
ELEC-E8101 Group project:

Control of a balancing robot

Department of Electrical Engineering and Automation,
School of Electrical Engineering,

Aalto University

Version 3.0

2020

This project is based on the Labs of R7003E 2017 LP2 � Automatic Control in Luleå University.

Special thanks to Prof. Damiano Varagnolo for sharing his material.

Contents

1 Introduction 1

1.1 What a balancing robot is and why it is an important system 1
1.2 How we would like you to interact with your peers 1
1.3 How we would like you to interact with us . 1

2 Practical considerations 2

2.1 Hardware . 2
2.2 Installation in Windows . 3
2.3 Installation in Mac, should also apply to Linux 3
2.4 Add-ons recommended to install with Matlab . 3
2.5 How to launch the code on the balancing robot 4
2.6 Datasheet . 4
2.7 Notation . 5

3 Reporting your �ndings 6

3.1 How to complete the assigned tasks . 6
3.2 The reports . 6
3.3 How you will be evaluated . 7

4 Lab A 8

4.1 Derivation of the Equations of Motion (EOM) . 8
4.2 Linearize the Equations of Motion . 11
4.3 Write the linearized EOM in state space (SS) form 12
4.4 Determine the transfer function of the LTI SS system 13
4.5 Design a PID controller stabilising the transfer function computed in Section 4.4 14
4.6 Model the e�ect of disturbing the robot . 14
4.7 Check if everything is working as it should be . 15
4.8 Convert the controller to the discrete time domain 17
4.9 Simulate the closed loop system . 18
4.10 Optional: play with the simulator . 21

5 Lab B 22

5.1 How to do tests on the robot . 22
5.2 Communicating with the balancing robot . 23
5.3 Observing that reality is far from ideality . 24
5.4 Calibrating the robot . 24
5.5 Test the PID controller . 25
5.6 Check the controllability and observability properties of the linearized system (21) 26
5.7 Design a SS controller selecting the poles . 27
5.8 Design a state observer, and add it to the simulator 28
5.9 Discretize both the controller and observer, and add them to the simulator 31
5.10 Test the control strategy with the real robot . 33

6 Lab C 34

6.1 Compute the discrete equivalent of the original model 34
6.2 Design a SS controller selecting the poles using the LQR technique 34
6.3 Design the controller using the discrete LQR technique 36
6.4 Design the observer starting from the previously constructed controller 36
6.5 Perform experiments on the real balancing robot 37
6.6 Design a module for managing external references 38
6.7 Final demo . 39

ii

A Matlab and Simulink 41

A.1 Useful Matlab commands . 41
A.2 How to plot data in Matlab / diagrams in Simulink 41
A.3 Useful Simulink tricks . 42
A.4 Useful Simulink blocks . 43
A.5 Managing sampling times in Simulink . 43

iii

1 Introduction

1.1 What a balancing robot is and why it is an important system

A balancing robot is basically an inverted pendulum on wheels. If you see the picture in Figure 1,
you immediately understand how this system works: the robot would naturally fall because of
gravity, but if you accelerate the wheels properly you can make the robot stand up (or also turn
around, if you have two independent wheels and motors). A balancing robot is complex enough
to be fun to play with, but simple enough to be manageable in 3 labs.

Figure 1: An example of a two-
wheeled balancing robot.

The intended learning outcome is not just to make the bal-
ancing robot to stand. It is to learn how to design control
schemes in the real world through using a simple and fun ob-
ject. In practice, you will go through some of the fundamental
steps that control engineers usually do in their job. During this
project you will:
a) Do some preparatory tasks in Lab A. Here you will develop a

Simulink simulator and do that theory that is needed before
starting touching the real object1.

b) Develop a �rst prototype of the control law in Lab B. Here
you will test a Proportional-Integral-Derivative (PID) con-
troller, do some experiments to validate the results of Lab
A, some tuning of your simulator, and then prototype two
more complex controllers.

c) Improve and validate the controller in Lab C and arrive at
a complete scheme having those features that are usually
needed in real world applications, like reference following
blocks and structures for improving the robustness against
uncertainties in the plant parameters.

1.2 How we would like you to interact with your
peers

Each group should be composed of maximum 4 persons.

If you need or absolutely want to be in 2 it is ok (you will work harder but you will also learn
better). We strongly discourage you to be in 1, but you are allowed to do so if there are some
particular needs. We delegate the process of creating the groups to you � in other words, try to
self-organize. If somebody has some di�culty in �nding a group let us know.

Please, help each other not only internally in the group but also among groups: discuss ideas
and approaches, exchange information, compare results. Specially, brainstorm together and try
new things. Do not cheat. First, we understand it. Second, let's be grown ups.

1.3 How we would like you to interact with us

Golden rules:
• feel free to ask for both help and clari�cations;
• let us know if something in this manual is not clear / contradictory / incomplete;
• let us know if something does not work (balancing robot, computers, etc.);
• let us know your opinions and suggestions.

1This is a very common step: you �rst understand the properties of the plant before playing with it � eventually,
would you wiggle a nuclear plant before seeing what happens in simulation?

1

2 Practical considerations

2.1 Hardware

Each group will be given a box with a MinSeg robot:

Figure 2: MinSeg robot for each group.

which you have to return back by the end of the project! In the box you will �nd a set of
rechargeable batteries (1.2V instead of 1.5V, and lighter than normal batteries):

Figure 3: MinSeg robot for each group.

which you have to also return back by the end of the project! When the batteries drain, you can
return them and get charged ones.

2

2.2 Installation in Windows

Follow the checklist:

1. install the Arduino IDE for Windows from https://www.arduino.cc/en/Main/Software

2. install the Arduino support package for Matlab as indicated in http://se.mathworks.

com/help/supportpkg/arduino/ug/install-support-for-arduino-hardware.html

3. download the Rensselaer Simulink library from http://homepages.rpi.edu/~hurstj2/

or by using the Matlab Add-On Explorer

4. follow the readme that you �nd in the Rensselaer library (notice that you may need to be
administrator and also reboot the computer).

2.3 Installation in Mac, should also apply to Linux

NOTICE: For MacOS 10.15+ (Catalina or newer) users, make sure you are using Matlab

2019b or a newer verision.

Follow the checklist:

1. install the Arduino support package for Matlab by using Matlab Add-On Explorer

2. intall the Rensselaer Simulink library from http://homepages.rpi.edu/~hurstj2/ or by
using the Matlab Add-On Explorer

3. follow the readme that you �nd in the Rensselaer library

MacOS 10.15+ users:

Information here might be outdated this year but in case you run into problems with macOS
and the Arduino Support package, here is how to �x that.

The Arduino IDE supplied by the Ardino support package for Mac users is currently the
version 1.8.8 which is a 32-bit program. With MacOS 10.15, Apple dropped the support for
32-bit applications, therefore the compilers for Arduino boards will not work without these extra
steps.

4. install the newest Arduino IDE for Mac from https://www.arduino.cc/en/Main/Software

5. open �nder, select Go from top bar and then Go to folder from the drop down list, enter:
~/Documents/MATLAB/SupportPackages/R2019b/3P.instrset/arduinoide.instrset

if you have a newer version of Matlab, replace 2019b with your version number

6. replace the Arduino IDE application package in the folder with the newest Arduino IDE
that you just downloaded

2.4 Add-ons recommended to install with Matlab

You will need at least the following add-ons for Matlab and Simulink, so if you are doing a fresh
install, you should select at least these:

1. DSP Ssytem Toolbox (used within calibration)

2. Simulink Coder (will also automatically install Matlab coder)

3. Symbolic Math toolbox (support for symbolical values in Matlab)

4. Control System toolbox (some of the functions used are from this add-on)

3

https://www.arduino.cc/en/Main/Software
http://se.mathworks.com/help/supportpkg/arduino/ug/install-support-for-arduino-hardware.html
http://se.mathworks.com/help/supportpkg/arduino/ug/install-support-for-arduino-hardware.html
http://homepages.rpi.edu/~hurstj2/
http://homepages.rpi.edu/~hurstj2/
https://www.arduino.cc/en/Main/Software

2.5 How to launch the code on the balancing robot

Follow the checklist:

1. check the COM port to which your robot is connected to (Windows button→ Devices and
printers);

2. in Simulink (Matlab 2019b or newer), Tab: Hardware → Build, Deploy & Start.

If you are using an older Matlab version, we recommend you download the newest one from
https://download.aalto.fi/. The instructions in the Lab Book assume you are using 2019b
or newer.

2.6 Datasheet

Table 1 summarizes the values of the parameters describing your balancing robot.

quantity nominal value

g 9.8 m / s2

bf 0

mb 0.463 Kg (with batteries)
lb 0.113 m

Ib 0.00767 Kg m2 (with batteries)

mw 0.026 Kg
lw 0.021 m

Iw 0.00000573 Kg m2

Rm 4.4 Ohm
Lm 0
bm 0
Ke 0.444 Volt sec. / radians
Kt 0.470 N m / amp.

Table 1: Notation used in this document (and in your reports).

4

https://download.aalto.fi/

2.7 Notation

symbol meaning unit

xb horizontal position of the center of mass of the body m
yb vertical position of the center of mass of the body m
θb angular displacement of the body radians
mb mass of the body kg
lb wheel's center - body's center of mass distance m

Ib body's moment of inertia kg m2

xw horizontal position of the center of mass of the wheel m
yw vertical position of the center of mass of the wheel m
θw angular displacement of the wheel radians
mw mass of the wheel kg
lw radius of the wheel m

Iw wheel's moment of inertia kg m2

t time index for continuous time systems sec.
k time index for discrete time systems adim.
∆ sampling interval for discrete time systems sec.

im motor current Amp.
vm motor voltage Volt
Rm motor electrical resistance Ohm
Lm motor electrical inductance Henry
bm motor viscous coe�cient
Tm motor torque N m
Tf friction torque N m

G(s) transfer function from vm to θb

Table 2: Notation used in this document (and in your reports).

5

3 Reporting your �ndings

3.1 How to complete the assigned tasks

The labs are divided into subsections. Each subsection in its turn contains tasks instructions,
reading assignments and reporting instructions like the following ones:

Task 3.1

The tasks indicate what you are supposed to do in the project.

Reading 3.1

The readings suggest what you should know in order to perform the tasks.

Reporting 3.1

The reportings summarize what to report and how. Often you will be asked to report
something in either parametric (you express the quantity as a function of some parameters)
or numeric (you express the quantity with its numerical value) forms.

Notice that every task, reading or report is identi�ed by an ID so that when we communicate
among us we can be always on the same page of the same book.

Remark 3.1

It is recommended that every time that you use Matlab or Simulink you save the

workspace after you completed a task, giving to the saved workspace a name like
workspace_task_4.1_year_month_day_hour.mat. In this way you will save all the in-
formation available that is needed to do the reporting comfortably at home (moreover you
will not overwrite potentially important data). And do backups of everything every

time.

Important: every group will have an ID number that is composed by two digits. In
other words, the �rst group will have the ID number 01, the second 02, etc. This means
that, for example, the Simulink �le submitted by the �rst group is group_01_Simulink.slx

(and not group_1_Simulink.slx!). Moreover, we are case sensitive, in the sense that for us
Group_01_Simulink.slx is very di�erent from group_01_Simulink.slx. Same for the reports.

3.2 The reports

The lab reports are very brief documents that you compile by group (thus one report for each
group). We will use these documents not primarily to evaluate you, but rather to give you
feedback on how you are doing. It should not take too much time to compile them (especially if
you automate the production of the �gures). For your help, follow this checklist:

1. download the corresponding template from MyCourses/Project/Report template;

2. compile it. Notice that what you are supposed to put inside the manuscript is not just a
condensation of the three labs, but rather an exercise on how to write academic papers;

3. name the compiled template as group_#MYGROUP_final_report.pdf, with #MYGROUP being
your group code;

4. upload it in MyCourses.

6

3.3 How you will be evaluated

In brief, each group needs to hand in:

1. the reports of the 3 labs;

2. the material associated to the demo.

Reports should comply with the given template. Once complete and complying with the
requirements in the templates, reports will be evaluated by us and graded with a number ranging
from 0% (worst possible) to 100% (best possible).

Every lab report will be evaluated independently following these performance metrics:
• correctness of the results: for a total of 50% of the points (0 = nothing is correct, 50 =
no mistakes in the derivations, in the block schemes, etc.);
• analysis of the results: for a total of 50% of the points (0 = you analyzed nothing, 50 =
you analyzed everything and correctly). Despite the lab reports will not require too much
analysis, there will be some questions that challenge your knowledge. Your analysis is meant
to be in this way: you obtain a speci�c result (for example, the PID controller behaves better
in simulation than in reality). Then, why do you think you got that speci�c result? What

does it say to you? What are the implications? Analyzing a result is a di�cult task, and
we want you to feel free to discuss what you �nd however you want. But the caveat is: we

want to understand if you understood, and not see what you did. In other words, saying �we
did this this and this and the result is shown in �gure 7� is not an analysis. Instead, we
prefer something like �we did this, and found that the system behaves in this way; initially we
thought that it was because of this, but then we did this other experiment and found that.
So we feel like this is happening, because of this this and this other reason�. Notice that it
is completely OK to say that you did not understand something / you do not know why
something else is happening; but show us that you tried thinking at what you did, and not
that you just monkey-made the labs.

7

4 Lab A

The main purpose of this lab is to develop a simulator of the balancing robot that will then be
used in the next labs for rapid debugging and prototyping purposes.

4.1 Derivation of the Equations of Motion (EOM)

The Equations of Motion (EOM) are the heart of the simulation. Without them there is nothing
to simulate. Furthermore, the EOM can be used for advanced �ltering, for example in a Kalman
�lter.

The balancing robot should be modeled as in Figure 4 (check also the table for the notation
on page 5): the body of the robot can be simpli�ed as a thin pole with its mass mb concentrated
only in the center of mass of the robot, depicted as a larger dot in �gure 2. The center of mass
is at a distance lb from the center of the wheel. The wheel has a radius of lw, and mass of mw.

xw

yw
θw

xb

yb

θb

lw = radius of the wheel

lb = body-wheel's center distance

mw = mass of the wheel

mb = mass of the body

Figure 4: A simple schematic representation of a one-wheeled balancing robot where all the mass of robot
(but the wheels') is concentrated in its center of mass.

The following assumptions should be made in order to simplify the problem:

1. The robot moves in a �at and horizontal environment, i.e., ẏw = 0 always.

2. The wheels never slip and the robot is never turned around by external factors, i.e., xw =
lwθw always.

3. The aerodynamic frictions are negligible.

4. The inductance Lm and the motor viscous coe�cient bm are negligible.

5. The unique force that can be commanded is the torque applied by the motor to the wheel,
and this torque is driven by the voltage that is applied to the motor.

8

θb

Fy

Fx

mbg

Tm

Tf

Fy = vertical component of the tension with the wheel

Fx = horizontal component of the tension with the wheel

mbg = gravity for the body

Tm = motor torque
Tf = friction torque

Figure 5: Summary of the forces that apply to the body of the balancing robot.

The Newton law for the linear movement of the body states that

mbẍb = Fx (1)

mbÿb = Fy −mbg (2)

Notice that the gravity does not a�ect the x (horizontal) component since it is orthogonal to it.
The Newton principle for the angular movement of the body (with rotational axis on the center
of mass of the body) states that

Ibθ̈b = −Tm + Tf + Fylb sin (θb)− Fxlb cos (θb) (3)

for which the gravity does not a�ect the θb component since it does not lead to torque e�ects.

θw

mwg

N
Ft

Fx

Fy

Tm

Tf

Fy = vertical component of the tension with the body

Fx = horizontal component of the tension with the body

mwg = gravity for the wheel

N = reaction of the plane

Ft = tractive force

Tm = motor torque
Tf = friction torque

Figure 6: Summary of the forces that apply to the wheel of the balancing robot.

The Newton law for the horizontal and vertical movements of the wheel are

mwẍw = Ft − Fx (4)

mwÿw = N −mwg − Fy = 0 (5)

The Newton law for the angular movement of the wheel �nally states that

Iwθ̈w = Tm − Tf − lwFt (6)

9

vm

Rmim
Lm

Keθ̇m

Tm

Figure 7: Schematic representation of a DC motor. Here, θm indicates the angle of the motor.

Analyzing the electrical circuit we get

Lm
dim
dt

+Rmim = Rmim = vm − e (7)

where e is the back electromangetic force (emf), connected with the angular velocity of the motor
through

e = Ke

(
θ̇w − θ̇b

)
= Ke

(
ẋw
lw
− θ̇b

)
(8)

where the �rst equality in (7) follows from the assumption that Lm = 0. Substituting (8) in (7)
we then get

im =
vm
Rm
− Ke

Rm

(
ẋw
lw
− θ̇b

)
(9)

Consider then that the torque Tm on the wheel's shaft induced by an armature's current equal to
im is Tm = Ktim, with Kt the motor torque constant. Substituting in (9) we eventually obtain

Tm =
Kt

Rm
vm −

KeKt

Rm

(
ẋw
lw
− θ̇b

)
(10)

Since we have two motors, producing double the torque Tm, we replace the motor torque by

T̂m = 2Tm =
2Kt

Rm
vm −

2KeKt

Rm

(
ẋw
lw
− θ̇b

)
Remark 4.1

Be careful at the quantities that are considered in the various tasks: pay specially attention
at the subscripts, and remember that w means �wheel�, b means �body�, m means �motor�.

Remark 4.2

In order to rewrite Ft, Fx and Fy the Newton's laws for the linear movements of the wheel
and of the body can be used. If everything goes as expected then there will be the need
for simplifying the quantity � ÿb sin (θb) − ẍb cos (θb)�. The following equivalences can be
exploited for the simpli�cation:

xb = xw + lb sin (θb)

ẋb = ẋw + θ̇blb cos (θb)

ẍb = ẍw + θ̈blb cos (θb)− θ̇2
b lb sin (θb)

yb = yw + lb cos (θb)

ẏb = ẏw − θ̇blb sin (θb) = −θ̇blb sin (θb)

ÿb = −θ̈blb sin (θb)− θ̇2
b lb cos (θb)

(11)

10

Eliminating Ft, Fx and Fy from (3) and from (6) leads to two di�erent equations of motion.

Equation 1: To eliminate Fx and Fy from (3) we can exploit (1) and (2) to obtain

Ibθ̈b = −T̂m + Tf +mblbg sin (θb) +mblbÿb sin (θb)−mblbẍb cos (θb) . (12)

We don't like too much this expression, since it contains xb and yb terms. So we now aim to
rewrite ÿb sin (θb)− ẍb cos (θb) in a di�erent way. Considering then Figure 4 on page 8, it follows
that ẍb and ÿb are linked to ẍw and θ̈b as in (11). Thus

+ÿb sin (θb)− ẍb cos (θb) =(
−θ̈blb sin (θb)− θ̇2

b lb cos (θb)
)

sin (θb)−
(
ẍw + θ̈blb cos (θb)− θ̇blb sin (θb)

)
cos (θb) =

−θ̈blb sin2 (θb)− θ̇2
b lb cos (θb) sin (θb)− ẍw cos (θb)− θ̈blb cos2 (θb) + θ̇2

b lb sin (θb) cos (θb) =

−θ̈blb − ẍw cos (θb)
(13)

Plugging into (12) we then obtain

Ibθ̈b = −T̂m + Tf +mblbg sin (θb)−mbl
2
b θ̈b −mblbẍw cos (θb) (14)

and thus, rearranging,(
Ib +mbl

2
b

)
θ̈b = +mblbg sin (θb)−mblbẍw cos (θb)− T̂m + Tf (15)

Equation 2: Plugging (4) into (6), and using θ̈w = ẍw/lw leads to

Iw
lw
ẍw = T̂m − Tf − lwFx − lwmwẍw. (16)

To eliminate Fx we then combine (1) and (11) into

Fx = mbẍw +mblbθ̈b cos (θb)−mblbθ̇
2
b sin (θb) . (17)

Plugging this into (16) we then obtain

Iw
lw
ẍw = T̂m − Tf − lw

(
mbẍw +mblbθ̈b cos (θb)−mblbθ̇

2
b sin (θb)

)
− lwmwẍw (18)

and, rearranging,(
Iw
lw

+ lwmb + lwmw

)
ẍw = −mblblwθ̈b cos (θb) +mblblwθ̇

2
b sin (θb)− Tf + T̂m. (19)

4.2 Linearize the Equations of Motion

Since the goal is to design a controller for a linear system, the EOM must be linearized. The
linearization point must be the equilibrium θb = 0, so that

� sin (θb) ≈ θb;

� ẍw cos (θb) ≈ ẍw;

� θ̈b cos (θb) ≈ θ̈b.
As for θ̇2

b sin (θb), the suggestion is to assume negligible centripetal forces (i.e., small body angle
velocities), so that we can say θ̇2

b ≈ 0. Thus, the linearized EOM are
(
Ib +mbl

2
b

)
θ̈b = +mblbgθb −mblbẍw −

2Kt

Rm
vm +

(
2KeKt

Rm
+ bf

)(
ẋw
lw
− θ̇b

)
(
Iw
lw

+ lwmb + lwmw

)
ẍw = −mblblwθ̈b +

2Kt

Rm
vm −

(
2KeKt

Rm
+ bf

)(
ẋw
lw
− θ̇b

)
(20)

11

4.3 Write the linearized EOM in state space (SS) form

We want to express the EOM in the form of a general linear time-invariant (LTI) SS system:{
ẋ = Ax+Bu
y = Cx+Du

(21)

for state x, and dynamics given by A, B, C and D. This means that you have to select the
states for the system, �nd the equations for the �rst order derivatives of the states and stack
everything up in a vector form like in equation (21). For now the input is the voltage applied
to the motors and the measurement is the angular deviation of the balancing robot from the
vertical upright position, i.e.,

u = vm
y = θb

(22)

Task 4.1

Write the linearised EOM as in (21) considering the inputs and outputs as in (22).

Reporting 4.1

1. Say what is your choice for x.

2. Write the matrices A, B, C and D in (21) in parametric form.

3. Write the matrices A, B, C and D in (21) in parametric numeric form (for this
purpose use Table 1 on page 4).

Hint 4.1

It is much easier and numerically stablea to do as follows: write the system in parametric
form as [

γ11 γ12

γ21 γ22

] [
ẍw
θ̈b

]
=

[
α11 α12 α13 α14

α21 α22 α23 α24

]
xw
ẋw
θb
θ̇b

+

[
β1

β2

]
u (23)

where the various γ, α and β are functions of the various parameters in Table 1 (e.g., and
this is just an example, α23 = Ib +mr +Rm); since

[
ẍw
θ̈b

]
=

[
γ11 γ12

γ21 γ22

]−1 [
α11 α12 α13 α14

α21 α22 α23 α24

]
xw
ẋw
θb
θ̇b

+

[
γ11 γ12

γ21 γ22

]−1 [
β1

β2

]
u (24)

you can create your A, B, C variables in Matlab (values of the parameters given in
the Datasheet in Table 1) immediately with a minimum of manipulation of the equations
above (do all these computations in Matlab! And try to learn how to use symbolic
variables).

aIn the sense that if you don't do as we suggest you may get very strange behaviors from Matlab.

12

Troubleshoot 4.1

The values of your matrices should be as below. Notice that you should absolutely NOT
manually set the matrices A and B in Matlab as follows:

A = [0, 1, 0, 0 ;

0, -773.8, -6.6 , 16.2;

0, 0, 0, 1 ;

0, 3313.2, 63.1, -69.6];

B = [0; 36.5980; 0; -156.7072];

This way of de�ning A and B induces very strange (and wrong) results. You have to
compute A and B from the formulas; otherwise you destroy some symmetries that lead
to poles / zeros cancellations and you get very wrong results. Use the above results,
nonetheless, to check if you have computed the correct values.

4.4 Determine the transfer function of the LTI SS system

Task 4.2

Compute the transfer function, the poles and the zeros of the system.

Before using Matlab, it is strongly recommended to start by getting an intuition of which
poles and the zeros you will get by analyzing the structure of

sI −A and

[
sI −A −B
C D

]
. (25)

Hint 4.2

The s for which the matrix on the left is singular are the poles of the system and the s for
which the matrix on the right is singular are the zeros of the system. You can also look
at the determinants of the two matrices which will give you the pole polynomial and the
zero polynomial respectively.

Only after this use Matlab (and the commands in Table 3 on page 41) to compute the
requested quantities both analytically and numerically. The rationale for this prior checking is
this one: Matlab (actually, any software) has numerical problems induced by the fact that they
use �nite arithmetic2, and may thus make mistakes. You can then notice and correct them only

if you developed intuitions of what you should get and what you should not.

Reporting 4.2

1. Write the transfer function in the form

G(s) = K

∏
i (s− zi)∏
j (s− pj)

(26)

2. If you experienced some numerical problem with Matlab, describe them.

2Read, e.g., the paragraph �Zeros at In�nity� in http://ctms.engin.umich.edu/CTMS/index.php?aux=

Extras_Conversions.

13

http://ctms.engin.umich.edu/CTMS/index.php?aux=Extras_Conversions
http://ctms.engin.umich.edu/CTMS/index.php?aux=Extras_Conversions

4.5 Design a PID controller stabilising the transfer function computed in
Section 4.4

It is important to notice the following:

1. At this stage, only the transfer function from the motor voltage vm to the body angle θb
should be stabilized. The designed PID should only prevent the robot from falling over.
Therefore, the reference signal for θb is zero.

2. The state for xw should be ignored. It does not matter where the robot stands for now.

3. The root locus of the linearized balancing robot indicates that there is no P controller
stabilizing θb starting from vm. A PI can stabilize the robot, but the stability domain
is going to be very small. A PID instead works much better and gives a much bigger
stability domain. Therefore, the PID version should be chosen as the �rst initial choice for
a controller.

Task 4.3

Design the PID using the pole placement method. Since this is a simulation, you are free
to choose the poles wherever you want (as long as the closed loop is stable, of course).

Reporting 4.3

1. Describe your choice for the poles, and what you want to achieve in terms of impulse
response for the closed loop system.

2. Write down the values of the parameters of the PID.

3. Write down the resulting closed loop function in its numerical form.

Hint 4.3

To place the poles, de�ne your desired pole polynomial and compare it to the transfer
function of your closed loop system.

4.6 Model the e�ect of disturbing the robot

It is often meaningful to analyze the e�ects of common disturbances on a system. In this case,
it should be checked what happens when someone pokes the robot and applies an impulsive
horizontal force to the center of mass of the body.

Task 4.4

Modify the EOM of your balancing robot to include an additional input that is called d
and that models someone poking the robot. Derive also the linearized and state space
version of the new EOM.

Reporting 4.4

1. Write down the new EOM in parametric form.

2. Write dowm the new linearized EOM in numerical state space form.

14

Hint 4.4

In other words, what happens if there is a term in Figure 5 that sums up with Fx?

The new disturbance can be thought as an additional input, but this new input d is di�erent
from the voltage vm. Indeed, in the new state space representation the two columns of B are not
linearly dependent, this means that d and vm �enter� the state of the system with a �di�erent
angle� (think geometrically). In practice, poking the robot is di�erent from disturbing the voltage
vm.

Troubleshoot 4.2

The values of your B-matrix should be as below. Notice that you again should absolutely
NOT manually set the matrix B in Matlab as follows:

B =[0, 0;

36.5980, 1.8795;

0, 0;

-156.7072, 1.0797];

Use this result to check if your calculations were correct.

4.7 Check if everything is working as it should be

You should now have everything you need for checking if things are working as expected. The
next task is to simulate what the linear system does when it is subject to a small poke.

Task 4.5

Implement a Simulink model for the linearized balancing robot subject to the two inputs
vm and d. Consider as outputs of the system all the states of the balancing robot, i.e., use
as matrices C and D the matrices

C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 D =


0 0
0 0
0 0
0 0

 . (27)

Perform an experiment for which the external disturbance d is

d(t) =

{
0.1 for t ∈ [0, 0.1]
0 otherwise,

(28)

and check the values of the signals θb and xw.

To create d(t) you may use the Simulink block Signal Builder. For the linearised robot's
dynamics it is instead suggested to use a LTI System that loads its A, B, C and D matrices from
Matlab's workspace. Be careful that here B includes not only the input vm but also the input
(disturbance) d, so update your de�nitions of C and D accordingly.

It is suggested to implement the PID through a PID Controller block. This block re-
quires the Filter coefficient (N) to be set, and if you do not know what it does then check
Simulink's help and try to think what happens if N is very big or very small.

Important: It is a bad habit to hard-code Simulink's blocks 3. Moreover it is also suggested

3If you de�ne the parameters within Simulink blocks, you need to �nd the block every time you need to
change the value. This problem becomes more severe if you have multiple blocks using the same variables as all

15

to automate the production of �gures, e.g., as was demonstrated in Section A.2 on page 41.

Reporting 4.5

1. Plot your Simulink scheme.

2. Plot the realisations of θb(t), xw(t), vm(t) and d(t).

theta_b_dot

theta_b

x_w

x_w_dot

ss(A, Bd, Cf, Ddf)

Linearized Balancing Robot

PID(s)

PID Controller

x_w

theta_b
Signal 1

Group 1

disturbance d

d

v_m

Figure 8: Our Simulink solution for Task 4.7.

time

0 2 4 6 8 10

m
e

te
rs

0

0.1

0.2

0.3

0.4

x
w

time

0 2 4 6 8 10

d
e

g
re

e
s

-0.1

0

0.1

0.2

0.3

θ
b

time

0 2 4 6 8 10

V
o

lt

-0.2

0

0.2

0.4

0.6

0.8

v
m

time

0 2 4 6 8 10

N
e

w
to

n

0

0.02

0.04

0.06

0.08

0.1
d

Figure 9: The signals that we obtained solving Task 4.7.

The model solution is in Figures 8 (the Simulink diagram) and 9 (the plots of the signals).
The solutions of the previous task are included because it is very important to understand what
happens here: as you can notice, the system acts as an integrator on xw. In other words, an initial
poking makes the robot start moving. The controller then starts acting, but tries to regulate
only θb: the control action indeed does not care if the state ẋw is not zero. If you implement this

values need to be changed. Instead, de�ne the block parameters by using symbols so that they will be loaded
automatically from workspace.

16

PID on your robot, you should expect to run after it all the time. In mathematical terms, the
system is actually still unstable.

The next question is: Is it possible to stabilise xb using an other PID? The intuition is that
if one could measure the wheel position xw through some encoders then one may implement a
cascaded controller that takes care of the state xw as in Figure 10.

Σr Σ Gw(s)

G(s)C(s)

Cw(s)

+

−

+ vm xw

−

Figure 10: Alternative block schematic representation of the linearised balancing robot and the associated
controllers.

The new block diagram in Figure 10 has G(s) and C(s) as before (i.e., the transfer functions
from vm to θb of Section 4.4 and the PID controller of Section 4.5), plus it has Gw(s) and Cw(s),
respectively the transfer functions from vm to xw and an additional controller that needs to be
designed. One could then design another PID controller and place the poles for the new transfer
function Gw(s). Unfortunately, Cw(s) a�ects also G(s), and C(s) a�ects Gw(s). As you may
imagine, the problem becomes a bit more messy than before4.

Therefore, this problem should be ignored for now and you should focus for now

only on doing control for θb. A single PID controlling θb won't stabilize xw. It is possible
to add another PID for controlling also xw, but the computations start becoming cumbersome.
With state space notation this control problem can be solved in an easier way.

4.8 Convert the controller to the discrete time domain

The focus should now be shifted to the problem of implementing C(s) with the real balancing
robot. Before proceeding, notice that the Arduino board is a digital controller � in other words,
you cannot implement C(s) as it is: you must discretize it. There are several discretization
methods. For now, the focus is on zero order hold (ZOH) methods.

Task 4.6

Compute the bandwidth of the linearised balancing robot, and decide the sampling period
of the digital controller. Compute the controller in terms of di�erence equations.

Reporting 4.6

1. Report the bandwidth of the system.

2. Report the chosen sampling time.

3. Justify your choices in 1 and 2.

4. Report the discrete-time transfer function C(z) of your controller in its parametric
form.

4The problem is that the new system is a multiple input multiple output (MIMO) system, since it has vm and
d as inputs, and θb and xm as outputs. Controlling MIMO systems with PIDs require special techniques, which
are not in the scope of this laboratory.

17

Hint 4.5

For the bandwidth, use the frequency where the closed-loop bode plot magnitude crosses
-3 dB.

4.9 Simulate the closed loop system

It is easier to prototype and validate controllers on simulators rather than on true systems. In
the provided Simulink library you can �nd a block BalancingRobotSimulator, as the one in
Figure 11.

Figure 11: Our Simulink balancing robot simulator. Double-clicking on it activates the mask in Figure 12,
where you can set the various physical parameters describing your balancing robot.

The simulator of Figure 11 implements the non-linear EOM. Thus, it approximates the be-
havior of a real balancing robot with a good accuracy. The simulator allows you to:

� Play with two di�erent disturbances: one on the mass of the body, so that you can mimic
the e�ects of putting some additional weight on the robot, and one representing the torque
disturbance d discussed above, so that you can mimic poking the robot.

� Get the whole state of the system (xw, ẋw, θb, θ̇b), so that you can try implementing full
state controllers without having state observers, and test and characterize the performance
of the state observers when you will implement them (more information in Lab B).

Notice that the simulated robot can fall, but � luckily � you cannot break it. So don't fear to
experiment with it! To slow down/up your simulations (i.e., see the robot moving or not) set
the block Real Time Synchronization accordingly.

Your goal is to check three things:

1. Is the controller stabilizing the non-linear dynamics?

2. Are the linearized dynamics a good approximation of the non-linear versions?

18

Figure 12: Mask for setting the parameters of the simulated balancing robot. The default values are the
ones you should use in this lab.

3. Is the chosen sampling time good for control purposes?

Task 4.7

In the MyCourses Matlab and Simulink folder you will �nd two schematics:

1. One as in Figure 13, where the simulated and linearised robots are controlled
by the same continuous time PID C(s) and subject to the same disturbance d
(LabA_LinearizedBotVsSimulator.slx).

2. One as in Figure 13, where the simulated and linearised robots are controlled
by the same discrete time PID C(z) and subject to the same disturbance d
(LabA_LinearizedBotVsSimulator_Discrete.slx).

Before running the simulation, see that you have your PID gains kP, kI and kD as well as
your continuous and discrete system matrices A, B, C, D and Ad, Bd, Cd, Dd respectively in
your Matlab workspace. Detect for both the schemes the value of d in the disturbance
signal

d(t) =

{
d for t ∈ [0, 0.1]
0 otherwise

(29)

that makes the simulated robot fall when starting from the equilibrium. Compare the
trajectories of θb, θ

lin

b and vm for the continuous and discrete control cases by using a d
in (29) with a value equal to half of the one that makes your simulated robot fall (one
value for each case).

19

simulator

C(s)

G(s)

C(s)

d

d

vm

θb

vlinm

θlinb

Figure 13: Block-schematic representation of how we compare the linearized dynamics with the nonlinear
EOM. The disturbance d represents the same force corresponding to somebody poking the robot, while
C(s) is the same controller for both the linear dynamics G(s) and the simulator.

IMPORTANT NOTICE! 4.1

Figure 13 represents the case of continuous time controllers. For the discrete case, the
digital controller G(z) should be surrounded by a sampling and a ZOH block. However,
Simulink does this surrounding by itself. It is su�cient to change the PID block from
�continuous� to �discrete� and let Simulink handle the conversion automatically.

Reporting 4.7

1. Report the smallest values of d that make your robot fall (one for the continuous
and one for the discrete case).

2. Plot θb(t), vm(t), θlinb (t) and vlinm (t) for a case where the robot still balances (one for
the continuous and one for the discrete case).

3. Discuss what you understood from these experiments, and if (and how) it helped
you tuning the PID controller.

Troubleshoot 4.3

� Moving from continuous to discrete may introduce numerical problems, e.g., make a
stable plant �explode�a. If this happens to you, then consider changing the �Discrete-
time settings� of your PIDs (set, e.g., to �Backward Euler� or �Trapezoidal�).

� When the Simulink says �Embedded Coder license missing� just press continue.
The model should still work.

aIt is because in this case there is a double integrator and numerical perturbations may be fatal for
Simulink.

Notice that the results you got in this last step may be indicating that your controller is not
good enough. Try playing with di�erent gains, or equivalently, with di�erent positions of the
poles in the PID design step, and check how things change.

20

4.10 Optional: play with the simulator

This is something you are not compelled to do, but this of course is a very useful exercise. It
is suggested to play around with the parameters in the simulator (i.e., make the robot heavier,
put bigger wheels, lighter wheels, more powerful motors, etc.) and see if your intuitions work.
In other words, try to think �what is going to happen if I do this?� and double check with
experiments if you have understood how the system works. If you �nd something that is worth
to be mentioned in the lab report, you should of course mention it.

21

5 Lab B

The main purpose of this lab is to start designing controllers using continuous time concepts. In
other words, you do not start immediately from discrete considerations but rather from contin-
uous ones, and then discretize the results.

5.1 How to do tests on the robot

There are two di�erent ways of running tests:

� One is External mode (press 'Monitor & Tune' from 'Hardware' tab in Simulink), for
which the robot is �commanded� by Simulink. In this case the robot runs up to the
moment that the Simulink simulation �nishes, or up to when you press the reset button
(Figure 15). When you do this kind of tests, after the end of the simulation the robot will
usually do nothing. If the motors have input other than 0 at the end of the simulation,
there they will continue running as the last value is held after the communication stops. A
simple press of the reset button will �x this.

� The other is Deploy to hardware (press 'Build, Deploy & Start' from 'Hardware' tab in
Simulink), for which the robot is loaded with some code that will continuously run when-
ever the board is powered. In this situation you turn o� the robot either temporarily by
pressing the reset button (but when you release the robot will re-initialize its computations
and start again), or by removing the power to the board (i.e., by disconnecting the USB
cable and turning o� the switch for the batteries highlighted in Figure 14).

Figure 14: Batteries switch.

Figure 15: The reset button. When an �External� Simulink simulation �nishes the robot remains in the
last state. To stop the robot or reset the state, press the highlighted button.

22

Troubleshoot 5.1

In case you �nd some problems please report them as soon as possible so that they
can be added to the following list:

� When Simulink says �access denied� when downloading some code to the robot,
sometimes the solution is to delete the folder NameOfTheSimulinkDiagram_rtt. This
folder contains some temporary code that Simulink creates for deploying the code
to the hardware and it will be recreated automatically.

� If the build diagnosis report states, there was no board connected, the best option
is to try to build the code again. The models do not seem to accept setting of the
communication port manually.

� Simulink does not like spaces or special characters in the path to the *.slx �le. Try
to name your workspace folders accordingly. The error this returns is not obvious
and it's better to avoid from the start.

5.2 Communicating with the balancing robot

You should start by checking if you are able to communicate with the robot. Please, follow these
steps:

1. Download the code from MyCourses folder �Matlab and Simulink code� for the various
labs.

2. Either copy the �le C:\MATLAB\RASPLib\startup.m to your H:\Documents\MATLAB\startup.m
or, if you want, create H:\Documents\MATLAB\startup.m manually and add the following
lines to it:

addpath('C:\MATLAB\RASPlib\RASPlib')

addpath('C:\MATLAB\RASPlib\RASPlib\src')

addpath('C:\MATLAB\RASPlib\RASPlib\include')

addpath('C:\MATLAB\RASPlib\RASPlib\examples')

addpath('C:\MATLAB\RASPlib\RASPlib\blocks')

Notice also that it is H:\Documents and not H:\My Documents: these can be di�erent
folders and Matlab may not look into both for the startup script. Additionally, notice
that Unix machines require / symbols instead of \ in the path names.

3. Open Matlab.

4. Connect the robot and the computer with the USB cable (no need for plugging the batteries
for now). Matlab should say that an Arduino 2560 has been connected.

5. Double click the Simulink �le LabB_CheckCommunications.slx and wait for Simulink
to open.

6. Click the text �load parameters�.

7. Launch a simulation in external mode ('Monitor & Tune' in 'Hardware' tab).

8. Stop manually the simulation whenever you want. Notice that after stopping Simulink
you should also reset the robot by pressing the reset button.

23

9. Open the SerialSettings.m �le and follow the instructions to insert the correct com port
to the required variable, after this you can use the PLOT scripts to plot data from the
MinSeg as long as the program currently on the MinSeg is the similarly named slx �le.

If you get meaningful plots then you successfully communicated with the robot.

Troubleshoot 5.2

If you get build errors, read carefully the error text, if you are missing variables etc.
make sure to click the load parameters link, often the mistake is small and you can easily
identify it from the error text. However, if you cannot �gure out what went wrong, do the
following:

1. Run the script PurgeSerialCommuniations.m and try again.

2. Delete the automatically generated slprj folder and folders that end with _ert_rtw.

3. If that is not helping, then check the readme.rtf �le with a suitable text editor.

4. If your problem is not listed there, take a screenshot of your error text (Windows:
shift+win+s, Mac: shift+cmd+4) and send it as an e-mail to the project TA with
the following information: OS, Matlab version, lab �le, description of what you tried
to do, screenshot(s?) of the error text. Not providing all the necessary information
will de�nitely not speed up the process of getting the situation solved.

5.3 Observing that reality is far from ideality

If you successfully communicated with the robot you probably noticed that the behaviours of the
accelerometer and of the gyro are very far from the ideal case. There is noise in the measurements
and in addition you can observe the gyroscope bias when the robot is still on the table, or observe
how the accelerometer reading changes when you shake the robot without tilting it.

As you may suspect, using the measurements from the gyro and the accelerometer needs
some �ltering and bias correction. From now on, it is assumed that you do the steps 1 to 6 of
the previous procedure by default before running or building scripts for the real robot by using
the correct lab �le instead of the check communications in step 5.

5.4 Calibrating the robot

Every robot has their own sensors and every sensor has some error due to the manufacturing
process. In order for the robot to balance well, the sensors need to behave as expected, that is,
when the robot is not excited, the accelerometer should point to the direction of gravity with
the corresponding magnitude, and when the robot is still, the gyroscope should show zero on all
axis.

The calibration of the sensors is a critical part and if done right, you should only need to

do this once during this course. However, if you want to you can perform this calibration once
per lab. As time passes, the sensor readings might need a recalibration, but so far the need for
recalibration has only risen after around 6 months.

In order to calibrate the gyroscope and accelerometer, do the following steps:

1. within Matlab navigate to the setup_new_bot folder

2. REMOVE any batteries and put the robot on USB power

3. place the robot �at on a table, LED side facing upwards, you want to use the edge of the
table if you have the motors attached so that the battery holder is tightly against the table
surface

24

4. run the set_MPU_scaling.m script, this sets the hardware scaling values for converting
from bytes to actual numbers

5. open and run the gyro_acc_autocalibrate.slx in External mode while making sure that
the robot is held still until the program is �nished

6. run the calculate_offsets.m script

7. insert the batteries and don't forget to put the power switch to battery mode after the
script �nishes

You should now have obtained a �le called OffsetData.mat that contains the o�sets for ac-
celerometer y and z axes as well as gyroscope x and y axes.

Now that the sensors are calibrated, the only thing left is to measure the actual equilibrium
angle for the robot. However, we have done this already for you and it is stored in radians in
the �le EquOffset.mat with rest of the lab �les. If you want you can later on try to manually
change the equilibrium o�set for your robot, this may result in sligthly smoother balancing, but
the controllers used are robust enough for one value to suit all. Increasing the value will cause
the robot to tilt forward.

5.5 Test the PID controller

Now, you should test if the developed PID controller behaves as one would wish in the real
system. To do so:

1. Mount the batteries on the robot (you may want to use some tape to prevent them from
falling if the robot falls over).

2. Turn the batteries switch on (see Figure 14);

3. Connect the USB cable;

4. Open the Simulink diagram LabB_PIDOverRobot.slx;

5. open the various sub-diagrams and explore how we implemented the various things;

6. open the Matlab script LabB_PIDOverRobot_Parameters.m, and put in it your gains
kP , kI and kD plus your sampling period (you will �nd in the .m �le our default values).
Do not touch the other variables;

7. launch LabB_PIDOverRobot_Parameters.m to load these parameters (you can do it directly
in Simulink by clicking on the load parameters text);

8. launch a �Deploy to hardware� simulation ('Build, Deploy & Start' in the 'Hardware' tab).
If you completed the steps in Section 5.2 successfully you should have no problems here;

9. if the robot does not balance, try to change the PID coe�cients as your intuition suggests;

10. to visualize or save data from the robot follow this procedure:

(a) Open the Simulink diagram LabB_PIDOverRobot.slx;

(b) Load parameters as before;

(c) Go into the controller subsystem (double click);

(d) Open the scope and run your controller in external mode ('Monitor & Tune'). Already
hold your robot in the upright position when clicking this button. When it starts to
move, you should see the data in the scope. Be careful not to press the reset button
when gathering data. This will crash the program running on the robot.

25

(e) When you think you have the data you want, just terminate the simulation in Simulink
by either clicking 'Stop' or Ctrl+Shift+T

(f) To plot the data, either you use the data generated in the workspace similar to this
example:

figure(1);

plot(x_w.time, squeeze(x_w.signals.values));

xlabel('time/s');

ylabel('x_w/m');

You can check the Simulink model for the name of the variables you are intereste in,
or look in the workspace after �nishing the simulation. You can also use screenshots
of your scopes that illustrate what you want to show.

We expect your PID not to perform too well (e.g., ours was standing for maximum

about 10 seconds). So, do not lose too much time in wiggling with the PID controller.

Task 5.1

Test your PID controller as above.

Reporting 5.1

Report an example of the xw, θb and u obtained with your best PID controller, and the
parameters of the PID. Indicate also how long you got the robot stand before falling for
this controller.

Troubleshoot 5.3

When you accidentally press the Reset button while collecting data and Simulink crashes,
wait for the error message to pop up, close Simulink and open it up again

5.6 Check the controllability and observability properties of the linearized
system (21)

Task 5.2

Compute and discuss the controllability and observability properties of the linearized
system (21) in numeric form.

Reporting 5.2

1. Write the numerical values for the controllability matrix C and the observability
matrix O;

2. if something is not controllable or observable:

(a) motivate why this happens;

(b) say how you would �x the problem;

(c) say how this a�ects the transfer function of the system.

26

5.7 Design a SS controller selecting the poles

We now start the process of designing the �rst continuous time state-space oriented controller.
The steps will be the following:

1. pretending that we have information on all the state, construct a controller by doing poles
allocation;

2. since we do not measure the full state of the system, and we still do not have constructed
some state observers, we must test the controllers in simulation;

3. after checking that the controllers behave as expected, we construct some observers of the
state, and test also these ones in simulation;

4. when the simulations of both the controller and the observers indicate that in theory things
are working, we implement the �ndings in the real system.

Before starting, ask yourself: relative to the models developed in Lab A, what are the inputs
that you can actually command? (That means: which linearized equations shall you consider?)
After thinking at this we thus continue by constructing a controller through a second order
approximation of the plant, and then check its performance in simulation. As for the poles
location, feel free to do some tests, but keep in mind the practical considerations.

Task 5.3

1. select the location of the poles for the closed loop system (hint: the two poles of the
open loop system that must be moved are the unstable one and the integrator. The
other two stable poles are instead one very fast, relative to the motor, and one quite
slower � around −5. The speed of that slower pole is a good starting point. . .);

2. add to theMatlab script LabB_ControllerOverSimulator_Continuous_Parameters.m
that Matlab code that computes the gains matrix K. The results of your compu-
tation must be saved in the variable K;

3. open the Simulink diagram LabB_ControllerOverSimulator_Continuous.slx

and test your controller by running the simulation (ctrl+T). At the end of the simu-
lation the Simulink diagram will save the variables x and u inMatlab's workspace,
so that you can plot the results conveniently.

Reporting 5.3

Report:

1. the poles that you selected for the closed loop system, motivating brie�y why you
chose that ones, and the corresponding second order approximating system that you
chose;

2. how you computed the gains matrix K, and its value;

3. the plots of θb and vm obtained with the chosen controller.

27

5.8 Design a state observer, and add it to the simulator

The next step is to design a continuous time strategy for observing the state and test it on the
simulator. We test two di�erent strategies:

1. a full order Luenberger observer;

2. a reduced order Luenberger observer.

Both the observers are based on the assumption that we do not measure just θb, but also xw, so
that the C matrix of the system is now

C =

[
1 0 0 0
0 0 1 0

]
=⇒

[
yxw
yθb

]
= C


xw
ẋw
θb
θ̇b

 (30)

The tasks are the following ones:

Task 5.4

Design:

1. a full-order Luenberger observer assuming C as in (30). Use directly a poles alloca-
tion method;

2. a reduced-order state Luenberger observer assuming C as in (30), and assuming
that the measurement yxw is accurate, while yθb is not. Use again a poles allocation
method.

To solve the task above edit the Simulink diagram LabB_ObserverOverSimulator_Continuous.slx.
In it you �nd:

� the simulator;

� two already implemented block schemes of the requested observers;

� some code for visualizing the interesting signals and saving them to the workspace.

What you need to do is then to implement in LabB_ObserverOverSimulator_Continuous_Parameters.m
some Matlab code that computes the following quantities in the following variables5 (or, alter-
natively, load these variables from the workspace if you saved them in the previous tasks):

� kP, kI, kD (the parameters of your continuous time PID controller);

� A, B, C, D (the system matrices � notice that C should be the C in (30) while B should
be the B relative to just the input vm, and thus be one single column);

� L (the full order observer gain);

� M1, M2, M3, M4, M5, M6, M7 (the reduced order observer gains).

Troubleshoot 5.4

If Matlab complains when you are using acker and says that A′, C ′ may be non-
controllable (that means that A, C is non-observable) then ask yourself: did you use
a C that guarantees observability? (Because, as for sure you remember, acker works
when you have full controllability/observability. . .)

5Once again, use exactly the notation you see below, since the Simulink diagram loads them from the
workspace. E.g., if you do not put kP = -50; in the .m �le then Simulink will give an error.

28

As for the reduced observer gains, we recall that the equations are the following ones: starting
from a system (A,B,C, 0), you rewrite it as

ẋ = Ax+Bu
yacc = Caccx
yacc = Caccx

with Cacc in Rp×n with p the number of accurate measurements and n the order of the system.
The yacc denotes the states for which we only have inaccurate measurements. Select then a basis

completion V so that T−1 =

[
Cacc

V

]
is a proper change of basis, and de�ne x = Tz so that

z = T−1x =

[
Caccx
V x

]
=

[
yacc
V x

]
=

[
yacc
χ

]
.

where χ are the remaining states to be estimated. This induces the new system


ż = Ãz + B̃u

yacc = C̃accz

yacc = C̃accz

with


Ã = T−1AT

B̃ = T−1B

C̃acc = CaccT

C̃acc = CaccT

with

C̃acc = CaccT = Cacc

[
Cacc

V

]−1

=
[
Ip 0p×n−p

]
and

z = T−1x =

[
yacc
V x

]
=

[
yacc
χ

]
C̃acc =

[
Ip 0p×n−p

]
C̃acc =

[
C̃y C̃χ

]
This then implies that the new system can be rewritten as

[
ẏacc
χ̇

]
=

[
Ãyy Ãyχ
Ãχy Ãχχ

] [
yacc
χ

]
+

[
B̃y
B̃χ

]
u

yacc =
[
I 0

] [yacc
χ

]
yacc =

[
C̃y C̃χ

] [yacc
χ

]
,

an expression that highlights how the �rst and third subsystems contain partial information,
while the second subsystem is instead non informative. Consider then the reduced subsystem

[
ẏacc
χ̇

]
=

[
Ãyy Ãyχ
Ãχy Ãχχ

] [
yacc
χ

]
+

[
B̃y
B̃χ

]
u

yacc =
[
C̃y C̃χ

] [yacc
χ

]
or, equivalently, 

ẏacc = Ãyyyacc + Ãyχχ+ B̃yu

χ̇ = Ãχyyacc + Ãχχχ+ B̃χu

yacc = C̃yyacc + C̃χχ

29

or, again equivalently, as
χ̇ = Ãχχχ+

(
Ãχyyacc + B̃χu

)
[
ẏacc − Ãyyyacc − B̃yu

yacc − C̃yyacc

]
=

[
Ãyχ
C̃χ

]
χ

This implies that we moved from the full order observer structure

˙̂x = Ax̂+Bu+ L (y − Cx̂) ,

where we design L through L = (place(A', C', afPoles))', to a reduced order observer
structure

˙̂χ = Ãχχχ̂+
(
Ãχyyacc + B̃χu

)
+ L

([
ẏacc − Ãyyyacc − B̃yu

yacc − C̃yyacc

]
−

[
Ãyχ
C̃χ

]
χ̂

)

for which we design L through an opportune L = (place(AA', CC', afPoles))'; where
AA and CC are the new system matrices. Notice that after the design step one can split the new
L in two parts, i.e.,

L =
[
Lacc Lacc

]
so that we can rewrite the expressions as

˙̂χ =
(
Ãχχ − LaccÃyχ − LaccC̃χ

)
χ̂

+
(
B̃χ − LaccB̃y

)
u

+
(
Ãχy − LaccÃyy − LaccC̃y

)
yacc

+Laccyacc + Laccẏacc.

Since the term ẏacc may lead to numerical problems, we introduce the new state χ̂ = χ̂′ +
Laccyacc. Moreover we also need to changes the coordinates to go back to the original space
(indeed, x = Tz, thus z = T−1x). We thus can eventually rewrite the dynamics of the observer
as

˙̂χ
′
=

(
Ãχχ − LaccÃyχ − LaccC̃χ

)
χ̂+

(
B̃χ − LaccB̃y

)
u

+
(
Ãχy − LaccÃyy − LaccC̃y

)
yacc

+Laccyacc

χ̂ = χ̂′+Laccyacc x̂ = T

[
yacc
χ̂

]

or, in a compact form, as

�
˙̂χ
′
= M1χ̂+M2u+M3yacc +M4yacc

� χ̂ = χ̂′ +M5yacc

� x̂ = M6yacc +M7χ̂.

30

Hint 5.1

Note that in order to get the gains of the reduced order estimator M1, . . . ,M7, not every
step of the derivation needs to be calculated by you. Try to follow the steps and understand
the reduced observer. If you have trouble getting the gains, here are a few tips:

1. The transformation T is unity. What does that mean for Ã, B̃, C̃acc and C̃acc?

2. Once you know Ã, B̃, C̃acc and C̃acc you can immediately spot what Ãyy, Ãyχ, Ãχy,

Ãχχ, B̃y, B̃χ, C̃y and C̃χ are.

3. With these, study the reduced observer structure and �nd the equivalences to the
full observer structure. This gives you the new system matrices AA and CC for which
you design the reduced observer in the given manner.

4. Once you have Lacc and Lacc, the reduced observer gains can be seen by comparing
the coe�cents of the last equations in the above derviation.

Reporting 5.4

Report:

1. the values of L (the gain of the full order estimator) and M1, . . . ,M7 (the gains of
the reduced order estimator);

2. plots of θb, xw and their estimates from both the full and reduced order estimators;

3. the maximum error committed in estimating θb and xw with the full and with the

reduced order observers (thus max
t

∣∣∣θb(t)− θ̂fullb (t)
∣∣∣ and max

t

∣∣∣θb(t)− θ̂reducedb (t)
∣∣∣, and

the same quantities for xw).

5.9 Discretize both the controller and observer, and add them to the simu-
lator

Before implementing the controller and observer in the Arduino board, we must convert our
continuous time strategies into a discrete one and test that we have meaningful results. To this
aim we must perform the following task:

Task 5.5

1. discretize the continuous time system (A,B,C, 0) into its discrete equivalent
(Ad, Bd, Cd, 0) (you can easily do this in Matlab through the function c2d. Notice
that in the Matlab scripts you will always �nd the variable fSamplingPeriod �
change its value if you want but keep this name!);

2. map the poles for the controller and observer found for the continuous time case
through the map z = ep∆, where ∆ is the sampling period;

3. compute the gainsKd, Ld,Md1, . . . ,Md7 for the discrete controller and full / reduced
observers using again the functions acker or place (notice that these gains will be
di�erent since we are in a discrete time case);

4. check that in simulation things still function properly.

31

To solve the task above follow this procedure:

1. start adding to theMatlab script LabB_ControllerOverSimulator_Discrete_Parameters.m
the value for Kd, stored in the variable Kd. After this, simulate the Simulink diagram
LabB_ControllerOverSimulator_Discrete.slx;

2. continue with LabB_ObserverOverSimulator_Discrete_Parameters.m, where you should:

� compute the variables Ad, Bd, Cd and Dd relative to the discretized version of the
original system (A,B,C,D);

� compute the variable Ld relative to the gain of the full order discrete observer;

� compute the variables Md1, . . . , Md7 relative to the gains of the reduced order discrete
observer;

� load the gains of your PID controller, i.e., kP, kI and kD.

After this simulate the Simulink diagram LabB_ObserverOverSimulator_Discrete.slx;

3. end with LabB_ObserverAndControllerOverSimulator_Discrete_Parameters.m, where
you should put all the parameters that you computed in the previous two steps. After this,
simulate the Simulink diagram LabB_ObserverAndControllerOverSimulator_Discrete.slx.

Important: remember that your actuators saturate at 7.2 Volts. Thus if you detect that your
simulated system has a u that is �too big� then you may have problems in the real device. . .

Reporting 5.5

Report:

1. how you derived (Ad, Bd, Cd, Dd) and their values;

2. how you derived Kd, Ld, Md1, . . . ,Md7 and their values;

3. a plot of xw, θb and u for the complete control system (controller plus observer).

32

5.10 Test the control strategy with the real robot

We are now ready to test the control strategy on the real robot.

Task 5.6

1. edit the Matlab script LabB_ObserverAndControllerOverRobot_Parameters.m

by adding in it all the variables that you have computed in
LabB_ObserverAndControllerOverSimulator_Discrete_Parameters.m.

2. open the Simulink diagram LabB_ObserverAndControllerOverRobot.slx, and ex-
plore the diagrams (i.e., how we implemented things). Take special a look at the
controller and at the observer, and notice how there are actually 3 di�erent observers:

(a) a full order Luenberger observer;

(b) a reduced order Luenberger observer (might not work on the robot; if not, just
report it; we are aware of the issue);

(c) a numerical observer, that works by considering all the measurements as accu-
rate, along their numerical derivatives.

It is possible to select which observer you want to use by clicking on the switches;

3. launch di�erent �deploy to hardware� simulations ('Build, Deploy & Start'), and see
for which observer you get the best performance (up to now we instructors got the
best performance with the numerical observer). Of course you can always re-tune
the various gains of the controller and observer in case you are not satis�ed with the
system � but it is better if you do tests on the simulators, before trying on the real
robot;

4. to visualize or save the data from the robot follow the same procedure described in
Section 5.5.

Reporting 5.6

Report an example of the xw, θb and u obtained with your best controller, and which type
of observer you used.

33

6 Lab C

The main purpose of this lab is to re-design the control scheme using directly discrete time
concepts, and add to the control scheme the management of the reference signal.

6.1 Compute the discrete equivalent of the original model

The �rst part of the following task is equal to Section 5.10, thus you have basically already solved
it. The second part you will basically solve at the end of the lab. Here we will indeed change
quite often the used sampling frequency, and test several of them up to the moment where we
�nd �the best one� (in a sense described better later). You will thus be able to complete the
second part of this task only at the end of the lab.

Task 6.1

1. Discretize the continuous time (A,B,C,D) linear model of the robot and derive its
discretized version (Ad, Bd, Cd, Dd) using the sampling period used in Section 5.10;

2. �nd the �best sampling frequency�.

Reporting 6.1

Report:

1. the �best sampling frequency� that you found at the end of the lab;

2. the numerical values for (Ad, Bd, Cd, Dd) relative to this sampling period.

6.2 Design a SS controller selecting the poles using the LQR technique

It is important to notice that the LQR formalism is de�ned over a system for which the output
y can be �anything one likes�, i.e., we are not necessarily required to use the actual y = Cx
de�ned by the system. In other words, we can pretend that our y is anything we want, so that
eventually we compute the K that minimizes the continuous time performance index

J =

∫ +∞

0

ρ [xw ẋw θb θ̇b
]
C
T
C


xw
ẋw
θb
θ̇b

+ u2

 dt (31)

where C indicates our weighting attitude towards di�erent states. C may be, for example,

C =
[
5 1 10 2

]
(32)

so that we are twice less happy of having θb = 1 rather than having xw = 1, and �ve times less
happy to have xw = 1 rather than having ẋw = 1. In other words, C is a design parameter

that you have to choose! Choosing a speci�c C then basically means choosing to consider an
alternative �ctitious system for which y? = Cx. Considering this �ctitious system allows us
to �nd a K that is optimal for a certain user-de�ned function of x (were we are using the
actual y, we would indeed instead have had to consider a cost function that may not re�ect our
preferences in how we want to weight the various components of x). In (31), ρ is the relative
tuning parameter between having large controls control e�orts (u2) and having a state x far from
the origin (i.e. where we in this application would want it to be).

34

Task 6.2

1. choose C in (32);

2. draw the Symmetric Root Locusa (SRL) for the obtained system;

3. select ρ in (31) by looking at the SRL and choosing ρ so the poles are in a 'good'
position. ;

4. compute the LQR gain K minimizing the cost (31);

5. implement and test the new controller as we did in Section 5.7
(comment out what's not needed anymore in
LabB_ControllerOverSimulator_Continuous_Parameters.m);

6. compare the current control performance against the ones obtained using the pole
placement scheme. Based on the simulations, decide which controller you want to
use in the subsequent tasks.

aIn case you do not know about Symmetric Root Locus, read, e.g., http://web.mit.edu/16.31/www/
Fall06/1631_topic15.pdf.

Troubleshoot 6.1

If you keep getting a strange root locus, it may be because you manually set the matrices
A and B, e.g., did as follows in Matlab:

A = [0, 1, 0, 0 ;

0, -435.0, -6.1, 9.1 ;

0, 0, 0, 1 ;

0, 1903.4, 62.0, -40.0];

B = [0; 20.6; 0; -90.0];

This way of de�ning A and B induces very strange (and wrong) results. You have to
compute A and B from the formulas; otherwise, you destroy some symmetries that lead
to zero-pole cancellations and you may get very wrong results.

Reporting 6.2

Report:

1. your choices for C anda ρ, with some brief justi�cations;

2. the SRL, and how you computed it (by the way, make the drawing show what
happens around the origin; what happens around −500 is not so interesting);

3. how you computed K, and its values;

4. the plots of θb and vm obtained with the chosen controller;

5. which pole placement strategy you want to use in the forthcoming tasks, and why.

aIt is meaningful to draw the root locus with the Matlab command rlocus and to select the gain ρ
by using the �Data cursor� functionality in the �gure plotted by Matlab.

35

http://web.mit.edu/16.31/www/Fall06/1631_topic15.pdf
http://web.mit.edu/16.31/www/Fall06/1631_topic15.pdf

6.3 Design the controller using the discrete LQR technique

This section mimics Section 6.2; here, indeed we assume to know the matrix W , indicating how
we weight undesirable states, and compute the Kd that minimizes the discrete time performance
index

J =

+∞∑
k=1

ρ [xw(k) ẋw(k) θb(k) θ̇b(k)
]
W


xw(k)
ẋw(k)
θb(k)

θ̇b(k)

+ u2(k)

 (33)

Once again, both W and ρ are design parameters that you can choose. Since you already solved
this selection in Section 6.2, here we use the same choices as before. Notice that, as before, you
will probably re-do this task several times, one for each sampling period that you will test.

Task 6.3

1. start from a sampling frequency of 200Hz, and compute (Ad, Bd, Cd, Dd) as in Sec-
tion 6.1

2. compute the LQR gain Kd minimizing the cost (33) by using the Matlab function
dlqr;

3. insert in theMatlab script LabB_ControllerOverSimulator_Discrete_Parameters.m
the new value for Kd, stored in variable Kd, and simulate once again the Simulink
diagram LabB_ControllerOverSimulator_Discrete.slx (i.e., do as you did in
Section 5.9 for testing the controller);

4. if the controller still stabilizes the simulator, reduce the sampling frequency and
start over, up to the moment for which the simulated robot falls.

Reporting 6.3

Report:

1. the sampling frequency for which you lose stability;

2. the corresponding values for Kd and (Ad, Bd, Cd, Dd).

6.4 Design the observer starting from the previously constructed controller

Now that Kd is computed, we compute both the full order and the reduced order observers Ld
and Md1, . . . ,Md7. To this aim we directly choose the pole locations wanting the observers to
be from 2 to 6 times faster than the controller poles. Importantly, notice that the concept

�faster� is now referred in the discrete-time domain. To clarify, in continuous time a pole
located in ps is 5 times slower than a pole located in 5ps. In other words, in continuous time
multiplying times χ implies χ times faster. In discrete time multiplying times χ does not mean
χ times faster. For example, if a pole is located in pz = 0.5 (stable), then multiplying times 3
leads to something that is unstable.

To understand how to make a pole faster in the discrete-time domain, consider the following
hint: we know that pz = eps∆, so that

pz = eps∆ =⇒ ps =
ln (pz)

∆
. (34)

36

At the same time, if p′z is χ times faster than pz it means that

p′z = ep
′
s∆ = eχps∆ =⇒ χps =

ln (p′z)

∆
=⇒ χ

ln (pz)

∆
=

ln (p′z)

∆
=⇒ ln (pχz) = ln

(
p′z
)

=⇒ p′z = pχz . (35)

From this it is immediate how to compute p′z as a function of pz and χ.

Task 6.4

1. start again from a sampling frequency of 200Hz, and compute (Ad, Bd, Cd, Dd) as in
Section 6.1

2. choose χ as you did in Section 5.8, and compute the gains Kd, Ld, Md1, . . . ,Md7 for
the discrete controller and full / reduced observers (for the reduced order observer
you can re-use the equations you used in Section 5.9);

3. insert in the Matlab script:

LabB_ObserverAndControllerOverSimulator_Discrete_Parameters.m

the parameters of the previous controller Kd (corresponding to the right sam-
pling time!) and of the current observers and simulate the Simulink diagram
LabB_ObserverAndControllerOverSimulator_Discrete.slx;

4. as before, if the controller still stabilizes the simulator, reduce the sampling frequency
and start over, up to the moment for which the simulated robot falls.

Reporting 6.4

Report:

1. the sampling frequency for which you lose stability;

2. a (brief) discussion on why the critical sampling frequency found now is di�erent
from that one found in Section 6.3;

3. the corresponding values for Kd, Ld, M1d, . . . ,M7d and (Ad, Bd, Cd, Dd).

6.5 Perform experiments on the real balancing robot

You have now computed all the information that you already computed in Section 5.9, only
following a di�erent paradigm: instead of starting from a continuous time controller, �nding
the continuous time poles ps, �nding the discrete ones through the pz = eps∆ transformation,
and then doing acker on them, you designed directly the pz (and thus an other set of Kd, Ld,
and Md1, . . . ,Md7) using discrete time considerations. Here, we then repeat some experiments
that are similar to the ones performed in Section 5.10, with the aim of checking how di�erent
sampling frequencies a�ect the real balancing robot.

37

Task 6.5

1. Start from the critical sampling frequency that you computed in Section 6.4;

2. repeat the same tests you performed in Section 5.10 with the new controllers /
observers (use the same kind of observer that you used in that task). If the robot does
not stabilize, increase the sampling frequency and recompute the various controllers
/ observers up to the moment that the robot stabilizes. Save the traces of the xw
and θb obtained for that frequency (tip: get the plots as described in Section 5.5,
and save the workspace once you have meaningful results);

3. now increase the sampling frequency 20Hz per time up to the moment you reach
200Hz; for each of these frequencies re-do a balancing experiment, and save each
time the signals xw and θb that you obtain.

Reporting 6.5

Report:

1. the �rst sampling frequency for which your real robot balances;

2. a graph reporting how the L2 norms
a of the signals xw and θb depend on the sampling

frequency of the system. Be careful to do not forget that the signals from di�erent
experiments: a) have di�erent sampling periods; b) may have di�erent durations.

aThe L2 norm calculates the distance of the vector coordinate from the origin of the vector space. As
such, it is also known as the Euclidean norm as it is calculated as the Euclidean distance from the origin.
The result is a positive distance value.

6.6 Design a module for managing external references

Among the di�erent possible strategies for managing reference signals, here we choose to imple-
ment the ones for which a step in the reference does not excite the state observer. This means
that the control con�guration is as in Figure 16.

r N + sat(·) plant y

−K estimator

Figure 16: Chosen way of introducing the reference input.

The problem is now to compute the value for N that ensures that the DC gain from r to y
is equal to 1. Important: the C that should be considered here is C = [1 0 0 0], i.e., we should
consider the C that corresponds to measuring xw. Indeed, here we are interested in a reference
for changing the x-position of the robot, and not for changing its θb.

38

Task 6.6

1. derive the formula for N that guarantees the DC gain from r to xw to be 1 for
discrete time settings;

2. compute N and put its value in the Matlab script

LabC_CompensatorOverRobot_Parameters.m,

in the variable Nud (keep the variable Nxd and put it equal to zero). Notice that this
script should also load all the variables computed for solving the tasks above;

3. open the Simulink diagram LabC_CompensatorOverRobot.slx, and explore the
block reference inside the block controller. Here you may change your reference
signal as you prefer.

Reporting 6.6

Report:

1. the formula you used to compute N and the value of N ;

2. the plots of xw, θb, vm and r for some experiments with di�erent reference signals.
In other words, create 2 / 3 di�erent reference signals, and for each of them report
how the robots behaves;

3. (optional) compare if your robot behaves better / worse than the robots of your
friends.

Notice that the nastier the reference signal is, the more likely your robot is to fall. You
may consider once again to change the sampling frequency of the whole controller and see if for
certain references signals a certain sampling frequency is not fast enough.

We can thus de�ne as the best sampling frequency the lowest sampling frequency

that makes your robot follow su�ciently safely the nastier reference signal that

you expect it to be required to follow.

Notice that the de�nition is deliberately �shy. To de�ne precisely this frequency you must de�ne
what is the nastier reference for you. Once you de�ned it, you can do experiments and see what
is the best frequency for you. And once you did this step, you can eventually complete Task 6.1.

6.7 Final demo

The demo, that can be performed only after you �nished the previous tasks of Lab C, evaluates
numerically the performance of your controller. This evaluation has then two di�erent purposes:
(a) for us, to evaluate your results; (b) for you, to be motivated to do your best.

By this point, your balancing robot will be able to follow external references and will be
robust against uncertainties. This means that we can test your controller on our robot, and see
how well your controller performs on our system. What we need is then just your .mat and .slx

�les, so that we can upload the code on our balancing robot. In practice, the demo will consist
of two steps:

1. you perform (and report) some experiments on your balancing robot with your controller;

2. we perform the same experiments on our balancing robot with your controller, and check
that your report is meaningful.

39

For your help, follow this checklist:

1. do the following experiments with your balancing robot:

(a) apply the reference signal (t in seconds, r(t) in meters):

r(t) =


0 t ∈ [0, 10)
0.05(t− 10) t ∈ [10, 20)
0.5 t ∈ [20, 30]

(36)

(b) apply the reference signal (t in seconds, r(t) in meters):

r(t) =


0 t ∈ [0, 10)
rmax(t− 10) t ∈ [10, 20)
10rmax t ∈ [20, 30]

(37)

where rmax is a factor proportional to the maximal speed that your balancing robot
can follow without falling (�nd it by trial and error);

2. register the results and report them in the �nal report as indicated in the demo template;

3. when submitting the �nal report, submit also:

(a) your Simulink simulator (i.e., your LabC_CompensatorOverRobot.slx and
LabC_CompensatorOverRobot_Parameters.m �les, named group_#MYGROUP_Simulink.slx
and group_#MYGROUP_Matlab.m respectively, and where #MYGROUP is your group ID,
see Section 3). We will indeed take your code and reproduce the experiments you did
by our own;

(b) your results as a .mat �le named group_#MYGROUP_results.mat and containing the
following variables (only these ones!):

� group_#MYGROUP_experiment_1_times, a column vector containing the sampling
instants of the data relative to r(t) as in Equation (36) (in seconds, and with 0
indicating the beginning of the experiment);

� group_#MYGROUP_experiment_1_encoder, a column vector containing the mea-
sured xw for the experiment relative to r(t) as in Equation (36) (in meters);

� group_#MYGROUP_experiment_1_angle, a column vector containing the measured
θb for the experiment relative to r(t) as in Equation (36) (in radiants);

� group_#MYGROUP_experiment_1_actuation, a column vector containing the vm
sent to the balancing robot's motor for the experiment relative to r(t) as in
Equation (36) (in Volts);

� group_#MYGROUP_experiment_2_times, a column vector containing the sampling
instants of the data relative to r(t) as in Equation (37) (in seconds, and with 0
indicating the beginning of the experiment);

� group_#MYGROUP_experiment_2_encoder, a column vector containing the mea-
sured xw for the experiment relative to r(t) as in Equation (37) (in meters);

� group_#MYGROUP_experiment_2_angle, a column vector containing the measured
θb for the experiment relative to r(t) as in Equation (37) (in radiants);

� group_#MYGROUP_experiment_2_actuation, a column vector containing the vm
sent to the balancing robot's motor for the experiment relative to r(t) as in
Equation (37) (in Volts);

� group_#MYGROUP_r_max, a scalar containing which rmax you found for the exper-
iment relative to r(t) as in Equation (37) (in meters / seconds);

It is important that you follow the convention for the names indicated above, since
we process your data in an automatic way.

40

A Matlab and Simulink

A.1 Useful Matlab commands

The commands presented here are in their basic form. Please consider typing help commmand in
your Matlab shell.

command description

SYS = ss(A,B,C,D) creates an object SYS representing a state-space model
pzplot(SYS) plots the pole-zero map of the dynamic system SYS

pzmap(SYS) (alternative) plots the pole-zero map of the dynamic sys-
tem SYS

print('-depsc2', 'xxx.eps'); saves the current �gure as xxx.eps
inv(A); inverse of matrix A (faster and more accurate than ^(-1))
pid(kP, kI, kD, tf); creates a continuous time PID controller
feedback(M1,M2) computes a closed-loop system by putting M1 in feedback

with M2

bodeplot draws the Bode plot of a given system
impulse draws the impulse response of a given system
rlocus draws the root locus of a given system; may also return

the locations of the closed loop roots for a speci�ed gain
c2d converts a continuous time system into a discrete one

Table 3: Useful Matlab commands.

A.2 How to plot data in Matlab / diagrams in Simulink

NOTICE: This section is relevant to the Final Demo. For other lab plots, the plotting has been
implemented in a new real-time way.

We strongly encourage to automate plotting Simulink's results and diagrams using the command
line, rather than going and clicking with the mouse around like you were playing doom. E.g., for
producing Figures 8 and 9 we used a .m �le containing:

close all; clear; clc;

LoadPhysicalParameters;

LoadStateSpaceMatrices;

[afLinearizedBotZeros, afLinearizedBotPoles, fLinearizedBotGain] = ss2zp(A, B, C, D, 1);

ComputePIDGains;

open_system('../Simulink/LabA_LinearizedBot');

saveas(get_param('LabA_LinearizedBot','Handle'),'LabA_LinearizedBot_Simulink_diagram.eps');

sim('LabA_LinearizedBot');

close_system('LabA_LinearizedBot');

afFigurePosition = [1 1 10 6];

figure(1)

plot(x_w.time, x_w.signals.values);

title('x_w'); xlabel('time'); ylabel('meters')

set(gcf, 'Units', 'centimeters'); set(gcf,'Position',afFigurePosition);

set(gcf, 'PaperPositionMode', 'auto');

print('-depsc2', '-r300', 'LabA_LinearizedBot_Simulink_x_w.eps');

figure(2)

41

plot(theta_b.time, theta_b.signals.values * 180 / pi);

title('\theta_b'); xlabel('time'); ylabel('degrees')

set(gcf, 'Units', 'centimeters'); set(gcf,'Position',afFigurePosition);

set(gcf, 'PaperPositionMode', 'auto');

print('-depsc2', '-r300', 'LabA_LinearizedBot_Simulink_theta_b.eps');

figure(3)

plot(d.time, d.signals.values);

title('d'); xlabel('time'); ylabel('Newton')

set(gcf, 'Units', 'centimeters'); set(gcf,'Position',afFigurePosition);

set(gcf, 'PaperPositionMode', 'auto');

print('-depsc2', '-r300', 'LabA_LinearizedBot_Simulink_d.eps');

figure(4)

plot(v_m.time, v_m.signals.values);

title('v_m'); xlabel('time'); ylabel('Volt')

set(gcf, 'Units', 'centimeters'); set(gcf,'Position',afFigurePosition);

set(gcf, 'PaperPositionMode', 'auto');

print('-depsc2', '-r300', 'LabA_LinearizedBot_Simulink_v_m.eps');

Notice that the previous .m �le exploits variables that have been loaded in Matlab's workspace by
the scope blocks in the Simulink diagram. For doing so you need to con�gure your scopes (the �gear�
icon in the upper left corner when you open them) as in Figure 17.

Figure 17: How to con�gure a scope in Simulink so that it will save your data on the workspace.

A.3 Useful Simulink tricks

The �tricks� presented in Table 4 help you keep your diagrams organized and easy to be debugged.

command description

ctrl + R on a selected block rotates the block
ctrl + P saves the block scheme as an image
alt + 1 zooms to 100%
ctrl + shift + L show the library browser
right-click on a block → format → hide block name hide the label of the block
select some blocks → Ctrl + shift + x comment / uncomment the blocks

Table 4: Useful Simulink tricks.

42

A.4 Useful Simulink blocks

The blocks presented in Table 5 instead want to help you be faster in creating your diagrams.

command description

Signal Builder for generating arbitrary signals
LTI System for LTI systems (also MIMO)
PID Controller for continuous / discrete PIDs
Element-wise gain for matrix multiplication operations

Table 5: Useful Simulink blocks.

A.5 Managing sampling times in Simulink

Mixing continuous time with discrete time objects (or objects with di�erent sampling times) may result
in troubles. Our advice is a combination of actions:

� let your main Matlab scripts to de�ne a variable fSamplingPeriod, and use it in the blocks so
that you avoid hard coding (avoid hard coding especially for the sampling times matters!!);

� let every block that do not necessarily need to have a sampling time de�ned inherit the sampling
frequency;

� let the controllers (e.g., the PIDs) de�ne explicitly their sampling time as fSamplingPeriod;

� when using Simulink diagrams that will be deployed in the hardware, set the �fundamental sample
time� setting in the �solver� tab of the con�guration parameters of the Simulink diagram (the stu�
you get when pressing ctrl+E) be fSamplingPeriod.

For debug purposes it is very useful to see the map of the sampling times of the various blocks by
activating �Display → Sample Time → Colors� (sometimes you can see the map also with ctrl+J.

43

	Introduction
	What a balancing robot is and why it is an important system
	How we would like you to interact with your peers
	How we would like you to interact with us

	Practical considerations
	Hardware
	Installation in Windows
	Installation in Mac, should also apply to Linux
	Add-ons recommended to install with Matlab
	How to launch the code on the balancing robot
	Datasheet
	Notation

	Reporting your findings
	How to complete the assigned tasks
	The reports
	How you will be evaluated

	Lab A
	Derivation of the Equations of Motion (EOM)
	Linearize the Equations of Motion
	Write the linearized EOM in state space (SS) form
	Determine the transfer function of the LTI SS system
	Design a PID controller stabilising the transfer function computed in Section 4.4
	Model the effect of disturbing the robot
	Check if everything is working as it should be
	Convert the controller to the discrete time domain
	Simulate the closed loop system
	Optional: play with the simulator

	Lab B
	How to do tests on the robot
	Communicating with the balancing robot
	Observing that reality is far from ideality
	Calibrating the robot
	Test the PID controller
	Check the controllability and observability properties of the linearized system (21)
	Design a SS controller selecting the poles
	Design a state observer, and add it to the simulator
	Discretize both the controller and observer, and add them to the simulator
	Test the control strategy with the real robot

	Lab C
	Compute the discrete equivalent of the original model
	Design a SS controller selecting the poles using the LQR technique
	Design the controller using the discrete LQR technique
	Design the observer starting from the previously constructed controller
	Perform experiments on the real balancing robot
	Design a module for managing external references
	Final demo

	Matlab and Simulink
	Useful Matlab commands
	How to plot data in Matlab / diagrams in Simulink
	Useful Simulink tricks
	Useful Simulink blocks
	Managing sampling times in Simulink

