowest aliaging frequency it @, —wy = 0.1638
rad/min. This corresponds to a period of 38 min, which is the period of the recorded

oscillation in the temperature. ]
w .
5 I 38 min |
. ! -
.,y ¥ % p*ofa,
E‘ h'... ..'hu-"". l_.;':nnni"'. |
-F]
B 2 min

Pressurea

—-—I |---—
2.11 min

Time

Figure 7.10 Recordings of temperature and pressure,



252

Frequency Folding

Process-Oriented Models

LLT.
-
a””

Sampled
gpectrum

Figure 7.11 Frequency folding.

Chap. 7

Bquation (7.3) can also be given another interpretation. The graph of the spec-
trum of the continuous-time signal is first drawn on a paper. The paper is then
folded at abscissas that are odd multiples of the Nyquist frequency, as indicated
in Fig. 7.11. The sampled spectrum is then obtained by adding the contributions,
with proper phase, from all sheets,

Prefiitering

A practical difficulty is that real signals do not have Fourier transforms that
vanish outside a given frequency band. The high-frequency components may

Table 7.1 Damping { and natural frequency @ for Butterworth, ITAE (In-
tegral Time Absolute Error), and Bessel filters. The higher-order filters with
arbitrary bandwidth w; are ohtained by cascading filters of the form (7.12).

Butterworth ITAE Bessel
Order @ 4 0 4 I .
2 1 0.71 0.99 0.71 127 087
4 1 0.38 149 (.42 1.60 0.62
(.92 0.84 0.83 143 0.96
6 1 0.26 1.51 024 1.90 049
0.71 1.13 0.60 1.69 0.82
(.97 0.92 093 161  0.98
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Table 7.2 Approximate time delay
T, of Bessel filters of different orders.

Order Ty
2 1.3/ wp
4 2.1l/ap
6 2.7/wp

appear 10 be low-frequency components due to aliasing, The problem is particu-
larly serious if there are periodic high-frequency compenents. To avoid the alias
problem, it is necessary to filter the analog signals before sampling. This may
be done in many different ways.

Practically all analog sensors have some kind of filter, but the filter is
seldom chosen for a particular contro] problem. It is therefore often necessary
to modify the filter so that the signals ohtained do not have frequencies above
the Nyquist frequency.

Sometimes the simplest solution is to introduce an analog filter in front of
the sampler. A standard analog circuit for a second-order filter is

o
s2 + 28 ws + &?

Ge(s) = {1.11)

Higher-order filters are obtained by cascading first- and second-order sys-
tems. Examples of filters are given in Table 7.1. The teble gives filters with
bandwidth wp = 1. The filters get handwidth wp by changing the factors (7.11)
to

0)2

(s/wg)? + 2{ wis/wg) + w?

(7.12)

where @ and ¢ are given by Table 7.1. The Bessel filter has a linear phase
curve, which means that the shape of the signal is not distorted much. The
Bessel filters are therefore common in high-performance systems.

The filter must be taken into account in the design of the regulator if
the desired crossover frequency is larger than about wg /10, where @z is the
bandwidth of the filter. The Bessel filter can, however, be approximated with
a time delay, because the filter has linear phase for low frequencies. Table 7.2
shows the delay for different orders of the filter. Figure 7.12 shows the Bode plot.
of a sixth-order Bessel filter and a time delay of 2.7/wg. This property implies
that the sampled-data model including the antialiasing filter can be assumed
to contain an additional time delay compared to the process. Assume that the
bandwidth of the filter is chosen as

|Gaa(imN}J = )3
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Figure 7.12 Bode plot of a sixth-order Bessel filter (solid) when wp = 1
and a time delay Ty = 2.7 {dashed).

where @y 1s the Nyquist frequency, and G,,(s) is the transfer function of the
antialiasing filter. Table 7.3 gives some values of Ty, as a function of 3. First,
the attenuation § is chosen. The table then gives the bandwidth of the filter
in relation to the Nyquist frequency. The delay measured in the units of the

Table 7.3 The time delay T} as a function of the desired attenuation at the

Nyquist frequency for fourth- and sixth-order Bessel filters. The sampling
period is denoted A.

Fourth Order Sixth Order
B @y /Oy Ti/h op /N Ty/h
0.001 0.1 5.6 0.2 4.8
0.01 0.2 3.2 0.3 3.1
0.05 0.3 2.1 04 2.3
0.1 04 1.7 0.4 2.0
0.2 0.5 14 0.5 1.7
0.5 0.7 0.9 0.7 1.2

0.7 1.0 0.7 1.0 0.9
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Figure 7.13 Usefulness of a prefilter. (a) Signal plus sinuseidal distur-
bance. {b) The signal is filtered through a sixth-order Bessel filter. () Sample
and hold of the signal in (a). (d) Sample and hold of the signal in [b).

sampling period is also obtained, that is, if a small value of § is desired, then
the bandwidth of the filter must be low and the corresponding delay is long.

Example 7.2 Prefilering

The usefulness of a prefilter is illustrated in Fig. 7.13. An analog signal composed
of a square wave with a superimposed sinuseidal perturbation (0.9 Hz) is shown
in {a). The result of sampling the analog signal with a period of 1 Hz is shown in
(¢). The Nyquist frequency is 0.5 Hz. The disturbance with the frequency (.9 Hz
has the alias 0.1 Hz [see {7.10)]. This signal is clearly noticeable in the sampled
signal. The output of a prefilter, a sixth-order Bessel filter with a bandwidth of
0.25 Hz, is shown in (b), and the result obtained by sampling with the prefilter

is shown in (d). Thus the amplitude of the disturbance is reduced significantly by
the prefilter n

Example 7.3 Product-stream sampling

In process control there is one situation in which prefiltering cannot be used:
namely when a product stream is sampled and sent to an instrument for anal-
ysis. Examples are samples taken for mass spectrographs, gas chromatographs,
and laboratory analysis. In such cases it is advisable to take many samples and
to mix them thoroughly before sending them to the analyzer. This is equivalent to

taking several samples and taking the mean value,

When Can Dynamics of Antialiasing Filters Be Neglacted?

We have mentioned that the dynamics in the antialiasing fitter often must be
taken into account. The following analysis gives additional insight. The phase
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lag at the frequency @y introduced by a second-order Butterworth filter (7.11)

18
N 2.6 fthy

ﬂm—ﬁa;

where @; is the sampling frequency, and f is the attenuation of the filter at the
Nyquist frequency. For a Bessel filter of sixth order the relation is

- 8.6 ity
a”ﬂl,ﬂﬁ a

Our rules for selecting the sampling rates in digital systems require that eyh is
in the range of 0.2 to 0.6. With w¢h = 0.2 the preceding equation implies that
the phase lag of the second-order antialiasing filter is

(.083
X =

VB

With f = 0.1 we get o = 0.26 rad, or 15°. With the sixth-order Bessel filter as an
antialiasing filter and f = 0.1, we get @ = 0.4 rad, or 23°. These caleulations
show that it is necessary to take the dynamics of the antialiasing filter into
account for practically all digital designs. Approximating the filter by a delay is
a convenient way of doing that.

Postsampling Filters

The signal from the D-A converter is piecewise constant. This may cause dif-
ficulties for systems with weakly damped oscillatory modes because they may
be excited by the small steps in the signal. In such a case it is useful to intro-
duce a special postsampling filter that smoothes the signal before applying it to
the actuator. In some cases this can be achieved by suitable modification of the
actuator dynamics. In extreme cases it may be advisable to design special D-A
converters that will give piecewise linear control signals.

1.5 Designing Controllers with Predictive First-Order Hold

Design of computer-controlled systems based on a first-order hold was discussed
in Chapters 4 and 5. In this section it will be shown that the methods used in
these chapters can easily he generalized to deal with systems where the D-A
conversion is based on a predictive first-order hold,

The reason for using other hold devices is that the control signal changes
stepwise, which implies that high-frequency signals are injected into the pro-
cess. This is not a serious drawback for processes that attenuate high-frequen-
cies effectively. It can, however, he a severe drawback for systems with poorly
damped oscillatory poles. For hydraulic systems it may also create severe hy-
draulic transients. The remedy is to replace the first-order hold by a hiold circuit
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that gives smooth control signals. A simple {ix is to introduce a smoothing filter
after the D-A converter, as was discussed in Sec. 7.4. Another possibility is to
use the predictive first-order hold. This device, which was discussed 1n Sec. 7.3,
generates an output that 1s piecewise linear.

implementation of a Predictive First-Order Hold

The predictive first-order hold is described by Eq. (7.9). The system can be
implemented by switched operational amplifiers. It is, however, often more
convenient to implement an approximation with a multirate sampled system.
The time interval (f, £y} is then subdivided into a N equal parts of length
Ay = (t1+1 — ¢} and the output of the hold circuit is incremented by

() = £ ()
‘o N{thl _tk)

at each time increment A;. If N is large, the output from the hold circuit is then
a staircase function with very small steps, which is very close to the output
given by Ec. (7.9). If necessary the output can aiso be filtered.

Predictive First-Order-Hold Sampling: A State-Space Approach

We will now consider a system in which the sampling period is constant and
equal to &, In Chapter 2 we showed that the behavior of the system at the
sampling interval at the sampling instants ¢ = 2k could he conveniently de-
scribed by a difference equation. The key idea was that the system equations
could be integrated over one sampling interval if the shape of the input signal
was known. In Chapter 2 the calculations were based on the assumption that
sampling was made by a zero-order hold, which implies that the control sig-
nal is constant over the sampling intervals. It is straightforward to repeat the
calculations in Chapter 2 for the case when the control signal is affine over a
sampling interval. The modifications required can also he obtained as follows.
Consider a continuous-time system described by

dx
= = Ax(t) + Bu{f 713
¥t

)= Cx(t] + Du(t)

Assume that the input signal is linear between the sampling instants. Integra-
tion of (7.13) over one sampling period gives

x(kh + k) = eMx(kh)

-kfi+h

— kh

+] pAlkhHh—s) p u(kh)+s . (u(kh+h)_u[kh)n ds (7.14)
kR
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Hence
2(kh + h) = ®x(kh) + Tu(kh) + % I (u(kh v R) - u(kh))
1 1
= ®a(kh) + - Tou(kh + h) + [r -5 Fl)u(kh)
where
@ = eAh
e
I = ‘ds B
/o ’ (7.15)

h
I :[ e**(h—-s)ds B
0

The pulse-transfer function that corresponds to ramp-invariant sampling thus
becomes

H(z) =D+ C{zl - )} (% L +T - % n) {7.18)

It follows from (7.14) that the matrices @, I', and T, satisfy the differential
equations

do{t)
drit) _

dry (1)
—d; = I(1)

These equations can also be written as

P () T i) d(2) T() Taft) A B 0
Y 0 ! It ]:[ 0 I It ] O 0 I]
0 0 I 0 ] I ¢ 00

This implies that the matrices @, T", and I'; can be obtained as

(o7 1) (10 o]exp([ﬁ ﬁ (I)]h) o

0 0 0

The calculation of ramp-invariant systems is illustrated by some examples.
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Example 7.4 Ramp-invariant sampling of an integrator

Consider a system with the transfer function G(s} = 1/s. In this case we have
A=D=0and B = C =1, Using {7.17) we get

[® 1 r)=(100)e

= {1 8 112)

The pulse-transfer function becomes

[ T e R e |
S )

zh +h~ h _hz+l
-1 T 2z-1
This pulse-transfer function cnrresponds to the trapezoidal formula for computing

an integral. Also notice that Tustin’s transformation gives the same result in this
case. n

H(z) =

Example 7.5 Ramp-invariant sampling of a double integrator
Consider a system with the transfer function G(s) = 1/s%. This system has the

realization
dx 01 0
E:[u 0]”[1]“
= (1 0)x
for the matrix
(A °] lﬂi‘iﬂ
A=|[0 0 I
0 0 0 0001
0000
and its matrix exponential
1 h R*2 Ri/8
oAt 01 & K2
00 1 k
00 0 1

Hence from {7.17)

o = [1 h] =[h2f2] rlz[hafﬁ]
01 h B2 /2
The pulse-transfer function ie now obtained from {7.16), that s,
~ -1 -~h ht/6 k%2 hl/6
Hez) - (1 O][o z—] ([m] [ ]"[hm])
_ E 224241
6 {z-1)2 »
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Figure 7.14 Inputs and outputs of a process with predictive first-order-hold
sampling.

Predictive First-Order-Hold Sampling: An input-Output Approach

The pulse-transfer function obtained by predictive first-order-hold sampling of
a system with a transfer funetion G(s) can also be obtained by a direct caleula-
tion. Figure 7.14 shows the inputs and the outputs of a system with predictive
first-order-hold sampling. Let u be the input of the system and let y denote
the output. The piecewise affine input u can be generated as the cutput of an
integrator whose input ig the piecewise constant signal

ot) = u(lzh-i—h]z—u(izh) (7.18)

Because this signal is constant over the sampling intervals, the results of Chap-

ter 2 can be applied and we find that the 2-transform of the output is given by

) =5 (22 v (1.19)

where S,., denotes the map of transfer functions to pulse-transfer functions
through zero-order-hold sampling. This operator is given by Eq. (2.30). Com-
bining Egs. (7.18) and (7.19) we get

Y{z) = S (G—Sl) ii—l— Ulz)

We have thus obtained the input-output relation for sampling witb a predictive
first-order-hold that can be expressed as follows.

Spfoh (G(S]) = : ; = Smh (G£S)) (720)
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By using Eq. (2.30) it follows that the pulse-transfer function obtained by the
predictive first-order-hold sampling of a continnous system with the transfer
fanction G(s) can be expressed by

H(z)=(2_1)2 . /ﬁm i (7.21)
¥

zh 2mi) . z—eh sF
We illustrate the results with an example.

Example 7.6 Predictive first-order-hold sampling of an integrator

An integrator has the transfer function G(s) = 1/s. The zero-order-hold sampling
of the double integrator is

Rt z4+1

2 (z-1)?

It then follows from Eq. {7.20) that

hz+1
H&)mﬁz—l
This is the same result obtained in Example 7.4, .

Example 7.7 Predictive firat-order-hold sampling of a double integrator

A double integrator has the transfer function G(s) = 1/s%. It follows from Table 2.1
that the zero-order-hold sampling of 1/s° is

Ezz+4z+1
6 {z—1)

It then follows from Eq. (7.20) that

hi2t 44z 41
1) = s o1y

Notice that in this case the orders of the numerator and denomimator polynomials
are the same. This is due Lo the predictive nature of the hold. .

Control Design

We have thus found that predictive first-order-hold sampling is similar to zero-
order-hold sampling. In both cases the behavior of a system at the sampling
nstantscan be described as a time-invariant discrete-time system. The methods
for designing controllers obtained can then be used with minor modifications.
We will illustrate this by giving the results for pole-placement control.
Consider a system with the pulse-transfer fimction H(z) = B(2)/A(z) ob-
tained by predictive first-order-hold sampling. A general linear controller with a
two-degree-of-freedom structure can be described by the triple (R(z), $(z), T'(z}).
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With a predictive hold the controller must generate the signal u{kk + h) at time
kh. This means that the controller polynomials have the property

deg Riz) > deg §{z) + 1

) 7.22
deg B{z) > deg T(z) + 1 (722)
Specifying a desired closed-loop characteristic polynomial A, we find that the
Diophantine equation associated with the design problem becomes

A(2)R(2) + B{2)8(z) = Aul2) (7.23)

and the control design can then be done in the same way as in Chapter 5. The
only difference is that the order condition (7.22) is different. We illustrate the
procedure by an example.

Example 7.8 Pole-placement design of a double integrator

In Example 7.7 we derived the pulse-transfer function for a double integrator under
predictive first-order-hold sampling. It follows from this example that the system
is characterized hy

Alz) = (z-1)°
K,
Ble) = ¢ 2+ 42+ 1)

Assuming that a controller with integral action is desired we find that the Dio-
phantine equation {7.23) becomes

2

(z-1P°R(z) + %— (2% + 4z + 1)S(z) = Au(z)
where R(z) = {z — 1)R{z). The minimum-degree solution of this equation has
the property degS{z) = 2. It then follows from the order condition (7.22) that
deg R(2)=3 and consequently that deg R(z) = 2. The minimum-degree solution
thus gives a closed-loop system of order five. The previous Diophantine equation
becomes

2
- 1P +rmz+r)+ % (2% + 4z + 1){sp2® + 512 +83) = Ay(2)

The solution of this equation was discussed in Sec. 5.3. .

7.6 The Modulation Model

A characteristic feature of computer-controlled systems with zero-order hold is
that the control signal is constant over the sampling period. This fact is used
in Chapter 2 to describe how the system changes from one sampling instant to
the next by integrating the system equations over one sampling period; this sec-
tion attempts to describe what happens between the sampling instants. Other
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Figure 7,15 Schematic diagram of a sample-and-hold ecireuit.

mathematical models are then needed, because it is no longer sufficient to model
signals as sequences (functions that map Z to R); instead they must be modeled
as continuous-time functions (functions that map R to R).

The central theme is to develop the modulation model. This model is more
complicated than the stroboscopic model discussed in Chapter 2. The main dif-
ficulty is that the periodic nature of sampled-data systems must be taken into
account, The system can he described as an amplitude modulator followed by
a linear system. The modulation signal is a pulse train. A further idealization
is obtained by approximating the pulses by impulses. The model has its origin
in early work on sampled-data systems by MacColl (1945), Linvill (1951}, and
others.

In the special case of computer control with a unit-gain algorithm and
negligible time delay, the combined action of the A-I} converter, the computer,
and the D-A converter can be described as a system that samples the analog
signal and produces another analog signal that is constant over the sampling
periods. Such a circuit is called a sample-and-hold circuit. An A-D converter
can also be described as a sample-and-hold circuit. The hold circuit keeps the
analog voltage constant during the conversion to a digital representation. A
more detziled model for the sample-and-hold circuit will first be developed.

A Model of the Sample-and-Hold Circuit

A schematic diagram of an analog sample-and-hold circuit is shown in Fig, 7.15.
It is assumed that the circuit is followed by an amplifier with very high input
impedance. The circuit works as follows: When the sampling switch is closed, the
capacitor is charged to the input voltage via the resistor B, When the sampling
switch is opened, the capacitor holds its voltage until the next closing.

To describe the system, a function m, which describes the closing and
opening of the sampling switch, is introduced. This function is defined by

1 if switch is closed
m(t) =

{0 1if switch is open

The current is then given by
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Figure 7.16 Graph of the modulation function m with period % and pulse
width 7.

The current is thus modulated by the function m, which is called the modulation
function. If the input impedance of the circuit that follows the sample-and-hold
circuit is high, the voltage over the capacitor is given by

C d—ydt—t} = i{t) = u__(t);{y L

The differential equation of (7.24) is a linear timevarying system. The time
variation is caused by the modulation. If the sampling period # is constant and
if the switch is closed for 7z seconds at each sampling, the function m has the
shape shown in Fig. 7.16. Because m is a periodic function the system becomes
a periodic system.

Once a mathematical model of the circuit is obtained the response of the
circuit to an input signal u can be investigated. It follows directly from Eq.
{7.24) that the voltage across the capacitor is constant when the switch is open,
that is, when m(¢) = 0. When the switch is closed, the voltage ¥ approaches the
input signal u as a first-order dynamic system with the time constant RC, The
time constant of the RC circuit must be considerably shorter than the pulse
width; otherwise, there is no time to charge the capacitor to the input voltage
when the switch is closed,

A simulation of the sample-and-hold circuit is shown in Fig. 7.17. With
the chosen parameters, the pulse width is so long that the input signal changes
significantly when the switch is closed.

Figure 7.18 shows what happens when the pulse width is shorter. The
results shown in Fig. 7.18 represent a reasonable choice of parameter values.
The sample-and-hold circuit quickly reaches the value of the input signal and
then remains constant over the sampling period.

(7.24)

Practical Samplers

In practice, a sampler is not implemented, as shown in Fig. 7,15. They are today
made using semiconductor technology, but the circuits can still be described by
Eq. (7.24). To avoid difficulties with noise and ground loops, it is important to
have the computer galvanically isolated from the process signals. This can be
achieved using the flying capacitor technique, which combines electrical insu-
lation with sample-and-hold action in an elegant way. A capacitor is charged
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Figure 7.17 Simulation of a sample-and-hold circuit. The pulse width ¢ is
0.2 s and the time constant is RC = 001 s. (a) The continuous-time signal
(dashed) and the output of the sample-and-hold circuit (sohd); (h) the current
it} in the sample-and-hold circuit; (¢) the modulation function m{t).

to the input voltage when it is connected to the input line. When the capac-
itor is connected to the D-A converter it holds its voltage. Electrical isolation
is obtained because the capacitor is connected either to the process or to the
D-A converter of the control computer. In practice it is common to charge the

capacitor via an operational amplifier, The flying capacitor circuil can also be
described by Eq. (7.24).

A Mathematical Idealization

The pulse-modulation scheme is easy to simulate but difficult to analyze. A more
easily used mathematical idealization will therefore be introduced. It seems
reasonable to design the sample-and-hold circuit so that the pulse width 7 is
much shorter than the sampling period, It also seems reasonable to choose the
time constant RC to be shorter than the pulse width. The current through the
capacitor will then consist of short pulses. Both the height and the time integral
of a pulse are proportional to the difference u ~ ¥ between the input voltage u
and the capacitor voltage ¥ at the sampling instant.
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Figure 7.18 Simulation of a sample-and-hold cireuit. The pulse width is
0.05 s and the time constant is RC' = 0.01 5. (a} The continugus-time signal
(dashed) and the output of the sample-and-held circuit (solid); {b) the current
i(¢) in the sample-and-hold circuit; (c) the modulation function m(t).

In the idealization, the current pulses are replaced by impulses. For sim-
plicity the integral of the impulse is chosen to be proportional to the value of
the input signal « at the sampling instant, The capacitor is then replaced by
an integrator. Because the pulses were chosen to be proportional to # and not
to u — y, 1t is necessary to reset the integral to zero when a new pulse arrives.
The current is then represented as

u' = um (7.25)

where

m(t) = i 8(t - kh) (7.26)

k=-mx

and J is a delta function [compare with {7.24}]. The signal #* is called the
sampled representation of the continuous signal u. It is useful to remember that
u" 15 related to the current through the capacitor of the sample-and-hold circuit
in Fig. 7.15.
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Figure 7.19 Block diagram of a sample-and-hoid circuit and its idealized

representation.

The signal u* can be thought of as a modulation of u with a carner signal
in the form of an impulse train. The model is therefore called the impulse-train
modulation model. The signal u* carries the same information as the sequence
{u(kh),k = ...,-1,0,1,...}. Notice, however, that 1" is a (generalized) time
function. The signal «* is introduced to represent a sampled signal in a form
that can be processed by linear filtering.

The Hold Circuit

The hold circuit can be represented as an integrator that is automatically reset
to zero after one sampling period. Such a system has the transfer function

G (5) = » (1 - e'”‘jl (7.27)

5

The impulse response of the transfer function 1/s is a unit step and the impulse
response of (1/s) exp(—sh) is a unit step that is delayed A time units. Subtraction
of theee impulse responses gives the impulse response as a pulse of unit height
and duration A.

Notice that the steady-state gain of the hold eircuit is Gy (0) = A. Sec-
tion 7.3 shows that ideal sampling could be said to have a gain 1/4. The com-
bination of a sampler with a hold circuit thus has unit steady-state gain. For
very fast sampling, the sample-and-hold circuit thus acts as a continuous-time
gystem with unit transfer function.

The idealized model of a sample-and-hold circuit is thus obtained by com-
bining a sampler with impulse modulation given by (7.25) and (7.26) with a hold
circuit given by (7.27). A block-diagram representation of the system is shown
in Fig. 7.19. Because the impulse modulator is a periodic system it follows that
the sample-and-hold circuit is also a periodic system.

Input-Output Relationships

Once a convenient representation of a sample-and-hold circuit is obtaineg, the
response of a sampled-data system to an arbitrary input signal can be computed.
Consider the system shown in Fig. 7.20(a}, which is composed of a sample-and-
hold circuit connected to a time-variant linear dynamic system with the transfer
function . This is a typical representation of a sampler and a D-A converter
connected to a process. Use of the impulse-modulation model of the sample-and-
hold circuit allows the system to be represented as in Fig. 7.20(b).
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Figure 7.20 (a) Schematic diagram of a sample-and-hold cireuit connected
to a linear system and (b} its representation using the idealized medel of a
sample-and-hold circuit.

Let u be the input, y the output, and F the transfer function of the com-
bination of the zero-order-hold circuit and the process, that is,

F(s) = -i_- {(1-e*MG(s) {7.28)

The input-output relationship is easily determined using transform theory. The
Laplace transform of #* is given by

Ur(s) = f:e‘”*u*(z) dt = ZE‘SH‘ u(kh)
k=0

The Laplace transform of the output signal is then given by

o]

Yis} = Pls) Y e uikh) (7.29)

k=0

It is thus straightforward to calculate the Laplace transferm of the output sig-
nal. Notice, however, that it is not pessible to factor out the Laplace transform of
the signal « on the right-hand side of (7.29). This means that the input-output
relationship of the system cannot be characterized by an ordinary transfer func-
tion. This is because the system is not time-invariant. How to get around this
problem is discussed in Sec, 7.8.

7.7 Frequency Response

Many powerful methods for analysis and design of control systems are based on
frequency response. The key idea is to use the fact that a linear time-invariant
system can be completely characterized by its steady-state response to sinu-
soidal signals. It would be highly desirable to extend these results to sampled-
data systems, We have in fact done this intuitively, for example, when plotting
the sensitivity function, S(¢***), for discrete-time systems in Chapter 5. There



Sec. 7.7 Frequancy Response 269

are, however, some difficulties in interpreting the results that we must be aware
of. The frequency response of a discrete-time system is a well-defined quantity.
When dealing with sampled systems it is, however, also necessary to consider
what happens between the sampling instants. There is an essential difficulty
because sampled systems are time-varying. One consequence of this is that a
sinusoidal input of frequency generates outputs with many frequencies. This
was illustrated, for example, in Example 1.4.

In this section we will explore sampled systems from the point of view of
frequency response. We will first investigate how sinusoids propagate through
sampled systems. The results are useful when organizing and interpreting ex-
periments with frequency response. We will then briefly outline how frequency
response of a sampled system can be defined rigorously. The section ends with
a few practical remarks.

A Special Case

When performing the frequency-response test, it is natural to cut the loop on the
analog side, for example, at A in Fig. 7.1. To simplify the analysis consider the
special case in which the output of the D-A converter is equal to the input of the
A-D converter. The action of the computer on the signais can then be described
as a sample-and-hold circuit. It follows from Fig. 7.19 that a sample-and-hold
circuit can be represented as a sampler followed by a hold circuit. The problem
is thus reduced to calculation of the response of a sampler followed by a linear
time-invariant system.

Equation (7.25) gives the sampled representation u* of the input signal u.
A formal Fourier series representation of a sequence of delte functions gives

m(t) = i 3(t — kh) = %(1+2imskw.t)
k=1

.l="‘E.'Q

where £ is the sampling period, and ), is the corresponding sampling frequency
in radians per second.
Assume that the input to the system is

u(t) = sin(wt + @) = hn (expi(art + ¢))

The series expansion of the output u* = um"* of the sampler then becomes

ut(t) = }l-l [sin(art +0)+2 icns(km,t) sin{wt + q:)]
k=1

[= =]

= -’1; [sin(a)t + @)+ E (sin(km.r + ot + p} —sin{kw,t — wt - :p))]
A=1

The signal u* has a component with the frequency @ of the input signal. This
component ismultiplied by 1/A because the steady-state gain of a sampler is
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Figure 7.21 Frequency content of the sampled input signal u* when
u = sin{ewt + @).

1/h. The signal also has components corresponding to the sidebands ko, * w.
The frequency content of the output u* of the sampler is shown in Fig, 7.21,
The output signal ¥ is obtained hy linear filtering of the signal #* with a system
having the transfer function F(s). The output thus has components with the
fundamental frequency @ and the sidebands kw, t w.

For w # kwy, where wy is the Nyquist frequency, the fundamental com-
ponent of the output is

y(t) = % Im (F[iw}euwww)

For w = kwy, the frequency of one of the sidebands coincides with the funda-
mental frequency. Two terms thus contribute to the component with frequency
. This component is

R

—
[

—
i

Im (F(iw)e:(mm} - F(iw]a‘“’”""’})

Im ((1 - 92"?) F(jm)eiifd!—ml)

| et 2 bt S| e

Im (23“’”2‘ ®lgin mF(im)e""’“‘”)

If the input signal is a sine wave with frequency @, it is found that the output
contains the fundamental frequency @ and the sidebands kw, + 0,k = 1,2, ...
(compare with the discussion of aliasing in Sec, 7.4), The transmission of the
fundamental frequency is characterized by

Fiw) W # kwy
Fliw) =
F{io)e'**9)gin W = koy

=i bo e

For @ # kay, the transmission is simply characterized by a combination of the
transfer functions of the sample-and-held circuit and the system G. The factor
1/h is due to the steady-state gain of the sampler,
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Figure 7.22 Sampling of a sinusoidal signal at a rate that corresponds
to the Nyquist frequency. Notice that the amplitude and the phase of the
sampled signal depend strongly on how the sine wave is synchronized to the
sampling instants.

The fact that the signal transmission at the Nyquist frequency oy crit-
ically depends on @-—that is, how the sinusoidal input signal is synchronized
with respect to the sampling instants—is illustrated in Fig. 7.22.

There may be interference between the sidebands and the fundamental
frequency that can cause the output of the system to be very irregular, A typical
illustration of this was given in Example 1.4, In this case the fundamental
component has the frequency 4.9 Hz and the Nyquist frequency is 5 Hz. The
interaction between the fundamental component and the lowest sideband, which
has the frequency 5.1 Hz, will produce beats with the frequency 0.1 Hz. This is
clearly seen in Fig. 1.12.

If the sideband frequencies are filtered out, the sampled system appears
as a linear time-invariant system except at frequencies that are multiples of the
Nyquist frequency, @,/2. At this frequency the amplitude ratio and the phase
lag depend on the phase shift of the input relative to the sampling instants.

If an attempt is made to determine the frequency response of a sampled
system using frequency response, it is important to filter out the sidebands
efficiently. Even with perfect filtering, there will be problems at the Nyquist

frequency. The results depend eritically on how the input is synchronized with
the clock of the computer.
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Figure 7.23 Open-loop computer-controlled system.

The General Case

It i5 easy to extend the analysis to the general case of the system shown in
Fig. 7.1. The corresponding open-loop system is shown in Fig, 7.23.

It consists of an A-D converter, the computer, a D-A converter, and the
process. It is assumed that the D-A converter holds the signal constant over
a sampling mterval. It is also assumed that the calculations performed by the
computer can be expressed by the pulse-transfer funetion H(z) and that the
process is described by the transfer function G(s).

If a sinusoid

v(t) = sin(wt + @) = I {expi(wt + @))

is applied to the A-D converter, then the computer will generate a sequence of
numbers that in steady state can be described by

W(kh) = Il‘ﬂ (H(e{'{ﬁh)ei{mkﬁ“'@l) k =T 1: 01 1:- e

This sequence iz applied to the D-A converter. Because the D-A converter holds
the signal constant over a sampling peried, the output is the same as if the
signal w were applied directly to a hold circuit. The discussien of the previous
section can thus be applied: The cutput contains the fundamental component
with frequency @ and sidebands kw, + @. The signal transmission of the funda-
mental component may be described by the transfer function

H{e""\F(iw) @ # koy
K(iw) =

o =~

7 H(e“")F(io)e™? Plsing @ = koy

- where wy i8 the Nyquist frequency and
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Figure 7.24 Magnitude and argument curves of the transfer function for
first-order-hold (full) and zerc-order-hold {dashed) circuits. The Nyquist fre-
quency is @y = 7.

When @ is not a multiple of the Nyquist frequency, the signal transmission of
the fundamental component can be characterized by a transfer function that
is a product of four terms: the gain 1/A of the sampler, the transfer function
(1 - exp(-sh))/s of the hold circuit, the pulse-transfer function H (exp(sh)) of
the algorithm in the computer, and the transfer function G(s) of the process.
Notice, however, that there are other frequencies in the output of the system
because of the sampling. At the Nyquist frequency the fundamental component
and the lowest sideband coincide.

It follows from the discussion that the hold circuit can be interpreted as
a filter. The frequency functions of zerc-order and first-order-hold circuits are
shown in Fig. 7.24. It is clear from the figure that both the zero-order and the
first- order hold permit significant signal transmission above the Nyquist fre-
quency @y = #/h. Notice that the phase curve is discontinuous at arguments
@y = 2km, k = 1.2,.... Because the phase is defined modulo 27, the disconti-
nuities may be 1. In the figure they are shown as 7 for convenience only,

The following example itlustrates the calculation and interpretation of the
frequency response of a sampled system.

Example 7.9 Frequency response of a sampled-data system
Consider a system composed of a sampler and 2 zero-arder hold, given by (7.27),



274

Gain

Phase

Process-Oriented Models Chap. 7

followed hy a linear system, with the transfer function

1
s+ 1

Gis) =

The sampling period 15 A = 0.05 5. The Nyquist frequency is thus 7/0.05 = 628
rad/s. Figure 7.25 shows the Bode diagram of the system. For comparison, the
Bode diagram of the transfer function G is also shown in the figure. The curves are
very close for frequencies that are much smaller than the Nyquist frequency. The
deviations occur first in the phase curve. At = 0.lay the phase curves differ by
about 10°. There is no signal transmission at frequencies that are multiples of the
sampling frequency &, because the transfer function of the zero-order hold is zero
for these frequencies. The phuse curve is also discontinuous at these frequencies.
{Compare with Fig, 7.24.) Notice also that there are ambiguities of the transfer
function at frequencies that are multiples of the Nyquist frequency thal are not
shown in Fig. 725, The value of @y is indicated by a vertical dashed line in
Fig. 7.95.

The interpretation of the Bode diagram requires some care because of the
modulation introduced by the sampling. If 2 sine wave of frequency @ is introduced,
the output signal is the sum of the outputs of the sine wave and all its aliases,

1

1

1
—T
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0.1 10 | .1000

-100

-200

=300

0.1 10 1000
Frequency, rad/s

Figure 7.25 Bode diagrams for a zero-order sample-and-hold cireuit fol-
lowed by a first-order lag (solid), The sampling period is 0.05 s. The dashed
line is the frequency curve for the continuous-time first-order lag. The vertical
dotted lines indicate the frequencies @ = 5, 60, and 130 radfs, respectively.
The vertical dashed line indicates the Nyquist frequency.
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Figure 7.26 Steady-state responses to sinusoids with different frequencies
for a zero-order hold followed by a first-order system with a umit time con-
stant, The sampling period is 0.05 s. The frequencies are 5 rad/s in (a),

60 rad/s 1 (b), and 130 rad/s in (c), They are indicated by dotted hines in
Fip. 7.25,

This 1s illustrated in Fig. 7.26, which shows the steady-state outputs for different
frequencies. For frequencies smaller than the Nyquist frequency, the contribution
from the fundamental frequency dominates. At frequencies close to the Nyquist
frequency, there is a substantial interaction with tbe first alias, w, — w. Typical
beats are thus obtained. At the Nyquist frequency, the signal and its first alias have
the same frequency and magnitude. The resulting signal then depends on the phase
shift between the signals. For frequencies higher than the Nyquist frequency, the
contribution from the alias in the frequency range (0, wy) dominates.

This clearly shows how important it is to filter a signal before the sampling,
so that the signal transmission above the Nyquist frequency is negligible. Compare
this conclusion with the discussion of aliasing in Sec. 7.4. [

Frequency Response of an Internal-Combustion Engine

An internal-combustion engine is a typical example of a system that is inher-
ently sampled. The sampling is caused by the ignition mechanism, and its fre-

quency is the number of independently fired cylinders divided by the time re-
quired for a full cycle.



276 Process-Oriented Models Chap. 7

When an attempt was made to investigate the dynamic response of the en-
gines, reproducible results were easily obtained for frequencies lower than the
sampling frequency. For a long time, however, the results for higher frequen-
cies were erratic. Different results were obtained at different measurements
and results of experiments could not be verified when the experiments were
repeated. This was due to the sampled nature of the process. For input signals
with a frequency close to the Nyquist frequency, there is interference from the
sidebands. At the Nyquist frequency, the results depend on how the sinusoid is
synchronized to the ignition pulses.

When the source of the difficulty was finally understood, it was easy tofind
a sclution. The sinusoid was simply synchronized to the ignition pulses; then
it became possible to measure the frequency response to high frequencies. A
typical result is shown in Fig.7.27, Notice, in particular, that the measurement
1s done in a range of frequencies that includes the Nyquist frequency.

The Idea of Lifting

The notion of lifting is an elegant way to deal with periodically sampled systems.
The idea is to represent a finite-dimensional sampled system as a time-invariant
infinite-dimensional discrete system. In this way it is possible to define a notion
of frequency response properly. It is also possible to give a nice deseription of
intersample behavior.

Consider a system described by Eq. (2.1). Assume that the system is sam-
pled with a period £, and that the input signal and tbe states are in Ly. We
introduce the discrete signal u; € Ly(0, &) defined by

up{t) = u(kh+ 1) O<r<h (7.30)

and the signals x, and y,, which are defined analegously. Define the discrete
signal x; is the same way. It follows from Eq. (2.1) that

Xe1(T) = @(T)xp(h) + /ﬂr w(r —s)Bu(s)ds

¥:(7) = Cxu(7)

(1.31)

where

plt) = &
w(t) = e*"'B

This system is a time-invariant discrete-time system. Equation (7.31) gives a
complete description of the intersample behavior because the function y,(7),
which is defined for 0 < r < k, is the cutput in the interval Bk < t < bk + h.
The description thus includes the phenomenon of aliasing. Notice, however, that
tey, x4, and y; ave elements of function spaces. Because the system is linear and
time-invariant, the frequency response can be defined as H{e***), where H is
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Figure 7.27 Measured frequency response for a diesel engine. The fre-
quencies are normalized with respect to the sampling frequency. [Redrawn
from D. E. Bowns, “The Dynamic Transfer Characteristics of Reciprocating
Engines,” Proc. Mech. Eng., 185. (1871) with permission. ]
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the transfer function of the infinite-dimensional system (7.31). The transfer
function H is, however, a nontrivial mathemalical object. It can he computed
numerically by a finite-dimensional approximation of the state. This can, for
example, be obtained through the discrete-time system obtained by dividing
the sampling interval & into N equal parts. A complete treatment requires
functional analysis, which is outside the scope of this book. Details are given in
the References.

Another way to deal with frequency response of sampled systems 1s to
realize that the output generated by a sinusoid with frequency @, contains the
frequencies w, = nw, t wo. The system can then be properly characterized by
the transfer functions for all those frequencies.

Practical Consequences

The fact that sampied systems are time-varying means practically that some
care must be exercised when interpreting frequency responses of sampled sys-
tems. Discrete frequency responses such as H(e'®*), L{e'"), and $(e'®") give
a correct deseription of what happens at the sampling instants, hut they may
give misleading results when intersample behavior is considered. For example,
if we compute a phase margin based on L{¢**") it may happen that the system
becomes unstable for a much smaller increase of the phase lag of the physical
process, Realize that the reason for the difficulty is that a sinusoidal input,
with frequency wy, to a sampled system gives outputs that contains many other
frequencies. Wilth an ideal antialiasing filter the signal components with fre-
quencies different from @y will not be present and the difficulty disappears.
Ideal antialiasing filters cannot be implemented practically, There will net be
much difficulties with plants with good attenuation of high frequency if the sam-
pling period and the antialiasing filter are chosen properly. There may, however,
e severe problems if there are resonant modes close to the Nyguist frequency.
In such cases it is necessary to choose sampling rates and antialiasing filters
very carefully. It is also advisable to use the theory of lifting to compute the
proper frequency responses,

1.8 Pulse-Transfer-Function Formalism

Linear continuous-time systems can be conveniently described, analyzed, and
synthesized using algebraic methods, When the theory of sampled-data systems
was developed, it was natural to try to develop similar algebraic tools. Much
of the early development of the theory of sampled-data systems went in this
direction.

The approach s useful, simple, and successful if the system is viewed from
the computer or if the process is observed at times that are synchronized with
the computer clock, because the system is then time-invariant. (See Chapter 3
for the appropriate analysis.} However, when the system is analyzed from the
process point of view, as is done in this chapter, the system is time-variable, The
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algebraic approach then loses some of its simplicity, because multiplication with
time functions does not commute with differential and difference operators. For
the case of completeness, a brief description of the algebraic system theory in
the more complicated case is given. The main reason is historical. Much of the
theory of sampled-data systems was originally developed using this approach,
which is also used in many papers.

Goals

Before going into the details, it is useful to state the goals. The main purpose is
to develop a formalism for manipulating the system descriptions. The formal-
ism will have many properties in common with the transform methods for linear
time-invariant systems. Each A-D and D-A converter is associated with a sam-
pling operation. Because sampling can be described as an amplitude modulation,
the time-varying parts will be associated with these operations. The system can
then be separated into different parts: Some parts are ordinary linear time-
invariant systems that can be handled by the ordinary transform methods; the
other parts consist of the samplers that are intrinsically time-varying.

The z-Transform

Section 2.7 introduces z-transforms as mappings from sequences to functions of
a complex variable. A different z-transform whose domain is continuous func-
lions can be defined as follows:

DEFINITION 7.1 THE z-TRANSFORM ~ The z-transform of a continuous-time
function is defined as

F(z) = iz-’f f(kh) (7.32)
k=0

The inverse transform is given by

F(kh) = — ?( ARz d
r

% 4]

where the contour of integration I' encloses all singularities of the integrand. w

The z-transform of a continuous-time signal is thus ohtained by sampling the
signal and then applying the z-transform to the sampled sequence. Because
the transform depends only on the values at the sampling instants, all time
functions that agree at the sampling instants have the same transform.

Notice that the transform is inherently related to the clock, which defines
the sampling instants. Also notice that the inverse transform defines the funec-
tion at the sampling instants only.

These properties of the z-transform of a continuous-time function are easily
misunderstood and have led to much confusion and many mistakes.
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Two Basic Theorems

To develop an algebra that allows formal manipulation of the systems, two the-
orems are needed. The first thecrem tells how the 2-transform of a continuous-
time function is related to its Laplace transform.

THEOREM 7.2 Let the function f have the Laplace transform F and
the z-transform F, and let F* be the Laplace transform of the sampled rep-
resentation f* of /. Assume that for some ¢ > 0,|F(s)] < ]s|72** for large s]
then

F*(s) = F(e*™) = % i F(s + thw;) {7.33)

h=-00
where @, = 27/h is the sampling frequency.
Proof.  The definition of F* gives

F*(s) = ]0 " et d) dt
= f me'“f(t)m[t)dt
Q

= /ﬁ e "f(t) (*Z 5(r-kh}) dt

=00

where the last equality is obtained from (7.26). Interchange the order of inte-
gration and summation gives

Pls)=Y" /0 " et (85Ut - kh) dt

- Sy ihh)
k=0
- fwtesh)

The last equality follows from (7.32).

Because the Laplace transform of a product of two functions is a convolu-
tion of their transforms, it follows that

rHio
F*(s) = F(s)xM(s) = é-lﬁ Flv}M(s-v) dv
Y=
R . (7.34)
= .2_31,/},_100 F(v) 1= o) dv

The integration path should be to the right of all poles of F and to the Jeft of
all poles of M (see Fig. 7.28). If F goes to zero faster than |s|~'~¢ as |s| » oo,
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Figure 7.28 Singularities of F and M and the integration contour [

the integral of FM on a large semicircle will vanish, Upon completion of the
integration path by a large semicircle to the right, the integral can be evaluated
with residue calculus. In the domain enclosed by the contour the integrand has
simple poles at the zeros of

eh(s—u} =1

that is, at

U =s+2;’;—l& =s+thw, k=..-1101,...

The residues at these poles are

1 2rik
EFG+77)

Summation of the residues now gives {7.33), .

Remark 1. Notice that Eq. {7.33) can also be written as

1
F*(s) = 7 (F(s)+ F(s+iog) + F(s—iws)+ )
Remark 2. Notice that if F is anslytic for Re s < —#;, the integration

path in (7.34) may be closed by a large semicircle to the left. The following
formula is obtained:

F(z) = ) Res (F(s] m)

Poles of F

This gives a proof of formula (2.31).
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Figure 7.29 Block diagram of a system with two samplers,

Remark 5. The theorem can be extended to the case in which the funection
F goes to zero as 1/|s] for large {s}. Equation (7.33) is then replaced by

(s} = }11- Y F(s+iko,) + % £(04)
LR

Remark 4. In the literature the same notation is sometimes used for the
functions F* and F. This 1s confusing and should be avoided.

Remark 5. Notice that (7.33) is closely related to (7.3) for the Fourier
transform of a sampled signal.

Pulse-transfer functions. Section 7.6 shows that the input-output re-
lationship of a sampler followed by a linear transfer function is given by Eq.
(7.29). This equation cannot be described by a transfer function. If a fictitious
sampler is added to the system output, the configuration shown in Fig. 7.29
is obtained. For this system it is possible to define a transfer function. The
input-output relationship is given by

Yty = (fie)u' @)

The following theorem is useful for obtaining the corresponding transforms.

THEGREM 7.3 Let f and g be functions that have Laplace transforms
and let m be the modulation function corresponding to an impulse train. Then

m(t)(F(£)+ (m()g()) = (mHF(B) * (m(e(n) (7.35)
or, equivalently,
(fy=g' ) =F{ty=2"(t) (7.36)

Proof.  Use of the definition of a convolution allows the lefi-hand side of
(7.35) to be written as

w0
L

(F ¢ &')(8) = mit) f fit-t)g'() dr = ] m(t)f (- T)m(z)g(r) dr
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Similarly, the right-hand side of Eq. (7.36) can be written as

o

(F )t = / mit )f( T)m(t)g(r)dr

-%

= ['x m)f(t-t)m(r}g(z)dr

- X

The last equality holds because m(7) # O only for 1 = nh and m(¢ —nh) = m(¢).

]
Remark 1. The Laplace transformation of (7.35) gives
(F(s)G'(s))" = F*{s)G(s) {7.37)

Remark 2. Notice that the multiplication by m outside the brace in (7.35)
can be interpreted as introduction of a fictitious sampler.

A Formalism

It is now straightforward to develop a formalism for dealing with sampled sys-
tems. First, a system is represented by a block diagram. Each A-D converter is
represented as an ideal sampler. Each D-A converter is represented as a hold
circuit having the transfer function (7.27). Linear continuous-time blocks are
represented by their transfer functions, and linear caleulations in the computer,
by their pulse-transfer functions. The paths between the samplers can be re-
duced uvsing ordinary rules for linear time-invariant systems. The equations
describing the system are then written down. Theorems 7.2 and 7.3 are then
used to rewrite the equations. The procedure is illustrated by two examples.

Example 7.10 Translation of a simple computer-controlled system

Consider the standard configuration of a computer-controlled system shown in
Fig. 7.30(a}. The process is characterized by a linear transfer function G, and
the caleulations performed in the computer are represented by a pulse-transfer
function H. The analog and digital parts of the system are, as usual, connected via
D-A and A-D converters. To apply the formalism, the A-D converter is represented
by an ideal sampler. The computer is represented as a system that transforms an
impulse-modulated signal to another impulse-modulated signal. The D-A converter
1s represented by a sampler, followed by a zero-order hold. It is assumed that the
samplers are perfectly synchronized. The block diagram shown in Fig. 7.30(h) is
then obtained. The analog parts are thus the hold and the process. Their combined
transfer function is

F(s) = = {1 -e™")G{s)

o |

The Laplace transform Y of the output y is given by

Y{s) = F{s)U'(s)
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Figure 7.30 Standard configuration of a computer-controlled system.

The sampled output has the transform
Y(s) = (F(s)U*(s))" = F*{s)U(s)

where (7.37) is used to obtain the last equality. The relationship between y* and
u* can thus be represented by the pulse-transfer function

ﬁ'(z] = FX(8) ls-(inzyn
The calculations in the computer can furthermore be represented by the pulse-

transfer function H(z}. If the loop is cut in the computer the pulse-transfer function
is thus

H(z)F(z)

A block diagram of the properties of the system that can be seen from the computer
18 shown in Fig. 7.30(c). By considering all signals as sequences like {y(kh).k =
...=1,0,1,...} and by introducing appropriate pulse-transfer functions for the al-
gorithm and the process with the sample-and-hold, a representation that is equiva-

lent t the ordinary block-diagram representation of continuous-time systems was
thus obtained. [

A further illustration is given by a slightly more complicated example
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Exemple 7,11 Translation of a computer-controlled system with two loops

The system illustrated in Fig. 7.31(a) has two measured analog signals, y; and .,
and one analog command signal, .. The analog signals are scanned by a multi-
plexer and converted to digital form. The computer calculates the ¢ontrol signal,
which is fed to the process via the D-A converter. Figure 7.31(h) is obtained by the
procedure given in Example 7.10. We now mtroduce

1,
Fils) = Gafs) - (1-¢™)
Fg{&'] ES GQ(S)F1(-§}
The Laplace transforms of the output signals are then given by

Vi(s) = Fa(s)U"(s)
¥(s) = Fy{s)U"(s)

Hence

Yi(s) = (R(s)U'(8)" = Fi(s)U"(s)
Y;(s) = (Fy(s)U(8))" = Fy(s) U (8)

It follows from (7.33) and (7.37) that

Yil2) = F(2)Ut)
Ys(2) = Fy(2)U(2)

Let the calculations performed by the control computer be represented by
U(z) = H.(2)U.{z) - Hi(2)Y1(2) - H3(2)Y(2)
The relationship between the output, Y, and the sampled command signal, IV, is

_ H,(2)Fyl2)
Ya(e) = 1+ Hl(z]ﬁ'l(z] + Hz(Z]ﬁ'z(“’)

U.(z)

Notice, however, that the relationship hetween the analog signals y, and u, cannot
be represented by a simple pulse-transfer function because of the periodic nature

of the sampled-data system.
With the introduction: of the sampled signals as sequences and pulse-transfer
functions, the system can be represented as in Fig. 7.31(c). .
Modified z-Transforms

The problem of sampling a system with a delay can be handled by the modified 2-
transform defined in Definition 2.2. The modified z-transform is nseful for many
purposes—for example, the intersample behavior can easily be investigated us-
ing these transforms. There are extensive tables of modified z-transforms and
many thearems about their properties (see the References).
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Figure 7.31 Computer-controlied system with multiplexer and two feed-
back loops and equivalent block diagram.

7.9 Multirate Sampling

So far only systems in which the A-D and the D-A conversions are made at
the same rates have been discussed. In the discussion of postsampling filters in
Sec. 7.4 it was indicated that 1t may be advantageous to make the D-A conver-
sion more rapidly. There are also situations where the converse is true. It is,
for example, difficult to implement antialiasing filters with long time constants
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using analog techniques. In such cases it is much easier to sample the signals
rapidly with analog antialiasing filters and to do digital filtering afterward.
In both cases the systems have two samplers that operate at different rates.
This is called multirate sempling. Such sampling schemes may be necessary for
systems with special data-transmission links or special sensors and actuators
and are useful for improving the responses of systems in which measurements
are obtained at slow rates, for example, when laberatory instruments are used.
Multirate systems may allow better control of what happens between the sam-
pling instante. In multivariable systems it may also be advantageous to have
different sampling rates in different loops to reduce the computational load and
to improve the numeric conditioning. Use of multirate sampling is also natural
in multiprocessor systems.

A detailed treatment of multirate systems is outside the scope of this book;
however, a short discussion of the major ideas will be given to show how the
methods presented in the book can be extended to also cover multirate systems.

State-Space Descriptions

Consider a system composed of two subsystems that are continuous constant-
coefficient dynamic systems. Assume that there are two periodic samplers with
periods Ry, and hy. Let the ratio of the periods be a rational number ky/hy =
my/ms, where m; and mg have no commaon factor, Then there exists a smallest
Integer m and a real number % such that

m = mims }"L1=EnE hz=h—mE

If the samplers are synchronized, it follows that the control signals will be
constant over sampling periods of length &/m. Sampling with that period gives
a discrete-time system that is periodic with period A. The system can then he
described as a constant discrete-time system if the values of the system variahles
are considered only at integer multiples of k. The ordinary discrete-time theory
can then he applied. An example illustrates the idea.

Example 7.12 Multirate systems

Consider the system shown in Fig.7.32, which has two subsystems and two sam-
plers with periods 0.5 and 1. It is assumed that the gamplers are synchronized.
It is also assumed that the hold circuits are included in the subsystems. If the

Period A Period 2 4
u u
— 5 Y1 82 S, J2

Figure 7.32 Block diagram of a simple multirate system.



288 Process-Oriented Models Chap. 7

subsystems are sampied with period 0.5 and 0.5 18 chosen as a time unit, then

Xk +1) = Ox (k) + Tu; (k)
J’l[k) = Cynik)

x3(k + 1} = ®y9(k) + Faup(k)
ya(k) = Coxs(k)

The interconnection are described by

(k) = ya(Rk) E=..-1012...
uy(k) = y1(4) k=..-1012...

The system is periodic with a period of twe sampling intervals., A time-invariant
description can be ohtained hy congidering the system variables at even sampling
periods only. Straightforward calculations give

[Il(zk + 2} : [¢2 + Fngfgcl & FICQ + r102¢'2 ] [

x2(2k + 2) (@ + [0, ] (7.38)

Thas equation can be used to analyze the response of the multirate system. For
example, the stability condition is that the matrix on the right-hand side of {7.38)
has all its eigenvalues inside the unit disc. The values of the state variables at odd
sampling periods are given by

x1(2k+ l)] B [ ¢'; FICQJ xl{Ek)]
[ ni2k+1)) A0 @ [ xz(2k)
The analysis illustrated by the example can be extended to an arbitrary num-

ber of samplers provided that the ratios of the sampling periods are rational

numbers. Delayed sampling can also be handied by the methods described in
Sec. 2.3.

Input-Output Methods

Multirate systems can also be investigated by input-output analysis. First, ob-
serve as before that tbe system is periodic with period A if the ratios of the
sampling periods are rational numbers. The values of the system variables at
times that are synchronized to the period can then be described as a time-
invariant dynamic system. Ordinary operator or transfer-function methods for
linear systems can then be used. The procedure for analyzing a system can be
described as follows: A block diagram of the system including all subsystems
and all samplers is first drawn. The period 4 is determined. All samplers ap-
pearing in the system then have periods h/m, where m is an integer. A trick
called switch decomposition is then used to convert samplers with rate h/m to a
combination of samplers with period /. The system can then be analyzed using
the methods described in Sec. 7.8.
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{a) (b}
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Figure 7.33 Representation of samplers with periods (a) A/2 and (b) h/m
by switch decomposition.

Switch Decomposition

To understand the concept of switch decomposition, first consider a sampler
with peried //2. Such a sampling can be obtained by combining a sampler with
period k and another sampler with period / that is delayed £/2. The scheme is
illustrated in Fig. 7.33(a). The idea can easily be extended to sampling at rate
h/m, where m is an arbitrary integer [see Fig. 7.33(b)].

Multirate Systems with Nonrational Periods

The methods described so far will work only when the ratios of the sampling
periods are rational numbers. If this is not the case, it is not possible to obtain
a periodic system,; different techniques must then be used. The multirate tech-
niques also lead to complicated analysis if there are many samplers with a wide
range of periods.

7.10 Problems

7.1 The signal
f(¢) = @y sin 21t + ag sin 20¢

is the input to a zero-order sample-and-hold circuit. Which frequencies are there
at the output if the sampling period is & = 0.27

7.2 Asignal that is going to be sampled has the spectrum shown in Fig. 7.34. Of interest
are the frequencies in the range from 0 to f; Hz. A disturbance has a fixed known
frequency with /; = 5f;. Discuss choice of sampling interval and presampling filter.
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f i

0 f f2

Figure 7.34

7.3 Show that the system in Fig. 7.35 is an implementation of a first-order hold and
determine its response to a pulse of unit magnitude and a duration of one sampling
interval.

Z0H ~1 % -—\y

-1 |-

Figure 7.35

7.4 Sample a sinusoidal signal u(t) = sin(¢) using zero-order hold, first-order hold, and
predictive first-order hold. Compare the different hoid circuits when the sampling
period is changed.

7.5 The magnitude of the spectrum of a signal is shown in Fig. 7.36. Sketch the mag-
nitude of the spectrum when the signal has been sampled with (a) & = 27/10 s,
(b) k = 27/20 8, and (¢} A = 28/50 s,

| o(w)

A

r
0 10 @,rad/s

Figure 7.36

78 Consider the signal m Problem 7.5, but let the spectrum be centered around o =
100 rad/s and with (a} @, = 120 rad/s and (b) @, = 240 rad/s.

7.7 A camera is used to get a picture of a rotating wheel with 8 mark on it. The wheel
rotates at r revolutions per second. The camera takes one frame each A seconds.

Discuss how the picture will appear when shown on & screen. (Coinpare with what
you see in western movies.)
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7.8 The signal y(¢) = sin 37¢ iz sampled with the sampling period k. Determine & such
that the sampled signal is periodie.

7.9 An amplitude modulated signal
u(t) = sin (4wot) cos {2wt)

is sampled with 2 = 7/3wy. Determine the frequencies f, 0 € f < 3a,/2x that
are represented in the sampled signal.

7.10 Find Y* for the systems in Fig, 7.37.

(a) .
¥
~/wl 200 |~ ¢, M~ 208 |~ ¢, p—
{b) R
u N A
— = Z0H G, F+ 6, b—
(e) " ¥
ZCH =~ -H
Figure 7.37

7.11 Write a program to compute the frequency response of a sampled-data system. Let
the following be the input to the program:

(a) The polynomials in the pulse-transfer function H(z).
(b) The sampling interval.

(¢) The maximum and minimum frequencies.

Use the program to plot H{exp{iwh)) for the normalized motor sampled with a
zero-order hold and compare with the continuous-time system.

7.11 Notes and References

The fact that a sinusoid can be retrieved from its sampled values if it is sampled
at least twice per period was stated in Nyquist (1928). The sampling theorem
in the form presented in this chapter was introduced in Shannon (1949), where
the implications for communication were emphasized. The results had, however,
been known earlier as a theorem in mathematies, In the Soviet communication
literature, the theorem was introduced by Kotelnikov (1933). A review of the
sampling theorem with many references is given in Jerri (1977).
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There are many ways of sampling. A review of different schemes is given
in Jury (1961). Different types of hold circuits are discussed in more detail in
Ragazzini and Franklin {1358). Selection of the sampling period for signal pro-
cessing is discussed in Gardenhire (1964). The different trade-offs in the areas
of control and signal processing may lead to very different rules for choosing the
sampling rate. Predictive first-order hold is discussed in Bernhardsson (1990)
and an application to motion control is described in Astrom and Kanniah (1994),

The approach taken in this chapter corresponds to the classic treatment of
sampled-data systems. The modulation model was proposed by MacColl (1945)
and elaborated on by Linvill (1951). A more detailed treatment is given in the
classic texts by Ragazzini and Franklin (1958) and Jury (1958). The ideal-
sampler approximation is discussed in Li, Meiry, and Curry (1972).

Frequency response is important from the point of view of both analy-
sis and design. A fuller treatment of this problem is given in Lindorfl {1965).
Practical applications of frequency-response analysis are discussed in Flower,
Windett, and Forge (1971). New aspects of frequency analysis of sampled-data
systems are found in Araki and Ito (1993}, Yamamoto (1994), Yamamoto and
Araki (1994), and Yamamoto and Khargonekar {1996).

More material on the z-transform is given in Jury {1982). The modified
z-transform is discussed in Jury (1958). Tables of modified z-transforms are also
given in that book.

Systems with multirate sampling were first analyzed in Kranc (1957).
Additional results are given in Jury (1967a, 1967b}, Konar and Mahesh (1978),
Whitbeck (1980), and Crochieve and Rabiner (1983).
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Approximating Confinuous-
Time Controllers

8.1 Introduction

There are situations when a continuous-time controller is already available.
A typical case is when an analog-control system is replaced by a computer-
control system. It is then natural to try to convert the continuous-time con-
troller to a discrete-time controlter directly. A straightforward approach is to
use a short sampling interval and to make some discrete-time approximations
of the continuous-time controller. This approach is illustrated in Example 1.2.
See, for example, Fig. 1.6, which compares a continuous-time controller with
an approximating discrete-time controller. In Sec. 8.2 we will present several
methods for approximating a continuous-time controller given in terms of their
trangfer functions. Similar methods for controllers given in state-space form
are presented in Sec. 8.3. In Sec. 8.5 the results are used to obtain digital PID
controllers. Some practical agpects of implementing a digital PID controller will
also be discussed in that section.

8.2 Approximations Based on Transfer Functions

This section assumes that a continuous-time controller is given as a transfer
function, G(s). It is desired to find an algorithm for a computer so that the digital
system approximates the transfer function G(s) (see Fig. 8.1). This problem is
interesting for implementation of botb analog controllers and digital filters. The
approximation may be done in many different ways. Digital implementation
includes a data reconstruction, which alse can be made in different ways—for
example, zero- or first-order hold.

293
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Hiz) =G(s)
e psrp— Y
it Y
-—JI-- A-D Algorithm D-A |
| | ! ! |
| |
| Clock ‘
4 l

Figure 8.1 Approximating a continuous-time transfer function, G (s), using
a computer.

Ditferentiation and Tustin Approximations

A transfer function represents a differential equation. It is natural to obtain a

difference equation by approximating the derivatives with a forward difference
(Euler’s method)

B dx(t) N x(t+h)-x(t) q-1

pr(t) = = 20
or a backward difference
pulf) = dx(2) N x(t) - x{t - h) _4- 1 ()

di h gh

In the transform variables, this corresponds to replacing s by (z - 1)/
or (z ~ 1)/zh. Section 2.8 shows that the variables z and s are related in some
respects as z = exp(sh). The difference approximations correspond to the series
expansions

z=e®~1+sh  (Eulers method) (8.1)

z=ex 1 _18 ; {Backward difference) (8.2)

Another approximation, which corresponds to the trapezoidal methed for
numerical integration, is

_ sh~1+5h/2
R TP

(Trapezoidal method) (8.3)

In digital-control context, the approximation in (8.3) is often called Tustin’s
approximation, or the bilinear transformation, Using the approximation meth-
ods above, the pulse-transfer function H (z) is obtained by simply replacing the
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4

e -
NN

N
)

Forward differences Backward differences Tustin

Figure 8.2 Mapping of the stability region in the s-plane on the z-plane
for the transformations (8.4), (8.5), and (8.6).

argument s in &(s) by s', where

§ = z—i—l {Forward difference or Euler’s method) {8.4)
5= %:&l (Backward difference) {8.5)
, 2 z-1 . C
$=1771 {Tustin’s approximation) (8.6)
Hence
H(z) = G(5)

The methods are very easy to apply even for hand calculations. Figure 8.2 shows
how the stahility region Res < 0 in the s-plane is mapped on the z-plane for
the mappings (8.4), (8.5), and (8.6).

With the forward-difference approximation it is thus possible that a sta-
ble continuous-time system is mapped into an unstable discrete-time system.
When the hackward approximation is used, a stable continuous-time system
will always give a stable discrete-time system. There are, however, also un-
stable continuous-time systems that are transformed into stable discrete-time
systems. Tustin’s approximation has the advantage that the left half-s-plane
18 transformed into the unit disc. Stahle continuous-time systems are there-
fore transformed into stable sampled systems, and unstahle continuous-time
systems are transformed into unstable discrete-time systems.

Frequency Prewarping

One problem with the approximations discussed earlier is that the frequency
scale ig distorted. For instance, if it is desired to design band-pass or notch
filters, the digital filters obtained by the approximations may not give the correct
frequencies for the band-pass or the notches. This effect is called frequency
warping. Consider an approximation obtained by Tustin’s approximation. The
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Figure 8.3 Frequency distortion (warping) obtained with approximation,

transmission of sinusoids for the digital filter is given by

P 1 . -4 2 Eimh_l
Hi™) = o e “’")G(E'W)

The first two factors are due to the sample-and-hold operations; compare with
(7.28). The argument of G is

2

— tan

9 eamh -1 2 eiwhfﬂ _ e—:wh!Z 94 wh
-H ellmh + l - E elwkfz + e-!ﬂih;@ = h ( )

The frequency scale is thus distorted. Assume, for example, that the continuous-
time system blocks signals at the frequency @'. Because of the frequency distor-
tion, the sampled system will instead block signal transmission at the frequency

@, where
w = g tan w—h
Tk 2

That is,

2. feh\ (w'h)?
m-ﬁtan (—é—)mm(l— 5 ) (8.7)
This expression gives the distortion of the frequency scale (see Fig. 8.3). It
follows from (8.7) that there is no frequency distortion at @ = 0 and that the
distortion is small if wh is small. It is easy to introduce a transformation that
eliminates the scale distortion at a specific frequency w, by modifying Tustin’s
transformation from (8.6) to the transformation

§ = i ) z-1
tan{wh/2) z+1

(Tustin with prewarping) (8.8)
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From (8.8}, it follows that
H () = Gliwy)

that is, the continuous-time filter and its approximation have the same value
at the frequency @;. There is, however, still a distortion at other frequencies.

Example 8.1 Frequency prewarping
Agsume that the integrator

should be implemented as a digital filter. Using the transformation of (8.6) without
prewarping gives

1 h oz+1
HT(z)“z_z__l"E‘Z_l
hoz+1
Prewarping gives
tan (s h/2) 2+ 1
HP[:Z} — ( 1 / ) .
i z—1
The frequency function of Hy is
why  tan{enh/2) et +1  tan{wh/2) 1
Hp(e ]= ' y = T
ah elot — 1 an rtan (wh/2)
thus G(im) and Hp {e*!} are equal for 0 = w,. a

Step Invariance

Another way to generate approximations is to use the ideas developed in Chap-
ter 2. In this way it is possible to obtain approximations that give correct values
at the sampling instants for special classes of input signals. For example, if the
input signal is constant over the sampling intervals, Table 2.1 or Eq. (2.30) give
an appropriate pulse-transfer function H{z) for a given transfer function G{s).
Because this relation gives the correct values of the output when the mput sig-

nal is a piecewise constant signal that changes at the sampling instants, it is
called step invariance.

Ramp Invariance

The notion of step invariance is ideally suited to describe a system where the
input signal is generated by a computer, because the input signal is then con-
stant over the sampling period. The approximation is, however, not so good
when dealing with input signals that are continuons. In this case it is much
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better to use an approximation where the input signal is assumed to vary lin-
early between the sampling instants. The approximation obtainedis called ramp
invarience because it gives the values of the output at the sampling instants
exactly for ramp signals. It is identical to predictive first-order-hold sampling
that was discussed in Sec. 7.5. Natice that hecause of the predictive nature of
ramp invariance there must be one delay in the controller; see Sec. 7.5.

Comparison of Approximations

The step-invariant method is not suitable for approximation of continuous-time
transfer functions. The reason is that the approximation of the phase curve
is unnecessarily poor. Both Tustins method and the ramp-invariant method
give better approximations. Tustin’s method is a little simpler than the ramp-
invariant method. The ramp-invariant method does give correct sampled poles.
This is not the case for Tustin’s method. This difference is particularly impor-
tant when implementing notch filters where Tustin’s method gives a frequency
distortion. Another drawback with Tustin’s method is that very fast poles of the
continuous-time system appear in sampled poles close to 2 = —1, which will give
rise to ringing in the digital filter. The different approximations are illustrated
by an example.

Example 8.2 Sampled approximations of transfer function
Consider a continuous-time system with the transfer function

Gls) = {8+ L)%(s* + 25 + 400)
' 5+ 5)2(s% + 25 + 100)(s2 4 35 + Z500)

Let H{z} be the pulse-transfer function representing the algorithm in Fig. 8.1. The
transmission properties of the digital filter in Fig. 8.1 depend on the nature of the
D-A converter. If it is assumed that the converter keeps the output constant be-
tween the sampling periods, the transmission properties of the filter are described
by

- 1

Gls) = = (1"} H{e™)
where the pulse-transfer function H depends cn the approximation used. Figure 8.4
shows Bode diagrams of H for the different digital filters obtained by step equiva-
lence, ramp equivalence, and Tustin’s method. The sampling period is 0.03 s in =l
cases. This implies that the Nyquist frequency is 105 rad/s. All methods except
Tustin’s give a good approximation of the amplitude curve. The frequency distor-
tion by Tustin’s method is noticeable at the notch at 20 rad/s and very clear at the
resonance at 50 rad/s.

The step-equivalence method gives a noticeable phase error. This corresponds
approximately to & time delay of half a sampling interval, Ramp equivalence gives
a negligible phase error. The phase curve for Tustin’s approximation also deviates
because of the frequency warping. Notice that all approximations suffer from the
time delay due to the sample and hold. Ramp equivalence gives the best approxi-
mation of hoth amplitude and phase. a
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Figure 8.4 Bode diagrams of a continuous-time transfer funetion ((s)
and different sampled approximations H(e®), continuous-time transfer func-
tion (solid}, ramp invariance {dashed-dotted), step invariance {dashed}, and
Tustin’s approximation (dotted).

Antialiasing Filters

The consequences of aliasing and the importance of antialiasing filters were
discussed in Sec. 7.4. Choice of sampling rate and antialiasing filters is impor-
tant in digital systems that are based on translation of analog design. Some
consequences of the selection of sampling rates have been discussed previously.
The sampling rate must be so large that the errors due to the approximation
are negligible.

The necessity of taking the antialiasing filter into aceount in the control de-
sign can be determined from the results of Sec. 7.4. In general, the antialiasing
filter must be taken into consideration when making the design of the controller.

Selection of Sampling Interval

The choice of sampling period depends on many factors. One way to determine
the sampling period is to use continucus-time arguments, The sampled system
can be approximated by the hold circuit, followed by the continuous-time system.
For small sampling periods, the transfer function of the hold circuit can be
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approximated as

1oe™ 1-l+4sh—(sh)/2+-  sh

sh sh 2

The first two terms correspond {o the series expansion of exp(—sh/2). That is,
for small A, the hold can be approximated by a time delay of half a sampling
interval. Assume that the phase margin can be decreased by 5° to 15°. This
gives the following rule of thumb:

hw, = 01510 0.5

where @, is the crossover frequency (in radians per second) of the continuous-
time system. This rule gives quite short sampling periods. The Nyquist fre-
quency will be about 5 to 20 times larger than the crossover frequency.

Example 8.3 Digital redesign of lead compensator

Consider the system in Example A.2, which is a normalized model of a motor. The
closed-loop transfer function

4
)= armra
is obtained with the lead compensator
s+1
=4 - .
(Gx(8) -~ (8.9)

The closed-loop system has a damping of ¢ = 0.5 and a naturat frequency of @y =
2 rad/s, The objective is now to find H{z) in Fig. 8.5, which approximates (8.9).
Euler’s method gives the approximation

z-1+h _ z-(1-4h)

Tl =4 o = o 18.10)
while Tustin’s approximation gives
2+h)2-2+h 2+h z-(2-h)/(2+h)
He(z) = = .

r(@) 4[2+2h]z—2+2h 2+2h z-(1-R)/(1+R)
(kh) t ¢
wft) e uft) 1 y(t)

A-D H(z) =1 DA | s(s+1)
-1

Figure 8.5 Digital control of the motor example.
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Figure 8.6 Process output, y(t}, when the motor is controlled using the
compensator of (8.10} when 2 = 0.1 (dashed-dotted}, 0.25 (solid), and 0.5
(dotted). The control signal is shewn for A = 0.25. For comparison, the con-
tinuous-time signals are also shown (dashed).

Finally, zero-order-hold sampling of (8.9) gives

dz - 2(1 + e7%) z-05(14e %)
Hu(z) = T e =4 =
All approximations have the form
byz + b
H{z) = 2270
Z+a

The crossover frequency of the continuous-time process in cascade with the
compensator (8.9} is @, = 1.6 rad/s. The earlier rule of thumh gives a sampling
pericd of about 0.1 to 0.3 s,

Figure 8.6 shows the control signal and the process output when Euler's
approximation has heen used for different sampling times. The other approxima-
tions give similar results. The closed-loop system has a satisfactory behavior for
all compensators when the sampling time is short. The rule of thumb also gives
reasonable values for the sampling period. The overshoot when A = 0.5 is about
twice as large as for the continuous-time compensator. In the example, the change
in 4, oceurs at a sampling instant. This is not true in practice, and there may be
a delay in the response of at most one sampling period. 5

8.3 Approximations Based on State Models

In this section we will make discrete-time approximations of controllers de-
scribed by continuous-time state-space models. State-feedback controllers can
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be regarded as generalized P-controllers. The formulation of the problem as-
sumes that the process is described by the equations

dx
q = At Bu (8.11)

y=Cx

where all the states are assumed to be measurable. By using a controller of the
form

u(t) = Mu.(¢) — Lx(t) (8.12)

1t is possible to place the poles of the closed-loop system arbitrarily if the gystem
is controllable. The controller in (8.12) can be implemented in digital form by
sampling the states and helding the control signal constant over the sampling
intervals. This is how the control is done in Example 1.2. If the sampling period
is increased, then the behavior of the closed-loop system starts to deteriorate. It
18, however, possible to modify the controller in order to improve the performance
of the closed-loop system. Assume that the discrete-time controller is

u(kh) = Mu,(kh) — Lx(kh) (8.13)

One way to solve the problem is to design the controller in (8.12) using sampled-
data theory. This is done in Chapter 4. Here, an approximate method is used to
translate the controller in (8.12) into discrete-time form.

Controlling (8.11) with the continuous-time controller in (8.12) gives the
closed-locp system

% =(A-—BL}JT+BMH;- :Acx"I'BMuC
y=Cx

If u.(t) is constant over one sampling period, then this equation can be inte-
grated; this gives

x{kh+ k) = G x(kh) + T Mu,(kh) (8.14)
where

¢c - EA‘h

k
Fc=/ eAs ds B
&

If the discrete-time controller in (8.13) is used to control (8.11), then

x(kh +h) = (® = TL)x(kh) + TMu (kh) (8.15)
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where ® and T" are the system matrices obtained when (8.11) is sampled. It is
in general not possible $o choose L such that

P.=®-TL

However, we can make a series expansion and equate terms of different
powers of 2. Assume that

L=Ly+Lih/2
then
®c~I+(A-BL}h+(A*-~BLA-ABL+ [BL)z)h2/2~L
and
®-TLwI+(A~BLo)h+ (A’ ~ABLy— BL)hY2+ -

The systems (8.14) and (8.15) have the same poles up to and including
order A2 when

L=L{I+(A-BL)f2) (8.16)

Without modification of L the poles are the same up to and including order A.
The modification of M is determined by assuming that the steady-state
values are the same for (8.14) and (8.15). Let the reference value be constant
and agsume that the steady-state value of the state is x°. This gives the relations
(I - ¢C)I0 = FCMH.‘-
and
(I —(®- rf,))xﬂ ~ TMu,

The series expansions of the left-hand sides of these two relations are equal
for powers of k up to and including h%. Now determine M such that the series
expansions of the right-hand sides are the same for & and A% Assume that

M =M, + Mh/2
then
TM s BMh + (A - BL)BMh?/2+ -
and
TM ~ BMoh + (BMy + ABMo)h?/2 + - -
This gives

M=(I-LBh/2)M (8.17)

The modifications (8.16) and (8.17) are easily computed using the contin-
uous-time system and the continuous-time controller.
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Figure 8.7 Digital control of the double integrator (solid) using the control
law in (8.19) when & = 0.5. The continucus-time response when using {8.18)
18 shown by the dashed curves,

Example 8.4 Modification of a state-feedback controller

The system in Example A.1 is the double integrator; that is, the system is defined
by the matrices

A:[g ;] B:[?] and C—-—[l 0]
Let the continuous-time controller be
ult) = u, () - [ 11 ] x(£) i8.18)
Figure 8.7 shows the behavior when the sampled controller
u{kh) = u,(kh) - [ 11 ] x(kh) (8.19)
is used when % = 0.5, Using the modifications in (8.16) and (8.17), we get

L= [1-0.5h 1]

] (8.20)
M =1-05h
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Figure 8.8 Control of the double integrator using the modified controller

in {(8.20) when & = 0.5 (solid). The continucus-time response when using
(8.18) is also shown (dashed).

Figure 8.8 shows the behavior when the modified controller is used for £ = 0.5;
there is an improvement compared with the unmodified controller However, the
sampling period cannot he increased much further before the closed-loop behavior
starts to deteriorate, even when the modified controller is used. The example shows
that a simple modification can have a large influence on the performance. ]

8.4 Frequency-Response Design Methods

This chapter has so far shown how continuous-time controllers can be translated
into discrete-tirne forms. This section discusses how continuous-time frequency-
design methods can be used to design discrete-time controllers.
Frequency-design methods based on Bode and Nichols plots are useful
for designing compensators for systems described by transfer functions. The
usefulness of the methods depends on the simplicity of drawing the Bode plots
and on rules of thumb for choosing the compensators. The Bode plots are eaay
to draw hecause the transfer functions are in general rational functions in iw,
except for pure time delays. Frequency curves for discrete-time systems are more
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difficult to draw because the pulse-transfer functions are not rational functions
1n i@, but in exp(iwh). The w-transform method is one way to circumvent this
difficulty. The method can be summarized into the following steps:

1. Sample the continuous-time system that should be controlled using a zero-
order-hold circuit. This gives H(z).

2. Introduce the variable

z-1
z+1

_ 2
i

[compare (8.6)]. Transform the pulse-transfer function of the process into
the w-plane giving

_ leuajd
T l-whf2

For z = exp(iwh) then

w =1 % tan{wh/2} = iv

(compare frequency prewarping in Sec.8.2). The transformed transfer func-
tion H’(iv) is a rational lunction in v,

3. Draw the Bode plot of H'{iv) and use conventional methods to design a
compensator H_(iv) that gives desired frequency domain properties. The
distortion of the frequency scale between v and @ must be taken into
account when deciding, for instance, crossover frequency and bandwidth.

4. Transform the compensator back into the z-plane and implement, H, (z) as
a discrete-time system.

The advantage with the w-transform method is that conventional Bode
diagram techniques can he used to make the design. One difficulty is to handle
the distortion of the frequency scale and to choose the sampling interval,

8.5 Digital PID-Controllers

Many practical control problems are solved by PID-controllers. The “textbook”
version of the PID-controller can be described by the equation

u(t) = K (e{t] + %]:G[SJ ds+ Ty d;—gt)) (8.21)

where error e is the difference between command signals u, (the set point] and
process output y (the measured variable). K is the gain or proportional gain
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of the controller, T, the integration time or reset time, and Ty the derivative
time. The PID-controller was originally implemented using analog technology
that went through several development stages, that is, pneumatic valves, re-
lays and motors, transistors, and integrated circuits. In this development much
know-how was accumulated that was embedded into the analog design. Today
virtually all PID-controllers are implemented digitally. Early implementations
were often a pure translation of (8.21), which left out many of the extra features
that were incorporated in the analog design. In this section we will discuss the
digital PID-controller in some detail. This is a good demonstration that a good
controller 1s not just an implementation of a “textbook” algorithm, It is also a
good way to introduce some of the implementation issues that will be discussed
in depth in Chapter 9.

Modification of Linear Response

A pure derivative cannot, and should not be, implemented, because it will give a
very large amplification of measurement noise. The gain of the derivative must

thus be limited. This can be done by approximating the transfer function s74
as follows:

sTy

Tym — 8
SN TN

The transfer function on the right approximates the derivative well at low fre-
quencies but the gain is limited to N at high frequencies. N is typically in the
range of 3 to 20. '

In the work with analog controllers it was also found advantageous not to
let the derivative act on the command signal. Later it was also found suitable
to let only a fraction & of the command signal act on the proportional part. The
PID-algorithm then becomes

Us)= K (bUc(s) ~Y(s) + j_, (Uf(s] _ Y{s}) sTy

7 ) - Trw Y(s]) (8.22)

where U, U,, and Y denote the Laplace transforms of u, u,, and y. The idea
of providing different signal paths for the process output and the command
signal is a good way to separate command signal response from the response
to disturbances. Alternatively it may be viewed as a way to position the closed-
loop zeros. There are also several other variations of the PID-algorithm that
are used in commercial systems. An extra first-order lag may be used in series
with the controller to obtain a high-frequency roll-off. In some applications it
has also been useful to include nonlinearities, The proportional term Ke can be
replaced by Kele| and a dead zone can also be included.

Discretization

The controller described by (8.22) can be discretized using any of the standard
methods such as Tustin’s approximation or ramp equivalence. Because the PID-
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controller is so simple, there are some special methods that are used. The fol-
lowing is a popular approximation that is very easy to derive. The proportional
part

P(t) = K (bue(®) - 5(1))
requires no approximation because it is a purely static part. The integral term
K £
I(t) = T / e(s) ds

is approximated by a forward approximation, that is,

K
Hkh+ b)) = {kh) + h e(kh) (8.23)
The derivative part given by
Td dh dy
ez - KT, =
I T gt

is approximated by taking backward differences. This gives

D(kh) = _ta D{kh - k) - T‘j ff‘g - (y(kh} - y(kh - h))

Td+Nh

This approximation has the advantage that it is always stable and that the
sampled pole goes to zero when Ty goes to zero, Tustin’s approximation gives
an approximation such that the pole instead goes to = —1 as T goes to zero.
The control signal is given as

u(kh) = P(kh) + I{kh) + D(kh) (8.24)
This approximation has the pedagogical advantage that the proportional, inte-

gral, and derivative terms are obtained separately. The other approximations
give similar results. They can all he represeuted as

R{q)u(kh) = T(g)u(kh) - S{g)y(kh) (8.25)

where the polynomials R, S, and 7 are of second order. The polynomial R has
the form

Rlg) = (g-1)(g- ay) (8.26)

The number a4 and the coefficients of the polynomials S and 7 obtained for
different approximation methods are given in Table 8.1.
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Table 8.1 Coefficients in different approximations of the continuous-time
PID-controller.

Special Tustin Ramp Equivalence
o K(l1+by) K(1+b +by)
st —K(1+ag+2by-b) -K(1+ad+2bd—b;(1—ad])
s9  Kag+bg-biay) Kiag + by - bieg)
to Kb K(b+b)
h —K(b{(L+ay) - b) “K(b[1+ad) —b;(l—ad])
t  Kagb-b) Kag(b - b))

T, 9T - Nh Nh

% NRTT, 9T; + Nh P (‘_d)
bs Nag 2711\:_11;}1 r‘;d (1-ay)
ok L2 3

T. ST, oT,

Incremental Algorithms

Equation (8.24} is called a position algorithm or an absolute algorithm. The
reason is that the output of the controller is the absolut value of the control
signal, for instance, a valve position. In some cases it is advantageous to move
the integral action outside the control algorithm. This is natural when a stepper
motor is used. The output of the controller should then represent the increments
of the control signal, and the motor implements the integrator. Another case is
when an actuator with pulse-width control is used.

To cbtain an incremental algorithm the control algorithm is rewritten so
that its cutput is the increment of the control signal. Because it follows from

(8.26) that the polynomial R in (8.25) always has a factor (g — 1) this is easy
to do. Introducing

Au(kh) = u(kh} - u(kh - h)
we get
(¢ - ag)Au(kh +h) = T(q)uc(kh) - §(g)y(kh)

This 1s called the incremental form of the controller, A drawback with the in-
cremental algorithm is that it cannot be used for P- or PD-controllers. If this is

attempted the controller will be unable to keep the reference value, because an
unstable mede z ~ 1 is canceled.
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Integrator Windup

A controller with integral action combined with an actuator that becomes satu-
rated can give some undesirable effects. If the control errer is so large that the
integrator saturates the actuator, the feedback path will be broken, because the
actuator will remain saturated even if the process output changes. The inte-
grator, being an unstable system, may then integrate up to a very large value.
When the error is finally reduced, the integral may be so large that it takes
considerable time until the integral assumes a normal value again. This effect
is called integrator windup. The effect is illustrated in Fig. 8.9.

There are several ways to avoid integrator windup. One possibility is to
stop updating the integral when the actuator is saturated. Another methed is
illustrated by the block diagram in Fig. 8.10{a). In this system an extra feedback
path is provided by measuring the actuator output and forming an error signal
(es) as the difference between the actuator output () and the controller output
(v} and feeding this error back to the integrator through the gain 1/7T}. The
error signal e, is zero when the actuator is not saturated. When the actuator is
saturated the extra feedback path tries to make the error signal e, equal zero,
This means that the integrator is reset, so that the controller output is at the
saturation limit. The integrator is thus reset to an appropriate value with the
time constant 7, which is called the tracking-time constant. The advantage with
this scheme for entiwindup is that it can be applied to any actuator, that is, not
only a saturated actuator but also an actuator with arbitrary characteristics,
such as a dead zone or an hysteresis, as long as the actuator output is measured.
If the actuator output is not measured, the actuator can be modeled and an
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Figure 8.9 [Illustration of integrator windup. The dashed lines show the

response with an ordinary PID-controller. The solid lines show the improve-
ment with a controller having antiwindup,
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Figure 8,10 Controller with antiwindup, A system in which the actuator
output is measured 18 shown in (a) and a system in which the actuator output
i estimated from a mathematical model is shown in (b).

equivalent signal can be generated from the model, as shown in Fig. 8.10({b).
Fignre 8.9 shows the improved behavior with controllers having an anti-windup
scheme. Antiwindup is further discussed in Sec. 9.4.

Operatlonal Aspects

Practically all PID-controllers can run in two modes: manual and automatic.
In manual mode the controller output is manipulated directly by the opera-
tor, typically by push buttons that increase or decrease the controller output.
The controllers may also operate in combination with other controllers, as in
a cascade or ratio connection, or with nonlinear elements such 2s multipliers
and selectors. This gives rise to more operational modes. The controilers also
have parameters that can be adjusted in operation. When there are changes of
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Figure 8.11 Controllers with bumpless transfer from manual to automatic
mode. The controller in {a) is ineremental. The controllers in (b) and (c) are
special forms of position algorithms. The controller in (c) has antiwindup
{(MCU = Manual Control Unit).

modes and parameters, it is essential to avoid switching transients. The way

mode switchings and parameter changes are made depends on the structure
chosen for the controller.

Bumpless transfer. Because the controller is a dynamic system it is
necessary to make sure that the state of the system is correct when switching the
controller between manual and automatic mode. When the system is in manual
mode, the contreller produces a control signal that may be different from the
manually generated control signal. It is necessary to make sure that the value
of the integrator is correct at the time of switching. This is called bumpless
transfer. Bumpless transfer is easy to obtain for a controller in incremental
form. This is shown in Fig, 8.11(a). The integrator is provided with a switch so
that the signals are either chosen from the manual or the automatic increments.
Because the switching only influences the increments, there will not be any larpe
transients. A related scheme for a position algorithm is shown in Fig, 8.11(b).In
this case the integral action is realized as positive feedback around a first-order
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Figure 8,12 PID-controller with bumpless switching between manual and
autematie control.

system. The transfer function from v to u is

1 14 sT]
1- 1 Y
1+ 8T}

For simplicity the filters are shown in continuous-time form. In a digital system
they are of course realized as sampled systems, The system can also be provided
with an antiwindup protection, as shown in Fig, 8.11(c). A drawback with this
scheme iz that the PID-controller must be of the form

1+ 3T;)(1 + ST;]

—
G(s) = K T

(8.27)

which is less general than (8.22). Moreover the reset-time constant is equal
to T7. More elahorate schemes have to be used for general PID-algorithms on

position form. Such a controller is built up of a manual contrel medule and a
PID-module, each having an integrator. See Fig. 8.12.

Bumpless Parameter Changes

A controller is a dynamic system. A change of the parameters of a dynamic
system will naturally result in changes of its output even if the input is kept
constant. Changes in the output can in some cases be avoided by a simultaneous
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change of the state of the system. The changes in the output will also depend on
the chosen realization. With a PID-controller it is natural to require that there
be no drastic changes in the output if the parameters are changed when the
error 1s zero. This will obviously hold for all incremental algorithms, because the
output of an incremental algorithm is zero when the input is zero irrespective of
the parameter values. It also holds for a position algorithm with the structure
shown in Figs. 8.11(b) and (¢). For a position algorithm it depends, however, on
the implementation. Assume, for example, that the state is chosen as

X = ]te(s) ds

when implementing the algorithm. The integral term is then

K
I=—
T
Any change of K or T, will then result in a change of 1. To avoid bumps when
the parameters are changed it is therefore essential that the state be chosen as

_ [(K(s)

X = m

e{s) ds
when implementing the integral term.

Tuning

A PID-controller has parameters K, T;, Ts, T}, b, N, oy, and Whigh that must
be chosen. The primary parameters are K, T, and T;. Parameter N can often
be given a fixed default value, for example, N = 10. The tracking-time constant
{T}) is often related to the integration time (7). In some implementations it
has to be equal to Tj; in other cases it can be chosen as 0.1 to 0.5 times 7. The
parameters iy, and wy;g, should be chosen close to the true saturation limits.
If the process dynamics and the disturbances are known parameters, then
K, T, and T; can be computed using the design methods of Chapters 4, 5, 11,
and 12, Some special methods have, however, been developed to tune the PID-
parameters experimentally. The hehavior of the discrete-time PID-controller is
very close to the analog PID-controiler if the sampling interval is short, The
traditional tuning rules for continuous-time controllers can thus be used. There
are two classical heuristic rules due to Ziegler and Nichols (1942) that can be

used to determine the controller parameters: the step-response method and the
ultimate-sensitivity method.

The step-response method.  In this method the unit step response of the
open-loop process is determined experimentally. The technigue can be applied to
processes whose step response is monotone or essentially monotone apart from
an initial nonminimum phase characteristic. To use the method the tangent to
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Figure 8.13 Determination of parameters ¢ = BL and L from the unit
step response 1o be used in Ziegler-Nichels step-response method.

the step response that has the steepest slope is drawn and the intersections of
the tangent with the axes are determined. See Fig. 8.13. The controller param-
eters are then obtained from Table 8.2. The Ziegler-Nichols rule was designed
to give good response to load disturbances. It does, however, give fairly low
damping of the dominant poles.

Parameter L is called the apparent deadtime. For stable processes param-
eter T, which is called the apparent-time constant, can also be determined from
a step response of the open-loop system..

The ultimate-sensitivity method  In this method the key idea is to de-
termine the point where the Nyquist curve of the open-loop system intersects
the negative real axis. This is done by connecting the controller to the process
and setting the parameters so that pure proportional control is obtained. The
gain of the controller is then increased until the closed-loop system reaches the
stability limit. The gain (K, } when this occurs and the period of the oscillation
(T.) are determined. These parameters are called ultimate gain and ultimate
period. The controller parameters are then given by Table 8.3.

Assessment The Ziegler-Nichols tuning rules are conceptually attrac-
tive, Process dynamics is characterized by two parameters that are easy to de-
termine experimentally and the controller parameters are then cbtained from

Table 8.2 PID parameters obtained from
the Ziegler-Nichols step-response method.

Controller Type K T, Ty

P 1/a
PI 09/a 3L
PID 12/a 2L 05L
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Table 8.3 PID parameters obtained from
Ziegler-Nichols ultimate-sensitivity method.

Controiler Type K T, Ty
P 05K,
Pl 045K, T,/12
PID 06K, T,2 T,/8

simple tables. Because of this the rules have been very popular; they are the
basis for much of practical controller tuning. The Ziegler-Nichols rules do how-
ever have some very serious drawbacks. The closed-loop systems obtained with
the rules have very low relative damping typically ahout { = 0.2, The tuning
rules do not give all controller parameters, and the integrations time is always
four times the derivative time. The damping can be improved by modifying the
numerical values in the tables. To characterize process dynamics by two param-
eters 1s quite crude. More parameters are required for improved tuning. Much
can be gained by alse including the static gain K, of a process. Tuning rules
of the Ziegler-Nichols type should therefore be used with care. They can give a
rough approximation but the tuning can often be improved.

Selection of Sampling Interval

When DDC-control was first introduced, computers were not as powerful as
they are today. Long sampling intervals were needed to handle many loops, The

following recommendations for the most common procese variables are given for
DDC-control.

Type of variable Sampling time, s

Flow 1-3
Level 5-10
Pressure 1-5
Temperature 10-20

Commercial digital controllers for few loops often bave a short fixed-sampling
interval on the order of 200 ms. This implies that the controllers can be regarded
as continuous-time controllers, and the continuous-time tuning rules may be
used. Several rules of thumb for choosing the sampling period for a digital PID-
controller are given in the literature. There is a significant difference between
PI- and PID-controllers, For Pl-controllers the sampling period is related to the
integration time. A typical rule of thumb iy

% ~0,1t003
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When Ziegler-Nichols tuning is used this implies

~0.3t01

S

or

% 22 0.1to 0.3

With PID-control the critical issue is that the sampling period must be so short
that the phase lead is not adversely affected by the sampling. This implies that
the sampling period should be chosen so that the number AN /T is in the range
of 0.2 to 0.6. With N = 10 this means that for Ziegler-Nichols tuning the ratio
h/L is between 0.01 and 0.06. This gives

hN
T~ 02t 0.6

d

Significantly shorter sampling periods are thus required for controllers with
derivative action. If computer time is at a premium, it is advantageous to use
the sampled-data design methods used in this book.

Computer Code

A typical computer code for a discrete PID-controller is given in Listing 8.1
on page 318. The discretization of the integral term is made using a forward
difference. The derivative term is approximated using a backward difference.
The calculation PID Init is made initially only. This saves computing time. In
a real system these calculations have to be made each time the parameters are
changed. The code given admits bumpless parameter changes if » = 1. When
b # 1 the proportienal term (P) is different from zero in steady state. To ensure
bumpless parameter changes it is necessary that the quantity P + Iisinvariant
to parameter changes. This means that the state I has to be changed as follows:

Diew = Iaa + Ko (boiatee ‘J’) - Knew(bnewuc - J’) (8-28)

Word length and integration offset. The integral part in digital PID-
controllers is approximated as a sum. Computational problems, such as inte-
gration offset, may then occur due to the finite precision in the representation
in the computer. Assume that there is an error, e(kk). The integrator term is
then increased at each sampling time with [see (8.23)]

I{T_? e(kh)
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Listing 8.1 € code for PID-contreller based on Tustin discretization.

#include<Kernel.h> /* Import real-time primitives %/
/* PID controller based on Tustin discretization #/
struct PID_Data {

struct {
double uc; /* Input : Set point */
deuble y; /* Input : Measured variable *f
double u; /* Output : Controller output *f
double v; /* Dutput : Limited centroller cutput */

} Signals;

struet {
double I; /* Integral part */
double D; /* Derivative part */
double yold; /* Delayed measured variable */

} 8tates;

struct {
double K; /* Controller gain */
double Ti; /* Integral time */
double Td; /% Derivative time *f
double Tt; /* Rezet time */
double N; /* Maximum derivative gain %/
double b; /* Fraction of setpoint in prop. term %/
double ulow; /* Low output limit */
double uhigh; /* High output limit *f
double h; /* Sampling period */
double bi, ar, bd, ad;

} Par;

} pid_data;

void PID_Init(struct PID_Data *data)
{

data-»States.I = 0;
data->3tatez.D = 0;
data->States.yold = (;

data->Par K = 4.4;

data-»>Par . Ti = 0.4;
data—>Par . Td = 0.2;
data-»Par Tt = 10
data->Par.N = 10;
data-»Par.b = {;

data->Par.ulow = -1;

data->Par.ubigh = 1;

data-»Par .h 0.03;

data->Par.bi = data->Par.K*data->Par.h/data->Par . Ti;

data->Par.ar = data->Par.h/data->Par.Tt;

data->Par.bd = data->Par.K+data->Par.N*data->Par, Td/
(data->Par.Td+data->Par,N*data->Par.h):

data->Par. ad = data->Par.Td/(data->Par.Td+data->Par.N*data->Par.h);
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Ligting 8.1 (Continued)

void PID_CalculateCutput {(struct PID_Data *data) {

/¥ Proportional part */
double P = data-»Par.¥»{data->Par.b*data->3ignals.uc -
data->3ignals.y);

/+ Derivative part #/
data-»3tates.D = data->Par.ad * data->States.D -
data->Par.bd « (data->Signals.y - data->States.yold);

{* Calculate control sigmal */
data->8ignals.v = P + data—>Btates.] + data->3tates.D;

/+* Handle actuator limitations #/

if ( data-»Signals.v < data->Par.ulow ) {
data->5ignals.u = data->Par.ulow;

} else if ( data->Signals.v > data->Par.uhigh ) {
data->8ignals.u = data->Par,ubigh;

} else {
data->8ignals.u = data->Signala.v,

X

b

void PID_UpdateStates(struct PID_Data *data) {
/* Integral part +/
data->3tates.I = data->8tates.I +
data->Par.bi*{data->8ignals.uc - data->Signals.y) +
data->Par.ar*(data->Signals.u - data->$ignals.v);

data->States.yold = data->Signals.y;
+

void PID_Main() {
Kernel Time time;

PID_Ipit(&pid_data);
Kernel_CurrentTime(&time); /% Gat current time */
for (553 {

Kernel_IncTime(ftime, 1000 * pid_data.Par.h);

/* Increment “time" with h*/
read_y(&(pid_data.Signals.y)};
read_uc(&(pid_data.Sigrals.ue));
PID_CalculateDutput(&pid_data};
write_u(pid_data.Signals.u);
PID_UpdateStates{&pid_data);

Kerzel WaitUntil(time); /* Wait until "time" »/
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Assume that the gain is small and that the reset time is large compared o the
sampling time. The change in the output may then be smaller than the quan-
tization step in the D-A converter. For instance, a 12-bit D-A converter {that
is, a resolution of 1/4096) should give sufficiently good resclution for control
purposes, Yet if K = A = 1 and T} = 3600, then any error less than 90% of the
span of the A-D converter gives a calculated change in the integral part less
than the quantization step. If the integral part is stored in the same precision
as that of the D-A converter, then there will he an offset in the output. One way
to avoid this is to use higher precision in the internal caleulations. The resulis
then have an error that is less than the quantization level of the output. Fre-
quently at least 24 bits are used to implement the integral part in a computer,
in order to avoid integration offset.

8.6 Conclusions

Different ways of translating a continuous-time controller to a digital controller
have been presented. The prohlem is of substantial interest if an analog de-
sign is available, and a digital solution is needed. Several methods to com-
pute a pulse-transfer function that corresponds to the continuous-time transfer
function have been discussed, based on step invariance, ramp invariance, and
Tustin’s approximation. Tustin's method is commenly used because of its sim-
plicity. It does, however, distort the frequency scale of the filter. The method
based on ramp invariance gives very good results and is only moderately more
complicated than Tustin's method. Digitel systems designed in this way are al-
ways {slightly) inferior to analog systems because of the inherent time delay
caused by the hold circuit, This time delay is approximately /2.

The translation methods work well if the sampling period is short. A good
way to choose the sampling period is to observe that the extra time delay de-
creases the phase margin by @, £ /2 radians or by 180w,/w; degrees, where w.
is the crossover frequency. There are possibilities of creating better designs than
those discussed in this chapter, as discussed in the following chapters.

6.7 Probiems

8.1 Find how the left half-s-plane is transformed into the z-plane when using the map-
pings in (8.4) to (8.6).

8.2 Use different methods to make an approximation of the transfer function

(a) Euler’s methnd
(b) Tustin's approximation

(¢) Tustin’s approximation with prewarping if the warping frequency is @, = @
rad/s
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8.3 The lead network given in {8.9) gives about 20" phase advance at m, = 1.6 rad/s.
Approximate the neiwork for A = 0.25 using

(a) Buler's method
(b) Backward differences
{c) Tustin’s approximation

(d} Tustin's approximation with prewarping using @, = . as the warping fre-
quency

{€) Zero-order-hold sampling
Compute the phase of the approximated networks at z = exp(iw k).

B.4 Verify the calculations leading to the rule of thumb for the choice of the sampling
interval given in Sec, 8.2.

8.5 Show that (8.24) is obtained from (8.22) by approximating the integral part using
Euler’s method and backward difference for the derivative part. Discuss advantages
and disadvantages for each of the following cases.

(a) The integral part is approximated using backward difference.

(b) The derivative part is approximated using Euler’s method. (Hint: Consider
the case when T, is small }

8.6 A continuous-time Pl-controller is given by the transfer function

1

Use the bilinear approximation to find a discrete-time controlier. Find the relation

hetween the continuous-time parameters K and T, and the corresponding diserete-
time parameters in (8.24).

8.7 Consider the tank system in Problem 2.10. Assume the following specifications for
the closed-loop system:

1. The steady-state error after a step in the reference value is zero.

2. The crossover frequency of the compensated system is 0,025 rad/s.
3. The phase margin is about 50°.

(a) Design a Pl-controller such that the specifications are fulfilled.

{b) Determine the poles and the zero of the closed-loop system. What is the damp-
ing corresponding to the complex poles?

{¢) Choose a suitable sampling interval and approximate the continuous-time

controller using Tustin's method with warping. Use the crossover frequency
as the warping frequency.

{d} Simulate the system when the sampled-data controller is used. Compare with
the desired response, that is, when the continugus-time controller is nsed.

8.6 Make an approximation, analogous to (8.16) and (8.17), such that the modifications
are valid for terms up to and including A3,
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89 The normalized motor has a state-space representation given by (A.5). The control
law

u(t) = Mu.(t) - Lx(t)

withM =4and L = [2 4 ] gives the continuous-time transfer function

4
st +3s+4

from u, to y, This corresponds to { = 0.75 and @, = 2.

(a) Make a sampled-data implementation of the controller.
(b) Modify the control law using (8.16) and {8.17).

{¢} Simulate the controllers in (a) and (b) for different sampling perieds and
compare with the continuous-time controller.

8.10 Given the continuous-time system
dx -3 1 0
a - [ 0 fz]“ [1]”
y= [ 10 ] x
{a) Determine a continuous-time state-feedback controller
u(t) = —Lzx(t)
such that the characteristic polynomial of the closed-loop system is
s« 8s + 32
A computer is then uszed to implement the controller as
u(kh) = — Lx(kh)

{b) Modify the controller using (8.16).

(c) Simulate the controllers in (a} and (b) and decide suitable sampling intervals.
Assume that £(0) = [1 0].

8.11 Use the w-plane method to design a compensator for the motor in Example 8.3 when
k = 0.25. Design the compensator such that the transformed systam has a crossover
frequency corresponding to 1.4 rad/s and a phase margin of 50°. Compare with
the continuous-time design and the diserete-time approximations in Example 8.3.
Investigate how long a sampling interval can be used for the w-plane method.

8.12 Consider the continuous-time double integrator described by {A.2). Assume that a
time-continuous design bas been made giving the controller

lt) = 2)- (1 2] (o
(’Ammmpmmcmn

with KT = (1 1].
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(a) Assume that the controller should be implemented using a computer. Modify

the controller (not the observer part} for the sampling interval & = 0.2 using
(8.18) and (8.17).

(b) Approximate the chserver using backward-difference approximation.
(¢) Simulate the continuous-time controller and the discrete-time approximation.
T T
Let the initial values be x(0) = [ 11 ] and £(0) = [ 00 ] +

8,13 Derive ramp-invariant approximations of the transfer function

1
to=re
and
8
o=

8.14 Derive the ramp-invariant equivalent of the PID-coniroller.

8.15 There are many different ways to sample a continuous-time system, The key differ-
ence is the assumption made on the behavior of the control signal over the sampling
interval. So far we have discussed step invariance and ramp invariance. Derive for-
mula for impulse invariant sampling of the system (8.11) when the continuous-time

gignal is assumed to he a sequence of impulses that occur just after the sampling
instants .

8.16 Derive the impulse-invariant approximations of the transfer functions in Prob-
lem 8,13.

8.17 The frequency prewarping in Sec. 8.2 gives the correct transformation at one fre-
quency aleng the imaginary axis. Derive the necessary warping transformation
such that one point at an arbitrary ray through the origin is transformed correctly.

8.8 Notés and References

The problem of designing digital filters that implement analog-transfer func-
tions approximately is discussed in the digital-filtering literature: Rabiner and
Gold (1975}, Anteniou (1979), and Oppenheim and Schafer (1989). Interest-
ing views on similarities and differences between digital signal processing and
control theory are presented in Willsky (1979). A more control-criented pre-
sentation of different approximations is found in Franklin and Powell (1989).
Redesign of state feedback is discussed in more detail in Kuo (1980).

Digital PID-controllers and their operational aspects are thoroughly dis-
cussed in Goff (1966}, Bristol (1977), Shinskey (1988), and Astrim and Hagg-
lund (1895). The classical reference for tuning PID-controllers is Ziegler and
Nichols {1942). A modification of the rules by Ziegler and Nichols which takes

the length of the sampling interval into account is given in Takahashi, Chan,
and Auslander (1971).
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Implementation of Digital
Controllers

9.1 Introduction

Design of algorithms for computer control is discussed in the previous chap-
ters. The problem of implementing a contrel algorithm on a digital computer
is discussed in this chapter. The control algorithms obtained in the previous
chapters are discrete-time dynamic systems. The key problem is to implement
a discrete-time dynamic system using a digital computer, An overview of this
problem is given in Sec. 9.2, which shows that it is straightforward to obtain
a computer code from the discrete-time algorithm. There are, however, several
1ssues that must be considered. It is necessary to take the interfaces to the sen-
sors, the actuators, and the human operators into account. It is also necessary
to consider the numerical precision required.

The sensor interface is discussed in Sec. 9.3. This covers prefiltering and
computational delays and shows that the computational delay depends critically
on the details of the algorithm. Different ways to shorten the computational
delay by reorganizing the code are discussed. Methods of filtering the signals
effectively by introducing nonlinearities, which may reduce the influence of un-
reliable sensors, are shown, This is one of the major advantages of computer
control. Most theory in this book deals with linear theory. There are, however,
a few nonlinearities such as actuator saturation that must be taken into ac-
count. Different ways of handling tbese are discussed in Sec. 9.4, This leads to
extensions of the methods for antireset windup used in classical process control.

The operator interface is important factor; it is discussed in Sec. .5. This
includes treatment of operational modes and different ways to avoid switch-
ing transients. The information that should be displayed and different ways of
influencing the control loap are also discussed. Digital computers offer many in-

324
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teresting possibilities; so far they have been used only to a very modest degree.
There are many opportunities for innovations in this field. It is important to
have sound numerics in the contro] algorithm, which 1s the topic of Sec. 9.6. Ef-
fects of a finite word length are also discussed. Realization of digital controllers
is treated in Sec. 9.7. Programming of contrel algorithms is discussed in Sec. 9.8.
For more ambitious systems in which parameters and control algorithms are
changed on-line, it is necessary to understand concurrent programming.

9.2 An Overview

This section gives an overview of implementation of digital control laws. Dif-
ferent representations of the control laws obtained from the design methods in
Chapters 4, 5, and 8 are first given; the algorithms are then implemented. A list
of some important problems is given. These problems are discussed in greater
detail in the following sections.

Different Representations of the Controiler

The design methods of the previeous chapters give control laws in the form of a
discrete-time dynamic system. Different representations are obtained, depend-
ing on the approaches used. The design methods based on pole placement by
state feedback in Sec. 4.5 give a controller of the form

&(h|k) = £(klk- 1)+ K(y(k} - y(klk - 1))

ulk) = L(zm(k) - 2(k18)) + Lo ()
Bk + 1jk) = @2(k|R) + Tulk) (9.1)
ik + 1) = £ (tm(R)ouclh)
ylk+ 1{1} = Ci{k + 1lk)

In this representation the state of the controller is & and x,, where % is an
estimate of the process state, and x,, is the state of the model that generates
the desired response to command signals u,. The form in (9.1) is called a state
representation with an explicit observer because of the physical interpretation
of the controller state. It is easy to include a nonlinear model for the desired
state in this representation.

If the function f in (9.1) is linear, the controller is a linear system with
the inputs y and . and the output u. Such a controller may be represented as

x(k+1) = Fx(k) + Gy(k) + Gou (k)

u(k) = Cx(k) + Dy(k) + Du (k) (9.2)

where x is the state of tbe controller (see Problem 4.7). Equation (9.2) is a
general-state representation of a discrete-time dynamic system. This form is
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more compact than (9.1). The state does, however, not necessarily have a simple
physical interpretation.

The design methods for single-input-single-output systems discussed in
Chapter 5, which are based on external models, give a controller in the form of
a general input-output representation

E(qlu(k) = T(qhu(k} - S(q)y(k) (9:3)

where R(q), S{g}, and T(q) are polynomials in the forward-shift operator g.
There are simple transformations between the different representations (com-
pare with Chapter 2).

Realization

A control law is a dynamic system. Different realizations can be obtained by
different choices of the state variables. The different representations are equiv-
alent from an input-output point of view if we assume that the calculations are
done with infinite precision. With finite precision in the calculations, the choice
of the state-space representation is very important. Quantization and roundoff
introduce nonlinearities. Linear and nonlinear operations do not commute. For
instance, @(a + b) £ Q(a) + Q(b), where Q( ) represents the quantization of a
signal. It is thus important in which order different operations are done when
an algorithm is implemented. A bad choice of the representation may give a
controller that is sensitive to errors in the computations.

It is very important that the controller is transformed into a robust form
before the controller is implemented as a computer program, Suitable forms
are serial and parallel realizations of first- and second-order blocks. It is also
important to organize the computations in a numerically good way. For instance,
it should be avoided to take the difference of large numbers. These aspects are
further discussed in Sec. 9.7.

Implementing a Computer-Controlled System

The implementation of a discrete-time system described by (9.1), (9.2), or (9.3)
using a digital computer is straightforward. The details depend on the hardware
and software availahle. To show the principles, it is assumed that the system
described by (9.2) should be implemented using a digital computer with A-D
and D-A converters and a real-time clock. A graphical representation of the
program is shown in Fig, 9.1, The execution of the program is controlled by the
clock. The horizontal bar indicates that execution is halted until an interrupt
comes from the clock. The clock is set so that an interrupt is obtained at each
sampling instant. The code in the box is executed after each interrupt.

The body of the code is given in Listing 9.1. Analog-to-digital conversion is
commanded in the first line. The appropriate values are stored in the arrays y
and uc. The control signal u is computed in the second line using matrix-vector
multiplication and vector addition. The state vector x is updated in the third
line, and the digital-to-analog conversion is performed in the fourth Line. To
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Clock interrupt

Code:
A-D conversion
Compute control variable
D-A conversion

_ ,»

Figure 9.1 Graphical representations of a program used to implement a
discrete-time system.

obtain a complete code, it is also necessary to have type declarations for the
vectors u, uc, %, and y and the matrices F, G, Ge, C, D, and De. It is also niecessary
to assign values to the matrices and the initial value for the state x. When
using computer languages that do not have matrix operations, it is necessary to
write appropriate procedures for generating matrix operations using operations
on scalars. Notice that the second and third lines of the code correspond exactly
to the algorithm in (9.2).

To obtain a good control system, it is also necessary to consider
o Prefiltering and computational delay
» Actuator nonlinearities
o Operational aspeéts
s Numerics
 Realization
» Programming aspects

These issues are discussed in the following sections.

Listing 9.1 Computer code skeleton for the control law of (9.2). Line num-
bers are introduced only for purposes of referencing,

Procedure Regulate

begin
Adin y uc
u:=Cxx+Dwy+Derue
X =Frx+Gry+Gernue
Daout u

end

LI TR R
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9.3 Prefiltering and Computational Delay

The interactions between the computer and its environment are important when
implementing a control system. Compare with Chapter 7, The sensor interface
15 discussed in this section, The consequences of disturbances are discussed in
Chapters 4 and 7. The importance of using an analog prefilter to avoid aliasing
is treated in Chapter 7.

1t is also clear from Sec. 9.2 that there is always a time delay associated
with the computations. The prefilter and the computational delay give rise to
additional dynamics, which may be important when implementing a digital
controller. These effects are now discussed.

Analog Prefiltering

Te avoid aliasing {see Sec. 7.4}, it is necessary to use an analog prefilter for
elimination of disturbances with frequencies higher than the Nyquist frequency
associated with the sampling rate. Different prefilters are discussed from the
signal-processing point of view in Sec. 7.4. The discussion is based on knowledge
of the frequency content of the signal. In a control problem there is normally
much more information available about the signals in terms of differential equa-
tions for the process models and possibly also for the disturbances.

It is often useful to sample the analog signals at a comparatively high rate
and to avoid aliasing by an ordinary analog prefilter designed from the signal-
processing point of view. The precise choice depends on the order of the filter
and the character of the measured signal. The dynamies of the prefilter should
be taken into account when designing the system. Compare the discussion in
Secs. 5.8 and 5.9. If the sampling rate is changed, the prefilter must also be
changed. With reasonable component values, it is possible to construct analog
prefilters for sampling periods shorter than a few seconds. For slower sampling
rates, it 1s often simpler to sample faster with an appropriate analog prefilter
and apply digital filtering to the sampled signal. This approach also makes it
possible to change the sampling period of the-control caleulations by software
only.

Because the analog prefilter has dynamics, it is necessary to include the
filler dynamics in the process model, If the prefilter or the sampling rate is
changed, the coefficients of the control law must be recomputed. With normal
sampling rates—that is, 15 to 45 times per period—it is necessary to consider
the prefilter dynamics in the controller design (compare with Secs. 5.9 and 7.4).

Computational Delay

Because A-D and D-A conversions and computations take time, there will always
be a delay when a control law is implemented using a computer. The delay,
which is called the computational delay, depends on how the control algorithm
18 implemented. There are basically two different ways to do this (see Fig. 9.2).
In case A, the measured variables read at time ¢, may be used to compute the
control signal to be applied at time £y, . Another possibility, case B, is to read
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Case A Case B
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Figure 9.2 Two ways of synchronizing inputs and outputs. In case A the
signals measured at time ¢, are used to compute the control signal to be
applied at time #;,;. In case B the control signals are changed as soon as
they are computed.

the measured variables at time £, and to make the D-A conversion as soon as
possible. '

The disadvantage of case A is that the control actions are delayed unneces-
sarily; the disadvantage of case B is that the delay will be variable, depending
on the programming. In both cases it is necessary to take the computational
delay into account when computing the control law. This is easily done by in-
cluding a time delay of 2 (case A) or 7 {case B) in the process model. A good
rule is to read the inputs before the outputs are set out, If this is not done,
there is always the risk of electrical cross-coupling.

In case B it is desirahle to make the computational delay as small as
possible. This can be done by making as few operations as possible between
the A-D and D-A conversions. Consider the program in Listing 9.1. Because the
control signal u is available after executing the second line of code, the D-A
conversion can be done before the state is updated. The delay may be reduced
further by calculating the preduct C¥x after the D-A conversion. The algorithm
in Listing 9.1 is then modified to Listing 9.2. _

To judge the consequences of computational delays, it is also useful to know
the sensitivity of the closed-loop system to a time delay. This may be evaluated
from a root locus with respect to a time delay. A simpler way is to evaluate how
much the closed-loop poles change when a time delay of one sampling period is
introduced.
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Listing 9.2 Computer code skeleton that implements the ¢ontrol algorithm

(9.2). This code has & smaller computational delay than the code in List-
ing 9.1.

Procedure Regulate

begin
Adin y uc
u:=ul+D*y+Dc*uc
Dacut u
x:=Faz+G¥y+Goruc
ul:=Cx

end

oo 3 B

QOutliers and Measurement Malfunctions

The linear filtering theory that will be discussed in Chapter 11 is very useful in
reducing the influence of measurement noise. However, there may also be other
types of errors, such as instrument malfunction and conversion errors. These are
typically characterized by large deviations, which oceur with low probabilities.
It is very important to try to eliminate such errors so that they do not enter into
the control-law calculations. There are many good ways to achieve this when
using computer control.

The errors may be detected at the source. In systems with high-reliability
requirements, this is done by duplication of the sensors. Two sensors are then
combined with a simple logic, which gives an alarm if the difference between
the sensor signals is larger than a threshold. A pair of redundant sensors may
be regarded as one sensor that gives either a reliable measurement or a signal
that i1t does not work.

Three sensors may be used in more extreme cases. A measurement is then
accepted as long as two out of the three sensors agree (two-out-of-three logic), It
is also possible to use even more elaborate combinations of sensers and filters.

An observer can also be used for error detection. For example, consider

the control algorithm of (9.1) with an explicit observer. Notice that the one-step
prediction error

elk) = y(k) - 3ikie —1) = y(k) - Ci(kjk - 1) (9.4)

appears explicitly in the algorithm. This error can be used for diagnosis and
to detect if the measurements are reasonable. This will be further discussed in
connection with the Kalman filter in Chapter 11.

In computer control there are also many other possibilities for detecting
different types of hardware and software errors. A few extra channels in the A-D
converter, which are connected to fixed voltages, may be used for testing and
calibration. By connecting a D-A channel to an A-D channel, the D-A converter
may also be tested and calibrated.
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9.4 Nonlinear Actuators

The design methods of Chapters 4, 5, and 8 are all based on the assumption
that the process can be described by a linear model. Although linear theory has
awide applicability, there are often some nonlinearities that must be taken into
account. For example, it frequently happens that the actuators are nonlinear, as
1s shown in Fig. 9.3. Valves are commonly used as actuators in process-control
systems, This corresponds to a nonlinearity of the saturation type where the
limits correspond to a fully open or closed valve. The system shown in Fig. 9.3
can be described linearly when the valve does not saturate. The nonlinearity is
thus important when large changes are made. There may be difficulties with the
control system during startup and shutdown, as well as during large changes,
if the nonlinearities are not considered. A typical example is integrator windup.
Other typical nonlinearities in practical systems are rate limitations, hysteresis,
and backlash.

The rational way to deal with the saturation is to develop a design theory
that takes the nonlinearity into account. This can be done using optimal-control
theory. However, such a design method is quite complicated. The corresponding
control law is also complex. Therefore, it is practical to use simple heuristic
methods.

Difficulties occur because tbe controller is a dynamic system. When the
control variable saturates, it is necessary to make sure that the state of the

controller behaves properly. Different ways of achieving this are discussed in
what follows.

Antiwindup for State-Space Controllers with an Explicit Observer

Consider first the case when the control law is described as an observer com-
bined with a state feedback (9.1). The controlier is a dynamic system, whose
state is represented by the estimated state % in (9.1). In this case it is straight-
forward to see how the difficulties with the saturation may be avoided.

The estimator of (8.1) gives the correct estimate if the variable u in (9.1)
18 the actual control variable u, in Fig. 9.3. If the variable u, is measured, the
estimate given by (9.1} and the state of the controller will he correct even if
the control variable saturates. If the actuator output is not measured, it can be
estimated—provided that the nonlinear characteristics are known. For the case

Process
_..A-_

Actuator Linear dynamics
— S d
—— Y

Figure 9.3 Block diagram of a process with a nonlinear actuator having
saturation characteristics.
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Observer State feedback Actuator

Figure 9.4 Controller based on an observer and state feedhack with

anti-windup compensation,

of a simple saturation, the control law can be written as
E(E|R) = 2Rk - 1) + K(y(k) — Ci(klk- 1))
= (1- KC)O&(k - 1)k - 1) + Ky(k) + (I - KC)Ti,(k - 1)

(9.5)
i, (k) = sat(L(xm(k) — i(kIR)) + Duc(h))
i(k + 1|k) = DE(kik) + Tz, (k)
where the function sat is defined as
| U ow i = Ulow
saty = ¢ u Upw < U < Upiph (9.8)
Uhigh U 2 Upigh
for a scalar and
satuy
satuy
saty = i (9.7)
gatu,

for a vector. The values u,, and Unigh are chosen to correspond to the actuator
limitations. A block diagram of a controller with a model for the actuator non-
linearity is shown in Fig. 9.4. Observe that even if the transfer function from y
to u for {9.1) is unstable, the state of the system in (9.5) will always be bounded
if the matrix (I - K C)® is stable. It is also clear that x will be a good estimate
of the process state even if the valve saturates, provided that u,,, and Unigh are

chosen properly.
Antiwindup for the General State-Space Model

The controller may also be specified as a state-space model of the form in (9.2):

x(k+1) = Fx(k) + Gy(k) (9.8)
u(k) = Cx(k) + Dy(k) (9.9)
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{a) {b)
¥

—_— ] Sy

Figure 9.5 Different representations of the control law.

which does not include an explicit observer. The command signals have been
neglected for simplicity. If the matrix F has eigenvalues outside the unit disc
and the control variable saturates, it is clear that windup may occur. Assume,
for example, that the output is at its limit and there is a control error y. The
state and the control signal will then continue to grow, although the influence
on the process is restricted because of the saturation,

To avoid this difficulty, it is desirable to make sure that the state of (9.8)
assumes 4 proper value when the control variable saturates. In conventional
process centrollers, this is accomplished by introducing a special tracking mode,
which makes sure that the state of the controller corresponds to the input-output
sequence {u,{k), y(2)}. The design of a tracking mode may be formulated as
an observer problem. In the case of state feedback with an explicit observer,
the tracking is done automatically by providing the cbserver with the actuator
output &, or its estimate ;. In the controller of (9.8) and (9.9), there is no
explicit observer. To get a controller that avoids the windup problem, the solution
for the controller with an explicit observer will be imitated. The control law is
first rewritten as indicated in Fig. 9.5. The systems in (a) and (b) have the same
input-output relation. The system Sp is also stable, By introducing a saturation
in the feedback loop in (b), the state of the system S is always bounded if y and

u are bounded. This argument may formally be expressed as follows, Multiply
(9.9) by K and add to (9.8). This gives

2k +1) = Fr{k) + Gy(k) + K(u(k) - Cx(k)- Dy(k))

= (F - KC)x(k) + (G - KD}y(k) + Ku(k)
= Fox(k) + Goy(k) + Ku(k)

Ifthe system of (9.8}, and (9.9} is observable, the matrix K can always be chosen
so that Fy = F - KC has prescribed eigenvalues inside the unit dise. Notice

that this equation is analogous to (9.5). By applying the same arguments as for
the controller with an explicit observer, the control law becomes

x(h+ 1) = Fox(k) + Goy(k) + Ku(k)

9.10
u(k) = sat{Cx(k) + Dy(k)) (9:10)
The saturation function is chosen to correspond to the actual saturation in the
actuator. A comparison with the case of an explicit observer shows that (9.10}
corresponds to an observer with dynamics given by the matrix Fy. The system
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Figure 9.6 Block diagram of the controller (8.2) and the modification in
(9.10) that aveids windup.

of (9.10) is also equivalent to (9.2) for small signals. A block diagram of the
controller with antireset windup compensation is shown in Fig. 9.6.

Antiwindup for the Input-Output Form

The corresponding construction can also be carried out for controllers charac-
terized by input-output models. Consider 2 controller described by

R{q)ulk) = T(q)uc(k) - S{q)y(k) (9.11)

where R, S, and T are polynomials in the forward-shift operator. The problem is
to rewrite the equation so that it looks like a dynamic system with the observer
dynamics driven by three inputs, the command signal ., the process output y,
and the control signal z. This is accomplished as follows.

Let A, (q) be the desired characteristic polynomial of the antiwindup ob-
server. Adding A, (g)u(k) to both sides of (9.11) gives

Ao = Tu. - Sy + (A — R
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Figure 9.7 Block diagram of the controller of (8.11) and the modification
in (9.12) that avoids windup.

A controller with antiwindup compensation is then given by

Aot = Tu, — Sy + (Aqw — R)u

u = saty (8.12)

This controller is equivalent to (9.11) when it does not saturate. When the
control variable saturates, it can be interpreted as an observer with dynamics
given by polynomial A,

A block diagram of the linear controller of (9.11) and the nonlinear modi-
fication of (9.12) that aveids windup is shown in Fig. 9.7. A particularly simple
case is that of a deadbeat observer, that is, A2, = 1. The controller can then be
written as

u(k) = sat(T" (g Yuelk) = $'(¢" (k) + (1~ B*(@)ulk)  (813)
An example illustrates the implementation.

Example 9.1 Double integrator with antireset windup
A controller with integral action for the double integrator was designed in Sec. 5.7.
In this example we use the same design procedure with parsmeters @ = 0.4 and
@h = 0.2. The result when using the antireset windup procedure in Fig. 9.7 with
A, = (¢—0.5)? is ahown in Fig. 9.8. The antireset windup gives less overshoot and
the control signat is only saturating at the maximum value. The reaponse with tha
antireset wingup is similar but somewhat slower than for the unsaturated case. =

A generalization of the antireset windup in Fig. 9.7 is given in Fig. 9.9. An extra
degree of freedom is introduced through the polynomial A,. This polynomial,
as well as 4., should be monic and stable. The case in Fig. 9.7 is obtained for
A, = 1. The polynomial A, can be used to shape the response from errors due
to the saturation.
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Figure 3.8 Output and input when the douhle integrator is controlled with
a controller (a) without and (b) with antirest windup given by (9.12). The
dashed lines show the hehavior when there is no saturation.

9.5 Operational Aspects

The interface between the controller and the operator is discussed in this sec-
tion. This includes an evaluation of the information displayed te the operator
and the mechanisms for the operator to change the parameters of the controller.
In conventional analog eontrollers it is customary to display the set point, the
measured output, and the control signal. The controller may also be switched
from manual to automatic control. The operator may change the gain {or propor-
tional band), the integration time, and the derivative time, This organization
was motivated by properties of early analog hardware, When computers are
used to implentent the controllers, there are many other possibilities. So far the
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Figure 8.9 A generalization of the antiwindup scheme in Fig.9.7.
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potentials of the computer have been used only to a very modest degree.

To discuss the operator interface, it 15 necessary to consider how the system
will be used operationally. This is mentioned in Sec. 6.2 and a few additional
comments are given here. First, it is important to realize the wide variety of
applications of control systems. There is no way to give a comprehensive treat-
ment, 80 a few examples are given, For instance, the demands are very different
for an autopilot, a process-control room, or a pilot plant.

Example 9.2 Importance of operational aspects
To illustrate that the operational aspects and security are important we take two
examples from practical implementations.

The first example is a control system for a steel rolling mill, In this applica-
tion the control, signal conditioning and logic took about 30% of the code and the
rest was related to operator interface and security measures,

The second example is the implementation of an autotuner based on relay
feedhack. A straightforward implementation of the tuning algorithm could be done
in 1.5 pages of C code. The commercial algorithm with all bells and whistles needed
for operator communication and security required 15 pages of code. |

Operating Modes

It is often desirable to have the possibility of running a system under manual
control. A simple way to do this is to have the arrangement shown in Fig. 9.10,
where the control variable may be adjusted manually. Manual control is often
done with push buttons for increasing or decreasing the control variable.

Because the controller is a dynamic system, the state of the controller must
have the correct value when the mode is switched from manual to automatie.
If this is not the case, there will be a switching transient. A smeoth transition
is called bumpless transfer, or bumpless transition,

In conventional analog controllers, it is customary to handle bumpless
transition by introducing a tracking mode, which adjusts the controller state
80 that it is compatible with the given inputs and outputs of the controller. A
tracking mede may be viewed as an implementation of an ohserver.

Increase o—=| Ramp Y manusl
Decrease 0— | generator

Manual Q.
Automatic ©

w1 DProcess

Regulator

Figure 9.10 Control system with manual and automatic control modes.
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A tracking mode is obtained automatically in the controllers of (9.5), (9.10),
and {9.12} because they have an observer built into them. To run them in a
tracking mode, simply put

Llgw = Khigh = Ymannal

This implies that the control signal is always equal to the manual input signal.
The state of the controller will be reset automatically because of the internal
feedback in the controller. The saturation introduced in the controller to handle
actuator saturation will automatically give bumpless transfer. There are also
other ways to have modes for semiautomatic control by keeping some feedback
paths for stabilization.

With computer control, it is possible to have many other operating modes,
Parameter estimation and control-design algorithms can be included in the con-
troller. An estimation mode, in which a model of the process is estimated, may
be introduced. The estimated model may be used in the design algorithm to give
an update of the parameters of the controller in a tuning mode. Adaptive control
modes, in which the parameters are updated continuously, may alsc be added.
Computer control offers many other interesting possibilities, The performance
of the control loop may be displayed nstead of set point and error.

Initialization

Because a controller is a dynamic system, it is important to set the controlier
state appropriately when the controller is switched on. If this is not done, there
may be large switching transients. In conventional PI-controllers, the controller
has one state only—namely, the integrator. [t is customary to initialize such a
controller by operating it in manual control until the process output comes close
to its desired value, For an algorithm with an explicit observer, the controller
state may be initialized by keeping the control signal fixed for the time required
for the observer to settle. A controller with antiwindup may also be initialized

by running it in manual mode during a period that corresponds to the settling
time of the ohserver,

Parameterization and Parameter Changes

In conventional process controllers, the operator can manipulate the set point
and the parameters in the control law (gain, integration time, and derivative
time). With computer control, there are many other interesting alternatives.
Because of the simplicity of computing, it is possible to use one parameteriza-
tion in the control algorithm and another in the operator communication. The
parameters displayed to the operator may then be related to the performance of
the system rather than to the details of the control algorithm. The conversion
betweeu the parameters is made by an algorithm in the computer.

To illustrate the idea of performance-related parameters, consider design
of a servo using the pole-placement method described in Chapter 5. The closed-
loop properties may he specified in terms of the relative damping ¢ and the
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bandwidth wg. To perform the design, it is also necessary to have a model of
the open-loop dynamics. One possibility is to have the process engineer enter
the desired bandwidth and damping and a continuous-time model. The com-
puter can then make the necessary conversions in order to obtain the control
law, If the computer also has a recursive estimation algorithm, it is not neces-
sary to introduce the model. Clearly, there are many interesting possibilities if
estimation and design algorithms are included in the controller.

There are two operational problems with on-line parameter changes. One
problem is related to real-time programming. Data representing parametors are
shared among different programs. It is then necessary to make sure that one
program is not using data that are being changed by another program. This is
discussed in Sec, 9.8.

The other problem is algerithmic. There may be switching transients when
the parameters are changed in a control algorithm. To get some insight into what
can happen, consider tbe simple Pl-algorithm

e:=uc-y
u:=kk(a+1/ti)
i:=i+e*h

It is clear that a change of the integration time ti will cause a step in the
control signal unless the integral part, i, is zero. The problem can be avoided
by changing the state from i to i*ti/ti’, where ti’ is the new value of the
integration time. Another simpler way is to write the algorithm as

g:=uc-y
o;=kte+i
i:=itk*exh/ti

Compare with Sec. 8.5. The need for changing the state when parameters are
changed is dictated by the fact that the state of the controller depends on its
parameters. One way to obtain bumpless parameter changes is to store a set of
past input-output data and to run an observer when the controller parameters
are changed. However, it is often possible to use a simpler solution.

To see what should be done, consider the algorithm of (9.5) with an explicit
observer and state feedback. First, a realization should be chosen so that the
matrices C' and D do not depend on the adjustable parameters. If the state x
represents an estimate of physical state variables, there are very few difficulties
because the estimated state will not change drastically when model parameters
are changed. Transients due to changes in the feedback gain cannot be avoided
if there is a nonzero error ¢ = x — £. Similarly, there will not be any switching
transients with the algorithm in (9.10), provided that there is a representation
in which the matrices C and D do not contain any parameters that are modified.
It is more complicated to see what should be done with the algorithm of (9,12).
In the representation of (9.12), the state is delayed inputs and outputs. This
state is not minimal. Although the state does not depend on the coefficients of
the polynomials R, S, and T, there is no guarantee that the given R, S, T, &,
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and y are compatible with Eq, {(9.12). With the representation of (9.12}, there
will be switching transients when the parameters are changed.

Security

It is very important to make sure that a computer-control system operates safely.
Ideally, this means that the system should either give the correct result or an
alarm if it is not functiening properly. Systems with extremely high require-
ments may be tripled (or quadrupled) and the output accepted if two subsystems
give the same result. For simpler systems, it may be sufficient to rely on self-
checking, There are many ways to do this using computer control. Arithmetic
units may be checked by computing functions with known results. Memory and
data transmission may be checked through checksums. A-D and D-A converters
may be checked by using a few extra connected channels. A D-A conversion is
commanded and the result of an A-D conversion of the same channel is checked.
Timing may similarly be investigated by connecting a network with a known
time constant between a D-A and an A-D converter,

9.6 Numerics

When implementing a computer-control system it is necessary to answer ques-
tions such as: How accurate should the converters be? What precision is required
in the computations? Should computations be made in fixed-point or floating-
point arithmetic? To answer these questions, it is necessary to understand the
effects of the limitations and to estimate their consequences for the closed-loop
system. This is not a trivial question, becanse the answer depends on a complex
interaction of the feedback, the algorithm, and the sampling rate. Fortunately,
only crude estimates have to be done. For instance, should the resolution be 10

or 12 bits and should the word length be 24 or 32 hits? Such questions may be
answered using simplified analysis.

Error Sources

The major sources of error are the following:
* Quantization in A-D converters
¢ Quantization of parameters

* Roundoff, overflow, and underflow in addition, subtraction, multiplication,
division, function evaluation, and other operations

¢ Quantization in D-A converters

Common types of A-D converters have accuracies of 8, 10, 12, and 14 hits, which
correspond to a resolution of 0.4%, 0.1%, 0.025%, and 0.006%, respectively. The
percentages are in relation to full scale. The D-A converters also have a limited
precision. An aecuracy of 10 bits is typical, The error due to the quantization
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of the parameters depends critically on the sampling period and on the chosen
realization of the control law.

Word Length

Digital-control algorithms are typically implemented on microcomputers and
minjcomputers, which have word lengths of 8, 16, or 32 bits. The essential
numerical difficulty with short word length is illustrated by the example.

Example 9.3 Scalar-produet calculations
Consider the vectars

o= {100 1 100]
b:[lUO 1 -100]

The scalar product is {a,5) = 1. If the scalar product is computed in floating-point
representation with a precision corresponding to three decimal places, the result
will be zero because 100 100 + 1- 1 is rounded to 10,000, Notice that the result

abtained depends on the order of the operations. Finite-word-length operations are
neither associative nor distributive. "

The difficulty may be avoided without using complete double-precision caleula-
tion by adding the terms in double precision and rounding to single precision
afterwards, This method can be apphied to fixed-point and floating-point calcula-
tions. Notice that the multiply instruction for many computers is implemented
so that the product is available in double precision. Many high-level languages
glso have constructions that support this type of calculation. Generally speak-
ing, roundoff and quantization will give rise to small errors, whereas the effects
of overflow will be disastrous.

Digital-sigual processors (DSPs) are now commoenly used to implement
computer-controllad systems when short sampling periods are required. The
low-cost signal processors are all using fixed-point caleulations. For the TMS
family from Texas Instruments, the standard word length is 16 bits but the
accumulator is 32 bits wide. A 16-bit DSP from AT&T has a 36-hit accumula-
tor, and Motorola has a DSP with 24-bit word length and a 56-bit accumulator.
The architecture with a long accumulator is ideal for computing scalar prod-
ucts, which is the key operation when implementing linear filters, because the
products of the terms can be accumulated in double precision. The sigual pro-
cessors are very fast. The operation of multiply and accumulate (MAP) typically
takes 100 nanoseconds, There are also more expensive sigual processors with
floating-point hardware.

There is also an increased use of computer-controlled systems implemented
using special-purpose VLSI circuits. In these applications the word length is a
design parameter that can be chosen freely, Such a choice naturally requires
a more detailed investigation than a simple choice between single or double
precision. There are applications of custom VLSI both in the aerospace industry
and for mass-produced consumer goods like VCRs and CD players. For these
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applications it is of major concern to minimize chip area. A typical example is
a CD player in which hoth audio and servo functions are implemented on one
chip. For a stationary CD player there are fewer demands on the servo than for
a CD player for a car. The chip area for the control system can thus be smaller
for the stationary player.

There are many number representations used in digital computers. Inte.
gers are typically 16, 32, or 48 bits. For a long time there were many represen-
tations of floating-point numbers. The IEEE did, however, take the initiative to
standardize them, and a standard ANSI-IEEE 754 was published in 1985. In
this standard the numbers are represented as

taq-2°

where 0 < a < 2 is the significand, also called the mantissa, and b is the
exponent. In the standard there are three types of floating-point numbers:

short real (32 bits) 1sign 8 exponent 23 significand
long real {64 bits) 1sign 11 exponent 52 significand
short temporary real (80 bits) 1sign 15 exponent 64 significand

The [EEE standard has gained widespread acceptance, and the floating-point
chips from Intel and Motorola are based on it.

Overview of Effects of Roundoff and Quantization

The consequences of roundoff and quantization depend on the feedback system
and on the details of the algorithm, The properties may be influenced consid-
erably by changing the representation of the control law or the details of the
algorithm. Thus it is important to understand the phenomenon.

A detailed description of roundeff and quantization leads to a complicated
nonlinear model, which is very difficult to analyze. [nvestigation of simple cases
shows, however, that roundoff and quantization may lead to limit-cycle oscilla-
tions. Sueh examples are presented later, together with approximative analysis.
Limit-cycle oscillations have also been observed in more complex cases.

Some properties of roundoff and quantization in a feedback system may
also be captured by linear analysis. Roundoff and quantization are then mod-
eled as ideal operations with additive or multiplicative disturbances. The dis-
turbances may be either deterministic or stochastic. This type of analysis is
particularly useful for order-of-magnitude estimation. It allows investigation of
complex systems and it is useful when comparing different algorithms,

Techniques from sensitivity analysis and numerical analysis are also use-
ful in finding the sensitivity of algorithms to changes of parameters. Such meth-
ods may be used to compare and screen different algorithms, However, the meth-
ods are limited to comparison of the open-loop performances of the algorithms.

It is also necessary to compare the effects of roundoff and quantization with the
other disturbances in the system.
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Figure 9,11 (a) Discrete-time system with one nonlinearity N L. (b) Using
the method of describing function.

Nonlinear Analysis Using Describing Functions

If there is only one nonlinearity in the loop, it is possible to use the method of
deseribing function to determine limit cycles approximately.

Consider the system in Fig. 9.11(a). The method of describing funection can
be regarded as a generalization of the Nyquist criterion. The critical point -1
is replaced by -1/Y.(A}, where Y,(A) is the describing function of the nonlin-
earity. The describing function characterizes the transmission of a sinusoidal
signal with amplitude A through the nonlinearity. The method predicts a limit
cycle if

H(eiwh) = - YC(A)

{compare with Fig. 9.11(b)]. The frequency, @, (from the Nyquist curve), and
the amplitude, A; (from the describing function), at the intersection are the esti-
mated frequency and the estimated amplitude of the limit cycle. The describing
function of a roundoff quantizer is

( 5
0 Ae”
| 0< -::2
L) =1 5 2%-1.\% 2u-1 2+ 1
i- n- n+
qu_},ng;\/l_(m 5)  Trtecac®ils

The function Y, only takes real values. Its smallest value1s zero and its largest
value is 4/7 =~ 1.27. The function is graphed in Fig. 9.12. This means that
the critical part for quantization consists of the part of the negative real axis
from —oo to ~0.78. Describing function analysis thus predicts oscillations due to
quantizatien if the Nyquist curve of the loop gain intersects this line segment,
For stable systems this means that quantization will not give rise to oscilla-
tions if the amplitude margin is larger than 1.27. Describing function analysis
predicts oscillations for all systems that are open-loop unstable.
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Figure 9.12 The describing function of roundof.

Example 94 Roundoff effects
Consider the system in Example 3.4 with the pulse-transfer function

0.25K

Hey = o508

In Example 3.4 it is shown that the closed-loop system without roundoff is asymp-
totically stable if X < 2. With roundoff of the error signal in Fig. 3.5, the method
of describing function predicts that there will be a limit cycle if X is greater than
about 1.3. Figure 8.13 shows the behavior of the system for a roundoff level of
& = 0.2. The limit cycle is elearly noticeable for K = 1.6. »

Linear Analysis

The effects of roundoff and quantization may alse be estimated by linear analy-
sis. The idea is to represent the operations by their ideal models and an additive
disturbance ¢,. The D-A and A-D converters are then simply represented as lin-
ear gains with a disturbance that models the quantization, With fixed-point
calculations, the additions are exact. There will, however, be errors in multipli-
cations. These are represented as exact multiplications, with an additive error,
which represent the roundoff. This is illustrated in Fig, 9.14.

The errors may be modeled as deterministic or stochastic signals. In a
deterministic medel, the error is modeled as constants having the sizes of quan-
tization errors and with the resolution in the arithmetic calculations. In the
stochastic model, the error introduced by rounding or quantization is then de-
scribed as additive white noise with a rectangular distribution. The errors at
different sampling times are thus assumed to he uncorrelated. If the quantiza-
tion is done as rounding, then the error is equally distrihuted over the interval
(-0/2,8/2), where & is the quantization step. If the quantization is done as
truncation, the error is equally distributed over {0,5). A rectangular noise dis-
tributed over an interval of length 5 has a variance of §%/12,

By using the linear models of roundoff and quantization, it is possible to
reduce the problem of estimating the effect of the roundoff and quantization
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Figure 813 The output of the system in Example 9.4 when § = 0.2 and
(@) K =08,(b) K =12, and {¢) K = 1.6

to the problem of caleulating responses of a linear system to deterministic or
stochastic inputs. By uging the linear model, it is possible to assess the effects
of quantization gualitatively without going into detailed calculation. It is also
easy to compare roundoff with other disturbances in the system. In the linear
model, the effect of roundoff in the A-D converter is the same as the effect
of measurement noise. The effect on the control signal may be substantial for
those frequencies where the controller has high gain. The effect of roundoff in
the D-A converter is the same as a disturbance in the process input. Because the
process normally attenuates high frequencies, the effect on the process output

is normally small. Remember, however, that the linear model does not capture
all aspects of roundoff.

Figure 9.14 Linear models for multiplication with roundoff.
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Figure 915 Control of a double integrator with a quantized A-D converter.

The sampling period is 1 s and the quantization level is 0.02. The middle
curve shows the guantized as well as the unquantized output.

Selection of Resolution of A-D and D-A Conveners

Today the resolution of the D-A converters are about 10 bits and the A-D conpvert-
ers have normally 14 bits. With double-precision arithmetic the computations
are typically done with a resolution of 64 bits. This implies that it is the ac-
curacy of the converters that have the largest influence on the performance. A
couple of examples iHustrate the influence of the quantization in the converters.

Example 9.5 Effects of A-D quantization for the double integrator

Figure 9.15 shows a simalation of digital control of a double integrator where the

A-D converter is quantized with the level 0.02. The controller is the same as the
one used in See. 5.7. It is given by

R{g)utk) = T{ghu.(k) - S(g)y(k)
where
Rig) = {g- 1){g + 0.188)
Sig) = 0.715¢% - 1.281¢ + 0.580 (9.14)
T{g) = (3.473¢" — 2.555¢ + 4.700) - 10°2



Sec. 9.8 Numerics a7

Imaginary axis

1 L i i

-6 -4 -2 0
Real axis

Figure 9.16 Nyquist curve for the sampled loop gain for the double inte-
grator, when using the controller defined by (9.14}.

and the sampling period 1 s. The simulation clearly shows that there is a Limit-
cycle oscillation where the output changes one quantization level. The period is
28 s. The describing functions analysis predicts a limit cycle with period 39 s, See
Fig. 9.16, which shows the Nyquist curve of the sampled loop gain, The describing
function method predicts that the amplitude of the oscillation is §/2, which agrees
well with the behavior of the output of the process. Describing function analysis
gives correct qualitative results in this case, but the prediction of the peried is poor
because the signals deviate significantly from sinusoids.

We will alzo use another method to estimate the amplitudes of the fluctua-
tions caused by the quantization. To do this, first observe that the output signal
oscillates with one quantization level up or down at widely spaced intervals. This
means that the controller output is given by the pulse response of the controller,
that is,

5
SG) 0710407000 - 0.1452% + 00134270 .- {9.15)
E(z)
multiplied by the quantization level, This gives an excellent prediction of the fluctu-

ations in the control signal. Compare with Fig. 9.15. Notice that the first coefficient
in the expansion of -S/R is equal to -, n

This example shows that the periodic ripple in the control signal due to quan-
tization in the A-D converter can he estimated from a simple pulse-response
calculation. In the next example we will analyze the effect of quantization in
the D-A converter.
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Figure 9.17 Digilal control of the double integrator with a quantized D-A
converter.

Example 9.6 Effects of D-A quantization for the double integrator

Figure 9.17 shows a simulation of the double integrator with a D-A converter
with guantization level 0.01. The quantization causes a limit-cycle oscillation. The
process output is, however, much more sinusoidal than with A-D quantizatien. The
reason for this is that the nonlinearity is just before the process that attenuates
lgh frequencies. As before, the describing function predicts an oscillation with
the period 39 9 whereas the actual period is 39 s. The amplitude of the oscillation
in the process output can be estimated by evaluating the magnitude of the pulse-
transfer function of the controller at the period of oseillation. The controller gain is
approximately 0.12. With § = 0.01, the amplitude of the output can be estimated
to 0.04 and the measured amplitude is about 0.03. See Fig. 9.17.

Notice that the oscillations due to the quantization in the D-A converter can

be avoided if the output of the D-A converter is fed back into the control law in

the same way as was done to avoid windup. .

By using the insight obtained from the examples, some recommendation on the
selection of resolution of the converters can now be given.

The resolution of the A-D converter must be chosen so that it gives the

desired precision in the process output. One should investigate whether quan-

tizati

on can give rise io limit-cycle oscillations. The magnitude of the ripple in

the control signal caused by the A-D quantization should be investigated. This
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can be estimated simply from Eq. (9.15). If the ripple in the control signal 1s
too large, better resolution of the A-D converfer iz required.

To determine the required resolution of the D-A converter, the frequency
of a possible limit cycle is first determined. If there is a limit-cycle oscillation,
the amplitude can be estimated crudely from tbe process gain at the oscillation
frequency, or more accurately using the theory of relay oscillations quoted in
the References. The estimates obtained in this way will typically give the order
of magnitude. It is recommended to use simulation to get more accurate results.
The procedure is illustrated by an example.

Example 9.7 Choosing resolution in D-A and A-D converters

Consider the double integrator that we have investigated, Assume that the process
output 18 in the range [-1,1], that the range of the control signal is [-0.04,0.04],
and that it is desired to control the output with a precisien of 1%, If we let each
converter contribute 0.5%, the A-D converter must have a resolution of at least
0.005, which is equivalent to 9 bits. Because the gain of the process at the limit
cycle is about 15, the resolution of the D-A converter must be better than 0.00033.
With the given signal range, this corresponds to 1 part in 240, or § bits. »

9.7 Realization of Digital Controllers

The previous section illustrated how roundoff and quantization in A-D and D-A
converters influence the behavior of the system. Roundoff errors in the compu-
tations of the control law also cause quantization, which can be modeled and
analyzed in the same way as converter quantization. The quantization arising
from the computations depends critically on how the computations are orga-
nized, for example, on how the sampled-data controller is realized. This section

discusses different realizations. Some advantages and disadvantages of different
methods are given.

Assume that we want to realize the controller

_ bo+bigl+ -+ 0,077
(k) = H{g"Du(k) = =
y(k) = H{qg™ ju(k) P e — u(k) (9.16)

Some different realizations are
e Direct form
» Companion form
¢ Series (Jordan) form
¢ Parallel (diagonal) form
s Ladder form

¢ J-operator form
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Coefficient-Pole Sensitivity

Finite precision in the representation of the coefficients of the controller gives a
distortion of the poles and zeros of the controller. The following analysis gives
quantitative results for the sensitivity of the roots of a polynomial with respect
to changes in the coefficients. Consider a linear filter with distinct poles in p;
and the characteristic polynomial

Afz,a,) =2 a2 ba, = (z~-p1)(2—pn)

The characteristic polynomial A can be regarded as a function of z and a;, When
the parameter q; is changed ta g, +da;, the poles are changed from p; to py +9p,.
Hence

SA
iz

5pk+ —5—4—

0 = A{py + Ops.0; + 803} ~ A(pr.a;) + &

5{15+“‘
Pa

By

The first term on the right-hand side is zero. If terms of second order and higher
are neglected, 1t foliows that

5A/§af
dpy ~ - - Og;
v A M
Because
JA : dA
== =p  and - =] ](pe-py)
da; ‘z=m oz r=Dx g
the following estimate is obtained:
Py
Opp & -2 fa; 9.17
* n_i;uz(Pk - Pj} l ( )

If the polynomial has a root pj, with multiplicity m, Eq. {9.17) hecomes

P
H_;';‘:k{pk ~pj)

If the filter is stable, then |ps| < 1 and the numerator of (9.17) has its largest
magnitude for i = n. The coefficient a, is thus the most sensitive parameter.
Furthermore, the denominator will be small if the poles are close, which then
makes the system sensitive to changes in the coefficients. Equation (9.18) shows
that the sensitivity is even higher if the polynomial has multiple roots. Equa-
tions (9.17) and (9.18) may be used to determine the conditioning numbers for
the transformation from the diagonal form to the companion form. It follows

from the equations that the computation of companion forms may be poorly
conditioned.

Spy = - (a)t/™ {9.18)
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Direct- and Companion-Form Realizations

The most straightforward way to realize (9,16} is to write it in the direct form
y(RY = bk~ i) - aylk i)
i=0 i=1

It is then necessary to store y(k — 1), y(k - 2),... ,y(k —n), and u{k - 1), ...,
u(k — m), that is, n + m variables, The direct realization has n + m states
and thus is not a minimal realization, The controllable or ohservable canonical
forms, see Sec. 3.4, have n states. The direct form has the advantage that the
state variables are simply delayed versions of the input and output signals. This
means that the state does not have to be recomputed when the parameters are
changed. Both the direct form and the companion form have the disadvantage
that the coefficients in the characteristic polynomial are the coefficients in the
realizations. This makes the realizations extremely sensitive to computational

errors if the system is of high order and if the poles or zeros are elese to one as
discussed before.

Well-Conditioned Realizations

The difficulty associated with the companion furm can be avoided simply by
representing the system as a combination of first- and second-order systems, If
the dynamic system representing the controller has n,. distinct real poles and

n. complex-pole pairs, the control algorithm may be transformed to the modal
form

zith + 1) = A;z;(k) + Biyv(k) i=1,...,n,
_ g _ Yl .
vk +1) = [ o, o; ] vi(k) + [m] y(k) i=1,... ,n, {9.19)

(k) = Dyl)+ 3 ialh) + 36Tl
i=1 i=1

where the complex poles are represented using real variables. Notice that 2, are
scalars and v; are vectors with two elements, To avoid numerical difficulties, the
control law should be transformed to the form of (9.19), which is then imple-
mented in the control computer. The transformation may easily be done in a
package for computer-aided design. It is easy to use fixed-point calculations and
scaling for equations in the form of (9.19). If the control law has multiple eigen-

values, a Jordan canonical form replaces (9.19). An eigenvalue A of multiplicity
3 thus corresponds to a block

Al 0 i
2k+1)= |0 2 1]2[k)+[ﬂ2 y(k)
0 0 A B3
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Ladder Realizations

Ladder realizations are other representations that avoid the coefficient sensitiv-
ity in the implementationa. One representation of the ladder network is obtained
by making a continued-fraction expansion in the pulse-transfer operator in the
following way:

Hiz)=oa¢ + (9.20)
ﬂ12 +

Another realization is obtained by making the continued-fraction expansion in
z L. The ladder forms have low sensitivity against coefficient, errors and round-
off errors. If

_ B(2)
1) = 76
where deg A(2) = deg B(z) = n, the coefficients ; and f; can be computed
in the following way: Compute @y = B(2z)}divA(z), Ai{2) = A(z), and B;{2) =
B(2) mod A(z) and repeatfor i = 1to n

B = A, divzB; A = A;mod 2B;
o; = BydivA;, B,i1 = Bimod A,

The ladder-network representation can be expressed by the following state equa-
tions:

Bixi(k+1) = _ocll (xo(k} — x1(k)) + u(k)

Bixa(k + 1) = % (x1(R} - (k) + ;:—2 (%3(k) ~ x2(k))

B +1) = oo (sia8) - 58+ - (rah) - 50

-1

Butalb+ 1) = al

n-1

(xn-a()= a8} = —— (8

y(k) = x1(k) + aoulk)
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Figure 9.18 Block diagram of a ladder network representation of the trans-
fer function (9.20).

A block diagram of the representation is shown in Fig. 9.18. The name ladder
network derives from the shape of the graph.

Short-Sampling-lnterval Modification

We have shown that it is useful to transform the system to a well-conditioned
form before it is implemented on a digital computer. This reduces the coefficient
sensitivity of the realization. An additional meodification that is useful when
the sampling period is short will now be discussed. Consider the compensator
described by the general-state model (9.8) and (9.9). For short sampling periods
the matrix ¥ is close to the unit matrix, that is, all the eigenvalues are close
to one. Further, the matrix G is proportional to the sampling period. With a
short sampling period, the matrices F and G may therefore differ by several
orders of magnitude. By rewriting the state equation it is possible to obtain a
representation that is better conditioned. It is convenient to rewrite equation
(9.8) as

t(k+ 1) = 2(k) + (F = Da(k) + Gy(k) (9.21)

where the matrix F - I is also proportional to the sampling period 4. The nu-
merical representation of ¥ - I requires fewer decimals than the representation
of F itself. The term (F - I}x{k)+ Gy(k) represents a correction to the state,
which will be small if the sampling period is short. This representation is par-
ticularly useful in fixed-word-length computations. The state is stored in double
precision. The change in the control is calculated using single-precision multipli-
eation, and the product is then added to the stete. Compare with the discussion
of the scalar-product computation in Example 9.3.
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The §-Operator
The system {9.21) can be written as
xm+1)=xmy+h@&m)+éﬂkn (9.22)
where
hF=F-1
hG = G
Instead of the shift operator we can now introduce the d-operator that is defined
by
g-1
=1 = 9.23
5= L (9:23)

Equation (9.22) can now be written as
Sx(k) = Fx(k) + Gy(k)

A general pulse-transfer operator can be transformed from shift form to §-form
as

_Blg) _B(éh+1) B
RO =30 = 265+ = i)

The 4-operator is thus equivalent to the shift operator. All the analysis done
for the shift operator can be translated into d-form. The S-operator has the
property

= H(5)

f(kh+ R} — f(kR)

of (kh) = 5

that is, it can be interpreted as the forward-difference approximation of the
differential operator p = d/dt. In this respect the &-operator is “closer” to
the continuous-time domain than the shift operatoer. For instance, the stability
region in the d-form is a circle with radius 1/A and with the origin in -1/A.
When A — 0 the stability region becomes the left half-plane.

The d-operator representation has the property that it translates into the

corresponding continuous-time system when the sampling interval approaches
zero. Hence

}11_1.1(1) H(d) = G(8)
where G is the continuous-time transfer function. This implies, for instance,

that the zeros of the transfer function in the 5-form approach the zeros (finite
ag well ag infinite) of the continuous-time transfer function,
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Example 9.8 Double integrator in é-form
Consider the double integrator G{s) = 1/s*. Thea

Rlg+1) AXHéR+2) 1+8R/2
H(Q)=2(c(zq—+1)2)= i = g < H@

When k goes to zero we get

. 1
lim H(3) = = = G(5)

Natice that the §-form also has “sampling zeros,” § = —2/k. This zero will approach
—-oc when b — 0, [

Heuristically we can interpret the §-operator as a shift of origin and scaling.
This is & common trick in numerical analysis and has the consequence that
the §-form can obtain hetter numerical properties than the shift operator. A
controtler in §-form can be described by the state equations

Sx(kh) = Fx(kh) + Gy(kh) = d(kh)

(9.24)
u(kh) = Cx(kh) + Dy(kh)

The shift operator and its inverse are implemented exactly using an assignment
statement. To make a realization in §-form we must implement the operator §-!.
Solving (9.24) for x(kh) gives

z(kh) = 8 1d(kh) = x(kh - k) + hd(kh)

The extra amount of computations compared to the shift form is marginal. One
extra vector addition is necessary. Notice that because hd(kk) is normally much

smaller than x(kh — h), it is necessary to represent x{kh — h) with a sufficient
word length.

An Example

An example illustrates the properties of the different realizations. Consider a
system with the pulse-transfer function

b4
- (z + a)*

H(z) (9.25)

where b = 1 + a. The system has multiple poles that are close to one when
a is close to -1. The previous discussion then shows that the system is very
sensitive to coefficient perturbations.

To obtain the computer program, a state-space realization of the pulse-
transfer function is first determined. The computer code is then obtained as
a direct implementation of the difference equations. There are many possible
choices of the coordinate system in the state-space realization. A controllable
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Listing 8.3 Computer cede for implementation of (9.25) based on the
shift-controllable canonical form.

begin
¥:=b*b*b*b*x4
8;=-al*xl-a2*x2-ad*x3-adsxdtu
X4:=x3
x3:=x2
x2:=x1
xl:=s

end

canonical form in shift and §-operator and a Jordan canonical form are chosen
to demonstrate that the numerical properties may differ considerably. For the
shift-operator controllable form we implement

b* bt
(z+a)* ~ 2* +4az® + Bal2? + 4a’z + ot

The code is given in Listing 9.3. The numerical values of the parameters for the
controllable canonical form when ¢ = —0.99 are given by

ay = 4a = -3.96 as = 6a® = 5.8806
as = 4¢* = —3.881196 as = a* = 0.96059601

Listing 9.4 gives an implementation based on the Jordan canenical form. By
rewnting the Jordan form as (9.21) Listing 9.5 is obtained. Notice that this
slight modification gives a significant improvement over the form in Listing 9.4,

because the state is now obtained by adding a small correction to the previous
state.

Listing 9.4 Computer code for implementing {9.25) based on the Jordan
canonical form.

begin
x4 ==a%xd+h¥y
x3:=-a¥x3+b*x4
X2:=-a*x2+b*x3
x1:=-axx]l+b*x2
yi=x1

end
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Listing 9.5 Rearrangement to short-sampling-interval modification of the
code in Listing 9.4.

begin
x4 :=x4+b#* (u-x4)
x3:=x3+b* (x4-x3)
X2:=x2+b* (x3-x2)
x1:=x1+b*(x2 - x1)
yi=x1

end

For the 0-form we implement (in controllable canonical form)

B b* b
@G+1+tay (B+b)f 6%+ 4bdd + 66202 + 4b% + b
b4
" 3¢+ b10% + byl + b3l + by

where b = 1 + ¢. Notice that b is a small number when a is close to —1. The
system is implemented using (9.21), where F and G have the same form as
for the shift-operator companion form i Listing 9.3. The implementation in
d-companion form is given in Listing 9.6, where b; are the coefficients in the
characteristic polynomial.

The implementation of the discrete-time system also includes a monitor
system that runs the program each sampling period. Notice that the code con-
tains only additien, multiplication, and assignment statements; thus it can
easily be implemented using many computer languages. Because assignment
statements only transfer data, they will not introduce any numerical errors.

This means that 0 and 1 in a standard matrix representation are represented
exactly.

Listing 9.6 Computer code for implementing (9.25) based on §-operator
controllable canonical form.

begin
¥ . =b*bxbib*x4
8:=-bl*x1-b2*x2-b3*x3-hd*xd+u
x4 =x4+%3
x3;=x3+x2
x2:=x2+x1
x1:=x1+s

end
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Figure 919 Step responses for the system (9.25) for different implemen-
tations and different values of q: shift-operator controllable canonical form
(Listing 9.3) (dashed), Jordan form (Listing 9.4) and §-operator controllable
canonical form (Listing 9.6) are both the full line. (8)a = 03, {b)a = —0.97,
{c) ¢ = —0.98, and (d) @ = -0.99.

Figure 9.19 shows simulations using MATLAR®. The simulation is simply
an iteration of the state equations in Listings 9.3, 9.4, and 9.6. The results are
obtained when chopping the result of all operations to seven digits. The figure
shows the results when different values of ¢ are used. For ¢ = -09 all the
implementations give compatible results, as shown in Fig. 9.19(a). When ¢ is
decreased, the shift-operator controllable canonical form is very sensitive and
the solution is inaccurate. The other twe implementations give approximately
the same results. They will, however, differ when even lower numerical precision
is used. The modified Jordan form is better than the §-operator controllable
canonical form when g is decreased further.

The sensitivity of the shift-operator controllable form with respect to pa-

rameter changes is given by (9.18). Perturbing the characteristic equation with
a constant term £,

(z-099) +e=0
gives the roots
z =089+ (—s)V

The roots are moved from 0.99 to 2 circle with origin at 0.99 and the radius

r= g% If £ = 1078 then r = 10" that is, the system can be unstable even
if the perturbation is very small.
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Making a similar cateulation for the 4 companion form we get

(6+001) +e=0
which gives the roots

§ = -0.01+ ()

The reots are moved from —0.01 to a circle with origin at -0.01 and the radius
r = |e}/4.1f £ = 1078 then r = 1072, which is the same as for the shift-operator
case. Notice, however, that the relative variation in parameters required to make
the system unstable is two orders of magnitude larger with the d-operator. The
d companion form is thus less sensitive to parameter perturbations than the
shift companion form. Notice, however, that the Jordan realizations in shift or
d-forms are superior.

Effects of the Sampling Period

The sampling period also has a considerable influence on the conditioning, as
shown by the following example.

Example 8.8 Numerical precision required for Pl-control
Consider the formula for updating the integral in a PI-controtler:

ikh + h) = i(kh) + e(kh)- R/ T,

If the sampling period is 0.03 s and the integration time is 15 min = 900 s, the
ratio h/7T; becomes 3 - 10-%, which corresponds to about 15 bits. To avoid that the
quantity e(kh)h/T; is rounded it is thus necessary to make the computations with a
longer word length. This is the reason why the integral term is often implemented
m 24-bit representation in dedicated Pl-controllers. n

The examples show that a rapid sampling requires a high precigion in the co-
efficients.

How to Choose Representations

The selection of representations is crucial when implementing a control law
using a digital signal processor or with custom VLSL It is less crucial for imple-
mentations using microcomputers with floating-point hardware, The companion
forms should be avoided, because so much is gained by using series or parallel
forms. Each block should he implemented on Jordan form. This is particularly
important for high-order compensators and short sampling periods. For low-
order controllers implemented with floating-point hardware and with poles well
inside the stability area, the choice of realization is less crucial. It is, however,
good practice to hedge against possihle numerical problems.
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9.8 Programming

Practically all discrete-time controllers are implemented in a real-time operating
system. [n some systems the different parts of the algorithms may be distributed
among different processors. The communication can then introduce time-varying
delays (jitter) in the sampling period. Programming is an important aspect of
the implementation of a control system, both with respect to the efficiency of
the system and the time required for the implementation,

The effort required and the approaches used depend on the available soft-
ware and the nature of the control problem. The code is typically written in
C or C++. Ada, which was developed by the U.8. Department of Defense for
computer-control applications, is the first language designed and developed for
real-time applications. The character and the difficulty of the programming de-
pend very much on the application. The requirements on operator communica-
tions are critical. The code required for operator communication is often much
larger than the pure contro! code. A few examples illustrate this.

A Simple Dedicated Control System

Consider a simple control loop that has a few measured signals, a few out-
puts, and limited operator communication. Information may be displayed to the
operator, and the operator may have a few buttons and a few dials. The pro-
gramming of such a system is very simple, If a real-time clock is available, the
code is in essence given by Listing 9.7.

The first line is simply & procedure that halts execution until a clock-
inferrupt occurs. The procedure Regulate is the code required to implement the
desired control algorithm.

The procedure Display in Listing 9.7 computes some variables and displays
them in analog or digital form. Notice that it is straightforward to introduce
facilities for the cperator to change parameters simply by mtroducnng them as
analog inputs.

The program in Listing 9.7 is fairly easy to debug. The procedures Regulate
and Display are simple sequential procedures that can be tested off-line. It is
also easy to check that the wait procedure gives an interrupt every sampling
period. It will fail only if the time required to execute the procedures is longer
than one sampling period. This may be tested by timing.

Listing 9.7 Computer code skeleton for a simple control loop.

repeat
Wait for clock interrupt
Regulate
Display

forever
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Figure 9.20 Flow chart for a multiloop control law with two sampling rates.

More Complicated Control Loops

The principles used in the program in Listing 8.7 may be extended to more
complicated control systems with several loops having different sampling peri-
ods. A computer code, which may be represented by Fig. 9.20, is then obtained.
The program PO in Fig. 9.20 runs at the sampling rate given by the clock. The
programs P1, P2, and P3 run each every third clock pulse. In order to obtain
the representation in Fig. 9.20, it is necessary that the time required to execute
each path be shorter than the shortest sampling peried in the system. This is
easy to do for systems with long sampling periods. For systems with fasi sam-
pling, it may be necessary to split up the computations in a tedious, unnatural,
and error-prone fashion.

It is comparatively easy to debug the program shown in Fig. 9.20 if there
are few paths and if the procedures are simple. The difficulty in debugging
grows rapidly with increasing system complexity. New ideas and concepts are
needed to handle such problems in a convenient way.

Concurrent, or Real-Time, Programming

It s natural to think about controel loops as concurrent activities that are run-
ning in parallel. However, the digital computer operates sequentially in time.
Ordinary programming languages can represent only sequential activities. Thus
a key problem is to map a number of parallel concurrent activities into a se-
quential program. This may be done manually, as shown in Fig, 9.20. There are
also special-purpose software—real-time operating systems—that make it possi-
ble to schedule tasks without making a strict sequential program, It is outside
the scope of this book to discuss concurrent programs in detail. The basic ideas
are given, together with a few examples.

The notions of process and task are fundamental concepts in real-time pro-
gramming. They represent activities that may be thought of as running in par-
allel in time. Using these notions, it is possible to think of the computer running
geveral activities in parallel. Hence, a real-time activity may be structured in the
same way as a sequential activity is structured, using the notion of procedure
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or subroutine. The real-time operating system will organize the execution of the
processes so that the desired result is obtained. To do this, a prierity is associ-
ated with each process. Processes may also be scheduled to run periodically or
in response to events such as interrupts or cornpletion of other tasks.

The problem of shared variables and resources is one of the key problems
in real-time programming, If different processes are using the same data, it is
necessary to make sure that one process does not try to use data being modified
by another process. If two processes may use the same resource, it is necessary
to make sure that the system does not deadlock in a situation where both
processes are waiting for each other.

Timing is a third prohlem. Computing power must be sufficient to allow
all activities to be completed in the required time.

A Controller with Operator Interaction

A single control loop with operator interaction is one of the simplest examples
of real-time programming. The task could be to run a control loop like the one in
Listing 9.7 with sampling rate of 20 ms and to provide an interface so that the
operator may change parameters from a keyboard or a terminal. Assume that
the operator changes parameters by typing in a character string on the terminal.
Because the time required for this is considerably longer than one sampling
period, it is necessary to break down the operation into many small pieces in
order to use the solution shown in Fig. 9.20. This is both tedious and unnatural,
It 18 much more natural to think of the problem in the form of two concurrent
processes. One process, control, should be run once every sampling period. The
other prucess, operator communicotion, may run whenever the process control is
idle. To ensure that control actions are taken at regular sampling perieds, it is
necessary to impose the rule that the process control has priority over operator
communication and that it may interrupt the operator communication at any
time. For convenience, the rule that the process control runs to completion
once it has started is also introduced. In a case like this, control is called the
foreground task, or foreground process, and operator communication is called a
background task, or background process.

Real-Time Operating Systems

For problems with only two processes, it is not difficult to write an operating
system that administrates the processes. Such a system may typically be written
in less than 100 lines of assembly code.

The simple operating system may be extended io several processes. It
15, however, a major task to make a program that can handle more complex
situations. Such an operating system, which is also called a real-time operating
system, may occupy anything from a few kilobytes to 20 kilobytes of code.

The real-time operating systems allow definition of tasks, or processes, in
a high-level language such as Pascal, Modula 2, C, or C++. It is also possible to
run processes at regular intervals or in given relationships to other tasks. Pro-
cesses may also be introduced, started, and removed on-line. Priorities between
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different tasks may be introduced and modified. The introduction of real-time op-
erating systems was one of the major innovations when process-control comput-
ers were introduced in the mid-1980s. Examples of such operating systems are
RSX from Digital Equipment Corporation, VxWorks® from Wind River Systems,
pS0S® from Integrated Systems, and QNX® from QNX Software Systems. Pro-
cesses, or tasks, have also been introduced into simple languages such as BASIC.

Real-time operating systems are large general-purpose programs, which
are often written in assemhly code. They are difficult to maintain and modify.
There has been a need to have real-time operating systems that can be tai-
lored to specific applications. Computer languages with facilities for real-time
programming have therefore been developed. Concurrent Pascal and Modula-

2 are such languages. The language Ada is a standard tool for implementing
computer-control systems in military systems.

DDC-Packages

Special techniques are used to program control systems consisting of a large
number of identical control loops. The code is often structured as follows:

Read all analog inputs and store in a tahle.

Convert all signals to engineering units and store results in a table.

Apply the control algorithm sequentially to all values in the table using
controller parameters stored in a parameter table.

Perform D-A conversion to all variables stored in the output table.

Programs of this type are called DDC-packages. The control algorithms are
typically of the PID-type. Modules for gain scheduling, logi¢, supervision, and
adaptation may also be available. The packages are easy to use because all pro-
gramming is reduced to entering the appropriate data in the tables. Programs
of this type are called table-driven.

DDC-packages usually also contain medules, that make it possible to make
startup, shutdown, and alarm handling. Today these descriptions are often
based on the standard IEC 1131-3 for function-bleck languages.

9.9 Conclusions

Implementation of control laws using a computer is discussed in this chapter.
The key problem is to implement a discrete-time system. The principles for do-
ing this have been covered in detail, It is straightforward to generate the code
from the control algorithm. The importance of prefiltering to avoid aliasing has
been mentioned. Sophisticated nonlinear digital filtering for removing outliers
has also been discussed. The computational delay is influenced considerahly
by the organization of the computer code. Difficulties that arise from satura-
tion 1n actuators and ways to aveid these difficulties are discussed. This also
automatically gives a solution to mode switching and initialization.
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Numerical problems and consequences of finite word length are also dis-
cussed. It 1s found to be very beneficial to transform the equations describing
the control law te a form that is numerically well conditioned. Operational is-
gues like mode switching and operator-machine interaction are discussed. There
are many new possibilities in this area. Finally programming of control algo-
rithms is discussed. Although the presentation is fairly short, the information
given should be sufficient to implement control algorithms on minicomputers
and microcomputers using high-level languages.

9.10 Problems

9.1 Consider control of a double integrator with a sampling period of 1 s. Caleulate
the deadbeat contrgl for the system obtained using an antialissing filter with the
transfer function

1

Ol = T

Compare the deadbeat strategy obtained with the deadbeat strategy for the pure
double-integrator using simulation.

9.2 Write a program for computing the scalar product of two arrays
begin
5:=0
for i:=1 to o do
g:=s+alil*b[1]
end

in each case.

{a} s: integer, a, b: arrays of integers.

{b} s: double-precision integer, a, b: arrays of integers,
(¢) s: real, a, b: arrays of reals.

{d) s: double-precision real, a, b: arrays of reais.

Compare the computing times and precision. Try to find computers that have
floating-point caleulations in software, as well as in hardware.

9.3 Consider Example 9.9. Discuss the possibilities of using two loops with different
sampling pericds in order to improve the precision in the calculation.

9.4 Write a code for a digital Pl-controller where the antiwindup is implemented as an
chserver with the time eonstant T}.

8.5 Write a code for a digital PID-coniroller where the antiwindup is implemented as
a deadbeat observer.

9.6 Write a code in your favorite high-level language for a digital PID-algorithm where
antiwindup is implemented as an observer with time constant T,. Determine the
number of operations reguired for one iteration. Compile the program. Determine
how many memory calls it requires. Time the program. How do the measured

computing times relate to the number of operations and the computing times given
in the computer manual?
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9.7 Consider the control algorithm of (9.1), where x, is considered to be an input.
Assume that the state, the control variahle, and the process output have dimensions
iy, Ny, and ny, respectively, and that the matrices are full, Determine the number
of additions, multiplications, and divisions required for one iteration.

9.8 Consider the control algorithm of (9.2). Write a code that implements the control
algorithm in your favorite high-level language. Compile the code, determine how
much memory space the code occupies, and determine the execution time. Try to
find a good simple formula for determining the execution time.

9.9 Repeat Problem 9.8 but now use a subroutine to perform a scalar product. Discuss
how computing time and storage requirements are influenced by the restructuring
of the program.

9,10 Consider the control algorithm with rejection of cutliers given by Egs. (9.1) and
(9.4). Make an estimate of the number of computations required for one iteration.
(Hint: A matrix multiplication of an nxp matrix by a pxr matrix requires N = npr
operations, where an operation corresponds to one addition and one multiplication.
Solution of the equation

Ax=H
where A is nxn and B i9 n x p, requires approximately

1.‘] 12
N-gn +§np

operations, where the major part of the caleulations is the triangulation of the
matrix A.)
9.11 Consider a discrete-time system characterized hy the pulse-transfer function

1
(z-a)

H(z) =
Calculate the sensitivity of the poles with respect to the parameters using Eq. (8.18)

in each case.

(a) The filter is in companion form.
{(b) The filter is in Jordan canonical form,

9.12 Make a flow chart similar to Fig. 9.20 for a system with loops having sampling
periods of 1, 2, 5, and 60 s.

9.13 Consider a system with the transfer function

1
zﬂ +alzﬂ—1 +...+an

H(z) =

Assume that the system is realized with fixed-point arithmetic. Let the roundoff be

described as normal rounding to integers. Show that the condition for a steady-stete
error £ with no inputs is given by

k+$iqmﬁ)=o
i=1
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Furthermore, show that the condition for a limit-cycle oscillation with a period of
two sampling periods is

B+ i(—l)'Q(a,k) =0

9.14 Consider the following atgorithm for a Pl-controller:

Adin uc ¥y

e:=uc-y

vi=kse+i
u:=nax(nin{512,v) ,0)
Daout u
ir=utkshre/ti

Assume that the A-D and D-A converters have a regolution of 8 bits and that all
caleulations are made using integers. What is the word length required to represent
variable i if overflow should be avoided? Use k = 50 and (a) h = 1, t1 = 300 or
(b) b = 0.01, ti = 1500.

Discuss how the resuit is influenced by the sampling period.

9.15 Three different algorithms for a Pl-controiler are listed. Use the linear model for
roundoff to analyze the sensitivity of the algorithms to quantization in A-D and D-A
converters and roundoff in the multiplications. Assume fixed-point calculations,
Algo, discuss the word lengths necessary for the algorithms.

Algorithm 1:
ai=uc-y

u:=k* (e+hei/ti)
i:=i+exh

Algorithm 2:

8 =uc-y
=l (a+i)
i;=ite+h/ti

Algorithm 3:

a:=uc-y
u;=itk*e
i:=i+k*h*af1i

8.18 Consider a dynamic system with the pulse-transfer function

buz’* + b;z”'l +--+ bﬁ

Hiz} =
@) gl

There are many ways to introduce the statas in a state-space representation. Show
that the system has the following state descriptions:
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{a)
(¢, 10 - 0 (b -bpay )
—dz 01--0 bg-—buﬂg
x(k+1) = R (R : ulk)
—&n_1 0 0 - 1 bn—l_bﬂan—l
( -a, 00 - 0] | by - b, )
yy={100 - 0]x(k]+bnu(k}
(b)
(-a; 1 0 .. 0) by
-az 01 -~ 0 by
el =0 xE | | uk+)
—Gn 0 0 1 bn—]_
L0 00 - 0 L b, )
y(k) = [1 00 - o]x(k)
(c}
[ ~@y —ds - =ln_] —ay E:'l b2 bJ'1—1 bn"
1 0 0 0 0 0 0 0
0 0 - 1 0 0 0 - 0 9
1) = k
S el o | **
0 6 0 1 0 0
.0 0 - 0 ¢ 0 0 - 1 o)
by
0
| B+l
+ | ulk +1)
0
0

k) = [1 00 - 0 o]x(k)

Assume that H(z) represents a controller, Discuss the advantages and disad-
vantages with the different realizations of the controlier,
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9.17 A digital contreller with the sampling period A = (.2 has the pulse-transfer function

Hiz) = 6.252° — 1152 +5.5
ST TR 152105

The controller is used to control a process with the transfer function

Discuss the effect of roundoff and quantization noise when different realizations
are used to implement the controller on a computer having fixed word length,

9.18 Show that the continued-fraction representation (9.20) can be obtained recursively
as
1
N S
o, + H el (Z ]

H(z)

Bz +

where H,,1(z) = 0.

9.19 Determine the §-operator representations of the following continnous-time transfer
functions:

(a) /(s + 1)
(h) K/(1 + Ts}
{¢) /(s +a)
Compute the poles and the zeros and investigate what happens when i — 0.
9.20 Let H(z) be the pulse-transfer function obtained from step-invariant sampling of

the rational transfer function Gis). Define

H({S} = H(1 + 8h)
Prove that

m H{§) = G(&)

Show that this is true also for ramp-invariant and impulse-invariant sampling.

9.11 Notes and References

Design of filters is covered in standard texts on networks. Kua (1980) and
Williams (1981) are good sources. Useful practical advice is also found in the
handbooks published by manufacturers of operational amplifiers. Such hand-
books are also useful for information about A-D and D-A converters. Make sure

to get a new version of whatever handbook you use because the technology
changes rapidly.
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The problems associated with windup of PID-controllers is discussed in
trade journals for the process industry. The general approach given in Sec. 9.4
was introduced in earlier editions of this book, see Astrém and Hagglund (1995).
The generalized form in Fig. 9.9 is described in Ronnbéck, Walgama, and Stern-
by (1992). Other references on antireset windup are Hanus (1988} and Grabe
and Ahlén (1996). Possibilities for error detection and rejection of outliers are
discussed in depth in Willsky (1979), which also contains many references.

A comprehensive text on the effects of quantization and roundoff in dig-
ital control systems is Moroney (1983), which contains many references. The
following papers are classics in the area, Bertram (1958), Slaughter (1984),
Enowles and Edwards {1965), Curry (1967), and Rink and Chong (1979). De-
scribing function analysis is discussed in Atherton (1975, 1982). Limit cycles
due to roundoff can be determined vsing the theory of relay oscillations. This is
described in Tsypkin (1984).

A review of digital signal processors is given in Lee {1988). Design of
special-purpose signal processors in VLSI is described in Catthoor et al. {1988}
and in a series of books titled VLSI Signal Processing I, II, and III, published by
IEEE. The books are based on presentations given at IEEE ASSIP workshops.
The 1988 volume is Brown and Campbell (1948). A readable account of the IEEE
standard and its impact on different high-level languages is found in Fateman
(1982). Problems associated with quantization, roundoff, and overflow are also
discussed in the signal-processing literature. Overviews are found in Oppenheim
and Schafer (1989). Specialized issues are discussed in Jackson (1970a, 1970b,
1979}, Parker and Hess (1971}, Willson (1972a, 1972b), and Buttner (1977).

There are many standard texts on numerical analysis, Bjork, Dahlqvist,
and Andersson (1974) and Golub and Van Loan (1989) are good sources. Accu-
racy aspects in connection with control are found, for example, in Williamson
{1991) and Gevers and Li (1993).

Coneurrent programming is discussed in Brinch-Hansen (1973), Barnes
(1982}, Burns and Wellings {1990}, and Burns and Davies (1993). Much useful
information 1s also given in material from vendors of computer-control systems.
The §-operator is an old idea. See Tschauner {1963a, 1963h). The §-operator has
been given much attention because of its numerical properties. See Gawthrop
(1980), Middleton and Goodwin (1987, 1989), and Gevers and Li (1993).
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Disturbance Models

10.1 Introduction

The presence of disturbances is one of the main reasons for using control. With-
out disturbances there is no need for feedback control. The character of the
disturbances imposes fundamental limitations on the performance of a control
system. Measurement noise in a servo system limits the achievabte bandwidth
of the closed-loop system. The nature of the disturbances determines the quality
of regulation in a process-control system. Disturbances also convey important
information about the properties of the system. By investigating the character-
istics of the disturbances it is thus possible to detect the status of the process,
including beginning process malfunctions. We have already taken disturbances
into account in the pole-placement design in Chapters 4 and 5. In this chapter
we will give a systematic treatment of disturbances.

Different ways to describe disturbances and to analyze their effect on a
system are discussed in this chapter. An overview of different ways to elimi-
nate disturbances is first given. This includes use of feedback, feedforward, and
prediction. The discussion gives a reason for the different ways of describing
disturbances.

The classic disturbance models, impulse, step, ramp, and sinusoid, were
discussed in Sec. 3.5. All these disturbances can be thought of as generated by
linear systems with suitable initial conditions. The problem of analyzing the
effect of disturbances on a linear system can then be reduced to an initial-value
problem, From the input-output point of view, a disturbanee may also be mod-
eled as an impulse response of a linear filter. The disturbance analysis is then
reduced to a response calculation. This is particularly useful for disturbances
that are steps or sinusoids. In all cases the disturbance analysis can be done
with the tools developed in Chapters 3 to 5, and 8. When the response of a
system to a specific disturbance needs to be known, it is often necessary to re-
sort to simulation. This is easily done with a simulation program because the
disturbance analysis is again reduced to an initial-value problem.

370
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When disturbances can be neither eliminated at the source nor measured,
it is necessary to resort to prediction. To do so it is necessary to have models of
disturbances that lead to a reasonable formulation of a prediction problem, For
this purpose the concept of piecewise deterministic disturbances is introduced
in Sec. 10.3.

Ancther way to arrive at a prediction problem is to describe disturbances as
random processes. This formulation is presented m See. 10.4. A simple version
of the famous Wiener-Kolmogorov-Kalman prediction theory is also presented.
As seen in Chapters 11 and 12, the prediction error expresses a fundamental
limitation on regulation performance. Continuous-time stochastic processes are
discussed briefly in Sec. 10.5. Such models are required because of the desire to
formulate models and specifications in continuous time, Sampling of continuous-
time stochastic-state models is treated in Sec. 10.6.

10.2 Reduction of Effects of Disturbances

Before going into details of models for disturbances, it is useful to discuss how
their effects on a system can be reduced. Disturbances may be reduced at their
source, The effects of disturbances can also be reduced by local feedback or by
feedforward from measurable disturbances. Prediction may also be used to es-
timate unmeasurable disturbances. The predictable part of the disturbance can
then be reduced by feedforward. These different approaches will be discussed
in more detail.

Reduction at the Source

The most obvious way to reduce the effects of disturbances is to attempt to
reduce the source of the disturbances. This approach is closely related to process
design. The following are typical examples:

Reduce variations in composition by a tank with efficient mixing,
Reduce friction forces in a servo by using better bearings.

Move a sensor to a position where there are smaller disturbances.
Modify sensor electronics so that less noise is obtained.

Replace a sensor with another having less noise.

Change the sampling procedure by spacing the samples better in time or
space to obtain a better representation of the characteristics of the process.

Tbese are just a few examples, but it is very important to keep these possibilities

in mind. Compare with the integrated process and control design discussed in
Chapter 6.



312 Disturbance Models Chap. 10

Pracess
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Disturhance
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Local
feedback

Figure 10.1 Reduction of disturbances by local feedback. The disturbance
should enter the system between points A and B. The dynamics between A
and B should be such that a high gain can be used in the loop.

Reduction by Local Feedback

I the disturbances cannot be reduced at the source, an attempt can be made
to reduce them by local feedback. The generic principle of this approach is
illustrated in Fig. 10.1. For this approach it is necessary that the disturbances
enter the system locally in a well-defined way. It is necessary to have access to a
measured variable that is influenced by the disturbance and to have access to a
control variable that enters the system in the neighhorhood of the disturbance,
The effect of the disturbance can then be reduced by using local feedback. The
dynamics relating the measured variable to the control variable should be such
that a high-gain control loop can be used. This use of feedback is often very
simple and effective because it is not necessary to have detailed information
about the characteristics of the process, provided that a high gain can be used
in the loop. However, an extra feedback loop is required. The following are
typical examples of local feedback:

Reduce variations in supply pressure to valves, instruments, and regula-
tors by introducing a pressure regulator.

Reduce variations in temperature contro! by stabilizing the supply voltage.

Reduction by Feedforward

Measurable disturbances can also be reduced by feedforward. The generic prin-
ciple is illustrated in Fig. 6.3. The disturbance is measured, and a control signal
that attempts to counteract the disturbance is generated and applied to the pro-
cess. Feedforward is particularly useful for disturbances generated by changes
in the command or reference signals or for cascaded. processes when distur-
bances downstream are generated hy variations in processes upstream.
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Reduction by Prediction

Reduction by prediction is an extension of the feedforward principle that may be
used when the disturbance cannot be measured. The principle is very simple; the
disturbance is predicted using measurable signals, and the feedforward signal is
generated from the prediction. It is important to observe that it is not necessary
to predict the disturbance itself; it is sufficient to model a signal that represents
the effect of the disturbance on the important process variables.

Goals for Modeling

To evaluate the needs for reduction of disturbances it is necessary to be able to
estimate the influences of disturbances on important system variables, which is
basically a problem of analyzing the response of a system to a given input. The
models used for disturbances can be fairly simple, as long as they represent the
major characteristics of true disturbances. Similarly simple models can also be
used to estimate possible improvements obtained by local feedback and feedfor-
ward. More accurate models of disturbances are needed if prediction is applied.
In this case the performance obtained depends critically on the character of
the disturbances. There are also some fundamental difficulties in formulating
disturbance models that give a sensible prediction problem.

10.3 Piecewise Deterministic Disturbances

The classical disturbance models discussed in Sec. 3.5 are useful for analyz-
ing the effects of disturbances on a system. Possible improvements by using
local feedback and feedforward can also be investigated using these models.
The disturbance models discussed are, however, not suitable for investigating
disturbance reduction by prediction. Fundamentally different models are re-
quired to formulate a sensible prediction problem. This leads to introduction of
the piecewise deterministic disturbances. Alternative models, which also permit
formulation of a prediction problem, are discussed in Secs. 10.4 and 10.5.

A Fundamental Problem

It is not trivial to consiruct models for disturbances that permit a sensible
formulation of a prediction problem.

Example 10.1 Predictor for a step signal
To predict the future value of a step signal, it seems natural to use the current
value of the signal. For discrete-time gignals, the predictor then becomes
§{(h + m)h | Rh) = y(kh)

The notation #(¢ | s) means the prediction of y{t) based on data available at time
s. This predictor has a prediction error at times ¢t = 0,4, 24,...,(m — 1)k, that is,
m steps after the step change in y. It then predicts the signal without error. =
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Example 10.2 Predictor for a ramp signal

A predictor for a ramp can be constructed by calculating the slope from the past
and the current ohservations and making a linear extrapolation, which can be
expressed by the formula

F((k + m)h | kh)

H

y(ER) + m(y(kh] ~ y(kh - h})
{1+ miy(kh) — my(kk - k)

This predictor has an initial error for { = &, 2h, ..., mh. After that it predicts
the signal without error. [ |

The Basic ldea

These examples indicate that the prediction error will be zero except at a few
points. This observation is not in close agreement with the practical experience
that disturbances are hard to predict. The explanation is that the step and the
ramp are not good models for prediction problems. Analytic signals are useless
because an analytic function i3 uniquely given by its values in an arbitrarily
short interval. The step and the ramp are analytic everywhere exeept at the
origin.

One possibility of constructing signals that are less regular is to introduce
more points of irregularity. Thus signals can be introduced that are generated by
linear dynamic systems with irregular inputs. Instead of having a pulse at the
origin, inputs that are different from zero at several points can be introduced. An
interesting ciass of signals is obtained if the pulses are assumed to be isolated
and spread by at least n samples, where n is the order of the system. It is
assumed that it is not known a priori when the pulses occur. The amplitudes
of the pulses are also unknown. Such signals are called piecewise deterministic
signals. The name comes because the signals are deterministic except at isolated
points, where they change in an unpredictable way. An example of a piecewise
deterministic signal is shown in Fig. 10.2.

State-Space Models
Let a signal be generated by the dynamic system

x(k+ 1) = dx(k) + v(k)

3(#) = Cxi) o4
It is assumed that the output y is a scalar and that the system is completely
observable. The input v is assumed to be zeru except at isolated pomnts. If the
state of the system is known, it is straightforward to predict the state over
any interval where the input is zero. However, when there is a pulse, the state
can change in an arbitrary manner, but after a pulse there will always he an
interval where the input is zero. Because the system is observable, the process
state can then be calculated. Exact predictions can tben be given until a new
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Figure 10.2 Piecewise constant and piecewise linear gignalz and their

m-step predictions when m = 3.

pulse occurs. This argument can be converted into mathematics in the following

way. From the derivation of the condition for observabilityin Sec. 3.4, it is found
that the state is given by

T
x(k—n+1):W;l[y(k-n+1) y{k)] (10.2)

where W, is the observability matrix given by Eq. (3.22). The following predictor
gives the state m steps ahead:

T
Hk+mik) = dmr-lwl [y(k— n+l) - y(k)] (10.3)

The predictor for the signal is thus obtained from a linear combination of n
values of the measured signal. The predictor can be expressed as

(ke +m k) = P(q7)yik)

where P is a polynomia) of degree n - 1.
The predictor can also be represented by the recursive equation

ik | k) = mi‘:{k~lik—1)+K(y(kJ~CtD£[k—l|k—1))

(10.4)
Be+m|k) = Ok | k)

where the matrix X is chosen so that all eigenvalues of the matrix (I - KC)®
are equal to zero.
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Simple calculations for an integrator and a double integrator give the same
predictors as in Examples 10.1 and 10.2. This is a consequence of the fact that
the important characteristics of the disturbances are captured by the dynamics
of the systems that generate the disturbances. These dynamics determine the
predictors uniquely; it does not matter if the systems are driven by a single

pulse or by several pulses. The properties of the predictors are iliustrated in
Fig. 10.2.

Input-Output Models

Because the predictor for a piecewise deterministic signal becomes a polynomial,
it seems natural to obtain it directly by polynomial calculations. For this purpose
it is assumed that the signal is generated by the dynamic system

(k) = 1 wih

where it is assumed that deg C = deg A and that the input w is a signal that

is zero except at isolated points, which are spaced more than deg A + m. Define
F(z) and G{z) through the identity

™ 10(z) = A(2)F(2) + G(2)

It can be shown that the m-step predictor for y is given by the difference equa-
tion

Clgdytk + m [ k) = gG{q)y(k)

A reference to the proof of this is given in Sec. 10.9.

Notice that the signals discussed in this section are similar to the classical
disturbance signals discussed in Sec. 3.5 in the sense that they are characterized
by dynamic systems. The only difference between the signals is that the inputs
to the systems are different. This idea is extended in the next section.

10.4 Stochastic Models of Disturbances

It 18 natural to use stochastic, or random, concepts to describe disturbances.
By such an approach it is possible to descrihe a wide class of disturbances,
which permits good formulation of prediction problems. The theory of random
processes and the prediction theory were in fact developed under close interac-
tion. The general theory of stochastic processes is quite complex. For computer-
control theory, it is fortunately often sufficient to work with a special case of
the general theory, which requires much less sophistication. This theory is de-
veloped in this section. First, some elements of the theory of random processes
are given, and then the notion of discrete-time white noise is discussed. Dis-
turbances are then modeled as outputs of dynamic systems with white-noise
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inputs. The disturbance models are thus similar to the models discussed in the
previous sections; the only difference is the character of the input signals to the
systems. Tools for analyzing the properties of the models are also given.

Stochastic Processes

The concept of a stochastic process is complex. It took brilliant researchers
hundreds of years to find the right ideas. The concept matured in work done by
the mathematician Kolmogorov around 1930. A simple presentation of the ideas
is given here. Interested readers are strongly urged to consult the references.

A stochastic process (random process, random function) can be regarded
as a family of stochastic variables {x(¢),t € T}. The stochastic variables are
indexed with the parameter ¢, which belongs to the set T, called the index
set. In stochastic-control theory, the variable ¢ is interpreted as time. The set
T is then the real variables. When considering sampled-data systems, as in
this book, the set 7' is the sampling instants, thatis, 7' = {... ,-&,0,A,... } or
T =1{.,-1,0,1,...} when the sampling period is chosen as the time unit. We
then have a stochastic process.

A random process may be considered as a function x(¢, @} of two variables.
For fixed @ = oy the function x(-, @) is an ordinary time function called a
realization. For fixed ¢ = ¢, the function x(¢g, - ) 15 a random variable. A random
process can thus be viewed as generated from a random-signal generator. The
argument @ is often suppressed.

Completely deterministic stochastic processes.  One possibility of ob-
taining a random process is to pick the initial conditions of an ordinary dif-
ferential equation as a random variable and to generate the time functions by
solving the differential equations. These types of random processes are, how-
ever, not very interesting because they do not exhibit enough randomness. This

is clearly seen by considering the stochastic process generated by an integrator
with random initial conditions. Because the output of the integrator is constant
it follows that

x(t,0)—x(t- h,w) =0

for all ¢,h, and ©. A stochastic process with this property is called a completely
deterministic stochastic process, because its future values can be predicted ex-
actly from its past.

In general it will be said that a random process x(¢, ) is called completely
deterministic if

E(x(t,co)) =0 for almost all w

where 7 is an arbitrary linear operator that is not identically zero. This means
that completely deterministic random processes can be predicted exactly with

linear predictors for almost all &. (Almost all ® means all w except for possibly
a set of points with zero measure.)
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- o)

F(é,ﬁ])

x( wg)
x(, )
/""\.....ﬁ\ {0
N i

Figure 10.3 A stochastic process and a finite-dimensional distribution
function.

The completely deterministic random processes are closely related to the
classical disturbance signals discussed in Sec. 3.5. These signals will be com-
pletely deterministic random processes if the initial conditions to the dynamic
systems are chosen as random processes. The completely deterministic processes
are normally excluded because they are too regular to be of interest.

Concepts. Some important eoncepts for random processes will now be

given, The values of a random process at » distinct times are n-dimensional
random variables. The function

F{él,... ,\fn;f],“. ,tﬂ) = P{x(tl} < §1,... ,Ifﬂn) < (f,:}

where P denotes probabilities, is called the finite-dimensional distribution fune-
tion of the random process. An illustration is given in Fig. 10.3. A randem pro-
cess 1s called Gaussian, or normel, if all finite-dimensional distributions are
normal. The mean-value function of a random process x is defined by

nlt) = Batt) = T rar(n

The mean-value function is an ordinary time function. Higher moments are
defined similarly. The covariance function of a process is defined by

Fec{s,t) = cov (x(s],x[r))
- ((x65) - (o)) (st -m))

= f/ (51 - m(s)) (52 - m(t))TdF(gl_fg;sq £)

A Gaussian random process is completely characterized by its mean-value func-
tion and its covariance function. The cross-covariance function

rey(s.8) = cov (x[s}, y(z))
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of two stochastic processes is defined similarly.

A stechastic process is called stationary if the finite-dimensional distribu-
tion of x(#1}, x(ts},... ,x(t,) is 1dentical to the distribution of x{t; + 7). x{f2 +
T),...,x(t, + 1) for all t,n,t,...,t,. The process is called weakly stationary if
the first two moments of the distributions are the same for all 7. The mean-
value function of a {(weakly) stationary process is constant. The cross-covariance
function of weakly stationary processes is a function of the difference s — ¢ of
the arguments only. With some abuse of function notation, write

Fev(8,8) = rey(s - 2

The cross-covariance function of (weakly) stationary processes is a function of
one argument only. Hence

roT) = cov(x[t + r].y(t))
When x is scalar the function
rT) = Pt} = cov (x(t + r),x{r])

called the qutocovariance function,

The cross-spectral density of {(weakly) stationary processes is the Fourier
transform of its covariance function. Henee,

1 =
Pxy(@) = o Z ey (RJe™ 4 (10.5)
and
oo (B) = [ g, (o) dw (10.6)

[t is also customary to refer to ¢,. and ¢,, as the autospectral density and

the cross-spectral density, respectively. The autospectral density is also called
spectral density for simplicity.

Interpretation of covariances and spectra.  Stationary Gaussian pro-
cesses are completely characterized by their mean-value functions and their
covariance functions. In applications, it is useful to have a good intuitive un-

derstanding of how the properties of a stochastic process are reflected hy these
functions.

The mean-value function is almost self-explanatory. The value r,(0) of the
covariance function at the origin is the variance of the process. It tells how large
the fluctuations of the process are. The standard deviation of the variations is
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equal to the square root of r.(0). If the covariance function is normalized by
r¢{0), the correlation function, which is defined by

L

ra(T

:(0)

is obtained. It follows from Schwartz’s inequality that

P.t(r) =

~

ra()] < re(0)

The correlation function is therefore less than one in magnitude. The value
P=(t) gives the correlation between values of the process with a spacing 7. Val-
ues close to one mean that there are strong correlations, zero values indicate no
correlation, and negative values indicate negative correlation. An investigation
of the shape of the correlation function thus indicates the temporal interdepen-
dencies of the process.

It 1s very useful to study realizations of stochastic processes and their
covariance functions to develop insight into their relationships. Some examples
are shown in Fig. 10.4. All processes have unit variance.

The spectral density has a good physical interpretation. The integral

25}(@)@

represents the power of the signal in the frequency band (&), ;). The area
under the spectral-density curve thus represents the signal power in a certain
frequency band. The total area under the curve is proportional to the variance
of the signal. In practical work it is useful to develop a good understanding of
how signal properties are related to the spectrum (compare with Fig. 10.4}.

Notice that the mean-value function, the covariance function, and the spec-
tral density are characterized by the first two moments of the distribution only.
Signals whose realizations are very different may thus have the same first mo-
ments. The random telegraph wave that switches between the values 0 and 1
thus has the same spectrum as the noise from a simple RC circuit.

Discrete-Time White Noisa

A simple and useful randem process is now introduced. Let time be the set
of integers. Consider a stationary discrete-time stochastic process x such that
x{t) and x(s) are independent if ¢+ # s. The stochastic process can thus be
considered as a sequence {x(¢,@), t = ..., -1, 0, 1, ...} of independent, equally
distributed random variables. The covariance function is given hy
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Figure 104 Covariance functions, spectral densities, and sample functions
for some stationary random processes. All processes have unit variance,

A process with this covariance function is called discrete-time white noise. It
follows from (10.5) that the spectral density is given by

T on

¢(w)

The spectral density is thus constant for all frequencies. The analogy with
the spectral properiies of white light explains the name given to the process.
White noise plays an important role in stochastic control theory. All stochas-
tic processes that are needed will be generated simply by filtering white noise.
This also implies that only a white-noise generator is needed when simulating

stochastic processes. White noise is thus the equivalent of pulses for determin-
15tic systems.
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ARMA Processes
Large classes of stochastic processes can be generated by driving linear systems
with white noise. Let {e(k), & = ..., -1, 0, 1,...} be discrete-time white noise.

The process generated by
y(k) = e(k)+ bietk — D)+ - + bre(k - n)
is called a moving average, or an MA process. The process generated by
yk) + iyl = 1)+ + any(k - n) = efk)
18 called an autoregression, or an AR process. The process
yiR)+ayk-=1)+ - +a,y(k—n)=e(k)+ belh~1)+--- + bpe(k—n)
18 called an ARMA process. The process

yR)+eyk-1)+ - +ay(k-n) = bulk—d)+- -
+thuulk—d-m)+elk)+cielh-1)+ - +cpelk-n)

is called an ARMAX process, that is, an ARMA process with an exogenous signal.

State-Space Models

The concept of state has its roots in cause-and-effect relationships in classical
mechanics. The motion of a system of particles is uniquely determined for all fu-
ture times by the present positions and moments of the particles and the future
forces. How the present positions and moments were achieved is not important.
The state is an abstraction of this property; it is the minimal information about
the history of a system required to predict its future motion.

For stochastic systems, it cannot be required that the future motion be
determined exactly. A natural extension of the notion of state for stochastic sys-
tems is t0 require that the probability distribution of future states be uniquely
given by the current state. Stochastic processes with this property are called
Markov processes, Markov processes are thus the stochastic equivalents of state-
space models. They are formally defined as follows.

DEFINITION 10.1 MARKOV PROCESS  Let ¢, and ¢ be elements of the index

set T suchthat t) < &3 < ... < 8, < £ A stochastic process {x(t),f € T'} is called
a Markov process if

Pix(t) < ¢ [2{tr),... . xlea) } = P{x(2) < & | x(tn)}

where P{- x(t1},... ,x(t,)} denotes the conditional probability given (1)), ...,
x(tn). N
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A Markov process is completely determined by the initial probability distribu-
tion

F(¢;t) = P{x(to) s &}

and the transition probability distribution

F(Eit]Seis) = Pix(t) < 6| xls) = )

All finite-dimensional distributions can then be generated from these distribu-
tions using the multiplication rule for conditional probabilities.

The Markov process is the natural concept to use when extending the
notion of state model to the stochastic case.

Linear stochastic-difference equations. Consider a discrete-time sys-
tem where the sampling period is chosen as the time unit. Let the state at time
k be given by x(k). The probability distribution of the state at time %2 + 1 is
then a function of x(%). If the mean value is linear in x(k) and the distribution
around the mean is independent of x(%}, then x(% + 1) can be represented as

x(k + 1) = Dx(k) + (k) (10.7)

where v(k) is a random variable with zerc mean and covariance R; that is inde-
pendent of x(£) and independent of all past values of x. This implies that v(k)
also is independent of all past v’s. The sequence {v(k).k=...,-1,0,1,...} is
a sequence of independent equally distributed random variables. The stochas-
tic process {v(k)} is thus discrete-time white noise. Equation (10.7) is called a
linear stochastic-difference equation. To define the random process {x(%)} com-

pletely, it is necessary fo specify the initial conditions. It is assumed that initial
state has the mean my, and the covariance matrix K.

Properties of linear stochastic-difference equations. The character of
the random process defined by the linear stochastic-differenee equation of (10.7)

will now be investigated and the first and second moments of the process will
be calculated. To obtain the mean-value function

m(k) = Ex(k)

simply take the mean values of both sides of {10.7). Because v has zero mean,
the following difference equation is obtained:

m(k+ 1) = Om(k) (10.8)
The initial condition is

m(0) = my
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The mean value will thus propagate in the same way as the unperturbed system.
To calculate the covariance function, we introduce

P(k) = cav(:c[k),x(k)): Ei()iT (k)

where
t=x—m

It follows from Eqs. (10.7) and (10.8) that % satisfies Eq. (10.7) with the mean of
the initial condition equal zero. The mean value can thus be treated separately.
To calculate the covariance, form the expression

i+ DFT(k+ 1) = (03(8) + o(k)) (k) + o))
= ®F(R)ET(R)DT + D)7 (k) + v(R)ET (R)DT + v(R)T (k)
Taking mean values gives
P(k+1) = ®P(R)®T+ R,

because v(k) and &(k) are independent. The initial conditions are

The recursive equation for P tells how the covariance propagates.
To calculate the covariance function of the state, observe that

(R + DT (R) = (tbi(k) + u(k) )& (k)
Because v(k) and #(k) are independent and v(k) has zero mean,
rcl(k + 1B) = cov(x(k + 1),x(k)) - ®P(k)
Repeating this discussion,
ralk+ T,k =®PR) 120

The covariance function is thus obtained by propagating the variance function

through a system with the dynamics given by ¢. The results obtained are so
important that they deserve to be summarized.

THEOREM 10.1 FILTERED DISCRETE-TIME WHITE NOISE  Consider a random
process defined by the linear stochastic-difference equation (10.7), where {v(k)}
is a white-noise process with zero mean and covariance R;. Let the initial state

have mean mg and covariance Ry. The mean-value function of the process is
then given by

m{k+1) = dm{k) m(0) = my (10.9)



Sec. 10.4 Stochastic Models of Disturbances 385
and the covariance function by

i+, R)=d'PR) 120 (10.10)
where P(k) = cov(x(k),x{k)) is given by

P(k+1)=0P(k)®T+R, P(0)=R, (10.11)

Hemark 1. If therandom variables are Gaussian, then the stochastic pro-
cess 1s uniquely characterized by its mean-value function m and its covariance
function r.

Remark 2. If the system has an output y = Cx, then the mean-value
function of y 1s given by
my=Cm
and its covariance is given by
ry = CryC T
The cross-covariance between y and x is given by

Fye = Cr

Remark 3. Notice that the steady-state solution of (10.11) for the matrix

P is closely related to Eq. (3.9), which was used to caleulate Lyapunov functions
in Chapter 3,

Remark 4 The different terms of (10.11) have good physical interpre-
tations. The covariance P may represent the uncertainty in the state, the term
@P (k)T tells how the uncertainty at time & propagates due to the system

dynamics, and the term R, descrihes the increase of uncertainty due to the
disturbance v.

Example 10.3 A first order system
Consider the first-order system

x(k+ 1) = ax(k) +v(k)
where v is a sequence of uncorrelated random variables with zero mean values
and covariances ry. Let the state at time k,.have the mean my and the covariance

ro. It follows from (10.9} that the mean value

m(k) = Ex(k)
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i8 given by
mik+1) = am(k) mlky) = my
Hence
mik) = e*Pom,
Equation (10.11) gives
P(k+1) =a®P(k)+r1  Plhko) = 1o
Solving this difference equation we get

1 — gtk

P(k) = ¢ b+~

4
Furthermore,

ril k) =a PRy Ik
and

rdlLky=a*'P() l<k
If la| < 1 and ky = —o0, it follows that

m(k) - 0

r
Pk - Y
rall

1- gt

rek + T,k) -

The process then becomes stationary because m is constant and the covariance
function is a function of 7 enly. If an output

(k) = x(k) + e{k)

is introduced, where e is a sequence of uncorrelated random variables with zero
mean and covariance ry, it follows that the covariance function of y becarnes

"
r+ I—a T1=0
ry(t) = ryal
—_— Tt £0
1-g? #

The spectral density is obtained from (10.5}, Hence
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Figure 10.5 Generation of disturbances by driving dynamic systems with
white noise.

Input-Output Models

For additional insight an input-output deseription of signals generated by linear
difference equations is given. Notice that the signal x given by (10.7) can be
described as the output of a linear dynamic system driven by white noise. From
this viewpoint it is then natural to investigate how the properties of stochastic
processes change when they are filtered by dynamic systems.

Analysis. Consider the system shown in Fig. 10.5. For simphcity it is
assumed that the sampling period is chosen as the time unit. Assume that
the input u is a stochastic process with a given mean-value function m, and a
given covariance function r,. Let the pulse response of the system be {h(k),k =
0,1,...}. Notice that h has also been used to denote the sampling period. 1t is,

however, clear from the context what 4 should be. The input-output relationship
is

k oo
y(B) = Y h(k-Du(l) =Y h(n)u(k-n) (10.12)
[= o0 n=0

Taking mean values

my(k) = Ey(k) =E>_ h(n)u(k - n)
n=0

The mean value of the output is thus obtained by sending the mean value of
the input through the system.

To determine the covariance, first observe that a subtraction of (10.13)
from (10.12) gives

m

yk) = my (k) = Y hln) ulk - ) = my (k- )

n=0

The difference between the input signal and its mean value thus propagates
through the system in the same way as the input signal itself. When calcolating
the covariance, it can be assumed that the mean values are zero. This simplifies
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the writing. The definition of the covariance function gives

o T
=E) h(n)u(k+7 - n) (Zh Ju(le — z))

n= i=0
= iih(n)E(ﬁ[k+ T —n)uT(k_ l))hT(l] (10.14)
n=0 (=0
= i ad h(n)ru(f +1 - n)hT([)
n=Q[=0

A similar calculation gives the following formula for the cross-covariance of the
input and the output:

ryve(t) = By(k + t)u” (k) = Eih(n]u{k+ r —n)ul(k)

r={
Zh(n ( (k+ 7 - n)ul(k) ) = ih(n)ru(r - n)
r=10

Notice that it has been assumed that all infinite sums exist and that the op-
erations of infinite summation and mathematical expectation have been freely
exchanged in these calculations. This must of course he justified; it is easy to
do in the sense of mean-square convergence, if it is assumed that the fourth
moment of the input signal is finite.

The relations expressed by Eqs. (10.14) and (10.15) can be expressed in

a simpler form if spectral densities are introduced. The definition of spectral
density in (10.5) gives

(10.15)

py(@) = pylw = oz Z ¢™"ry(n)

Introducing ry from (10.14) gives

1 o0 [+ VR v]
= 3 e NN h{k)ru(n+ L - k)RT()

n=-oc k=0i=0

_1
T2
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Introduce the pulse-transfer function H (2) of the system. This is related to the
impulse response k{k) by

= iz"‘h(k)
k=0

The equation for the spectral density can then be written as
¢y(@) = H{e}u(@)H (™)

Similarly,
Oyu(@) = Z e r 2”,;@ *”""‘Zh (Ryruln - &)
Z »zim)h Z e mwru(n (eiwwu({o)
k= ns-no

Main result.  To obtain the general result, the propagation of the mean
value through the system must also be investigated.

THEOREM 10.2 FILTERING OF STATIONARY PROCESSES  Consider a station-
ary discrete-time dynamic system with sampling period 1 and the pulse-transfer
function H. Let the input signal be a stationary stochastic process with mean
m,, and spectral density ¢,. If the system is stable, then the output is also a
stationary process with the mean

my = H(1)m, (10.16)
and the spectral density

$y(0) = H{e)pu{w}H (™) (10.17)
The cross-spectral density between the input and the output is given by

Oy = H(e®)gu{w) (10.18)

Remark 1. The result has a simple physical interpretation. The number
Hfe “”)] is the steady-state amplitude of the response of the system to a sine
wave with frequency @. The value of the spectral density of the output is then
the product of the power gain |H(¢*®) and the spectral density of the input
Pul®).

Remark 2. 1t follows from Eq. (10.18) that the cross-spectral density is
equal to the transfer function of the system if the input is white noige with unit
spectral density. This fact can be used to determine the pulse-transfer function
of a system.

The result is illustrated by an example.
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Example 10.4 Spectral density of a first order system

Consider the process x|%) in Example 10.3. From the input-output point of view,
the process can be thought of as generated by sending white noise through a filter
with the pulse-transfer function

1
H(z) = —
(2) = ~—
Because the spectral density of v(k) is
_n

it follows from (10.17) that the spectral density of x(k) is

$2(0) = H(®)H(e™) 2

T 1 ™

T o (e® ~ g)(e™'® — @) - 2r(1 + a® — 2acosw)

Because x(k) and (&) are independent the process
¥(k) = x{k) + e(k)

has the spectral density

¢.(w) = EIE (" & )

5 +
l+a?-2ac050

(Compare with the caleulation in Example 10.3.) [

Spectral Factorization

Theorem 10.2 gives the spectral density of a stochastic process obtained by fil-
tering another stochastic process. The spectral density of a signal obtained by
filtering white noise is obtained as a special case. The inverse problem is dis-
cussed pext. A linear system that gives an output with a given spectral density
when driven by white noise will be determined. This problem is important be-
cause it shows how a signal with a given spectral density can be generated by
filtering white noise. The solution to the problem will also tell how general the
model in (10.7) is. It follows from Theorem 10.2 that the random process gen-
erated from a linear system with a white-noise input has the spectral density
given by (10.17). If the system is finite-dimensional, & is then a rational func-
tion in exp{iw) and the speetral density ¢ will also be rational in exp{im) or
equivalently in cos . With a slight abuse of language, such a spectral density
18 called rational. Introducing
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the right-hand side of (10.17) can be written as
1 Tl
F(z) = EEH(Z)H (27"

If z; is a zero of H{z), then 2;} is a zero of H(2™!). The zeros of the function F
are thus symmetric with respect to the real axis and mirrored in the unit circle.
If the coefficients of the rational function H are real, the zeros of the function
F will also be symmetric with respect to the real axis. The same argument
holds for the poles of H. The poles and zeros of F will thus have the pattern
illustrated in Fig. 10.7.

It is now straightforward to find a function H that corresponds to a given
rational spectral density as follows: First, determine the poles p; and the zeros
z; of the function F associated with the spectral density. It follows from the
symmetry of the poles and zercs, which has just been established, that the
poles and zeros always appear in pairs such that

ZE; = 1
pipj =1

In each pair choose the pole or the zero that is less than or equal to one in

magnitude; then form the desired transfer function from the chosen poles and
Zeros as

[lz-p)  Al2)
Because the stochastic process is stationary, the chosen poles p, will all be

strictly less than one in magnitude, There may, however, be zeros that have
unit magnitude. The result is summarized as follows,

H(Z} - K H(z_zi] _ B(Z)

THEOREM 10.3 SPECTRAL FACTORIZATION THEOREM Given a spectral den-

sity ¢ (w), which is rational in cos @, there exists a linear system with the pulse-
transfer function

B(2)
H(z) = —= .
(2) a) {10.19)
such that the output ohtained when the system is driven by white noise is a
stationary random process with spectral density ¢. The polynomial A(z) has all
its zeros inside the unit disc. The polynomial B (z) has all its zeros inside the
unit disc or on the unit circle, .

FRemark 1. The spectral factorization theorem is very important. It im-
plies that all stationary random processes can be thought of as being generated
by stahle linear systems driven by white noise, that is, an ARMA process of a
special type. This means a considerahle simplification both in theory and prac-
tice. It is sufficient to understand how systems behave when excited hy white
notse. It is only necessary to be able to simulate white noise. All ather stationary
processes with rational spectral density can then be formed hy filtering.
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Remark 2. Because a continuous function can be approximated uni-
formly arbitrarily well on a compact interval with a rational function, it follows
that the models in (10.7) and (10.12) can give signals whose spectra are arbi-
trarily close to any continuous function. Notice, however, that there are models
with nonrational spectral densities. In turbulence theory, for instance, there are
spectral densities that decay as fractional powers of @ for large w.

An important consequence of the spectral factorization theorem is that for
systems with one output, it is always possible to represent the net effect of
all disturbances with one equivalent disturbance. This disturbance is obtained
by calculating the total spectral density of the output signal and applying the
spectral factorization theorem.

Remark 3, It is often assumed that the polynomial B (z) has all its zeros
inside the unit disc. This means that the inverse of the system H is stable. The
results are illustrated by two examples.

Example 10.5 Spectral factorization

Consider the process y(k} of Examples 10.3 and 10.4. This process has the spectral
density

1 "
#y(w) = 5 ( t (—5{——@)

_ 1 n+n{l+a®) -naiz+2)
T 2n (z-a){z' ! -a) 210

The denominator is already in factored form. Th factor the numerator, we obgerve
that it can be written as

ARz-8)" =B =r +rn{l+a®) -ra(z+2")
Identification of coefficients of equal powers of 2 gives

2 A1+ bY) = +1y(1 4 a?)

2t A% = ra

Elimination of 4 gives a second-order algebraic equation for 4. This equation has
the solution

ro+re(l+a?) - &/(r, +ry(l + a]z) (rl +ry(1 - a}ﬁ)

2ar;

b=

The other root is discarded hecause it is outside the unit disc. Furthernore, the
variable 4 is given by

At = -21- (rl +ry(1+a®) + \/(rl +ra(1 + ajﬂ) (r1 + (1 - a)ﬁ))
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Figure 10.6 The spectral density (10.20) as function of @, that is, when

z =%,

Example 10.6 Generation of a stochastic signal

Assume that we for simulation purposes want to generate a stochastic signal with
the spectral density

1 0312540125z +27Y)
T 2r 225—15(z+271) +05(2 + 2%

F(z) (10.20)

The spectrum is shown in Fig. 10.6. Factorization of F(z) gives the pole/zerc pat-
tern in Fig. 10.7 and the desired noise properties are obteined by filtering white
noise through the filter

0524025

Hiz) 22—z 405

Innovation's Representations

Theorem 10.3 has some conceptually important consequences. It follows from
the theorem that a process with rational spectral density can be represented as

]
y(ky= )" h{k—nrle(n) (10.21)

A==00

where e is discrete-time white noise and # is the impulse response that corre-
sponds te the pulse-transfer function (10.19}. The system has a stable inverse
if the polynomial B(z) has all its zeros inside the unit dise. This means that

]

e(k)=Y" g(k—n)y(n)

n=—c

where g is the impulse response, which corresponds to the stable pulse-transfer
function A(z)/B(z). It thus follows that the sequences y{k),y(k—1),... and
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Figure 10.7 Symmetry of the poles and zeros of the spectral-density fune-
tion (10.20).

e(k),e(k—1},... are equivalent in the sense that one sequence can be calculated
from the other.
Now consider

k1 &
yk+1)= Y h{k+1-nle(n)= Y h(k+1-n)e(n)+ h(O)e(k+ 1)
k k
=Y hE+1-n) Y glrn-Dy()+h(0elk+1)

{=-c

The variable y(k + 1) can be written as the sum of two terms: One term is a lin-
ear function of (&), y(k -1}, ..., and the other term is 2(0)e(k + 1). Thus e(k + 1)
can be interpreted as the part of y(k + 1) that contains rew information that
is not available in the past values y(&), y(k - 1),.... The stochastic process e(k)
is therefare called the innovvations of the process y(k) and the representation in
(10.21) is called the innovation’s representation of the process. This represen-
tation is important in connection with filtering and prediction problems. The
term

i

k
Y, hlk+1-n) 3 gln-Dy(0)

=g

is in fact the best mean-square prediction of y(k + 1) based on y(k),y(k - 1),....
This will be discussed in detail in Chapters 11 and 12.
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Example 10.7 Innovation's representation
Consider the process y(k} of Example 10.3. The process has the speetral density

by(@) = (ro+ it )
T Nt T 1 a? — Zacosw
It follows from Example 10.5 that the spectral density can be factored as

bfw) = & 20N 0)

" or {z—a)(z"!~a)

The process ¥ can thus be generated by sending white noise through a system with
the pulse-transfer function

Hiz) = z-b

The input-output relation of such a system can be written as

ylk + 1) = ay(k) + e(k + 1) - be(k)

where e(k) is white noise with variance A2, n

Calculation of Variances

The variance of a signal obtained by filtering white noise can be calculated from
the recursive equation of (10.11),if the model is given in state-space form. For a
system described by transfer functions it is possible to use the same equations,
if the model is first transformed to state-space form. It is naturally convenient
to have similar formulas when the system is given in input-output form. Such
formulas will now be given.

Consider a signal generated by

y(k) = g%g—; e(k) (10.22)

where ¢ is white noise with unit variance. It follows from Theorem 10.2 that
the spectral density of the signal y is given by

_ 1 B(z)B(z™)
YO A

where z = exp(iw). It also follows from Theorem 10.2 that the variance of the
signal y is given by the complex integral

By = [ b(e)do = i " p(w)e® de)

1 [Bi2)B(EY) dz
T i | ADARTY) z

(10.28)
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The evaluation of integrals of this form is closely related to Jury’s stability test
{(compare with Sec. 3.2). To evaluate the integral, the following tahle is formed:

ag ay SR / T U ¥ bo by o bper by

Gp  Qp-t - G1 Gy O Gn  Qp1 - @y Gy P

n-1 n-1 n-1 n-1 n-1 n-1

Gy = @y " - @y 0 1 bai

n-1 r-1 . . n-1 n-1 L n-1

G, 1 Gp.u ay Xp-1 a1 Gp.9 &g ﬁﬂ‘l

1 1 1 1

Gp @0 by b

1 1 1 1

al . 1 b Bo
where

and

-1 _ 1k k
b~ = i‘ﬁkakui

The left half of the table is the same as Jury’s stability test. The right half is
built up in the same way with the exception that the even rows are taken from
the left half of the table. The following theorem results.

THEOREM 10.4 VARIANCE CALCULATION The integral (10.23) is given by

1 o,
Iﬂz -_— bi i

Application of the theorem gives the following values of the integral for n = 1
and 2.

J (bg + b%)an - 2bgb101
1 =
¢ola? - a})
B Boaoﬁ_ — B1aoﬂl + Bz{a? - agel)

b = 2 B\ iy
ady [a,a 32)81 (ao ﬂ.z)ﬂl

where
By = b% + b2 + b2
B = z(bgbl + blbz)
By = 2bybs
g1 =y +an
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10.5 Continuous-Time Stochastic Processes

It may be useful to formulate models and specifications in continuous time
even if a computer is used to implement the control law. A brief account of
continuous-time stochastic processes is therefore given.

Definitions

Continuous-time stochastic processes can be defined in the same way as discrete-
time processes. The only difference 1s that the index set T is the set of real
variables instead of a discrete set. Covariance functions and stationary pro-
cesses are defined as for discrete-time processes using the finite-dimensional
distribution functions. A spectral density can also be introduced as the Fourier
transform of the covariance function. Equation (10.5) is then replaced by

1 /™
¢I}7(w) = -Z'E _lxe Mtr_ry(r) dt (10.24)
The inverse transform is given by
ray(f) = / e, (0) do (10.25)

which replaces (10.6). The spectral density has the same interpretation as for
discrete-time systems.

White Noise

White noise is defined as a stationary process witb constant spectral density. If

p(o) = 2

T on

it follows formally from (10.25) that the corresponding covariance is a delta
function, that is,

r(t) = rod(s)

Continuous-time white noise thus has the property that values of the signal at
different times are uncorreiated as for diserete-time white noise. Continuous-
time white noise has, however, infinite variance. This will cause some math-
ematical difficulties. Intuitively, continuous-time white noise is analogous to
delta functions in the theory of linear systems.

Some of the difficulties with continuous-time white noise can be avoided
hy intreducing a stochastic process that formally is the time integral
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of white neise e. The stochastic process w has zero mean value, Its increments
over disjoint intervals are uncorrelated. If the covariance funetion of e is

cov(e(t],e(s)) = rod(t - s8)

then the variances of the increments of w are given by

E(w(t) - w(s))2 = t—si-ro

The stochastic process {w(t).t € T'} is called a Wiener process if it also is Gaus-
sian. The Wiener process is a model for random walk. The infinitesimal incre-
ment

dw = w(t + dt) — w(t)
has the variance
E(dw]z = rodt

The increment dw thus has the magnitude +/ry df in the mean-square sense.
The number ry dt is called the incremental covarignce of the Wiener process.

State-Space Models

State models for continuous-time processes can be obtained by a formai gener-
alization of {10.7) to

dx

— = Ax +0

dt
where v is a vector whose elements are white-noise stochastic processes. Be-
cause v has infinite variance, it is customary to write the equation in terms of
differentials as

dx = Axdt +du (10.26)

where v is the integral of ¢. The signal v is thus assumed to have zero mean,
uncorrelated increments, and the variance

ccw(u(t},u(ﬂ) = Ryt (10.27)

It is also assumed that dv is uncorrelated with x. A precise meaning can be given
to (10.26) without any reference to white noise. This form is therefore cormmen
in mathematically oriented texts. The form is also useful as a reminder that dv
has a magnitude proportional to vdt.

Equation (10.26) is called a stochastic differential equation. To specify it
fully, it is also necessary to give the initial probability distribution of x at the

starting time. The following continuous-time analog of Theorem 10.2 is then
obtained.
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THEOREM 10.5 FILTERING OF CONTINUOUS-TIME PROCESSES Consider a
stochastic process defined by the linear stochastic differential equation (10.26)
where the process v has zero mean and ineremental covarianee R, dt. Let the
initial state have mean mp and covariance K. The mean-value function of the
process x is then given by

dm(t)

— - =Am(t)  m(0) = m (10.28)

and the covariance function is given by
cov(x[s),x(t)) e I EY, (10.29)

where P(1) = cov(x{t).x(t)) is given by

%ﬂ = AP(H) + P)AT+R, P{0) =Ry (10.30)

Proof  The formula (10.28) for the mean value is obtained siniply by
taking the mean value of (10.26). Notice that dv has zero mean.

To obtain the differential equation in (10.30), notice that

dx”) = (x+da)(x+ dn)T - 247 = x dx’ + dxx” + dx da”
Equation (10.26) then gives
d(xxT) = x(Ax dt + dv)” + (Ax dt + dv)x” + (Ax dt + dv)(Ax dt + dv)T

Taking mean values gives

d(Exx") = (Exx")AT dt + A(Bx2T) dt + Edv dvT + A(ExxT)AT (d1)?
because dv is uncorrelated with x. Furthermore, it follows from (10.27) that

Edv dv” = Ry dt

Hence

dP = PAT dt + AP dt + R, dt + APAT (dt)?

Dividing by d¢ and taking the limit as df goes to zero pives the differential
equation in (10.30). Tb obtain Eq. {10.29),let s > ¢ and integrate (10.26). Hence

x(s) = e*®x(t) + ] se‘“H"’ dv(s)
t

Multiplying by x7(¢) from the right and taking mathematical expectation give
(10.29). Notice that du(s) is uncorrelated with x(f) if s’ > ¢. ]
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Example 10.8 First-order continuous-time system
Consider the scalar stochastic differential equation

dx=—-gxdi+du

x(ta) = mo var(x(tu)) =Ty

where the process {v(t),f € T} has incremental covariance r; dt. It follows from
{10.28) that the mean-value function is given by

dm

E = —am M(f{]) =My

This equation has the solution
m{t} = mge "0
The covariance function is given by
ris,t} = cov (x(s}, x(:}) = AP s>t
and
r{s,t) = e ¥pls) s> ¢

Equation {10.30) gives the follewing differential equation for P.

aP
E:—%P‘Fr}_ P(fo):r{,

This differential equation has the solution

t
P(f] __,e‘aﬂ(f—fﬂ}ro_l_/ E—zﬂ{f—ﬁ}rl ds
o

—9a(t— rn 2t
- o Bl m]?’n'l“za(l—e 2a(t :n))

As ly — —oo, the mean-value function goes to zero and the covariance function
goes o

r(s, t) = % e~k

hecause the limiting covariance function depends only on the argument difference

§ — 1, the limiting process is (weakly) stationary and its covariance function can
be written as

r(T) - % e—n|fi'

Equation (10.24) gives the corresponding spectral density

_ e 1
T wi4al

¢(w)
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Filtering Continuous-Time Processes

The analysis of linear systems with continuous-time stochastic processes as
inputs is analogous to the corresponding analysis for discrete-time systems.
Consider a time-invariant stable system with impulse response g. The mnput-
output relationship is

yl) = / gt - shuls) ds = {g(s)u(t—s)ds (1031)

[cornpare with Eq. (10.12}]. Let the input signal z be a stochastic process with
mean-value function m, and covariance function r,.

The following result is analogous to Theorem 10.2 for discrete-time sys-
tems.

THECREM 10.6 FILTERING STATIONAKY PROCESSES  Consider a stationary
linear system with the transfer function G. Let the input signal be a stationary
continuous-time stochastic process with mean value m, and spectral density

¢, If the system is stable, then the output is also a stationary process with the
mean value

my = G(})my

and the spectral density
6,(0) = Gi)o,(0)G7(~iw) (10.32)
The cross-spectral density between the input and the output is given hy
Syu(@) = Glio)p.(@)

The result may be interpreted in the same way as the corresponding result for
diserete-time systems. Compare with Remarks 1 and 2 of Theorem 10.2. =

Example 10.9 Spectral density of a continuous-time process

Consider the system in Example 10.8. The process x can be considered as the

result of filtering white noise with the variance r(/2x through a system having
the transfer function

1
Gls) = 7

It follows from (10.32) that the spectral density is given by

r_l 1 1 i 1

plm) =

T im+e —iw+a 2 @? +al
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Spectral Factorization

It follows from (10.32) that if the input is white noise with ¢, = 1, then the
spectral density of the output is given by

¢, () = Glie)GT(-iw) (10.33)

This means that any disturbance whose spectral density can be written in this
form may be generated by sending continuous-time white noise through a filter
with the transfer function G.

Because linear finite-dimensional systems have rational transfer functions,
it follows that signals with arbitrary rational spectral densities can be generated
from linear finite-dimensional systems. The covariance function is nonnegative
and symmetric, It then follows from (10.24) that ¢ is also symmetrie, If ¢ is
rational it then follows that its poles and zeros are symmetric with respect to
the real and imaginary axes. The transfer function G in (10.33) can then be
chosen so that all its poles are in the left half-plane and all its zeros in the left
half-plane or on the imaginary axis. The following analog of Theorem 10.3 is
thus obtained.

THEOREM 10.7 SPECTRAL FACTORIZATION  (Given a rational spectral den-

sity ¢ (@), there exists a linear finite-dimensional system with the rational trans-
fer function

G(s) =

such that the output ohtained when the system is driven by wbite noise is a
stationary stochastic process with the given spectral density. The polynomial A

has all its zeros in the left half-plane. The polynomial B has no zeros in the
right half-plane. .

10.6 Sampling a Stochastic Differential Equation

If process models are presented in continuous time as stochastic differential
equations, it is useful to sample these equations to obtain a discrete-time model.
Consider a process described by

dx = Axdt + du, (10.34)

where the procese v, has zero mean value and uncorrelated increments. The
incremental covariance of v, is R, dt. Let the sampling instants be {t;; k =
0,1, ...} Integration of (10.34) over one sampling period gives

t.b+1
x[tk+1) = eA“k”_“}x(tk)'{'./ EA(I;,I—s}dUC(SJ
fx
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Consider the random variable
]
vity) = / eMia=t gy (s}
h

This variable has zero mean because v, has zero mean. The random variables
v{ty) and v(t;) are also uncorrelated for £ # / because the increments of v over
disjoint intervals are uncorrelated. The covariance of u(t,) is given by

E(v(ta).o" () =E / " Attt gy () do ()" 01
‘l+:* (10.35)
= / QA['M—'JRI,_,A"[u.rl)ds

It is thus found that the random sequence {x(#;),# = 0,1,...} ohtained by
sampling the process {x(¢}} is described by the difference equation

Htrer) =AM 2(n) 1 ()

where {v(ty)} is a sequence of uncorrelated random variables with zero mean
and covariance {10.35).

10.7 Conclusions

The main purpose of this chapter is to develop mathematical models for distur-
bances. The resuit is a uniform approach to models for a wide variety of signals.
The signals are viewed as being generated from dynamic systems driven by a
pulse, & sequence of pulses, or white ncise. Equivalently, the signals may be
considered as being generated by dynamic systems with initial conditions.

Simple disturbances like step, ramp, and sinusoid can be generated as
outputs of linear systsms driven by a pulse. More complicated disturbances may
be viewed as pulse responses of more complicated systsms. Section 10.3 shows
that the clase of disturbences could be widened by driving the systems with
signals composed of several pulses. This leads to the piecewise deterministic
signals. A further extension is given in Sec. 10.4, where the input signal to the
disturhance-generating system was chosen as white noise.

A unified way of modeling different types of disturbances is obtained, The
disturbances are characterized by a dynamic system

y(k) = %%g—)) £(k) (10.36}

where the input € is a pulse, several pulses, or white noise. The system is
called the disturbance generator. The dynamic systsm can, of course, also be
represented in state-space form.
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The problem of prediction is important when controlling systems with dis-
furbances that cannot be measured. The problem of predicting a signal given
by (10.36) is in essence to compute £ from y. This is the same as inverting
the dynamic system (10.36). To obtain a stable inverse, the polynomial B(g)
must then have all its zeros inside the unit dise. This will, in general, not be
the case for deterministic disturbances. A consequence is that the performance
of the prediction will deteriorate. It takes longer to obtain the prediction. For
a stochastic system it follows from the spectral factorization theorem that the
polynomial B(q) has all its zeros inside the unit disc or on the unit circle.

The essential point of the discussion is that the predictors for the signals
are uniquely given by the pulse-transfer function H = B/A. The predictors
are thus the same for inputs that are pulses, pulse trains, er white noise. This
means that predictors that are designed for deterministic disturbances can work
very well also for stochastie disturbances if the disturbance generators for the
signals are the same. The unified approach to model disturbances also leads to
a substantial simplification of the theory because it is sufficient to work with a
few prototypes for disturbances only.

10.8 Problems

10.1  List situations in which it is possible to reduce the influence of disturbances by
(a) reduction at the source, (b) lacal feedback, and (c) prediction,

10,2 Show that the predictor {10.4) is equivalent to the predictor (10.3).
10.3 Determine the m-step predictor for the disturbance model

y{#) = g%wm

where w(k) is zero except at isolated points that are spaced more than deg A.
Use the result to determine the signal and the predietion when A(g) = ¢ - 0.5,
Cig} = g, and m = 3 and when w(k) is zero except for # = 0 and 5. The initial
conditions are assumed to be equal to zero.

10.4 Use Theorem 10.1 to compute the stationary covariance function of the process

64 ©

xk+1) = [ 06 02

] x(k) + vik) "
where v is a white-noise process with zere mean and the variance
o 2)
R] =
0 2

10.5 Consider a stationary stochastic process generated by

x(k + 1) = Dafk) + v(k)
y[k] = Cx[k]
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10.6

10.7

where v(£) is a sequence of equally distributed, independent, zero-mean, stochastic
variables. Let @ have the characteristic equation

e 4, =0

Show that the autocovariance function of the output r, (7} satisfies
r(ry+an(r -1+ +ay(r-n)=0

for ¢ > n + 1. (This equation is called the Yule-Walker equation.}

Consider the process

-a 0

x(k + 1) = [ N

] 2(k) + v(k)
yik) = [l 1] x(k)
where u(k) is white noise with zero mean and the covariance matrix

R_afo
"o o

Show that y(k) can be represented in the form

g+c

YW= A oW

where e(k) is white noise with zero mean and unit variance, Find the relationship
from which 4 and ¢ can be determined. '

A stochastic process y(k) is described by

x(k + 1) = ax(k) +v(k)
y(k) = x{k) + e(k)

where v and ¢ are normally distributed white-noise processes with the properties

Ev=Ee=10
varv = 1
vare = ry

Ev(kle(j) =12 wben k = j and 0 otherwise

Show that y(k) can be represented as the output of a linear filter

yik)=4 :%z ek) je| <1

where £(k) is white noise with zero mean and unit variance. Determine 2 and e.
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108 Determine the covariance function, r,{7), and the spectrum, ¢,(w}, of the process
y(k) when

y{k) = 0.7y(k - 1) = e{k) - 0.5e(k — 1)

where e(k) is white noise with unit variance,

10,9 Determine the variance of the stochastic process y(k) defined by

¥{k) - 15y(k — 1)+ 0.7y(k - 2} = e(k) + 0.2e{k - 1)
where ¢ is white noise with unit variance.

10.10 Calculate the stationary covariance function r,{c),r = 0,1,2,..., for the system
y{k) = e(k) - 2e(k - 1) + 3elk - 2) — 4e(k - 3)

when ¢ i3 zero-mean white noise with unit variance.

10.11 Assume that we want to generate a signal y(k) with the spectral density

1

¢(0) = 136 + 1 2cos @

(a) Determine a stable filter H(g) that gives the desired signal y(k) = H{gle(t),
where ¢ is white noise such that e € N(0, 1}.

{b} What is the variance of ¥?

10.12 Consider the discrete-time system

xk+1) = [0{']3 g;] x(k} + [{1)] u(k) + v(k)

y(k) = [1 0] x(k) + (k)

Assume that v and ¢ are white-noise processes that are uncorrelated and with the
covariances

1 0
Ry = 0 05 and Ry =02

respectively. Assume that the initial value has the zero-mean value and the co-
variances

cnv(x(ﬂ),x(ﬂ]r) =1

Compute the stationary value of the covariance of the state vector.

10.13 Assume that a white-noise generator is available that gives a zero mean output

with unit variance. Determine a filter that can be used to generate a stochastic
signal with the spectral density

3

- (543- 540 cos (@)
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10.9 Notes and References

The principles for reducing disturbances by feedback and feedforward and the
classic disturbance models are a key element of classic feedback theory. See
Brown and Campbell (1948), Chestnut and Mayer (1959), and Gille, Pelegrin,
and Decaulne (1959).

The notion of piecewise deterministic signals was introduced in Astrém
(1980} where the formulas for prediction are proven and more details are given.
Tables for the integrals for computing the variance for low values of n are given
in Jury {1982).

The 1deas of representing disturbances as stochastic processes was also
part of classic feedback theory. See James, Nichols, and Philips {1947), Tsien
(1955), Laning and Battin {1956), and Newton, Gould, and Kaiser {1957).

A reasonahly complete treatment of stochastic processes requires a full
book. The following books give a good background: Parzen (1962), Papoulis
(1965), Karlin (1966), Chung (1974), Kumar and Varaiya (1986), and Caines
(1988). There are also shorter summaries in the books on stochastic control
listed in what follows.

Prediction theory originated in Kolmogorov (1941), Wiener (1949), Kalman
(1960b}), and Kalman and Bucy (1961). The papers hy Wiener and Kolmogorov
are not easy to read. A readable account of Kolmogorov’s work is found in Whittle
(1963). Wiener’s results were originally published &s an MIT report in 1942. It
hecame known as the “yellow peril” because of its yellow cover and its style
of writing. Kalman (1960b), which deals with discrete-time processes, is easy
to read. There are also full books devoted to prediction, filtaring theory, and

stochastic control: Astrom (1970), McGarty (1974), Bex and Jenkins (1976)
and Anderson and Moore (1979).

»
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Optimal Design Methods:
A State-Space Approach

11.1 Introduction

In Chapters 4 and 5 the synthesis problem is solved using pole-placement tech-
niques. The main design parameters have been the locations of the closed-loop
poles, and the presentations have been limited to single-input-single-output
systems. In this chapter a more general control problem is discussed. The pro-
cess 18 still assumed to be linear, but it may be time-varying and have several
inputs and outputs. Further, process and measurement noise are introduced
in the models. The synthesis problem 1s formulated to minimize a ecriterion,
which is a quadratic function of the states and the control signals. The re-
sulting optimal controller is linear. The problem, which is stated formally in
what follows, is called the Linear Quadratic (LQ) control probiem, or the Lineqr
Quadratic Gaussiarn (LQG) control problem if Gaussian stochastic disturbances
are allowed in the process models. The stationary solution to the LQ-problem for
time-invariant systems leads to a control law of the same structure as the state-
feedback controller in Chapter 4. The LG-controller can also be interpreted as a
pole-placement controller. The degrees of freedom of the multivariable version
of the controller in Chapter 4 is resolved by the minimization of a loss function
instead of specifying only the closed-loop poles.

L@-control is a large topic treated in many books. In this chapter, only
a brief review of the main ideas and results is given. The problem is stated
and some useful results are given in this section. The solution of the LG-control
problem, if all the states are available, is given in Sec. 11.2, where the properties
of LQ-controllers are also discussed. If all the states are not measurable, they
can be estimated using a dynamic system, as in Sec. 4.4. For the case with
Gaussian disturbances, it is possible to determine the optimal estimator, which

408
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minimizes the varianee of the estimation error. This is called the Kalman filter.
The estimator has the same structure as in (4.28). However, the gain matrix,
K, is determined differently and is in general time-varying. Kalman filters are
discussed in Sec. 11.3. The LQG-preblem is solved in See, 11.4, where the states
are estimated using a Kalman filter. The solution is based on the separation
theorem or the certainty equivalence principle. This implies that the optimal
control strategy can be separated into two parts: one state estimator, which
gives the best estimates of the states from the observed cutputs, and one linear-
feedback law from the estimated states. The linear controller used is the same
as the one used if there are no disturbances acting on the system. Some practical
aspects are discussed in Sec. 11.5.

Problem Formulation

The design problem is specified by giving the process, the criterion, and the
admissible control laws.

The process. It is assumed that the proeess to be controlled is described
by the continuous-time model

dx = Axdt + Budt + dv, (11.1)

where A and B may be time-varying matrices. The process v, has mean value
of zero and uncorrelated increments. The incremental covariance of v, is Ry, d¢
{(compare with Sec. 10.5}). The model in (11.1) can be sampled as in Sec. 10.6,
Some modifications must be made because the system is allowed to be time-
varying. The input u(t) is constant over the sampling period: for the noise-free
case the solution of (11.1) can be written as

x(t) = Dt kh)x(kh) + T(t,kh)u(kh) (11.2)

where (1, kh) is the fundamental matrix of (11.2) satisfying

%cb(t,kh) = A(t)D(t, kR) G(kh,kh) = 1
and
t

Tt kh) = /k 0(t.5)B(s)ds

Omitting the time arguments of the matrices, the sampled model can be
written as

x(kh + h) = Ox{kh} + Tuikh) + v(kh)
11.3
y(kh) = Cx(kh} + e(kh) —
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where v and ¢ are discrete-time Gaussian white-noise processes with zero-mean
value and

h
Ev(khWwT(kR) = Ry = / e* Ry dr
0
Ev{kh)e" (kh) = Ry
Ee{khie’ (kh) = Ry

The expression for the covariance matrix R1 was given in Sec, 10.6, Further, it
1s assumed that the initial state ¥(0) is Gaussian distributed with

Ex(Q)=my and cov(x(O)) = Ry

The matrices Ry, R1, and R, are positive semidefinite. The covariance matrices
may be time-varying. It is assumed that the model (11.3) is reachable and
observable.

As discussed in Chapter 4, it is possible to include other types of distur-
bances and effecte from the environment by augmenting the state vector of the
process.

The criterion. The design criteria we will use is a way of weighting the

magnitude of the states and control signals. One way can be to look at the power
of the state, that is,

Nk Nk
— 2 _ T
J = ﬂ l(0) 2t = ]ﬂ 2(0)"x(t) dt

The components of the state may have different dimensions and we can instead
use a more general weighting

Nk
J = / ()T Quex(t) dt
0

where @ is a symmetric positive semidefinite matrix. The control signal and
the state at the end time can be penalized in a similar way. This leads to a
control problem where we want to minimize the loss function

Nh
J = E([ (xT(t}Qh.x{t] + 2IT(t)Q12nu(E)
S0
+uT(O)Quu(t) )t + xT(Nh)QD,,x(Nh)) (114)

_ Nh T x(t}
= E(j{; (x (¢} w'(2) J Q. [ u(t) } dt + xT{Nh)Qofx{Nh))
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with

0, - Q1 ch]

el Q.

and where the matrices Q.. @1, and Q. are symmetric and at least positive
semidefinite. The matrices in the loss function may depend on time.

Admissible control laws. It is important to specify the data available for
determining the control signal. The first assumption is that periodic sampling
15 used and that the control signal is constant over the sampling periods. The
control problem can then easily be translated into a discrete time problem.

If C equals the unit matrix and if (k%) = 0 in (11.3), then the full-state
vector is available. The control signal is then allowed to be a function of the state
up to and including time kA. This is called complete state information. In many
cascs only the outputs can be measured. This implies that only neise-corrupted
measurements are available for the controller. This is called incomplete state
information. In this case the control signal at time kA is allowed to be a func-
tion of the outputs and inputs up to and including either time &k - & or time
kh.

The problem. The optimal control problem is now defined to be finding
the admissible control signal that minimizes the loss function of {11.4) when
the process is described by the model of {11.1) or the equivalent model of (11.3).

The design parameters are the matrices in the loss function and the sampling
period.

Sampling the Loss Function

The loss function in (11.4) is expressed in continuous time, It is first transformed

into a discrete-time loss function. Integrating {11.4) over intervals of lengths 4
gives

N-1
J=F (Z J(k) + xT(Nh)Qgcx(Nh))
k=0

ki+h
J(k) = fk (xT{t]Qlcx(t)+2xT(:)Q12¢.u(t)+uT(t}Q2ru(t))dt (115)

i

Using (11.2} in (11.5) and the fact that 4(¢) is constant over the sampling period
gives

J(k) = T (kh)Qux(kh) + 2xT (RR)Qaue(kh) + 1T (Rh)Qau (kh)
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where

Eh+h
& = f ®7 (3, kh) Q1D (s, kh) ds (11.6)
kh

khith
QH = ‘[Mx (DT(S, kft] (Qlc F(s,kh) + ch) ds (117)

Q; = ]kh+h{FT(s,kh)Q1cF{s,kh)+ZFT(s,kh)QJze+Q2c) ds  (11.8)
kh

Minimizing the loss function of {11.4) when u(s) is constant over the sampling
period is thus the same as minimizing the discrete-time loss function

N-1
J = E(Z(xT(kh)le(kh) + 2T (Rh)Quzu(kR)

=
4 uT(kh}qu(kh)) + xT(Nh]ng(Nh)) (11.9)
- E(E (<o) wan) (T ] IT(Nh)rox(Nhl)
where
*- ¢ @)

The matrices @, @12, and @ are given by (11.6) to (11.8), respectively, and
Qo = Q.. In the following it is assumed that ¢ and & are positive semidefinite
and that Q; is positive definite. The condition on ¢ will be relaxed in what
follows. Notice that the sampled loss function (11.9) wiil have a cross-coupling
term @z even if Gz = 0.

When the stochastic case is considered, one additional term depending on
the noise is obtained in (11.9). However, this term is independent of the control
signal and can thus be disregarded when performing the minimization.

The optimal-control problem has now been transformed into the discreta-
time problem of minimizing the loss function (11.9) when the process is de-
seribed hy (11.3). Te facilitete the writing in the sequel, it is assumed that the
sampling period is used as time unit, tha¢ is, A = 1,

Completing the Squates

Quadratic functions will be minimized several times in the sequel. The loss
functions will have the form

Jix,u) = [xT uT] [Q; %":] [:] (11.11)

i



Sec. 11.2 Linear Quadratic Control 413

and we want to find the minimum with respect to «. Then there exists an L
satisfying

QL = QL (11.12)

auch that the loss function (11.11) can be written as
Jxu) = 27 (Q - LTQ.Lyx + (u+ Lo)TQ,(u + Lx) (11.13)

This is easily shown by inserting {11.12) into (11.13). Rewriting (11.11) as in
(11.13) is called completing the squares. Because (11.13) is quadratic in ¢ and
both terms are greater or equal zero, it is easily seen that (11.11) is minimized
for

u=-Lx (11.14)
and that L is unique if @, is positive definite. The minimum is

Join = 27 (@ - LTQ, L}x (11.15)

11.2 Linear Quadratic Control

The LQ-control problem will now be solved for the case of complete state infor-
mation.

The Deterministic Case

The deterministic case, where v(k) = O and e(k) = 0in (11.3), is first considered.
The system is thus described by

x(k +1) = Ga(k) + Tu(k) (11.16)

where x(0) is given. The problem is now to determine the control sequence u(0),
u(l),..., u{N - 1) such that the loss function in (11.9) is minimized.

The idea behind the derivation of the contro] law is to use the principle of
optimality and dynamic programming. The principle of optimality states that
an optimal policy has the property that whatever the initial state and initial
decision are the remaining decisions must be optimal with respect to the state
resulting from the first decision. By using this idea and starting from the end
time N and going backwards in time, it is possible to determine the best control
law for the last step independent of how the state at time N — 1 was reached.
The remaining loss-to-go will now depend on the state at time N - 1. Iterating
backwards to the initial time & = 0 determines the optimal-control policy. The
procedure is cailed dynamic programming and was intreduced by Bellman. The
solution is given by the following theorem.
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Iteration direction

Figure 11.1 Illustration of the iteration procedure using dynamic program-
ming.

THECREM 11.1 LQ-CONTROL OF A DETERMINISTIC SYSTEM Consider the
system of (11.16). Allow u(%) to be a function of x(k), x(& - 1},.... We introduce

S(k) = ©7S(k + © + @ ~ (0TS (k+ 1T + Qu)
) (1117)
< (TTS(k+ 1T + Qs ) ](rTS(k +1)0 + Q)

with end condition S(N) = @,. Assume that ¢ is positive semidefinite and

that @, + TTS(%)T is positive definite. Then there exists a unique, admissible,
control strategy

u{k) = ~L{R)x(k) (11.18)
where
-1
L(k) = (Q2 +TTS(k+1T) (I7S(h+ 1)@+ QE) (11.19)
that minimizes the loss {11.9). The minimal value of the loss is
mind = Vp = 27 (0}8(0)%(0)

Further S(%) is positive semidefinite.

Proof.  Te prove the theorem, dynamic programming will be used. We
start from the end point and iterate backwards in time. See Fig. 11.1. Introduce

N-1
Vi = Hl*).?i?f\f-l}(z (xT(i)le(':) +u (§)Qeui) + 23‘T(5)Q12H(i))

i=k

+2 (N)@x(N ))

V; can be interpreted as the loss from % to N (loss-to-go) and is a function of
the state x(k) at time k. For k = N we have

Vy = 1T (N)S(N)x({N)
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where
S{N) =&
We will now show that V; will be quadratic in x{%k) for all 2. For k = N ~ 1,
Vy.1 = min (xT(N— DQue(N - 1) + uT(N - 1)@u(N -1)
“v-b (11.20)
+ 2:T(N - 1)Quau(N - 1) + VN)

Using (11.16) for £ = N - 1 gives

Vv = i (474 - DQua(N - 1)+ TN - 1)@l - 1)

+ 2T (N - 1)Quau(N - 1)

+ {®x(N - 1) + Fu(N - IJ)TS(N] (tbx(N —1) + Tu(N - 1)))

i

min (xT(N - 1)(Q1 N rbTS(N)m)x(N - 1)

#(N-1)
+ 2T (N 1}(¢TS(N )T + ng)u
+uT(N - (r’fs )0 + §F )xN 1)

fdI(N -1 (rTS(N)r + Qg)u{N - 1))

- T _ .
uﬁ%rl_%}[x (N-1) u"(N 1)]

[ @ +OTS(N)® TSN +@T, ) (x(N-1)
PTS(NI)T+ @y TTS(NYT + @, ] [ (N - 1)]

This is a function that is quadratic in #{N - 1). By using (11.14) and (11.15),
the control law

u(N-1)=-L(N-1)x(N-1)
gives the minimum loss
Vy = 2" (N-DS(N - Dx(N - 1)

which is quadratic in x{N - 1) and where

S(N-1) = oTS(N)® + - LT(N - 1)(..232 4 rTS(N)r)L(N -1
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and
-1
LN-1) = (QE + rTS(N)r) (FTS[N]d: + sz)

Because Vy_; 1s positive semidefinite, 50 is its minimum, that is, S(N - 1) 1s
positive semidefinite. Dynamic programming now gives

N-1
_ . Tis . T .
Vo= min (F;_z(x ()Qux(d) +u” (1) Quu(?)

+ 2xT(£]ngu(i)) " xT(N)Qox(N))

u{m}(ﬁw ~2)Qux(N - 2) + uT (N - 2)Quu(N - 2)

+ 2T (N - 2)Quu(N - 2) + VN_])

This is the same as {11.20), but with the time arguments shifted one step. The

procedure can now be repeated, and ¥ = x7(0}8(0)x(0), which is the minimum

of J, is obtained by iterating backward in time. This proves (11.17) to (11.19).
It also follows that {11.17) can be written as

S(k) = (cb - FL(k))TS(k + 1)(cn - FL(k)) + [I —Lﬁk)T] ¢ [ _ ;(k) ]

(11.21)

This implies that S(k) is pesitive semidefinite if S(N) = Qp i5 positive semidef-
inite, »

femark 1. Notice that it is not assumed that @, be positive definite,
only that Q; + T'7S(k)I" is positive definite.

Itemark 2. The calculations needed to determine the LQ-controller can
be made by hand only for very simple examples. In practice it is necessary to

have access to interactive programs, which can compute the control law and
simulate the systems.

The Riccati Equation

Equation (11.17) is called the discrefe-time Riccati equation. It is possible to

use the Riccati equation to rewrite the loss function of (11.9), which gives the
following theorem.

THEOREM 11.2 DISCRETE-TIME RICCATI EQUATION  Assume that the Ric-
cati equation of (11.17} has a solution that is nonnegative definite in the interval
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0 <k < N, then

=z

-1

(V) Qox(N) + 3 (« () Qualh) + w7 () Qau (k) + 24" (£)Quan k)
0
N-1

= FO)3(01(0)+ Y (u(k) + LR)s(h))

h=0

(rTS(k s+ Qg)( (k) + L(k)x(k))

.
L]

" Z ( (B)S(k+ 1) (m(k} 4 Fu(k)) + ((Dx(k) + Fu{k))TS(k + 1)v(k))

N-
+ Z UT S{k+ 1)v(k) (11.22)
=0

N-1

_ 51 (0)S(0)x(0) + Z(u(k}+ L(k)x(k) + Lv(k)v(k))r

k=0

X

T

FTS(k+ 1)l + Qg) (1(k) + LRy (k) + L,,(k)u(k))

=

+

oT (k) (S(k +1)-LT (k) (rTS(k 1T+ Qz)LU (k]) o(k)

+
= o

1 1
_ e

0T (R)S{k+ 1) (cb - FL(k))x(k)

+
=T
2

T T
(k) (¢ - rL(k)) S(k + u(k) (11.23)

E
=

where L(%) is defined by (11.19) and

L,(k) = (rT S(h+ 1T + Q._,,)‘erS(k +1) (11.24)

and x(k + 1) is given by (11.3).
Proof. We have the identity

x"(N)Qox(N} = " (N)S(N)x(N)
N-1
= x7(0)S(0)x(0) + Y (xT(k +1)S(k+ Dalk + 1) - xT(k)S(k)x(k])
e (11.25)
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Consider the different terms in the sum and use {11.3) and (11.17). Then
2T (k+ IS(k+ Dx(k + 1)
= (@x(k) + Tu(k) + u{k))TS(k +1)(®x(k) + Tu(k) + v(k)) (11.26)
and
T (k)S(R)x(k) =27 (k) (q:-TS(k + 1)@+ @,
(11.27)
~LT(R)(CTS(k+ 1T + Qz}L(k))x(kJ

Introducing {11.26} and {11.27) in {11.25) gives

N-1
2 (N)Qux(N) = 2 O)SOx(0)+ Y [(®2(k) + Tu(k)) S(k + 1ok

k=0
+oT(R)S(k + 1)(¢x(h}+ ru(k)) + 0T (R)S(k+ Vu(k)
1

‘?

+ S [T E (S0 + D + Qu)ulh
=0

+aT (R (TTS(k+ )0 + QF)stk)
+ xT(k)( TS(k+ 1) + ng)u{k)

k)(l‘TS(k+ )+ Qg)L{k)x(k) T(k)Qux(k)
- u*‘(k )Quu(k) - u(k) Qlyx(k) - 5" (B)Quan(h)|

H"

where the terms w7 Quu, u(k)TQ1ox(k), and xT (k) Quu(k) have been added and
subtracted in the last sum. Rearrangement of the terms using (11.19) gives
(11.22). To show the second equality use (11.24) and insert that in (11.22).
Rearrangement of the terms gives (11.23) and completes the proof. .

Mean Value of a Quadratic Form
In the following, expressions of the form
ExTSx

will be evaluated, where x is a (aussian random variable with mean m and
covariance matrix B. We have

Ex"Sx = E(x - m)7S(x — m) + Em"8x + Ex"Sm - EmT8m
=B(z-m)"S(x-m}+mT8m
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Further,

E(x - m}'8(x - m) = Btr (x - m}78(x - m) = Etr §{x - m)(x - m)”
= tr SE{x — m){(x~m)" = tr SR

Thus
Ex"8x = m"Sm + tr SR (11.28)

Complete State Information

Assume that v(k) = 0 in (11.3} but that the initial state is uncertain. Theo-
rem 11.2 gives

N-1
J=E (Z (27 (k) @ux(k) + u” (R)Qau(k) + 2x (k) Qrou(k)) + x" (N)Qox(N ))
k=0
= E (x7(0)S(0)x(0))
N-1
+E (Z(u(k] . L(k)x(k])T (rTS(k T+ Qg) (u(k) + L{k)x(k) )

k=0

potp—

Because S(k) is positive semidefinite, the second term is nonnegative. Further,
S(k) is independent of u(k), and it follows that

Jeompiete 2 ExT (0)8(0)(0) = m{ S(0)my + tr S(0)Rp (11.29)

where (11.28) has been used. Equality is obtained for the control law of (11.18).
Theorem 11.2 and (11.29) give an alternative way to prove Theorem 11.1.

Now assume that there are stochastic disturbances acting on the system
and that the full state i still measurable. Using Theorem 11.2, (11.22), and
that v(k) is independent of u(k) and x(k) gives

N-1
J = E(xT(O)S(O)x(O) + 3 oT(R)S(k+ Lju(k)
k=0

" N_l(u(k) " L(k)x{k))T (FTS(k F1T + Qz)(u(k] ¥ L(k)x(k]))
e (11.30)
Using (11.28) gives the relationship
N-1
Thoise 2 M S(0)mo +1r S(O)Ro+ Y _trS(k+ )Ry (11.31)

k=0
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Equality is obtained for the control law of (11.18), which is an admissible control
law. The difference in the optimal costs of (11.29) and (11.31} is due to the
disturbance v(k). The control law of {11.18) thus minimizes the loss for the
complete state information case.

Assume on the other hand that v(k) is known when determining u(k).
Frem (11.23) it follows that the less function is minimized for

u(k) = —L(k)x(k) - L,(k)uv(k) (11.32)
where L, is given by (11.24) and the minimum loss is

N-1
J = m§S(0)mo + tr S(O)Ra+ Y _tr S(k + DR,
b=
N-1 ’
= Y LBRLT () (ITS(k+ 1T + Q)

B=0

This loss is less than (11.31) and shows the improved performanee if vk} could
be used.

The sclution to the LQ-problem gives a time-varying controller. The feed-
back matrix does not depend on x and can be precomputed from k. = Ntok = 0
and stored in the computer. For time-invariant processes and loss functions,
usually only the stationary controller—the constant controller obtained when
the Riceati equation is iteratad until a constant S is obtained—is used. S(k)
will-under quita general assumptions—converge to a constant matrix as the

time horizon increases. In general, there exist several solutions resulting from
different ;.

The stationary solution can he cbtained by iterating (11.17) or by solving
the algebraic Riceati equation

§ = 0TS0+~ (®78T + Qu) (I"8T+ @) (T750+ Q%)  (11.33)
Because @ in {11.10) is symmetric and positive semidefinite we can write
T
Q=(c n) [c; D)
If the system of (11.16) is reachable and if

[—31+¢) F]
C Dy

has full column rankfor |z| 2 1, that is, there are no unstable zeros to the system
defined by @, I, C;, and D, then there exisis only one symmetric nonnegative
definite solution to the algebraic Riccati equation (11.33).
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Figure 11.2 Linear quadratic control of the double-integrator plant for
different weightings, p, on the control signal. The initial value of the state is
x(0) = [1 0}. The position x, (dashed), velocity x, (dashed-dotted), and the
control signal  (solid) are shown. {(a) p = 0.01583, (b) p = 0.05, (c) g = 0.5,
and (d} p = 10.

Example 11.1 LQ-control of the double integrator

Consider the double integrator (see Example A.1) and use the sampling period
A = 1. Let the weighting matrices in (11.9) be

a-}9) = e (o)

The influence of the weighting can now be investigated. The stationary feedback
vector has been calculated for different values of p. Figure 11.2 shows the states
and the control signal for some values, When p = 0, which means there is a
penalty only on the output, then the resulting controller is the same as the deadbeat

controller in Sec. 4.3. When p is increased, then the magnitude of the control signal
is decreased.

Figure 11.3 shows the stationary L vector as a function of the control weight-
ng p. When p increases the gains go to zero and there will be almost no feedback.

Example 11.2 Time-varying controller
Consider the integrator process

x(k+ 1) = x(&) + u(k)
Let the loss function be

Z(xz(k) + 10u2(k)) + gor?(5)

4
k=0
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Control weighting p

Figure 11.3 Linear quadratic controller for the double integrator. The sta-
tionary gains /, (solid) and Z, (dasbed) of the feedback vector L = |1, I;] for
different values of p.

That ig, the time horizon is enly five steps. The Riccati equation and the controller

gain become
2
s(k)=s(k+1)+1—s-(:——i;—ﬂl-d 5(5) = g
_ slk+ 1)
(k) = s(k + 1) + 10

Figure 11.4 shows s(k), {(%), and the trajectory of the state when x(0) = 1 for
different values of gp. The value go = 3.70 eorresponds to the stationary solution
of the Riccati equation. When g 15 increasing x(5) approaches zero. "

Properties of the LQ-Controlter

The pole-placement controller in Sec. 4.3 and the stationary LQ-controller have
the same structure. However, they are obtained differently, so there are some
differences in their properties.

The linear state-feedback controller of (11.18) has n parameters in the
single-input case. It is, in general, difficult to tune the parameters directly such
that a good performance of the closed-loop system is obtained. Instead, the
tuning procedure can be to choose the n eigenvalues of the closed-loop system
and use the design procedure in Sec. 4.3. This procedure is well suited for single-
input-single-output systems. It is, however, difficult to compromise between the
speed of the system and the magnitude of the control signal.

The 1GQ-controller has several good properties. It iz applicable to multi-
variable and time-varying systems. Also, changing the relative magnitude be-
tween the elements in the weighting matrices means a compromise between
the speed of the recovery and the magnitudes of the control signals, The fol-

lowing two theorems give properties of the closed-loop system when using the
LQ-controller,

THEOREM 11.3 STABILITY OF THE CLOSED-LOOP SYSTEM  Let the system of
(11.16) be time-invariant and let the loss function of (11.9) be such that @ in
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Figure 11.4 Simulation of the process in Example 11.2 for different values
of the weighting at the end point; ¢; = 10 (dashed), g; = 3.70 (solid), and
go = 0 (dashed-dotted).

(11.10) is positive definite. Assume that a positive-definite steady-state solution,
S, to (11.33) exists. Then the steady-state optimal-control strategy

u(k) = ~Lx(k) = (@ + IST) " (I78@ + QF,)x(k)
gives an asymptotically stable closed-loop system
x(k+1) = (D - CL)x(k)

Proof. 'Theorem 3.4 can be used to show that the closed-loop system is
asymptotically stable. It is to be shown that the function

V(x(k]) = x7 (k)Sx(k)
18 a Lyapunov funetion. V is positive definite and
AV (xtR)) = x"(k + DSx(k + 1) — 2T (R)8x(R)
= 2" ()(® - L)' 8(® - [ L)x(k) - £7 (k)Sx(k)
—xr(k](Ql + LTQL ~ L7QF, - QmL)x(k)

27 (k) [1 -LT] Q[ ! ]x[k)

]

-L



424 Optimat Design Methods: A State-Space Approach Chap. 11

where {11.17) and (11.21) have been used. Because @ is positive definite and
[I - LT} has full rank, AV is negative definite. The closed-loop system is thus
asymptotically stable, ]

The case with § positive definite in Theorem 11.3 is very special. Much more
interesting results can be obtained. The poles of the closed-loop system can be

obtained in several ways. When the LQ-controller is used the poles are obtained
from

det(Al-®+TL)=0

It is possible to show that the poles are the n stable eigenvalues of the gener-
alized eigenvalue problem

0 I 0 0 & T
det| |@7 0 0lA+}-1 @ Qull=0 (11.34)
T ¢ o 0 QL @

Equation (11.34) is called the Euler equation of the LQ-problem,

Theorem 11.4 is given without proof for the single-input-single-output
(SISO) case. A proof is given in Sec. 12.5.

THEOREM 11.4 THE CLOSED-LOOF POLES OF AN SIS0 sYSTEM  Let the in-
put and the output be scalar and assume that the steady-state optimal feedback
is used for a time-invariant system, Further assume that only the output and
the control signal are penalized in the loss function, thatis, §; = C7C, @ = p,

and @2 = 0. The poles of the closed-loop system are the n roots within the unit
circle of the 2nth-order equation

p+H{zDH{@)=0 (11.35)
where

H(z) = ClzI - &)7T
is the open-loop pulse-transfer function. .

Example 11.3 LQ-control of the double integrator

To illustrate the dependence of the weighting matrices on the closed-loop poles,
reconsider Example 11.1. Figure 11.5 shows the poles of the closed-loop system for
different values of g. For p = 0 the root locus starts at z = -l and z = 0. As p
increases the roots move toward the poles of H(2),z = 1. [

Theorem 11.3 shows that the LQ-controller gives a stable closed-loop system,
that is, all the poles of the closed-loop system are within the unit circle. It is
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Figure 11.5 Closed-loop poles given hy (11.35) when the double integrator
is controlled with the optimal controller for p varying from 0 to co. The stars
indicates the closed-loop poles for (a) p = 0.01563, (b) p = 0.05, (¢) p = 05,
and {d} p = 10, which are the values used in Fig. 11.2.

also possible to get the poles inside a circle with a radius less than 1. This is
done by introducing the transformation

O - d/r
r -T/r
where 7 < 1, and then solving the linear quadratic problem for the system

ke +1) = %dix(k) + %l‘u(k)

In the z-transform this implies that we make the substitution

22— 2F

This is further discussed in Sec. 12.6.

Theorem 11.3 shows that the closed-loop system is stable when the LQ-
controller is used. It is also possible to determine the gain margin of the closed-
loop system. Consider the system of (11.3) with v(k) = e(k) = 0. The pulse-
transfer function of the open-loop system is

H(z) = C(zI - &)
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Assume that only inputs and outputs are penalized in the loss function of (11.9),
that s,

Q= CTC

and that @, = 0, Let the system be controlled by the steady-state LQ state-
feedback controller. The controller is then defined by the equations

S=0780+@Q - LTRL
L=R1Tg8e (11.36)
R=rT8T+Q,

The algebraic Riccati equation (11.36) can be written
Q= (2 T-)8el — )+ (27T~ D)SD + dTS(2] - @) + LIRL

The Riccati equation can now be used to rewrite an equation that corresponds
to (11.35). This gives an expression for the closed-loop poles.

Q+H @ Y)H(2) = @ +TTzU-0)TCTC2l - @) T
= Q1T (s + SO~ 0) 4+ (27 - ©) THTS
+ (71 - @) TLTRL(l - 9)7)F
=R +RL(zI-0) T +TT(z" ' - )" TLTR
+ T U -0) TLIRL(zI - @)7'T
= (r + L(z7 - (b)“l‘)TR(I +L{zI - d:)-lr)
= (14 Hl[z‘l))rR(I +Hy2))
(11.37)
where
Hi(z) = L(zI -®)°'r

Equation (11.37) gives a spectrai factorization of

Q@+ H 'z VW H(z)

Consider the SISO case. Then

-Gl -a)'r = 20
H(z) = C(e - @) 1T_A{z)
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and the closed-loop system is defined by

Helz)= C(el - (& - rL))‘lr - %%

Notice that H and H. have the same zeros. Compare with Sec. 4.6. Further,
the return difference of the system with the LQ-controller is

1+ L(zl-®)7'T = g%
Hence
P(z) - Az)

H]_[Z) = Z)

Now assume that the controller in (11.18) is replaced by
u(k) = —BLx(k) ‘ (11.38)
where f is a positive scalar. The return difference when (11.38) is used is
1+ fH:(2)

Thus the stability of the closed-loop system when (11.38) is used is determined
from

Afz) + ﬁ(P(z) - A(z)) =0 (11.39)

The gain margin can now be determined from (11.39) by using root locus or
by plotting the Nyquist curve for (P - A)/A. Becanse A and P are monic and
deg A = degP, it follows that deg(P — A) < n ~ 1. This implies that the root
locus of (11.39) with respect to f§ goes to infinity along at least one asymptote.
Hence the discrete-time LQ controller has a finite gain margin, as opposed to
the continuous-time LQ-controller, which has infinite gain margin.

In the scalar case, (11.37) can be written as

pAE Y )A(Z) + B(zh)B(2) = rP(z7 ) P(2) (11.40)

where r = TTST + p.

How to Find the Weighting Matrices

When using optimization theory, the loss function should ideally come from
physical arguments. In such cases the LQG-control theory may be viewed as
an approximation when the state equations are obtained from linearization of
equations of motion and the loss function is obtained from a nonlinear loss
function. Unfortunately, such formulations can be obtained only in a few cases.
One example is Example 11.4.
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Example 11.4 Ship steering
The linearized dynamics that describe the steering of ships can be descnbed by

the equation
J iU @11 0 v bl
a r = | dz O 0 r + bi & {11.41)
¥ 0 1 0 b 4 0

where § is rudder angle, ¥ is the heading angle, r is the turning rate, and v the
sway velocity. The relative increase in the drag due to steering may be approxi-
mated by the expression

T
% - %] (or + po%) dt (11.42)
1]

The first term represents the Coriolis force due to coupling of sway velocity and

turning rate. The second term represents the drag induced by the rudder deflec-
tions. [

In many cases it is difficuit to find natural quadratic loss functions. LQ-control
theory has found considerable use even when this cannot be done. In such
cases the control designer chooses a loss function. The feedback law is obtained
directly by solving the Riccati equation. The closed-loop system obtained is then
analyzed with respect to transient response, frequency response, robustness,
and so on. The elements of the loss function are modified until the desired
result is obtained. Such a procedure may seem like a strange use of optimization
theary.

The fact that other methods, such as direct search over the feedback
gam or pole placement, are not used instead might be questioned. It has heen
found empirically that LQ-theory is quite easy to use in this way. The search
will automatically guarantee stable closed-loop systems with reasonable mat-
gins.

It is often fairly easy to see how the weighting matrices should be cho-
sen to infiuence the properties of the closed-loop system. Variables x;, which
correspond to significant physical variables, are chosen first. The loss func-
tion is then chosen as a weighted sum of x;. Large weights correspond to
small responses. The responses of the closed-loop system to typical disturbances
are then evaluated. A particular difficulty is to find the relative weights be-
tween state variables and control variables, which can be done by trial and
error.

Sometimes the specifications are given in terms of the maximum ailowed
deviations in the states and the control signals for a given disturbance. One rule
of thumb to decide the weights in (11.4) is to choose the diagonal elements as the
inverse value of the square of the allowed deviations. Another way is to consider
only penalties on the state variables and constraints on the control deviations.
If the constraints are quadratic, a methed using a Lagrange multiplier gives a
criterion such as (11.9).
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Figure 1186 Smoothing, filtering, and prediction.

11.3 Prediction and Fiitering Theory

When using the LQ-controller, the full-state vector must be measurable. The
problem of estimating the states of (11.3) from measurements of the output is
discussed in this section. An estimator of the same structure as in Sec. 4.4 is
postulated, but the gain vector is now determined differently. The problem is
solved as a parametric optimization problem, where the variance of the estima-
tion error is minimized.

Prediction, Filtering, and Smoothing

Different estimators for the states in (11.3) can be derived depending on the
available measurements. Assume that the data

Yi = {y(0), u(i) | i < A}
is known. Using ¥}, we want to estimate x(k + m}. We have three cases:
¢ Smoothing (m < 0)
* Filtering (m = 0)
* Prediction (m > 0)

Figure 11.6 illustrates the different cases. In this section the prediction and

filtering problems are discussed. The resulting dynamic system 1is called a filter
regardless of which of the problems is solved.

The Kalman Filter

Let the process be described by (11.3) with & = 1. Postulate an one-step-ahead
estimator of the form

#(k+ 1] k) = O2(k | k- 1) + Tu(k) + K (k) (y(k) ~Cilk | k- 1)) (11.43)
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The reconstruction error £ = x — £ 1s governed by
i(h + 1) = dx(k) +v(k) — K (k) (y(R) - C&({k | k- 1))

= (® - K(R)C)a(k) +v(k) ~ K (R)e(k)

- (1 _Km]([i]ftk)-*[ﬁ])

In Sec. 4.4 K is used to give the system of {11.44) desired eigenvalues. The
problem is approached differently here: The properties of the noise are taken
into account and the ¢riterion is to minimize the variance of the estimation
error, which is denoted by P(k}.

(11.44)

P(k) = E (i(k) - E2(k))(£(k) - Ex(k))"
The mean value of & is chtained from (11.44)
Bk +1) = (ep - K(k)C)E:E(k]
Because Ex(0) = my, the mean value of the reconstruction error is zero for all
times & > 0 independent of K if £(0} = my. Because (%) is independent of v(k)
and e(k) Eq. (11.44) now gives
P(k+1) = Bx(k + Dik+ )7
O o' (B R\ ( I
=11 -K(k P
(1 -xw) ([c] ®c) (g & ]) xp)

OP(R)®T + R, ¢P(k)CT+R12]f I ]
CP(k)®T+R], CP(R}CT+R; ) {-KT(k)
{11.45)

(1 —K(k)]

Further, P(0) = Ry. From (11.45} it follows that if P(k) is positive semidefinite,
then P(% + 1) is also positive semidefinite. Equation{11.45) has the same form
as (11.11) and should be minimized with respect to K(k). By using the idea
of completion of squares, it follows that @’ P(k + 1}a is minimized by K (k)
satisfying

K(k)(Rz " CP[k)C"") = OP(E)CT + Ry

for any a. If CP(R)CT + R, is positive definite then

K (k) (dJP(k}CT n Rm) (R2 + CP(k)cT) o (11.46)
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This inserted intc (11.45) or using (11.15) gives

P(k+1) = P(k)DT + R,

- (q;p(k]CT + Rm) (Rz + CP(k)CT)_l(CP(k)d)T + RE)
(11.47)
P(0) = Rq

The reconstruction defined by (11.43)}, (11.46}, and (11.47) is called the Kelmzn
fitter. This is summarized in the following theorem.

THEOREM 11.5 THE KALMAN FILTER—PREDICTOR CASE  Consider the pro-
cess of (11.3). The reconstruction of the states using the model in {11.43) is
optimal in the sense that the variance of the reconstruction error is minimized
if the matrix Ry + CP(k)CT is positive definite and if the gain matrix is chosen
according to (11.46) and (11.47). The variance of the reconstructing error is
given by (11.47). "

Remark 1. The reconstruction problem has been solved as a parametric
optimization problem by assuming the structure in (11.43) of the estimator. It
is in fact true that the structure is optimal for Gaussian disturbances.

Remark 2. Better than the traditional notation for the variance P(k)
18 P(k i k - 1). The latter notation indicates that measurements up ta and
including time % — 1 are used. The different terms in the variance equation of
(11.47) can be interpreted in the following way: The term ©®P®7 shows how the
variance is changed due to the system dynamies, and R, represents the increase
in the variance due to the noise v [compare with (10.11)]. The last term shows
how the variance is decreased due to the information chtained through the
measurements. Notice that P(k) does not depend on the ohservations. Thus the
gain can be precomputed in forward time and stored in the computer.

Remark 3. The Kalman filter can also be interpreted as the conditional
mean of the state at time & + 1 given Y,; that is,

k+1]k) = Blxk+1)| ¥)
T
P(k+1)=E[(x(k+1)-i(k+1|k})(:c(k+l)-—i‘c(k+llk)) |Y§}

Example 11.6 Kalman filter for a first order system
Consider the scalar system
x{k 4 1} = x(k)
y(k) = x{k) + e(k)

1
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0 500
Time

Figure 11.7 Estimation error for the system in Example 11.5 when starting
from x(0) = —2, and when ugsing ¢ = 1 and (2) K = 0.01, (b) K = .05, and
(c) the optimal gain of (11.49).

where ¢ has standard deviation o and x(0} has the variance 0.5. The state is thus
constant and has to be reconstructed from noisy measurements. The Kalman filter
is given by

B+ 1|h) = 2RI R~1)+ K(k)(y[k) — kR - 1)) (11.48)

Pk o*P(k)
Kk} = 6?2 + Pik) ot + P(k)

The variance and the gain are decreasing with time. Figure 11.7 shows realizations
of the estimation error when the Kalman filter is used and when (11.48) is used
with constant gain. A large fixed gain gives a rapid initial decrease in the error,
while the steady-state variance is large. A small fixed gain gives a slow decrease
ID the error, but a better performance in steady state. "

and P(h+ 1} =

(11.49)

The Filter Problem

The predictor in (11.43) has the property that the state at time k is reconstructed
from y(k-1), y(k - 2),.... It is also possible to derive the filter, which also uses
y(®), to estimate x(k), In the filter case y(%) will contain information about v(k),
which will be reflected in the equations that follow.
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THEOREM 11.6 KALMAN FILTER-FILTER CASE  Consider the process (11.3)
and let ¥, be available for the estimation of x(k). If the matrix Ry + CP(k |
k - 1)CT is positive definite then the optimal filter is given by the following
equations:

i(k | k) = i(k b= 1) + K;(k) (y(h) - Cik| k- 1)
ik | &) = K, (k) (y(k) - Ci(k | k - 1))

(11.50)
#k+1) k) = Dik | k) + Tuelk) + 5(k | k)
= Ok | k- 1)+ Tu(k) + K (k) (y{k) ~ Cilk|k - 1))
where
K{k) = P(k| k- IJCT(CP{k |k -1)CT +R2)_1 (11.51)
K, (k) = RH(CP(k 1k-1)CT + Rz)_l (11.52)

K{k) = OK/(k) + K, (k)

-1

- (rDP(k k- 1)CT+R12) (cPrlk- 1)CT+R2) (11.53)

The variance is given by the Riccati equation

Plh+1|k) = ®P(kik-1)0T + R,
_K(k) (CP(k |[E-1)CT + RZ)KT(k)
P(k| k) = P(k| k- 1)
-1
_ Pk |k - 1)0?(0?(& |k -1)CT +R2) CP(k|k-1)
P(0|-1) = Rq -
(11.54)

Proof.  The proof is based on expressions analogous to (11.45). "

Remark 1. The notation P{k | ¥ - 1) is used here instead of P(k) to

specify the available data; P(k | &) is the variance of the estimation error at
time k given Y.

Remark 2. Notice that the expression for £(k + 1 | k) in {11.50) is the
same as in (11.43).

Remark 3. Notice that 5(k + 1 | £} = 0 because y(k) does not contain
any information about v(k + 1).
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Example 11.6 Kalman filter and prediction
Congider the first-order system

(k) + ay(k - 1) = (k) + ce(k - 1} (11.55)

where e has standard deviation ¢. Further assume that {c| < 1. A state-space
representation of (11.55) is given by

x(k+1) = —ax{k) + elk)
y(k) = (e - a)x{k) + elk)

In this case R, = By = B,y = ¢°. The Kalman filter in steady state is given by

o? - aPie - a)
{c - afP +o?

&
(67 - aP(c —u])
— 2 E_
P=gPt+o = aPP 1ot

K=

It is easy to verify that the solution is P = 0 and K = 1. The one-step-shead
predictor of x is given hy

e+ 1|k) = ~az{k| k-1 +y(k) - (c - a)x(k | &k - 1}
= —cxik [ k~1)+ y(k)

Further, in steady state, the one-step-ahead prediction of the output is given by
ylk+1|)k) =(c—a)xik+1]|k)

c-a
C l4eg! y(k)

If je| > 1 then (11.55) first has to be transformed to a new representation using
spectral factorization to get a stable (-polynomial. "

Frequency-Domain Properties of Kalman Filters

Modeling is very important when design problems are solved using optimization
techniques because the optimal regnlator, or the optimal filter, is just a trans-
formation of the model. It is thus useful to understand the properties of this
transformation. In this section some insight into the design of Kalman filters
13 provided by analyzing the frequency-domain characteristics of a stationary
Kalman filter. Consider the problem of estimating the state of the system

x(k + 1) = ©1x(k) + v(k)
based on noisy observations

y(k) = Crx(k) + n(k)
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where the noise n is given hy

n{k) = Coz(k) + e(k)
z(k+ 1) = Goz(k) + wik)

In these models, v(k), e(k), and w(k) are sequences of uncorrelated random
variables, The steady-state Kalman filter for one-step prediction of x 15 given
by

) (3 2) () (£ -
ar

x(k + 1) o, -G -K G (k) Ki
[é(k +n) [ ~K2Cp @y - KoC ] [z'(k)] * [K2 ] y(k) (11.56)

The Kalman filter is thus characterized by the pulse-transfer function from ¥
to x and 2:

2l -9+ KIC]_ chg -t K
Hizy=1l1 0 11.57
@= (1 0] [ ;G zI-¢2+K202] [K2] (1L57)

A frequency-response plot of the transfer function shows how the filter attenu-
ates different frequencies. It is very usefu] to determine the frequency responses
of the filter when designing Kalman filters. The properties of the frequency re-
sponse will, in general, depend on the model in a complicated way. There are,

however, some general properties that may be understood without detailed cal-
culations,

LeMmMA 11.1 TRANSMISSION ZEROS OF THE KALMAN FILTER The fransimis-

sion zeros of the pulse-transfer function (11.57) of the stationary Kalman filter
are given by

det(zf — ®3) = 0

Proof A transmission zero is a complex number z such that an input
signal of the form z*y; gives zero output. For the system (11.56), (k + 1) =
i(k) = 0 implies that there exist y; and (k) = 2p2* where ~00 < k < o and
yo # 0 such that

KiCyzp-Kyy =0
(2] — @3 + K3C2)20 - Kayp = 0



436 Optimal Design Methods: A State-Space Approach Chap. 11

or

[ZI‘¢2+K2C'2 *Kz] [20]
KiCy K1) Ly

B 2l - @y —Kz][ I 0] [20]_0
*[ 0 ~-K; -Gy 1 Yo )

There exists a nonzero solution to this equation only for those z that are eigen-
values of the matrix @, n

Remark. The Kalman filter will have zeros at the poles of the noise
model. To obtain a Kalman filter that blocks certain frequencies {a notch filter)
is just a matter of choosing a noise model with poles at those frequencies. The
attenuation of certain frequencies by the Kalman filter is enhanced if the energy
of the noise is increased at those frequencies in the noise model.

11.4 Linear Quadratic Gaussian Control

In the LQG-control problem, it is assumed that the system is governed by (11.3)
and that the loss function is given by (11.9). The admissible controls are as-
sumed to be such that u() is a function of Y;_; or of Y,_; and ¥(k).

Theorem 11.2 and (11.30) still hold for the case of incomplete state infor-
mation. Because (11.18) is not an admissible control strategy, the third term
in (11.30) cannot be made equal to zero. The solution is given by the following
theorem.

THEOREM 11,7 THE SEPARATION THEOREM Consider the system in (11.3).
Let the admissible control strategies be such that u(k) is a function of Y,_;.
Assume that S(k) is given by (11.17) with inutial condition S(N) = @ and
with Qo positive semidefinite. If TTS(k)I' + @, is positive definite then there
existe a unique admissible control strategy

ulk) = ~L{k)i(k | k - 1) (11.58)
that minimizes the expected logs (11.9). The minimum value of the loss function
ig given by

N-1
J = myS(0)mo + tr S(0)Ro+ Y tr S(k + L)R,
h=0
o (11.59)

+ 3 tr P(RLT(R)(TTS(k + 1) + Q) L(k)
k=0
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FProof.  The theorem follows directly from Theorem 11.2 and (11.22) and
that (k) is independent of u(%) and x(k). Equation (11.28) gives the value of
the loss function. .

Remark 1. The difference in the minimal losses given by (11.31) and
(11.59) is due to the estimation of the state variables.

Remark 2. It is possible to modify Theorem 11.7 to other admissible
control strategies—for instance, the case when u(%) is allowed to be a function
of Y;_, and y(k).It follows from (11.23) that the control law is given by [compare
with (11.32)]

u(k) = ~L(k)3(k | &) - L, (k)i(k | k)
= _L{R)i(k | k-1)- (L(k)K,«{k) N Lu(k)Ku(k))(y{k) - Cik |k~ 1))
= —(L(k] - M(k]C)j:(k k- 1) - M(k)y(k)
(11.60)
where (k| ) is given by (11.50) and where

M(k) = L(R)K (k) + Ly (k) K (k)
Further L{k), L,(k), K¢(k). and K, (k) are given by (11.19), {11.24), (11.51),

and (11.52}, respectively.
The controllers (11.58} and (11.60) can be written in a unified form as

uik) = -(L(k) + M(k)C):E(k |k - 1) - M(k)y(k) (11.61)
where
M(E) - {0 ifu=f(¥.1)
L(k)K (k) + Ly(R)K (k)  ifu = f(y(R), Yp-1)

Substitution of {11.61) into (11.22) gives
N-1
iyt = duoise + 3 L(k)P(k)LT{k)(i‘TS(k FUr+ Qg)

k=0

where Jogs. is given by (11.81), Further (11.61) gives in (11.23)

N-1
Jaie = Jyrea = _ tr M{E)(CP(R)CT + Ro)MP(k)(T7S(k + 1T + Q)
k=0
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|

Figure 11.8 The closed-loop system when the controller in the aeparation
theorem (Theorem 11.7) is used.

This shows that the loss is decreased when the current meagsurement is used to
determine the control signal.

One consequence of the separation theorem is that the synthesis problem
can be split into two parts, which can be solved separately. First, the deter-
ministic centrol prohlem is solved, giving L{k} (and L,(k)). Second, the state
18 estimated using the Kalman filter. A biock diagram of the system with the
optimal-control law is shown in Fig. 11.8.

Duality

The solutions to the LQ-control problem and the state-estimation problem are
very similar. It can be shown that the state-estimation problem is equivalent
to an LQ-problem. The equivalence is illustrated by Table 11.1, which shows
the substitutions required to convert the optimal-control problem to a state-
estimation problem.
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Table 11.1 Substitutions required to convert the optimal-control
problem to a state-estimation problem.

Optimal-Control Problem  State-Estimation Problem

k N-k
d @7
I o
&o Ry
@) Ry
Ghs Ry
S P
L KT

Properties of the Closed-Loop System
The closed-loop system with LQG-control is described by

x(k + 1) = Ox(k) + Tu(k) + v(k)
y{k) = Cx(k )+8(k)
(k)= —(L~MCi(k|k—1) - My(k)
Hh+1)k)= Ok | k- 1]+Fu(k)+K( (k]—C:E(k[k—l))

By introducing x and % = x — £, the equations can be written as

[x{k+1)] _ [tb—l"L F(L—MC)] [x(k)]

i(h+1) 0 o-KC | Lih)
I -T™
+ [I]u(k)+ [ “rK ]e(k)

The dynamies of the closed-loop system are determined by ®~T'L and @ - K C,
that is, the dynamics of the ‘corresponding deterministic LQ-control problem
and the dynamics of the optimal filter (compare with Sec. 4.5). Notice that
the closed-loop systems have the same poles independently even if the current
measurement is used or not to determine x.

The Servo Problem

The servo problem is diseussed in Sec. 4.6 for the state-feedback controller. For
the LQG-problem, the reference signal ean be introduced in the same way as
in Fig. 4.13. The only difference is that the feedback matrix L is obtained by
minimizing the quadratic loss function.
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11.5 Practical Aspects

The previous sections show how the LQ- and the 1.QG-contrel problems can
be solved. There are several practical problems when applying LQ-control. One
occurs in choosing the design parameters—that is, the weightings in the loss
function—which is discussed in Sec. 11.2, and the sampling period. Another
problem is the difficulty of obtaining good models for the process and the distur-
bances. Still another problem is making the numerical computations necessary
to get the resulting controller.

Model Complexity

One criticism of LQ-control 1s that an accurate full-order model of the process
must be available. Most physical processes are of high order. However, for con-
trol purposes it is often sufficient to use a low-order approximation. Ways to
obtain mathematical models are discussed in Chapter 13.

One way to decrease the sensitivity to medeling errors is to decrease the
desired bandwidth of the closed-loop system by changing the weightings in the
loss function. Compare this with the robustness results in Sec. 3.3. Another way
to decrease the sensitivity to modeling errors 1s to introduce artificial noise,
which means that the noise covariances used in the design of the Kalman filter
are larger than the true values.

Solutlon of the Riccati Equation

In many cases, only the steady-state optimal controller is implemented, which
means that the steady-state values of the Riccati equations, (11.17) and (11.47),
have to be determined, There are several ways to do this numerically. One way
15 to assume a constant S or P and solve the algebraic equations. A straight-
forward way to get the solution is to iterate the equations until a stationary
condition is obtained. The standard method uses orthogonal matrices to trans-
fer the Euler equations to triangular {Schur) form with the stable eigenvalues
in the upper left part. It iz, however, important to make the computations so
that the solution is guaranteed to be symmetric and positive definite. Special
methods have been derived to solve the Riccati equation, such as square-root
and doubling algorithms. When using the square-root methed, the square root
of § or P is calculated. This gives better numerical properties. Doubling algo-
rithms or fast algorithms speed up the caleulation of the stationary value by
computing the sclution at time 2% when the solution at time % is given. Many
books and papers ahout different methods are available.

Choice of Sampling Period

The choiee of the sampling period is infiuenced by how the specifications are
given for the control problem. Two different cases are considered.

In the first case it is assumed that the specifications are given as a de-
sired damping and response of the closed-loop system without using overly large
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control signals. It 1s then natural to determine the controller by iterating in the
weightings of the sampled loss function of (11.9). To do this, a first choice of the
sampling period has to be made based on the specifications. It is reasonable to
choose the sampling period in relation to the dynamics of the closed-loop system,
as discussed in Sec. 4.3. This means that it may be necessary to make one or
two iterations in the sampling period. The closed-loop dynamics is a complicated
function of the loss function.

In the second case it is assumed that the specifications are given in terms
of the continuous-time loss function of (11.4}. The continuous-time LQ-controller
then minimizes the loss. It is possible {o get an approximation of the increase in
the loss due to an increase in the sampling period (see the References). When
good interactive design programs are availahle, it is easy to check the loss and
the performance for some sampling perieds.

11.6 Conclusions

Optimal design based on state-space models are discussed in this chapter. The
LQ-controllers and Kalman filters have many good properties. The main prob-
lem with LQ-control is translating the specifications on the system into a loss
function. This is usually an iterative procedure, where it is necessary to have
good interactive computer programs available.

11.7 Problems

11.1 Consider the first-order system
dx
dt
Assume that the loss function of {11.4) sheuld be minimized with §,. = 1 and
&y = p. Determine the corresponding discrete-time loss function (11.9).

= —gx + bu

11.2  Consider the continuous-time double integrator in Example A.1. Assume that the
loss function of (11.4) should be minimized with

1 0
Qlc:[{] 1] and Q&-II

Determine @, @1, and Qs in the corresponding discrete-time loss function (11.9),
11.3 Given the system
x(k + 1) = ax(k) + bu(k}
with the loss function
N
d =% 2k
k=g

Let the admissible control strategy be such that u(#) is a function of x(k). Deter-
mine the strategy that minimizes the loss.
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11.5

11.6

11.7

11.8

11.9
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Consider the system in Problem 11.3, Determine the control strategy that min-
imizes the loss when the admissible control strategies are such that u(k) is a
function of x{k - 1).

The inventory model in Example A.5 is described by

xk+1)= [; ;] x{k) + [?] u(k)
yik) = [1 0] 0

(a) Determine the steady-state LQ-controller when @, =C7C and @, = p.

(b} Determine the poles of the closed-loop system and investigate how they de-
pend on the weight on the contro] signal, p.

{c) Simulate the system using the controller in (a). Assume that x{0)" = |1 1]
and consider the output and the control signal for different values of p.

Consider the two-tank system with the pulse-iransfer operator given in Problem
2.10 (b). Use (11.35) and plot the root locus with respect to ¢ that shows the
closed-loop poles when the system is controlled by the steady-state LQ-controfler
for the loss function

J= i( (k)2 + pu(k) )

A=0

Show that a deadbeat control law, a control law such that the matrix @ I'L has all
its eigenvalues at the origin, can be obtained from the discrete-time optimization

WithQ‘2=0:Ql=0’andQ0:L

Consider the ship-steering problem characterized by the model of (11.41) and
the loss function in (11.42). Use the numbers a,, = -0454, a;; = -0.433,
az = —4.003, ayz = ~0.807, b; = 0.097, by = —0.807, ¢ = (.014, and p = 0.08.
Determine the optimal state feedback when 4 = 5 5.

The ship-steering problem is sometimes approximated further by using the second-

vrder model
E[‘P _ 0 1 ¥ 0 5
il )=o) [7)+ (0]

and the following approximation of the loss function:

T
J = lim %f (W2 4 p8%) dt

T 0

Determine the optimal feedback for a sampled regulator. Use the parameters
a =0.001, £ = 0.0005, and p = 0.08, and the sampling period h = 5 s.

11.10 Consider the LQ-controller determined in Problem 11.5 for the inventory model.

Use (11.39) to determine the gain margin.
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11.11 A stochastic process i3 generated as

x(k+ 1) = 0.5x(k} +v(k)
y(k} = 2k} + e(k)
where v and e are uncorrelated white-noige processes with the covariances r; and
ry, respectively. Further, x(0) is normally distributed with zero mean and vananee
ro. Determine the Kalman filter for the system. What is the gain in steady state?

Compute the pole of the steady-state filter and compare with the pole of the
system.

11.12 The double integrator with process noise can he described by

k+1) = [{1} i]x{k]‘i- [Oflu(kﬁ [?] v(k)

y(k) = (1 0]x(k}

where v{k) is a sequence of independent, normal, zero-mean, random varables
with unit variance. Assume that x(0) is normal with mean Ex{0) = [1 1i” and the
covariance matrix By =3- 1.

{a) Determine the equations for the covariance matrix of the reconstruction error
and ihe gam vector in the Kalman filter.

(b) Simulate the covariance and gain equations and determine the speed of con-
vergence and the steady-state values.

11.13 Consider the double integrator in Problem 11.12, but let the output be
¥Ry = (1 0) x(h) + (k)
{a) Determine the equations for the covariance matrix of the reconstruction error

and the gain vector in the Kalman filter.

(b} Simulate the covariance and gain equations and determine the apeed of con-
vergence and the steady-state values,

11.14 Given the system

x(k+1]=[; 1]x(k]+[2]v(k)+[0i5]

y(k) = [1 u] x(h)

where v{k) is zero-mean white noige with standard deviation 0.1. Assume the x(0)
is known exactly. Determine the estimate of x(k+3), given y(k) that minimizes the
prediction error. Use that to determine the hest estimate of ¥(3) and its variance.

11.15 The signal x(k) is defined as

x(k+ 1) = ax{k} +v(k)
ylk) = x(k) + e(k)
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where v and ¢ are independent white-noise processes with zero mean. The vari-
ances are 1 and o, respectively. The sipnal x is estimated using exponential
smoothing as

BR1R) = af(k~1)|k-1)+(1-a)y(k)

Determine an expression for how the variance of the estimation error depends on
the parameters & and . Compare with the steady-state optimal Kalman filter.

11,16 Bhow that Theorem 11.5 can be generalized to the situation when the disturbances

e(k) and v{k) have constant but unknown mean values. (Compare with Sec, 4.5.)

1L17 A constant variable x is measured through two different sensors. The measure-

ments are noisy and have different accuracy. Let the system be described hy
2+ 1) = 2(k)
y(k) = Cxik) +e(k)

where C7 = [1 1] and e(k) is a zero-mean white-noise vector with the covariance

matrix
1 0
Ry =
2 [0 9]

i(R) = aryi(k) + azya(k)

Determine the constants ¢, and a; such that the mean valye of the prediction er-
ror is zero and such that the variance of the prediction error is as low as possible.
Compare the minimum variance with the cases when only one of the measure-
ments is used. Compare the solution with the Kalman filter.

Estimate ¥ as

1L18 Prove that the filter estimate given by (11.50) to (11.54) is the optimal filter in

the sense that the variance of the estimation error is minimized.

1118 Consider the design of a Kalman filter for estimating the velocity in a motor drive

hased on angle measurements. The basic dynamica of the motor, which relate the
angle to the current, is given by

1
s(s + 1)

Assume that there are low-frequency disturbances (friction) that are modeled as
thkh + h) = Z](kh) + i [kh)

G(S} =

Also assumne that it is desirable to filter out disturbances because of 8 mechanical

resonance at the frequency . This signal is modeled as the signal obtained by
driving a system with the transfer function

m2

82 + 2l ws + &t

with white neise. Determine the Bode diagrams for the Kalman filter for ¢ = 0.05,
@ =01, and @ = 2. Let the sampling period be 0.05 s. Also investigate the

influence of different relative mtensities of the low-frequency and the band-limited
disturbance.

G(s) =
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11,20 Consider the system

x(k+1) = [”’5 _045];:[& [ ]u(k

y(k) = [05 038 ) x(k

Determine the stationary controller u(k) = —Lx(k) that minimizes the loss fune-
tion

11.21 A computer is uged to control the velocity of a motor. Let the process be described
by
2(k + 1) = 0.52{k) + u(k)
(k) = x(k) + e(k)
where x is the velocity, u is the input voltage, and y is the tachometer measure-
ment of the velocity. The measurement noise is white noise with the variance o2,

Assume that the initial speed is a stochastic variable with zero mean and unit
variance, Construct a controller that minimizes the loss function

E(:c(2)2 + kz;puﬂ(k})

The parameter p is used to control the amplitude of the control signal. It is further
desired that the velocity be as small as possible after two sampling intervals.

(a) Determine the optimal controller when & = 0 and the regulator parameters
when g =1, p = 0.1, and when p - 0.

(b) Determine the optimal controller when the measurement noise has the vari-
ance o< = 1.

11.22 Given the system

x(k + 1) = x(k) + v(k)
n(k) = z(k) +eq(k)
y2(k) = 2(k) + eq(k)

where v € N(0,0.1), ¢, € N({0,0n), and ¢; € N(0,03); and v, ¢;, and e, are
mutually uncorrelated.

{a) Determine the Kalman filter that gives #(k | & - 1) for the system.
(h) Compute the stetionary variance when ¢, = 1 and 0, = 2.
(¢} Compute the stationary gain when g, = 1 and op = 2.
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11.8 Notes and References

LQG-control and optimal filters are the subjects of many textbooks, for instance,
Athans and Falb (1966), Bryson and Ho (1969}, Astrém (1970), Andersson and
Moore (1971, 1979, 1990), Kwakernaak and Sivan (1972), and Kudera (1991),
The principle of optimality and dynamic programming are discussed, for in-
stance, in Bellman (1957, 1961},

Kalman and Bucy made the main contributions {o the development of
the recursive optimal filters discussed in Sec. 11.3. See Bucy (1959), Kalman
{(1960b), and Kalman and Bucy (1961),

A good source for properties of the discrete-time as well as continuous-time
Riccati equations is Bittanti, Laub, and Willems (1991). Numerical algonthms
for solving the Riccati equation are also discussed, for instance, in Kleinman
(1968), Biermann (1977}, Pappas, Laub, and Sandell (1980), Van Dooren (1981),
Arnold III and Laub (1984), and Benner, Laub, and Mehrmann (1995). The
Fuler equation is discussed, for instance, in Emami-Naeini and Franklin (1980),
Arnold IIT and Laub (1984), and Hagander and Hansson {1996).

Choice of the samplmg interval for LQ-controllers is discussed in Astrom
(1963), Melzer and Kuo (1971), and Lennartson (1987).

The separation theorem Theorem 11.7 appeared first in economic litera-
ture: Simon (1956). Discrete-time versions of the separation theorem can be
found in Gunkel and Franklin (1963).

Gain margin for discrete-time LQ-controllers is discussed in Willems and
Van De Voorde (1978) and Safonov (1980). Robustness of LQG controllers is
discussed in Doyle and Stein (1981).

Many of the modifications for the third edition of the book are based on
Gustafsson and Hagander (1991). The cross terms in both the loss function
(Quz # 0) and the Kalman filter (R,; # 0) are also discussed in Kwong (1991).
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Opfimal Design Methods:
A Polynomial Approach

12.1 Introduction

Optimal design methods based on input-output models are considered in this
chapter. Design of regulators based on linear models and quadratic criteria is
discussed. This is one class of problems that admits closed-form solutions. The
problems are solved by other methods in Chapter 11. The input-output approach
gives additional insight and different numerical algorithms are also obtained.

The problem formulation is given in Sec, 12.2, This includes discussion
of models for dynamics, disturbances, and criteria, as well as specification of
admissible controls. The model is given in terms of three polynomials. A very
gimple example is also solved using first principles. This example shows clearly
that optimal control and optimal filtering problems are closely connected. The
prediction problem is then solved in Sec. 12.3. The solution is easily obtained by
polynomial division. A simple explicit formula for the transfer function of the
optimal predictor is given. :

The minimum-variance control law is derived in Sec. 12.4. For systems
with stable inverses, the control law is obtained in terms of the polynomials
that characterize the optimal predictor. For systems with unstable inverses,
the solution is obtained by solving a Diophantine equation in polynomials of
the type discussed in Chapter 5. The minimum-variance control problem may
thus be interpreted as a pole-placement problem. This gives insight inte suitahle
choices of closed-loop poles and ohserver poles for the pole-placement problem.
The LQG-control problem is solved in Sec. 12.5. It is shown that the sclution
may be expressed in terms of spectral factorization and selution of a Diophantine

equation. Practical aspects, such as selection of the sampling period, are given
m Sec. 12.6.

447
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12.2 Problem Formulation

It is assumed that the process o be controlled is linear and time-invariant and
that it has one input u and one output y. The dynamics of the process are
characterized by a combination of a time-delay and a rational-transfer function.
It is also assumed that the disturbances may he described as filtered white
noise. A steady-state regulation prohlem is considered. The criterion is based
on the mean-square deviations of the control signal and the output signal, In
the formal problem statement given next, it is assumed that the model and the
criterion are sampled [compare with See. 2.3 and (11.1)].

Process Dynamics

Assume that the process dynamics are characterized by

Bilg)
Ay(g)

where A1(g) and B, (g) are polynomials in the forward-shift operator.

x(k) = u(k) (12.1)

Disturbances

Assume that the influence of the environment on the process can be charac-
terized by disturbances that are stochastic processes. Because the system is
linear, the principle of superposition can be used to redace all disturbances to

an equivalent disturbance v at the system output. The output of the system is
thus given by

y(k) = x(k) + v(k) (12.2)

Further assume that the disturbance v may be represented as the output of a
linear system driven by white noise—that is,

o(k) = 2%3 e(k) (12.3)

where C; (g) and A;(g) are polynomials in the forward-shift operator, and e{k) is
a sequence of independent or uncorrelated random variables with zero mean and
standard deviation ¢. The disturbance v may be a stationary random process. It
may, however, also be drifting, because the polynomial A, {q) may be unstable.
The model of the process and its environment can be reduced to g standard
form. Eliminate v and x among (12.1), {12.2), and (12.8), and introduce

A= A4
B = BiA; (12.4)
C=0CA
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o] Oy f——
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Figure 12.1 Representation of a system with one input and stochastic dis-
turbances using one or two noise sources.

The following model is then obtained.

Alg)y(k) = Blg)u(k) + Clg)e(k) (12.5)

This is the canonical model, which will be the basis of the control design. In
the special case when there are no disturbances, the model is simply a rational
pulse-transfer function (see Sec. 2.6). When there is no control signal, the model
is a stochastic process with a rational spectral density or an ARMA process (see
Sec. 10.4). The model (12.5) is a convenient canonical representation of a linear
system perturbed by noise. In Chapter 11 the process was driven by two noise
sources. By using the spectral-factorization theorem (Theorem 10.3) the noise
can be reduced to one source. Compare Fig. 12.1.

When the polynomial C(g) has all its zeros inside the unit disc, it is called
an innovation’s representation, because the random variables (k) represent the
innovations of the random process. Notice the symmetry between y and e. If ¢
and u are known up to time %, then y(%) can be computed, and if y and « are
known up to time 2, the innovation e(k) can also be computed. Netice that the
calculations of the residuals are governed by the dynamics of the polynomial
C(q). This polynomial can therefore be interpreted as the observer polynomial.
Because (12.5) is an innovations model, the solutions to filtering problems be-
come very simple.

Equation (12.5) can he normalized so that the leading coefficients of the
polynomials A(g} and C{(g) are unity. Such polynomials are called monic. The
polynomial C may also be multiplied by an arbitrary power of g, as this does not
change the correlation structure of C(q)e{f). This may be used to normalize C
so that deg C = deg A. The polynomials A(q) and B (q) may have zeros inside or
outside the unit disc. It is assumed that all the zeros of the polynomial C(g) are
inside the unit disc. By spectral factorization {Theorem 10.3), the polynomial
C{(q) may be changed so that all its zeros are inside the unit disc or on the unit
circle. An example is used to show this important point.

Example 12.1 Modification of the polynomial C
Congider the polynomial

Clz2)=2+2
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which has the zero z = -2 outside the unit disc. Consider the signal
n(k) = Cigle(k)

where e(k) is a sequence of uncorrelated random variables with zero mean and
unit variance. The spectral density of n is given by

1

ﬂ(BEWh) - Ec(euub]c(e—mh)

Because

Ci2)CzN=(z+2)(z7 ' +2) =1+ 22 M1+ 22)
= (2z+ 112 '+ 1) =4z + 05 g + 0.5)

the signal » may also be represented as
n(k} = C*(q)e(k)
where
C'z)=22+1

is the reciprocal of the polynomial C(z) (see Sec. 2.6). .
If the calculations of {12.4) give a polynomial C(g) that has zeros cutside the
unit disc, the polynomial C is factored as

C=C"'C"

where C~ contains all factors with zeros outside the unit disc, The polynomial
C is then replaced by C*C .

Criterla

In steady-state regulation it makes sense to express the criteria in terms of
steady-state variances of the control variable and the process output. For regu-
lation of systems with one output, the criterion may be to minimize the variance
of the output. This is discussed in Sec.6.6 . Also compare with Fig. 6.7. This leads
to the criterion

Ims = B52(R) (12.6)
where it is assumed that the scales are chosen so that y = 0 corresponds to

the desired set point. A control law that minimizes the criterion (12.6) is called
minimum-variance control. The criterion may also be expressed as

N
: 1 2
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Notice that this criterion is an approximation of the continuous-time loss func-
tion

- 1 T 2
Jx= JmE {i"‘/[, y (t)dt} (12.7)

A maore accurate approximation, which takes the behavior of the signals between
the sampling instants into account, is given in Sec. 11.1. Some consequences of
the approximation are discussed in Sec. 12.6. The properties of the control signal
under minimum-variance control depend critically on the sampling period. A
short sampling period gives a large variance of the control signal and a long
sampling period gives a small variance.

In some cases it is desired to trade variances of control and output signals.
This may be done by introducing the loss function

Jig = E(y2(k) +pu2(k)) (12.8)

The control law that minimizes this criterion is called the linear gquadratic
control low.

Admissible Controls

It is assumed that the control law is such that u(k), that is, the value of the
control signal at time k, is a function of y(k), y(k—1),... and u{k—1),u(k-2),....
Thus the computational delay is negligible in comparison with the sampling
period. It is very easy to modify the results to take delays in the computations
into account.

There are two versions of the theory. A linear control law may be pos-
tulated. It is then sufficient to assume that the disturbances e(i) and e(j) are
uncorrelated for i # j. If e(i) and e(j) are assumed to be independent, it can be
shown that the optimal-control 1aw is linear. The formula for the optimal-control
law is the same in both cages.

Minimum-Variance Control: An Example

The optimal-control problem defined by the model of {12.5} and the criterion of
(12.6) is solved in a special case. The solution, which is easily obtained from
first principles, gives good insight into the assumptions made. It also indicates
how the general problem should be solved.

Consider the first-order system

y(k + 1) + ay(k) = bu(k) + e(k + 1) + ce(k) (12.9)

where |c| < 1 and e(k) is a sequence of independent random variables with unit
variance.

Consider the situation at time k. The outputs y(k), y(k — 1),... have been
observed. The control (k) should be determined so that the output is as close to
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zero as possible, It follows from (12.9) that y(k + 1) may be changed arbitranly
by a proper choice of u(k). Because e{k + 1) is independent of y(k) and of the
terms of the right-hand side of (12.9), it follows that

vary(k + 1) z vare(k + 1} = 1 (12.10}

The term e(k) may be computed in terms of the known data y(k), y(k -~ 1),...

and (k- 1), u(k - 2),.... When the variables y{k) and e(k) are known, the
control law

u(k) = (ay(k) - ce(k))/b (12.11)

gives
yik+1)=elk+1) {12.12)

which corresponds to the lower bound in (12.10). If the control law in (12.11)
is used in each step, Bq. (12.12) holds for all 2. The computation of e(k) from
the data availahle at time % is then trivial and the control law in (12.11) can
be written as

u(k) = - i‘b_": (k) (12.13)
The optimal control is thus a proportional feedback with the gain (¢ — a)/b.
To analyze the properties of the closed-loop system under optimal control,
eliminate u between (12.9) and (12.13). This gives

yik+1) +cy(k) = e(k + 1) + ce(k)
Notice that the closed-loop system has the characteristic polynomial
Clz)=2+e¢

This shows the importance of the assumption that the polynomial C(z) is stable.
This difference equation has the selution

y(k) = e(k) + (=)' (ko) - e(ho)

Because ¢ is less than one in magnitude, the last term goes to zero as & —
ko increases toward infinity. Thus control law in (12.13) gives the minimum-
variance in steady state.

With this result, some observations are possible. The quantity —ay(k) +
bu(k)+ ce(k) can be interpreted as the best estimate of y(%+ 1), given the data
available at time k. The quantity e(k + 1) is the prediction error. The control law
in (12.13) implies that the control signal is chosen so that the predictad value
is equal to the reference value, which is zero in this case. The control error
i then equal to the prediction error. The solution to the minimum-variance
control problem is thus closely related to the solution of & prediction problem.
Therefore, the prediction problem is solved before the solution of the general
minimum-variance control problem is attempted.
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12.3 Optimal Prediction

Prediction theory can be stated in many different ways, which differ in the
agsumptions made on the process, the criterion, and the admissible predictors.
One formulation is given in Sec. 11.3. In this section the following assumptions
are made;

» The process to be predicted is generated by filtered white Gaussian noise.

» The best predictor is the one that minimizes the mean-square prediction
error.

* An admissible m-step predictor for y(k + m) is an arbitrary function of
y(k), y(k—1),....

An intuitive derivation of a predictor is first given. The result is then formalized.

Heuristics
Consider the signal ¥ generated by the model

-1
(k) = %e(h) - i*g_lze(k) (12.14)

where A* and C* are the reciprocals of A and C, that is, A*(g™!) = ¢7"A(g), and
¢! is the backward-shift operator. It is convenient to introduce this operator
because the discussion is hased on causality. It is assumed that A and C are of
order n.

Consider the situation at time k. The variables y(k), y(k - 1),... have

been observed and it is desired to predict y(k + m). A formal series expansion
of C*/A” in g~! gives

wi =1

Cig™)
A*(g™h)
=f(k+m)+ fielk+m-1)+ - + fr_1e(k +1)
Unknuwr?;t.timek g

+ fme(R) + frmsre(h~ 1) + -

ol

yik+m)= e(k+m)

(12.15)

"
Known at time &

The terms of the right-hand side are all independent because e(k) is a sequence
of independent random variables. It follows from the model of (12.14) that if the

polynomial C is stahle, then (i) can be computed exactly from y(i), y(i - 1),...
using
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The first terms of (12.15) are independent of the data at time 4. The second
part is known functions of the data available at time &. Thus it follows that the
optimal predictor ig given by

Jl+mik} = fne(R)+ frire(k— 1) + frnizelk-2) + -

and that the prediction error is
Jlh+m|k)=elk+m)+ fielk+m-1)+ - + fn1e(k+1)

To provide a formal proof it remains to show how the numbers f; can be com-
puted from A and C and how e(k) can be expressed in terms of past dats.

Main Result

The main result can be stated ag follows.

THEOREM 12.1 OPTIMAL PREDICTION Let y(k} be a random process gen-
erated by the model in (12,14), where all the zeros of the polynomial C(z) are
inside the unit disc, and e{k)} is a sequence of independent random variables.
The minimum-variance predictor over m steps is given by

¥fa=1
p=seemit = Tl - e o2

where the polynomials F and & are the quotient and the remainder when
dividing q"~1C by A; that is,

¢""'Clq) = Alg)F(g) + G(g) (12.17)
The prediction error is & moving average
He+m|k)=ylk+m)-yk+m|k)=F(gelk+1) (12.18)
It has zero mean and the variance
Ey(k+m k)= (1+fF+- +fi_)o! (12.19)

Proof  The polynomial F is monic of degree m - 1 and G is of degree less
than n. Hence

Flg)=¢"""+ ig™ %+ + fr1
Glg) = god" ' + 19" 2+ + gany
We introduce

Flgh=1+fg7 + -+ fuag ™
Gg) = go+gig ™+ +gaag ™!
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Ii follows from (12.17) that
C'g ) = A WF (@) +g "G (g7) (12.20)

Equation {12.15) can then be written as

Cg™h el G'(g7))
A(g ) e{fk+m)=F'{g )e(k+m)+ A (g e(k)

By using Equation {12.14) the signal ¢ in the last term can be expressed in
terms of the data available at time %. Hence,

y(k+m)=

ylk+m)=F (¢ Ne(k+m) +

The first term of the right-hand side is a linear function of e(k + 1), e(k + 2),

..., e(k +m), which are all independent of the data y(k), y(k—1), ¥(k - 2), ...

available at time k. The last term is a linear function of the data, Let § be an
arbitrary function of y{k), y(k —1}..... Then

2
i) =E(F(g VE(CU) s
E(ytk+m)-7) =E(F(g je(k+m)} +E (C*(q_l) sy =3
_ G'g") .
(g7t - 12.21
+28{ (g etk m)) (G ot -5) | (1221

The last term is zero because e(k + m),e(k + m — 1),..., and e(k + 1} have
zero mean values and are independent of y{(k), y(k — 1),.... The predictor that
minimizes the mean-square prediction error is thus given by (12.16) and the
prediction error by (12.18). The proof is completed by taking the mean value of
the square of the prediction error (12.18). This gives (12.19). n

Remark 1. Notice that the best predictor is linear. The linearity does not
depend critically on the minimum-variance criterion. If the probability density
of y(k) is symmetric, the predictor of {12.16) is optimal for al] criteria of the
form Eg{(y(k+ m) — 7)%) for symmetric g.

Remark 2. The assumption that e{i) and e{j) are independent for i # j is
essential for the last term in (12.21) to vanish. If the variables are uncorrelated,
the term will still vanish if the predictor ¥ is restricted to being linear.

Remark 3. 1t follows from (12.18) that
Je+1liky=yk+ 1) —Fh+1|h)=e(k+1)

The random variables e(k) can thus be interpreted as the innovations of the
process y(k) {compare with Sec. 10.4).
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Remark 4, Notice that the function
Jmy=0>(1+ i+ +fi)

18 the variance of the prediction error over the time interval mh. The function
J(m) approaches the variance of y as m — co. A graph of the function  shows
how well the process may be predicted over different horizons. See Example 12.3.

Remark 5. The predictor discussed in this section is equivalent to the

steady-state predictor obtained using the Kalman filter in Sec.11.3 (see Exam-
ple 11.6).

Calculation of the Optimal Predictor

It follows from (12.17) that #(g) is the quotient and G(q) the remainder when
dividing ¢"~'C(q) by A(g). The polynomials F and G can thus be determined by
polynomial division. An explicit formula for the coefficients of the polynomials
can also be given. Equating the coefficients of equal powers of ¢ in (12.17) gives
the following equations:

€1 =a1+ fl
¢ =ag+aifi+fa
Cm-1 = Qp-1 + amﬁifl + "'+alfm-—2 + fm~1

Cm = Qp +am—lf1 +-- +alfm-l + o
Cmel = Qi1 T 8nf1+ - + 2fmo1 + &1

€n = On + Ana1f1+ 00 + Bpomer fmma + &n-m
0= anfl + ﬂn—lf2 +oe an—m+2fm—1 + Hn-m+1

0= apfn-1 + 8n-

These equations are easy to solve recursively. Compare the solution of the Dio-
phantine equation in Chapter 5.

Example 12.2 Prediction
Consider the system (12.14) defined by the polynomials

Alg) = ¢ - 15g + 07
Clg) = ¢* - 02g + 0.5

and where e has unit variance. Determine first the three-step-ahead prediction of
the output. The identity (12.17) gives

g’ (q° - 02¢ +05) = (¢* - L5+ 07)(q* + fig + f5) + 80 + &1



Sec. 123

Optimal Prediction 457
This gives the triangular linear system of equations
g -02=-15+f fi =13
g 05 =07-15f+f f; = L75
g! 0=07f-15fH+g0 go=L1T715
@ 0=07h+a g1 = -1225
The prediction three steps ahead is thus given by
stk a1 = DD gy o LI
and the variance of the prediction error is
Ey = 1+ (1.3)% + (L75)? = 57525 .

Example 12.3 Influence of prediction horizon

Consider the process in Example 12.2. From (12.19) it follows that the variance of
the prediction error will increase with the prediction horizon. Also (12.17) shows
that the F-polynomial is obtained from the division of the C- and A-polynomials,
That is, the coefficients /, are the coefficients of the impulse response of the system.
Thus

_Clg) . ¢'-02g+05
Al Tr i I vy
= (1+13g7 + L75¢7 + L7157 + - Je(k) = Y _ fie(k - )

J=0
and the prediction loss is

m-1
E¥'(k +m k) =y  f?
i=0

Figure 12.2 shows the variance of the prediction error for different values of the
prediction horizan m. It is seen that the variance of the prediction error is mone-
tonically increasing with m. Figure 12.3 shows the output, the predicted output,
and the accumulated prediction loss, Y (y(k) - y(k{ & - m))z. for different predic-

tion horizons. s
¥ ' '
ﬁ . - . - » [ ] L} L ] L | L - . - L ] + - » L ] L]
‘¢ 10F L x
&
h
E L ]
m}: .

0 1 A

0 10 20

Prediction horizon m

Figure 12.2 The variance of the prediction error as function of the predic-
tion horizon m for the system in Example 12.3.
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(a) 10 [ -

y and §
o=

Figure 123 The process output (dashed) and the predicted output {solid)
for Example 12.3 when (a) m = 1, (b) m = 3, (¢) m = 5, and (d) the accu-
mulated prediction loss, T"(y(k) - 3(k | k- m))’, for m = 1 (dashed-dotted),
m = 2 {dashed), m = 3 (solid), and m = 5 {dotted).

The Case When C Has Zeros on the Unit Circle

The predictor of (12.16) is a dynamic system with the characteristic polynomial
C{(z). The assumption that C has all its zeros inside the unit disc thus guar-
antees that the predictor is stable in steady state. The initial conditions are
irrelevant because their influence will decay exponentially,

It follows from the spectral factorization that C may be chosen to have its
zeros inside the unit disc or on the unit circle. The zeros cutside the unit disc
18 mirrored in the unit circle. Compare with Example 12.1. Thus it remains to
discuss the case when C has zeros on the unit circle.
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Example 124 Zeros on the unit circle
Consider the process
y(k} = e(k) —e(k —1) (12.22)

In this case the polynomial C{z) = z — 1 has a zero on the unit circle. Applying
the previous methods formally gives the one-step predictor

Gk + 11 k) = —e(k)

Attempting to calculato e(k) from y(k},y(k - 1),..., y(ko) as was done previously
gives

e(ko - 1) Zy ek —1) + 2(4)

lkn

The presence of the term e(k; - 1), which does not go to zero as &y — —oo, shows
the consequences of C being unstable. The Kalman filtering theory can, however,
be used to determine the optimal predictor. The signal given by (12.22) can he
written as

x(k + 1) = e(k)
y(k) = —x(k) + e(k)

where Ry = B, = Rya = o? with the notations used in Sec. 11.3. The Kalman
filtor is

Hh+1|k) = K(k)(y(k) + ¥k | k- 1))

a?P(k)
Plk+1) = m
o
K{k) = P(k) + ot
with the initial conditions
i(kuikﬂ-l) =0
P(kg) = o*

The predictor for the output is
b+ 118) = ~&(h+ 1| &) = -K(K)(y(k) - 50k k- 1))
Simple calculations pive

A &y

. 1

SR L|E) = -gs > (n+ Lyy(ko + )
n=0

The optimum predictor is thus a time-varying system, Notice that the influence
of the initial condition y(ky) goes to zero at the rate 1/(k — ky + 2). This is much
glower than in the case of stable polynomials C. s

It follows from the example that the optimal predictor is a time-varying system
if the polynomial C has zercs on the unit circle. Such models should be avoided
if time-invariant predictors are desired. Unfortunately, this fact is not always
noticed, as Example 12.5 illustrates.
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Example 12.5 How to model offsets
The model

A(g)y(k) = C{gle(k) + b

where b is an unknown constant, represents a signal with an offset. The constant
b can be eliminated by taking differences. Hence,

(7 - DA(g)y(k) = (g - 1)C(g)elk)

The common factor g — 1 can be eliminated by regarding Ay(k) = (g - 1)y(k) as
the output. The model

Al@)ay(k) = (g - 1)C(glelk) = C(g)elh)

is then obtained. In this model the polynomial ¢ apparently has a zero on the unit
circle. This model is, however, not very desirable because the optimal predicior 1s
a time-varying system. It is much better to model an offset as a Wiener process.
This leads to a process model with A(1) = 0 that is unstable with a stationary
predictor. "

Other reasons for avoiding models where the polynomial C(z) has zeros close
to the unit circle are given in Sec. 12.6,

12.4 Minimum-Variance Control

To determine the minimum-variance control law, the special case when the
polynomial B in (12.5) is stable is discussed first. This means that the process
dynamics have a stable inverse. With some abuse of language, this case is also
called the minimum-phase case because the pulse-transfer function has all its
zeros inside the unit disc. The solution to the control problem is very simple

in this special case. The solution also gives insight into the properties of the
control problem,

Systems with Stable Inverses

By introducing the backward-shift operator ¢!, the model in (12.5) can be
written as

vty = 2@ 44 C@ o

Alg) Alg)
(1223)
ef =1 vf.-1
; g*gzﬂ} T ulh)+ igl; e(k)

where

d=degA-degB >0
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is the pole excess of the system (see Sec. 2.6), Further, deg A = degC = n. The
reciprocal polynomials are introduced to make the discussion based on causality
arguments more transparent.

It follows from (12.23) that

_C'(gY) B'(gY)
y{k + d) Z(g ) e(k+d)+ A*[q-l) u(k)
6 () - (12.24)
= F*{g Ye(k+d) + (q fyelh)+ (q uk)

where Equation (12.20) witb m = d has been used to obtain the last equality.
The first term of the right-hand side is independent of the data available at
time k and thus also of the second and third terms. The second term can be
computed exactly in terms of data available at time &. To do this, the variable
e{k} is given by (12.23); that is,

Bt
_d
q e

where the arguments of the polynomials have been dropped to simplify the
writing. Using this expression for e, Eq, {12,24) can be written as

e(k) = 5 y(H) - g~ T ulh)

gk +d) = Fe(h+d)+ 2o y() - g0 29 umy + 2w
e A A
(12.26)
G B Fr

Fle(k+d) + & - y{k) + ——u(k)

Now let u(&) be an arbitrary function of y(&), y(k-1),... and u(k-1),u(k~2),....
Then

Ey’(k + d) = E{F'e(k + d))" + E (9’_ Sk} + B”_? : u(k))z (12.26)

The mixed terms vanish because e(k + d), ..., e(k + 1) are independent of y(k),

y(k—1),... andu(k), u(k-1),.... Because the last term in (12.26) is nonneg-
ative, it follows that

Exfk+d) 2 (1+f2+-+f2,)o*

where equality is obtained for

_ G .G
“O = Fre ™ B

which is the desired minimum-variance control law. The result can be summa-
rized as follows,

y(k) (12.27)



462 Optimal Design Methods: A Polynomial Approach Chap. 12

THEOREM 12.2 MINIMUM-VARIANCE CONTROL—STABLE INVERSE  Consider
a process described by (12.5), where e(k) is a sequence of independent random
variables with zero mean values and standard deviations &. Let the polynomials
B and C have all their zeros inside the unit disc. The minimum-variance control
law is then given by (12.27), where the polynomials ¥* and G* are given by
{12.20) with m = d. This control law gives the output

y(k) = F*(qg"V)e(k) = e(k) + frelk— 1)+ - + fa_se(k —d + 1)
in steady state. »

Remark 1. The theorem still holds when e(i} and e(j) are uncorrelated
for i # j if a linear control law is postulated.

EBemark 2. The result is closely related to the solution of the prediction
preblem (Theorem 12.1). Identity (12.17) or {12.20) was used in both cases.
The last two terms in (12.25) can be interpreted as the d-step prediction of
the output. The minimum-variance strategy is thus obtained by predicting the
output d steps ahead and choosing a control that makes the prediction equal to
the desired output. The stochastic-control problem can thus be separated into
two problems, one stochastic-prediction problem and one deterministic-control
problem. Theorem 12.2 can therefore be interpreted as a separation theorem.

Remark 3. The error under minimum-variance control is & moving av-
erage of order d — 1. Thus the covariance function of the regulation error will
vanish for arguments larger than d - 1. This fact can be used for diagnosis to
determine if a minimum-variance strategy is used.

Remark 4. All process zeros are canceled when the control law of (12.27)
is used. The consequences of this are discussed later.

It is very easy to calculate the minimum-variance control law for a given
model (12.5}, as illustrated by the following example.

Example 12.6 Minimum-variance control
Consider a system given by (12.5), where

Alg) ="~ L1¢" +01g
B(q) =g+ 0.5

Clg) = ¢ - 0.9¢°
The pole excess is d = 2. Division of g%~'C(q) by A(qg) gives the quotient
Flg)=q+08

and the remainder

Glg) = 0.66¢% - 0.56¢
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The minimum-variance control law is thus

_ q{086g - 0.56)
ulk) = - omaros W

The variance of the output when the optimal controller is used is

Ey’ = 1+(08)% =164

Example 12.7 Influence of the delay
Let the process be described by
A{g N =1-15¢" +0.7¢*
B'(g™) = ¢ (1 +05¢7")
C'(gh) = 1-02¢" +0.5¢72
Compute the minimum-variance controller when d = 1, 3, or 5. The controller is
given by (12.27), where the F.polynomial is given in Example 12.3, Figure 12.4

shows the output and input when the minimum-variance controller is used for
different delays in the process. When d = 1, d = 3, and 4 = 5 the output variance

is 1, 5.8, and 10.5, respectively. n
(a)
10 5
3 E
[+
& AW N~ a0
: 2 ol -
~10 -5
0 80 0 50
(b) .
10 5

Output
=
Input
=

-10 -5

(¢

—

10

Output
Lo ]
Input
<

-10 -5

0 50 0 50
Time Time

Figure 12.4 Simulation of the system in Example 12.7 with the control
law given by Theorem 12.2. The output (left) and the input (right) when (a}
d=1(b)d =3 and (¢) d = 5.
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Interpretation as Pole-Placement Design

The minimum-variance control law can be interpreted in terms of the pole-
placement design discussed in Chapter 5. To see the relationships, the closed-
loop system obtained when the control law of (12.27) is applied to the system
of (12.5) is analyzed. Equations (12.5) and (12.27) can be written as

S ) () () o

The characteristic polynomial of the closed-loop system is the determinant of
the matrix on the left-hand side of {12.28). Hence,

A{g)F(9)B(q) + G(g)B(g) = ¢°'B(g)C(q) (12.29)

where Eq. (12.17), with m = d, is used to obtain tbe first equality. The closed-
loop system is of order 2r — 1. It has 2n ~ d poles at the zeros of B and C and
an additional d — 1 poles at the origin.

The minimum-variance control strategy can be interpreted as a pole-place-
ment design, where the poles are placed at the zeros given by (12.29). The
similarities to pole placement are seen even more clearly if the control law of
(12.27) is written as

___Glg) __Slg)
‘B 5ry*® = “rg "

where § = G and R = FB [compare with Eq. {5.2)]. Multiplication of (12.17)
by B gives

q°"'C(q)B(g) = A(g)F(q)B(q) + G(a)B(q) = A(g)R(g) + B(¢)S(q)

This equation is a special case of the Diophantine equation in (5.22) when
B* = B and with A, = ¢*'1B and A, = C.

Systems with Unstable Inverses

Remark 4 to Theorem 12.2 mentions that the control law given by (12.27) can-
cels all process zeros. If there are process zeros outside the unit disc, the closed-
loop system will tben have unstable modes that are unobservable from the
output. The implications of this are discussed first. Other control laws that do

not require all zeros of B(z) to be inside the unit disc are then presented.
Solving Eq. (12.28) for y and u gives

y(k) = ﬁ'—&(?—fe(k)

and

e(k)

“k) = 5 (g
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QOutput

-10 '
0 90 100

Time

Figure 12.5 Simulation of the system in Example 12.8 with the control
law given by Theorem 12.2 that cancels an unstable process zero,

The necessity of the assumption that B is stable is clearly seen from these
equations. If the polynomial B is unstable, the system has unstable modes,
which are excited by the disturbance. These unstable modes are coupled to the
control signal and the control signal grows exponentially. However, the output
signal remains bounded because the unstable modes are not coupled to the
output. An example illustrates what happens.

Example 128 Cancellation of unstable process zero
Consider a system described by the polynomials

AlZ)=(z-Bi{z-07
B(z)=09+1
C(z) = 2(z- 0.7)

The polynomial B{z) has a zero z = -10/9, which is outside the unit disc. A
gimulation when using (12.27) is shown in Fig. 12.5. The presence of the unstable
mode is clearly aeen in the control signal, although it is not noticeabls in the system
output. If the simulation is continued, the control signal will finalty be so large that
overflow or numerical errors occur. In a practical prohlem the signal will quickly

be so large that the linear approximation is no longer valid. After a short time the
unstable mede will then be noticeable in the output. ]

The minimum-variance control law is extended to the case when the polynomial
B has zeros outside the unit disc in Theorem 12.3.

THEOREM 12.3 MINIMUM-VARIANCE CONTROL-—GENERAL CASE  Consider a
system described by {12.5). Factor the polynomial B{z) as

B(z) = B*(z)B™(2) {12.30)
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where B~*(z) is monic. All zeros of the polynomial B * (z} are inside the unit dise
and all zeros of B~ (z) are cutside the unit disc or on the unit circle. Assume that
all the zeros of polynomial C(z) are inside the unit disc and that the polynomials
A{z} and B~ (z) do not have any common factors. The minimum-variance contrel
law is then given by

Glg)

ulk) = ———=— y(k 12.31
"= g™ (230

where F(q) and G(q)} are polynomials that satisfy the Diophantine equation
¢"'C(g)B"(q) = Alg)F (g)+ B~ (9)Glg) (12.32)

in which deg F = d + deg B~ — 1l and degG < degA = n.

Proof  The proof is based on a clever trick introduced by Wiener in his
original work on prediction. An alternative method is used in the proof of The-
orem 12.4. Consider the operator

1

gia

where |g| > 1. This operator is normally interpreted as a causal unstable (un-
bounded) operator. Because |e| > 1 and the shift operator has the norm ||gi] = 1,
the series expansion

11 1 1, 4. &
g+a al+gfa a ¢ a?

converges. Thus the operator (¢ +a)™! can be interpreted as a noncausal stable
operator; that is,

0= 3 (- s Stk - )

With this interpretation, it follows that

@rar (o) = 5th

The calculations required for the proof are conveniently done using the back-
ward-shift operator. It follows from the process model of (12.5) that

B -1 i -1
y(k+d) = I*%u(kh ﬁ.ghlge(k+d}

We introduce
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where the operator 1/B~*(¢"!) is interpreted as a noncausal stable operator.
The signals y and w have the same steady-state variance because B~ and B~*
are reciprocal polynomials and

B (e

B - (e ~—im]
An admissible contrel law that minimizes the variance of w also minimizes the
variance of y. It follows that

Bt —lB— -1 c* -1 B- -1
ol s d) = S g

The assumption that A(z) and B~ (2) are relatively prime guarantees that
(12.32) has a solution. Equation (12.32) implies that

C'(q)B (¢ = Ag V(g ) +q B¢ )G (g 7")
Divigion by A*B ™ gives
Clg)Bla)  Flg) 4Gl
A*(q71)B—(g7")  B~—(q7) A(g~1)
By using tbis equation, {12.33) can be written as

elk+d)  (12.33)

F(g!) B**(g")B~(¢™") G'(g")

wk+d)= o———elk+d)+ k+—

R A A U7 A

Because the operator 1/B~*(q~!) is interpreted as a bounded noncausal operator
and because deg F* = d + deg B~ - 1, it follows that

F'(g™)
B-(q7)
These terms are all independent of the last two terms in (12.34). Using the

arguments given in detail in the proof of Theorem 12.2, we find that the optimal

control law is obtained by putting the sum of the last two terms in (12.34) equal
te zero, This gives

e(k) (12.34)

e(k+d} = aje(k+ 1) + age(k + 2) +

G*[ —1}

“B) = B @

e(k) (12.35)
and

_BMg) Pl o Flg)
j’(k) B (q_l) w(k) = B,.(q_]) B(k) = me(k)
Elimination of e(k) between (12.35) and (12.36) gives

(12.36)

G -1
ulh) = - et Y4

The numerator and the denominator have the same degree because deg G < n
and the control law can then be rewritten as (12.31). n
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Remark 1. Only the stable process zeros are canceled by the optimal
control law.

Remark 2. Tt follows from the proofs of Theorems 12.2 and 12.3 that the
variance of the output of a system such as (12.5) may have several local minima
if the polynomial B{z) has zeros outside the unit disc. There is one absolute
minimum given by Theorem 12.2. However, this minimum will give control
signals that are infinitely large. The local minimum given by Theorem 12.3 is
the largest of the local minima, The control signal is bounded in this case.

Remark 8. The factorization of (12.30) is arbitrary because B* could be
multiplied by a number and B~ could be divided by the same number. It is
convenient to select the factors so that the polynomial B —(g) is monic.

Example 129 Minimum-variance control with unstable process zero
Consider the system in Example 12.8 where d = 1 and

B*z)=1
B~(z) = B(2)
B7{z)=2+09%

Equation (12.32) becomes

2z-0Tz+09) = (2-D(2-0N{z + fi) + (092 + ) {goz + g1)
Let z =07,z =1, and 2 = —10/9. This gives

07gs+8: =0
g +g =03
fi=1
The control law thus becomes
G(q) q-0.7
Wk = ——— k) = - —— 4k
B = g = o o
The output is
F(q) g+1 0.1
k) = R—d+1)= ——e(k)=e(k
(6)= gy ol 44 1) = Llpoeld) = oll) ¥ o elh

The variance of the output is

12
Eyf = (1+ 0 )62— @az=1.0503

1-092 19

which is about 5% larger than using the controller in Example 12.8. The variance
of the control signal is 275¢2/19 = 144762. A simulation of the control law is
shown in Fig, 12.6. The figure that the controller performs well. Compare also with
Fig. 12.5, which shows the effect of canceling the unstahle zero. Figure 12.7 shows
the accumulated output loss 3~ y2(%) and input less 5 u?(k) when the controllers
in Example 12.8 and this example are used. The controller (12.27) gives lower
output loss, but an exponentially growing input loss, and the controller based on
(12.31) gives an accumulated input logs that grows linearly with time. »
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Figure 12,6 Simulation of the system in Example 12.9.

100 -
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o
o=
=
o
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Figure 12.7 The accumulated cutput loss ¥ »*(k) and input loss 3" u? (k)
when the controllers (12.31) {solid) and (12.27) |dashed) are used.

A Pole-Placement Interpretation

Simple calculations show that the characteristic equation of the closed-loop sys-
tem obtained from (12.5) and (12.81) is

21B* (2)B*(2)C(2) = 0

Thus the control law of (12.31) can be interpreted as a pole-placement controller,
which gives this characteristic equation.
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Multiplication of (12.32) by B* gives the equation
A(Z)R(2) + B{2)S(z) = 2" 1B (2)B~*(2)C{2) (12.37)

where R(z) = B*(2)F(z) and S(z) = G(z). This equation is the same Dio-
phantine equation that was used in the pole-placement design [compare with
Eq. (5.22)]. The closed-loop system has poles corresponding to the sbserver dy-
namics, to the stable process zeros, and to the reflections in the unit circle of
the unstable process zeros. Notice that the transfer function B (z)/A(z) may be
interpreted as having d = deg A — deg B zeros at infinity. The reflections of
these zeros in the unit circle also appear as elosed-loop poles, which are located
at the origin,

Equation (12.37) shows that the closed-loop system is of order 2n — 1 and
that d - 1 of the poles are in the origin. A complete controller consisting of a full
Kalman filter observer and feedback from the observed states gives a closed-
loop system of order 2n. The “missing” pole is due to a cancellation of a pole at
the origin in the controller. This is further discussed in See. 12.5.

12.5 Linear Quadratic Gaussian (LQG) Control

The optimal control problem for the systam of (12.5) with the criterion of (12.8)
18 now solved. The minimum-variance control law discussed in Sec. 12.4 can
be expressed in terms of a solution to a polynomial equation. The solution to
the LQG-problem can be obtained in a similar way. Two or three polynomial
equations are needed, however. These equations are discussed before the main
result is given.

The name Gaussian in LQG is actually slightly misleading. The proofs
show that the probahility distribution is immaterial as long as the random
variahles e(%) are independent.

Using the state-space solution it is possible to get an interpretation of the
properties of the optimal solution, These properties can be expressed in terms
of the poles of the closed-loop system. In this way we can estahlish a connection
between LQG design and pole placement.

Properties of the State-Space Solution

The problems discussed in this chapter was solved using state-space methods
in Chapter 11. A stata-space representation of the model of (12.5) is first given.
For this purpose it is assumed that the model is normalized, so that deg C(z) =
deg A(z}. The model of (12.5) can then be represented as

x(k+1) = x(k) + Tu(k) + Ke(k)
y{k) = Cx(k) + e(k)



Sec. 125 Linear Quadratic Gaussian (LQG) Control in

where
(—a; 1 0 - 0y ¢ b1 ( c1—ap )
-2 0 1 .- 0 by Co — G
0= : I = K =
~ts-p 0 0 1 ba-y Cr-1 = @n-1
\ —a, 0 0 0 \ b, \ C=0On
c=(10 . o
“ (12.38)

Because this is an innovations representation if the matrix ® — K C has all its
eigenvalues inside the unit disc. The steady-state Kalman filter is then obtained
by inspection:

#k+1|k) = ®i(k|k-1)+Tu(k)+ K(y(k) - Ci(k |k - 1)) (12.39)
The Kalman filter has the characteristic polynomial
det(z] - (® - KC)) = C(2) (12.40}

This implies that C(2) are some of the closed-loop poles. Assume a computa-
tional delay of one sampling period in the control law. The optimal control law
13 then

u(k)= -Litk{k-1)
and the transfer function of the controller is

H.(2) = Lzl -® + KC + TLY 'K = 'sz_g)j (12.41)

where R(z) = det(z] -®+KC +TL), deg R(z) = n, and deg S(z) < a. It follows
from this discussion and Sec. 11.4 that the closed-loop poles are C(z) and

P(z) = det(z] - ® + TL)

where P(z} is obtained from the algebraic Riccati equation.

It is more complicated to derive the control law when the admissibie control
is such that u(k) is a function of y(%),y(k - 1),.... The loss function (12.8)
corresponds to (11.9) with @; = CTC, @2 = 0, and @; = p. From {11.19) and
{11.24) 1t follows that L = L,®. The results from state-space theory (Remark
2 of Theorem 11.7) show that the control law is

u(k)

~Li(k| k) - Lok | k)
~Li(k | k) - LK (y{(k) ~ C£(k | k - 1)) (12.42)
~Ly(® - KC)ik | b - 1) - L Ky(k)
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where 1{k | k1) is given by (12.39). The controller is still of order n. Eliminat-
ing & between (12.39) and (12.42}, we find that the controller can be described
by the relation

ulk) = ~Ly(® - KC){gl - ® + KC){Tu(k) + Ky(k)) - L Ky(k)
= ~L,{® -~ KC)ql - ® + KC) 'Tu(k)
~L(®-KC+ql-®+KC)(gl ~®+ KC)'Ky(k)  (1243)
= ~L,(®- KC)(gI - & + KC) 'Tulk)
~ Lyqlql - ® + KC) ' Ky(k)

Introducing Rq(g) = det(q] - ® + KC) we get

ulh) = - uth) - 285
where deg Ry(z) = n, deg Ro{2) < n and deg 8{z) = n with S(0) = 0. Hence
oS . S
R NrE A R TR 1244

We thus find that the controller has the property degB(z) = degS(z) = n.
Furthermore the condition S(0) = 0 implies that deg $*(z} < n.

Spectral Factorization

The L.Q-problem is solved in Sec. 11.4 using the state-space approach, which
led to a steady-state Riccati equation. It follows from the Riccati equation that

rP(2)P(z"Y) = pA(2)A(z7") + B(2)B(z7)) (12.45)

whare the monic polynomial P(2) is the characteristic polynomial of the closed-

loop system. [see Eq. (11.40)]. The closed-loop characteristic polyngmial can be

obtained by solving a steady-state Riccati equation. An alternative is to find a

polynomial P(z) that satisfies (12.45) directly. A feedback that gives the desired

closed-loop poles can then be determined by pole placement. The problem of

finding a polynomial P(z) that satisfies (12.45) is called spectral factorization.
First, consider a polynomial of the form

F(Z) = fﬂz2n + flzzn_l +oF fn-lz“+l +fn3n + fn-—lzn-l + f]Z + fn
Such a polynomial is self-reciprocal because
F'(2) = 22F(z™Y) = F{2)

It then follows that if z = a is a zero of F(2), then z = 1/ is also a zero. More-
over, if the coefficients f; are real, then z = & and 2 = 1/a are also zeros, where
@ is the complex conjugate of ¢. The following result can now be established,
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LEMMA 121  Let the real polynomials A(z) and B(z) e relatively prime
with deg A(z) > deg B(z). Then there exists a unique polynomial P{z} with
deg P(z) = deg A{z) = n and all its zeros inside the unit disc or on the unit
circle such that {12.45) holds. If p > 0, then P(z) hag no zeros on the unit
circle.

FProof A self-reciprocal polynomial is obtained if the right-hand side of
{12.45) is multiplied by z". The zeros of the right-hand side are thus mirror
images with respect to the unit circle. Because the coefficients are real, the
zeros are also symmetric with respect to the real axis. The right-hand side of

(12.45) cannot have zeros on the unit circle because if 2 = ¢* is such a zero,
then

PA(e®)Ae™") + Ble™)Ble™) = plA(e)[" + B ()i = 0

" As p >0, this implies that z = exp(i®) is a zero of both A(z) and B(z), which
contradicts the assumption that 4(z) and B(z) are relatively prime. The condi-
tion deg P{z) = n ensures a unique P(z). .

Remark 1. By introducing reciprocal polynomials, Eq. (12.45) can be
written as

rP(2)P*(z) = pAl(2)A*(z) + 2°B(2) B*(2) (12.46)

where P*{z) = z"P(z™!), and s0 on.

Remark 2. U P(z) satisfies (12.45) so does z' P(2) , where | is an arbitrary
integer. To obtain a unique P we can either apecify the degree of P or chooge P
as the polynomial of lowest degree that satisfies (12.45). For a control problem
it is natural to interpret P(z) as the closed loop characteristic polynomial under
state feedback. With this interpretation it is natural to require that deg P(z) =
deg A(z) = n. Notice that it is possihle to find a P of lower degree when o = 0
or when A(0) =0.

Conceptually the spectral-factorization problem can be solved by finding
the zeros of the right-hand side of {12.45) and sorting them. There are also
efficient recursive algorithms for solving the problem.

Heuristic Discussion

The LQG-problem will now be related to the pole-placement problem. We will
first give the solution heuristically, A formal solution wilt be given latsr. First,
recall that the pole-placement problem required specifications of the closed-loop
characteristic polynomial, which were chosen as A.(z)A.{z) when A, was inter-
preted as the observer polynomial. In the LQG-problem the observer polynomial
is simply A,(z) = C(z). Compare Theorem 12.1. The polynomial A, (2) is equal
to the polynomial P{z) obtained from the spectral factorization, When the poly-
nomials A,(z) = C(z) and A,(z} = P(2) are specified we can now expect that
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the optimal control law is given by

u(h) = —%% y()

where R(z) and 8(z) are solutions to the Diophantine equation
A(z)R(z) + B{(z)S(z) = P(2)C (2} (12.47)

The structure of the admissible control laws is determined by the polynomials
R(2) and S(z). Tc describe a control law such that w(k) is a function of y(k},
y(k—1), ..., and u(k ~ 1), u(k - 2), ..., that is, no delay in the controller, the
polynomials R(z) and 8(z) should have the same degree. To describe a control
law such that (k) is a function of y(k—1),¥(k—2),..., and u(k—1),u(k—-2),...,
that is, one sampling period delay in the controller, the pole excess of 8(z)/R(z)
should be one. The complexity of the control law is determined by the orders of
the polynomials R(z) and 8(z).

There are many polynomials R(z} and 5(z) that satisfy {12.47). Compare
the discussion in Sec. 5.3, Among all choices we will determine solutions that
minimize the loss function {12.8). Before making a formal solution we will dis-
cuss the problem heuristically.

The solution to the LQG probiem based on the state space approach gives
the additional constraints that have to be imposed on the solution to (12.47).
Equation (12.41) gave a polynomial interpretation of the state space solution.
The optimal controller was in fact characterized by the following conditions
on the controller polynomials: deg B{z) = n and deg S{z} < n. If A and B are
relative prime the optimal LQG-controller is thus the unique solution to (12.47)
with deg S(z) < deg A(z).

The problem is more complicated when there is no delay in the con-
troller. The transfer function of the optimal controller in this case was given
by Eq. (12.44) with deg R(z) = deg 8(z) = n, and and deg $*(z) < n. These
conditions are more conveniently expressed using another version of the Dio-
phantine equation (12.47). Assuming deg R(2) = deg S(2) = n, writing (1247)
with argument 27! and multiplying it hy 2** we find that

A'(2}R(2) +2°B*{2)8"(z) = P*(2)C*(2) (12.48)
where
d = deg A{z) — deg B{z)
If deg A*(z) = n the optimal controller is then the unique solution to (12.48)
with deg S*(2) < deg A*(z). Notice, however, that this does not give the optimal
solution when degA*(z) < n, i.e. when A(0) = 0. This case will be discussed

in the next section where we give a direct solution of the LQG problem with
polynomial caleulations.
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Formal Proof

After the informal discussion we will now give a formal proof of the statements.
For this purpose we will first prove a preliminary result.

LEMMA 12.2 Let the polynomial P(z) be a solution to the spectral fac-
torization problem (12.46) and let A(2) be monic. Assume that the polynomials
A(z) and B(z) do not have common roots outside the unit dise or on the unit
circle; then there exists a unique solution to the equations

A*(2)X(2) + rP(2)8"(z) = B(2)C*(2)

. (12.49)
2°B*(2)X (2) ~ rP(2)R*(2) = -pA(z)C*(2)

with deg X(2) < n, deg R*(z} < n and deg 8*(z) < n, where n = deg A(2).

Proof.  First, assume that polynomial P{z) has distinct zeros z;. Since
P(z} is stable we have |z;| < 1. The values A*(z;) and B*(z;) cannet vanish
simultaneously hecause this would contradict the assumption that A(z) and
B(z) do not have common unstable factors. Evaluating (12.49) for z = 2; we get

dA"(zJX(zr') = B(z;)C*(z)) (12,50)
% B* (20X (z:) = ~pAlz;)C"(24)

If hoth A*(z;) and B*(z;) are different from zero, both equations give the same
result, since it follows from {12.46) that

Blz) _ pA)
A(z)  2iB*(z)

IfA*(z;) = 0 and B*(z;} # 0 it follows from (12.46) that B(z;) = 0. Since A(z)
is monjc it also follows that A*(0) = 1. This implies that |z;| # 0. The equation

A (2:)X(2:) = B(2:)C*(2:)
is trivially satisfied and the solution to (12.60}) is

PAZ)C* ()
K= By

A similar argument shows that X(z,) is unique also when B *(z) = 0
and A{z) # 0. We can thus determine deg P values X(z;). Using Lagrange’s
interpolation formula the polynomial X(z) of degree degP — 1 which satisfies
{12.50) is thus unique,

It follows from the construction of the polynomial X {z) that the polynomial
A*(2)X(z) - B(2)C*(2) vanishes for the zeros z; of P(z). This implies that it is
divisible by P(z). The quotient

A*(2)X(z) - B(2)C*(2)

5(2) = rPz)
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is thus a polynomial, It has degree
deg S* < max(degA™ +degP - 1,degB + degC™} —deg? < n (12.51)
Using the same argument we also find that

_ 2%B*(2)X(2) + pA(2) C'(2)
B rP(z)

R*(2)

is a polynomial of degree
deg B* < max(d + degB* + degP - 1,deg A + degC") —deg P < n {12.52)

The solution X{(z). 8*(z) and R*(z) to (12.49) is continuous in the coefficients
of polynomials A(z) and B(z). If polynomial P(z) has multiple zeros we can the
perturb the coefficients of A(z) and B{z) to obtain a P(z) with distinct zeros

and obtain the results by a limiting procedure. The details of this argument are
delicate. »

ERemark 1. Notice that if cne solution, Xy, Ry, S7, to Eq. (12.49) has
been obtained all other solutions are given by

X(2) = Xo(z) + Q2)rP(2)
R*(2) = R}(z) + Q(2)z°B*(2) (12.53)
§*(z) = Splz) - Hz)A"(2)

where Q(z) is an arbitrary polynomial. This is easily verified by direct insertion
into the equation,

Remark 2. The polynomials R{z) and S{z) are given by R(2) = 2"R* (2™}
and 8(z) = 2"5*(z™%). The conditions A*(0) = P*(0) = C*{0} = 1 together with
Eq. (12.53) imply that R*(0} = 1, hence deg R(z) = n and degS(z) < n and
deg §*(2) < n.

Remark 3. Eliminating X by multiplying the first equation by 28R"(z)
and the second by A"(z) and subtracting gives

rPS*z%B* + rPA'R* = RC'2%B" + pA*C* = rPP*(C"
where the second equality follows from (12.46). Dividing hy rP shows that the
the polynomials R* and S* satisfy the Diophantine equation (12.48).

Remark 4. In the following we will need another property of the solu-

tions to Eq. (12.49). Adding the first equation multiplied by pA and the second
muttiplied by B gives:

(pAA" +z“BB")X + prAPS* - rPBR* =0
Using the spectral factorization condition {12.46) and dividing by rP now gives:
P'(2)X(z) = B(z)R"(2) — pA(2)S*(z) (12.54)

After these preliminaries we will now solve the LQG-problem with pely-
nomial calculations.
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THEOREM 12.4 LINEAR QUADRATIC GAUSSIAN CONTROL  Consider the sys-
tem in (12.5) with deg A{z) = deg C{z) = n. Assume that all the zeros of polyne-
mial C(z) are inside the unit disc, that there are no factors common to all three
of the polynomials A(z), B{z), and C(z), and that a possible common factor of
A(z) and B(2) has all its zeros inside the unit disc. Let the monic polynomial
P(z), which has all its zeros inside the unit disc, he the solution to (12.45) with
deg P(z) = n. The admissible control law with no delay that minimizes the
criterion of (12.8) is given hy '

-1
(k) = e 90 =~ ) (1255

where polynomials B*(z) and S*(z) are the unique solution to Equation (12.49)
with deg X (z) < n. With the control law of (12.55), the output becomes

R{q)

y(k) = Blg) ——e(k) (12.56)
and the control signal is
y u(k) = —% e(k) (12.57)

The minimal value of the loss function is

1 -1
mmE(y +pu ) T fR(z)R{zP(i};fS())S{z ) % (12.58)
Proof Introduce
7} =u—f—ay (12.59)

where v may be regarded as a transformed control variable, which has to be
determined. Equations (12.5}), (12.47), and (12.59) give

BRv+CRe BRv+CR BR R
“TAR+BS - PC e=Pc”+Fe (12.60)

It then follows from (12.60) that

L _,_SBu+SCe PC-BS S AR S 261
= P¢C_PC ' BT PGV PE (12.61)

The loss function of (12.8) can be written as

2 2
J =By +pu’) = E (?—CU-{-RE) +pE(§g %e)

= Jy+ 25 +
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where

7=z 2)(79) - (3¢ ) (5))

R \2 8 \2
1=((pe) +o(57) )
It follows from Remark 2 of Theorem 10.2 and (12.45) that

1 [ (B@)B(z Y} +pA(2)Alz"))R(2)R(™Y)
- 27?;% P(z)P(z")C(2)C(z))

_ r [R@REY dz o (R{g) \
- } T VEVE S = (a}ﬁv)

For causal controllers with no time delay u(?) can be expressed as v(t) =
V{g)e(t), where V(g) is a rational function with zero pole excess,

_ 6* [BER()R(™) -pA@E)R(2)8(z™")
2 P(2)C(2)P(z7 1)
It follows from Equation (12.54) that

B(z)R(z™) - pA(z)8(z™) = Plz™))X(2)

1

Viz)Viz ™) d—:-

Vi) dz

Z

F

Hence
2
-5 piace "% - (org o)
It was assumed that P(z) and C{z) are stable and it follows from Lemma 12.2
that deg X(z} < n. This implies that
deg R{2)X(2) < degP(2)C(2) = 2n
The guantity

R@)X(a)

Plg)C{g)
is thus a function of v(k-1},0(k-2),.... Because all these terms are independent
of e(k), f becomes zero. The loss function can thus be written as

R(q) )2 (R(q} )2 8(0)
J:rE(———vk +E{ =—=e(k)] + E(-—— k)
ci@)'®) *F g ®) R g ¥
where P and C are stable polynomials. It follows that the loss function achieves
its minimum (12.58) for v = 0, which by (12.69) corresponds to the control law

of (12.55). Equations (12.56) and (12.57) follow from (12.60) and (12.61), and
Theorem 10.2 and (10.23) give the formula of (12.58). »
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Remark 1. The minimum-variance contrel law is a special case of Theo-
rem 12.4 with p = 0. It follows from (12.49) that R*(2) P(z) = —29B*{2)X{z). Be-
cause deg X{z) < n, we have deg R*{2) < nfor p = 0. Because alsodeg S*{z) <n
the polynomials R(z} and S(z} have z as a common factor. Introducing B(z) =
R*(2)B~(z), where B* has all its zeros tnside the unit disc and B~ all its zeros
outside the unit disc, we get

VrP(z) = 2'B*(2)B"(2)
where /7 = B~(0). The Diophantine equation (12.47) then becomes
A(2)R(z) + B(2)8(z) = 2B*(z)B™*(2)C(2) {VTF
Cancelling the commen factor z in B (z) and S(z) to give R(z) and S{z) we get
AlR)R(z)+ B(2)3(z) = ¢ ‘BT (2)R(2)C(2) /7

which is identical to (12.32). Theorem 12.3 has thus been proven in a different
way. The pole-zero cancellation at the origin of the control law explains that
there are d—1 instead of d closed-toop poles at the origin, Compare with (12.29).

Remark 2. If the polynomial A{z) has the form A(z) = z'4,(z), where
| < d = deg A(z)—deg B(z), it follows from {12.45) that P(z) = 2!P,(2). Equation
(12.47) then implies that S(z) = /8, (z).

The LQG controller will now be illustrated by an example.

Example 12,10 LQG control with unstable process zero

Consider the same system as in Examples 12.8 and 12.9, Instead of using a
nuinimum-vanance control law we will now use an LQG strategy. To do this the
parameter p in the control strategy must be chosen. To guide this choice we will
first caleulate the variances of the output and control signals obtained for different
values of the loss function. The results are shown in Fig. 12.8. The value g = 0
corresponds to a minimum-variance strategy. This gives a control signal with large
variance. Compare with Example 12.9. The variance of the control signal decreases
rapidly with increasing p. The variance of the output increases slowly.

By choosing a reasonable value of p it is possible to have a control strategy
that gives an output variance that is only marginally higher than with minimum-
variance control and a variance of the control signal that is substantially lower. A
reasonable value is p = 1. This gives Ey? = 1.39 and Eu? = 0.22, which can be
compared with minimum-variance control that gives Ey® = 1.05 and Eu? = 14.47.

The input- and output signals cbtained with p = 1 are shown in Fig. 12.9.
Compare with the corresponding curves for minimum-variance control in Exam-
ple 12.9. The fluctuations in the output are a little larger, hut the fiuctuations
in the control signal are substantially smaller. This way of applying LQG control
where the control weighting is used as a design parameter is very typical. .
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10 -

Variance
i |
P

0
0.001 1 1000
Weighting p

Figure 12,8 Variances of input » (dashed line} and output y (sclid line)
for LQG controllers having different values of the control weighting p for the
gystem in Example 12.10

An Interpretation

Theorem 12.4 establishes the relation between LQG-control and pole-placement
control because the polynomial C{z) is the observer polynomial A,(2) and P(z)
is the polynomial A.(z). The LQG-controller may thus be considered as a pole-
placement controller where the observer polynomial A,(z) is obtained from the
noise characteristics and the polynomial A,(z) from the solution to an optimiza-
tion problem. The solution to the optimization problem also tells what solution
of the Diophantine equation we should choose.

Qutput

Input

-10+ . |
0 50 104
Time

Figure 12.9 Simulation of the for the systemn in Example 12,10 using the
LQG-controller with p = 1. The output obtained with the minimum-variance
controller {p = 0) is shown in dashed. Also compare with Fig, 12.6.
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A Computational Procedure

Theorem 12.4 gives a convenient way to compute the LQG-control law for SISO
systems, which can be described as follows.

1.

3a.

3b.

Rewrite the model of the process and the disturbance in the standard
form (12.5), where C(z) is a stable polynomial. It may be necessary to use
a spectral factorization to obtain this form.

. Use a spectral factorization to caleulate P(z). If the polynomials A(z) and

B (z) have a stable common factor Az(2), the caleulations of the control law
can be simplified by first factoring A(z) and B(z) as A(z) = A;(2)As(2) and
B(z) = Bi(z)Ay(z). It follows from (12.45) that Ap(z) also divides P(z).
This polynomial can thus be written as P(z) = P;(z)Az(z), where Py(z) is
given by

TP1 (Z)Pl(Z_l) = pAl(z]Al(z'l] + Bl(Z)Bl(Z_I)

The polynomial P(z) is then equal to Py(2)As(2), which is stahle, because
Aj(2) was assumed stable. Equation (12.47) can also be divided hy Az(2)
to give

P\(2)C(z) = Ai(2)R(z} + By (2)S(2)

where deg R(z) = deg S(z) = deg C(2) = n, and §(0) = 0.

If there are no common factors between A and B and if A(0) # 0 then

the controller is given by a unique solution to the Diophantine equation
(12.47) such that deg R (z) = deg S(z) = n, and S(0) = 0.

If there are stable commeon factors of A and B or if A(0) = 0 the solution is

obtained from the Equation (12.49) or Diophantine equation (12.47), and
(12.54).

The computational procedure shows that when there are no common fac-

tors between A and B and when A(0) # 0 then it is sufficient to solve only one
Diophantine equation with the extra constraint S(0) = 0 to obtain a umique

solution. In other cases it is necessary to solve the coupled equations (12.49).
Theorem 12.4 is illustrated by two examples.

Example 1211 LQG for first order system

Consider a system characterized by

AZ)=z+a a#0
Biz)=1b
Clz)=z+c¢

To find the control law that minimizes the criterion of (12.8), the spectral-factori-
zation problem is first solved. Equation (12.45) can be written as

rz+p )"+ p1) = plz+ 0}z + a) + b
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Equating coefficients of equal powers of z gives
TPy = po
r(1+p%) =p(l+a?) + ¥
Elimination of p, gives
PP -rlp(1+a®) +b%) +p%? = 0 (12.62)

This equation has the solution

1
r=2 (p(l +a?) + B2 + /p¥(1 - a?)? + 200%(1 + 0%) + b“)
where the positive root is chosen to give |p;| < 1. Furthermore

_pa
==
Because A and B are relative prime and A(0) £ 0, the solution can be found

from the Diophantine equation (12.47). With degS = 1 and S(0) = 0, Eq. (12.47)
becomes

(z+e)(z+r)+bsoz = (z+p){z+¢)
Putting z = -a we get

_(p1-a)(c—qa)

S = ab

1 follows from (12.62) that

pepi - ppr(l+ 0%} - p1b*+pa = 0

Hence
plap] - a’py - py +a) = p ¥’
or
I (ﬂPI{m —a)-(p1— ﬂ)) = p18?
which gives
X
ph-o=-— Pi
p(l~ap)
We thus get

- pdie—a)  bic-a)
" pab{l-apy) r(1-ap;)
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Furthermore, equating the constant terms in (12.47) gives

, o P _pe
a r
The control law thus becomes
S(q) b(c -a) q
By = ———= (k) = k
(k) = ~ ey Y y(k)

Tr(1-apy) g+ prcja a

The caleulations in Example 12,11 do not work when ¢ = 0, because in this case
the solution to the LQG-problem is not uniquely determined by the Diophantine
equation (12.47) and it is necessary to use (12.49).

Example 12.12 LQG for system with a time-delay
Consider the case

Alz) =2
B(z)=b
Clz)=z+c¢

The spectral factorization problem (12.45) has the solution
Pley=2 r=p+h
Assuming that it is desired to have a controller with no exira delay we require that
degS(z) = degR(x) = 1. The Diophantine equation (12.47) with the constraint
deg §*(z) = 0 becomes
z{z + ) + bsgz = z(z + ¢)
Identification of coefficients of equal power of z gives only one equation

r1+bSU=G

to determine two parameters r, and sy. The approach with the Diophantine equa-
tion thus does not work in this case, Equation (12.49) gives

X + rspz = b1 + ¢2)

bagz — rz(l + riz) = -pz{1+ c2)

Identification of coefficients of equal power of z gives linear equations which have

the solution
In:b
_pc__pe
n=3 T p+bt
be
&y = —
=
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Uncontroliable and Unstable Modes

Models with the property that pelynomials A(z) and B(z) have a common fac-
tor that is not a factor of C(2) are important in practice. They appear when
there are modes that are excited by disturbances and uncontrollable from the
input. Compare Sec. 12.2. Because the modes are not controllable, they are not
influenced by feedback.

Theorem 124 covers the case of stable common factors, but it does not
work for unstable commen factors. Unstable common factors are important in
practice because they give one way of obtaining regulators with integral action.

To see what happens when there are unstable common factors, let A,
denote the greatest common divisor of A and B and let A; denote the factor of
Ay with zeros outside the unit disc or on the unit circle. Let the feedback be

(k) = —ﬁ—%y(k)

where R(z) and S(z) are relatively prime. It follows from {12.5) that

_ R(q)C{q)
Y®) = 2@ + Blo)s@

u(k) = —— 29
Alg)R(g) + B{q)S{q)

The unstable factor A; (z) divides the denominators of the right-hand sides of
(12.63) and (12.64). Both y and u will be unhounded unless R(z) or (2} are
chosen in special ways. The signal y will be bounded if R(z) is divisible by
A, (z), and u will be hounded if 4;(z) divides S(z). Because R{z) and 8(z)
are relatively prime, it is not possible to make both y and u bounded. This is
natural because infinitely large control actions are necessary to compensate for
infinitely large disturbances.

To describe a prohlem of this type as a meaningful optimization problem,

the criterion of (12.8) must be modified. One possihility is to introduce the
variable

(12.63)

e(k) (12.64)

w(k) = g~ ™ A; (q)ulk) (12.65)
where m = deg A; (z}, and to introduce the criterion

Jy, = E (yz(k) + pw(k)) (12.66)

Example 12.13 Integral action
Let the system be described by

0 = g u + 2L gy

) 1{g)
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which is a special case of Eqs. (12.1) to {12.4) with a drifting disturbance. Hence

Alg) = (g - 1}As(q)
B(g) = (g— 1}Bi{q)
Clq) = Ailq)Cilg)

Unbounded control signals are necessary to compensate for the unbounded distur-
bance. This implies that the medified loss function (12.66) becomes

Ty = B[+ p (suth) |
where
Aulk) = u(k) - (k- 1)

This means that the difference and not the absolute value of the control signal is
penalized. The solution to the LQG-problem gives a controller with integral action.
"

The following result can then be established.

THEOREM 12.5 LQG-CONTROL WITH UNSTABLE COMMON FACTORS Con-
sider the system described by (12.5), where A(z) and C{(z) are monic polynomials
of degree n. Assume that all zeros of C (2} are inside the unit disc and that there
is no nontrivial polynomial that divides A(z), B(z), and C(z). Let Az(2) be the
greatest common divisor of A(z} and B(z), let A; (2) of degree [ be the factor
of Aa(z) with all its zeros inside the unit disc, and let A;(z) of degree m be
the factor of A(z) that has zeros on the unit circle or outside the unit disc. The
admissible control law that minimizes (12.66) is given by

_ _Sa)
u(k) = "Rl (k)
where R(z) and S(z) are of degree n + m
Re) = A3 (2)R(2)
S(z) = 2"8(2) (12.61)

and R(2) and §(z) satisfies

Ai(2)Az(2)R(z) + 2"B1(2)8(2) = Py(2)C(z) (12.68)
A*(2)X(2) + rP(2)8%(z) = ¢"B(z)C*(z) '
with deg R(z) = deg §(2) = n, deg X(z) < n and 8(0) = 0. Furthermore
A(z) = A{z)Aq(2)
B(z} = By(2)42(2)

B(2) = By(z)A; (2)
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and Py(z) is the solution of the spectrai-factorization problem
rP(2)Py(27Y) = pAL(2) A5 (2)A1(z ") A5 (z7Y) + By(2)Bi(z ™)) (12.69)
with deg P1(z) = deg A (2) + deg A; (2).
Proof  Introducing the signal (12.65), the model (12.5) can be written as
Ag)ylk) = B(g)q"w(k) + Clg)e(k)
The polynomials A(g) and B(g) have the common factor A; (z), which has all

its zeros inside the unit disc, but no other common factors with zeros outside

the unit disc or on the unit circle. It then follows from Theorem 12.4 that the
optimal control law

S——

wth) = 22yt

is obtained from (12.47). Because A{z) and B (z) have the stable commen factor
A7 (2), the polynomial P(z) has the form

e

P(z) = A} (2)P1(2)

where Py(z) is the solution to the spectral-factorization problem (12.69). From
Lemma 12.2 the polynomials R(z) and S{z) satisfy the equations

AR)R(z) + 2™ B(2)8(2) = A (2)P1(2)C(2)
A'(2)X(z) + rP(2)5'(2) = ¢"B(2)C"(2)
with deg R(2) = deg §(2) = n. Because A} divides A{z) and B(z) we get (12,68).

Using (12.65) to express the control law in terms of the control variable « gives

the result. n

Remark. Notice that using (12.67), Eq. (12.68) can be written as
A(2)R(2) + B(z)8(2) = As(2)P1(2)C(2)

The LQG-solution can thus be interpreted as a pole-placement controller, where
the poles are positioned at the zeros of Ay, P, and C. The controller also has the
property that A; divides R. This is an example of the internal model principle.

Command Signals

The discussion in this chapter has so far been limited to the regulator prob-
lem. To introduce command signals, refer to the discussion in Chapter 5. The
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key issue is to introduce the command signals in such a way that they do not
generate unnecessary reconstruction errors, This is achieved by the control law

R{glu(k) = toAo(q)uc(k) - S(q)y(k)

where A,(q) is the observer polynomial and to a constant. For the optimal
Kalman filter 4,(g} = C{g), where C(q) is given by (12.40). It then follows
from (12.5) that the output of the system is given by

B(g)

) = to 5 )+ g el

where deg R = n.
The pulse-transfer function from the command signal is B (z)/P(z). This

response may be shaped further by cascading with a precompensator that has
an arbitrary stable transfer function H¢(z). The control law hecomes

4(9)

S
e gtk - 58 e

(k) = @)

which pgives

yi) = -‘;’% H(q)udk) + %em

Because the polynomial P is stable, this may be canceled by the precompensator.
It thus follows that the response for disturbances and command signals may be
shaped differently.

The feedhack S/R is first designed to ensure a good response to distur-

bances. The precompensator Hy is then chosen to obtain the desired response
to command signals.

12.6 Practical Aspects

Much of the arhitrariness of design seems to disappear when design problems
are formulated as optimization problems. The model and the criteria are stated,
and the control law is obtained simply as the solution to an optimization proh-
lem. This simplicity is deceptive because the arbitrariness is instead transferred
to the modeling and the formulation of criteria. A successful application of op-
timization theory requires insight into how the properties of the model and the
criteria are reflected in the control law. Typical questions are: What should the
model look like in order to get a regulator with integral action? What problem
statements give regulators with a PID-structure? Seme of these issues are dis-
cussed in this section, which also gives insight into the properties of the optimal
control laws, It turns out that some results can be formulated as design rules.
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The polynomial approach, which operates directly with the transfer functions,
is well suited to do this.

Other aspects of practical relevance, such as sensitivity and robustness, are
also discussed. A brief treatment of the intersample ripple of the loss function
is given, together with some aspects of the choice of the sampling period.

Properties of the Optimal Regulator

Some properties of the model influence the optimal-control laws. The basic model
uzed is given by (12.5)—that is,

Alg)y(k) = B(q)u(k)+ Clq)e(k) (12.70)

The ratio B /A represents the pulse-transfer function of the process, and the ra-
tio C/A represents the pulse-transfer function that generates the disturbance of
the process output. The polynomials A, B, and C may have common factors that
reflect the way the control signal and the disturhance are coupled to the system.
There are, however, no factors common to all three polynomials. Compare this
with the discussion in Sec. 12.2, where the model is derived. The presence of

common factors that will directly influence the properties of the regulators will
now be investigated.

The internal-model principle. Factors that are common to polynomials

A and B correspond to disturbance modes that are not controllable from u. Such
modes will appear as factors of P, Let

Ag = gcd(A, B)

be the greatest common divisor of polynomials A and B. If Ay is stable, it
follows from Theorem 12.4 that A; also divides P. If Ay has a factor A; with all
its zeros outside the unit disc, the corresponding result follows from Theorem
12.5. In this case it also follows from Theorem 12.5 that Ay divides R. This
observation is called the internal-model principle; it says that to regulate a
system with unstable disturbances, the disturbance dynamics must also appear
in the dynamics of the regulator. A few examples llustrate this idea.

Example 12.14 Integral action

A regulator has intsgral action if z ~ 1 divides R(z). It follows from Theorem 12.5,
and the internal-model principle, that this will occur if # - 1 divides both A and
B, which means that the model is of the form

Ar{g)g - Vy(k) = Bi{g)lg - Duk) + Clg)e(k)

This means that there is a drifting disturbance. n



Sec. 12.6 Practical Aspects 489

Example 12,15 Elimination of a sinusoidal disturbance

A narrow-band sinusoidal disturbance with frequency centered at o may be rep-
resented as white noise driving a system with the denominator

D{g) = ¢° - 2groswh + 1
If the poles of the system dynamics do not correspond te D, the mode) becomes

Ai(g)Dig)ylk) = Bylq)D{g)ulk) + Clglelk)

The aptimal regulator is then such that D{z) divides R(z). .

Cancellation of process poles. A common factor of A and C' corresponds
to controllable modes that are not excited by the disturbances. Let A; be the
greatest commen divisor of A and C. The polynomial A; is stable because C is
stable, and it does not divide B because there is no factor that divides all of 4,
B, and C. 1t follows from (12.47) that A also divides the polynomial S, which
is the numerator of the regulator transfer function, Thus stable process poles
that are not excited by the disturbances may be canceled.

Canceilation of process zeros, Common factors of B and C correspond
to process zeros that block transmission hoth for the control signal & and for
the disturbance e. Let By be the greatest common divisor of B and C. The
polynomial By is stable and it does not divide A. It then follows from (12.47)
that By divides R. This means that the zeros corresponding to B; = 0 are
canceled hy the regulator. Therefore, process zeros that are also transmission
zeros for the disturbance C qre canceled by the regulator.

For the minimum-variance control, it follows from (12.46) with p = 0 that
\/; P = qd B*R~*

where 7 = B~(0) and from (12.47) that B* divides R. All stable zeros are
thus canceled by the minimum-variance control law.

An analysis of the properties of the optimal-control law thus gives partial
answers to the classic cancellation problem.

Sensitivity and Robustness

It is important that a control system be insensitive or robust with respect to
measurement errors, plant disturbances, and modeling errors, This may be an-

alyzed as in Sec. 5.5 for the pole-placement problem. The robustness properties
are conveniently expressed in terms of the loop gain:

BS

L‘:E
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or the return difference

g..1_,, B35 AR+BS PC
TS " AR~ AR AR

The loop gain L(expiwh) is normally high for low frequencies and small for
high frequencies. The crossover frequency o, is the lowest frequency, where

)

The closed-loop system is insensitive to plant disturbances at those frequencies
where the loop gam is high. To have low sensitivity to poor modeling of the
high-frequency dynamics of the plant, it is desirable that the loop gain decreases
rapidly above the crossover frequency. It is possihle to make sure that the loop
gain 18 high for certain frequencies by choosing models with special structure,
as was done in Examples 12.14 and 12.15. Plots similar to those in Fig, 5.6
are also useful in evaluating the sensitivity. In a properly designed sample-data
system, there will be antialiasing fillers, which eliminate signal transmission
above the Nyquist frequency. The selection of a proper sampling rate is one way
to make sure that the loop gain is low over a given frequency. This also means
that high-frequency modeling errors have little influence. Notice, however, that
plots of the loop gain and the return difference will not give the complete picture
because there may be pole-zero cancellations that do not show up in these plots.

An analysis of the characteristic equations is useful in such a case. To
perform such an analysis, assume that the system is governed by

A’(@)y(k) = B (q)ulk) + C%g)e(k) (12.71)

but that a regulator is designed based on a different model, as in (12.70). The

regulators given by Theorems 12.4 and 12,5 give a closed-loop system with the
characteristic polynomial

A’R+ B°S = AR - AR+ B"S - BS + AR + BS
=PC+(A"- AR+ (B* - B)S

When the model of (12.70) is equal to the system of (12.71) the characteristic
polynomial is PC' = P, A;C, as expected. By continuity it also follows that small
changes in the system give small changes in the closed-loop poles. The system
18 sensitive to changes in the parameters if polynomial P; or C have zeros close
to the unit circle.

To guarantee systems with a low sensitivity, it is necessary to impose
further constraints. Recall that both €' and P were obtained as sclutions to a
spectral-factorization problem.
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Closed-Loop Systems with Guaranteed Exponential Stability

The control laws given by Theorems 12.2, 12.3, 12.4, and 12.5 give closed-loop
systems with poles inside the unit disc. It 15 sometimes desirable to have control
laws such that the closed-loop system has its poles inside a circle with radius 7.

It is straightforward to formulate optimization problems that give such control
laws,

Introduce the criterion
J = EF‘”‘(y?(k) ¥ pu2(k}) (12.72)

If a contro] law that minimizes this criterion can be found, the variables y(k)
and u(k) must converge to zero at least as fast as 7 when % increases. To
obtain such a result, it must be assumed that the model of {12.5) is such that
the covariance of e(k) also goes to zero as 7,

Introduce the scaled variables 11, &, and ¢ defined by

y(k) r'n(r‘t
u(k) ()
e(k) = 7e(k)

tl

Because

d'y(k) = ¢! (Fa)) = #inth+ 1) = (7Y nik)
it follows that

Algy(h) = Alg)(Pn(k)) = PAlg)(k)

Intreducing the transformed polynomials

A(2) = A(Fz)
B(z) = B{r2)
C(2) = C(Fz)

the model of (12.5) can be written as
A(@n(k) = Big)n(k) + C(q)e(k) (12.73)
and the criterion of (12.72) becomes
d = E(n*(k) + pp*(k)) (12.74)

The control law that minimizes (12.74) for the system of (12.73) is then given
by Theorem 12.4. This control law gives a closed-loop system in which all the
zeros of the characteristic equation

P(z)C(z) =
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are inside the unit disc, Going back to the original variables results in the
characteristic equation

P(2)C(z) = P (;) ¢ (;) =0

All the zeros of this equation are inside the circle [z| = 7.
A simple procedure for obtaining feedback laws that give closed-loop sys-
terns with all poles inside the circle |z| = F has thus been devised.

Disturbance Reduction

The return difference is

BS AR+ BS
Hrd*1+L—1+ﬁ-T

The inverge of the return difference is a measure of how effectively the closed-
loop system eliminates disturbances.
Consider the model of (12.70). Without control the sutput is

_¢,
.‘yﬂf-A

With the LQG-control law, the output becomes

R
Yigg = Fe

Flimination of e between these equations gives

AR 1 1 1
Yiqg = pg Yol = PC Yoi = , BS Yo = Yot = S Yot
AR AR

The sensitivity function thus tells how much disturbaneces of different frequen-
cles are attenuated.

Selection of the Sampling Period

There is a substantial difference between the minimum-variance control law
discussed in Sec. 12.4 and the LQG-control law discussed in Sec. 12.5 in terms of
the influence of the sampling period. The choice of sampling period is critical for
the minimum-variance control. A short sampling period gives a high-bandwidth
system, which settles quickly. The control actions will also be large when the
sampling period is short. In this respect, the minimum-vatiance control law is
similar to the deadbeat control law discussed in Sec. 4.3, The sampling period
ig less eritical for LQG-control. It follows from the analysis of Sec. 11.5 that the
control law approaches continuous-time control as the sampling period A goes to
zero. The following discussion therefore concentrates on the minimum-variance
control law.
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Intersample Variation of the Output Variance

The minimum-variance control law minimizes the variance of the output af
the sampling instants. However, the main objective may be to minimize the
continuous-time loss function of (12.7). This may be achieved by first sampling
the continuous-time loss function and to minimize the corresponding discrete-
time loss function as was discussed in Section 11.1. This results in a complicated
design procedure. The minimum-variance control laws are in many cases a suffi-
ciently good approximation. It is useful to investigate the intersample variation
of the loss function. This analysis is similar to the analysis of intersample ripple
for deterministic systems of Sec. 3.5. An example is used to illustrate the idea.

Example 12.16 Intersample variation of the loss function
Consider the contmuous-time system

dx = udt+dv (12.75)

where v(t) is a Wiener process with incremental covariance o dt. Assume that the
output is observed without antialiasing filters at times #;, = k- A, where % is the
sampling period. Hence,

y(te) = 2{k) + £(ts)

where £(t;) is a sequence of independent random variables with zero mean and
covariance ¢2. Sampling of the systemn gives

x(kh + h) = x{kh) + hu(kh) + v(kh + k) - v(kh)
y(kR) = x(kh) + £(kk)
Hence,
y(kh+ R) = y(kh) + hu(kh) + e(kh + k) - e(kh) + v{kh + ) - v{kA)
The disturbance on the right-hand side may be represented as
w(kh + k) = e(kh + k) + ce(kh)

where e(kh) is a sequence of independent zero-mean random variables with stan-
dard deviation o.

Simple calculations give

I hof+ ha§+hia§
202 g} 4ot

2
4]

s
c

The minimum-variance control law for the sysiem is

u(kh) = _L;i yikR)
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The standard deviation of the output under minimum-variance control is
Evit)=oc® t=h2h,...
The standard deviation of the state variable x is
Ed(t)=c?-06° t=h2h,...

Equation (12.75) is integrated to determine the variance of the stete variable be-
tween the sampling instante. This gives

x(kh + 8) = x(kR) + su(kR) + v(kk + 5) — v(kk)
= (1 - as)x(kh} — ase(kh) + v(kh + s) — v{kh)

where
@ =(1+e)/h
We now introduce
P.{s) = Ex*(kh + 5)

It then follows that the output variance is

P,(s) = Pi(s) + 0F = (1 - as)*{a® - 0F) + (as)%0? + so? + &
The function P, (s) is shown in Fig. 12.10 when o, = ¢, = 1. Natice that

m:ax(P,(lJ) - Py(s)) = Ko2/2

The variation in P, over a sampling interval thus decreases with decreasing /.

The analysis is similar in the general case. The only difference is that Theorem
10.5 must be used to compute the state covariance. In the example the variance
is largest at the sampling instants. This is not always the case. Also notice that
the correct way of dealing with intersample ripple i to sample the continuous-

time system and the continuous-time loss functions, as was discussed in Sec-
tien 11.1,

Computational Aspects

The LQ-control law can be determined by a combination of spectral factorization
and solution of linear Diophantine equations. Recall, however, the fundamental

difficulty that arises from poor numerical conditioning of polynomial equations
(see Sec. 9.6).
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Figure 12.10 Variations of the output variance P, in Example 12.16 with
time for regulators having the sampling periods » = 0.2 (solid}, & = 0.5
{dashed), h = 1 (dashed-dotted), and & = 2 (dotted).

12.7 Conclusions

In this chapter optimal-control problems are solved for systems described by
input-output models. The results given are limited to single-input-single-output
systems. A canonical model for the system, Eq, (12.5),1s derived first. This model
is characterized by three polynomials, A, B, and C. The underlying continuous-
time model may be described as a combination of a time delay and a system
with rational transfer functions. The distnrbances are characterized as filtered
white noise. There are many physical systems that can be described by such
models,

Optimal-control problems characterized by quadratic loss funections are
solved for the system. A special case where the loss function simply is the
variance of the output is considered first. The general problem, in which there
is also a penalty on the control variable, is then treated. Both these problems
are closely related to the prediction problem for a random process with rational
spectral density. This problem is also solved. Practical aspects, such as selection
of the sampling period, are also discussed.

The solutions to the optimal-control problems give design tools. The solu-
tions also give insight into the character of the optimal solutions. In particular,
they tell that the optimal regulator always cancels stable process zeros that
are also zeros for the process disturbances. Stable process poles are canceled
only if they are not excited by disturbances. The results also give insight into
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the relationships between the different design methods. For instance, the LQG-
solutions can be interpreted as pole-placement regulators, where the process
poles and the observer poles are chosen in special ways.

Calculation of the optimal solution is expressed in terms of two polynomial
operations, spectral factorization and solution of Diophantine equations.

12.8 Problems

121 Consider the process

2
.3 —14g+ 04
YR =2 o4 W

where (k) is white noise with zero mean and unit varianee. Determine the optimal
m-step-ahead predicter and the variance of the prediction error when m = 1, 2,
and 3.

122 Determine the m-step-ahead predictor for the process
y(k) + ay(k - 1) = e(k) + ce(k - 1)
Determine also the variance of the prediction error as a function of m.
123 A stochastic process is described by
$lk) — 0.9y(k — 1) = e(k) + Be(k - 1

(2) Determine an equivalent description such that the zero of a corresponding
polynomial C is inside the unit circle. How large is the variance of y?

(b) Determine the two-step-ahead predictor for the process and the variance of
the prediction error.

124 Assume that the demand for a product in an inventory, z{), can be described as
z(k) = 300 + 10k + y(k)
where the time unit is months, and y(k) is described by the process
y{k) ~0.Ty(k - 1) - 0.1y{k - 2) = be(k)

where ¢(k) is white noise with zero mean and unit variance. Make a prediction
and determine the expected standard deviation of the prediction error for August
through November when the following data are available:

Month ko zl(k)

Jamuary 1 320
February 2 320
March 3 3%
April 4 330
May 5 350
June 6 370
July 7 3%
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Figure 12.11

12,6 Consider the process

(k) — y(k~ 1) + 0.5y(k - 2) = u(k - 2) + 0.5u(k - 3)
4 0.5(.9(.&) +08e(k — 1) + 0.25e(k - 2))
Determine the minimum-variance controller and the minimum achievable vari-
ance.

126 Determine the minimum-variance controller for the system
yik) - 05y(k— 1) = ulk - 2) +e(k) - 0.Te(k - 1)

where e{%) is white ncige with mean 2 and unit variance.

12,7 Consider the process
yik) +ay(k-1) = u(k - 2) +e(k) +celk - 1)
(a) Determine the minimum-variance controller,
{b) Discuss the special case a = 0.
128 Given the system
y(B) - 1Ty(k - 1) + 0.7y{k - 2) = u(k —d) + 05u(k -d - 1)
+e(k) + L5e(k — 1) + 0.9e(k - 2)

(a) Determine the minimum-variance controller and the variance of the output
ford=1and 2.

(b) Simulate the open-loop system and the system controlled with the minimum-

variance controller. Compare the output and the control signal for the dif-
ferent cases.

12,9 Consider the process in Fig. 12.11. The disturbance 2 has the spectral density

1 1

0 i ¥ T P

(a} Determine a pulse-transfer function H{z) that gives an output with spectral
density ¢ wben driven by zero-mean white noise with unit variance.

(b} What is the steady-state variance of y when
u(k) = ~Ky(k)
for X = 17
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{c} What is the minimum achievable variance for a proportional controller and
how large is the corresponding value of K7

(d) How large is the variance of y when a minimum-variance controller is used?

12.10 Given the system
y(B) - 025y(k - 1) + 05y(k - 2) = u(k - 1) + e(k) + 0.5¢(k — 1)

where e(k) is white noise with unit variance. Assume that the process is controlled
with the proportional controlier

utk) = —Ky(k)
{a) Show that the variance of the output is

2125 - K
0.5(1.75 - K)(1.35 + K)

and that the lowest variance is ohtained for K = 1, which gives the variance
4/3.

(h} The expression ahove is zero for X = 2.125. Explain the paradox.

(¢} Compute the minimum-variance controller and the resulting output vari-
ance.

12,11 Given the process
¥(E) - 15y(k - 1) + 073k - 2) = ulk - 2) — 0.5u(k - 3} + v(k)

(a) Assume that v(k) = 0 and compute the deadbeat controller for the system.
(h) Assume that

v{k) = e(k) ~ 0.2e(k — 1)

where e(k) is white noise. Compute the minimum-variance control law.

{c) What is the steady-state variance of y when the deadbeat and the minimum-
variance controllers are used on the system when v iz as in b)?

(d) Simulate the system using the different controllers. Study the output and
the accumulated loss, that is, the sum of the square of the output,

12.12 Consider the dynamic system

slh) = o ulh) + 25 el

where e(k) i white noise and B is stable. The polynomials A, €, and D are
assumed to be monic. Determine the minimum-variance controller for the system.

12,13 Use the result from Problem 12.12 to determine tbe minimum-variance controller
for the system

bq_l

- 1+ag!

¥(k)

ufk) + (1 +cq')e(k)
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Figure 12.12

12.14 Consider the process in Problem 12.13. Assume that the sampling period is dou-
bled; that is, the control signal can be changed only at every second time unit.

Determine the minimum-variance controiler and compare with the case when the
control period is one time unit.

12.15 Consider the system in Fig. 12.12, where e is white noise with zero mean and unit
variance, Further,

Algi=q-07 Blg=¢
Clg) = 1-05qg a =038

{a) Determine a controller that minimizes the variance of y,.
(b) Determine the variances of y; and y; when the controller in (a) is used.

(¢} Determine a controller that minimizes the variance of ¥; if only y, is mea-
surable, and compute the variances of y; and ¥,.

(d) Determine a controller that minimizes the variance of yy if both y; and y,
are measurable,

(e) What are the variances of ¥, and y; when the controller in (d) iz used?

12.18 Given the process

Alg)y(k) = Blg)ulk) + Clgle(k) + D(g)u(k)

where v(%} is a knewn disturbance. Determine the minimum-variance controller
for the process when deg D = deg B.

12.17 Determine the LQG-controller given by Theorem 12.4 for the process
(1-09¢7")y(k) = u(k - 1) + (1 - 0.5 Ve(k)

when p = ). Caleulate the variance of the output and the input for different
values of p.

12.18 Consider a system with stabie inverse. Derive the minimum-variance controller,
where the control signal u(#) is altowed to be a function of y(k - 1), ¥(k-2), ...,
u(k ~ 1), ... Derive the characteristic equation of the closed-loop system.
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12.19 Show that the pulse-transfer function from e to y for (12.5) and (12.55) is given
by (12.56). Use (12.45) to derive the minimum-variance controller for a system
where

Alg) = ¢* - 15¢ +0.7
B[q} =g+ 0.5
Clg) =¢* -q+024

Compare with the controller obtained throngh the identity in {12.17).

12.20 Determine for which systems a digital PID-controller has the same structure as
the optimal minimum-variance controller.

12.21 Consider a system described by

y(k) =

. i 3 (bulk) + e{k)) + q——i—lw(k)

where ¢ and w are white-noise processes with zero mean and standard deviations
o, and 0, respectively.

(a) Reduce the system to standard form and determine the minimum-variance
controller.

(h) Interpret the condroller in (a) as a Pl-controller and determine how the gain
and the reset time depend on the ratio 62/0’.

12,22 Consider the minimum-variance control law of (12.31) for a system with an un-
stable inverse, The cutput of the closed-loop system is given by

${b) = B i)

¢*"'B~(q)
Show that the function F/B~* has the series expansion
Fg) -1 d-2 Fi(q)
— = + too ot fag b
B"(Q) qd fl'q fcf 1 B_,(q]

where deg F(q} < deg B~* and
Filg) =q" "+ g 24 -+ fay

is the quotient of ¢?~'C(g) and A(g). Give a convenient way of computing F», Use
the results of the problem to determine the increase of the minimum-variance due
to unstable system zeros.

12.23 Determine the intersample ripple of the loss function when the process
dx1 = Xa dt
dey = u dt + dv
y(t) = 21(ty) + £(ty)
is controlled hy the minimum-variance regulator. The process v{t} is a Wiener

process with incemental covariance 62 dt, and €(t,) is white measurement noise
with zero mean and variance ¢2.
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12.24 Consider the process in Example 12.16. Determine the control law with sampling
period A that minimizes

Tsx

umEl/Txﬂ(}d
T A )45

and compare it with the minimum-variance control.

12,25 Consider a process subject to a disturbance that is characterized as a Wiener
process with incremental covariance dt. Determime the prediction error of the

minimum-variance in each case. Use different prediction horizons and sampling
periods.

(a) The process has an unstable zeroz = b > L

(b) The process has an unstable pole z = ¢ > 1.

12.26 Consider the system in Problem 12.23 with an extra time delay of 1 s. Determine
the minimum-variance as a function of the sampling period.

12.27 Consider the system in Problem 12.23. Determine the output variance as a func-
tion of the input covariance for different sampling periods,

12.28 Consider the system

1 q
y(k) - g~ 0999 u(k) + m E(k]

Determine the minimum-variance control law for the system. Compare it with
& proportional feedback that gives a corresponding response rate. Discuss the
relative merits of the control laws by calculating their loop gains and return dif-
ferences, Explain why the minimum-variance control is inferior. (Hini#: A bad
optimization problem gives a bad optimal regulator.)

12.29 Given the system
y(k) = 14y(k — 1) ~ 0.65y(kR ~ 2) + u(k - 1) - 0.2u(k ~ 2)
+e(k) + 0.4e(k - 1)
where ¢ € N(0,2)

(a) Determine the minimum-variance controller.
(b) Determine the deadbeat controller.

{c) Compute the variance of y when the controllers in {a) and (b), respectively,
are used.

12.30 Consider the system
y(k) + aylk— 1) = u(k ~ 1) + e{k) + ce(k — 1)

where e € N(0, 1), We want to determine the minimum-variance controlier for the
process hut the value of ¢ is unknown,
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(a) Assume in the design that ¢ = 0 and determine the minimum-variance
controller for the system

y(k)+aylh - 1) = ulk - 1) + e(k)

How large will the output variance be if this controller is uased on the true
gystem?
(b) Assume instead that ¢ = ¢ and redo the caleulations in (a).

12.31 Consider the stochastic process

vk +2) - Liy(k + 1) +0.3y(k) = ek + 2) ~ 1.25e(k + 1)

where ¢ € N{0,1).
(a) Determine the two-step-ahead predictor for y(k).
(b) Caleulate the variance of the prediction error.
12,32 Given the system

Alg)y(k) = Biglu(k) + Clgle(k)

where
A{g) = ¢° - L7¢% + 08¢ - 0.1
B{q) = 2(g - 09)
Clg) = ¢*(g-0.1)

and e{k} € N{0,1).
(a) Determine the minimum-variance controller for the system.

(b) Determine the variance of the output when controlling the system with
controller in (a). :

(c) Redo the calculations in (a) and (b) when
B(g) =2(09¢ - 1)

12,33 Consider the process in Example 12.9. Compute the output variance when the
controlier does not cancel the zero, that is, when the controlier is obtained from

the identity

C = AR+ BS

Compare the variances,

12.34 Consider the process in Example 12.9. Compute the controller that minimizes the
loss function (12.7).
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12.36 Show that a system with the input-output description

Alq)y(k) = Bgu{k} + Clq)elk)

where
Al =g +ayg" ' + - +a,
Blg)=big""' + - +b,
Cla=g"+ag" '+ +q

has the following state-space description

x(k+1) = Ox(k}+ Fulk) + Ke(k +1)
y(k) = Cx(k)

where the state vector has dimension n + 1 and

(—a; 1 0 . O by ) (1)

—ay 001 - 0 b, ¢
D - I = K=

-a, 0O - 1 b, Cn1

L0 00 - 0 0 L ep J

c={100 . 0]

12.38 Consider the system in Problem 12.35. Assume that the polynomial C(z) has all

ita zeros inside the unit disc. Show that the Kalman filter for the system can be
written as

ik + 1] k) = ®F(k| k) + Tulk)
E[k+1|k+1]=£(k+l|k)+K(y(k+ 1)—Ci(k+1|k))

and that the characteristic polynomial of the fikter is zC{z).

12,37 Consider the system in Problem 12.35. Assume that minimization of a quadratic
loss function gives the feedback law

u(k) = —Li(k| k)
Show that the controller has the pulse-transfer function
-1
He(z) = 2L{zl - (1 - KC)(@ - rey) T
Show that the results are the same as those given by

H.(z) = L(® - KC)(zr (I -TL)(®- KC))_I(I “TL)K +L,K
R (12.76)
- 2L, (zf -(®-KC)(I -TL,)) K
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12.38 Consider the system in Problem 12.35. Assume that &; # 0, Determine the
mimmum-variance strategy using the state-space representations in (12.38) and
in Problem 12.37. Compare the results. (Hint: The minimum-variance control cor-
responds to L = [-q; 10 --- 0])

12.39 Derive the expressions for the transfer function H,(z) in Eq. (12.76) using the
matrix inversion Lemma B.1 in Appendix B.

12,40 Show that the transfer function H,(z) in Eq. (12.76) can be written as

st)

Hi) = 3

=g+ (L-aC)(z2l -®+TL + KC - aTC) {K -Ta)

where o = L, K. Show that this expression is equivalent to

S{z)  Sulz) + 0 Alz)
R(z) ~ Rolz) - 2B(2)

where 8y(z) and Rg(z} is the solution to the Diophantine equation
Alz)R{z)+ B(z)8(z) = P(z)C{z)

with deg A{z) = n and deg 8{z} < n.

12.9 Notes and References

The treatment of the linear quadratic case is in the spirit of Wiener's work; see
Wiener {1949), Newton, Gould, and Kaiser (1957), and Youla, Bongiorno, and
Jabr (19786).

A thorough discussion of prediction and minimum-variance control is found
in Astrém (1970), which is based on Astrom (1965, 1967). A similar approach to
the stochastic-control problem is found in Box and Jenkins (1970). The theorem
for minimum-variance control of systems with unstable inverses was first pub-
lished in Peterka (1972). An algebraic approach to the multivariable LQ- and
minimum-variance control problems is given in Kutera (1979). Also see Kuéera
(1984, 1991), and Mosca, Giarre, and Casavola (1990). Choice of sampling in-
terval for stochastic control is discussed in the books mentianed before, and also
in MacGregor (1976).

The intersample variation of the variance is discussed in De Souza and
Goodwin (1984) and Lennartson and Soderstrom (1986).
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Identification

13.1 Introduction

The notion of a mathematical model is fundamental to science and engineering.
A model is a very useful and compact way to summarize the knowledge about
a process. A model is also a very effective tool for education and communica-
tion. The design methods in the previous chapters assume that models for the
process and the disturbances are given. The process models can sometimes be
obtained from first principles of physics. It is more difficult to get the models
of the disturbances, which are equally important. These models often have to
be obtained from experiments. The types of models that are needed for the de-
sign methods presented here are either state-space meodels {internal models)
or input-output models (external models). The models for the disturbances are
for the internal models given as dynamic systems driven by white notse. For
externa) models the disturbances are given in terms of spectral densities and
covariance functions. Medels for disturbances can, however, only rarely be de-
termined from first principles. Experiments are thus often the only way to get
models for the disturbances.

A process cannot be characterized by one mathematical model. A process
should be represented by a hierarchy of models ranging from detailed and com-
plex simulation models to very simple models, which are easy to manipulate
analytically. The simple models are used for exploratory purposes and to obtain
the gross features of the system behavior. The complicated models are used for
a detailed check of the performance of the control system. The complicatad mod-
els take a long time to develop. Between the two extremes, there may be many
different types of models. The trademark of good engineering is to choose the
right model for each specific purpose.

Example 13,1 Model hierarchies

To describe a drum boiler power unit, several different models may be needed.
For production planning and frequency control, it may be sufficient to characterize

505
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the unit using two or three states describing the energy storage in the drum and
the superheaters. To construct security systems and conirol systems, it may be
necessary to have a model with 20 te 50 states. Finally, to model temperature and
stresses in the turhine unit, several hundred states must be used. E

In principle, there are two different ways in which medels can be obtained: from
prior knowledge—for example, in terms of physical laws or by experimentation
on a process. When attempting to obtain a specific model, it is often beneficial
to combine both approaches,

Mathematical model building based on physical laws is discussed briefly
in See, 13.2. In most cases it is not possible to make a complete model only from
physical knowledge. Some parameters must be determined from experiments.
This approach is called system identification and s discussed in Sec. 13.3. There
are many methods for analyzing data obtained from experiments. One hasie
approach is the principle of least squares (LS), discussed in Sec. 13.4. Recursive

ways to make the computations are given in Sec. 13.5. Examples are given in
Sec. 13.6.

13.2 Mathematical Model Building

There are no general methods that always can be used to get a complete model.
Each process or problem has its own characteristics. Some general guidelines
can be given, but under no circumstances can they replace experience. Model
building using physical laws requires knowledge and insight about the process.

The main problem when making a mathematical model is to find the states
of the system. The state variables essentially describe storage of energy and
mass in the system. Typical variables that are chosen as states are positions
and velacities (mechanical systems); voltages and currents (electrical systems);
levels and flows (hydraulic systems); and temperatures, pressures, and densities
(thermal systems). The relationship between the states is determined using
halance equations for force, moment, mass, energy, and constitutive equations.

The advantage of model building from physics is that it gives insight;
also, the different parameters and variables have physical interpretations, The
drawback is that it may be difficult and time-consuming to build the mode! from
first principles. Mathematical model building often has to be combined with

experiments. The references give a more detailed treatment of mathematical
medel building.

13.3 System identification

System identification is the experimental approach to process modeling. System
identification includes the following:

e Experimental planning

+ Selection of model structure
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¢ Criteria
¢ Parameter estimation

s Model validation

In practice, the procedure of system identification is iterative. When investigat-
ing a process where the a priori knowledge is poor, it is reasonable to start with
transient or frequency-response analysis to get crude estimates of the dynamics
and the disturbances. The results can be used to plan further experiments. The
data obtained are then used tb estimate the unknown parameters in the model.

Based on the results, the model structure can he improved and new experiments
may be necessary.

Experimental Planning

It is often difficult and costly to experiment with industrial processes. Therefore,
1t is desirable to have identification methods that do not require special input
signals. Many “classic” methods depend strongly on having the input be of a
precise form, for example, sinusoids or impulses. Other techniques can handle
virtually any type of input signal, at the expense of increased computations.
One requirement of the input signal is that it should excite all the modes of the
process sufficiently. A good identification method should thus be insensitive to
the characteristics of the input signal.

It is sometimes possible to base system identification on data obtained
under closed-loop control of the process. This is useful from the point of view
of applications. For instance, adaptive controllers are based mostly on closed-
loop identification. The main difficulty with data obtained from a process under
feedback is that it may be impossible to determine all the parameters in the
desired model; that is, the system is not identifiable, even if the parameters can
be determined from an open-loop experiment. Identifiabikity can be recovered
if the feedback is sufficiently complex. It helpe to make the feedback nonlinear
and time-varying and to change the set points.

Selection of Model Structure

The model structures are derived from prior knowledge of the process and the
disturbances. In some cases the only a priori knowledge is that the process
can be described as a linear system in a particular operating range. It is then
natural to use general representations of linear systems. Such representations
are called black-box models. A typical example is the difference-equation model

Alg)y(k) = Blq)u(k)+ C(qg)e(k) (13.1)

where u is the input, ¥ is the output, and ¢ is a white-noise disturbance. The

parameters, as well as the order of the models, are considered as the unknown
parameters.
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Sometimes it is possible to apply physical laws to derive models of the
process that contain only a few unknown parameters. The model may then be
of the form

dx
b flx,u,v,8)

y = gx,ueb)

where ¢ is a vector of unknown parameters, x is the state of the system, and v
and ¢ are disturbances.

Criteria

When formulating an identification problem, a criterion is postulated to give a
measure of how well a mode] fits the experimental data. By making statistical
assumptions, it is also possihle to derive eriteria from probabilistic arguments.
The criteria for discrete-time systems are often expressed as

k=1

where ¢ is the input error, the cutput error, or a generalized error. The prediction
error is a typical example of a generalized error. The function g is frequently
chosen to be quadratic, but it is possible for it to be of many other forms.

The first formulation, solution, and application of an identification problem
were given hy Gauss in his famous determination of the orbit of the asteroid
Ceres. Gauss formulated the identification prohlem as an optimization problem
and introduced the principle of least squares, a method based on the minimiza-
tion of the sum of the squares of the error. Since then, the least-squares criterion
has been used extensively.

The least-squares method is very simple and easy to understand. Un-
der some circumstances it gives estimates with the wrong mean values (bias).
However, this can be overcome by using various extensions. The least-squares
method is restricted to model structures that are linear in the unknown param-
eters,

When the disturbances of a process are described as stochastic processes,
the identification problem can be formulated as a statistical parameter-estima-
tion prohlem. It is then possible to use the maximum-likelihood method, for
example; this method has many attractive statistical properties. It can be inter-
preted as a least-squares criterion if the quantity to be minimized is taken as
the sum of squares of the prediction error. The maximum-likelihood method is a
very general technique that can be applied to a wide variety of model structures.

Parameter Estimation

Solving the parameter-estimation problem requires the following:
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o Input-output data from the process
*+ A class of models
¢ A criterion

Parameter-estimation problem can then be formulated as an optimization prob-
lem, where the best model is the one that best fite the data according to the
given criterion.

The result of the estimation problem depends, of course, on how the prob-
lem is formulated. For mstance, the obtained model depends on the ampli-
tude and frequency content of the input signal. There are many possibilities
for combining experimental conditions, model classes, and criteria. There are
also many different ways to organize the computations. Consequently, there is
a large number of different identification methods available. One broad distine-
tion is between on-line methods and off-line methods. The on-line methods give
estimates recursively as the measurement are obtained and are the only alter-
native if the identification is going to be used in an adaptive controller or if the
process is time-varying. In many cases the off-line methods give estimates with
higher precision and are more reliable, for instance, in terms of convergence.

The large number of methods is confusing for an industrial engineer who
is primarily interested in having a tool to obtain a model. Several attempts to
compare different identification methods have been made, The comparisons are
largely inconclusive in the sense that there is no method that is universally
best. Fortunately, it appears that the choice of method is not crucial. There-
fore, it can be recommended that a prospective user learn the classic methods
(frequency- and transient-response analysis and correlation and spectral anal-

ysis), the least-squares method with extensions, and the maximum-likelihood
method.

Model Valldation

When a model has been obtained from experimental data, it is necessary to
check the model in order to reveal ite inadequacies. For model validation, it
is useful to determine such factors as step responses, impulse responses, poles
and zeros, model errors, and prediction errors. Becanse the purpose of the model
validation is to scrutinize the model with respect to inadequacies, it is useful to
look for guantities that are sensitive to model changes.

13.4 The Principle of Least Squares

According to Gauss the principle of least squares is that the unknown parame-
ters of a model should be chosen in such a way that

the sum of the squares of the differences between the actually observed and

computed values multiplied by numbers that measure the degree of precision
is a minimum.
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j'=61x+92

/.

Figure 13.1 Illustration of the variahles in the least-squares prohlem when
estimating the parameters of a straight line,

X

To be able to give an analytic solution, the computed values must be linear func-
tions of the unknown parameters. In the framework of the general formulation
of the identification problem given in the previous sections, the class of models
is such that the model output is linear in the parameters and the criterion is a
quadratic fonction. The purpose of this section is to formulate the least-squares
prohlem and to give its solution.

The General Problem

In the general least-squares problem, it is assumed that “the computed vari-
able,” y, in Gauss’ terminology is given by the model

¥ = G11(x) + B202(x) + - + 8,0,(x) (13.2)

where ¢1, ¢2,... ., are known functions, and &;,8,,... ,8, are unknown pa-
rameters. Fairs of observations {(x;, 5).i = 1,2,...,N} are obtained from an
experiment. The problem is to determine the parameters in such a way that the
variahles y, computed from the model of (13.2} and the experimental vaiues x;
agree as closely as possible with the meagsured variables v;. Assuming that all
measurements have the same precision, the principle of least squares says that
the parameters should be selected in such a way that the loss function

1 ¥
J(8) = = 2
is minimal where
E=yi—3i=yi-01pilx) - —bppnfx) (=12, N

Compare with Fig. 13.1. To simplify the calculations, the following vector nota-
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tions are introduced:

" T
p=161 @2 - (Un)

\,

T

B = 91 92 Bn]

L

’ T
y=1» Yz - J’N]

’ T
E=1& € - En]

\,

¢ pT(x1)
D=

L o7 (xw)

The least-squares problem can now be formulated in a compact form. The loss
function J can be written as

1
J(8) = —¢eTe= 5 lell? (13.3)

1
2
where

E=y-
and
y = df

Determine the parameter & in such a way that [l¢||* is minimal. The solution
to the least-squares problem is given by the following theorem.

THEOREM 13.1 LEAST-SQUARES SOLUTION The function of (13.3) is mini-
mal for parameters @ such that

oTdd = Ty (13.4)
If the matrix ®7® is nonsingular, the minimum is unique and given by
9 = (0To) 0Ty = o'y (13.5)
Proof.  The loss function of {13.3) can be written as
2J(8) = £Te = (y - d6)7(y - )
=y y-yT08-0ToTy + 670 08

Because the matrix $7® is always nonnegative definite, the function  has a

minjmum. Assuming that ®7® is nonsingular and using (11.12) the minimum
18 obtained for

6=0=(0oTe) 0y

and the theorem is proved. .
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Remark 1. Equation (13.4) is called the normal equation.

Remark 2. The matrix & = (670)-107 is called the pseudo-inverse of
& if the matrix &7 & is nensingular.

System Identlfication

The least-squares method can be used to identify parameters in dynamic sys-
tems. Let the system be described by (13.1) with C(q) = g*. Further, assume
tbat A and B are of order n and n - 1, respectively. Assume that a sequence of
inputs {u{1),u(2),...,2(N)} has been applied to the system and that the cor-

responding sequence of outputs {¥(1),y(2),...,y(N)} has been observed. The
unknown parameters are then

g = [a1 oan by .. bn]T (13.6)

Further, we introduce

oT(k+1) = [—y(k) o =yE-n+ D) ak) ... u(k—n+1)] (13.7)
and
pl(n+1)
¢ = X
¢’ (N)

The least-squares estimate is then given by (13.5) if &7 is nonsingular. For
instance, this is the case if the input signalis, loosely speaking, sufficiently rich.

Example 13.2 Least-squares estimate of first-order systems
Determine the least-squares estimate of the parameters ¢ and b in the model

y(k) = —ay(k - 1} + bu(k - 1)

in such a way that the criterion

Jia,b} =

o}

N
Y e (k)
i=2

1% minimal, where

e(k) = y(k) - 5{k) = y(k) + ay(h - 1) - buik - 1)
= y(k) - p" (k)8
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A compariscn with the general case gives

¥(2) ~¥(1) u{1}) £(2)
¥(3 -¥(2) u(2) £(3)
¥y = D = £=
¥(N) -y(N-1) u(N-1) e(N)
and
g = [a b )T
Hence

T yR? T y(ku(k) ]
Ek Palhuk) T ulk)?
r - Yaa ¥+ Dy (k) }
"y = N-1
, 1 ik + Dulk)

Provided the matrix ©7® is nonsingular, the least-squares estimate of the pa-
rameters a and b is now easily obtained. The matrix ®T® will be nonpingular if
conditions (sufficient richness or persistent excitation) are imposed on the input
signal. .

Statlstical interpretation

To analyie the properties of the least-squares estimator, it is necessary to make
some assumptions. Let the data be generated from the process

y=08+¢ (13.8)

where ) is the vector of “true” parameters, and ¢ is a vector of noise with
zero-mean value. The following theorem is given without proof.

THEOREM 13.2 PROPERTIES OF LEAST-SQUARES ESTIMATE  Consider the es-
timate (13.5) and assume that the data are generated from (13.8), where ¢ is
white noise with variance 62, Then, if » is the number of parameters of  and
8o and NV is the number of data, the following conditions held.

1. E§ = 6,
2, varf = o2(®T®)!
3. % = 2J(8)/(N - n) is an unbiased estimate of 2

Theorem 13.2 implies that the parameters in (13.1) can be estimated without
bias if C(q) = ¢". If C(g) # ¢", then the estimates will be biased. This is due
to the correlation between the noise C*{¢~Y)e(k) and the data in @(&).
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Extensions of the Least-Squares Method

The least-squares method gives unbiased results of the parameters in (13.1)
only if C(g) = ¢". However, the maximum likelihood method can be used for
the general case. It can be shown that maximizing the likelthood function is
equivalent to minimizing the loss function of (13.3), where the residuals, £, are
related to the inputs and outputs by

Clg)e(k) = Algly(k) - B{q)u(k)

The residuals can be interpreted as the one-step-ahead prediction error. How-
ever, the loss function is not linear in the parameters and it has to be minimized
numerically. This can be done using a Newton-Raphson gradient routine, which
involves computation of the gradient of o with respect to the parameters, as well
as the matrix of second partial derivatives. The maximum-likelihood method is
thus an off'line method. It is possible to make approximations of the maximum-
likelihood method that allow on-line computations of the parameters of the
model in (13.1). Some common methods are Extended Least Squares (ELS),
Generalized Least Squares (GLS), and Recursive Maximum Likelihood (RML).

13.5 Recursive Computations

In many cases the observations are obtained sequentially. It may then be de-
siralle to compute the least-squares estimate for different values of N. If the
least-squares problem has been solved for N observations, it seems to be a
waste of computational resources to start from scratch when a new observation
is ohtained. Hence, it is desirahle to arrange the computetions in such a way
that the results obtained for N observations can he used in order to get the es-
timates for N + 1 observations. An analogous problem occurs when the number
of parameters is not known in advance. The least-squares estimate may then
be needed for a different number of parameters. The possibility of calculating
the least-squares estimate recursively is pursued in this section.

Recursion in the Number of Observations

Recursive equations can be derived for the cage when the observations are ob-
tained sequentially. The procedure is often referred to as recursive identifica-
tion. The solution in (13.5) to the least-squares problem can be rewritten to
give recursive equations. Let 8{N) denote the least-squares estimate hased on

N measurements. To derive the equations, N is introduced as a formal param.
eter in the functions, that is,

@T(I) ¥
Z yNy=1:
o7 (N) ¥

O(N) =
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It is assumed that the matrix &7 is nonsingular for all N. The least-squares
estimate 6(N) is then given by Eq. (13.5):

-

§(N) = (@T(N)O(N)) ™ OT(N)¥(N)

When an additional measurement is obtained, a row is added to the matrix ¢
and an element is added to the vector y. Hence

owo () -2

The estimate §(N + 1) given by (13.5) can then be written as

BV +1) =(07(N + 1OV + 1)) OT(N + 1)y(N +1)
=(¢T(MOW) + (N + 1p"(N +1)) (13.9)
* (OT(N)3(N) + o(N + Dy

The solution is given by the following theorem.

THEOREM 13.3 RECURSIVE LEAST-SQUARES ESTIMATION Assume that the
matrix &7 (N)b(N) is positive definite. The least-squares estimate & then sat-
1sfies the recursive equation

BN +1) = (V) - K(N){yn:1 - 97 (N + DEN)) (13.10)
K(N})=P(N+1L)p(N+1)

= P(NJo(N + 1)(1+ 97(N + 1P(N)p(N + 1})‘1 (13.11)

P(N+1)=(I-K(N)g"(N + 1})P(N) (13.12)

Proof. Tb simplify the notation in the manipulations that follow, the
argument N of ®(N) and y(N) and the argument N + 1 of ¢T(N + 1) will be
suppressed. Equation (13.9) can then be written as

BN +1) (070 + 9Ty HdTy + 0yy41)
=(@79)707y + (070 + 997)! - (070) 0Ty (13.13)
+{070 +‘P¢T)_1¢’:}’N+1

Observe that

B(N) = (07) oy
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and
(070 + pg") 1 - (070) )Ty
(@D + pp") (TR - 0T - ppT)(@70) 0Ty
(@70 + ppT) oo (PTD) 0Ty
(@70 + pp”) pp"H
Equation (13.13) can be written as

BN +1) = B(N)+ K(N) (yn.1 - 97(N + DE(N))

)

In order to obtain a recursive equation for the weighting factor K(N), it is
convenient to introduce the quantity P defined by

P(N) = (q)T(J\.r)«i:'u'sr))*1

P i3 proportional to the variance of the estimates (compare with Theorem 18.2).
Applying the matrix inversion lemma (Lemma B.1) to the matrix P(N +1) gives

PN+1) = (OT(N+ DO(N+ 1)) = (@70 + poT)”

= (070) - (070) (I + oT(@72) g} o7 (07 @)

Hence
P(N+1)=P(N)-P(N)e(N+1)

-1
x(1+ 97N + YP(N)O(N + 1)) p7(V + 1P(N)

Simple calculations now give

K(N)=P(N+1p(N+1)
= PPN + 1){I + p" (N + HP(N)o (N + 1))'1

Notice that a matrix inversion is necessary to compute P. However, the matrix
to be inverted is of the same dimension as the number of measurements; that
is, for a single-output system, it is a scalar, "

Remark 1. Equation (13.10) has a strong intuitive appeal. The estimate
B(N + 1) is obtained by adding a correction to the previous estimate 8(N). The
correction is proportional to yy,, — @7 (N + 1)8(N), where the last term can
be interpreted as the value of y at time N + 1 predicted by the model (13.2).
The correction term is thus proportional to the difference between the measured
value of yy,, and the prediction of yy,; based on the previous estimates of the
parameters. The components of the vector K (N) are weighting factors that tell
how the correction and the previous estimate should be combined. Notice that
the ith component of K (N) is proportional to 7 (N + 1)
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Remark 2, The least-squares estimate can be interpreted as a Kalman
filter for the process

6k + 1) = 6(k)
y(k) = T (£)B(R) + e(k)

See Section 11.3.
Notice that the matrix P(N) is defined only when the matrix ®7 (N)®(N)
1s nonsingular. Because

N
OT(N)O(N) = ) plk)o (k)
k=1

it follows that $7® is always singular if N is sufficiently small. In order to
obtain an initial condition for P, it is necessary to choose an N = Ny such that
®T(Ny)®(Ny) is nonsingular and determine

PN = (87 (No)2(No))
§ = P(No)®"(No)y(No)

The recursive equations can then be used from N > Ny, It is, however, often
convenient to use the recursive equations in all steps. If the recursive equations
are begun with the initial condition

P(0) =Py

where Py is positive definite, then
-1
P(N) = (Pg* + 0T(N)®(N))

This can be made arbitrarily close to (&7 (N)®(N)) ™" by choosing Py sufficiently
large.

. Using the statistical interpretation of the least-squares method shows that
this way of starting the recursion corresponds to the situation when the param-
eters have a prior covariance proportional to Py.

Time-Varying Systems

Using the loss function of (13.3), all data points are given the same weight. If
the parameters are time-varying, it is necessary to eliminate the influence of

old data. This can be done by using a loss function with exponential weighting,
that is,

N
78 = LAV (500 - 0" (0)0)’ (13.14)

k=1
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The forgetting factor, A, is less than one and is a measure of how fast old
data are forgotten, The least-squares estimate when using the loss function of
(13.14) is given by

Ok -+ 1) = 6(k) + K (k) (yus1 - 9"k + 1)E(R))
K(k)=P(k)p(k+1) (A +oT(h+ 1)P(R)p(k+ 1)) N (13.15)
P(k+1) = (I - K(k)gT(k + 1)) P(R)/A
It is also pessible to model the time-varying parameters by a Markov process,
Bk +1) = ®O(k) + v(k)

and then use a Kalman filter to estimate #. See Remark 2 of Theorem 13.3.

Recursion in the Number of Parameters

When extra parameters are introduced, the vector 4 will have more components
and there will be additional columns in the matrix ®. The calculations can be
arranged so that it is possible to make a recursion in the number of parame-
ters in the model. The recursion involves an inversion of a matrix of the same
dimension as the number of added parameters.

U-D Covariance Factorization

Equation (13.15) is one way to mechanize the recursive updats of the estimates
and the covariance matrix. These equations are not well-conditioned from a nu-
merical point of view, however. A better way of doing the caleulation is to update
the square-root of P instead of updating P. Another way to do the calculations
is to use the U/-D algorithm by Bierman and Thorton. This method is based on
a factorization of P as

P=UDyT

where D is diagonal and U is an upper-triangular matrix. This method is a
square-root type as /D2 5 the square root of P. The U-D factorization method
does not include square-root calculations and is therefore well suited for small

computers and real-time applications. Details about the algorithm can be found
in the References.

A Pascal program for least-gquares estimation based on [7-D factorization

is given in Listing 13.1. The program gives estimates of the parameters of the
process

yR) oy~ +- + Unay(k ~ nat)
=byu(k— 1)+ + boyu(k —nb) + e(k) (13.16)

The notations used in the program are
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Variable Notation in
the program

u(k) u

y(k) y

no na

ne + nb n

n{n-1)/2 noff

~

#(k) compare (13.6)  theta
@" (k) compare (13.7) fi
A lambda

Listing 13.1 Pascal program for least-squares estimation of the parameters
of the process of (13.16) using U-D factorization.

const npar=10;{maximum number of estimated parameters}
noff=45; {noff=nparx(npr-1}/2}

type vecl=array(1..mpar] of real;
vec2=array(1. .noff] of real,
estpartyp = record
n,na:integer;
theta:vecl;
fi:vecl;
diag:vecl;
offdiag:vec?;
end;
var y,u,lambda:real;
eatstate:estpartyp;

Procedure L8(u,y,lambda:real;var eststate:estpartyp);

{Computes the least-squares estimate using the U-D method
after Bierman and Thornton}

var kf,ku,i,j:integer,

perr,fj,vj,alphaj,ajlast,pj,w:real;
k:vacl; :

begin
vith eststate do {Calculate prediction error}
begin
perr = y;
for i:=1 to n do perr:=perr-theta(il*fi[i];
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{Calculate gain and covariance using the U-D method}
£3:=£1(1};
vi:=diag[1)»£j;
k(1] :=vj;
alphaj:=1 Q+viefy;
diag(1]:=diag(1]/alphaj/lambda;
if n>1 then
begin
kf:=0;
ku:=0;
for j:=2 to o do
begin
£5:14(3);
for i:=1 to j-1 do
begin {f=1isU}
kf:=kf+l;
£t j+1i(i) sotfdiag kt]
end; {i}
vj:sfjediag[j}; {veDsf}
k[j]:mvj;
ajlast:=alphaj;
alphaj:=ajlast+vjetj;
diag(j]) :=diag[jl+ajlast/alphaj/lanbda;
pi:=-tj/ajlast;
for i:=1 to j-1 de
begin
{kj+1:=kj +visuj}
{uj:=uj+pj*kj}
ku:=ku+i;
w:=offdiag[ku] +k{1]+pj;
k(i]:=k[i)+oftdiag(ku]svj;
oftdiag[ku] :=v
end; {i}
end; {j}
end; {if o>1 then}
{Update parameter estinatea}
for i:=1 to n do theta(i):=theta[i]+parr=k{i]/alphaj;
{Updatiag of fi}
for i:=1 to n-1 do fif[a+1-1):sfi{n-i];
1i[1) i=-y;
fi(na+1]:=
end {vith eststate do)
end; {LS}
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Figure 13.2 Input and output when the system of (13.17) is simulated.
The input is a PRBS sequence.

13.6 Examples

Some examples show the use of identification methods. The first example shows
the importance of using the correct model structure when estimating a model.

Example 13.3 Influence of mode) siructure
Let the system be descnibed by the model

y(k)-1.5y(k — 1) + 0.Ty{k - 2 13.17
= ulk — 1) + 0.5u(k - 2) +e(k) - e(k ~ 1) + 0.2e(k — 2) (23.17)
where ¢ has zero mean and standard deviation 0.5. This is a “standard” system
that has been used often in the literature to test different identification methods.
In (1317}, Clg) # ¢", which implies that the least-squares method will give biased
estimates. However, the input-output relation of the process can be approximated
by using the least-squares method for s higher-order model. Figure 13.2 shows a
simulation of the system. The input is a Pseudo Random Binary Signal (PRBS)
sequence with amplitude +1. The data have been used to identify models of different
orders uging the least-squares and maximum-likelihood methods.

Figure 13.3 shows the step regponses of the true system in (13.17) and of the
estimated models when using the least-squares methad with model orders n = 1,
2, and 4, and the maximum-iikelihood method when the medel order is 2. The
least-squares method gives a poor description for a second-order model, and a good
model is obtained when the model order is increased to 4. The maximum-likelihood
eethod gives very good estimates of the dynamics and the noise characteristics for
& second-order model. The estimated parameters for second-order models when

using the least-squares method and the maximum-likelihood method are shown in
Table 13.1, .
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Figure 13.3 Step responses of the deterministic part of the system of
(13.17) (dashed} and of the estimated models (solid) obtained when using
the least-squares (LS) method with (a)n = 1, (b} n = 2, (¢} n = 4, and (d)
the maximum-likelihood (ML) method with n = 2.

Table 13.1 Estimated parameters and standard deviations for
second-order models of the process in {13.17) when using the
least-squares (LS) and the maximum-likelihood (ML) methods.

Parameter True Value LSr=2 MLn=2
ay -15 -126510.029 -1513+0.008
ay 0.7 0.517£0023  0.70410.006
by 1.0 0.959+£0.101  1.04110.050
ba 0.5 097240131 0.3941 0071
€1 -1.0 — —1.08110.045
o 0.2 — 0.215+£0.044

The second example illustrates recursive estimation using the least-squares
method.

Example 13.4 Recursive estimation
Consider the process

y(k) + av(k — 1) = bulk - 1) + o(k)

with o = 0.8 and b = 0.5. The variance of the noise e is 0.25. The input signal is
assumed to be a PRBS signal with amplitude +1. The input and the output data
are shown in Fig. 13.4. The recursive equations (13.10) to (13.12) have been used
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Figure 13.4 Input-output data for the process in Example 13.4.

to estimate a and b. The estimates are shown in Fig. 13.5 when the initial values of
the parameters are zero and when P(0) is 10 times the unit matrix. The estimates
are after a few observations close to the true values. For the data in Fig. 13.4 we
have

a(500) -0.789 0.880 1.560 3
. = [ ] P(500) = [ ] 107
b(500) 0.513 1560 4.771
From Theorem 13.2 we get the following standard deviations for the estimates

a: = 0.5/880.-102 = 0.015
0; = 0.5v47.71-10°% = 0.035

g
N i '
ﬂ — — — — ——al— —) I
; 0
§ i
§ é
g-lw"\“-_.\-_— g
=9

0 500

Time

Figure 13.5 Recursive-parameter estimates when (13.10) to (13.12) are
used on the data shown in Fig. 13.4. The true values are indicated by the
dashed lines.
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Parameter estimates
]

0 500
Time

Figure 13.6 Recursive-pavameter estimates for the system in Example 13.4

when the input is a unit pulse at time ¢ = 25. The true values are indicated
by the dashed lines.

The estimates are well within one standard deviation of their their true values.
Now assume that the input signal is changed from a PRBS signal to a unit pulse
at time ¢ = 25. The estimates for the new experiment are shown in Fig, 13.6. The
estimate of b is now very poor because the input signal is not sufficiently exciting.
The estimate of a is, however, better because the output is excited by the noise
and thus the sutput contains information about the parameter a. ]

The influence of feedback is filustrated in the next example.

Ezample 13.5 Influence of feedback

The system in Example 13.4 is simulated and the input is generated via feedback
a3

ulk) = ~ky(k) = —02y(k) (13.18)

The phase plane of the estimates is shown in Fig. 13.7. The identifiability of the
parameters is lost due to the feedback, The estimates converge to a subspace that
i determined by

b= b+%(a—&] = -35-54
The least-squares loss function has the same values for all parameters on this line.
The problem with the loss of identifiability disappears if a feedback law of

sufficiently high complexity is used. In this example it is sufficient to introduce &
delay in the controller and use

ulk) = ~0.32y(k - 1) (13.18)

The control laws (13.18) and (13.19) give approximately the same speed and output
variance of the closed-loop system. The phase plane of the eatimates are shown in
Fig. 13.8. The estimates converge from all initial values to the correct value, »
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Figure 13.7 Recursive-parameter estimates for the system in Example 13.5
when the input is generated by the feedhack (13.18). The dashed line shows
“the identifiable subspace. The dot shows the true values parameter values.

Parameier estimate &
) p]

-2 -1 0
Parameter estimate &

Figure 188 Recursive-parameter estimates for the system in Example 13.5

when the input is generated by the feedback (13.19). The dot shows the trne
values parameter values,
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13.7 Summary

This chapter gives a short review of the identification problem. The presentation
1s concentrated on the least-squares method, hecause it is the basis for many
other methods. On many occasions it is important to make the estimation in real
time, and it is shown how the least-squares estimate can he obtained recursively.
This is used, for instance, in adaptive controllers.

13.8 Problems

13.1

13.2

13.3

134

The following experiment has been made to determine the normal acceleration, g.
A steel ball has been dropped without initial velocity from a high TV antenna. The
position of the ball, I, has been determined at different times, giving the following
measurements:
Time, 5 Length of fall, in meters
8.49
20.05
50.65
72.19
129.85
171.56

(=S =L B - S L R

The times of the measurements are exact, but there is an error in the measure-
ment of the position. Determine the normal acceleration using the methed of least

“squares from the model

Derive recursive equations for increasing the number of parameters for the method

of least squares. (Hint: Use the same idea as when making the observations re-
cursively.)

Consider the process
y(k) +ay(k—1) = bu(k — 1) + efk) + ce(k - 1)

where u and e are independent white-noise processes with zero mean and unit
variance. Assume that the method of least squares is used o estimate a and b,

as in Example 13.2, Determine the expected values of & and b as a function of g,
b, and c. '

The parameters &; and b, in the system
¥(k) = byulk - 1) + byu(k - 2} + e(k)

are determined using the method of least squares. Let the input be a step at time
k = 0. Can the parameters b, and b, be determined with arbitrary accuracy when

the number of observations increases? Will there be any changes if it is known
that b2 =0
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13.5 Consider the system
y(k} = —ay(k -1} + bu(k - 1) + e(k)

where ¢ is zero-mean white noise, An experiment is done on the system to estimate
o and b. The following data were calculated:

Tyk) = 30 Tul(k) =50
Lylk+ Ny(k) =1  Zy{k)ulk)= 20
Zyik + Du(k) = 36

All sums are from & = 1 te k = 999. Determine the least-squares estimate of @
and b.

13.9 Notes and References

There are many books and papers dealing with identification methods. Some
basic references in book form are Jenkins and Watts (1968), Eykhofl (1974),
Goodwin and Payne (1977), Ljung and Soderstrom (1983), Norton (1986), Ljung
(1987), Séderstrom and Stoica (1989), and Johansson (1993). An early survey
of system identification is given in Astrtm and Eykhoff (1971).

Good sources for further references are Biermann (1977), Evkhoff (1981},
Isermann (1981}, Lawson and Hansson (1974}, and the special issue on “Iden-
tification and system parameter estimation,” Auiomatica, 17, no. 1 {January
1981).

For someone interested in historical notes, see Gauss (1809) and Sorensen
(1970).
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Examples

Examples used in the book as “standard processes” are presented in this ap-
pendix.

Example A1 Double integrator

528

The double integrator is used throughout the book as a main example to iflustrate
the theories presented. The process is described by the differential equation

diy

F7 il (A1)

The transfer function is G(s) = 1/s*. We introduce y and y as the states r, and
1z, respectively, of the system. The state-space representation is then

%=[g ;]“[(1}]” (A2)
y=(10])x

Sampling {A.2) using & zero-order hold with the sampling period % gives the
discrete-time system (see Example 2.2)

(1 k hi/2
t(kh + A} = [0 1] x(kh) + [ \ ] u(kh) A
y(kh) = [ 1 0] x(kh)
The pulse-transfer operator of (A.3) is given by
R+ 1}
Ha) = 5 5 (a4)

There are several physical processes that can be described as double integrators.
One such is the attitude of a satelite, which can be described by the equation

d*@
J‘ci—tz' SMC +’Md
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Torque motor

Ball o~ Fu "

Beam

Figure A.1 Schematic illustration of the ball and beam.

where # 1s the attitude angle, M. is the contro! torque, M, 1s the disturbing torque,
and J is the moment of inertia.

Another example that can he described by the double integrator is a rotling
ball on a tilting beam {see Fig. A1). The equation of the ball and beam can be
described by

2
J == = mgrsin g = mgre

dt
x=r8
ar .
d*x
i mgrig/J
where # 13 the angle of the ball, g is the normal acceleration, x is the position of
the ball, and ¢ is the tilting angle of the beam. ]

Example A2 Motor

A DC motor can be described by a second-order model with ene integrator and one
time constant (see Fig. A.2). The input is the voltage to the motor and the output is
the shaft position. The time constant is due to the mechanical parts of the system,
and the dynamics due to the electrical paris are neglected. A normalized model of
the process 1s then given by

1

Yis) = slg+ 1)

Uls)

Introduce the velocity and the position of the motor shaft as states (see Fig. A.2).
The state-space model of the motor is then given by

dx (-1 0 1
dt‘[l o]‘”[ﬂ]”‘

(A.5)
y = [ D 1 ] x
Voltage Velocity Position
114 1 X N 1 Xy
s+1 8

Figure A.2 Normalized model of a DC motor,
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Figure A.3 Pendulum.

Sampling (A.5) using a zero-order hold gives the discrete-time model

-h 1~ e-h

x{kh + k) = [ o 1aet

0]x(kh)+ [

1-2* 1

] u(kh)
(A8)

y(kh) = (0 1) x(kh)

(see Example 2.3). A current-controlled DC motor with the shaft velocity as output
can also be described by the model of (A.5). Still another example that can be
characterized by an integrator and a single pole is & ship. Let the input be the

rudder angle and the output be the heading. The ship can then he described by
the transfer function

K

0= S

where the time constant may he positive or negative depending on the type of ship.
For instance, large tankers are unstable. »

Example A.3 Harmonic oscillator

Consider a pendulum (see Fig. A 3). The acceleration of the pivot point is the input

and the angle y is the output. The system is then described hy the normalized
nonlinesr equations

dx1

—_ =

T

d .

F:? = 8lNx; +u cosxy
Y=n

where x, is the angle and x, is the angular velocity. Linearizing around . = x; = 0

gives
dx 0 1 N 0
da |-10)" {1]"

y:[l o]x

I
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Thick stock Head box Drying Basis
flow, u section  weight, ¥

g

Figure A4 Schematic diagram of a paper machine.

The transfer function of (A.7) is given by

This transfer function can be generalized to

w

Gls) = s+ o?

One state-space representation for this transfer function is
dx 0 w ] [ 0 ]
—_— + u
dt o 0} o
y=[0 1]

Sampling (A.B) using a zero-order hold gives the discrete-time systemn

xwh+h)=[

sin wh

coswh  sinah 1 — cos wh
~sinwh coswh ] x(kh) + [

] u(kh)
y(kh) = [10]xwm

An overhead crane can also be modeled by (A.8).

Example A4 Time-delay process

53

(A8)

(A9)

Many industrial processes can be approximated by first-order dynamics and a time
delay. One example is a paper machine (see Fig. A.4). The input is the thick stock
flow, that is, the amount of pulp. The output is the basic weight, that is, the
thickness of the paper. The equations deseribing the system can be normalized to

the transfer function

Gw)=;%1f”

{A.10)

Another physical process that can be deseribed by {A.10) is a mixing system with

long pipes. Example 2.8 gives the zero-order-hold sampling of (A.10},
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Example A5 An inventory model

An inventory is a typical example that can naturally be described as a discrete-
time system. Orders and deliveries are obfained at regular intervals tied to the
calendar—for example, each day or week.

Let y(k) be the inventory at time % before any transaction is started. The
deliveries ta the inventory that are ordered at time k are u(k). It is assumed that
there is a delay of ene period from the order until the goods start coming into
the inventory. Finally, the delivery from the inventory is v(k). Introduce the state
variables x, (k) = y{(k) and x(k) = u{% - 1). The inventory can be described by the
following discrete-time state equations:

X1 (k + 1) = Il(k) + .‘.’Cz(k] - U(k)
za(k + 1) = u(k)

x(k+1) = [{1) ;]x(k]+ [g]u(kh [rol]u(k)

ar

(A.11)
y(k) = [ 1 o] x(k)
The input-cutput relation is given by
¥k - 3(k=1) = ulk - 2) ~ vk - 1) (A12)
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Matrices

8.1 Matrix Functions
In connection with sampled-data systems functions like exp A and In A, where
A 18 a matrix, are of interest. The matrix exponential and matrix logarithm are
both matrix functions. This section gives some properties of matrix functions
and discusses some ways te compute them,
A ugeful property of a square matrix is given by Theorem B.1.
THEOREM B.1 THE CAYLEY-HAMILTON THEOREM Let

aA)= A"+ A" 4 rg, =0

be the characteristic equation of the square matrix A. Then A satisfies the
following equation

a{d) = A" + A" 1+ 40,0 =0

That is, the matrix satisfies its own characteristic equation. "

Let A be an n xn square matrix and f(4) a scalar function of a scalar argu-
ment 4. We now want to extend the function f(4) to a function with a matrix
argument, that is, f{4). If (1) is a polynomical

FlA) = aed™ + 2id™ 1 + -+ oy
then the matrix function f{A) is defined as

flA) = qpA™ + A™ L 4+ v g, ]

The eigenvalues of (A) can be found using the following theorem.

533
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THEOREM B.2 EIGENVALUES OF A MATRIX FUNCTION If f(A) is a poly-
nomial in A and e; the eigenvectors of A associated with the eigenvalues 4;,
then

so f(A:) is an eigenvalue of f{A) and ¢; is the corresponding eigenvector, =

Further, if f(4) can be defined by the power series
o
fid)= e
f=0
which 15 assumed to be convergent for |A| < B, then the matrix function
X "
fla)=) e
I=0

is convergent if all the eigenvalues of A, A; satisfy |4, < R.
By using the Cayley-Hamilton theorem, it can be shown that for every
function f there is a polynomial p of degree less than n such that

flA) = p(A) = @A™ 1 + 1A 2 4 + ] (B.1)
From Theorem B.2 we get
flAy=pAd) i=1,...,n (B.2)

If the eigenvalues are distinct, then these conditions are sufficient to determine

a, i = 0,...,n -1 If there is a multiple eigenvalue with multiplicity m, then
the additional conditions

fO@) = p(4)

F (@A) = P Y()

held, where fU is the ith derivative with respect to A.

By using (B.1) and the conditions in {B.2) and (B.3), it is possible to com-
pute matrix functions., For low-order systems, this is a very convenient method
for hand calculations.
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Example B.1 Computation of matrix exponential
Let
01
-5 o)

A= g Ah + ayd

and determine

A#h has the eigenvalues tik; the system of equations

& = ik + oy
E'_lh = *Uul:h +dy
holds, giving
1y . sinh
=g e =
1 . .
o) = E(e”' +27#) = cosh
Finally,

0 1 1 0 cosh sink
Ak _ o =
e =gmh [_1 U] +ms‘h[ ] - [—ainh CDSh]

Example B.2 Computation of matrix logarithm

Let
1k
P =
o1

and compute In®. The eigenvalues are given by (A — 1)2 = 0—that is, multiple
eigenvalues exist. The matrix logarithm can now be written as

Ind = to® + o
where @, and ¢, are given by

ln1=ﬂo+(11

d
()| =a
oA 11
which gives
0= &p +
1 = au
Finally,

Sl R R
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Remark. Instead of starting with the characteristic polynomial, it 1s pos-
sible to use the nmunimal polynomial of the matrix. The degree of the series in
(B.1) will then be the degree of the minimal polynomial minus one. In general,
this will not reduce the computing time because the minimal polynomial—or,
alternatively, the Jordan form—has to be computed.

B.2 Matrix-Inversion Lemma
The following lemma is used in Sec. 13.5 to invert a matrix,

LEMMA B.1 MATRIX-INVERSION LEMMa Let A, C, and C~! + DA!B be
nonsingular square matrices; then

(A+BCD)y ' = A1-A'B(C'+DA'B) 'DA!
Proof By direct substitution,

(A+BCD)(A™' ~A'B(C! + DA™'B)'DA™Y)
=1 +BCDA™' ~B(C' + DA'B)'DA™!
~-BCDA'B(C™1+ DA'B)'DA™!
=+ BCDA™ - BC(C™' + DA"'B)(C' + DA'B) DA™
=] + BCDA™' -BCDA™ ' =1

B.3 Notes and Refersnces

Further properties of matrices can be found in Gantmacher (1960), Bellman
(1970), Barnett (1971), and Golub and Van Loan {1989).
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