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Preface

In this Sixth Edition we again present a text in support of a first course in control and have retained the best features
of our earlier editions. For this edition, we have substantially rewritten Chapter 4 on the Basic Properties of
Feedback, placing the material in a more logical order and presenting it in a much more effective (bottom up?)
manner. We have also updated the text throughout on how computer-aided design is utilized to more fully reflect
how design is carried out today. At the same time, we also strive to equip control system engineers with a basic
understanding so that computer results can be guided and verified. In support of this updating, MATLAB® referrals
have been updated and include some of the latest capabilities in that software. The case studies in Chapter 10 have
been retained and a new case study of the emerging Bioengineering field has been added. A Historical Perspective
section has been added at the end of each chapter in order to add to the knowledge of how all these concepts came
into being. Finally, in order to guide the reader in finding specific topics, we have expanded the Table of Contents to

include subsections.

The basic structure of the book is unchanged and we continue to combine analysis with design using the three
approaches of the root locus, frequency response, and state-variable equations. The text continues to include many
carefully worked out examples to illustrate the material. As before, we provide a set of review questions at the end
of each chapter with answers in the back of the book to assist the students in verifying that they have learned the

material.

In the three central chapters on design methods we continue to expect the students to learn how to perform the
very basic calculations by hand and make a rough sketch of a root locus or Bode plot as a sanity check on the
computer results and as an aid to design. However, we introduce the use of MATLAB early on in recognition of the
universal use of software tools in control analysis and design. Furthermore, in recognition of the fact that increasingly
controllers are implemented in imbedded computers, we again introduce digital control in Chapter 4 and in a
number of cases compare the responses of feedback systems using analog controllers with those having a digital
“equivalent” controller. As before, we have prepared a collection of all the MATLAB files (both “m” files and
SIMULINK® files) used to produce the figures in the book. These are available at the following Web site:

www.FPE6e.com

For the SIMULINK files, there are equivalent LabView files that can be obtained by a link from the same web site.

We have removed some material that was judged to be less useful for the teaching of a first course in controls.
However, recognizing that there may still be some instructors who choose to teach the material, or students who
want to refer to enrichment and/or review material, we have moved the material to the website above for access by

anyone. The Table of Contents provides a guide as to where the various topics are located.

We feel that this Sixth Edition presents the material with good pedagogical support, provides strong motivation for
the study of control, and represents a solid foundation for meeting the educational challenges. We introduce the study

of feedback control, both as a specialty of itself and as support for many other fields.

Addressing the Educational Challenges

Some of the educational challenges facing students of feedback control are longstanding; others have emerged in

recent years. Some of the challenges remain for students across their entire engineering education; others are unique



to this relatively sophisticated course. Whether they are old or new, general or particular, the educational challenges
we perceived were critical to the evolution of this text. Here we will state several educational challenges and

describe our approaches to each of them.
+ CHALLENGE Students must master design as well as analysis techniques.

Design is central to all of engineering and especially so to control systems. Students find that design issues, with
their corresponding opportunities to tackle practical applications, particularly motivating. But students also find
design problems difficult because design problem statements are usually poorly posed and lack unique solutions.
Because of both its inherent importance for and its motivational effect on students, design is emphasized throughout

this text so that confidence in solving design problems is developed from the start.

The emphasis on design begins in Chapter 4 following the development of modeling and dynamic response. The
basic idea of feedback is introduced first, showing its influence on disturbance rejection, tracking accuracy, and
robustness to parameter changes. The design orientation continues with uniform treatments of the root locus,
frequency response, and state variable feedback techniques. All the treatments are aimed at providing the knowledge
necessary to find a good feedback control design with no more complex mathematical development than is essential

to clear understanding.

Throughout the text, examples are used to compare and contrast the design techniques afforded by the different
design methods and, in the capstone case studies of Chapter 10, complex real-world design problems are attacked

using all the methods in a unified way.
* CHALLENGE New ideas continue to be introduced into control.

Control is an active field of research and hence there is a steady influx of new concepts, ideas, and techniques. In
time, some of these elements develop to the point where they join the list of things every control engineer must
know. This text is devoted to supporting students equally in their need to grasp both traditional and more modern
topics.

In each of our editions we have tried to give equal importance to root locus, frequency response, and state-variable
methods for design. In this edition we continue to emphasize solid mastery of the underlying techniques. coupled
with computer based methods for detailed calculation. We also provide an early introduction to data sampling and
discrete controllers in recognition of the major role played by digital controllers in our field. While this material can
be skipped to save time without harm to the flow of the text, we feel that it is very important for students to
understand that computer control is widely used and that the most basic techniques of computer control are easily

mastered.

* CHALLENGE Students need to manage a great deal of information.

The vast array of systems to which feedback control is applied and the growing variety of techniques available for
the solution of control problems means that today’s student of feedback control must learn many new ideas. How do
students keep their perspective as they plow through lengthy and complex textual passages? How do they identify
highlights and draw appropriate conclusions? How do they review for exams? Helping students with these tasks was
a criterion for the Fourth and Fifth Editions and continues to be addressed in this Sixth Edition. We outline these

features below.



FEATURE

1. Chapter openers offer perspective and overview. They place the specific chapter topic in the context of the

discipline as a whole and they briefly overview the chapter sections.

2. Margin notes help students scan for chapter highlights. They point to important definitions, equations, and

concepts.

3. Boxedhighlights identify key concepts within the running text. They also function to summarize important design

procedures.

4. Bulleted chapter summaries help with student review and prioritization. These summaries briefly reiterate the key

concepts and conclusions of the chapter.

5. Synopsis of design aids. Relationships used in design and throughout the book are collected inside the back cover

for easy reference.

6. The color blue is used (1) to highlight useful pedagogical features, (2) to highlight components under particular
scrutiny within block diagrams, (3) to distinguish curves on graphs, and (4) to lend a more realistic look to figures

of physical systems.

7. Review questions at the end of each chapter with solutions in the back to guide the student in self-study
« CHALLENGE Students of feedback control come from a wide range of disciplines.

Feedback control is an interdisciplinary field in that control is applied to systems in every conceivable area of
engineering. Consequently, some schools have separate introductory courses for control within the standard
disciplines and some, like Stanford, have a single set of courses taken by students from many disciplines. However, to
restrict the examples to one field is to miss much of the range and power of feedback but to cover the whole range
of applications is overwhelming. In this book we develop the interdisciplinary nature of the field and provide review
material for several of the most common technologies so that students from many disciplines will be comfortable
with the presentation. For Electrical Engineering students who typically have a good background in transform
analysis, we include in Chapter 2 an introduction to writing equations of motion for mechanical mechanisms. For
mechanical engineers, we include in Chapter 3 a review of the Laplace Transform and dynamic response as needed
in control. In addition, we introduce other technologies briefly and, from time to time, we present the equations of
motion of a physical system without derivation but with enough physical description to be understood from a
response point of view. Examples of some of the physical systems represented in the text include the read-write
head for a computer disk drive, a satellite tracking system, the fuel-air ratio in an automobile engine, and an airplane

automatic pilot system.

Outline of the Book

The contents of the book are organized into ten chapters and three appendixes. Optional sections of advanced or
enrichment material marked with a triangle (A) are included at the end of some chapters. There is additional
enrichment material on the website. Examples and problems based on this material are also marked with a triangle
(A). The appendices include background and reference material. The appendices in the book include Laplace
transform tables, answers to the end-of-chapter review questions, and a list of MATLAB commands. The appendixes
on the website include a review of complex variables, a review of matrix theory, some important results related to

State-Space design, a tutorial on RLTOOL for MATLAB, and optional material supporting or extending several of the



chapters.

In Chapter 1, the essential ideas of feedback and some of the key design issues are introduced. This chapter also
contains a brief history of control, from the ancient beginnings of process control to flight control and electronic
feedback amplifiers. It is hoped that this brief history will give a context for the field, introduce some of the key

figures who contributed to its development, and provide motivation to the student for the studies to come.

Chapter 2 is a short presentation of dynamic modeling and includes mechanical, electrical, electromechanical,
fluid, and thermodynamic devices. This material can be omitted, used as the basis of review homework to smooth

out the usual nonuniform preparation of students, or covered in-depth depending on the needs of the students.

Chapter 3 covers dynamic response as used in control. Again, much of this material may have been covered
previously, especially by electrical engineering students. For many students, the correlation between pole locations
and transient response and the effects of extra zeros and poles on dynamic response represent new material. Stability

of dynamic systems is also introduced in this Chapter. This material needs to be covered carefully.

Chapter 4 presents the basic equations and transfer functions of feedback along with the definitions of the
sensitivity function. With these tools, open-loop and closed-loop control are compared with respect to disturbance
rejection, tracking accuracy, and sensitivity to model errors. Classification of systems according to their ability to track
polynomial reference signals or to reject polynomial disturbances is described with the concept of system type.
Finally, the classical proportional, integral, and derivative (PID) control structure is introduced and the influence of
the controller parameters on a system’s characteristic equation is explored along with PID tuning methods. The end-

of-chapter optional section treats digital control.

Following the overview of feedback in Chapter 4, the core of the book presents the design methods based on root

locus, frequency response, and state-variable feedback in Chapters 5, 6, and 7, respectively.

Chapter 8 develops in more detail the tools needed to design feedback control for implementation in a digital
computer. However, for a complete treatment of feedback control using digital computers, the reader is referred to

the companion text,Digital Control of Dynamic Systems, by Franklin, Powell, and Workman; Ellis-Kagle Press, 1998.

In Chapter 9 the nonlinear material includes techniques for the linearization of equations of motion, analysis of
zero memory nonlinearity as a variable gain, frequency response as a describing function, the phase plane, Lyapunov

stability theory, and the circle stability criterion.

In Chapter 10 the three primary approaches are integrated in several case studies and a framework for design is

described that includes a touch of the real-world context of practical control design.

Course Configurations

The material in this text can be covered flexibly. Most first-course students in controls will have some dynamics and
Laplace transforms. Therefore, Chapter 2 and most of Chapter 3 would be a review for those students. In a ten-week
quarter, it is possible to review Chapter 3, and all of Chapters 1, 4, 5, and 6. Most boxed sections should be omitted.
In the second quarter, Chapters 7, and 9 can be covered comfortably including the boxed sections. Alternatively,
some boxed sections could be omitted and selected portions of Chapter 8 included. A semester course should
comfortably accommodate Chapters 1-7, including the review material of Chapters 2 and 3, if needed. If time
remains after this core coverage, some introduction of digital control from Chapter 8, selected nonlinear issues from

Chapter 9 and some of the case studies from Chapter 10 may be added.

The entire book can also be used for a three-quarter sequence of courses consisting of modeling and dynamic



response (Chapters 2 and 3), classical control (Chapters 4-6), and modern control (Chapters 7-10).

Two basic 10-week courses are offered at Stanford and are taken by seniors and first-year graduate students who
have not had a course in control, mostly in the departments of Aeronautics and Astronautics, Mechanical Engineering,
and Electrical Engineering. The first course reviews Chapters 2 and 3 and covers Chapters 4-6. The more advanced
course is intended for graduate students and reviews Chapters 4-6 and covers Chapters 7-10. This sequence
complements a graduate course in linear systems and is the prerequisite to courses in digital control, nonlinear
control, optimal control, flight control, and smart product design. Several of the subsequent courses include extensive
laboratory experiments. Prerequisites for the course sequence include dynamics or circuit analysis and Laplace

transforms.

Prerequisites to This Feedback Control Course

This book is for a first course at the senior level for all engineering majors. For the core topics in Chapters 4-7,
prerequisite understanding of modeling and dynamic response is necessary. Many students will come into the course
with sufficient background in those concepts from previous courses in physics, circuits, and dynamic response. For

those needing review, Chapters 2 and 3 should fill in the gaps.

An elementary understanding of matrix algebra is necessary to understand the state-space material. While all
students will have much of this in prerequisite math courses, a review of the basic relations is given in Appendix WE
and a brief treatment of particular material needed in control is given at the start of Chapter 7. The emphasis is on

the relations between linear dynamic systems and linear algebra.

Supplements

The Web site mentioned above includes the dot-m and dot-mdl files used to generate all the MATLAB figures in the
book and these may be copied and distributed to the students as desired. An instructor’s manual with complete

solutions to all homework problems is available. The Web site also includes advanced material and appendixes.
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1 An Overview and Brief History of Feedback Control

A Perspective on Feedback Control

Feedback control of dynamic systems is a very old concept with many characteristics that have evolved over time.
The central idea is that a system’s output can be measured and fed back to a controller of some kind and used to
effect the control. It has been shown that signal feedback can be used to control a vast array of dynamic systems
including, for example, airplanes and hard-disk data storage devices. To achieve good control there are four basic

requirements.

« The system must be stable at all times
« The system output must track the command input signal
« The system output must be prevented from responding too much to disturbance inputs

« These goals must be met even if the model used in the design is not completely accurate or if the dynamics of the

physical system change over time or with environmental changes.

The requirement of stability is basic and may have two causes. In the first place, the system may be unstable. This
is illustrated by the Segway vehicle, which will simply fall over if the control is turned off. On the other hand, adding
feedback may itself drive the system unstable. In ordinary experience such an instability is called a “vicious circle,”

where the feedback signal that is circled back makes the situation worse rather than better.

There are many examples of the requirement of having the system’s output track a command signal. For example,
driving a car so that the vehicle stays in its lane is command tracking. Similarly, flying an airplane in the approach to

a landing strip requires that a glide path be accurately tracked.

Disturbance rejection is one of the very oldest applications of feedback control. In this case, the “command” is
simply a constant set point to which the output is to be held as the environment changes. A very common example
of this is the room thermostat whose job it is to hold the room temperature close to the set point as outside

temperature and wind change, and as doors and windows are opened and closed.

Finally, to design a controller for a dynamic system, it is necessary to have a mathematical model of the dynamic
response of the system in all but the simplest cases. Unfortunately, almost all physical systems are very complex and
often nonlinear. As a result, the design will usually be based on a simplified model and must be robust enough that
the system meets its performance requirements when applied to the real device. Furthermore, again in almost all
cases, as time and the environment change, even the best of models will be in error because the system dynamics

have changed. Again, the design must not be too sensitive to these inevitable changes and it must work well enough



regardless.

The tools available to control engineers to solve these problems have evolved over time as well. Especially
important has been the development of digital computers both as computation aids and as embedded control
devices. As computation devices, computers have permitted identification of increasingly complex models and the
application of very sophisticated control design methods. Also, as embedded devices, digital devices have permitted
the implementation of very complex control laws. Control engineers must not only be skilled in manipulating these
design tools but also need to understand the concepts behind these tools to be able to make the best use of them.
Also important is that the control engineer understand both the capabilities and the limitations of the controller

devices available.

Chapter Overview

In this chapter we begin our exploration of feedback control using a simple familiar example: a household furnace
controlled by a thermostat. The generic components of a control system are identified within the context of this
example. In another example—an automobile cruise control—we develop the elementary static equations and assign
numerical values to elements of the system model in order to compare the performance of open-loop control to that
of feedback control when dynamics are ignored. In order to provide a context for our studies and to give you a
glimpse of how the field has evolved, Section 1.3 provides a brief history of control theory and design. In addition,
later chapters have brief sections of additional historical notes on the topics covered there. Finally, Section 1.4

provides a brief overview of the contents and organization of the entire book.

1.1 A Simple Feedback System

In feedback systems the variable being controlled—such as temperature or speed—is measured by a sensor and the
measured information is fed back to the controller to influence the controlled variable. The principle is readily
illustrated by a very common system, the household furnace controlled by a thermostat. The components of this
system and their interconnections are shown in Fig. 1.1. Such a picture identifies the major parts of the system and

shows the directions of information flow from one component to another.

We can easily analyze the operation of this system qualitatively from the graph. Suppose both the temperature in
the room where the thermostat is located and the outside temperature are significantly below the reference
temperature (also called the set point) when power is applied. The thermostat will be on and the control logic will
open the furnace gas valve and light the fire box. This will cause heat Q;,, to be supplied to the house at a rate that
will be significantly larger than the heat loss Q. As a result, the room temperature will rise until it exceeds the
thermostat reference setting by a small amount. At this time the furnace will be turned off and the room temperature
will start to fall toward the outside value. When it falls a small amount below the set point, the thermostat will come
on again and the cycle will repeat. Typical plots of room temperature along with the furnace cycles of on and off are
shown in Fig. 1.1. The outside temperature is held at 50°F and the thermostat is initially set at 55°F. At 6 a.m., the
thermostat is stepped to 65°F and the furnace brings it to that level and cycles the temperature around that figure
thereafter.! Notice that the house is well insulated, so that the fall of temperature with the furnace off is significantly
slower than the rise with the furnace on. From this example, we can identify the generic components of the

elementary feedback control system as shown in Fig. 1.2.
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(a) Component block diagram of a room temperature control system; (b) plot of room temperature and furnace

action

The central component of this feedback system is the process whose output is to be controlled. In our example the
process would be the house whose output is the room temperature and the disturbance to the process is the flow of
heat from the house due to conduction through the walls and roof to the lower outside temperature. (The outward
flow of heat also depends on other factors such as wind, open doors, etc.) The design of the process can obviously
have a major impact on the effectiveness of the controls. The temperature of a well-insulated house with thermopane
windows is clearly easier to control than otherwise. Similarly, the design of aircraft with control in mind makes a
world of difference to the final performance. In every case, the earlier the issues of control are introduced into the
process design, the better. The actuator is the device that can influence the controlled variable of the process and in
our case, the actuator is a gas furnace. Actually, the furnace usually has a pilot light or striking mechanism, a gas
valve, and a blower fan, which turns on or off depending on the air temperature in the furnace. These details
illustrate the fact that many feedback systems contain components that themselves form other feedback systems.? The
central issue with the actuator is its ability to move the process output with adequate speed and range. The furnace
must produce more heat than the house loses on the worst day and must distribute it quickly if the house
temperature is to be kept in a narrow range. Power, speed, and reliability are usually more important than accuracy.
Generally, the process and the actuator are intimately connected and the control design centers on finding a suitable
input or control signal to send to the actuator. The combination of process and actuator is called the plant and the
component that actually computes the desired control signal is the controller. Because of the flexibility of electrical
signal processing, the controller typically works on electrical signals although the use of pneumatic controllers based

on compressed air has a long and important place in process control. With the development of digital technology,



cost-effectiveness and flexibility have led to the use of digital signal processors as the controller in an increasing
number of cases. The component labeled thermostat in Fig. 1.1 measures the room temperature and is called the
sensor in Fig. 1.2, a device whose output inevitably contains sensor noise. Sensor selection and placement are very
important in control design, for it is sometimes not possible for the true controlled variable and the sensed variable
to be the same. For example, although we may really wish to control the house temperature as a whole, the
thermostat is in one particular room, which may or may not be at the same temperature as the rest of the house. For
instance, if the thermostat is set to 68°F but is placed in the living room near a roaring fireplace, a person working in
the study could still feel uncomfortably cold.®>* As we will see, in addition to placement, important properties of a
sensor are the accuracy of the measurements as well as low noise, reliability, and linearity. The sensor will typically
convert the physical variable into an electrical signal for use by the controller. Our general system also includes an
input filter whose role is to convert the reference signal to electrical form for later manipulation by the controller. In
some cases the input filter can modify the reference command input in ways that improve the system response.
Finally, there is a comparator to compute the difference between the reference signal and the sensor output to give

the controller a measure of the system error.
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Component block diagram of an elementary feedback control

This text will present methods for analyzing feedback control systems and their components and will describe the
most important design techniques engineers can use with confidence in applying feedback to solve control problems.
We will also study the specific advantages of feedback that compensate for the additional complexity it demands.
However, although the temperature control system is easy to understand, it is nonlinear as seen by the fact that the

furnace is either on or off, and to introduce linear controls we need another example.

1.2 A First Analysis of Feedback

The value of feedback can be readily demonstrated by quantitative analysis of a simplified model of a familiar
system, the cruise control of an automobile (Fig. 1.3). To study this situation analytically, we need a mathematical
model of our system in the form of a set of quantitative relationships among the variables. For this example, we
ignore the dynamic response of the car and consider only the steady behavior. (Dynamics will, of course, play a
major role in later chapters.) Furthermore, we assume that for the range of speeds to be used by the system, we can

approximate the relations as linear. After measuring the speed of the vehicle on a level road at 65 mph, we find that



a 1° change in the throttle angle (our control variable) causes a 10-mph change in speed. From observations while

driving up and down hills it is found that when the grade changes by 1%, we measure a speed change of 5 mph. The

speedometer is found to be accurate to a fraction of 1 mph and will be considered exact. With these relations, we can

draw the block diagram of the plant (Fig. 1.4), which shows these mathematical relationships in graphical form. In

this diagram the connecting lines carry signals and a block is like an ideal amplifier which multiplies the signal at its

input by the value marked in the block to give the output signal. To sum two or more signals, we show lines for the

signals coming into a summer, a circle with the summation sign ¥ inside. An algebraic sign (plus or minus) beside

each arrow head indicates whether the input adds to or subtracts from the total output of the summer. For this

analysis, we wish to compare the effects of a 1% grade on the output speed when the reference speed is set for 65
with and without feedback to the controller.
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Open-loop cruise control

Open-loop control

In the first case, shown in Fig. 1.5, the controller does not use the speedometer reading but sets u = r/10. This is

an example of an open-loop control system. The term open loop refers to the fact that there is no closed path or

loop around which the signals go in the block diagram. In our simple example the open-loop output speed, y,;, is

given by the equations

Vor = 10(u — 0.5w)

= m(’]iﬁ

=r — Sw.

The error in output speed is

Epl = F — Yol

= W

and the percent error is
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If r = 65 and the road is level then w = 0 and the speed will be 65 with no error. However, if w = 1

corresponding to a 1% grade, then the speed will be 60 and we have a 5-mph error, which is a 7.69% error in the

speed. For a grade of 2%, the speed error would be 10 mph, which is an error of 15.38%, and so on. The example

shows that there would be no error when w = 0 but this result depends on the controller gain being the exact

inverse of the plant gain of 10. In practice, the plant gain is subject to change and if it does, errors are introduced by

this means also. If there is an error in the plant gain in open-loop control, the percent speed error would be the

same as the percent plant-gain error.

The block diagram of a feedback scheme is shown in Fig. 1.6, where the controller gain has been set to 10. Recall

that in this simple example, we have assumed that we have an ideal sensor whose block is not shown. In this case

the equations are



yd = 10u - 5w,
u = 10(r - y.)-
Combinig them yields

yer = 1007 — 100y,; — 5w,
101y, = 100r — 5w,

100 5
Vel = —F — —W,
: 101 101

¥ 4. Sw
& 101 101"

Thus the feedback has reduced the sensitivity of the speed error to the grade by a factor of 101 when compared with
the open-loop system. Note, however, that there is now a small speed error on level ground because even when w =
0,

100

Ve =gt = 0.99r mph.

This error will be small as long as the loop gain (product of plant and controller gains) is large.” If we again consider

a reference speed of 65 mph and compare speeds with a 1% grade, the percent error in the output speed is

65 x 100 /65100 5 )
101 101 101

% error = 100 65 <100 (1.4)
101
5 x 101
= 100 1.5
101 x 65 x 100 (1.3)
= (0.0769%. (1.6)
Figure 1.6
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The design trade-off

The reduction of the speed sensitivity to grade disturbances and plant gain in our example is due to the loop gain
of 100 in the feedback case. Unfortunately, there are limits to how high this gain can be made; when dynamics are
introduced, the feedback can make the response worse than before, or even cause the system to become unstable.
The dilemma is illustrated by another familiar situation where it is easy to change a feedback gain. If one tries to
raise the gain of a public-address amplifier too much, the sound system will squeal in a most unpleasant way. This is
a situation where the gain in the feedback loop—from the speakers to the microphone through the amplifier back to
the speakers—is too much. The issue of how to get the gain as large as possible to reduce the errors without making

the system become unstable and squeal is what much of feedback control design is all about.

1.3 A Brief History

Liquid-level control

An interesting history of early work on feedback control has been written by O. Mayr (1970), who traces the control
of mechanisms to antiquity. Two of the earliest examples are the control of flow rate to regulate a water clock and
the control of liquid level in a wine vessel, which is thereby kept full regardless of how many cups are dipped from
it. The control of fluid flow rate is reduced to the control of fluid level, since a small orifice will produce constant
flow if the pressure is constant, which is the case if the level of the liquid above the orifice is constant. The
mechanism of the invented in antiquity and still used today (for example, in the water tank of the ordinary flush
toilet) is the float valve. As the liquid level falls, so does the float, allowing the flow into the tank to increase; as the
level rises, the flow is reduced and if necessary cut off. Figure 1.7 shows how a float valve operates. Notice here that
sensor and actuator are not separate devices but are contained in the carefully shaped float-and-supply-tube

combination.

Drebbel’s incubator

A more recent invention described by Mayr (1970) is a system, designed by Cornelis Drebbel in about 1620, to
control the temperature of a furnace used to heat an incubator® (Fig. 1.8). The furnace consists of a box to contain
the fire, with a flue at the top fitted with a damper. Inside the fire box is the double-walled incubator box, the
hollow walls of which are filled with water to transfer the heat evenly to the incubator. The temperature sensor is a
glass vessel filled with alcohol and mercury and placed in the water jacket around the incubator box. As the fire
heats the box and

Figure 1.7 Early historical control of liquid level and flow water, the alcohol expands and the riser floats up,
lowering the damper on the flue. If the box is too cold, the alcohol contracts, the damper is opened, and the fire
burns hotter. The desired temperature is set by the length of the riser, which sets the opening of the damper for a

given expansion of the alcohol.
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Fly-ball governor

A famous problem in the chronicles of control systems was the search for a means to control the rotation speed of
a shaft. Much early work (Fuller, 1976) seems to have been motivated by the desire to automatically control the
speed of the grinding stone in a wind-driven flour mill. Of various methods attempted, the one with the most
promise used a conical pendulum, or fly-ball governor, to measure the speed of the mill. The sails of the driving
windmill were rolled up or let out with ropes and pulleys, much like a window shade, to maintain fixed speed.
However, it was adaptation of these principles to the steam engine in the laboratories of James Watt around 1788
that made the fly-ball governor famous. An early version is shown in Fig. 1.9, while Figs. 1.10 and 1.11 show a close-
up of a fly-ball governor and a sketch of its components.

The action of the fly-ball governor (also called a centrifugal governor) is simple to describe. Suppose the engine is
operating in equilibrium. Two weighted balls spinning around a central shaft can be seen to describe a cone of a
given angle with the shaft. When a load is suddenly applied to the engine, its speed will slow, and the balls of the
governor will drop to a smaller cone. Thus the ball angle is used to sense the output speed. This action, through the
levers, will open the main valve to the steam chest (which is the actuator) and admit more steam to the engine,

restoring most of the lost speed. To hold the steam valve at a new position it is necessary for the fly balls to rotate at



a different angle, implying that the speed under load is not exactly the same as before. We saw this effect earlier with
cruise control, where feedback control gave a very small error. To recover the exact same speed in the system, it
would require resetting the desired speed setting by changing the length of the rod from the lever to the valve.
Subsequent inventors introduced mechanisms that integrated the speed error to provide automatic reset. In Chapter 4

we will analyze these systems to show that such integration can result in feedback systems with zero steady-state

error to constant disturbances.

Figure 1.9

Photograph of an early Watt steam engine
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Figure 1.10
Close-up of the fly-ball governor

Source: British Crown Copyright, Science Museum, London

Beginnings of control theory

Because Watt was a practical man, like the millwrights before him, he did not engage in theoretical analysis of the
governor. Fuller (1976) has traced the early development of control theory to a period of studies from Christian
Huygens in 1673 to James Clerk Maxwell in 1868. Fuller gives particular credit to the contributions of G. B. Airy,



professor of mathematics and astronomy at Cambridge University from 1826 to 1835 and Astronomer Royal at
Greenwich Observatory from 1835 to 1881. Airy was concerned with speed control; if his telescopes could be rotated
counter to the rotation of the earth, a fixed star could be observed for extended periods. Using the centrifugal-
pendulum governor he discovered that it was capable of unstable motion—*“and the machine (if I may so express
myself) became perfectly wild” (Airy, 1840; quoted in Fuller, 1976). According to Fuller, Airy was the first worker to
discuss instability in a feedback control system and the first to analyze such a system using differential equations.

These attributes signal the beginnings of the study of feedback control dynamics.

Figure 1.11
Operating parts of a fly-ball governor
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Stability analysis

The first systematic study of the stability of feedback control was apparently given in the paper “On Governors” by
J. C. Maxwell (1868).” In this paper, Maxwell developed the differential equations of the governor, linearized them
about equilibrium, and stated that stability depends on the roots of a certain (characteristic) equation having negative
real parts. Maxwell attempted to derive conditions on the coefficients of a polynomial that would hold if all the
roots had negative real parts. He was successful only for second- and third-order cases. Determining criteria for
stability was the problem for the Adams Prize of 1877, which was won by E. J. Routh.? His criterion, developed in
his essay, remains of sufficient interest that control engineers are still learning how to apply his simple technique.
Analysis of the characteristic equation remained the foundation of control theory until the invention of the electronic
feedback amplifier by H. S. Black in 1927 at Bell Telephone Laboratories.

Shortly after publication of Routh’s work, the Russian mathematician A. M. Lyapunov (1893) began studying the
question of stability of motion. His studies were based on the nonlinear differential equations of motion and also
included results for linear equations that are equivalent to Routh’s criterion. His work was fundamental to what is
now called the state-variable approach to control theory, but was not introduced into the control literature until
about 1958.



Frequency response

The development of the feedback amplifier is briefly described in an interesting article based on a talk by H. W.
Bode (1960) reproduced in Bellman and Kalaba (1964). With the introduction of electronic amplifiers, long-distance
telephoning became possible in the decades following World War I. However, as distances increased, so did the loss
of electrical energy; in spite of using larger-diameter wires, increasing numbers of amplifiers were needed to replace
the lost energy. Unfortunately, large numbers of amplifiers resulted in much distortion since the small nonlinearity of
the vacuum tubes then used in electronic amplifiers were multiplied many times. To solve the problem of reducing
distortion, Black proposed the feedback amplifier. As mentioned earlier in connection with the automobile cruise
control, the more we wish to reduce errors (or distortion), the more feedback we need to apply. The loop gain from
actuator to plant to sensor to actuator must be made very large. With high gain the feedback loop begins to squeal
and is unstable. Here was Maxwell’s and Routh’s stability problem again, except that in this technology the dynamics
were so complex (with differential equations of order 50 being common) that Routh’s criterion was not very helpful.
So the communications engineers at Bell Telephone Laboratories, familiar with the concept of frequency response
and the mathematics of complex variables, turned to complex analysis. In 1932 H. Nyquist published a paper
describing how to determine stability from a graphical plot of the loop frequency response. From this theory there
developed an extensive methodology of feedback-amplifier design described by Bode (1945) and extensively used
still in the design of feedback controls. Nyquist and Bode plots are discussed in more detail in Chapter 6.

PID control

Simultaneous with the development of the feedback amplifier, feedback control of industrial processes was
becoming standard. This field, characterized by processes that are not only highly complex but also nonlinear and
subject to relatively long time delays between actuator and sensor, developed proportional-integral-derivative (PID)
control. The PID controller was first described by Callender et al. (1936). This technology was based on extensive
experimental work and simple linearized approximations to the system dynamics. It led to standard experiments
suitable to application in the field and eventually to satisfactory “tuning” of the coefficients of the PID controller.
(PID controllers are covered in Chapter 4.) Also under development at this time were devices for guiding and
controlling aircraft; especially important was the development of sensors for measuring aircraft altitude and speed.

An interesting account of this branch of control theory is given in McRuer (1973).

An enormous impulse was given to the field of feedback control during World War II. In the United States engineers
and mathematicians at the MIT Radiation Laboratory combined their knowledge to bring together not only Bode’s
feedback amplifier theory and the PID control of processes but also the theory of stochastic processes developed by
N. Wiener (1930). The result was the development of a comprehensive set of techniques for the design of
servomechanisms, as control mechanisms came to be called. Much of this work was collected and published in the

records of the Radiation Laboratory by James et al. (1947).

Root locus

Another approach to control systems design was introduced in 1948 by W. R. Evans, who was working in the field
of guidance and control of aircraft. Many of his problems involved unstable or neutrally stable dynamics, which
made the frequency methods difficult, so he suggested returning to the study of the characteristic equation that had

been the basis of the work of Maxwell and Routh nearly 70 years earlier. However, Evans developed techniques and



rules allowing one to follow graphically the paths of the roots of the characteristic equation as a parameter was
changed. His method, the root locus, is suitable for design as well as for stability analysis and remains an important

technique today. The root-locus method developed by Evans is covered in Chapter 5.

State-variable design

During the 1950s several authors, including R. Bellman and R. E. Kalman in the United States and L. S. Pontryagin
in the U.S.S.R., began again to consider the ordinary differential equation (ODE) as a model for control systems.
Much of this work was stimulated by the new field of control of artificial earth satellites, in which the ODE is a
natural form for writing the model. Supporting this endeavor were digital computers, which could be used to carry
out calculations unthinkable 10 years before. (Now, of course, these calculations can be done by any engineering
student with a desktop computer.) The work of Lyapunov was translated into the language of control at about this
time, and the study of optimal controls, begun by Wiener and Phillips during World War II, was extended to
optimizing trajectories of nonlinear systems based on the calculus of variations. Much of this work was presented at
the first conference of the newly formed International Federation of Automatic Control held in Moscow in 1960.°
This work did not use the frequency response or the characteristic equation but worked directly with the ODE in
“normal” or “state” form and typically called for extensive use of computers. Even though the foundations of the
study of ODEs were laid in the late 19th century, this approach is now often called modern control to distinguish it
from classical control, which uses the complex variable methods of Bode and others. In the period from the 1970s

continuing through the present, we find a growing body of work that seeks to use the best features of each technique.

Modern control Classical control

Thus we come to the current state of affairs where the principles of control are applied in a wide range of
disciplines, including every branch of engineering. The well-prepared control engineer needs to understand the basic
mathematical theory that underlies the field and must be able to select the best design technique suited to the
problem at hand. With the ubiquitous use of computers it is especially important that the engineer is able to use his

or her knowledge to guide and verify calculations done on the computer.'©

1.4 An Overview of the Book

The central purpose of this book is to introduce the most important techniques for single-input-single—output
control systems design. Chapter 2 will review the techniques necessary to obtain models of the dynamic systems that
we wish to control. These include model making for mechanical, electric, electromechanical, and a few other
physical systems. Chapter 2 also describes briefly the linearization of nonlinear models, although this will be

discussed more thoroughly in Chapter 9.

In Chapter 3 and Appendix A we will discuss the analysis of dynamic response using Laplace transforms along
with the relationship between time response and the poles and zeros of a transfer function. The chapter also includes

a discussion of the critical issue of system stability, including the Routh test.

In Chapter 4 we will cover the basic equations and features of feedback. An analysis of the effects of feedback on
disturbance rejection, tracking accuracy, sensitivity to parameter changes, and dynamic response will be given. The
idea of elementary PID control is discussed. Also in this chapter a brief introduction is given to the digital

implementation of transfer functions and thus of linear time-invariant controllers so that the effects of digital control



can be compared with analog controllers as these are designed.

In Chapters 5, 6, and 7 we introduce the techniques for realizing the control objectives first identified in Chapter 4
in more complex dynamic systems. These methods include the root locus, frequency response, and state-variable
techniques. These are alternative means to the same end and have different advantages and disadvantages as guides
to design of controls. The methods are fundamentally complementary, and each needs to be understood to achieve

the most effective control systems design.

In Chapter 8 we develop further the ideas of implementing controllers in a digital computer that were introduced
in Chapter 4. The chapter addresses how one “digitizes” the control equations developed in Chapters 5 through 7,
how the sampling introduces a delay that tends to destabilize the system, and how the sample rate needs to be a
certain multiple of the system frequencies for good performance. The analysis of sampled systems requires another

analysis tool—the z-transform—and that tool is described and its use is illustrated.

Most real systems are nonlinear to some extent. However, the analyses and design methods in most of the bookup
to here are for linear systems. In Chapter 9 we explain why the study of linear systems is pertinent, why it is useful
for design even though most systems are nonlinear, and how designs for linear systems can be modified to handle
most common nonlinearities in the systems being controlled. The chapter covers saturation, describing functions and

the anti windup controller, and contains a brief introduction to Lyapunov stability theory.

Application of all the techniques to problems of substantial complexity are discussed in Chapter 10, in which the

design methods are brought to bear simultaneously on specific case studies.

Computer aids

Control designers today make extensive use of computer-aided control systems design software that is
commercially available. Furthermore, most instructional programs in control systems design make software tools
available to the students. The most widely used software for the purpose are MATLAB® and SIMULINK® from The
Mathworks. MATLAB routines have been included throughout the text to help illustrate this method of solution and
many problems require computer aids for solution. Many of the figures in the book were created using MATLAB and
the files for their creation are available free of charge on the web at the site: http://www.FPE6e.com. Students and
instructors are invited to use these files as it is believed that they should be helpful in learning how to use computer

methods to solve control problems.

Needless to say, many topics are not treated in the book. We do not extend the methods to multivariable controls,
which are systems with more than one input and/or output, except as part of the case study of the rapid thermal

processor in Chapter 10. Nor is optimal control treated in more than a very introductory manner in Chapter 7.

Also beyond the scope of this text is a detailed treatment of the experimental testing and modeling of real
hardware, which is the ultimate test of whether any design really works. The book concentrates on analysis
anddesign of linear controllers for linear plant models—not because we think that is the final test of a design, but
because that is the best way to grasp the basic ideas of feedback and is usually the first step in arriving at a
satisfactory design. We believe that mastery of the material here will provide a foundation of understanding on
which to build knowledge of these more advanced and realistic topics—a foundation strong enough to allow one to

build a personal design method in the tradition of all those who worked to give us the knowledge we present here.

SUMMARY



+ Control is the process of making a system variable adhere to a particular value, called the reference value. A
system designed to follow a changing reference is called tracking control or a servo. A system designed to maintain

an output fixed regardless of the disturbances present is called a regulating control or a regulator.

» Two kinds of control were defined and illustrated based on the information used in control and named by the
resulting structure. In open-loop control the system does not measure the output and there is no correction of the
actuating signal to make that output conform to the reference signal. In closed-loop control the system includes a

sensor to measure the output and uses feedback of the sensed value to influence the control variable.

* A simple feedback system consists of the process whose output is to be controlled, the actuator whose output
causes the process output to change, reference and output sensors that measure these signals, and the controller

that implements the logic by which the control signal that commands the actuator is calculated.

* Block diagrams are helpful for visualizing system structure and the flow of information in control systems. The

most common block diagrams represent the mathematical relationships among the signals in a control system.

« The theory and design techniques of control have come to be divided into two categories: classical control methods
use the Laplace or Fourier Transforms and were the dominant methods for control design until about 1960 while
modern control methods are based on ODEs in state form and were introduced into the field starting in the1960s.
Many connections have been discovered between the two categories and well prepared engineers must be familiar

with both techniques.

REVIEW QUESTIONS

. What are the main components of a feedback control system?

. What is the purpose of the sensor?

. Give three important properties of a good sensor.

. What is the purpose of the actuator?

. Give three important properties of a good actuator.

. What is the purpose of the controller? Give the input(s) and output(s) of the controller.
. What physical variable(s) of a process can be directly measured by a Hall effect sensor?

. What physical variable is measured by a tachometer?
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. Describe three different techniques for measuring temperature.

10. Why do most sensors have an electrical output, regardless of the physical nature of the variable being measured?

PROBLEMS

1.1 Draw a component block diagram for each of the following feedback control systems.

(a) The manual steering system of an automobile

(b) Drebbel’s incubator

(c) The water level controlled by a float and valve

(d) Watt’s steam engine with fly-ball governor
In each case, indicate the location of the elements listed below and give the units associated with each signal.
« the process
« the process desired output signal

« the sensor



+ the actuator

« the actuator output signal

+ the controller

« the controller output signal
« the reference signal

« the error signal

Notice that in a number of cases the same physical device may perform more than one of these functions.

1.2 Identify the physical principles and describe the operation of the thermostat in your home or office.

1.3 A machine for making paper is diagrammed in Fig. 1.12. There are two main parameters under feedback control:

the density of fibers as controlled by the consistency of the thick stock that flows from the headbox onto the wire,
and the moisture content of the final product that comes out of the dryers. Stock from the machine chest is diluted
by white water returning from under the wire as controlled by a control valve (CV). A meter supplies a reading of
the consistency. At the “dry end” of the machine, there is a moisture sensor. Draw a signal graph and identify the
nine components listed in Problem 1.1 part (d) for

(a) control of consistency

(b) control of moisture

1.4 Many variables in the human body are under feedback control. For each of the following controlled variables,

draw a graph showing the process being controlled, the sensor that measures the variable, the actuator that causes
it to increase and/or decrease, the information path that completes the feedback path, and the disturbances that
upset the variable. You may need to consult an encyclopedia or textbook on human physiology for information

on this problem.

Figure 1.12 A papermaking machine
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Source: From Astrom (1970, p. 192); reprinted with permission

(a) blood pressure

(b) blood sugar concentration

(c) heart rate

(d) eye-pointing angle

(e) eye-pupil diameter

1.5 Draw a graph of the components for temperature control in a refrigerator or automobile air-conditioning system.

1.6 Draw a graph of the components for an elevator-position control. Indicate how you would measure the position



of the elevator car. Consider a combined coarse and fine measurement system. What accuracies do you suggest for
each sensor? Your system should be able to correct for the fact that in elevators for tall buildings there is

significant cable stretch as a function of cab load.

1.7 Feedback control requires being able to sense the variable being controlled. Because electrical signals can be
transmitted, amplified, and processed easily, often we want to have a sensor whose output is a voltage or current
proportional to the variable being measured. Describe a sensor that would give an electrical output proportional

to:
(a) temperature
(b) pressure
(c) liquid level
(d) flow of liquid along a pipe (or blood along an artery) force
(e) linear position
(f) rotational position
(g) linear velocity
(h) rotational speed
(i) translational acceleration
(j) torque
1.8 Each of the variables listed in Problem 1.7 can be brought under feedback control. Describe an actuator that could

accept an electrical input and be used to control the variables listed. Give the units of the actuator output signal.



1 Notice that the furnace had come on a few minutes before 6 a.m. on its regular nighttime schedule.

2 Jonathan Swift (1733) said it this way: “So, Naturalists observe, a flea Hath smaller fleas that on him prey; And these have smaller still to bite ‘em;

And so proceed, ad infinitum.”

3 In the renovations of the kitchen in the house of one of the authors, the new ovens were placed against the wall where the thermostat was mounted

on the other side. Now when dinner is baked in the kitchen on a cold day, the author freezes in his study unless the thermostat is reset.

4 The story is told of the new employee at the nitroglycerin factory who was to control the temperature of a critical part of the process manually. He
was told to “keep that reading below 300°.” On a routine inspection tour, the supervisor realized that the batch was dangerously hot and found the
worker holding the thermometer under cold water tap to bring it down to 300°. They got out just before the explosion. Moral: sometimes automatic
control is better than manual.

101
S In case the error is too large, it is common practice to reset the reference, in this case Tiki’, so the out reaches the true desired value.
6 French doctors introduced incubators into the care of premature babies over 100 years ago.

7 An exposition of Maxwell’s contribution is given in Fuller (1976).

8 E. J. Routh was first academically in his class at Cambridge University in 1854, while J. C. Maxwell was second. In 1877 Maxwell was on the Adams

Prize Committee that chose the problem of stability as the topic for the year.

9 Optimal control gained a large boost when Bryson and Denham (1962) showed that the path of a supersonic aircraft should actually dive at one

point in order to reach a given altitude in minimum time. This nonintuitive result was later demonstrated to skeptical fighter pilots in flight tests.

10 Eor more background on the history of control, see the survey papers appearing in the IEEE Control Systems Magazine of November 1984 and June

1996.



2 Dynamic Models

A Perspective on Dynamic Models

The overall goal of feedback control is to use the principle of feedback to cause the output variable of a dynamic
process to follow a desired reference variable accurately, regardless of the reference variable’s path and regardless of
any external disturbances or any changes in the dynamics of the process. This complex goalis met as the result of a
number of simple, distinct steps. The first of these is to develop a mathematical description (called a dynamic
model) of the process to be controlled. The term model, as it is used and understood by control engineers, means a
set of differential equations that describe the dynamic behavior of the process. A model can be obtained using
principles of the underlying physics or by testing a prototype of the device, measuring its response to inputs, and
using the data to construct an analytical model. We will focus only on using physics in this chapter. There are entire
books written on experimentally determining models, sometimes called System Identification, and these techniques
are described very briefly in Chapter 3. A careful control system designer will typically rely on at least some

experiments to verify the accuracy of the model when it is derived from physical principles.

In many cases the modeling of complex processes is difficult and expensive, especially when the important steps of
building and testing prototypes are included. However, in this introductory text, we will focus on the most basic
prindples of modeling for the most common physical systems. More comprehensive sources and specialized texts will

be referenced throughout the text where appropriate for those wishing more detail.

In later chapters we will explore a variety of analysis methods for dealing with the equations of motion and their

solution for purposes of designing feedback control systems.

Chapter Overview

The fundamental step in building a dynamic model is writing the equations of motion for the system. Through
discussion and a variety of examples, Section 2.1 demonstrates how to write the equations of motion for a variety of
mechanical systems. In addition, the section demonstrates the use of MATLAB® to find the time response of a simple
system to a step input. Furthermore, the ideas of transfer functions and block diagrams are introduced, along with the
idea that problems can also be solved via SIMULINK®.

Electric circuits and electromechanical systems are modeled in Sections 2.2 and 2.3, respectively.

For those wanting modeling examples for more diverse dynamic systems, Section 2.4, which is optional, extends
the discussion to heat and fluid-flow systems.

The chapter concludes with Section 2.5, a discussion of the history behind the discoveries that led to the
knowledge that we take for granted today.

The differential equations developed in modeling are often nonlinear. Because nonlinear systems are significantly
more challenging to solve than linear ones and because linear models are usually adequate, the emphasis in the early
chapters is primarily on linear systems. However, we do show how to linearize simple nonlinearities herein Chapter

2 and show how to use SIMULINK to numerically solve for the motion of a nonlinear system. A much more extensive



discussion of linearization and analysis of nonlinear systems is contained in Chapter 9.

In order to focus on the important first step of developing mathematical models, we will defer explanation of the

computational methods used to solve the equations of motion developed in this chapter until Chapter 3.

2.1 Dynamics of Mechanical Systems

2.1.1 Translational Motion

Newton’s law for translational motion

The cornerstone for obtaining a mathematical model, or the equations of motion, for any mechanical system is

Newton’s law,

F = ma, (2.1)

where
F = the vector sum of all forces applied to each body in a system, newtons (N) or pounds (Ib),

a = the vector acceleration of each body with respect to an inertial reference frame (i.e., one that is neither

accelerating nor rotating with respect to the stars); often called inertial acceleration, m/sec? or ft/sec?,

m = mass of the body, kg or slug.

Note that here in Eq. (2.1), as throughout the text, we use the convention of boldfacing the type to indicate that the

quantity is a matrix or vector, possibly a vector function.

Figure 2.1 Cruise control model
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)

Use of free-body diagram in applying Newton’s law

In SI units a force of 1 N will impart an acceleration of 1 m/sec? to a mass of 1 kg. In English units a force of 1 1b
will impart an acceleration of 1 ft/sec? to a mass of 1 slug. The “weight” of an object is mg, where g is the
acceleration of gravity (= 9.81 m/sec? = 32.2 ft/sec?). In English units it is common usage to refer to the mass of an
object in terms of its weight in pounds, which is the quantity measured on scales. To obtain the mass in slugs for use

in Newton’s law, divide the weight by g. Therefore, an object weighing 1 1b has a mass of /3, , slugs. A slug has

units 1bsec?/ft. In metric units, scales are typically calibrated in kilograms, which is a direct measure of mass.



Application of this law typically involves defining convenient coordinates to account for the body’s motion
(position, velocity, and acceleration), determining the forces on the body using a free-body diagram, and then writing
the equations of motion from Eq. (2.1). The procedure is simplest when the coordinates chosen express the position
with respect to an inertial frame because, in this case, the accelerations needed for Newton’s law are simply the

second derivatives of the position coordinates.

EXAMPLE 2.1 A Simple System; Cruise Control Model

1. Write the equations of motion for the speed and forward motion of the car shown in Fig. 2.1 assuming that the
engine imparts a force u as shown. Take the Laplace transform of the resulting differential equation and find the
transfer function between the input u and the output v.

2. Use MATLAB to find the response of the velocity of the car for the case in which the input jumps from being u =
0 at time t = O to a constant u = 500 N thereafter. Assume that the car mass m is 1000 kg and viscous drag

coefficient, b = 50 N-sec/m.

Solution

1. Equations of motion: For simplicity we assume that the rotational inertia of the wheels is negligible and that there
is friction retarding the motion of the car that is proportional to the car’s speed with a proportionality constant,
b.! The car can then be approximated for modeling purposes using the free-body diagram seen in Fig. 2.2, which
defines coordinates, shows all forces acting on the body (heavy lines), and indicates the acceleration (dashed line).
The coordinate of the car’s position x is the distance from the reference line shown and is chosen so that positive
is to the right. Note that in this case the inertial acceleration is simply the second derivative of x (i.e., a= x)
because the car position is measured with respect to an inertial reference. The equation of motion is found using
Eq. (2.1). The friction force acts opposite to the direction of motion; therefore it is drawn opposite the direction of

positive motion and entered as a negative force in Eq. (2.1). The result is

Figure 2.2 Free-body diagram for cruise control

Friction
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u — bhx = mx, (2.2)
or

b I
i+—x=—. (2.3)
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For the case of the automotive cruise control where the variable of interest is the speed, v (= i), the equation of

motion becomes



;
P (2.4)
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The solution of such an equation will be covered in detail in Chapter 3; however, the essence is that you assume a
solution of the form v = Ve given an input of the form u = U _e®. Then, since v = sV e, the differential equation

can be written as

b . I :
('5 + _) Vr!("u = _"I-"rn{"”- (25}
i

1

The e’ term cancels out, and we find that

v, -
— = : (2.6)
Ur} 3 b

1

For reasons that will become clear in Chapter 3, this is usually written as

I
V() _ 2.7
Uis)y s+ L2

L

Transfer function

This expression of the differential equation (2.4) is called the transfer function and will be used extensively in later

chapters. Note that, in essence, we have substituted s for d/dt in Eq. (2.4).?

2. Time response: The dynamics of a system can be prescribed to MATLAB in terms of row vectors containing the
coefficients of the polynomials describing the numerator and denominator of its transfer function. The transfer
function for this problem is that given in part (a). In this case, the numerator (called num) is simply one number

since there are no powers of s, so that num = 1/m = 1/1000. The denominator (called den) contains the

coefficients of the polynomial s+P°/,, which are
b 50
den=1|1 —|=|1 —].
|: m] |: ][}[}[}}

Step response with MATLAB

The step function in MATLAB calculates the time response of a linear system to a unit step input. Because the system
is linear, the output for this case can be multiplied by the magnitude of the input step to derive a step response of
any amplitude. Equivalently, num can be multiplied by the magnitude of the input step.

The statements calculate and plot the time response for an input step with a 500-N magnitude. The step response is

shown in Fig. 2.3.



num = 1/1000; % 1/m

den=[1 50/1000]; % s + b/m

sys = tf(num*500, den); % step gives unit step response, so num*500
gives u = 500.

step(sys); % plots the step response

Newton’s law also can be applied to systems with more than one mass. In this case it is particularly important to
draw the free-body diagram of each mass, showing the applied external forces as well as the equal and opposite

internal forces that act from each mass on the other.

Figure 2.3 Response of the car velocity to a step in u
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EXAMPLE 2.2 A Two-Mass System: Suspension Model

Figure 2.4 shows an automobile suspension system. Write the equations of motion for the automobile and wheel
motion assuming one-dimensional vertical motion of one quarter of the car mass above one wheel. A system
consisting of one of the four wheel suspensions is usually referred to as a quarter-car model. Assume that the model
is for a car with a mass of 1580 kg, including the four wheels, which have a mass of 20 kg each. By placing a known

weight (an author) directly over a wheel and measuring the car’s deflection, we find that k, = 130,000 N/m.
Measuring the wheel’s deflection for the same applied weight, we find that k,, = 1,000,000 N/m. By using the

results in Section 3.3, Fig. 3.18(b), and qualitatively observing that the car’s response as the author jumps off matches
the t, = 0.7 curve, we conclude that b = 9800 N-sec/m.

Solution. The system can be approximated by the simplified system shown in Fig. 2.5. The coordinates of the two
masses, x and y, with the reference directions as shown, are the displacements of the masses from their equilibrium
conditions. The equilibrium positions are offset from the springs’ unstretched positions because of the force of
gravity. The shock absorber is represented in the schematic diagram by a dashpot symbol with friction constant b.
The magnitude of the force from the shock absorber is assumed to be proportional to the rate of change of the
relative displacement of the two masses—that is, the force = b(y — x). The force of gravity could be included in the
free-body diagram; however, its effect is to produce a constant offset of x and y. By defining x and y to be the

distance from the equilibrium position, the need to include the gravity forces is eliminated.



Figure 2.4 Automobile suspension

Figure 2.5 The quarter-car model
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Figure 2.6 Free-body diagrams for suspension system
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The force from the car suspension acts on both masses in proportion to their relative displacement with spring

constant k. Figure 2.6 shows the free-body diagram of each mass. Note that the forces from the spring on the two

masses are equal in magnitude but act in opposite directions, which is also the case for the damper. A positive
displacement y of mass m2 will result in a force from the spring on m2 in the direction shown and a force from the

spring on m ; in the direction shown. However, a positive displacement x of mass m ; will result in a force from the
spring k, on m1 in the opposite direction to that drawn in Fig. 2.6, as indicated by the minus x term for the spring
force.

The lower spring k,, represents the tire compressibility, for which there is insufficient damping (velocity-

dependent force) to warrant including a dashpot in the model. The force from this spring is proportional to the



distance the tire is compressed and the nominal equilibrium force would be that required to support m ; and m2

against gravity. By defining x to be the distance from equilibrium, a force will result if either the road surface has a
bump (r changes from its equilibrium value of zero) or the wheel bounces (x changes). The motion of the simplified

car over a bumpy road will result in a value of r(t) that is not constant.

As previously noted, there is a constant force of gravity acting on each mass; however, this force has been omitted,
as have the equal and opposite forces from the springs. Gravitational forces can always be omitted from vertical-
spring mass systems (1) if the position coordinates are defined from the equilibrium position that results when
gravity is acting, and (2) if the spring forces used in the analysis are actually the perturbation in spring forces from

those forces acting at equilibrium.

Applying Eq. (2.1) to each mass and noting that some forces on each mass are in the negative (down) direction

yields the system of equations

b(y — X) + ks(y — X) — ky(x — 1) = my X, (2.8)
—ks(y — x) — b(y — &) = m3y. (2.9)

Some rearranging results in

b -'L; k v K
o Ry i N O g T (2.10)
m mi m mj

s Boow Ky
Y+ —0O—x4+——x)=0. (2.11)
nz ms

Check for sign errors

The most common source of error in writing equations for systems like these are sign errors. The method for
keeping the signs straight in the preceding development entailed mentally picturing the displacement of the masses
and drawing the resulting force in the direction that the displacement would produce. Once you have obtained the
equations for a system, a check on the signs for systems that are obviously stable from physical reasoning can be
quickly carried out. As we will see when we study stability in Section 3.6, a stable system always has the same signs
on similar variables. For this system, Eq. (2.10) shows that the signs on the X, &, and x terms are all positive, as they

must be for stability. Likewise, the signs on the ¥, .'i", and y terms are all positive in Eq. (2.11).

The transfer function is obtained in a similar manner as before. Substituting s for d/dt in the differential equations

yields

3 FI.:' l{ ¥ 'E;IL]' Kl’i' -
XS+ 5s—(X(5) =Y (s 4+ —(X{(s) — Y(5)) 4+ —X(5) = —Ris).
ny "y ny |

s b k.
Y5+ 5—(Yis) — X(5) 4+ —(¥(5) — X(5)) =0,

s na

which, after some algebra and rearranging, yields the transfer function



Ris) B 4 ( b b ) 3 ( k.x k.'. 'E';u.') 3 ( ku'h ) k'll'k.'n' I
S — ¥t 2 i il i o 5+
m o nn my  my mym? nyma

(2.12)

kyb ( K :"\'_1)
s+ —
Y(s) myma \ b

To determine numerical values, we subtract the mass of the four wheels from the total car mass of 1580 kg and

divide by 4 to find that m, = 375 kg. The wheel mass was measured directly to be m; = 20 kg. Therefore, the

transfer function with the numerical values is

Y(s) 1.3106(s 4+ 13.3)

- . ; 213
R(s) sV 4 (516.1)s3 + (5.685e04)s2 + (1.307€06)s + 1.733e07 : )

Newton’s law for rotational motion

2.1.2 Rotational Motion

Application of Newton’s law to one-dimensional rotational systems requires that Eq. (2.1) be modified to

M = Ia, (2.14)

where
M = the sum of all external moments about the center of mass of a body, N'-m or 1b-ft,
I = the body’s mass moment of inertia about its center of mass, kg'm? or slugft,

a = the angular acceleration of the body, rad/sec?.

EXAMPLE 2.3 Rotational Motion: Satellite Attitude Control Model

Satellites, as shown in Fig. 2.7, usually require attitude control so that antennas, sensors, and solar panels are
properly oriented. Antennas are usually pointed toward a particular location on earth, while solar panels need to be
oriented toward the sun for maximum power generation. To gain insight into the full three-axis attitude control
system, it is helpful to consider one axis at a time. Write the equations of motion for one axis of this system and
show how they would be depicted in a block diagram. In addition, determine the transfer function of this system and
construct the system as if it were to be evaluated via MATLAB’s SIMULINK.

Figure 2.7 Communications satellite Source: Courtesy Space Systems/Loral



Solution. Figure 2.8 depicts this case, where motion is allowed only about the axis perpendicular to the page. The
angle 0 that describes the satellite orientation must be measured with respect to an inertial reference—that is, a

reference that has no angular acceleration. The control force comes from reaction jets that produce a moment of F.d

about the mass center. There may also be small disturbance moments My, on the

Figure 2.8 Satellite control schematic

Inertial
reference

Figure 2.9 Block diagrams representing Eq. (2.15) in the upper half and Eq. (2.16) in the lower half satellite, which
arise primarily from solar pressure acting on any asymmetry in the solar panels. Applying Eq. (2.14) yields the

equation of motion
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F.d+Mp=16. (2.15)

The output of this system, 0, results from integrating the sum of the input torques twice; hence this type of system is
often referred to as the double-integrator plant. The transfer function can be obtained as described for Eq. (2.7) and is
=(s)

1 1
-—, (2.16
sy 152 ;

172 plant

where U = F.d + M In this form, the system is often referred to as the !/,2 plant.

Figure 2.9 shows a block diagram representing Eq. (2.15) in the upper half and a block diagram representing Eq.
(2.16) in the lower half. This simple system can be analyzed using the linear analysis techniques that are described in
later chapters, or via MATLAB as we saw in Example 2.1. It can also be numerically evaluated for an arbitrary input
time history using SIMULINK. SIMULINK is a sister software package to MATLAB for interactive, nonlinear
simulation and has a graphical user interface with drag and drop properties. Figure 2.10 shows a block diagram of
the system as depicted by SIMULINK.

Figure 2.10 SIMULINK block diagram of the double-integrator plant

T

U 14 Integrator 1 Integrator 2 Scope

Figure 2.11 Disk read/write mechanism Source: Courtesy of Hewlett-Packard Company



In many cases a system, such as the disk-drive read/write head shown in Fig. 2.11, in reality has some flexibility,
which can cause problems in the design of a control system. Particular difficulty arises when there is flexibility, as in
this case, between the sensor and actuator locations. Therefore, it is often important to include this flexibility in the

model even when the system seems to be quite rigid.

EXAMPLE 2.4 Flexibility: Flexible Read/Write for a Disk Drive

Assume that there is some flexibility between the read head and the drive motor in Fig. 2.11. Find the equations of

motion relating the motion of the read head to a torque applied to the base.
Figure 2.12 Disk read/write head schematic for modeling
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Figure 2.13 Free-body diagrams of the disk read/write head
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Solution. The dynamic model for this situation is shown schematically in Fig. 2.12. This model is dynamically similar

M, + My, /

to the resonant system shown in Fig. 2.5 and results in equations of motion that are similar in form to Egs. (2.10) and
(2.11). The moments on each body are shown in the free-body diagrams in Fig. 2.13. The discussion of the moments
on each body is essentially the same as the discussion for Example 2.2, except that the springs and damper in that
case produced forces, instead of moments that act on each inertia, as in this case. When the moments are summed,

equated to the accelerations according to Eq. (2.14), and rearranged, the result is
16y + b(6y — 62) + k(6) — 62) = M, + Mp, (2.17)

Ll + b(0y — ) + k(th — 0;) = 0. (2.18)

Ignoring the disturbance torque MD and the damping b for simplicity, we find the transfer function from the
applied torque M, to the read head motion to be

O2(s) k

M.(s) s ok Y
Libst | s*+—+ —
11428 ('i' -+ “ -+ !2)

(2.19)

It might also be possible to sense the motion of the inertia where the torque is applied, 6,, in which case the

transfer function with the same simplifications would be

O (s) bs” + k
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(2.20)

Figure 2.14 Pendulum



Collocated sensor and actuator

These two cases are typical of many situations in which the sensor and actuator may or may not be placed in the
same location in a flexible body. We refer to the situation between sensor and actuator in Eq. (2.19) as the
“noncollocated” case, whereas Eq. (2.20) describes the “collocated” case. You will see in Chapter 5 that it is far more
difficult to control a system when there is flexibility between the sensor and actuator (noncollocated case) than when

the sensor and actuator are rigidly attached to one another (the collocated case).

In the special case in which a point in a rotating body is fixed with respect to an inertial reference, as is the case
with a pendulum, Eq. (2.14) can be applied such that M is the sum of all moments about the fixed point and I is the

moment of inertia about the fixed point.

EXAMPLE 2.5 Rotational Motion: Pendulum

1. Write the equations of motion for the simple pendulum shown in Fig. 2.14, where all the mass is concentrated at
the end point and there is a torque, T, applied at the pivot.

2. Use MATLAB to determine the time history of 6 to a step inputin T, of 1 N-m. Assume ]l =1 m, m = 1kg,and g
= 9.81 m/sec?.

Solution
1. Equations of motion: The moment of inertia about the pivot point is I = ml2. The sum of moments about the
pivot point contains a term from gravity as well as the applied torque T.. The equation of motion, obtained from

Eq. (2.14), is

T. — mglsinfl = 16, (2.21)

which is usually written in the form

o 4
B8 . TE 222
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This equation is nonlinear due to the sin 6 term. A general discussion of nonlinear equations is contained in Chapter
9; however, we can proceed with a linearization of this case by assuming the motion is small enough that sin 6 = 6.

Then Eq. (2.22) becomes the linear equation
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With no applied torque, the natural motion is that of a harmonic oscillator with a natural frequency of®

s
iy = "1r'|ll ? (2.24)
The transfer function can be obtained as described for Eq. (2.7), yielding
]
B(s) - mi2 _ (2.25)
T.(s) 248
[

2. Time history: The dynamics of a system can be prescribed to MATLAB in terms of row vectors containing the
coefficients of the polynomials describing the numerator and denominator of its transfer function. In this case, the

numerator (called num) is simply one number, since there are no powers of s, so that

| l
num = — — I |
mi2  (1)(1)2 1l

and the denominator (called den) contains the coefficients of the descending powers of s in (s2 + g/1) and is a row

vector with three elements:

den = [| 0 ﬂ =11 0 981].
The desired response of the system can be obtained by using the MATLAB step response function, called step. The
MATLAB statements

t=0:0.02:10; % vector of times for output, 0 to 10 at 0.02 increments
num=1;

den=[1 0 9.81];

sys = tf(num,den); % defines the system by its numerator and denominator

y = step(sys,t); % computes step responses at times given by t for step
att=0
plot(t, 57.3*y) % converts radians to degrees and plots step response

will produce the desired time history shown in Fig. 2.15.

SIMULINK

As we saw in this example, the resulting equations of motion are often nonlinear. Such equations are much more
difficult to solve than linear ones, and the kinds of possible motions resulting from a nonlinear model are much
more difficult to categorize than those resulting from a linear model. It is therefore useful to linearize models in
order to gain access to linear analysis methods. It may be that the linear models and linear analysis are used only for

the design of the control system (whose function may be to maintain the system in the linear region). Once a control



system is synthesized and shown to have desirable performance based on linear analysis, it is then prudent to carry
out further analysis or an accurate numerical simulation of the system with the significant nonlinearities in order to
validate that performance. SIMULINK SIMULINK is an expedient way to carry out these simulations and can handle
most nonlinearities. Use of this simulation tool is carried out by constructing a block diagram* that represents the
equations of motion. The linear equation of motion for the pendulum with the parameters as specified in Example
2.5 can be seen from Eq. (2.23) to be and this is represented in SIMULINK by the block diagram in Fig. 2.16. Note

that the circle on the left side of the figure with the + and - signs indicating addition and subtraction implements
the equation above.

Figure 2.15 Response of the pendulum to a step input of 1 N-m in the applied torque
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Figure 2.16 The SIMULINK block diagram representing the linear equation (2.26)

' } #(%)
| % g > % AN [ E
Step  Gain | Integrator Integrator | Gain 2 Scope
[y 8= r’jl
9,81 /{J;ﬂ
(ain

The result of running this numerical simulation will be essentially identical to the linear solution shown in Fig.
2.15 because the solution is for relatively small angles where sin 6 = 6. However, using SIMULINK to solve for the
response enables us to simulate the nonlinear equation so that we could analyze the system for larger motions. In this

case, Eq. (2.26) becomes and the SIMULINK block diagram shown in Fig. 2.17 implements this nonlinear equation.

H=—981*sinf + 1, (2.27)

Figure 2.17 The SIMULINK block diagram representing the nonlinear equation (2.27)
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Figure 2.18 Block diagram of the pendulum for both the linear and nonlinear models
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SIMULINK is capable of simulating all commonly encountered nonlinearities, including deadzones, on-off functions,
stiction, hysteresis, aerodynamic drag (a function of v?), and trigonometric functions. All real systems have one or

more of these characteristics in varying degrees.

EXAMPLE 2.6 Use of SIMULINK for Nonlinear Motion: Pendulum
Use SIMULINK to determine the time history of 6 for the pendulum in Example 2.5. Compare it against the linear

solution for T, values of 1 N-m and 4 N-m.

Solution. Time history: The SIMULINK block diagrams for the two cases discussed above are combined and both
outputs in Fig. 2.16 and 2.17 are sent via a “multiplexer block (Mux)” to the “scope” so they can be plotted on the
same graph. Fig. 2.18 shows the combined block diagram where the gain, K, represents the values of T,.. The outputs

of this system for T, values of 1 N - m, and 4 N - m are shown in Fig. 2.19. Note that for T, = 1 N'm, the outputs at

the top of the figure remain at 12° or less and the linear approximation is extremely close to the nonlinear output.

For T, = 4 N'm, the output angle grows to near 50° and a substantial difference in the response magnitude and

frequency is apparent due to 6 being a poor approximation to sin 0 at these magnitudes.

Figure 2.19 Response of the pendulum SIMULINK numerical simulation for the linear and nonlinear models. (a) for
T.=1Nmand (b) T, = 4 Nm
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Chapter 9 is devoted to the analysis of nonlinear systems and greatly expands on these ideas.

2.1.3 Combined Rotation and Translation

In some cases, mechanical systems contain both translational and rotational portions. The procedure is the same as
that described in Sections 2.1.1 and 2.1.2: sketch the free-body diagrams, define coordinates and positive directions,
determine all forces and moments acting, and apply Egs. (2.1) and/or (2.14). An exact derivation of the equations for
these systems can become quite involved; therefore, the complete analysis for the following examples are contained

in Appendix W2 and only the linearized equations of motion and their transfer functions are given here.

Figure 2.20 Schematic of the crane with hanging load
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Figure 2.21 Inverted pendulum
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EXAMPLE 2.7 Rotational and Translational Motion: Hanging Crane

Write the equations of motion for the hanging crane shown schematically in Fig. 2.20. Linearize the equations about
6 0, which would typically be valid for the hanging crane. Also linearize the equations for 6 = °, which represents
the situation for the inverted pendulum shown in Fig. 2.21. The trolley has mass, mt, and the hanging crane (or

pendulum) has mass, m,, and inertia about its mass center of I. The distance from the pivot to the mass center of the
pendulum is I; therefore, the moment of inertia of the pendulum about the pivot point is (I + mpl?).

Solution. Free-body diagrams need to be drawn for the trolley and the pendulum and the reaction forces considered
where the two attach to one another. We carry out this process in Appendix W2. After Newton’s Laws are applied
for the translational motion of the trolley and the rotational motion of the pendulum, it will be found that the
reaction forces between the two bodies can be eliminated, and the only unknowns will be 6 and x. The results are
two coupled second-order nonlinear differential equations in 6 and x with the input being the force applied to the
trolley, u. They can be linearized in a similar manner that was done for the simple pendulum by assuming small

angles. For small motions about ® = 0, we let cos® = 1, sin 8 = 6, and 82 = thus the equations are approximated by

I+ mﬁ.l’"j']ﬁ + f::;,g!fl — —mj.,!_i".
(my + my)X + bx + m,:!ﬁ = U, (2.28)

Note that the first equation is very similar to the simple pendulum, Eq. (2.21), where the applied torque arises
from the trolley accelerations. Likewise, the second equation representing the trolley motion, x, is very similar to the
car translation in Eq. (2.3) where the forcing term arises from the angular acceleration of the pendulum. Neglecting

the friction term b leads to the transfer function from the control input u to hanging crane angle ©:

0(s) _’”P'f
U(s) (0 + mplP)Ymy + mp) — m312)s? + mpgl(m; + my)’

(2.29)

For the inverted pendulum in Fig. 2.21, where 6 = 7, assume 6 = 0’, where 0’ represents motion from the vertical

upward direction. In this case, sin 8 = -8’ cos 8=-1, and the nonlinear equations become®

Inverted pendulum equations



(l + m'pf?}ff’ — mﬂgh‘:’f = mplX,

(my + mp)X + bx — fJIJ,JF!E»;' = U, (2.30)

As noted in Example 2.2, a stable system will always have the same signs on each variable, which is the case for
the stable hanging crane modeled by Egs. (2.28). However, the signs on 6 and 0 in the top Eq. (2.30) are opposite,

thus indicating instability, which is the characteristic of the inverted pendulum.

The transfer function, again without friction, is

f'(s) - f”lr}lll

= . 231
Us) (0 +mpl?) — mﬁfl}sz — mpgl(m; + nip) .

In Chapter 5 you will learn how to stabilize systems using feedback and will see that even unstable systems like an
inverted pendulum can be stabilized providing there is a sensor that measures the output quantity and a control
input. For the case of the inverted pendulum perched on a trolley, it would be required to measure the pendulum
angle, 0, and provide a control input, u, that accelerated the trolley in such a way that the pendulum remained
pointing straight up. In years past, this system existed primarily in university control system laboratories as an
educational tool. However, more recently, there is a practical device in production and being sold that employs
essentially this same dynamic system: The Segway. It uses a gyroscope so that the angle of the device is known with
respect to vertical, and electric motors provide a torque on the wheels so that it balances the device and provides the

desired forward or backward motion. It is shown in Fig. 2.22.

2.1.4 Distributed Parameter Systems

All the preceding examples contained one or more rigid bodies, although some were connected to others by springs.
Actual structures—for example, satellite solar panels, airplane wings, or robot arms—usually bend, as shown by the
flexible beam in Fig. 2.23(a). The equation describing its motion is a fourth-order partial differential equation that
arises because the mass elements are continuously distributed along the beam with a small amount of flexibility
between elements. This type of system is called a distributed parameter system. The dynamic analysis methods
presented in this section are not sufficient to analyze this case; however, more advanced texts (Thomson and Dahleh,
1998) show that the result is

Figure 2.22 The Segway, which is similar to the inverted pendulum and is kept upright by a feedback control system

Source: Photo courtesy of David Powell
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where
E = Young’s modulus,
I = beam area moment of inertia,
p = beam density,
w = beam deflection at length x along the beam.

The exact solution to Eq. (2.32) is too cumbersome to use in designing control systems, but it is often important to

account for the gross effects of bending in control systems design.

The continuous beam in Fig. 2.23(b) has an infinite number of vibration-mode shapes, all with different
frequencies. Typically, the lowest-frequency modes have the largest amplitude and are the most important to
approximate well. The simplified model in Fig. 2.23(c) can be made to duplicate the essential behavior of the first
bending mode shape and frequency and would usually be adequate for controller design. If frequencies higher than
the first bending mode are anticipated in the control system operation, it may be necessary to model the beam as
shown in Fig. 2.23(d), which can be made to approximate the first two bending modes and frequencies. Likewise,
higher-order models can be used if such accuracy and complexity are deemednecessary (Thomsonand Dahleh, 1998;
Schmitz, 1985). Whenacontinuously bending object is approximated as two or more rigid bodies connected by

springs, the resulting model is sometimes referred to as a lumped parameter model.

Figure 2.23 Flexible robot arm used for research at Stanford University; model for a continuous flexible beam; (c)
simplified model for the first bending mode; (d) model for the first and second bending modes Source: Photo

courtesy of E. Schmitz
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A flexible structure can be approximated by a lumped parameter model

2.1.5 Summary: Developing Equations of Motion for Rigid Bodies

The physics necessary to write the equations of motion of a rigid body is entirely given by Newton’s laws of motion.

The method is as follows:

1. Assign variables such as x and 6 that are both necessary and sufficient to describe an arbitrary position of the
object.

2. Draw a free-body diagram of each component. Indicate all forces acting on each body and their reference
directions. Also indicate the accelerations of the center of mass with respect to an inertial reference for each body.

3. Apply Newton’s law in translation [Eq. (2.1)] and/or rotation [Eq. (2.14)] form.

4. Combine the equations to eliminate internal forces.

5. The number of independent equations should equal the number of unknowns.

2.2 Models of Electric Circuits
Electric circuits are frequently used in control systems largely because of the ease of manipulation and processing of
electric signals. Although controllers are increasingly implemented with digital logic, many functions are still

performed with analog circuits. Analog circuits are faster than digital and, for very simple controllers, an analog



circuit would be less expensive than a digital implementation. Furthermore, the power amplifier for

electromechanical control and the anti-alias prefilters for digital control must be analog circuits.

Electric circuits consist of interconnections of sources of electric voltage and current, and other electronic elements
such as resistors, capacitors, and transistors. An important building block for circuits is an operational amplifier (or
op-amp),® which is also an example of a complex feedback system. Some of the most important methods of
feedback system design were developed by the designers of high-gain, wide-bandwidth feedback amplifiers, mainly
at the Bell Telephone Laboratories between 1925 and 1940. Electric and electronic components also play a central
role in electromechanical energy conversion devices such as electric motors, generators, and electrical sensors. In this
brief survey we cannot derive the physics of electricity or give a comprehensive review of all the important analysis
techniques. We will define the variables, describe the relations imposed on them by typical elements and circuits,

and describe a few of the most effective methods available for solving the resulting equations.

Symbols for some linear circuit elements and their current-voltage relations are given in Fig. 2.24. Passive circuits
consist of interconnections of resistors, capacitors, and inductors. With electronics, we increase the set of electrical

elements by adding active devices, including diodes, transistors, and amplifiers.

Kirchhoff’s laws
The basic equations of electric circuits, called Kirchhoff’s laws, are as follows:

1. Kirchhoff’s current law (KCL): The algebraic sum of currents leaving a junction or node equals the algebraic sum

of currents entering that node.

2. Kirchhoff’s voltage law (KVL): The algebraic sum of all voltages taken around a closed path in a circuit is zero.

With complex circuits of many elements, it is essential to write the equations in a careful, well organized way. Of
the numerous methods for doing this, we choose for description and illustration the popular and powerful scheme
known as node analysis. One node is selected as a reference and we assume the voltages of all other nodes to be
unknowns. The choice of reference is arbitrary in theory, but in actual electronic circuits the common, or ground,
terminal is the obvious and standard choice. Next, we write equations for the selected unknowns using the current
law (KCL) at each node. We express these currents in terms of the selected unknowns by using the element equations
in Fig. 2.24. If the circuit contains voltage sources, we must substitute a voltage law (KVL) for such sources. Example

2.8 illustrates how node analysis works.

Figure 2.24 Elements of electric circuits
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EXMPLE 2.8 Equations for the Bridged Tee Circuit

Determine the differential equations for the circuit shown in Fig. 2.25.

Solution. We select node 4 as the reference and the voltages v;, v,, and v at nodes 1, 2, and 3 as the unknowns. We

start with the degenerate KVL relationship
Vi = V. [2.33}
At node 2 the KCL is

Vi — V2 R dva

N + +a=2 =0, (2.34)

Figure 2.25 Bridged tee circuit



and at node 3 the KCL is

R
R> - dt

These three equations describe the circuit.

Operational amplifier

Kirchhoff’s laws can also be applied to circuits that contain an operational amplifier. The simplified circuit of the
op-amp is shown in Fig. 2.26(a) and the schematic symbol is drawn in Fig. 2.26(b). If the positive terminal is not

shown, it is assumed to be connected to ground, v, = 0, and the reduced symbol of Fig. 2.26(c) is used. For use in
control circuits, it is usually assumed that the op-amp is ideal with the values R1 = o, R; =0, and A = oo. The

equations of the ideal op-amp are extremely simple, being
b ==L (2.36)

vy —v_ =0, (2.37)

The gain of the amplifier is assumed to be so high that the output voltage becomes v,,, = whatever it takes to

satisfy these equations. Of course, a real amplifier only

Figure 2.26 (a) Op-amp simplified circuit; (b) op-amp schematic symbol; (c) reduced symbol for v, =0
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Figure 2.27 The op-amp summer
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approximates these equations, but unless they are specifically described, we will assume all op-amps are ideal. More

realistic models are the subjectofseveral problems given at the end of the chapter.

EXAMPLE 2.9 Op-Amp Summer
Find the equations and transfer functions of the circuit shown in Fig. 2.27.
Solution. Equation (2.37) requires that v. = 0, and thus the currents are i; = Y!/gq,ip = Y5/py, and iy, = Yout/rp TO

satisfy Eq. (2.36), i; + iy + iy, = O, from which it follows that V/g; + Y/gy + Y/gf = 0, and we have

R R¢
Vour = — I:R_II: Vi + R_ZFI:I ' (2.38)

The op-amp summer
From this equation we see that the circuit output is a weighted sum of the input voltages with a sign change. The

circuit is called a summer.

A second important example for control is given by the op-amp integrator.

EXAMPLE 2.10 Integrator



Op-amp as integrator
Find the transfer function for the circuit shown in Fig. 2.28.

Solution. In this case the equations are differential and Egs. (2.36) and (2.37) require
lin + tous = 0, (2.39)
Solution.

Vin Vo ;
— 4+ C = {). (2.40
R;, dt :

Figure 2.28 The op-amp integrator

Eq. (2.40) can be written in integral form as

!

1
Vour = _m . vin(T) dT + "’rmr(ﬂ'}- (2.41)

Using the operational notation that d/dt = s in Eq. (2.40), the transfer function (which assumes zero initial

conditions) can be written as

1 Vi, (s)
"’;our(ﬂ == “{j‘

i (2.42)

Thus the ideal op-amp in this circuit performs the operation of integration and the circuit is simply referred to as

an integrator.

2.3 Models of Electromechanical Systems

Electric current and magnetic fields interact in two ways that are particularly important to an understanding of the
operation of most electromechanical actuators and sensors. If a current of i amperes in a conductor of length 1 meters
is arranged at right angles in a magnetic field of B teslas, then there is a force on the conductor at right angles to the

plane of i and B, with magnitude

F = Bli newtons. (2.43)

Law of motors

This equation is the basis of conversion of electric energy to mechanical work and is called the law of motors.



EXAMPLE 2.11 Modeling a Loudspeaker

A typical geometry for a loudspeaker for producing sound is sketched in Fig. 2.29. The permanent magnet
establishes a radial field in the cylindrical gap between the poles of the magnet. The force on the conductor wound
on the bobbin causes the voice coil to move, producing sound.*® The effects of the air can be modeled as if the cone
had equivalent mass M and viscous friction coefficient b. Assume that the magnet establishes a uniform field B of 0.5

tesla and the bobbin has 20 turns at a 2-cm diameter. Write the equations of motion of the device.

Figure 2.29 Geometry of a loudspeaker: (a) overall configuration; (b) the electromagnet and voice coil
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Solution. The current is at right angles to the field, and the force of interest is at right angles to the plane of i and B,

so Eq. (2.43) applies. In this case the field strength is B = 0.5 tesla and the conductor length is

2;
[ =20 x —Tm =126m.
100

Thus, the force is
F=05x1.26 xi= 0.63iN.

The mechanical equation follows from Newton’s laws, and for a mass M and friction coefficient b, the equation is

MX + bx = 0.63i. (2.44)

This second-order differential equation describes the motion of the loudspeaker cone as a function of the input

current i driving the system. Substituting s for d/dt in Eq. (2.44) as before, the transfer function is easily found to be

X(s) B 0.63/M
I(s)  s(s+b/M)

(2.45)

The second important electromechanical relationship is the effect of mechanical motion on electric voltage. If a
conductor of length 1 meters is moving in a magnetic field of B teslas at a velocity of v meters per second at mutually

right angles, an electric voltage is established across the conductor with magnitude



Law of generators

e(t) = BlvV. (2.46)

This expression is called the law of generators

EXAMPLE 2.12 Loudspeaker with Circuit
For the loudspeaker in Fig. 2.29 and the circuit driving it in Fig. 2.30, find the differential equations relating the

input voltage v, to the output cone displacement x. Assume the effective circuit resistance is R and the inductance is
L.

Solution. The loudspeaker motion satisfies Eq. (2.44), and the motion results in a voltage across the coil as given by
Eq. (2.46), with the velocity x. The resulting voltage is

e..i1 = Blx = 0.63x. (2.47)
This induced voltage effect needs to be added to the analysis of the circuit. The equation of motion for the electric

circuit is

li
Lr—é B vy DGR (2.48)
L

Figure 2.30 A loudspeaker showing the electric circuit
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These two coupled equations, (2.44) and (2.48), constitute the dynamic model for the loudspeaker.

Again substituting s for d/dt in these equations, the transfer function between the applied voltage and the

loudspeaker displacement is found to be
X(s) 0.63

e s (2.49)
Va(s)  s[(Ms + b)(Ls + R) + (0.63)?]

DC motor actuators

A common actuator based on these principles and used in control systems is the DC motor actuators the DC motor
to provide rotary motion. A sketch of the basic components of a DC motor is given in Fig. 2.31. In addition to

housing and bearings, the nonturning part (stator) has magnets, which establish a field across the rotor. The magnets



may be electromagnets or, for small motors, permanent magnets. The brushes contact the rotating commutator,
which causes the current always to be in the proper conductor windings so as to produce maximum torque. If the

direction of the current is reversed, the direction of the torque is reversed.

Back emf
The motor equations give the torque T on the rotor in terms of the armature Back emf current i, and express the

back emf voltage in terms of the shaft’s rotational velocity 0.8

Figure 2.31 Sketch of a DC motor
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Commutator

Thus
T=K;i,, (2.50)

e=K, 6. (2.51)

Torque
In consistent units, the torque constant K; equals the electric constant K., but in some cases the torque constant will

be given in other units, such as ounce-inches per ampere, and the electric constant may be expressed in units of volts
per 1000 rpm. In such cases the engineer must make the necessary translations to be certain the equations are

correct.

EXAMPLE 2.13 Modeling a DC Motor

Find the equations for a DC motor with the equivalent electric circuit shown in Fig. 2.32(a). Assume that the rotor

has inertia J,;, and viscous friction coefficient b. Solution. The free-body diagram for the rotor, shown in Fig. 2.32(b),

defines the positive direction and shows the two applied torques, T and b6m. Application of Newton’fs laws yields

J.u;"!;’;{ur 7 -"J'If},-;ur = Kiig. (2.52)

Analysis of the electric circuit, including the back emf voltage, shows the electrical equation to be



di )
e T: + Raly = va — Ko (2.53)
'

With s substituted for d/dt in Egs. (2.52) and (2.53), the transfer function for the motor is readily found to be

Opls) K,
Vo(s)  s[(Jms + BV Lys + R + KK,

(2.54)

In many cases the relative effect of the inductance is negligible compared with the mechanical motion and can be

neglected in Eq. (2.53). If so, we can combine Egs. (2.52) and (2.53) into one equation to get

" 3, K, )
JHrHr.l; + b + R“ )Hr” —tl R_”rﬂ. {25.”_

Figure 2.32 DC motor: (a) electric circuit of the armature; (b) free-body diagram of the rotor

ia) (b)

From Eq. (2.55) it is clear that in this case the effect of the back emf is indistinguishable from the friction, and the

transfer function is

K;
B R. _
y ’“}} _ R, — (2.56)
als J',,,Sﬁ o (b+ t r—’) ’
HH’
=5 L (2.57)
s(ts+ 1)
where
Kr 3
K= — 2.58
bR, + KK, { )
Rajm {259)

T=————,
bR, + KK,

In many cases, a transfer function between the motor input and the output speed (w = 6,) is required. In such

cases, the transfer function would be



Q {-5} ('}rr.l {-5) K
—h — .
V. (5) V.(5) 5+ 1

(2.60)

AC motor actuators

Another device used for electromechanical energy conversion is the alternating current (AC) induction motor
invented by N. Tesla. Elementary analysis of the AC motor is more complex than that of the DC motor. A typical
experimental set of curves of torque versus speed for fixed frequency and varying amplitude of applied (sinusoidal)
voltage is given in Fig. 2.33. Although the data in the figure are for a constant engine speed, they can be used to
extract the motor constants that will provide a dynamic model for the motor. For analysis of a control problem
involving an AC motor such as that described by Fig. 2.33, we make a linear approximation to the curves for speed

near zero and at a midrange voltage to obtain the expression

v, = Vi (>¥)

Vs
[ Slope K

Torque. T
| orgue, T

¥

Speed. #,, Speed. i,

(@) L]

Figure 2.33 Torque-speed curves for a servo motor showing four amplitudes of armature voltage: (a) low-rotor-

resistance machine; (b) high-rotor-resistance machine showing four values of armature voltage, v,

T = Kivq — K26,,. (2.61)

The constant K; represents the ratio of a change in torque to a change in voltage at zero speed and is proportional
to the distance between the curves at zero speed. The constant K, represents the ratio of a change in torque to a
change in speed at zero speed and a midrange voltage; therefore, it is the slope of a curve at zero speed as shown by
the line at V;. For the electrical portion, values for the armature resistance Ra and inductance La are also determined
by experiment. Once we have values for K;, K;, R,, and L,, the analysis proceeds as the analysis in Example 2.13 for
the DC motor. For the case in which the inductor can be neglected, we can substitute K1 and K2 into Eq. (2.55) in
place of K,/R, and K,K./R,, respectively.

In addition to the DC and AC motors mentioned here, control systems use brush-less DC motors (Reliance Motion
Control Corp., 1980) and stepping motors (Kuo, 1980). Models for these machines, developed in the works just cited,
do not differ in principle from the motors considered in this section. In general, the analysis, supported by
experiment, develops the torque as a function of voltage and speed similar to the AC motor torque-speed curves
given in Fig. 2.33. From such curves one can obtain a linearized formula such as Eq. (2.61) to use in the mechanical

part of the system and an equivalent circuit consisting of a resistance and an inductance to use in the electrical part.

A 2.4 Heat and Fluid-Flow Models



Thermodynamics, heat transfer, and fluid dynamics are each the subject of complete textbooks. For purposes of
generating dynamic models for use in control systems, the most important aspect of the physics is to represent the
dynamic interaction between the variables. Experiments are usually required to determine the actual values of the

parameters and thus to complete the dynamic model for purposes of control systems design.

2.4.1 Heat Flow

Some control systems involve regulation of temperature for portions of the system. The dynamic models of
temperature control systems involve the flow and storage of heat energy. Heat energy flows through substances at a

rate proportional to the temperature difference across the substance; that is,

|
= —(T1 — Ta), (2.62)
q R |
where
q = heat energy flow, joules per second (J/sec), or British Thermal Unit/sec (BTU /sec),
R = thermal resistance, °C/J.sec or °F/BTU .sec,
T = temperature, °C or °F.

The net heat-energy flow into a substance affects the temperature of the substance according to the relation

: |
T = —qg. 2.63
4 (2.63)

where C is the thermal capacity. Typically, there are several paths for heat to flow into or out of a substance, and q
in Eq. (2.63) is the sum of heat flows obeying Eq. (2.62).

EXAMPLE 2.14 Equations for Heat Flow
A room with all but two sides insulated (1/R = 0) is shown in Fig. 2.34. Find the differential equations that

determine the temperature in the room.

Solution. Application of Egs. (2.62) and (2.63) yields

: 1 1 |
T = — B (T — Ti.
i C; (Ri + -"'31)‘ 0 1)

where

C, = thermal capacity of air within the room,
T, = temperature outside,

T, = temperature inside,

R, = thermal resistance of the room ceiling

R; = thermal resistance of the room all.

Specific heat



Normally the material properties are given in tables as follows:

1. The specific heat at constant volume c,, which is converted to heat capacity by

C = mey, (2.64)

where m is the mass of the substance;

Thermal conductivity

2. The thermal conductivity® k, which is related to thermal resistance R by

where A is the cross-sectional area and 1 is the length of the heat-flow path.

iz

Temperature
outside, Ty
R, i

Figure 2.34 Dynamic model for room temperature

In addition to flow due to transfer, as expressed by Eq. (2.62), heat can also flow when a warmer mass flows into a

cooler mass, or vice versa. In this case,
g = weo(h — T3), (2.65)

where w is the mass flow rate of the fluid at T, flowing into the reservoir at T,. For a more complete discussion of

dynamic models for temperature control systems, see Cannon (1967) or textbooks on heat transfer.

EXAMPLE 2.15 Equations for Modeling a Heat Exchanger

A heat exchanger is shown in Fig. 2.35. Steam enters the chamber through the controllable valve at the top, and
cooler steam leaves at the bottom. There is a constant flow of water through the pipe that winds through the middle
of the chamber so that it picks up heat from the steam. Find the differential equations that describe the dynamics of

the measured water outflow temperature as a function of the area A, of the steam-inlet control valve when open. The

sensor that measures the water outflow temperature, being downstream from the exit temperature in the pipe, lags

the temperature by t4 seconds.

Solution. The temperature of the water in the pipe will vary continuously along the pipe as the heat flows from the
steam to the water. The temperature of the steam will also reduce in the chamber as it passes over the maze of

pipes. An accurate thermal model of this process is therefore quite involved because the actual heat transfer from the



steam to the water will be proportional to the local temperatures of each fluid. For many control applications it is
not necessary to have great accuracy because the feedback will correct for a considerable amount of error in the

model. Therefore, it makes sense to combine the spatially varying temperatures into single temperatures T, and T,,

for the outflow steam and water temperatures, respectively. We then assume that the heat transfer from steam to
water is proportional to the difference in these temperatures, as given by Eq. (2.62). There is also a flow of heat into

the chamber from the inlet steam that depends on the steam flow rate and its temperature according to Eq. (2.65),
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where

w, = KA, mass flow rate of the steam,
A, = area of the steam inlet valve,

K, = flow coefficient of the inlet valve,
cys = specific heat of the steam,

T'y; = temperature of the inflow steam,

T, = temperature of the outflow steam.

The net heat flow into the chamber is the difference between the heat from the hot incoming steam and the heat
flowing out to the water. This net flow determines the rate of temperature change of the steam according to Eq.
(2.63),

’ |
C.\T\' — A.\'Kﬁ'cl'.\'{TAf - T\} = E{T\ - T’II':L- (ZE}E}]

where

C, = mgc,, is the thermal capacity of the steam in the chamber with mass m,

R = the thermal resistance equation describing the water temperature is



Likewise, the differential equation describing the water temperature is

. | :
CH'TI-!:' = HLH"{-‘:'IH'{TH‘E - TI-\'} + E{T\ - Tn'j-. {2(}-"']

where

wy, = mass flow rate of the water,

¢ = specific heat of the water,
T\ = temperature of the incoming water,
T, = temperature of the outflowing water.

To complete the dynamics, the time delay between the measurement and the exit flow is described by the relation
T, =T, (t-ty)

where T, is the measured downstream temperature of the water and td is the time delay. There may also be a delay

in the measurement of the steam temperature T, which would be modeled in the same manner.

Equation (2.66) is nonlinear because the quantity T, is multiplied by the control input A,. The equation can be
linearized about (a specific value of T, (a specific value of T,) so that is T; — T, assumed constant for purposes of
approximating the nonlinear term, which we will define as AT,. In order to eliminate the T, ; term in Eq. (2.67), it is

convenient to measure all temperatures in terms of deviation in degrees from T,;. The resulting equations are then

. | 1
Eely= —ET_\- i E T + Kecue AT A,

C""T'”' S i (E -+ Hlu'{-\rh') T'u' + ET\‘
T-'JT = T'.L'“ - f{;}.

Although the time delay is not a nonlinearity, we will see in Chapter 3 that operationally, Tm = ¢ "*T,.

Therefore, the transfer function of the heat exchanger has the form

TJH{S} . Ke™1d%
Ads) (s + D(tas+ 1)

(2.68)

2.4.2 Incompressible Fluid Flow

Fluid flows are common in many control systems components. One example is the hydraulic actuator, which is used
extensively in control systems because it can supply a large force with low inertia and low weight. They are often
used to move the aerodynamic control surfaces of airplanes, to gimbal rocket nozzles, to move the linkages in earth-

moving equipment, farm tractor implements, snow-grooming machines, and to move robot arms.

The continuity relation

The physical relations governing fluid flow are continuity, force equilibrium, and The continuity relation

resistance. The continuity relation is simply a statement of the conservation of matter; that is,



F.;I = Win — Waour. {2.{"9}

where
m = fluid mass within a prescribed portion of the system,

w;, = mass flow rate into the prescribed portion of the system.

Wyt = mass flow rate out of the prescribed portion of the system.

out

EXAMPLE 2.16 Equations for Describing Water Tank Height

Determine the differential equation describing the height of the water in the tank in Fig. 2.36.

Figure 2.36

Water tank example
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Solution. Application of Eq. (2.69) yields
. |
i (Win — Wou ) » {2?{}]

Ap
where
A = area of the tank,
£ = density of water,

h = m/Ap = height of water,

m = mass of water in the tank.

Force equilibrium must apply exactly as described by Eq. (2.1) for mechanical systems. Sometimes in fluid-flow

systems some forces result from fluid pressure acting on a piston. In this case the force from the fluid is
f=pA. (2.71)
where

f = force,
p = pressure in the fluid,

A = area on which the fluid acts.



EXAMPLE 2.17 Modeling a Hydraulic Piston

Determine the differential equation describing the motion of the piston actuator shown in Fig. 2.37, given that there

is a force Fpy acting on it and a pressure P in the chamber.

Solution. Equations (2.1) and (2.71) apply directly, where the forces include the fluid pressure as well as the applied

force. The result is
MX = Ap — Fp,
where

A = arca of the piston,

p = pressure in the chamber,

Figure 2.37

Hydraulic piston actuator
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M = mass of the piston,

x = position of the piston.

In many cases of fluid-flow problems the flow is resisted either by a constriction in the path or by friction. The

general form of the effect of resistance is given by

I .
W= E{P] —pg}'-"“, (2.72)

where

w = mass flow rate,
1. p2 = pressures at ends of the path through which flow is occurring,

R, = constanis whose values depend on the type of restriction.

Or, as is more commonly used in hydraulics,

1 .
Q= p—R(m — pn)'/e, (2.73)

where



Q = volume flow rate, where Q = w/p,
p = fluid density.
The constant a takes on values between 1 and 2. The most common value is approximately 2 for high flow rates
(those having a Reynolds number Re > 10°) through pipes or through short constrictions or nozzles. For very slow

flows through long pipes or porous plugs wherein the flow remains laminar (Re = 1000), a = 1. Flow rates
between these extremes can yield intermediate values of a. The Reynolds number indicates the relative importance of
inertial forces and viscous forces in the flow. It is proportional to a material’s velocity and density and to the size of
the restriction, and it is inversely proportional to the viscosity. When Re is small, the viscous forces predominate and

the flow is laminar. When Re is large, the inertial forces predominate and the flow is turbulent.

Note that a value of a = 2 indicates that the flow is proportional to the square root of the pressure difference and
therefore will produce a nonlinear differential equation. For the initial stages of control systems analysis and design,
it is typically very useful to linearize these equations so that the design techniques described in this book can be
applied. Linearization involves selecting an operating point and expanding the nonlinear term to be a small

perturbation from that point.

EXAMPLE 2.18 Linearization of Water Tank Height and Outflow

Find the nonlinear differential equation describing the height of the water in the tank in Fig. 2.36. Assume that there
is a relatively short restriction at the outlet and that a = 2. Also linearize your equation about the operating point
hy.

Solution. Applying Eq. (2.72) yields the flow out of the tank as a function of the height of the water in the tank:

1 -
Wou = E{PE _Fra}]!*- (2.74)

Here,

P = pgh + pa,the hydrostatic pressure,

o = ambient pressure outside the restriction.

Substituting Eq. (2.74) into Eq. (2.70) yields the nonlinear differential equation for the height:

. 1 I
h=— (u-,-n ~ = p?,) . (2.75)
Ap R

Linearization involves selecting the operating point p, = pgh, + p, and substituting p; = p, + Ap into Eq. (2.74).

Then we expand the nonlinear term according to the relation

(1+4+8)P =1+ ge, (2.76)

where ¢ << 1. Equation (2.74) can thus be written as
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The linearizing approximation made in Eq. (2.77) is valid as long as Ap << p,, - p,; that is, as long as the deviations
of the system pressure from the chosen operating point are relatively small.

Combining Egs. (2.70) and (2.77) yields the following linearized equation of motion for the water tank level:

. I
Ah=— |wj, —
1 AII” [“ 7]

VPo — Pa (I +l Ap ):|
R 2 Po — Pa .

Because Ap = pgAh, this equation reduces to

oy Ah+ E - —M_ (2.78)
2AR/Po — Pa Ap pAR

Ah =

which is a linear differential equation for Ali The operating point is not an equilibrium point because some control
input is required to maintain it. In other words, when the system is at the operating point (Al = 0) with no input

(w;, = 0), it will move from that point because Al = 0. So if no water is flowing into the tank, the tank will drain,

thus moving it from the reference point. To define an operating point that is also an equilibrium point, we need to

require that there be a nominal flow rate,

Wing  +/Po— Pa
Ap pAR

and define the linearized input flow to be a perturbation from that value.

Hydraulic actuators
Hydraulic actuators obey the same fundamental relationships we saw in the

water tank: continuity [Eq. (2.69)], force balance [Eq. (2.71)], and flow resistance [Eq. (2.72)]. Although the
development here assumes the fluid is perfectly incompressible, in fact, hydraulic fluid has some compressibility due
primarily to entrained air. This feature causes hydraulic actuators to have some resonance because the

compressibility of the fluid acts like a stiff spring. This resonance limits their speed of response.

EXAMPLE 2.19 Modeling a Hydraulic Actuator

1. Find the nonlinear differential equations relating the movement 6 of the control surface to the input displacement

x of the valve for the hydraulic actuator shown in Fig. 2.38.

2. Find the linear approximation to the equations of motion when V= constant, with and without an applied load

—that is, when F = 0 and when F = 0. Assume that 6 motion is small.

Solution



1. Equations of motion: When the valve is at x = 0, both passages are closed and no motion results. When x > 0, as
shown in Fig. 2.38, the oil flows clockwise as shown and the piston is forced to the left. When x< 0, the fluid

flows counterclockwise. The oil supply at high pressure p, enters the left side of the large piston chamber, forcing

the piston to the right. This causes the oil to flow out of the valve chamber from the rightmost channel instead of

the left.
We assume that the flow through the orifice formed by the valve is proportional to x; that is,

I 172
= —(Ps—P1)" "X 2.79
O R, (ps —p1) (2.79)
Similarly.
1 Iln"lg . 3
(i =——x=(ps=p.) ' "x. (2.80)
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The continuity relation yields
Av =0y = (O, (2.81)
where
A = piston area.
The force balance on the piston yields
A(py — p2) — F = my, (2.82)

where

m = mass of the piston and the attached rod,

F = force applied by the piston rod to the control surface attachment
point.



Furthermore, the moment balance of the control surface using Eq. (2.14) yields

1§ = Flcost — F,d, (2.83)
where

I = moment of inertia of the control surface and attachment about
the hinge,

F, = applied aerodynamic load.

To solve this set of five equations, we require the following additional kinematic relationship between 6 and y:

y=Ilsinf. (2.84)

The actuator is usually constructed so that the valve exposes the two passages equally; therefore, R; = R,, and we

can infer from Egs. (2.79) to (2.81) that
Ps — P1 = P2 — Pe. (2.85)

These relations complete the nonlinear differential equations of motion; they are formidable and difficult to solve.

2. Linearization and simplification: For the case in which V = a constant (¥ = 0) and there is no applied load (F =
0), Egs. (2.82) and (2.85) indicate that

s+ Pe
pr=pr=""LC (2.86)

Therefore, using Eq. (2.81) and letting sin 6 = 0 (since 0 is assumed to be small), we get

= —.
V2ApRI
This represents a single integration between the input x and the output 6, where the proportionality constant is a

function only of the supply pressure and the fixed parameters of the actuator. For the case Ji = constant but F = 0,
Egs. (2.82) and (2.85) indicate that

_ Pstpet+F/A
B 2

21

and

VPs —pe— F /A -

o=
V2A Rl

(2.88)

This result is also a single integration between the input x and the output 6, but the proportionality constant now
depends on the applied load F.

As long as the commanded values of x produce 6 motion that has a sufficiently small value of # the approximation
given by Egs. (2.87) or (2.88) is valid and no other linearized dynamic relationships are necessary. However, as soon

as the commanded values of x produce accelerations in which the inertial forces (m.Y and the reaction to ) are a



significant fraction of p, — p,, the approximations are no longer valid. We must then incorporate these forces into the

equations, thus obtaining a dynamic relationship between x and 6 that is much more involved than the pure
integration implied by Egs. (2.87) or (2.88). Typically, for initial control system designs, hydraulic actuators are
assumed to obey the simple relationship of Egs. (2.87) or (2.88). When hydraulic actuators are used in feedback
control systems, resonances have been encountered that are not explained by using the approximation that the device
is a simple integrator as in Egs. (2.87) or (2.88). The source of the resonance is the neglected accelerations discussed
above along with the additional feature that the oil is slightly compressible due to small quantities of entrained air.

This phenomenon is called the “oil-mass resonance.”

2.5 Historical Perspective

Newton’s second law of motion (Eq. 2.1) was first published in his Philosophiae Naturalis Principia Mathematica in
1686 along with his two other famous laws of motion. The first: A body will continue with the same uniform motion
unless acted on by an external unbalanced force, and the third: To every action there is an equal and opposite
reaction. Isaac Newton also published his law of gravitation in this same publication, which stated that every mass
particle attracts all other particles by a force proportional to the inverse of the square of the distance between them
and the product of their two masses. His basis for developing these laws was the work of several other early
scientists, combined with his own development of the calculus in order to reconcile all the observations. It is amazing
that these laws still stand today as the basis for almost all dynamic analysis with the exception of Einstein’s additions
in the early 1900s for relativistic effects. It is also amazing that Newton’s development of calculus formed the
foundation of our mathematics that enable dynamic modeling. In addition to being brilliant, he was also very
eccentric. As Brennan writes in Heisenberg Probably Slept Here, “He was seen about campus in his disheveled
clothes, his wig askew, wearing run-down shoes and a soiled neckpiece. He seemed to care about nothing but his
work. He was so absorbed in his studies that he forgot to eat.” Another interesting aspect of Newton is that he
initially developed the calculus and the now famous laws of physics about 20 years prior to publishing them! The
incentive to publish them arose from a bet between three men having lunch at a pub in 1684: Edmond Halley,
Christopher Wren, and Robert Hooke. They all had the opinion that Kepler’s elliptical characterization of planetary
motion could be explained by the inverse square law, but nobody had ever proved it, so they “placed a bet as to who
could first prove the conjecture.”'? Halley went to Newton for help due to his fame as a mathematician, who
responded he had already done it many years ago and would forward the papers to him. He not only did that shortly

afterwards, but followed it up with the Principia with all the details two years later.

The basis for Newton’s work started with the astronomer Nicholas Copernicus more than a hundred years before
the Principia was published. He was the first to speculate that the planets revolved around the sun, rather than
everything in the skies revolving around the earth. But Copernicus’ heretical notion was largely ignored at the time,
except by the church who banned his publication. However, two scientists did take note of his work: Galileo Galilei
in Italy and Johannes Kepler in Austria. Kepler relied on a large collection of astronomical data taken by a Danish
astronomer, Tycho Brahe, and concluded that the planetary orbits were ellipses rather than the circles that
Copernicus had postulated. Galileo was an expert telescope builder and was able to clearly establish that the earth
was not the center of all motion, partly because he was able to see moons revolving around other planets. He also
did experiments with rolling balls down inclined planes that strongly suggested that F = ma (alas, it’s a myth that he
did his experiments by dropping objects out of the Leaning Tower of Pisa). Galileo published his work in 1632,



which raised the ire of the church who then later banned him to house arrest until he died.!! It was not until 1985
that the church recognized the important contributions of Galileo! These men laid the groundwork for Newton to put
it all together with his laws of motion and the inverse square gravitational law. With these two physical principles,
all the observations fit together with a theoretical framework that today forms the basis for the modeling of dynamic

systems.

The sequence of discoveries that ultimately led to the laws of dynamics that we take for granted today were
especially remarkable when we stop to think that they were all carried out without a computer, a calculator, or even

a slide rule. On top of that, Newton had to invent calculus in order to reconcile the data.

After publishing the Principia, Newton went on to be elected to Parliament and was given high honors, including
being the first man of science to be knighted by the Queen. He also got into fights with other scientists fairly
regularly and used his powerful positions to get what he wanted. In one instance, he wanted data from the Royal
Observatory that was not forthcoming fast enough. So he created a new board with authority over the Observatory
and had the Astronomer Royal expelled from the Royal Society. Newton also had other less scientific interests. Many
years after his death, John Maynard Keynes found that Newton had been spending as much of his time on

metaphysical occult, alchemy, and biblical works as he had been on physics.

More than a hundred years after Newton’s Principia, Michael Faraday performed a multitude of experiments and
postulated the notion of electromagnetic lines of force in free space. He also discovered induction (Faraday’s Law),
which led to the electric motor and the laws of electrolysis. Faraday was born into a poor family, had virtually no
schooling, and became an apprentice to a bookbinder at age 14. There he read many of the books being bound and
became fascinated by science articles. Enthralled by these, he maneuvered to get a job as a bottle washer for a
famous scientist, eventually learned enough to be a competitor to him, and ultimately became a professor at the
Royal Institution in London. But lacking a formal education, he had no mathematical skills, and lacked the ability to
create a theoretical framework for his discoveries. Faraday became a famous scientist in spite of his humble origins.
After he had achieved fame for his discoveries and was made a Fellow of the Royal Society, the prime minister asked
him what good his inventions could be.!? Faraday’s answer was, “Why Prime Minister, someday you can tax it.” But
in those days, scientists were almost exclusively men born into privilege; so Faraday had been treated like a second-
class citizen by some of the other scientists. As a result, he rejected knighthood as well as burial at Westminster
Abbey. Faraday’s observations, along with those by Coulomb and Ampere, led James Clerk Maxwell to integrate all
their knowledge on magnetism and electricity into Maxwell’s Equations. Against the beliefs of most prominent
scientists of the day (Faraday being an exception), Maxwell invented the concepts of fields and waves that explained
magnetic and electrostatic forces and was the key to creating the unifying theory. Although Newton had discovered
the spectrum of light, Maxwell was also the first to realize that light was one type of the same electromagnetic
waves, and its behavior was explained as well by Maxwell’s Equations. In fact, the only constant in his equations are

u and €. The constant speed of light is c=1/ne

Maxwell was a Scottish mathematician and theoretical physicist. His work has been called the second great
unification in physics, the first being that due to Newton. Maxwell was born into the privileged class and was given
the benefits of an excellent education and he excelled at it. In fact, he was an extremely gifted theoretical and
experimental scientist as well as a very generous and kind man with many friends and little vanity. In addition to
unifying the observations of electromagnetics into a theory that still governs our engineering analyses today, he was
the first to present an explanation of how light travels, the primary colors, the kinetic theory of gases, the stability of

Saturn’s rings, and the stability of feedback control systems! His discovery of the three primary colors (red, green, and



blue) forms the basis of our color television to this day. His theory showing the speed of light is a constant was
difficult to reconcile with Newton’s laws and led Albert Einstein to create the special theory of relativity in the early

1900s. This led Einstein to say, “One scientific epoch ended and another began with James Clerk Maxwell.”!3

SUMMARY

Mathematical modeling of the system to be controlled is the first step in analyzing and designing the required system
controls. In this chapter we developed models for representative systems. Important equations for each category of

system are summarized in Table 2.1.

TABLE 2.1
Important Laws Associated
System or Relationships Equations Equation Number
Mechanical Translation motion F=ma (2.1)
(Mewton's law)
Rotational motion M=lu (2.14)
Electrical Operational amplifier (2.38), (2.37)
Electromechanical Law of motors F = Bli (2.43)
Law of the generator et} = Blv (2.46)
Torque developed in a rotor T = Kiia (2.50)
Back emf Voltage generated as a result e = Kebim (2.51)
of rotation of a rotor
Heat flow Heat-energy flow g=Ypn =T2) (2.62)
Temperature as a function =Yg (2.63)
of heat-energy flow
Specific heat L = mey, (2.64)
Fluid flow Continuity relation M= Wip — Wout (2.69)
{conservation of matter)
Force of a fluid acting f=pA (2.71)
on a piston
Effect of resistance w = lg(py — pa)V/® (2.72)
to fluid flow
REVIEW QUESTIONS

1. What is a “free-body diagram”?

2. What are the two forms of Newton’s law?

w

. For a structural process to be controlled, such as a robot arm, what is the meaning of “collocated control”?
“Noncollocated control”?

4. State Kirchhoff’s current law.

5. State Kirchhoff’s voltage law.

6. When, why, and by whom was the device named an “operational amplifier”?

7. What is the major benefit of having zero input current to an operational amplifier?

8. Why is it important to have a small value for the armature resistance R, of an electric motor?

9. What are the definition and units of the electric constant of a motor?

10. What are the definition and units of the torque constant of an electric motor?

11. Why do we approximate a physical model of the plant (which is always nonlinear) with a linear model?



A 12. Give the relationships for
(a) heat flow across a substance, and
(b) heat storage in a substance.

A 13. Name and give the equations for the three relationships governing fluid flow.

PROBLEMS

Problems for Section 2.1: Dynamics of Mechanical Systems

2.1 Write the differential equations for the mechanical systems shown in Fig. 2.39. For (a) and (b), state whether you
think the system will eventually decay so that it has no motion at all, given that there are non-zero initial

conditions for both masses, and give a reason for your answer.

Figure 2.39
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2.2 Write the differential equation for the mechanical system shown in Fig. 2.40. State whether you think the system
will eventually decay so that it has no motion at all, given that there are non-zero initial conditions for both

masses, and give a reason for your answer.

2.3 Write the equations of motion for the double-pendulum system shown in Fig. 2.41. Assume that the displacement
angles of the pendulums are small enough to ensure that the spring is always horizontal. The pendulum rods are

taken to be massless, of length I, and the springs are attached three-fourths of the way down.



Figure 2.40
Mechanical system for Problem 2.2
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Figure 2.41
Double pendulum

2.4 Write the equations of motion of a pendulum consisting of a thin, 4 kg stick of length 1 suspended from a pivot.
How long should the rod be in order for the period to be exactly 2 sec? (The inertia 1 of a thin stick about an end

1.2
point is 3 Assume that 6 is small enough that sin 6 = = 0.) Why do you think grandfather clocks are typically
about 6 ft high?

2.5 For the car suspension discussed in Example 2.2, plot the position of the car and the wheel after the car hits a
“unit bump”(i.e., r is a unit step) using MATLAB. Assume that m; = 10 kg, m, = 350 kg, K, = 500,000 N/m, K,

= 10,000 N/m. Find the value of b that you would prefer if you were a passenger in the car.
2.6 Write the equations of motion for a body of mass M suspended from a fixed point by a spring with a constant A;.
Carefully define where the body’s displacement is zero.

2.7 Automobile manufacturers are contemplating building active suspension systems. The simplest change is to make

shock absorbers with a changeable damping, b(u,). It is also possible to make a device to be placed in parallel

with the springs that has the ability to supply an equal force, u,, in opposite directions on the wheel axle and the

car body.

(a) Modify the equations of motion in Example 2.2 to include such control inputs.

(b) Is the resulting system linear?
(c) Is it possible to use the forcer u, to completely replace the springs and shock absorber? Is this a good idea?

2.8 Modify the equation of motion for the cruise control in Example 2.1, Eq. (2.4), so that it has a control law; that is,

let
= Kiv, —v), (2.89)

where



vy = reference speed, (2.90)
K = constant. (2.91)

This is a “proportional” control law in which the difference between v, and the actual speed is used as a signal to
speed the engine up or slow it down. Revise the equations of motion with v, as the input and v as the output and
find the transfer function. Assume that m = 1000 kg and b = 50 N-sec/m, and find the response for a unit step in v,

using MATLAB. Using trial and error, find a value of K that you think would result in a control system in which the

actual speed converges as quickly as possible to the reference speed with no objectionable behavior.

Figure 2.42 Schematic of a system with flexibility

LA I
" / —
! - M
1

b f;‘ c,j

2.9 In many mechanical positioning systems there is flexibility between one part of the system and another. An
example is shown in Fig. 2.7 where there is flexibility of the solar panels. Fig. 2.42 depicts such a situation,
where a force u is applied to the mass M and another mass m is connected to it. The coupling between the
objects is often modeled by a spring constant k with a damping coefficient b, although the actual situation is
usually much more complicated than this.

(a) Write the equations of motion governing this system.

(b) Find the transfer function between the control input u and the output y.

Problems for Section 2.2: Models of Electric Circuits

2.10 A first step toward a realistic model of an op-amp is given by the following equations and is shown in Fig. 2.43:

-
10°

Vour = —— [V — V_],

ot o |I } |

. S |
Find the transfer function of the simple amplification circuit shown using this model.

Figure 2.43 Circuit for Problem 2.10
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2.11 Show that the op-amp connection shown in Fig. 2.44 results in V,; = V;, if the op-amp is ideal. Give the
transfer function if the op-amp has the nonideal transfer function of Problem 2.10.

2.12 Show that, with the nonideal transfer function of Problem 2.10, the op-amp connection shown in Fig. 2.45 is

unstable.

Figure 2.44 Circuit for Problem 2.11

Figure 2.45 Circuit for Problem 2.12
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2.13 A common connection for a motor power amplifier is shown in Fig. 2.46. The idea is to have the motor current

follow the input voltage, and the connection is called a current amplifier. Assume that the sense resistor r; is
very small compared with the feedback resistor R, and find the transfer function from V;, to I,. Also show the

transfer function when Ry = .

Figure 2.46 Op-amp circuit for Problem 2.13
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2.14 An op-amp connection with feedback to both the negative and the positive terminals is shown in Fig. 2.47. If

I}

the op-amp has the nonideal transfer function given in Problem 2.10, give the maximum value possible for the

R.
_— N = i o .
positive feedback ratio, P=1r in terms of the negative feedback ratio, in "4 for the circuit to remain

stable.
2.15 Write the dynamic equations and find the transfer functions for the circuits shown in Fig. 2.48.
(a) passive lead circuit
(b) active lead circuit
(c) active lag circuit

(d) passive notch circuit

Figure 2.47 Op-amp circuit for Problem 2.14

Figure 2.48 (a) Passive lead; (b) active lead; (c) active lag; and (d) passive notch circuits
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)

2.16 The very flexible circuit shown in Fig. 2.49 is called a biquad because its transfer function can be made to be
the ratio of two second-order or quadratic polynomials. By selecting different values for R,, Ry, R, and Ry, the

circuit can realize a low-pass, band-pass, high-pass, or band-reject (notch) filter.

(a) Show that if R,

pass filter

Vr}ﬂlf _

A

Vi

where

2

d 5
—5 +2t— +1

(e}
ity i

R

7 L
Ry
1

“ et
R

,.t' o L

= R,and R, = R. = Ry = oo, the transfer function from V;, to V,; can be written as the low-

{2.92)



(b) Using the MATLAB command step, compute and plot on the same graph the step responses for the biquad of
Fig. 2.49 for A = 1, w, = 1,and ¢ = 0.1, 0.5, and 1.0.

2.17 Find the equations and transfer function for the biquad circuit of Fig. 2.49 if R, = R;, and Ry, = R, = .

Problems for Section 2.3: Models of Electromechanical Systems

2.18 The torque constant of a motor is the ratio of torque to current and is often given in ounce-inches per ampere.
(Ounce-inches have dimension force x distance, where an ounce is 1/1° of a pound.) The electric constant of a

motor is the ratio of back emf to speed and is often given in volts per 1000 rpm. In consistent units, the two

constants are the same for a given motor.

(a) Show that the units ounce-inches per ampere are proportional to volts per 1000 rpm by reducing both to MKS
(SD) units.

T
Figure 2.49 Op-amp biquad
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Figure 2.50 Simplified model for capacitor microphone

(b) A certain motor has a back emf of 25 V at 1000 rpm. What is its torque constant in ounce-inches per ampere?
(c) What is the torque constant of the motor of part (b) in newton-meters per ampere?
2.19 The electromechanical system shown in Fig. 2.50 represents a simplified model of a capacitor microphone. The

system consists in part of a parallel plate capacitor connected into an electric circuit. Capacitor plate a is rigidly

fastened to the microphone frame. Sound waves pass through the mouthpiece and exert a force f,(t) on plate b,

which has mass M and is connected to the frame by a set of springs and dampers. The capacitance C is a function



of the distance x between the plates, as follows:

L. gA
Cix) = —,

where
£ = dielectric constant of the material between the plates,
A = surface area of the plates.

The charge q and the voltage e across the plates are related by
Q = CX)e

The electric field in turn produces the following force f, on the movable plate that opposes its motion:

(;2
Je=3ea

(a) Write differential equations that describe the operation of this system. (It is acceptable to leave in nonlinear
form.)

(b) Can one get a linear model?

(c) What is the output of the system?

2.20 A very typical problem of electromechanical position control is an electric motor driving a load that has one
dominant vibration mode. The problem arises in computer-disk-head control, reel-to-reel tape drives, and many

other applications. A schematic diagram is sketched in Fig. 2.51. The motor has an electrical constant K, a
torque constant K;, an armature inductance L,, and a resistance R,. The rotor has an inertia J; and a viscous
friction B. The load has an inertia j; The two inertias are connected by a shaft with a spring constant k and an

equivalent viscous damping b. Write the equations of motion.

Figure 2.51 Motor with a flexible load



(b)

Figure 2.52 (a) Precision table kept level by actuators; (b) side view of one actuator

A Problems for Section 2.4: Heat and Fluid-Flow Models
2.21 A precision table-leveling scheme shown in Fig. 2.52 relies on thermal expansion of actuators under two corners

to level the table by raising or lowering their respective corners. The parameters are as follows:
T,.t = actuator temperature,
T,m, = ambient air temperature,

R = heat-flow coefficient between the actuator and the air,

C = thermal capacity of the actuator,

R = resistance of the heater.

Assume that (1) the actuator acts as a pure electric resistance, (2) the heat flow into the actuator is proportional to

the electric power input, and (3) the motion d is proportional to the difference between T,.; and T,,;,, due to

thermal expansion. Find the differential equations relating the height of the actuator d versus the applied voltage v;.

2.22 An air conditioner supplies cold air at the same temperature to each room on the fourth floor of the high-rise
building shown in Fig. 2.53(a). The floor plan is shown in Fig. 2.53(b). The cold airflow produces an equal
amount of heat flow q out of each room. Write a set of differential equations governing the temperature in each

room, where

T, = temperature outside the building,

(0]

resistance to heat flow through the outer walls,

R,

R; = resistance to heat flow through the inner walls.



~ Fourth
floor

(b)

Figure 2.53 Building air conditioning: (a) high-rise building; (b) floor plan of the fourth floor

Assume that (1) all rooms are perfect squares, (2) there is no heat flow through the floors or ceilings, and (3)
the temperature in each room is uniform throughout the room. Take advantage of symmetry to reduce the

number of differential equations to three.

2.23 For the two-tank fluid-flow system shown in Fig. 2.54, find the differential equations relating the flow into the

first tank to the flow out of the second tank.

‘.‘l i

i e——
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Figure 2.54 Two-tank fluid-flow system for Problem 2.23

2.24 A laboratory experiment in the flow of water through two tanks is sketched in Fig. 2.55. Assume that Eq. (2.74)
describes flow through the equal-sized holes at points A, B, or C.

(a) With holes at A and C, but none at B, write the equations of motion for this system in terms of h; and h,.
Assume that h;, = 20 cm, hy > 20 cm, and h, < 20 cm. When h, = 10 cm, the outflow is 200 g/min.
(b) Ath; = 30 cm and h, = 10 cm, compute a linearized model and the transfer function from pump flow (in

cubic centimeters per minute) to h,.

(c) Repeat parts (a) and (b) assuming hole A is closed and hole B is open.
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Figure 2.55 Two-tank fluid-flow system for Problem 2.24

2.25 The equations for heating a house are given by Egs. (2.62) and (2.63), and in a particular case can be written

with time in hours as

dTy, - Iy — T,
G2 — R0,
et . R
where
(a) C is the thermal capacity of the house, BTU/°F,
(b) Th is the temperature in the house, °F,

(c) T, is the temperature outside the house, °F,

(d) K is the heat rating of the furnace, = 90,000 BTU /hour,
(e) R is the thermal resistance, °F per BTU /hour,
(f) u is the furnace switch, = 1 if the furnace is on and = 0 if the furnace is off.

It is measured that, with the outside temperature at 32°F and the house at 60°F, the furnace raises the temperature
2°F in 6 minutes (0.1 hour). With the furnace off, the house temperature falls 2°F in 40 minutes. What are the values
of C and R for the house?



L 1f the speed is v, the aerodynamic friction force is proportional to v2. In this simple model we have taken a linear approximation.

2 The use of an operator for differentiation was developed by Cauchy about 1820 based on the Laplace transform, which was developed about 1780.

In Chapter 3 we will show how to derive transfer functions using the Laplace transform. Reference: Gardner and Barnes, 1942.
Sha grandfather clock it is desired to have a pendulum period of exactly 2 sec. Show that the pendulum should be approximately 1 m in length.
4 A more extensive discussion of block diagrams is contained in Section 3.2.1.

S The inverted pendulum is often described with the angle of the pendulum being positive for clockwise motion. If defined that way, then reverse the

sign on all terms in Egs. (2.30) in 6 or ©'.

6 Oliver Heaviside introduced the mathematical operation p to signify differentiation so that pv = dv/dt. The Laplace transform incorporates this idea,
using the complex variable s. Ragazzini et al. (1947) demonstrated that an ideal, high-gain electronic amplifier permitted one to realize arbitrary

“operations” in the Laplace transform variable s, so they named it the operational amplifier, commonly abbreviated to op-amp.
7 Similar voice-coil motors are commonly used as the actuator for the read/write head assembly of computer hard-disk data access devices.
8 Because the generated electromotive force (emf) works against the applied armature voltage, it is called the back emf.

9 In the case of insulation for houses, resistance is quoted as K-values; for example, R-11 refers to a substance that has a resistance to heat flow

equivalent to that given by 11 in. of solid wood.

10 Much of the background on Newton was taken from Heisenberg Probably Slept Here, by Richard P. Brennan, 1997. The book discusses his work

and the other early scientists that laid the groundwork for Newton.
11 Galileo’s life, accomplishments, and house arrest are very well described in Dava Sobel’s book, Galileo’s Daughter.
12 = MCZ, A Biography of the World’s Most Famous Equation, by David Bodanis, Walker and Co., New York, 2000.

13 The Man Who Changed Everything: The Life of James Clerk Maxwell, Basil Mahon, Wiley, 2003.



3 Dynamic Response
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A Perspective on System Response

We saw in Chapter 2 how to obtain the dynamic model of a system. In designing a control system, it is important to

see how well a trial design matches the desired performance. We do this by solving the equations of the system
model.

There are two ways to approach solving the dynamic equations. For a quick, approximate analysis we use linear
analysis techniques. The resulting approximations of system response provide insight into why the solution has
certain features and how the system might be changed to modify the response in a desired direction. In contrast, a
precise picture of the system response typically calls for numerical simulation of nonlinear equations of motion using
computer aids. This chapter focuses on linear analysis and computer tools that can be used to solve for the time

response of linear systems.

There are three domains within which to study dynamic response: the s-plane, the frequency response, and the
state space (analysis using the state-variable description). The well-prepared control engineer needs to be fluent in
all of them, so they will be treated in depth in Chapters 5, 6, and 7, respectively. The purpose of this chapter is to
discuss some of the fundamental mathematical tools needed before studying analysis in the s-plane, frequency

response, and state space.

Chapter Overview

The Laplace transform, reviewed in Section 3.1 (and Appendix A), is the mathematical tool for transforming
differential equations into an easier-to-manipulate algebraic form. In addition to the mathematical tools at our
disposal, there are graphical tools that can help us to visualize the model of a system and evaluate the pertinent
mathematical relationships between elements of the system. One approach is the block diagram, which was
introduced in Chapter 1. Block diagram manipulation is discussed in Section 3.2 and allows the determination of
transfer functions.

Once the transfer function has been determined, we can identify its poles and zeros, which tell us a great deal

about system characteristics, including its frequency response introduced in Section 3.1. Sections 3.3 to 3.5 focus on



poles and zeros and some of the ways for manipulating them to steer system characteristics in a desired way. When
feedback is introduced, the possibility that the system may become unstable is introduced. To study this effect, in
Section 3.6 we consider the definition of stability and Routh’s test, which can determine stability by examining the
coefficients of the system’s characteristic equation. Development of a modelbased on experimental time-response
data is discussed in Section 3.7. Section 3.8 discusses amplitude and time scaling. Finally, Section 3.9 provides the
historical perspective for the material in this chapter. An alternative representation of a system in graphical form is
the signal-flow graph and flow graphs that allow the determination of complicated transfer functions are discussed in

Appendix W3 on the web.

3.1 Review of Laplace Transforms

Two attributes of linear time-invariant systems (LTIs) form the basis for almost all analytical techniques applied to
these systems:

1. A linear system response obeys the principle of superposition.

2. The response of an LTI system can be expressed as the convolution of the input with the unit impulse response of

the system.

The concepts of superposition, convolution, and impulse response will be defined shortly.

From the second property (as we will show), it follows immediately that the response of an LTI system to an
exponential input is also exponential. This result is the principal reason for the usefulness of Fourier and Laplace

transforms in the study of LTI systems.

3.1.1 Response by Convolution

Superposition

The principle of superposition states that if the system has an input that can be expressed as a sum of signals, then
the response of the system can be expressed as the sum of the individual responses to the respective signals. We can
express superposition mathematically. Consider the system to have input u and output y. Suppose further that, with

the system at rest, we apply the input u,;(t) and observe the output y; (t). After restoring the system to rest, we apply
a second input u,(t) and again observe the output, which we call y,(t). Then, we form the composite input u(t) =
a;u;(t) + ayu,(t). Finally, if superposition applies, then the response will be y(t) = a;y;(t) + ayy,(1).

Superposition will apply if and only if the system is linear.

EXAMPLE 3.1 Superposition

Show that superposition holds for the system modeled by the first-order linear differential equation
V4+ky=u
Solution. We let u = oyu; + ayu, and assume thaty = oy, + 0oy, Then ¥ = a; ¥y + a,Y,. If we substitute these

expressions into the system equation, we get

a1y + a2y + k(v +a2y2) = aju) + azus.



From this it follows that

a1+ —w) Faxyz+Hhkyr —uz) =0. (3.1)

If y; is the solution with input u; and y, is the solution with input u,, then Eq. (3.1) is satisfied, the response is the

sum of the individual responses, and superposition holds.

Notice that the superposition result of Eq. (3.1) would also hold if k were a function of time. If it were constant,
we call the system time invariant. In that case, it follows that if the input is delayed or shifted in time, then the
output is unchanged except also being shifted by exactly the same amount. Mathematically, this is expressed by

saying that, if y,(T) is the output caused by u;(t) then y;(t — 1) will be the response to u;(t — 1)

EXAMPLE 3.2 Time Invariance

Consider
Vi) + k()1 () = ui (1) (3.2)
and

va(t) + k(D)2 (1) = u) (t — 1),

where Tis a constant shift. Assume that y,(t) = y;(t — D;then

dyi{t —
il + k(Dy (t — 1) =y (1 — 7).
di

Let us make the change of variable t — T = n, then

dvi(n) _
LU + kin+ tivi(n) = w(n).
dn

If k(¢ + 17 = k = constant, then

dvy(n)
dn

+ kyi(n) = u(n),

which is Eq. (3.1). Therefore, we conclude that if the system is time invariant y(t — 1) will be the response to u(t - 1);

that is if the input is delayed by T sec, then the output is also delayed by T sec.

We are able to solve for the response of a linear system to a general signal simply by decomposing the given signal
into a sum of the elementary components and, by superposition, concluding that the response to the general signal is
the sum of the responses to the elementary signals. In order for this process to work, the elementary signals need to
be sufficiently “rich” that any reasonable signal can be expressed as a sum of them, and their responses have to be
easy to And. The most common candidates for elementary signals for use in linear systems are the impulse and the

exponential.



Suppose the input signal to an LTI system is U,(t) = p(t), and the corresponding output signal is y;(t) = h(t) as
shown in Fig. 3.1(a). Now if the input is scaled to u;(t) = u(0)p(t), then by the scaling property of superposition, the
output response will be y;(t) = u(0)h(t). We showed that an LTI system obeys time invariance. If we delay the short
pulse signal in time by T, then the input is of the form u,(t) = p(t — 1) and the output response will also be delayed
by the same amount y, = h(t - 1) as shown in Fig. 3.1(b). Now by superposition, the response to the two short

pulses will be the sum of the two individual outputs as shown in Fig. 3.1(c). If we have four pulses as the input, then
the output will be the sum of the four individual responses as shown in Fig. 3.1(d). Any arbitrary input signal u(t)
may be approximated by a series of pulses as shown in Fig. 3.2. We define a short pulse pA(t) as a rectangular pulse

having unit area such that

Short pulse

1, 0<r=A )
palt) = (3.3)
0, elsewhere
as shown in Fig. 3.1(a). Suppose the response of the system to pA(t) is defined as h,(t). The response at time nA to
Au(kA)p(kA) is

Au(kA)h,(An - Ak).

By superposition, the total response to the series of the short pulses at time t is given by

k=m0

v(6) = > AukA)ha(t — Ak). (3.4)
k=(

If we take the limit as A — 0, the basic pulse gets more and more narrow and taller and taller while holding a
constant area. We then have the concept of an impulse signal, 3(t), and that will allow us to treat continuous signals.

In that case we have,

lim pa(r) = 8(1), (3.5)
A-s0
ri!.in'![}h..’_‘.‘{f_} = h(t) = the impulse response. (3.6)

Moreover, in the limit as A — 0, the summation in Eq. (3.4) is replaced by the integral

vir) = f w(t)h(t — 1) dr, (3.7)
0

that is the convolution integral.
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Figure 3.1 Illustration of convolution as the response of a system to a series of short pulse (impulse) input signals

The idea for the impulse comes from dynamics. Suppose we wish to study the motion of a baseball hit by a bat.
The details of the collision between the bat and ball can be very complex as the ball deforms and the bat bends;
however, for purposes of computing the path of the ball, we can summarize the effect of the collision as the net
velocity change of the ball over a very short time period. We assume that the ball is subjected to an impulse, a very

intense force for a very short time. The physicist Paul Dirac suggested that such forces could be represented by the

mathematical concept of an impulse 5(f), which has the property that

S =0 1#£0, (3.8)

0o
f S()dt = 1. (3.9)
=0

Impulse response

Definition of impulse



Sifting property of impulse

If f(t) is continuous at t = T, then it has the “sifting property.”

win 4

T T T

-

0 A 2A3A 5A 104  (sec)

Figure 3.2 Illustration of the representation of a general input signal as the sum of short pulses

l’_‘x:.
f flr)dt — t)dr = f(1). (3.10)
—00

In other words, the impulse is so short and so intense that no value of f matters except over the short range where
the 5 occurs. Since integration is a limit of a summation process, Eq. (3.10) can be viewed as representing the
function f as a sum of impulses. If we replace f by u, then Eq. (3.10) represents an input u(t) as a sum of impulses of
intensity u(t — 7). To find the response to an arbitrary input, the principle of superposition tells us that we need only
find the response to a unit impulse.

If the system is not only linear but also time invariant (LTI), then the impulse response is given by h(t — 1) because
the response at t to an input applied at T depends only on the difference between the time the impulse is applied
and the time we are observing the response, i.e. the elapsed time. Time invariant systems are called shift invariant

for this reason. For time invariant systems, the output for a general input is given by the integral

o0
y(t) = f u(t)h(t — t)dr, (3.11)

s

or by changing of variablesas 1, = t-71

= o0
i) = f u(t — i) (—dn) = f hit)u(t — ) drt. 312

o -0

The convolution integral

This is the convolution integral.

EXAMPLE 3.3 Convolution

We can illustrate convolution with a simple system. Determine the impulse response for the system described by the

differential equation

V4+ky=u=8@0,



with an initial condition of y(0) = 0 before the impulse.

Solution. Because 8(t) has an effect only near t = 0, we can integrate this equation from just before zero to just after

0" 0t ot
f j~dr+kf ;-a’r:f 3(t) dt.
0 0 0

The integral of Vis simply y, the integral of y over so small a range is zero, and the integral of the impulse over the

zero with the result that

same range is unity. Therefore,
y(0™) -y(0) =1
Because the system was at rest before application of the impulse, y(07) = 0. Thus the effect of the impulse is that
y(0*) = 1. For positive time we have the differential equation
V4+ky=0y0") =1

If we assume a solution y = Ae’, then Y = Ase’t. The preceding equation then becomes

Ase’ + kAe™ =),
s+k=0,

¥ ==k

Unit step

Because y(0") = 1, it is necessary that A = 1. Thus the solution for the impulse response is y(t) = h(t) = e X for t

> 0. To take care of the fact that h(t) = O for negative time, we define the unit-step function

U i)

L. £EW,

With this definition, the impulse response of the first-order system becomes
h(®) = e*1 (0

The response of this system to a general input is given by the convolution of this impulse response with the input:

yv(i) = [ htiu(t — 1) dr
S

o

n.:x_
— j P Tt — 1) dt

3.1.2 Transfer Functions and Frequency Response

An immediate consequence of convolution is that an input of the form et results in an output H(s)eSt. Note that both

input and output are exponential time functions, and that the output differs from the input only in the amplitude



H(s). H(s) is the transfer function of the system. The constant s may be complex, expressed as s = o + jw.

Thus, both the input and the output may be complex. If we let u(t) = e in Eq. (3.12), then

yit) = f htiu(t — 1)dr

o0

oo
= [ h()e'" = dr

= f h(t)e"e™" dt

Q:u

i f h(r)e™ T dre®

o0

= H(s)e", (3.13)

where!

.

His) = f hitye " dr. (3.14)
— 0

The integral in Eq. (3.14) does not need to be computed to find the transfer function of a system. Instead, one can

assume a solution of the form of Eq. (3.13), substitute that into the differential equation of the system, then solve for

the transfer function H(s).

Transfer function
The transfer function can be formally defined as follows: The function H(s), which is the transfer gain from U(s) to
Y(s)—input to output—is called the transfer function of the system. It is the ratio of the Laplace transform of the

output to the Laplace transform of the input,

Yis)
Uis)

— H(s), (3.15)

with the key assumption that all of the initial conditions on the system are zero. If the input u(t) is the unit impulse
8(t), then y(t) is the unit impulse response. The Laplace transform of u(t) is 1 and the transform of y(t) is H(s)

because

Yis) = H(s). (3.16)

In words, this is to say

Transfer function
The transfer function H(s) is the Laplace transform of the unit impulse response h(t).

Thus if one wishes to characterize an LTI system, one applies a unit impulse and the resulting response is a



description (the inverse Laplace transform) of the transfer function.

EXAMPLE 3.4 Transfer Function
Compute the transfer function for the system of Example 3.1, and find the output y for the input u = e,

Solution. The system equation from Example 3.3 is
V(1) + kyv(t) = u(t) = €. (3.17)

We assume that we can express y(t) as H(s)eS. With this form, we have y = sH(s)e%t, and Eq. (3.17) reduces to
sH(s)e" + kH(s)e™ = ¢". (3.18)

Solving for the transfer function H(s), we get

H(s}) = .
Wl s+k
Substituting this back into Eq. (3.13) yields the output
E,.'H'
V= ;
T os+k

A very common way to use the exponential response of LTIs is in finding the frequency response, or response to a

sinusoid. First we express the sinusoid as a sum of two exponential expressions (Euler’s relation):
Frequency response

A
Acos(an) = .;;{E.J'fv-' + e _.rmr}.

If we let s = jw in the basic response formula Eq. (3.13), then the response to u(t) = elWt is y(t) = H(jw)ei‘*’t;
similarly, the response to u(t) = e is H (jw)eJ“, By superposition, the response to the sum of these two

exponentials, which make up the cosine signal, is the sum of the responses:

A . ot . Tii - -
y(£) = EEHUM}E-"‘ + H(—jw)e™ "], (3.19)

The transfer function H(jw) is a complex number that can be represented in polar form or in magnitude-and-phase
form as HGjw) = M(w)el®W) or simply H = Mel®. With this substitution, Eq. (3.19) becomes

1]{” i J‘;l"w (E;_lf':r"f+¢::' + E,-_.-'i':f'”'i'l_&'i)
= AM cos(wri + @), (3.20)

where



M = |H(jw)|, ¢ = ZH(jw).

This means that if a system represented by the transfer function H(s) has a sinusoidal input with magnitude A, the

output will be sinusoidal at the same frequency with magnitude AM and will be shifted in phase by the angle ¢.

EXAMPLE 3.5 Frequency Response
For the system in Example 3.1, find the response to the sinusoidal input u = A cos (wt). That is,
a. find the frequency response and plot the response for k = 1,

b. determine the complete response due to the sinusoidal input u(t) = sin(10t) again with k = 1.

Magnitude

|UI:'
= 10t
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—00
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102 1! 1o” 10! ¥
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Figure 3.3 Frequency response for k = 1

Solution. In Example 3.4 we found the transfer function. To find the frequency response, we let s = jw so that

|
H(s) = = H(jw)} =

s+k jo+k
From this we get
M = ; and ¢ = —tan~" (f) .
Vol +12 k
Therefore, the response of this system to a sinusoid will be
vir) = AM cos(wt + ¢). (3.21)

M is usually referred to as the amplitude ratio and @ is referred to as the phase and they are both functions of the

input frequency, w. The MATLAB® program that follows is used to compute the amplitude ratio and phase for k =



1, as shown in Fig. 3.3. The logspace command is used to set the frequency range (on a logarithmic scale) and the
bode command is used to compute the frequency response in MATLAB. Presenting frequency response in this
manner (i.e., on a log-log scale) was originated by H. W. Bode; thus, these plots are referred to as “Bode plots.”? (See
Chapter 6, Section 6.1.)

k=1:

numH = 1; % form numerator

denH =[1k]: % form denominator

sysH = tf(numH,denH): % define system by its numerator
and denominator

w = logspace(—2,2); % set frequency w to 50 values from
10~2 to 1012

[mag,phase] = bode(sysH,w): % compute frequency response

loglog(w,squeeze(mag)): % log-log plot of magnitude

semilogx(w,squeeze(phase)); % semi log plot of phase

To determine the response to an input that begins at f = 0 as u(t) = sin(10t)1(t), notice that from Laplace

transform tables (Appendix A, Table A.2), we have

10
Liu()) = Lisin(101)} = m,

where L denotes the Laplace transform, and the output of the system using partial fraction expansion (see Section

3.1.5) is given by

Y(s) = H(s)Ul(s)
| 10

s+ 1524100
o] o o
= +—+ —
s+1  s4+j10  5s—j410
10 / —i
101 3(1—410) 2(1+/10)

T s+1 0 54410 s—j10°

The inverse Laplace transform of the output is given by (see Appendix A)

V(1) = L o - .
S0 J101

= y1lt) + yalt),

sin( 10t + @)

where
¢ = tan! (-10) = -84.2".

The component y;(t) is called the transient response as it decays to zero as time goes on and the component y,(t)

is called the steady state and equals the response given by Eq. (3.21). Figure 3.4(a) is a plot of the time history of the

output showing the different components (y;, y,) and the composite (y) output response. The output frequency is 10



rad/sec and the steady-state phase difference measured from Fig. 3.4(b) is approximately 10*8t = 1.47 rad = 84.2°3.

Figure 3.4(b) shows the output lags the input by 84.2°. Figure 3.4(b) shows that the steady-state amplitude of the

|
— = ().0995
output is the amplitude ratio +'101 (i.e., the amplitude of the input signal times the magnitude of the

transfer function evaluated at w = 10 rad/sec).

This example illustrates that the response of an LTI system to a sinusoid of frequency w is a sinusoid with the same
frequency and with an amplitude ratio equal to the magnitude of the transfer function evaluated at the input
frequency. Furthermore, the phase difference between input and output signals is given by the phase of the transfer
function evaluated at the input frequency. The magnitude ratio and phase difference can be computed from the
transfer function as just discussed; they can also be measured experimentally quite easily in the laboratory by driving
the system with a known sinusoidal input and measuring the steady-state amplitude and phase of the system’s

output. The input frequency is set to sufficiently many values so that curves such as the one in Fig. 3.3 are obtained.
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Figure 3.4 (a) Complete transient response; (b) phase lag between output and input

We can generalize the frequency response by defining the Laplace transform of a signal f(t) as



oo

F(s) =f fe *tdr. (3.22)
e

The key property of Laplace transforms

If we apply this definition to both u(t) and y(t) and use the convolution integral Eq. (3.12), we find that

Y(5) = H(s)U{s), (3.23)

where Y(s) and U(s) are the Laplace transforms of y(t) and u(t), respectively. We prove this result in Appendix A.

Laplace transforms such as Eq. (3.22) can be used to study the complete response characteristics of feedback
systems, including the transient response—that is, the time response to an initial condition or suddenly applied
signal. This is in contrast to the use of Fourier transforms, where the steady-state response is the main concern. A
standard problem in control is to find the response y(t) of a system given the input u(t) and a model of the system.
With Eq. (3.22) we have a means for computing the response of LTI systems to quite general inputs. Given any input
into a system, we compute the transform of the input and the transfer function for the system. The transform of the
output is then given by Eq. (3.23) as the product of these two. If we wanted the time function of the output, we
would need to “invert” Y(s) to get what is called the inverse transform; this step is typically not carried out explicitly.
Nevertheless, understanding the process necessary for deriving y(t) from Y(s) is important because it leads to insight
into the behavior of linear systems. Hence, given a general linear system with transfer function H(s) and an input
signal u(t), the procedure for determining y(t) using the Laplace transform is given by the following steps:

STEP 1. Determine the transfer function: H(s) = L{impulse response of the system}. Compute H(s) by the following
steps:

(a) Take the Laplace transform of the equations of motion. A table of transform properties is frequently useful in
this process.

(b) Solve the resulting algebraic equations. Often this step is greatly helped by drawing the corresponding block
diagram and solving the equations by graphical manipulation of the blocks or using MATLAB.

STEP 2. Determine the Laplace transform of the input signal: U(s) = L{u(t)}.
STEP 3. Determine the Laplace transform of the output: Y(s) = H(s) U(s).
STEP 4. Break up Y(s) by partial-fraction expansion.
STEP 5. Find the output of the system by computing the inverse Laplace transform of Y(s) in Step 4, y(t) = L 1{Y(s)}
[i.e., invert Y(s) to get y(D)]:
(a) Look up the components of y(t) in a table of transform-time function pairs.
(b) Combine the components to give the total solution in the desired form.

As already mentioned, Steps 4 and 5 are almost never carried out in practice, and a modified solution for a
qualitative rather than a quantitative solution is often adequate and almost always used for control design purposes.
The process begins with the first three steps as before. However, rather than inverting Y(s), one can use prior
knowledge and intuition about the effects of pole and zero locations in Y(s) on the response y(t) to estimate key
parameters of y(t). That is, we get information about y(t) from the pole-zero constellation of Y(s) without actually

inverting it, as discussed in the rest of this chapter.

While it is possible to determine the transient response properties of the system using Eq. (3.22), it is generally

more useful to use a simpler version of the Laplace transform based on the input beginning at time zero.



3.1.3 The L_ Laplace Transform

In many applications it is useful to define a one-sided (or unilateral) Laplace transform, which uses 0~ (that is, a
value just before t = 0) as the lower limit of integration in Eq. (3.22). The L_ Laplace transform of f(t), denoted by

L_{f()} = F(s), is a function of the complex variable s = o + jw, where

Fo) 2 | rayea. (3.24)
0

Definition of Laplace transform

The decaying exponential term in the integrand in effect provides a built-in convergence factor if a o 0. This means
that even if f(t) does not vanish as t — <o, the integrand will vanish for sufficiently large values of o if f does not
grow at a faster-than-exponential rate. The fact that the lower limit of integration is at 0~ allows the use of an
impulse function at t = 0, as illustrated in Example 3.3; however, this distinction between t = 0~ and t = 0 does not
usually come up in practice. We will therefore for the most part drop the minus superscript on t = 0; however, we
will return to using the notation t = 0~ when an impulse at t = 0 is involved and the distinction is of practical

value.

If Eq. (3.24) is a one-sided transform, then by extension, Eq. (3.22) is a two-sided Laplace transform.* We will use
the L symbol from here on to mean L._.

On the basis of the formal definition in Eq. (3.24), we can ascertain the properties of Laplace transforms and
compute the transforms of common time functions. The analysis of linear systems by means of Laplace transforms
usually involves using tables of common properties and time functions, so we have provided this information in
Appendix A. The tables of time functions and their Laplace transforms, together with the table of properties, permit
us to find transforms of complex signals from simpler ones. For a thorough study of Laplace transforms and extensive
tables, see Churchill (1972) and Campbell and Foster (1948). For more study of the two-sided transform, see Van der
Pol and Bremmer (1955). These authors show that the time function can be obtained from the Laplace transform by

the inverse relation

I Tetfoo

flr) = — /- F(s)e' ds, (3.25)
2»'_” Jas—joo

where o, is a selected value to the right of all the singularities of F(s) in the s-plane. In practice, this relation is

seldom used. Instead, complex Laplace transforms are broken down into simpler ones that are listed in the tables

along with their corresponding time responses.

Let us compute a few Laplace transforms of some typical time functions.

EXAMPLE 3.6 Step and Ramp Transforms
Find the Laplace transform of the step al(t) and ramp bt1(t) functions.

Solution. For a step of size a, f(t) = al(t), and from Eq. (3.24) we have

"[’IE"_” |%¢ -l [
= 0—-— =, Re(s) = O.
s g % -}

¥ %
F(s) —'—/ ae Y dt =
0



For the ramp signal f(t) = bt;(t), again from Eq. (3.24) we have

0o bte—* be—*
F() = f By = {— LA ] =2 e S0
]

5 5= 0 8

where we employed the technique of integration by parts,
fudv = uv- [ vdu,

with u = bt and dv = e dt. We can then extend the domain of the validity of F(s) to the entire s-plane except at
the pole location namely the origin (see Appendix A).

A more subtle example is that of the impulse function.

EXAMPLE 3.7 Impulse Function Transform
Find the Laplace transform of the unit-impulse function.

Solution. From Eq. (3.24) we get

o4} o
F(s) = [ ﬁf_:}e"“’drzj S(Hdt = 1. (3.26)
SO 0-

It is the transform of the unit-impulse function that led us to choose the L_ transform rather than the L transform.

EXAM PLE 3.8 Sinusoid Transform
Find the Laplace transform of the sinusoid function.

Solution. Again, we use Eq. (3.24) to get

_
L{sin wt} =[ (sin wit)e ™ d. (3.27)
0

If we substitute the relation from Eq. (D.34) in Appendix WD,

{_,_l.":r:'! —e — et
2j

sin il =

into Eq. (3.27), we find that



o e}'fu.l' - é,—_,l;f'_l'f ;
Llsinwt) = f (—) e dt
0 2 ;

| S B T I
i (El_,r{u—.x_lr —f’_uw-H”) di

2j Jo
ey i ;eum—x}f - I E’_Um-i_j bt i
2 Ljw—s jo+ 5 0
[}
= = Re(s) = 0.
52 + w? 8=

We can then extend the domain of the validity of computed Laplace transform to the entire s-plane except at the

pole locations s = *jw (see Appendix A).

Table A.2 in Appendix A lists Laplace transforms for elementary time functions. Each entry in the table follows
from direct application of the transform definition of Eq. (3.24), as demonstrated by Examples 3.6 to 3.8.

3.1.4 Properties of Laplace Transforms

In this section we will address each of the significant properties of the Laplace transform listed in Table A.l. For the
proofs of these properties and related examples as well as the Initial Value Theorem, the reader is referred to

Appendix A.
1. Superposition
One of the more important properties of the Laplace transform is that it is linear:
Llafi(0) + B0} = aF(s) + BF2(s). (3.28)
The amplitude scaling property is a special case of this; that is,
Llaf(n)} = aF(s). (3.29)

2. Time Delay

Suppose a function f(t) is delayed by A. A > 0 units of time. Its Laplace transform is
s )
Fi(s) = f ft — Ve ™ dt = e F(5). (3.30)
0
From this result we see that a time delay of A corresponds to multiplication of the transform by e™*.

3. Time Scaling
It is sometimes useful to time-scale equations of motion. For example, in the control system of a disk drive, it is
meaningful to measure time in milliseconds (see also Chapter 10). If the time t is scaled by a factor a, then the

Laplace transform of the time-scaled signal is



la| \a

™~ | 2
Fi(s) = [ flatye ™™ dt = —F (i) (3.31)
0

4. Shift in Frequency

Multiplication (modulation) of f(t) by an exponential expression in the time domain corresponds to a shift in

frequency:

Fi(s) = [ e f(e M dt = F(s +a). (3.32)
0

5. Differentiation

The transform of the derivative of a signal is related to its Laplace transform and its initial condition as follows:

r {ﬂ} _ f (ﬂ) e~ dt = —f(07) + sF(s). (3.33)
dt a- \dt ‘

Another application of Eq. (3.33) leads to
L{f} = s?F(s) — sf(07) — f(07). (3.34)
Repeated application of Eq. (3.33) leads to
LU0} = s"F(s) — " (07) = 5" (07) — .- — =10y, (3.35)
where f™ (t)} denotes the mth derivative of f(t) with respect to time.

6. Integration

Let us assume that we wish to determine the Laplace transform of the integral of a time function f(t); that is,

I
1
Filsi= L ‘[ f[E}{JIE} == ?F[,ﬂ. (3.36)
0 .

|
which means that we simply multiply the function’s Laplace transform by .

7. Convolution
We have seen previously that the response of a system is determined by convolving the input with the impulse
response of the system, or by forming the product of the transfer function and the Laplace transform of the input.

The discussion that follows extends this concept to various time functions.

Convolution in the time domain corresponds to multiplication in the frequency domain. Assume that L{f;(t)}

F;(s) and L{f,(t)} = F,(s). Then

IRAGETAOIE j fi(t) = e dt = F(s)Fa(s). (3.37)
0



This implies that

1{:_1 (F1(s)F2(5)) =fl{jr‘} "‘fi“} (3.38)

A similar, or dual, of this result is discussed next.

8. Time Product

Multiplication in the time domain corresponds to convolution in the frequency domain:

]
L{finfa(n)) = Tﬂfﬂ (5) % Fa(s). (3.39)

9. Multiplication by Time

Multiplication by time corresponds to differentiation in the frequency domain:

/
Ll (D) = -~;%F‘(.s}. (3.40)

3.1.5 Inverse Laplace Transform by Partial-Fraction Expansion

The easiest way to find f(t) from its Laplace transform F(s), if F(s) is rational, is to expand F(s) as a sum of simpler
terms that can be found in the tables. The basic tool for performing this operation is called partial-fraction

expansion. Consider the general form for the rational function F(s) consisting of the ratio of two polynomials:

bis™ 4+ b 3.ur—l it Py
F“}= | & + 2 F .l.li'.[‘ (3-4!]
e ﬂi.‘n‘“_] + -t ay

By factoring the polynomials, this same function could also be expressed in terms of the product of factors as

(s =)

i) = K=l T
(s =p)

(3.42)

We will discuss the simple case of distinct poles here. For a transform F(s) representing the response of any

physical system, m < n. When s = Z; s is referred to as a zero of the function, and when s = p; is referred to as a
pole of the function. Assuming for now that the poles {p;} are real or complex but distinct, we rewrite F(s) as the

partial fraction

Zeros and poles

C Cs Cy

Fis) = + i Rt !
s—p1 s—m 5= Py

(3.43)

Next, we determine the set of constants {C;}. We multiply both sides of Eq. (3.43) by the factor s — p; to get



e s —p1)C,
- FI.CJ..}.....{. {.g_’?l}__?.

5§ = P2 5= Pn

(s—=p)F(s)=C + (3.44)

If we let s = p; on both sides of Eq. (3.44), then all the c; terms will equal zero except for the first one. For this

term,
Ci = (5 — pDF(8)|s=p, - (3.45)

The other coefficients can be expressed in a similar form:

C; = (s = PIFS)|s=pi-

The cover-up method of determining coefficients

This process is called the cover-up method because, in the factored form of F(s) [Eq. (3.42)], we can cover up the

individual denominator terms, evaluate the rest of the expression with s = p, and determine the coefficients C;.

Once this has been completed, the time function becomes

fO =Y _CieP1(p)

i=]

because, as entry 7 in Table A.2 shows, if

l
F(-ﬂ' = s
s — pi

then
f(t) = ePi1(b).

For the cases of quadratic factors or repeated roots in the denominator, see Appendix A.
EXAM PLE 3.9 Partial-Fraction Expansion: Distinct Real Roots

Suppose you have computed Y(s) and found that

s+ s+ 4)
Coss+Dis+ 3’

Yis)

Findy y(t).
Solution. We may write Y(s) in terms of its partial-fraction expansion:
Cy Ca C

Y(s) = —+ — + ——.
) K3 s+ 1 s+3

Using the cover-up method, we get

s+2s+4)
s

8
TG+ DE+3) | 3



In a similar fashion,

s (s+2)(s+4) B 3
2T TG+ |, 2
and
; (s+2)(s+4) I
Ga = = ——.
s(s+ 1) g 3 i)

We can check the correctness of the result by adding the components again to verify that the original function has

been recovered. With the partial fraction the solution can be looked up in the tables at once to be

'{}—811 3"*Im 1_3,1”
_?F—E{}—ii —{:E (£).

The partial fraction expansion may be computed using the residue function in MATLAB:

num = conv([12],[1 4]); % form numerator polynomial
den=conv([110],[13]); % form denominator polynomial
[r,p,k] = residue(num,den); % compute the residues

which yields the result
r = [-0.1667 -1.5000 2.66671’p = [-3-1013k = [1;
and agrees with the hand calculations. Note that the conv function in MATLAB is used to multiply two polynomials.

(The arguments of the function are the polynomial coefficients.)

3.1.6 The Final Value Theorem

An especially useful property of the Laplace transform in control known as the Final Value Theorem allows us to
compute the constant steady-state value of a time function given its Laplace transform. The theorem follows from the
development of partial-fraction expansion. Suppose we have a transform Y(s) of a signal y(t) and wish to know the
final value y(t) from Y(s). There are three possibilities for the limit. It can be constant, undefined, or unbounded. If
Y(s) has any poles (i.e., denominator roots, as described in Section 3.1.5) in the right half of the s-plane—that is, if
the real part of any p; < 0—then y(t) will grow and the limit will be unbounded. If Y(s) has a pair of poles on the

imaginary axis of the s-plane (i.e.,p; = *jw), then y(t) will contain a sinusoid that persists forever and the final

value will not be defined. Only one case can provide a nonzero constant final value: If all poles of Y(s) are in the left
half of the s-plane, except for one at s = 0, then all terms of y(t) will decay to zero except the term corresponding to
the pole at s = 0, and that term corresponds to a constant in time. Thus, the final value is given by the coefficient

associated with the pole at s = 0. Therefore, the Final Value Theorem is as follows:

The Final Value Theorem

If all poles of sY(s) are in the left half of the s-plane, then



lim y(t) = lim s¥ (s). (3.46)

f—=00 y—= )

This relationship is proved in Appendix A.

EXAMPLE 3.10 Final Value Theorem

Find the final value of the system corresponding to

s+ 2)

Yis) = ]
(s s(s2 + 25+ 10)

Solution. Applying the Final Value Theorem, we obtain

( = sY(5) ——3. = 0.6
Mooy =3% P e = = (.6.
y ) s¥(5)]s=0 10

Thus, after the transients have decayed to zero, y(t) will settle to a constant value of 0.6.

Use the Final Value Theorem on stable systems only

Care must be taken to apply the Final Value Theorem only to stable systems (see Section 3.6). While one could use

Eq. (3.46) on any Y(s), doing so could result in erroneous results, as shown in the next example.

EXAMPLE 3.11 Incorrect Use of the Final Value Theorem

Find the final value of the signal corresponding to

Ys) = ——
T

Solution. If we blindly apply Eq. (3.46), we obtain

3
o) = 3¥ (5} 0 = —=.

However,

={r}—( 2ol 2’)1(0
AREY g :

and Eq. (3.46) yields the constant term only. Of course, the true final value is unbounded.

Calculating DC gain by the Final Value Theorem
The theorem can also be used to find the DC gain of a system. The DC gain is the ratio of the output of a system to
its input (presumed constant) after all transients have decayed. To find the DC gain, we assume that there is a unit-

step input [U(s) = 1/, and we use the Final Value Theorem to compute the steady-state value of the output.



Therefore, for a system transfer function G(s),

N—

I
DC gain = E_inb u{;fs}-; = lim G(s). (3.47)

EXAMPLE 3.12 DC Gain

Find the DC gain of the system whose transfer function is

s+ 2)

Gis) = i
(s) (52 + 25+ 10)

Solution. Applying Eq. (3.47), we get

3.2
DC gain = G(5)|;—g = —
g |ls=0 T

= 0:6.

3.1.7 Using Laplace Transforms to Solve Problems

Laplace transforms can be used to solve differential equations using the properties described in Appendix A. First,
we find the Laplace transform of the differential equation using the differentiation properties in Egs. (A.12) and
(A.13) in Appendix A. Then we find the Laplace transform of the output; using partial-fraction expansion and Table

A.2, this can be converted to a time response function. We will illustrate this with three examples.

EXAMPLE 3.13 Homogeneous Differential Equation Solution
Find the solution to the differential equation
Y© + y(® = 0, where y(0) = a, Y(0) = B

Solution. Using Eq. (3.34), the Laplace transform of the differential equation is

52 Y5y —ay—g¥F¥iz)=10,
(s> + DY(s) = as + B,
as Fal

2+1 0 241

¥Yis)=

After looking up in the transform tables (Table A.2, Appendix A) the two terms on the right side of the preceding

equation, we get
y(t) = [acost + [ sin t]1(1),

where 1 (t) denotes a unit step function. We can verify that this solution is correct by substituting it back into the

differential equation.

Another example will illustrate the solution when the equations are not homogeneous—that is, when the system is

forced.



EXAMPLE 3.14 Forced Differential Equation Solution
Find the solution to the differential equation ,’i’(t) + Sj’(t) + 4y(t) = 3, where y(0) = a ,’i’(O) = B.

Solution. Taking the Laplace transform of both sides using Egs. (3.33) and (3.34), we get

3 3
sY(s) —sa— B4 5[sY(s) —a] +4Y(5) = -.
:

Solving for Y(s) yields

_ S(sa+ B +5a)+3

Y(s) :
sis+ s+ 4)

The partial-fraction expansion using the cover-up method is

—fA—4u I—do—47
3 12
.|..

s+ 1 s+ 4

¥{s)-=

B |l

Therefore, the time function is given by

3 =34 4 i—4da -4
yu)==(14-——i%;i—gf‘ﬂ+———75——ff‘”)IUL

By differentiating this solution twice and substituting the result in the original differential equation, we can verify

that this solution satisfies the differential equation.

The solution is especially simple if the initial conditions are all zero.

EXAMPLE 3.15 Forced Equation Solution with Zero Initial Conditions

Find the solution to Y(t) + 5Y(t) + 4y(©) = u(), y(0) = 0, ¥(0) = 0, u(t) = 2e21(t)
1. using partial-fraction expansion and

2. using MATLAB.

Solution

1. Taking the Laplace transform of both sides, we get

,
s S55Y 4¥(s) = )
§°Y(s) + 5sY(s) +4Y(s) P

Solving for Y(s) yields

2
TG+ +Dis+4)

Yi(s)

The partial-fraction expansion using the cover-up method is



Y(5) = — +
o

Therefore, the time function is given by

v [ad ymat
y(t) (Ie —I—3

2 I
—e T+ ?,—#) 1(1).

2. The partial-fraction expansion may also be computed using the MATLAB residue function,

num = 2; % form numerator
den = poly([—2;—1;—4]); % form denominator polynomial from its roots
[r.p.k] = residue(num,den); % compute the residues

which results in the desired answer
r = [0.3333-1 0.6667];p = [-4-2-1]k =[1;

and agrees with the hand calculations.

Poles indicate response character

The primary value of using the Laplace transform method of solving differential equations is that it provides
information concerning the qualitative characteristic behavior of the response. Once we know the values of the poles
of Y(s), we know what kind of characteristic terms will appear in the response. In the last example the pole ats = -
1 produced a decaying y = Ce™ term in the response. The pole at s = —4 produced ay = Ce™ term in the
response, which decays faster. If there had been a pole at s = +1, there would have been a growing y = Ce*' term
in the response. Using the pole locations to understand in essence how the system will respond is a powerful tool
and will be developed further in Section 3.3. Control systems designers often manipulate design parameters so that
the poles have values that would give acceptable responses, and they skip the steps associated with converting those
poles to actual time responses until the final stages of the design. They use trial-and-error design methods (as
described in Chapter 5) that graphically present how changes in design parameters affect the pole locations. Once a
design has been obtained, with pole locations predicted to give acceptable responses, the control designer determines
a time response to verify that the design is satisfactory. This is typically done by computer, which solves the

differential equations directly by using numerical computer methods.

3.1.8 Poles and Zeros

A rational transfer function can be described either as a ratio of two polynomials in s,

H{ :| h].qm -+ b‘"}-fwmr b RECEEEEE o bIF,I—F! h'r“l}
¥l = — "
s" a4+ 4ay, Dis)

(3.48)

or as a ratio in factored zero pole form

Mo, —2z)

His) = K— ;
jz]{-'-"'_f"i}

(3.49)



K is called the transfer function gain. The roots of the numerator Z;, Z,,..., ., are called the finite zeros of the system.

The zeros are locations in the s-plane where the transfer function is zero. If s = Zi then

Zeros
|H(S)|s =zi = 0.

The zeros also correspond to the signal transmission-blocking properties of the system and are also called the
transmission zeros of the system. The system has the inherent capability to block frequencies coinciding with its zero

locations. If we excite the system with the nonzero input, u = U,e%°!, where S, is not a pole of the system, then the
output is identically zero,” y = 0, for frequencies where S, = Zi;. The zeros also have a significant effect on the

transient properties of the system (see Section 3.5).

Poles
The roots of the denominator, p, ps, . . ., p,, are called the poles® of the system. The poles are locations in the s-

plane where the magnitude of the transfer function becomes infinite. If s = pi then
|H(S)|s = pi = °°.

The poles of the system determine its stability properties, as we shall see in Section 3.6. The poles of the system
also determine the natural or unforced behavior of the system, referred to as the modes of the system. The zeros and
poles may be complex quantities, and we may display their locations in a complex plane, which we refer to as the s-
plane. The locations of the poles and zeros lie at the heart of feedback control design and have significant practical
implications for control system design. The system is said to have n—m zeros at infinity if m < n because the
transfer function approaches zero as s approaches infinity. If the zeros at infinity are also counted, the system will
have the same number of poles and zeros. No physical system can have n < m; otherwise, it would have an infinite

response at w = oo, If z;; = Djs then there are cancellations in the transfer function, which may lead to undesirable

system properties as discussed in Chapter 7.

3.1.9 Linear System Analysis Using MATLAB

The first step in analyzing a system is to write down (or generate) the set of time-domain differential equations
representing the dynamic behavior of the physical system. These equations are generated from the physical laws
governing the system behavior—for example, rigid body dynamics, thermo-fluid mechanics, and elec-tromechanics, as
described in Chapter 2. The next step in system analysis is to determine and designate inputs and outputs of the
system and then to compute the transfer function characterizing the input-output behavior of the dynamic system.
Earlier in this chapter we saw that a linear dynamic system may also be represented by the Laplace transform of its
differential equation—that is, its transfer function. The transfer function may be expressed as a ratio of two
polynomials as in Eq. (3.48) or in factored zero-pole form as in Eq. (3.49). By analyzing the transfer function, we can
determine the dynamic properties of the system, both in a qualitative and quantitative manner. One way of
extracting useful system information is simply to determine the pole-zero locations and deduce the essential
characteristics of the dynamic properties of the system. Another way is to determine the time-domain properties of
the system by determining the response of the system to typical excitation signals such as impulses, steps, ramps, and

sinusoids. Yet another way is to determine the time response analytically by computing the inverse Laplace transform



using partial-fraction expansions and Tables A.l and A.2. Of course, itis also possible to determine the system
response to an arbitrary input.

We will now illustrate this type of analysis by carrying out the preceding calculations for some of the physical
systems addressed in the examples in Chapter 2 in order of increasing degree of difficulty. We will go back and forth
between the different representations of the system, transfer function, and pole-zero, etc., using MATLAB as our
computational engine. MATLAB typically accepts the specification of a system in several forms, including transfer
function and zero-pole, and refers to these two descriptions as tf and zp, respectively. Furthermore, it can transform

the system description from any one form to another.

EXAMPLE 3.16 Cruise Control Transfer Function Using MATLAB

Find the transfer function between the input u and the position of the car x in the cruise control system in Example
2.1.

Solution. From Example 2.1 we find that the transfer function of the system is

0s% + 0s + 0.001 0.001
s24 005540 s(s+0.05)°

Hs) =

In MATLAB, the coefficients of the numerator polynomial are displayed as the row vector num and the

denominator coefficients are displayed as den. The results for this example are

MATLAB printsys

They can be returned by MATLAB in this form using the printsys(num,den) command. The pole-zero description is
computed using the MATLAB command

[z, p, k] = tf2zp(num, den)

and would result in the transfer function in factored form, where z = [ ], p = [0 -0.05]’, and k = 0.001.

EXAMPLE 3.17 DC Motor Transfer Function Using MATLAB

In Example 2.13, assume that J,, = 0.01 kg.m?, b = 0.001 N-m-sec, K, = K, = 1,R, = 10 Q, and L, = 1 H. Find
the transfer function between the input v, and

1. the output 6,

2. the output w = 0,

Solution

1. Substituting the preceding parameters into Example 2.13, we find that the transfer function of the system is

100

H(s) = :
%) s34+ 10.152 + 1015

In MATLAB we display the coefficients of the numerator polynomial as the row vector numa and the denominator as

dena. The results for this example are



numa = [ 000100 ] and dena = [ 1 10.1 101 0 ].
The pole-zero description is computed using the MATLAB command
[z, p, k] = tf2zp(numa, dena)

which results in

z=1[1p = [0-5.0500 +8.6889j -5.0500 -8.6889j 1’, k = 100, and yields the transfer function in factored form:

100
 s(s 4 5.05 + j8.6889)(s + 5.05 — j8.6889)

His)

2. If we consider the velocity 0., as the output, then we find numb=[0 0 100], denb=[1 10.1 101], which tells us

that the transfer function is

100s B 100
3410152 +101s  s2+10.1s+ 101°

Lls) =

This is as expected, because 0, is simply the derivative of 6,,; thus L{6,,} = sL{6,,}. For a unit step command in v,

we can compute the step response in MATLAB (recall Example 2.1):

numb=[0 0 100]; % form numerator

denb=[1 10.1 101]; % form denominator

sysb=tf(numb,denb); % define system by its numerator and denominator
t=0:0.01:5; % form time vector

y=step(sysb,t) % compute step response;

plot(t,y) % plot step response

The system yields a steady-state constant angular velocity as shown in Fig. 3.5. Note that there is a slight offset, since

the system does not have unity DC gain.

When a dynamic system is represented by a single differential equation of any order, finding the polynomial form
of the transfer function from that differential equation is usually easy. Therefore, you will find it best in these cases to

specify a system directly in terms of its transfer function.
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Figure 3.5 Transient response for DC motor

EXAMPLE 3.18 Transformations Using MATLAB
Find the transfer function of the system whose differential equation is
¥+ 6y + 25y = Yu + 3.
Solution. Using the differentiation rules given by Egs. (3.33) and (3.34), we see by inspection that

Yis) _ 3s4+9
U(s) s24+6s+25

The MATLAB statements are

numG = [3 9]; % form numerator
denG=[1625]; % form denominator

If the transfer function was desired in factored form, it could be obtained by transforming the tf description.
Therefore, the MATLAB statement

% convert from numerator-denominator polynomials to pole-zero form [z,p,k] = tf2zp(numG,denG)

would resultin z = -3, p = [-3 + 4j — 3 - 4j]’, k = 3. This means that the transfer function could also be written

as

Vis) 3(s + 3)
UGs) (s+3—-4)(s+3+4)

We may also convert from zero-pole representation to the transfer function representation using the MATLAB zp 2tf

command
% convert from pole-zero form to numerator-denominator polynomials [numG,denG] = zp 2tf(z,p k)

For this example, z=[-3], p =[-3+i*4;-3-i*4], k=[3] will yield the numerator and denominator polynomials.

EXAMPLE 3.19 Satellite Transfer Function Using MATLAB

1. Find the transfer function between the input F. and the satellite attitude 0 in Example 2.3 and

2. Determine the response of the system to a 25-N pulse of 0.1 sec duration, starting att = 5 sec. Letd = 1 m and I

= 5000 kg-m?.
Solution
d— 1 _ 00002 [%}
1. From Example 2.3, 1~ 3000 kg-m= | and this means that the transfer function of the system
0.0002
H(s) = ——,

Sa;.

which can also be determined by inspection for this particular case. We may display the coefficients of the
numerator polynomial as the row vector num and the denominator as the row vector den. The results for this

example are



numG = [0 0 0.0002] and denG = [1 0 0].

2. The following MATLAB statements compute the response of the system to a 25-N, 0.1-sec duration thrust pulse

input:

numG=[0 0 0.0002]; % form the transfer function

denG=[1 0 0];

sysG=tf(numG,denG); % define system by its transfer
function

t=0:0.01:10; % set up time vector with dt = 0.01 sec

% pulse of 25N, at 5 sec, for 0.1 sec

duration

ul=[zeros(1,500) 25+ones(1,10)

zeros(1,491)]; % pulse input

[y1]=lsim(sysG,ul,t); % linear simulation

ff=180/pi; % conversion factor from radians
to degrees

y1=ffayl; % output in degrees

plot(t,ul); % plot input signal

plot(t,y1); % plot output response

The system is excited with a short pulse (an impulsive input) that has the effect of imparting a nonzero angle 6, at
time t = 5 sec on the system. Because the system is undamped, in the absence of any control it drifts with constant
angular velocity with a value imparted by the impulse at t = 5 sec. The time response of the input is shown in Fig.
3.6(a) along with the drift in angle 6 in Fig. 3.6(b).

We now excite the system with the same positive-magnitude thrust pulse at time t = 5 sec but follow that with a
negative pulse with the same magnitude and duration at time t = 6.1 sec. [See Figure 3.7(a) for the input thrust.]
Then the attitude response of the system is as shown in Figure 3.7(b). This is actually how the satellite attitude angle

is controlled in practice. The additional relevant MATLAB statements are

Figure 3.6 Transient response for satellite: (a) thrust input; (b) satellite attitude
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% double pulse input
u2=[zeros(1,500) 25+ones(1,10) zeros(1,100) —25=ones(1,10) zeros(1,381)];
[y2]=lsim(sysG,u2,t); % linear simulation

plot{t,u2); % plot input signal

ff=180,/pi; % conversion factor from radians to degrees
yes=ffayz; % output in degrees

plot{t,y2); % plot output response

3.2 System Modeling Diagrams

3.2.1 The Block Diagram

To obtain the transfer function, we need to find the Laplace transform of the equations of motion and solve the
resulting algebraic equations for the relationship between the input and the output. In many control systems the
system equations can be written so that their components do not interact except by having the input of one part be
the output of another part. In these cases, it is easy to draw a block diagram that represents the mathematical
relationships in a manner similar to that used for the component block diagram in Fig. 1.2, Chapter 1. The transfer
function of each component is placed in a box, and the input-output relationships between components are indicated
by lines and arrows. We can then solve the equations by graphical simplification, which is often easier and more
informative than algebraic manipulation, even though the methods are in every way equivalent. Drawings of three
elementary block diagrams are seen in Fig. 3.8. It is convenient to think of each block as representing an electronic
amplifier with the transfer function printed inside. The interconnections of blocks include summing points, where
any number of signals may be added together. These are represented by a circle with the symbol ¥ inside. In Fig.

3.8(a) the block with transfer function G;(s) is in series with the block with transfer function G,G; and the overall

transfer function is given by the product G,G;. In Fig. 3.8(b) two systems are in parallel with their outputs added,



and the overall transfer function is given by the sum G; + G,. These diagrams derive simply from the equations that
describe them.

Figure 3.7 Transient response for satellite (double-pulse): (a) thrust input; (b) satellite attitude
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Figure 3.8 Three examples of elementary block diagrams

Figure 3.8(c) shows a more complicated case. Here the two blocks are connected in a feedback arrangement so
that each feeds into the other. When the feedback Y,(s) is subtracted, as shown in the figure, we call it negative

feedback. As you will see, negative feedback is usually required for system stability. For now we will simply solve

the equations and then relate them back to the diagram. The equations are



Ui(s) = R(s) — Ya(5),
Ya(5) = Ga(s)G(s)Uy (5),
Yi(s5) = Gi(s)Ui(s),

and their solution is

: Gi(s) .
Yy(s) = R(s). 3.50)
0= T e :

Negative feedback

We can express the solution by the following rule:

The gain of a single-loop negative feedback system is given by the forward gain divided by the sum of 1 plus the

loop gain.

Positive feedback

When the feedback is added instead of subtracted, we call it positive feedback. In this case, the gain is given by the

forward gain divided by the sum of 1 minus the loop gain.

Unity feedback system

The three elementary cases given in Fig. 3.8 can be used in combination to solve, by repeated reduction, any
transfer function defined by a block diagram. However, the manipulations can be tedious and subject to error when
the topology of the diagram is complicated. Figure 3.9 shows examples of block-diagram algebra that complement
those shown in Fig. 3.8. Figures 3.9(a) and (b) show how the interconnections of a block diagram can be
manipulated without affecting the mathematical relationships. Figure 3.9(c) shows how the manipulations can be
used to convert a general system (on the left) to a system without a component in the feedback path, usually referred

to as a unity feedback system.

In all cases the basic principle is to simplify the topology while maintaining exactly the same relationships among
the remaining variables of the block diagram. In relation to the algebra of the underlying linear equations, block-

diagram reduction is a pictorial way to solve equations by eliminating variables.

Figure 3.9 Examples of block-diagram algebra
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EXAMPLE 3.20 Transfer Function from a Simple Block Diagram

Find the transfer function of the system shown in Fig. 3.10(a).

Solution. First we simplify the block diagram by reducing the parallel combination of the controller path. This
results in the diagram of Fig. 3.10(b), and we use the feedback rule to obtain the closed-loop transfer function:
ves) 2 25 + 4

5

R(s) 1+ =32 s 42544

1 1=

EXAMPLE 3.21 Transfer Function from the Block Diagram
Find the transfer function of the system shown in Fig. 3.11(a).

Solution. First we simplify the block diagram. Using the principles of Eq. (3.50), we replace the feedback loop



involving G; and G5 by its equivalent transfer function, noting that it is a positive feedback loop. The result is Fig.
3.11(b). The next step is to move the pick-off point preceding G, to its output [see Fig. 3.11(a)], as shown in Fig.

3.11(c). The negative feedback loop on the left is in series with the subsystem on the right, which is composed of the
two parallel blocks G5 and G¢/G,. The overall transfer function can be written using all three rules for reduction

given by Fig. 3.8:

Gy G

i Y(s) TG (G«, . E)
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| — GGy + GGGy

Figure 3.11 Example for block-diagram simplification
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As we have seen, a system of algebraic equations may be represented by a block diagram that represents individual
transfer functions by blocks and has interconnections that correspond to the system equations. A block diagram is a

convenient tool to visualize the system as a collection of interrelated subsystems that emphasize the relationships
among the system variables.



3.2.2 Block Diagram Reduction Using MATLAB

If the individual transfer functions are available for components in a control system, it is possible to use MATLAB
commands to compute the transfer functions of interconnected systems. The three commands series, parallel, and
feedback can be used for this purpose. They compute the transfer functions of two component block transfer

functions in series, parallel, and feedback configurations, respectively. The next simple example illustrates their use.

EXAMPLE 3.22 Transfer Function of a Simple System Using MATLAB
Repeat the computation of the transfer function for the block diagram in Fig. 3.10(a) using MATLAB.

Solution. We label the transfer function of the separate blocks shown in Fig. 3.10(a) as illustrated in Fig. 3.12. Then
we combine the two parallel blocks G; and G, by

numl=[2]; % form G1

denl=[1];

sysGl=tf(num1,denl); % define subsystem G1
num2=[4]; % form G2

den2=[10];

sysG2=tf(num2,den2); % define subsystem G2

% parallel combination of G1 and G2 to form subsystem G3
sysG3=parallel(sysG1,sysG2);

then we combine the result G3, with the G4 in series by

numé&=[1]; % form G4
den4=[10];
sysG4=tf(num4,den4); % define subsystem G4

sysG5=series(sysG3,sysG4); % series combination of G3 and G4
and complete the reduction of the feedback system by

num6=[1]; % form G6
dené=[1];

Figure 3.12 Example for block-diagram simplification

Ro—{S ={;3Lé>—-c;, oy

sysG6=tf(num6,den6) % define subsystem G6
[sysCL]=feedback(sysG5,sysG6,-1) % feedback combination of G5 and G6

The MATLAB results are sysCL of the form

¥
-~
Ly

Yi(s) B 25+ 4
R(s) s2425+4

and this is the same result as the one obtained by block diagram reduction.



3.3 Effect of Pole Locations

Once the transfer function has been determined by any of the available methods, we can start to analyze the response
of the system it represents. When the system equations are simultaneous ordinary differential equations (ODEs), the

transfer function that results will be a ratio of polynomials; that is,

H(s) = b(s)/a(s).

Poles Zeros

The impulse response is the natural response.

If we assume that b and a have no common factors (as is usually the case), then values of s such that a(s) = 0 will
represent points where H(s) is infinity. As we saw in Section 3.1.5, these s-values are called poles of H(s). Values of s
such that b(s) = 0 are points where H(s) = 0 and the corresponding s-locations are called zeros. The effect of zeros
on the transient response will be discussed in Section 3.5. These poles and zeros completely describe H(s) except for
a constant multiplier. Because the impulse response is given by the time function corresponding to the transfer
function, we call the impulse response the natural response of the system. We can use the poles and zeros to
compute the corresponding time response and thus identify time histories with pole locations in the s-plane. For
example, the poles identify the classes of signals contained in the impulse response, as may be seen by a partial-

fraction expansion of H(s). For a first-order pole,

His) =

s4o

First-order system impulse response

Stability

Time constant T

Table A.2, entry 7, indicates that the impulse response will be an exponential function; that is,

hit) =e "1,

When o > 0, the pole is located at s < 0, the exponential expression decays, and we say the impulse response is
stable. If 0 < 0, the pole is to the right of the origin. Because the exponential expression here grows with time, the
impulse response is referred to as unstable(Section 3.6). Figure 3.13(a) shows a typical stable response and defines

the time constant

T=1/0 (3.51)

as the time when the response is !/, times the initial value. Hence, it is a measure of the rate of decay. The straight

line is tangent to the exponential curve at t = 0 and terminates at t = T. This characteristic of an exponential

expression is useful in sketching a time plot or checking computer results.



Figure 3.13(b) shows the impulse and step response for a first-order system computed using MATLAB.

Figure 3.13 First-order system response: (a) impulse response; (b) impulse response and step response using
MATLAB®
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EXAMPLE 3.23 Response versus Pole Locations, Real Roots
Compare the time response with the pole locations for the system with a transfer function between input and output

given by

H(s) = 54— (3.52)

Solution. The numerator is

and the denominator is

as) = s>+ 3s+2=(+ 1)(s + 2).



|
The poles of H(s) are therefore ats = -1 and s = -2 and the one (finite) zero isats = — ~ 2. A complete
description of this transfer function is shown by the plot of the locations of the poles and the zeros in the s-plane

using the MATLAB pzmap (num,den) function with
Figure 3.14
Sketch of s-plane showing poles as crosses and zeros as circles

4 Imis)

num=[2 1];
den=1[1 3 2];

(see Fig. 3.14). A partial-fraction expansion of H(s) results in

] 3
+ .
s+1 542

H{s) = —

From Table A.2 we can look up the inverse of each term in H(s), which will give us the time function h(t) that

would result if the system input were an impulse. In this case,

—e~ T4 3e~H =0,
hity = & 3.53
) 0 t < 0. { )
“Fast poles” and “slow poles” refer to relative rate of signal decay.
Impulse response using MATLAB
We see that the shape of the component parts of h(t), which are e and e2¢, are determined by the poles ats = -1

and -2. This is true of more complicated cases as well: In general, the shapes of the components of the natural
response are determined by the locations of the poles of the transfer function.

A sketch of these pole locations and corresponding natural responses is given in Fig. 3.15, along with other pole
locations including complex ones, which will be discussed shortly.

The role of the numerator in the process of partial-fraction expansion is to influence the size of the coefficient that
multiplies each component. Because et decays faster than e, the signal corresponding to the pole at -2 decays
faster than the signal corresponding to the pole at —1. For brevity we simply say that the pole at -2 is faster than the
pole at —1. In general, poles farther to the left in the s-plane are associated with natural signals that decay faster than

those associated with poles closer to the imaginary axis. If the poles had been located with positive values of s (in



the right half of the s-plane), the response would have been a growing exponential function and thus unstable. Figure

3.16 shows that the fast 3e2! term dominates the early part of the time history and that the —e* term is the primary

contributor later on.

The purpose of this example is to illustrate the relationship between the poles and the character of the response,
which can be done exactly only by finding the inverse Laplace transform and examining each term as before.

However, if we simply wanted to plot the impulse response for this example, the expedient way would be to use the
MATLAB sequence

numH = [2 1]; % form numerator
denH=[132]; % form denominator
& Im(s)
STABLE UNSTABLE
LHF RHP
ul =
. ~ Re:}

Figure 3.15 Time functions associated with points in the s-plane (LHP, left half-plane; RHP, right half-plane)
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sysH=tf(numH,denH); % define system from its numerator and
denominator
impulse(sysH); % compute impulse response

Figure 3.16 Impulse response of Example 3.23 [Eq. (3.52)]

The result is shown in Fig. 3.16.




Complex poles can be defined in terms of their real and imaginary parts, traditionally referred to as

§=—0 % jw,.

This means that a pole has a negative real part if o is positive. Since complex poles always come in complex

conjugate pairs, the denominator corresponding to a complex pair will be

a(s) = (540 —jug)s+ o+ jug) = (s + z".F}E + mf,. {(3.54)

When finding the transfer function from differential equations, we typically write the result in the polynomial form

2
ary,

H(s) = (3.53)

g 1 e
5= 4 28 wys + w7

By multiplying out the form given by Eq. (3.54) and comparing it with the coefficients of the denominator of H(s) in
Eq. (3.55), we find the correspondence between the parameters to be

-

g =UCws and wi=uws/1—1=% (3.56)

Damping ratio; damped and undamped natural frequency
where the parameter ( is the damping ratio” and w),, is the undamped natural frequency. The poles of this transfer

function are located at a radius w,, in the s-plane and at an angle 8 = sin™! ¢, as shown in Fig. 3.17. Therefore, the

damping ratio reflects the level of damping as a fraction of the critical damping value where the poles become real.

In rectangular coordinates the poles are at s = — 0 +jwy. When { = 0, we have no damping, 6 = 0, and the

damped natural frequency wy = w,, the undamped natural frequency.

For purposes of finding the time response from Table A.2 corresponding to a complex transfer function, it is
easiest to manipulate the H(s) so that the complex poles fit the form of Eq. (3.54), because then the time response

can be found directly from the table. Equation (3.55) can be rewritten as

2

L}

H(s) = — 4 —. 357
: (s + Cwp)® + wi(l — £2) Sl

Standard second-order system impulse response

Therefore, from entry number 20 in Table A.2 and the definitions in Eq. (3.56), we see that the impulse response is

h(t) = ——m— ™" (sin wy1) 1(2). (3.58)

\.-"'f ]l — e
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Figure 3.18 Responses of second-order systems versus (: (a) impulse responses; (b) step responses

Figure 3.18(a) plots h(t) for several values of { such that time has been normalized to the undamped natural

frequency w,. Note that the actual frequency wy decreases slightly as the damping ratio increases. Note also that for

very low damping the response is oscillatory, while for large damping (¢ near 1) the response shows no oscillation.



A few of these responses are sketched in Fig. 3.15 to show qualitatively how changing pole locations in the s-plane
affect impulse responses. You will find it useful as a control designer to commit the image of Fig. 3.15 to memory so

that you can understand instantly how changes in pole locations influence the time response.
Stability depends on whether natural response grows or decays.

Step response

Three pole locations are shown in Fig. 3.19 for comparison with the corresponding impulse responses in Fig.
3.18(a). The negative real part of the pole, o, determines the decay rate of an exponential envelope that multiplies
the sinusoid, as shown in Fig. 3.20. Note that if 0 < 0 (and the pole is in the RHP), then the natural response will
grow with time, so, as defined earlier, the system is said to be unstable. If 0 = 0, the natural response neither grows
nor decays, so stability is open to debate. If 0 > 0, the natural response decays, so the system is stable.

It is also interesting to examine the step response of H(s)—that is, the response of the system H(s) to a unit step
input u = 1(t), where U(s) = 1/5. The step-response transform is given by Y(s) = H(s)U(s), which is found in Table
A.2, entry 21. Figure 3.18(b), which plots y(t) for several values of ¢, shows that the basic transient response
characteristics from the impulse response carry over quite well to the step response; the difference between the two

responses is that the step response’s final value is the commanded unit step.

b Imix) b Imix) + Imis)
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Figure 3.19 Pole locations corresponding to three values of ¢
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Figure 3.20 Second-order system response with an exponential envelope

EXAMPLE 3.24 Oscillatory Time Response

Discuss the correlation between the poles of

25 + 1
H(s) = ————— 3.59
(5) s 4+25+5 : :

and the impulse response of the system and find the exact impulse response. Solution. From the form of H(s) given
by Eq. (3.55), we see that

R
73t B V5 = 2.24 rad/sec

and

I
Lrnpp=2d=yit— ﬁ = (.447.
This indicates that we should expect a frequency of around 2 rad/sec with very little oscillatory motion. In order to

obtain the exact response, we manipulate H(s) until the denominator is in the form of Eq. (3.54):

25+ 1 25+ 1

H{s) = = 5 :
() s24+25+5 (s+1)2 422

From this equation we see that the poles of the transfer function are complex, with real part -1 and imaginary parts
+2j. Table A.2 has two entries, numbers 19 and 20, that match the denominator. The right side of the preceding
equation needs to be broken into two parts so that they match the numerators of the entries in the table:

25 + 1 541 | 2

= GE+1D2+2 “G+12+2 26+ 1D24+22



Impulse response by MATLAB

Thus, the impulse response is

I
hit) = (EH_’ cos 2t — Ef?_’ sin 21.‘) 1(1).

Figure 3.21 is a plot of the response and shows how the envelope attenuates the sinusoid, the domination of the 2
1
cos 2t term, and the small phase shift caused by the — 2 sin 2t term.

As in the previous example, the expedient way of determining the impulse response would be to use the MATLAB

sequence
numH =[2 1]; % form numerator
denH=[125]; % form denominator
sysH=tf(numH,denH); % define system by its numerator and denominator
t=0:0.1:6; % form time vector
y=impulse(sysH,t); % compute impulse response
plot(t,y); % plotimpulse response

as shown in Fig. 3.21.
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Figure 3.21 System response for Example 3.24

3.4 Time-Domain Specifications

Definitions of rise time, settling time, overshoot, and peak time
Specifications for a control system design often involve certain requirements associated with the time response of the

system. The requirements for a step response are expressed in terms of the standard quantities illustrated in Fig. 3.22:

1. The rise time t, is the time it takes the system to reach the vicinity of its new set point.

2. The settling time t, is the time it takes the system transients to decay.



3. The overshoot M, is the maximum amount the system overshoots its final value divided by its final value (and is

often expressed as a percentage).

4. The peak time t; is the time it takes the system to reach the maximum overshoot point.

Rise time t,

3.4.1 Rise Time

For a second-order system, the time responses shown in Fig. 3.18(b) yield information about the specifications that is
too complex to be remembered unless converted to a simpler form. By examining these curves in light of the
definitions given in Fig. 3.22, we can relate the curves to the pole-location parameters ¢ and w,. For example, all the
curves rise in roughly the same time. If we consider the curve for { = 0.5 to be an average, the rise time from y =

0.1 toy = 0.9 is approximately w,t. = 1.8. Thus we can say that

- 18

(s

Iy (3.60)

Although this relationship could be embellishedbyincluding the effectof the damping ratio, it is important to keep in
mind how Eq. (3.60) is typically used. It is accurate only for a second-order system with no zeros; for all other
systems it is a rough approximation to the relationship between t. and w,. Most systems being analyzed for control
systems design are more complicated than the pure second-order system, so designers use Eq. (3.60) with the

knowledge that it is a rough approximation only.

Figure 3.22 Definition of rise time t,, settling time t;, and overshoot M,,

3.4.2 Overshoot and Peak Time
For the overshoot M, we can be more analytical. This value occurs when the derivative is zero, which can be found

from calculus. The time history of the curves in Fig. 3.18(b), found from the inverse Laplace transform of H(S)/S, is

i o, z
yt)y=1—e"" ({:i.)f-; wyt + — sin m{,rf) ) (3.61)
wy _



—_—
= ) . . . . . .. .
where @d = @ny/ 1 =% apd g = (,- We may rewrite the preceding equation using the trigonometric identity

A sin(a) + B cos(a) = C cos(a - 3)

or

Fro—— |
C=vVA2+ B2 = —,
Vi—¢?
Y I ¢
B = tan '(—):tan —_
B V1—&2
Standard second-order system step response
- T
with = @, B = 1,and a = wy t, in a more compact form as
P
yir) = | — ————Ccos{wyl — f). (3.62)
v1-1¢?

When y(t) reaches its maximum value, its derivative will be zero:

; = g = ;
V(1) = ae " (cns wal + — sin ml;r) — e T (—wy sin wyl + o coswyt) =0
! L

i
= o ;
=g~ 7' (— + fﬂd) sin wyt = (.

()
This occurs when sin wy t = 0, so
Wilp =T
and thus

T
G (3.63)
cnlyf

Peak time t,

Substituting Eq. (3.63) into the expression for y(t), we compute

A X o
yp)=1+M,=1—¢ A (cusn + — sin .?T)
g

— ] _I_i,—a.-':,."w“'
Overshoot M,

Settling time t



Thus we have the formula
My=¢"V1=8 0<r <1, (3.64)

which is plotted in Fig. 3.23. Two frequently used values from this curve are M, = 0.16 for {, = 0.5 and M, = 0.05
for ¢, = 0.7.

3.4.3 Settling Time

The final parameter of interest from the transient response is the settling time t.. This is the time required for the

transient to decay to a small value so that y(t) is almost in the steady state. Various measures of smallness are
possible. For illustration we will use 1% as a reasonable measure; in other cases 2% or 5% are used. As an analytic
computation, we notice that the deviation of y from 1 is the product of the decaying exponential e™°t and the circular
functions sine and cosine. The duration of this error is essentially decided by the transient exponential, so we can

define the settling time as that value of t; when the decaying exponential reaches 1%:

e tonls — (0.01.
Therefore,
c.ﬂ')”lf_g — 4.6.

or

4.6 4.6 ;
t, = = —, (3.65)
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Figure 3.23 Overshoot M, versus damping ratio  for the second-order system

where o is the negative real part of the pole, as may be seen from Fig. 3.17.



Design synthesis

Equations (3.60), (3.64), and (3.65) characterize the transient response of a system having no finite zeros and two

complex poles and with undamped natural frequency w,, damping ratio ¢, and negative real part o. In analysis and

design, they are used to estimate rise time, overshoot, and settling time, respectively, for just about any system. In

design synthesis we wish to specify t,, M,,, and t; and to ask where the poles need to be so that the actual responses

are less than or equal to these specifications. For specified values of t,, M, and t;, the synthesis form of the equation

is then
1.8
Wy = — (3.66)
15
¢ = ¢(Mp) (from Fig. 3.23), (3.67)
4.6
o = T (3.68)

First-order system step response
These equations, which can be graphed in the s-plane as shown in Fig. 3.24(a—c), will be used in later chapters to
guide the selection of pole and zero locations to meet control system specifications for dynamic response.

It is important to keep in mind that Egs. (3.66)-(3.68) are qualitative guides and not precise design formulas. They
are meant to provide only a starting point for the design iteration. After the control design is complete, the time
response should always be checked by an exact calculation, usually by numerical simulation, to verify whether the

time specifications have actually been met. If not, another iteration of the design is required.

For a first-order system,

His) = *
R
and the transform of the step response is
€7
Ys) = ———.
S(s+a)
We see from entry 11 in Table A.2 that Y(s) corresponds to
y(t) = (1 —e ") 1(1). (3.69)
4 Imis) i Ib‘ % t Imis) Imix) 4 Imis)

Reix) Reix) Reix)




Figure 3.24 Graphs of regions in the s-plane delineated by certain transient requirements: (a) rise time; (b) overshoot;

(c) settling time; (d) composite of all three requirements

Comparison with the development for Eq. (3.65) shows that the value of t, for a first-order system is the same:

4.6

[, = —,
No overshoot is possible, so M, = 0. The rise time from y = 0.1 to y = 0.9 can be seen from Fig. 3.13 to be

I In0.9 —1n 0.1 2
r — —

a o

Time constant T

However, it is more typical to describe a first-order system in terms of its time constant, which was defined in Fig.
3.13tobeT = 1/0.

EXAMPLE 3.25 Transformation of the Specifications to the s-plane

Find the allowable regions in the s-plane for the poles of a transfer function of a system if the system response

requirements are t. < 0.6 sec, M, < 10%, and t; < 3 sec.

Solution. Without knowing whether or not the system is second order with no zeros, it is impossible to find the
allowable region accurately. Regardless of the system, we can obtain a first approximation using the relationships for

a second-order system. Equation (3.66) indicates that

w, = — = 3.0 rad/sec,
i,
Eq. (3.67) and Fig. 3.23 indicate that
¢ = 0.6,
and Eq. (3.68) indicates that
4.6 L5
o —=] 5500,
Z 5 ec

The allowable region is anywhere to the left of the solid line in Fig. 3.25. Note that any pole meeting the ¢ and w,

restrictions will automatically meet the o restriction.

Effect of zeros

The effect of zeros near poles

3.5 Effects of Zeros and Additional Poles



Relationships such as those shown in Fig. 3.24 are correct for the simple second-order system; for more complicated
systems they can be used only as guidelines. If a certain design has an inadequate rise time (is too slow), we must
raise the natural frequency; if the transient has too much overshoot, then the damping needs to be increased; if the
transient persists too long, the poles need to be moved to the left in the s-plane.

Thus far only the poles of H(s) have entered into the discussion. There may also be zeros of H(s).® At the level of
transient analysis, the zeros exert their influence by modifying the coefficients of the exponential terms whose shape
is decided by the poles, as seen in Example 3.23. To illustrate this further, consider the following two transfer

functions, which have the same poles but different zeros:

3

Imis) O}

Figure 3.25 Allowable region in s-plane for Example 3.25

"

(s4+ 1)(s + 2)

2 2
= - . 3.70
s+ 1 s+ 2 ( )

Hi(s) =

2s + 1.1)
LIs+1Ms+2)

_i({}.l i 0.9
TN g gD

0.18 1.64
= 4 3 (3.71)
s+ 1 s+ 2

Hi(s) =

They are normalized to have the same DC gain (i.e., gain at s = 0). Notice that the coefficient of the (s + 1) term has

been modified from 2 in H1(s) to 0.18 in H,(s). This dramatic reduction is brought about by the zero ats = -1.1 in
H ,(s), which almost cancels the pole at s = — 1. If we put the zero exactly at s = - 1, this term will vanish

completely. In general, a zero near a pole reduces the amount of that term in the total response. From the equation

for the coefficients in a partial-fraction expansion, Eq. (3.43),

Cl = ('T _ .".Jl )‘Fh{'ﬁ} |,'-'=p| £l



we can see that if F(s) has a zero near the pole at s = p;, the value of F(s) will be small because the value of s is
near the zero. Therefore, the coefficient C;, which reflects how much of that term appears in the response, will be

small.

In order to take into account how zeros affect the transient response when designing a control system, we consider
transfer functions with two complex poles and one zero. To expedite the plotting for a wide range of cases, we write

the transform in a form with normalized time and zero locations:

(s/afwy) + 1

His) = . 3,72

(5) (s/wy)? +2¢(s/wy) + 1 { )
The zero is located at s = —alw,, = -ao. If a is large, the zero will be far removed from the poles and the zero will
have little effect on the response. If a = = 1, the value of the zero will be close to that of the real part of the poles

and can be expected to have a substantial influence on the response. The step-response curves for t, = 0.5 and for

several values of a are plotted in Fig. 3.26. We see that the major effect of the zero is to increase the overshoot Mp,
whereas it has very little influence on the settling time. A plot of M, versus a is given in Fig. 3.27. The plot shows

that the zero has very little effect on M, if a > 3, but as a decreases below 3, it has an increasing effect, especially

when a = 1 or less.

Step response of Hix)

oo

10

iy,

Figure 3.26 Plots of the step response of a second-order system with a zero ({ = 0.5)
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Figure 3.27 Plot of overshoot M,, as a function of normalized zero location a. At a = 1, the real part of the zero

equals the real part of the poles
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Figure 3.28 Second-order step responses y(t) of the transfer functions H(s), Hy(s), and Hy4(s)

Figure 3.26 can be explained in terms of Laplace-transform analysis. First we replace s/w, with s:

sfal + 1

H(s) = ————,
() LMl |

This has the effect of normalizing frequency in the transfer function and normalizing time in the corresponding step

responses; thus T = w,t. We then rewrite the transfer function as the sum of two terms:

| 5

_— . 3,73
.92+2E.9+l+cf¢‘53—|—2£;5—|—| ( )

H(s) =

The first term, which we shall call Hy(s), is the original term (having no finite zero), and the second term Hy(s),

which is introduced by the zero, is a product of a constant (1/af) times s times the original term. The Laplace



transform of df/dt is sF(s), so Hy(s) corresponds to a product of a constant times the derivative of the original term,

i.e.,

-5
y(@) = yolr) + yalt) = yolt) + E}‘n(f}.

RHP or nonminimum-phase zero
The step responses of Hy(s) denoted by y,(t) and Hy(s) denoted by y4(t) are plotted in Fig. 3.28. Looking at these

curves, we can see why the zero increased the overshoot: The derivative has a large hump in the early part of the

curve, and adding this to the H(s) response lifts up the total response of H(s) to produce the overshoot. This analysis

is also very informative for the case when a < 0 and the zero is in the RHP where s > 0. (This is typically called an
RHP zero and is sometimes referred to as a nonminimum-phase zero, a topic to be discussed in more detail in
Section 6.1.1.) In this case the derivative term is subtracted rather than added. A typical case is sketched in Fig. 3.29.

EXAMPLE 3.26 Effect of the Proximity of the Zero to the Pole Locations on the Transient Response

Consider the second-order system with a finite zero and unity DC gain,

24 (s+2)
His) = — ]
= R DG
15
1.0 > —
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Figure 3.29 Step responses y(t) of a second-order system with a zero in the RHP: a nonminimum-phase system

Determine the effect of the zero location (s = —Z) on the unit step response when Z = {1,2,3,4,5,6}.
Solution. The step response is the inverse Laplace transform of
24 (s+2) 24 § 24

I
B e TS 2 -
B = S R OETE 2 GTheEs | GEEED

and is the sum of the two parts,

y() = y1(O + y,(D),



where

I
nit) = "’f yi(t)dt = —3e W 4207 1 1,
0

Tt

and

j
y{t) =14 (I—H — 3) e Y + (2 — E) e o,
i T

Itisseen that if Z = 4 or Z = 6, one of the modes of the systemisabsent from the output, and the response is first
order due to the pole—zero cancellations. The step responses of the system is shown in Fig. 3.30 (Z = 4, dashed, Z =
6 dot dashed). It is seen that the effect of the zero is most pronounced in terms of the additional overshoot for Z = 1
(zero location closest to the origin). The system also has overshoot for Z = 2, 3. For Z = 4 or Z = 6 the responses
are first order as expected. It is interesting that for Z = 5, where the zero is located between the two poles, there is

no overshoot.
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Figure 3.30 Effect of zero on transient response

EXAMPLE 3.27 Effect of the Proximity of the Complex Zeros to the Lightly Damped Poles
Consider the third-order feedback system with a pair of lightly damped poles and a pair of complex zeros with the

transfer function,



(s+a) + B>

H(z) = = -
(s4+ D [(s+0.1)2 +1]

Determine the effect of the complex zero locations (s = —a *+ jf3) on the unit step response of the system for the
three different zero locations (o, ) = (0.1, 1.0), (a, B) = (0.25, 1.0), and (a, ) = (0.5, 1.0) as shown in Fig. 3.31.
Solution. We plot the three unit step responses using MATLAB as shown in Fig. 3.32. The effect of the lightly
damped modes are clearly seen as oscillations in the step responses for the cases where (a, ) = (0.25, 1.0) or (a, B)
= (0.5, 1.0), that is, when the complex zeros are not close to the locations of the lightly damped poles as shown in
Fig. 3.31. On the other hand, if the complex zeros cancel the lightly damped poles exactly as is the case for (a, B) =
(0.1, 1.0), the oscillations are completely eliminated in the step response. In practice, the locations of the lightly
damped poles are not known precisely and exact cancellation is not really possible. However, placing the complex
zeros near the locations of the lightly damped poles may provide sufficient improvement in step response
performance. We will come back to this technique later in Chapters 5, 7, and 10 in the context of dynamic

compensator design.

Figure 3.31 Locations of complex zeros
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Figure 3.32 Effect of complex zeros on transient response
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EXAMPLE 3.28 Aircraft Response Using MATLAB
The transfer function between the elevator and altitude of the Boeing 747 aircraft described in Section 10.3.2 can be

approximated as

his) B 30(s — 6)
5.(5)  s(s2+4s+13)

1. Use MATLAB to plot the altitude time history for a 1° impulsive elevator input. Explain the response, noting the

physical reasons for the nonminimum-phase nature of the response.

2. Examine the accuracy of the approximations for t,, t;, and M, [Egs. (3.60) and (3.65) and Fig. 3.23].

Solution
1. The MATLAB statements to create the impulse response for this case are

u=-1; % u=deltae
numG = u%30%[1 —6]; % form numerator
denG =[14 13 0]; % form denominator

% define system by its numerator and denominator
y=impulse(sysG); % compute impulse response; y=h

plot(y); % plot impulse response

The result is the plot shown in Fig. 3.33. Notice how the altitude drops initially and then rises to a new final

sysG=tf(numG,denG)

value. The final value is predicted by the Final Value Theorem:

30(s — 6)(—1) 30(—6)(—1)
h(ox) =5 @ T A +13)], g 3 +13.8

Response of a nonminimum-phase system



The fact that the response has a finite final value for an impulsive input is due to the s-term in the denominator. This
represents a pure integration and the integral of an impulse function is a finite value. If the input had been a step,
the altitude would have continued to increase with time; in other words the integral of a step function is a ramp

function.
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Figure 3.33 Response of an airplane’s altitude to an impulsive elevator input

The initial drop is predicted by the RHP zero in the transfer function. The negative elevator deflection is defined to
be upward by convention (see Fig. 10.30). The upward deflection of the elevators drives the tail down, which rotates
the craft nose up and produces the climb. The deflection at the initial instant causes a downward force before the
craft has rotated; therefore, the initial altitude response is down. After rotation, the increased lift resulting from the

increased angle of attack of the wings causes the airplane to climb.

2. The rise time from Eq. (3.60) is

18

fEs—=

1.8
Wy V13

= ().5 sec.

We find the damping ratio ¢ from the relation
2y == = i——e (.55,

From Fig. 3.23 we find the overshoot Mp to be 0.14. Because 2{w, = 20 = 4, [Eq. (3.65)] shows that

46 406
fy = — = — = 2.3 sec.
o 2
Detailed examination of the time history h(t) from MATLAB output shows that t, = 0.43 sec, M, = 0.14, and t; = 2.6

sec, which are reasonably close to the estimates. The only significant effect of the nonminimum-phase zero was to

cause the initial response to go in the “wrong direction” and make the response somewhat sluggish.



Effect of extra pole

In addition to studying the effects of zeros, it is useful to consider the effects of an extra pole on the standard

second-order step response. In this case, we take the transfer function to be

1

H(s) = - e .
(s/atwy + DI(s/wy)* + 20 (s/wy) + 1]

(3.74)

Plots of the step response for this case are shown in Fig. 3.34 for { = 0.5 and several values of a. In this case the

major effect is to increase the rise time. A plot of the rise time versus a is shown in Fig. 3.35 for several values of C.

From this discussion we can draw several conclusions about the dynamic response of a simple system as revealed

by its pole-zero patterns:

Effects of Pole-Zero Patterns on Dynamic Response

1. For a second-order system with no finite zeros, the transient response parameters are approximated as follows:

- . 1.8
Rise time: ty = —,
ty
5%, ©=0.1.
Overshoot: M,=1 16%, ¢=05 (see Fig. 3.23),
35%., { = 0.3,
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Figure 3.34 Step responses for several third-order systems with { = 0.5
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Figure 3.35 Normalized rise time for several locations of an additional pole

Settling time: fy = —.
o

2. A zero in the left half-plane (LHP) will increase the overshoot if the zero is within a factor of 4 of the real part of
the complex poles. A plot is given in Fig. 3.27.

3. A zero in the RHP will depress the overshoot (and may cause the step response to start out in the wrong
direction).

4. An additional pole in the LHP will increase the rise time significantly if the extra pole is within a factor of 4 of

the real part of the complex poles. A plot is given in Fig. 3.35.

3.6 Stability

For nonlinear and time-varying systems, the study of stability is a complex and often difficult subject. In this section,

we will consider only LTI systems for which we have the following condition for stability:

An LTI system is said to be stable if all the roots of the transfer function denominator polynomial have negative

real parts (i.e., they are all in the left hand s-plane) and is unstable otherwise.

Stable system

A system is stable if its initial conditions decay to zero and is unstable if they diverge. As just stated, an LTI
(constant parameter) system is stable if all the poles of the system are strictly inside the left half s-plane [i.e., all the
poles have negative real parts (s = — o0 + jw, o > 0)]. If any pole of the system is in the right half s-plane (i.e., has a
positive real part,s = — 0 + jw, 0 < 0), then the system is unstable, as shown in Fig. 3.15. With any simple pole on
the jw axis (o0 = 0), small initial conditions will persist. For any other pole with o = 0, oscillatory motion will
persist. Therefore, a system is stable if its transient response decays and unstable if it does not. Figure 3.15 shows the

time response of a system due to its pole locations.



In later chapters we will address more advanced notions of stability, such as Nyquist’s frequency-response stability
test (Chapter 6) and Lyapunov stability (Chapter 9).

3.6.1 Bounded Input-Bounded Output Stability

A system is said to have bounded input-bounded output (BIBO) stability if every bounded input results in a bounded
output (regardless of what goes on inside the system). A test for this property is readily available when the system

response is given by convolution. If the system has input u(t), output y(t), and impulse response h(t), then

vt} = [ hitu(r — t)dr. (3.75)

o0

If u(t) is bounded, then there is a constant M such that |u| < M < <o, and the output is bounded by

lv| = ‘f hun"r‘
Eflhlluidr

:'-Mf \h(7)| dx.

o

.8

Thus the output will be bounded if J- o IhldT is bounded.

On the other hand, suppose the integral is not bounded and the bounded input u(t-1) = +1 if h(1) > 0 and u(t -
7 = —1if h(1) < 0. In this case,

Y1) = f h(z)ldr, 5

o0

and the output is not bounded. We conclude that

VI
Hlrh

Figure 3.36 Capacitor driven by current source

Mathematical definition of BIBO stability

The system with impulse response h(t) is BIBO-stable if and only if the integral

f. lh{T)|dT < 0.

oo

EXAMPLE 3.29 BIBO Stability for a Capacitor



As an example, determine the capacitor driven by a current source sketched in Fig. 3.36. The capacitor voltage is the
output and the current is the input.

Solution. The impulse response of this setup is h(t) = 1 (t), the unit step. Now for this response, is not bounded. The
capacitor is not BIBO-stable. Notice that the transfer function of the system is 1/s and has a pole on the imaginary
axis. Physically we can see that constant input current will cause the voltage to grow, and thus the system response is
neither bounded nor stable. In general, if an LTI system has any pole on the imaginary axis or in the RHP, the
response will not be BIBO-stable; if every pole is inside the LHP, then the response will be BIBO-stable. Thus for

these systems, pole locations of the transfer function can be used to check for stability.

oo Lo
f \h(t)|dT _] dt (3.77)
of =00 ]

Determination of BIBO stability by pole location

An alternative to computing the integral of the impulse response or even to locating the roots of the characteristic

equation is given by Routh’s stability criterion, which we will discuss in Section 3.6.3.

3.6.2 Stability of LTI Systems

Consider the LTI system whose transfer function denominator polynomial leads to the characteristic equation

£ o L b md T gy =0, (3.78)

Assume that the roots {pi} of the characteristic equation are real or complex, but are distinct. Note that Eq. (3.78)
shows up as the denominator in the transfer function for the system as follows before any cancellation of poles by

zeros is made:

Yis) bos™ + by 4o by,
R(s)  st+as"1+-..+4a,
KL, (s—z)

= ., m=n. (3.79)
Ther s

The solution to the differential equation whose characteristic equation is given by Eq. (3.78) may be written using

TEn=

partial-fraction expansion as
R
¥ =) K, (3.80)
=l

where {pi} are the roots of Eq. (3.78) and {K;} depend on the initial conditions and zero locations. If a zero were to
cancel a pole in the RHP for the transfer function, the corresponding K; would equal zero in the output, but the
unstable transient would appear in some internal variable.

The system is stable if and only if (necessary and sufficient condition) every term in Eq. (3.80) goes to zero as t —

OO:



el — 0 forall p;.

This will happen if all the poles of the system are strictly in the LHP, where

Re{p;i} < 0. (3.81)

Internal stability occurs when all poles are strictly in the LHP
The jw axis is the stability boundary
If any poles are repeated, the response must be changed from that of Eq. (3.80) by including a polynomial in t in
place of K;, but the conclusion is the same. This is called internal stability. Therefore, the stability of a system can be
determined by computing the location of the roots of the characteristic equation and determining whether they are
all in the LHP. If the system has any poles in the RHP, it is unstable. Hence the jw axis is the stability boundary
between asymptotically stable and unstable response. If the system has nonrepeated jw axis poles, then it is said to
be neutrally stable. For example, a pole at the origin (an integrator) results in a nondecaying transient. A pair of
complex jw axis poles results in an oscillating response (with constant amplitude). If the system has repeated poles
on the jw axis, then it is unstable [as it results in te *J%i terms in Eq. (3.80)]. For example, a pair of poles at the
origin (double integrator) results in an unbounded response. MATLAB software makes the computation of the poles,
and therefore determination of the stability of the system, relatively easy.

An alternative to locating the roots of the characteristic equation is given by Routh’s stability criterion, which we

will discuss next.

3.6.3 Routh’s Stability Criterion

There are several methods of obtaining information about the locations of the roots of a polynomial without actually
solving for the roots. These methods were developed in the 19th century and were especially useful before the
availability of MATLAB software. They are still useful for determining the ranges of coefficients of polynomials for
stability, especially when the coefficients are in symbolic (nonnumerical) form. Consider the characteristic equation

of an nth-order system:’

A necessary condition for Routh stability

as) ="+ ais” L+ a5 2+ o+ ay_15 + an. (3.82)

It is possible to make certain statements about the stability of the system without actually solving for the roots of the

polynomial. This is a classical problem and several methods exist for the solution.

A necessary condition for stability of the system is that all of the roots of Eq. (3.82) have negative real parts, which in

turn requires that all the {ai} be positive.'°

A necessary (but not sufficient) condition for stability is that all the coefficients of the characteristic polynomial be

positive.

A necessary and sufficient condition for stability



If any of the coefficients are missing (are zero) or are negative, then the system will have poles located outside the
LHP. This condition can be checked by inspection. Once the elementary necessary conditions have been satisfied, we
need a more powerful test. Equivalent tests were independently proposed by Routh in 1874 and Hurwitz in 1895;
we will discuss the former version. Routh’s formulation requires the computation of a triangular array that is a

function of the {a;}. He showed that a necessary and sufficient condition for stability is that all of the elements in the

first column of this array be positive.

A system is stable if and only if all the elements in the first column of the Routh array are positive.

Routh array

To determine the Routh array, we first arrange the coefficients of the characteristic polynomial in two rows,

beginning with the first and second coefficients and followed by the even-numbered and odd-numbered coefficients:

s+ 1 ay aa

I, TR 7 as

We then add subsequent rows to complete the Routh array:

Row n gk | ax
Row n-—1 sl ay az ds
Row n-—2 52 by b by
Row n-3 sh3. Cis T v S o=
Row 2 52 - *

Row | e *

Row 0O s *

We compute the elements from the (n — 2) th and (n — 3) th rows as follows:



1 @ ]
det
ayp  djs drar — dz
b =— — — =
il €
1 ay ]
det
] ds djay — ds
by = ——= = = ,
iy i
m o
det 9
ay  ag fdjag — dj
by = ——-= 4 = *
iy i
I ap a3 1
det
b] b,‘g b[{h —mbg
0] == = = = 5
by b
i a)  ds )
det :
b] b5 b|a5 —ﬂ|b3
= = — = = 5
b| b|
= @ a -
det
by by biar — aiby
1 = — = — = :
.‘IJ‘| h‘|

Note that the elements of the (n — 2) th row and the rows beneath it are formed from the two previous rows using
determinants, with the two elements in the first column and other elements from successive columns. Normally there
are n + 1 elements in the first column when the array terminates. If these are all positive, then all the roots of the
characteristic polynomial are in the LHP. However, if the elements of the first column are not all positive, then the
number of roots in the RHP equals the number of sign changes in the column. A pattern of +, -, + is counted as two
sign changes: one change from + to — and another from — to +. For a simple proof of the Routh test, the reader is
referred to Ho et al. (1998).

EXAMPLE 3.30 Routh’s Test
The polynomial
a(s) = s® + 4s° + 3s* + 283 + 2 + 45+ 4
satisfies the necessary condition for stability since all the {a;} are positive and nonzero. Determine whether any of the

roots of the polynomial are in the RHP.
Solution. The Routh array for this polynomial is

5° I 3 1 4
P 4 2 4 0
4 5 4.3-1-2 4.1-4-1 4:d—71:0
5 - — 0= 4 =

2 4 4 4
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2 n——(—E) 14—(—-(})
2 3 i 5 4 7
’ - 2 = 2
3(—2)—3
76 5 .
’ 5 3
76
, e il
£V 4 = 74
15

We conclude that the polynomial has RHP roots, since the elements of the first column are not all positive. In fact,

there are two poles in the RHP because there are two sign changes.!!

Note that, in computing the Routh array, we can simplify the rest of the calculations by multiplying or dividing a

row by a positive constant. Also note that the last two rows each have one nonzero element.

Routh’s method is also useful in determining the range of parameters for which a feedback system remains stable.

EXAMPLE 3.31 Stability versus Parameter Range

Consider the system shown in Fig. 3.37. The stability properties of the system are a function of the proportional

feedback gain K. Determine the range of K over which the system is stable.

Solution. The characteristic equation for the system is given by

s+ 1

14K =
s{s — 1)(s 4+ 06)

or

s + 552 + (K-6)s + K = 0.

s+ 1
| sty — 1)x + 6)

Figure 3.37 A feedback system for testing stability

The corresponding Routh array is



53 1 K —b

s2 5 K
s (4K = 30)/5
0 K.

For the system to be stable, it is necessary that

4K — 30

- =0 and K =1,

or

K> 75and K > 0.

Computing roots by MATLAB

Thus, Routh’s method provides an analytical answer to the stability question. Although any gain satisfying this
inequality stabilizes the system, the dynamic response could be quite different depending on the specific value of K.
Given a specific value of the gain, we may compute the closed-loop poles by finding the roots of the characteristic
polynomial. The characteristic polynomial has the coefficients represented by the row vector (in descending powers
of s)

denT= [1 5 K-6 K],
and we may compute the roots using the MATLAB function

roots(denT).

For K = 7.5 the roots are at — 5 and *1.22j, and the system is neutrally stable. Note that Routh’s method predicts
the presence of poles on the jw axis for K = 7.5. If we set K =13, the closed-loop poles are at —-4.06 and -0.47 +
1.7j, and for K = 25, they are at -1.90 and -1.54 = 3.27j. In both these cases, the system is stable as predicted by
Routh’s method. Figure 3.38 shows the transient responses for the three gain values. To obtain these transient

responses, we compute the closed-loop transfer function

}”{5}_ Kis+1)

T(s) = — = \
() R(s) 452 (K -6+ K

—0.5

=1.0
0

Time (sec)



Figure 3.38 Transient responses for the system in Fig. 3.37

1

" (s + Ly + ﬂ oY
Figure 3.39 System with proportional-integral (PI) control
so that the numerator polynomial is expressed as
numT = [KK]; % form numerator
and denT is as before. The MATLAB commands
sysT=tf(numT,denT); % define system by its numerator and denominator

step(sysT); % compute step response

produce a plot of the (unit) step response.

EXAMPLE 3.32 Stability Versus Two Parameter Ranges
Find the range of the controller gains (K, K;) so that the PI (proportional-integral; see Chapter 4) feedback system in
Fig. 3.39 is stable.

Solution. The characteristic equation of the closed-loop system is

K; |
I K== -0
+( T s){x—k”fs—i—i)

which we may rewrite as
2+ 352+ (2 + Ks + K, =0.

The corresponding Routh array is

3 I 2+ K
.S'E : 3 Kg
5 (643K — K;)/3

50 K;.

For internal stability we must have

]
Kj>=0 and K = EK; — 2.

The allowable region can be plotted in MATLAB using the ensuing commands
th=@(ki,k) 6+ 3*k-ki;
ezplot(fh)
hold on;
f=@(ki,k) ki;



ezplot(f);
and is the shaded area in the (K;, K) plane shown in Fig. 3.40, which represents an analytical solution to the stability

question. This example illustrates the real value of Routh’s approach and why it is superior to the numerical

approaches. It would

& h’

Time (sec)

Figure 3.41 Transient response for the system in Fig. 3.39

have been more difficult to arrive at these bounds on the gains using numerical search techniques. The closed-loop

transfer function is

Y(s) - Ks + K
R S H+324+Q+Ks+Kr

MATLAB roots

As in Example 3.31, we may compute the closed-loop poles for different values of the dynamic compensator gains

by using the MATLAB function roots on the denominator polynomial
denT= [1 3 24+KKI]. %form denominator



Similarly, we may find the zero by finding the root of the numerator polynomial

numT = [KKI]. % form numerator

The closed-loop zero of the system is at —K; /K. Figure 3.41 shows the transient response for three sets of feedback
gains. For K = 1 and K; = 0, the closed-loop poles are at 0 and -1.5 * 0.86j, and there is a zero at the origin. For K
= K; = 1, the poles and zeros are all at -1. For K = 10 and K; = 5, the closed-loop poles are at -0.46 and -1.26
+3.3j and the zero is at —0.5. The step responses were again obtained using the MATLAB function

sysT=tf(numT,denT) % define system by its numerator and denominator

step(sysT). % compute step response

There is a large steady-state error in this case when K; = 0. (See Chapter 4.)

Special case I

If the first term in one of the rows is zero or if an entire row is zero, then the standard Routh array cannot be

formed, so we have to use one of the special techniques described next.

A Special Cases

If only the first element in one of the rows is zero, then we can replace the zero with a small positive constant € > 0

and proceed as before. We then apply the stability criterion by taking the limit as € — O.

EXAMPLE 3.33 Routh’s Test for Special Case I
Consider the polynomial

a(s) = s° + 3s*+ 253 + 652 + 65 + 9.

Determine whether any of the roots are in the RHP.

Solution. The Routh array is

v 1 2 B
gt 4 6 9
$: 0 3 0
New s’ € 3 0 <« Replace zero by €
= 30
i 3—5 0 0
P B 0

There are two sign changes in the first column of the array, which means there are two poles not in the LHP.!2

Special case II

Another special case occurs when an entire row of the Routh array is zero. This indicates that there are complex
conjugate pairs of roots that are mirror images of each other with respect to the imaginary axis. If the ith row is zero,

we form an auxiliary equation from the previous (nonzero) row:



ai(s) = ﬂgx“""' —I—ﬁ].‘_{f 1 4 ﬁ;.&'f 3 e (3.83)

Here {[3;} are the coefficients of the (i + 1)th row in the array. We then replace the ith row by the coefficients of the

derivative of the auxiliary polynomial and complete the array. However, the roots of the auxiliary polynomial in Eq.

(3.83) are also roots of the characteristic equation, and these must be tested separately.

EXAMPLE 3.34 Routh Test for Special Case II
For the polynomial
a(s) = s° + s* + 11s® + 23s% + 28s + 12,

determine whether there are any roots on the jw axis or in the RHP.

Solution. The Routh array is

PRk | 11 28

53 5 3a 12

§3: 6.4 256 0

52 3 12

5 0 0 «— a(s) = 3s% + 12
lay (s

New §: (5} () — agits) = fis
s
sV |2

There are no sign changes in the first column. Hence all the roots have negative real parts except for a pair on the
imaginary axis. We may deduce this as follows: When we replace the zero in the first column by € > 0, there are no
sign changes. If we let € < 0, then there are two sign changes. Thus, if € = 0, there are two poles on the imaginary

axis, which are the roots of
al(s) =s2+4 =0,
or
s = *j2.

This agrees with the fact that the actual roots are at -3, *+2j, -1, and -1, as computed using the roots command in

MATLAB.

The Routh-Hurwitz result assumes that the characteristic polynomial coefficients are known precisely. It is well-
known that the roots of a polynomial can be very sensitive to even slight perturbations in the polynomial
coefficients. If the range of variation on each one of the polynomial coefficients is known, then a remarkable result
called the Kharitonov Theorem (1978) allows one to test just four so-called Kharitonov polynomials, using the Routh

test, to see if the polynomial coefficient variations result in instability.

A 3.7 Obtaining Models from Experimental Data

There are several reasons for using experimental datato obtain a model of the dynamic system to be controlled. In
the first place, the best theoretical model built from equations of motion is still only an approximation of reality.

Sometimes, as in the case of a very rigid spacecraft, the theoretical model is extremely good. Other times, as with



many chemical processes such as papermaking or metalworking, the theoretical model is very approximate. In every
case, before the final control design is done, it is important and prudent to verify the theoretical model with
experimental data. Second, in situations for which the theoretical model is especially complicated or the physics of
the process is poorly understood, the only reliable information on which to base the control design is the
experimental data. Finally, the system is sometimes subject to online changes, which occur when the environment of
the system changes. Examples include when an aircraft changes altitude or speed, a paper machine is given a
different composition of fiber, or a nonlinear system moves to a new operating point. On these occasions we need to
“retune” the controller by changing the control parameters. This requires a model for the new conditions and

experimental data are often the most effective, if not the only, information available for the new model.

Four sources of experimental data

Transient response

Frequency response

Stochastic steady-state
There are four kinds of experimental data for generating a model:
1. transient response, such as comes from an impulse or a step;
2. frequency-response data, which result from exciting the system with sinusoidal inputs at many frequencies;

3. stochastic steady-state information, as might come from flying an aircraft through turbulent weather or from some

other natural source of randomness;
4. pseudorandom-noise data, as may be generated in a digital computer.
Each class of experimental data has its properties, advantages, and disadvantages.

Transient response data are quick and relatively easy to obtain. They are also often representative of the natural
signals to which the system is subjected. Thus a model derived from such data can be reliable for designing the
control system. On the other hand, in order for the signal-to-noise ratio to be sufficiently high, the transient response
must be highly noticeable. Consequently, the method is rarely suitable for normal operations, so the data must be
collected as part of special tests. A second disadvantage is that the data do not come in a form suitable for standard
control systems designs, and some parts of the model, such as poles and zeros, must be computed from the data.'3

This computation can be simple in special cases or complex in the general case.

Frequency-response data (see Chapter 6) are simple to obtain but substantially more time consuming than
transient-response information. This is especially so if the time constants of the process are large, as often occurs in
chemical processing industries. As with the transient-response data, itis important to have agood signal-to-noise ratio,
so obtaining frequency-response data can be very expensive. On the other hand, as we will see in Chapter 6,
frequency-response data are exactly in the right form for frequency-response design methods; so once the data have

been obtained, the control design can proceed immediately.

Normal operating records from a natural stochastic environment at first appear to be an attractive basis for

modeling systems, since such records are by definition nondisruptive and inexpensive to obtain. Unfortunately, the



quality of such data is inconsistent, tending to be worst just when the control is best, because then the upsets are
minimal and the signals are smooth. At such times, some or even most of the system dynamics are hardly excited.
Because they contribute little to the system output, they will not be found in the model constructed to explain the
signals. The result is a model that represents only part of the system and is sometimes unsuitable for control. In some
instances, as occurs when trying to model the dynamics of the electroencephalogram (brain waves) of a sleeping or
anesthetized person to locate the frequency and intensity of alpha waves, normal records are the only possibility.

Usually they are the last choice for control purposes.

Pseudorandom noise (PRBS)

Finally, the pseudorandom signals that can be constructed using digital logic have much appeal. Especially

interesting for model making is the pseudorandom binary signal (PRBS). The PRBS takes on the value + a or — A
according to the output (1 or 0) of a feedback shift register. The feedback to the register is a binary sum of various
states of the register that have been selected to make the output period (which must repeat itself in finite time) as

220 _1 (over a million) steps are produced before the

long as possible. For example, with a register of 20 bits,
pattern repeats. Analysis beyond the scope of this text has revealed that the resulting signal is almost like a
broadband random signal. Yet this signal is entirely under the control of the engineer who can set the level (A) and
the length (bits in the register) of the signal. The data obtained from tests with a PRBS must be analyzed by computer
and both special-purpose hardware and programs for general-purpose computers have been developed to perform

this analysis.

3.7.1 Models from Transient-Response Data

To obtain a model from transient data we assume that a step response is available. If the transient is a simple
combination of elementary transients, then a reasonable low-order model can be estimated using hand calculations.
For example, consider the step response shown in Fig. 3.42. The response is monotonic and smooth. If we assume

that it is given by a sum of exponentials, we can write

y(t) = y(oo) + Ae ™ + Be P - Ce™ 4 - . (3.84)

Subtracting off the final value and assuming that —a is the slowest pole, we write

y — y(oo) = Ae™™,
[Dg|ﬂ|_"-' e "-fg(z:ll = 1ngx‘5§ — ! [ng £,

This is the equation of a line whose slope determines a and intercept determines A. If we fit a line to the plot of
log;o[y-y )1 (or log;o[y(|) — yI if A is negative), then we can estimate A and a. Once these are estimated, we plot y
— [y(e) + Ae™®], which as a curve approximates Be™ and on the log plot is equivalent to log;, B — 0.43453t. We
repeat the process, each time removing the slowest remaining term, until the data stop being accurate. Then we plot
the final model step response and compare it with data so we can assess the quality of the computed model. It is
possible to get a good fit to the step response and yet be far off from the true time constants (poles) of the system.

However, the method gives a good approximation for control of processes whose step responses look like Fig. 3.42.



£ vif)

Figure 3.42
A step response characteristic of many chemical processes

TABLE 3.1

Step Response Data

t y(t) t y(t)

0.1 0.000 1.0 0.510
0.1 0.005 1.5 0.700
0.2 0.034 2.0 0.817
0.3 0.085 2.5 0.890
0.4 0.140 3.0 0.932
0.5 0.215 4.0 0.975

o0 1.000

Sinha and Kuszta (1983).

EXAMPLE 3.35 Determining the Model from Time-Response Data
Find the transfer function that generates the data given in Table 3.1 and which are plotted in Fig. 3.43.

Solution. Table 3.1 shows and Fig. 3.43 implies that the final value of the data is y(e) = 1. We know that A is
negative because y( o) is greater than y(t). Therefore, the first step in the process is to plot log;o[y(e) — yl, which is

shown in Fig. 3.44. From the line (fitted by eye) the values are

log |A| = 0.125,
AR e ].f}ﬂ?ﬁ-fl,]ﬁ? _ 9,135 e
Thus
= _1.33,
a = 1.0.

If we now subtract 1 + Ae®! from the data and plot the log of the result, we find the plot of Fig. 3.45. Here we

estimate



log,o B = —0.48,

—(0.48 — (—=1.7)
0.43438 = =25,
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Figure 3.43 Step response data in Table 3.1
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Figure 3.44 log;[y(e) - y] versus t
Combining these results, we arrive at the y estimate
JO = 1=133" +033¥, (3.86)

Equation (3.86) is plotted as the colored line in Fig. 3.46 and shows a reasonable fit to the data, although some error



is noticeable near t = 0.

From Y (t) we compute
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Figure 3.46 Model fits to the experimental data
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The resulting transfer function is

—0.58(s — 10)
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Notice that this method has given us a system with a zero in the RHP, even though the data showed no values of y
that were negative. Very small differences in the estimated value for A, all of which approximately fit the data, can
cause values of 3 to range from 4 to 6. This illustrates the sensitivity of pole locations to the quality of the data and

emphasizes the need for a good signal-to-noise ratio.

By using a computer to perform the plotting, we are better able to iterate the four parameters to achieve the best
overall fit. The data presentation in Figs. 3.44 and 3.45 can be obtained directly by using a semilog plot. This

eliminates having to calculate log;, and the exponential expression to find the values of the parameters. The

equations of the lines to be fit to the data are y(t) = Ae®' and y(t) = BePt, which are straight lines on a semilog plot.
The parameters A and a, or B and 3, are iteratively selected so that the straight line comes as close as possible to
passing through the data. This process produces the improved fit shown by the dashed black line in Fig. 3.46. The

revised parameters, A = -1.37, B = 0.37, and B = 4.3 result in the transfer function

(s) —0.225+4.3
5} = :
(s+ 1)(s+4.3)

The RHP zero is still present but it is now located at s = + 20 and has no noticeable effect on the time response.

This set of data was fitted quite well by a second-order model. In many cases a higher-order model is required to

explain the data and the modes may not be as well separated.

If the transient response has oscillatory modes, then these can sometimes be estimated by comparing them with the

standard plots of Fig. 3.18. The period will give the frequency w4 and the decay from one period to the next will

afford an estimate of the damping ratio. If the response has a mixture of modes not well separated in frequency, then
more sophisticated methods need to be used. One such is least-squares system identification, in which a numerical
optimization routine selects the best combination of system parameters so as to minimize the fit error. The fit error is

defined to be a scalar cost function

3 L i
i = Zi__tmm — Ymode!) "1 = 1,2,3,-- -, for each data point,

!

Least-squares system identification

so that fit errors at all data points are taken into account in determining the best value for the system parameters.

3.7.2 Models from Other Data

As mentioned early in Section 3.1.2, we can also generate a model using frequency-response data, which are
obtained by exciting the system with a set of sinusoids and plotting H(jw). In Chapter 6 we will show how such plots
can be used directly for design. Alternatively, we can use the frequency response to estimate the poles and zeros of a

transfer function using straight-line asymptotes on a logarithmic plot.

The construction of dynamic models from normal stochastic operating records or from the response to a PRBS can
be based either on the concept of cross-correlation or on the least-squares fit of a discrete equivalent model, both
topics in the field of system identification. They require substantial presentation and background that are beyond the
scope of this text. An introduction to system identification can be found in Chapter 8 of Franklin et al. (1998), and a

comprehensive treatment is given in Ljiing (1999). Based largely on the work of Professor Ljiing, the MATLAB



Toolbox on Identification provides substantial software to perform system identification and to verify the quality of

the proposed models.

A 3.8 Amplitude and Time Scaling

The magnitude of the values of the variables in a problem is often very different, sometimes so much so that
numerical difficulties arise. This was a serious problem years ago when equations were solved using analog
computers and it was routine to scale the variables so that all had similar magnitudes. Today’s widespread use of
digital computers for solving differential equations has largely eliminated the need to scale a problem unless the
number of variables is very large, because computers are now capable of accurately handling numbers with wide
variations in magnitude. Nevertheless, it is wise to understand the principle of scaling for the few cases in which

extreme variations in magnitude exist and scaling is necessary or the computer word size is limited.

3.8.1 Amplitude Scaling

There are two types of scaling that are sometimes carried out: amplitude scaling and time scaling, as we have already
seen in Section 3.1.4. Amplitude scaling is usually performed unwittingly by simply picking units that make sense for
the problem at hand. For the ball levitator, expressing the motion in millimeters and the current in milliamps would
keep the numbers within a range that is easy to work with. Equations of motion are sometimes developed in the
standard SI units such as meters, kilograms, and amperes, but when computing the motion of a rocket going into
orbit, using kilometers makes more sense. The equations of motion are usually solved using computer-aided design
software, which is often capable of working in any units. For higher-order systems it becomes important to scale the
problem so that system variables have similar numerical variations. A method for accomplishing the best scaling for
a complex system is first to estimate the maximum values for each system variable and then to scale the system so

that each variable varies between -1 and 1.

In general, we can perform amplitude scaling by defining the scaled variables for each state element: If

X=X, (3.87)
then

s f [}

¥ =58x and X =§;X. (3.88)

We then pick S, to result in the appropriate scale change, substitute Egs. (3.87) and (3.88) into the equations of

motion, and recompute the coefficients.

EXAMPLE 3.36 Scaling for the Ball Levitator

The linearized equation of motion for the ball levitator (see Example 9.2, Chapter 9) is

X = 166748x + 47.641, (3.89)

where 8x is in units of meters and &i is in units of amperes. Scale the variables for the ball levitator to result in units

of millimeters and milliamps instead of meters and amps.

Solution. Referring to Eq. (3.87), we define



8x’ = S 8x and 8i’ = S;3i

such that both S, and Si have a value of 1000 in order to convert 8x and i in meters and amps to 8x’ and 8i’ in

millimeters and milliamps. Substituting these relations into Eq. (3.89) and taking note of Eq. (3.88) yields

] i S' ]
5% = 16678x +4?.ﬁ?lﬁf.

']

In this case S; = S;, so Eq. (3.89) remains unchanged. Had we scaled the two quantities by different amounts, there

would have been a change in the last coefficient in the equation.

3.8.2 Time Scaling

The unit of time when using SI units or English units is seconds. Computer-aided design software is usually able to
compute results accurately no matter how fast or slow the particular problem at hand. However, if a dynamic system
responds in a few microseconds, or if there are characteristic frequencies in the system on the order of several
megahertz, the problem may become ill conditioned, so that the numerical routines produce errors. This can be
particularly troublesome for high-order systems. The same holds true for an extremely slow system. It is therefore

useful to know how to change the units of time should you encounter an ill-conditioned problem.

We define the new scaled time to be

r =kl {3.90)

such that, if t is measured in seconds and w, = 1000, then T will be measured in milliseconds. The effect of the time

scaling is to change the differentiation so that

B dx B dx B dx (3.91)
s di d(t/w,) = dT o
and
d%x sdex
G — = " ; 3.92)
aiz ~ Yo g2 :

EXAMPLE 3.37 Time Scaling an Oscillator
The equation for an oscillator was derived in Example 2.5. For a case with a very fast natural frequency w, =

15,000 rad/sec (about 2 kHz), Eq. (2.23) can be rewritten as

6 + 150002 -9 = 10°. T..

Determine the time-scaled equation so that the unit of time is milliseconds.

Solution. The value of w, in Eq. (3.90) is 1000. Equation (3.92) shows that

d*o JE
5 1077 -6,




and the time-scaled equation becomes

16
0F 18t T
dt*
In practice, we would then solve the equation
d4+15°-8=T (3.93)

and label the plots in milliseconds instead of seconds.

3.9 Historical Perspective

Oliver Heaviside (1850-1925) was an eccentric English electrical engineer, mathematician, and physicist. He was
self-taught and left school at the age of 16 to become a telegraph operator. He worked mostly outside the scientific
community that was hos-tiletohim. Hereformulated Maxwell’s equationsinthe form thatisused today. Healso laid
down the foundations of telecommunication and hypothesized the existenceof the ionosphere. He developed the
symbolic procedure known as Heaviside’s operational calculus for solving differential equations. The Heaviside
calculus was widely popular among electrical engineers in the 1920s and 1930s. This was later shown to be
equivalent to the more rigorous Laplace transform named after the French mathematician Pierre-Simon Laplace

(1749-1827) who had worked on operational calculus earlier.

Laplace was also an astronomer and a mathematician who is sometimes referred to as the “The Newton of
France.” He studied the origin and dynamical stability of the solar system completing Newton’s work in his five
volume Méchanique céleste (Celestial Mechanics). Laplace invented the general concept of potential as in a
gravitational or electric field and described by Laplace’s equation. Laplace had a brief political career as Napoleon’s
Interior Minister. During a famous exchange with Napoleon who asked Laplace why he had not mentioned God in
Méchanique céleste, Laplace is said to have replied that “Sir, there was no need for that hypothesis.” He was an
opportunist and changed sides as the political winds shifted. Laplace’s operational property transforms a differential
equation into an algebraic operation that is much easier to manipulate in engineering applications. It is also
applicable to solutions of partial differential equations, the original problem that Laplace was concerned with while
developing the transform. Laplace formulated the Laplace’s equation with applications to electromagnetic theory,

fluid dynamics, and astronomy. Laplace also made fundamental contributions to probability theory.

Laplace and Fourier transforms are intimately related (see Appendix A). The Fourier series and the Fourier
transform, developed in that order, provide methods for representing signalsintermsof exponential functions. Fourier
series are used to represent a periodic signal with discrete spectra in terms of a series. Fourier transforms are used to
represent a non-periodic signal with continuous spectra in terms of an integral. The Fourier transform is named after
the French mathematician Jean Batiste Joseph Fourier (1768-1830) who used Fourier series to solve the heat
conduction equation expressed in terms of Fourier series. Laplace and Fourier were contemporaries and knew each
other very well. In fact, Laplace was one of Fourier’s teachers. Fourier accompanied Napoleon on his Egyptian

expedition in 1798 as a science advisor and is also credited with the discovery of the greenhouse effect.

Transform methods provide a unifying method in applications to solving many engineering problems. Linear

transforms such as the Laplace transform and Fourier transform are useful for studying linear systems. While Fourier



transforms are useful to study the steady-state behavior, Laplace transforms are used for studying the transient and
closed-loop behavior of dynamic systems. The book by Gardner and Barnes in 1942 was influential in popularizing

the Laplace transform in the United States.

SUMMARY

 The Laplace transform is the primary tool used to determine the behavior of linear systems. The Laplace transform

of a time function f(t) is given by

oo

LIfO)=Fs)= | fie ™ d. (3.94)
L

« This relationship leads to the key property of Laplace transforms, namely,

LCIf(D)] = sF(s) —f(07). (3.95)

* This property allows us to find the transfer function of a linear ODE. Given the transfer function G(s) of a system
and the input u(t), with transform U(s), the system output transform is Y(s) = G(s)U(s).

* Normally, inverse transforms are found by referring to tables such as Table A.2 in Appendix A or by computer.
Properties of Laplace transforms and their inverses are summarized in Table A.1 in Appendix A.

* The Final Value Theorem is useful in finding steady-state errors for stable systems: If all the poles of s Y(s) are in
the LHP, then

lim v(t) = lim s ¥(5). (3.96)

=007 s==l)

* Block diagrams are a convenient way to show the relationships between the components of a system. They can
usually be simplified using the relations in Fig. 3.9 and Eq. (3.50); that is, the transfer function of the block

diagram

Ciyls) -—10 Yis5)

G?[.\'J

is equivalent to

Pl OIEE s (3.97)

| + Gi(s)Ga(s)

« The locations of poles in the s-plane determine the character of the response, as shown in Fig. 3.15.

« The location of a pole in the s-plane is defined by the parameters shown in Fig. 3.22. These parameters are related

to the time-domain quantities of rise time t,, settling time t;, and overshoot Mp, which are defined in Fig. 3.22. The

correspondences between them, for a second-order system with no zeros, are given by



1.8 o
= — (3.98)

e — L]

iy
"w.“ — f:.—:rt.-"'\rf ]—i‘!* (3.99)

4.6

= ] (3.100)
£ ey
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* When a zero in the LHP is present, the overshoot increases. This effect is summarized in Figs. 3.26 and 3.27.

* When an additional stable pole is present, the system response is more sluggish. This effect is summarized in Figs.
3.34 and 3.35.

« For a stable system, all the closed-loop poles must be in the LHP.

* A system is stable if and only if all the elements in the first column of the Routh array are positive. To determine
the Routh array, refer to the formulas in Section 3.6.3.

» Mason’s rule is a useful technique to determining transfer functions of complicated interconnected systems.

» Determining a model from experimental data, or verifying an analytically based model by experiment, is an
important step in system design.

« Amplitude and time scaling (Section 3.8) are methods by which certain complications of dealing with differential
equations can be minimized. Scaling of variables results in numerical values that fall within a sufficiently narrow

range of magnitude to minimize errors and allow for ease of computation.

REVIEW QUESTIONS

1 What is the definition of “transfer function”?

2 What are the properties of systems whose responses can be described by transfer functions?

3 What is the Laplace transform of f(t — A)1(t — A\) if the transform of f (t) is F(s)?

4 State the Final Value Theorem.

5 What is the most common use of the Final Value Theorem in control?

6 Given a second-order transfer function with damping ratio § and natural frequency w,, what is the estimate of the
step response rise time? What is the estimate of the percent overshoot in the step response? What is the estimate
of the settling time?

7 What is the major effect of a zero in the LHP on the second-order step response?

8 What is the most noticeable effect of a zero in the RHP on the step response of the second-order system?

9 What is the main effect of an extra real pole on the second-order step response?

10 Why is stability an important consideration in control system design?

11 What is the main use of Routh’s criterion?

12 Under what conditions might it be important to know how to estimate a transfer function from experimental

data?

PROBLEMS



Problems for Section 3.1: Review of Laplace Transforms

3.1 Show that, in a partial-fraction expansion, complex conjugate poles have coefficients that are also complex
conjugates. (The result of this relationship is that whenever complex conjugate pairs of poles are present, only

one of the coefficients needs to be computed.)

3.2 Find the Laplace transform of the following time functions:

@fM =1+ 2t

M) f) =3+ 7t + t2 + 8(b)
©f() = et + 22t 4 te3t
@fO =+ 1)?

(@) f(t) =sinht
3.3 Find the Laplace transform of the following time functions:
(@) f (t) = 3 cos 6t
(b) f(t) = sin 2t + 2 cos 2t + e'sin 2t
(0) f() = 2 + e2tsin 3t
3.4 Find the Laplace transform of the following time functions:

(@) f(t) = tsin t

(b) f(t) = t cos 3t
(c) f(t) = te' + 2tcost
(d) f(t) = tsin 3t— 2t cos t

(e) f(t) = 1(t) + 2t cos 2t

3.5 Find the Laplace transform of the following time functions (* denotes convolution):
{a) (1) =sintsin3s
(b) fit) = sin® 1 + 3cos” 1
(e) fir) = (sint)/1
(d) fir) =sins %sin7

(e) fir)= _jif; cos{t — T)sinTdr

3.6 Given that the Laplace transform of f(t) is F(s), find the Laplace transform of the following:
(@) g(r) =f(1)cost
(b) g(t) = [y Jo' f()dTdr

3.7 Find the time function corresponding to each of the following Laplace transforms using partial-fraction

expansions:
5.2
(@ F(s) = 555
(b) F(s) = 10
TS KT
P Ix42
.{I —
© FO) = 74z
coh o 35405412
@) F(8) = 370551y

(e} F(s) = Taﬁ

Y T
() Fls) = (2 +4)



|

-+

3

(8 F(s) =5
(h) F(s) = &
@ Fs) = 25

§) Fis) =4
3.8 Find the time function corresponding to each of the following Laplace transforms:

(®) F(s) = 2zt
A
© Fo = 2222

3 /
@ F(s) = Sf2dd

ey D) (5450
(&} F&) = T h

2_1)

e AR
(f) Fis) = P
(8) F(s) =tan~ (1)
3.9 Solve the following ODEs using Laplace transforms:
(a) ¥(1) + (1) + 3v(H) =0, y(0) = 1.¥(0) =2
(b) ¥(1) = 23() +4y() = 0; y(0) = 1, ¥(0) =2

{(e) ¥() + 3(r) =sint; w(0) = 1, ¥(0) =2
(d) ¥() + 3y(r) =sinf; v(0) = 1, y(0) =2
(e) () +2y(1) =¢€':y(0) =1, ¥(0) =2

(D ¥ + y(1) =1,y =1, #0) = ~1
3.10 Using the convolution integral, find the step response of the system whose impulse response is given below and

shown in Fig. 3.47:

0.4 .
035 |
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Figure 3.47 Impulse response for Problem 3.10
R — te”" =0,
WAST 0 =0

3.11 Using the convolution integral, find the step response of the system whose impulse response is given below and

shown in Fig. 3.48:
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Figure 3.48 Impulse response for Problem 3.11

3.12 Consider the standard second-order system

2
(w,

Gl:‘;} =
7 3
§< + 20 wps + ey

(a) Write the Laplace transform of the signal in Fig. 3.49.
(b) What is the transform of the output if this signal is applied to G(s)?
(c) Find the output of the system for the input shown in Fig. 3.49.

i)

Time (sec)

Figure 3.49 Plot of input for Problem 3.12

3.13 A rotating load is connected to a field-controlled DC motor with negligible field inductance. A test results in the
output load reaching a speed of 1 rad/sec within 1/2 sec when a constant input of 100 V is applied to the motor

terminals. The output steady-state speed from the same test is found to be 2 rad/sec. Determine the transfer
H{s)

function ''*) of the motor.

3.14 A simplified sketch of a computer tape drive is given in Fig. 3.50.

(a) Write the equations of motion in terms of the parameters listed below. K and B represent the spring constant
and the damping of tape stretch, respectively, and w; and w, are angular velocities. A positive current applied
to the DC motor will provide a torque on the capstan in the clockwise direction as shown by the arrow. Find
the value of current that just cancels the force, F, then eliminate the constant current and its balancing force, F;

from your equations. Assume positive angular velocities of the two wheels are in the directions shown by the
arrows.



—p_ll

Mo friction

Idler
. By Take-up Head wheel
capstan Ja, By
v F
Vacoum
column

Figure 3.50 Tape drive schematic

Ji=5x10"° kg-mz. motor and capstan inertia
B; = 1 x 1072 N-m-sec, motor damping
=2 1072 m

Ki =3 x 1072 N-nV/A., motor=torque constant
K =2 x 10* N/m

B = 20 N/m-sec

rm=2x10"2m
Jr=2x10"7 kg-m2
By =2 x 1072 N-m-sec, viscous damping, idler
F = 6 N, constant force

x| = tape velocity m/sec (variable to be controlled)

(b) Find the transfer function from the motor current to the tape position.
(c) Find the poles and zeros of the transfer function in part (b).

(d) Use MATLAB to find the response of x; to a step input in i,.
3.15 For the system in Fig. 2.51, compute the transfer function from the motor voltage to position 6,.

3.16 Compute the transfer function for the two-tank system in Fig. 2.55 with holes at A and C.

3.17 For a second-order system with transfer function

Gs) = ——m——,
($) 52 425 -3
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Figure 3.51 Continuous rolling mill

determine the following:
(a) The DC gain;
(b) The final value to a step input.
3.18 Consider the continuous rolling mill depicted in Fig. 3.51. Suppose that the motion of the adjustable roller has a

damping coefficient b, and that the force exerted by the rolled material on the adjustable roller is proportional to
the material’s change in thickness: F, = c(T - x). Suppose further that the DC motor has a torque constant K; and

a back emf constant K., and that the rack-and-pinion has effective radius of R.

(a) What are the inputs to this system? The output?
(b) Without neglecting the effects of gravity on the adjustable roller, draw a block diagram of the system that

explicitly shows the following quantities: V(s), I(s), F(s) (the force the motor exerts on the adjustable roller),

and X(s).
(c) Simplify your block diagram as much as possible while still identifying output and each input separately.

Problems for Section 3.2: System Modeling Diagrams
3.19 Consider the block diagram shown in Fig. 3.52. Note that a; and b; are constants. Compute the transfer function

for this system. This special structure is called the “control canonical form” and will be discussed further in

Chapter 7.
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Figure 3.52 Block diagram for Problem 3.19

3.20 Find the transfer functions for the block diagrams in Fig. 3.53.
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Figure 3.53 Block diagrams for Problem 3.20

3.21 Find the transfer functions for the block diagrams in Fig. 3.54, using the ideas of block diagram simplification.

The special structure in Fig. 3.54(b) is called the “observer canonical form” and will be discussed in Chapter 7.
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Figure 3.54 Block diagrams for Problem 3.21

3.22 Use block-diagram algebra to determine the transfer function between R(s) and Y(s) in Fig. 3.55.

Rix) O—tCED—‘ G

Gy, O ¥ix)

Figure 3.55 Block diagram for Problem 3.22

Problems for Section 3.3: Effect of Pole Locations

3.23 For the electric circuit shown in Fig. 3.56, find the following:

(a) The time-domain equation relating i(t) and v (t);



(b) The time-domain equation relating i(t) and v,(t);

Vais)
(c) Assuming all initial conditions are zero, the transfer function Vi(s) and the damping ratio € and undamped

natural frequency w,, of the system;
(d) The values of R that will result in v,(t) having an overshoot of no more than 25%, assuming v;(t) is a unit

step, L = 10 mH, and C = 4 pF.

L R
O—W—‘\f\f\;—n—ﬂ

+ +
(1) W == it}

Figure 3.56 Circuit for Problem 3.23

3.24 For the unity feedback system shown in Fig. 3.57, specify the gain K of the proportional controller so that the

output y(t) has an overshoot of no more than 10% in response to a unit step.
f o _i- &' 2 i | Fr.

Figure 3.57 Unity feedback system for Problem 3.24

3.25 For the unity feedback system shown in Fig. 3.58, specify the gain and pole location of the compensator so that
the overall closed-loop response to a unit-step input has an overshoot of no more than 25%, and a 1% settling

time of no more than 0.1 sec. Verify your design using MATLAB.

Compensator Plant

K 1040
R 5} ) . o
" s+ a s + 25 X

Figure 3.58 Unity feedback system for Problem 3.25

Problems for Section 3.4: Time-Domain Specification

P

3.26 Suppose you desire the peak time of a given second-order system to be less than 'v Draw the region in the s-

plane that corresponds to values of the poles that meet the specification pelp

3.27 A certain servomechanism system has dynamics dominated by a pair of complex poles and no finite zeros. The

time-domain specifications on the rise time (t,), percent overshoot (Mp), and settling time (t,) are given by
t. < 0.6sec,
M, = 17%,
t; < 9.2 sec.



(a) Sketch the region in the s-plane where the poles could be placed so that the system will meet all three
specifications.
(b) Indicate on your sketch the specific locations (denoted by x) that will have the smallest rise-time and also

meet the settling time specification exactly.

3.28 Suppose you are to design a unity feedback controller for a first-order plant depicted in Fig. 3.59. (As you will
learn in Chapter 4, the configuration shown is referred to as a proportional-integral controller.) You are to design

the controller so that the closed-loop poles lie within the shaded regions shown in Fig. 3.60.

(a) What values of w, and ¢ correspond to the shaded regions in Fig. 3.59? (A simple estimate from the figure is
sufficient.)

(b) Let K, = a = 2. Find values for K and K; so that the poles of the closed-loop system lie within the shaded

regions.

$ Imi s)
=

. _1_ = :'l_:_ B R.‘C‘{ 7l

Figure 3.60 Desired closed-loop pole locations for Problem 3.28

(c) Prove that no matter what the values of K, and a are, the controller provides enough flexibility to place the

poles anywhere in the complex (left-half) plane.

3.29 The open-loop transfer function of a unity feedback system is

Gi(5) =

s(s+2)
The desired system response to a step input is specified as peak time t, = 1 sec and overshoot M, = 5%.

(a) Determine whether both specifications can be met simultaneously by selecting the right value of K.

(b) Sketch the associated region in the s-plane where both specifications are met, and indicate what root locations

are possible for some likely values of K.

(c) Relax the specifications in part (a) by the same factor and pick a suitable value for K, and use MATLAB to



verify that the new specifications are satisfied.

3.30 The equations of motion for the DC motor shown in Fig. 2.32 were given in Egs. (2.52-2.53) as

y KK p K
Ji + (h =+ .:?”F ) i = R_I:'l"u-

Assume that

J,, =0.01 kg.m?,
b = 0.001 N.m.sec,
K. = 0.02 V.sec,

K, = 0.02 N.m/A,
R, =10 Q

(a) Find the transfer function between the applied voltage v, and the motor speed ..
(b) What is the steady-state speed of the motor after a voltage v, = 10 V has been applied?
(c) Find the transfer function between the applied voltage v, and the shaft angle 0,,.
(d) Suppose feedback is added to the system in part (c) so that it becomes a position servo device such that the

applied voltage is given by

v, = K(6,-6,),

where K is the feedback gain. Find the transfer function between 6, and 6.

(e) What is the maximum value of K that can be used if an overshoot Mp < 20% is desired?

(f) What values of K will provide a rise time of less than 4 sec? (Ignore the M, constraint.)

(g) Use MATLAB to plot the step response of the position servo system for values of the gain K = 0.5, 1, and 2.
Find the overshoot and rise time for each of the three step responses by examining your plots. Are the plots

consistent with your calculations in parts (e) and (f)?

3.31 You wish to control the elevation of the satellite-tracking antenna shown in Figs. 3.61 and 3.62. The antenna
and drive parts have a moment of inertia J and a damping B; these arise to some extent from bearing and

aerodynamic friction, but mostly from the back emf of the DC drive motor. The equations of motion are




Figure 3.61 Satellite-tracking antenna Source: Courtesy Space Systems,/Loral

Figure 3.62 Schematic of antenna for Problem 3.31

Ji + B = T,
where T, is the torque from the drive motor. Assume that

J =600,000 kg.m? B = 20,000 N.m.sec.
(a) Find the transfer function between the applied torque T. and the antenna angle 6.

(b) Suppose the applied torque is computed so that 0 tracks a reference command 6, according to the feedback

law
T. = K(6, - 0),
where K is the feedback gain. Find the transfer function between 6, and 6.
(c) What is the maximum value of K that can be used if you wish to have an overshoot Mp < 10%?

(d) What values of K will provide a rise time of less than 80 sec? (Ignore the M, constraint.)

(e) Use MATLAB to plot the step response of the antenna system for K = 200, 400, 1000, and 2000. Find the
overshoot and rise time of the four step responses by examining your plots. Do the plots confirm your

calculations in parts (c¢) and (d)?

3.32 Show that the second-order system
V4 2oy + @iy =0, y(0) =y, F0)=0,

has the response

=rf
= sinfemgt + cos ™! £).

-t

Prove that, for the underdamped case ({ < 1), the response oscillations decay at a predictable rate (see Fig. 3.63)

Y = ¥a

called the logarithmic decrement
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is the damped natural period of vibration. The damping coefficient in terms of the logarithmic decrement is then
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Figure 3.63 Definition of logarithmic decrement

Problems for Section 3.5: Effect of Zeros and Additional Poles

3.33 In aircraft control systems, an ideal pitch response (q,) versus a pitch command (q.) is described by the transfer

function

Qols) _ Twi(s + 1/1)
Qc(s) 52 4+ 2bwns + m;‘: ‘

The actual aircraft response is more complicated than this ideal transfer function; nevertheless, the ideal model is

used as a guide for autopilot design. Assume that t, is the desired rise time and that

iy

e
¥



Show that this ideal response possesses a fast settling time and minimal overshoot by plotting the step response for t,

= 0.8,1.0, 1.2, and 1.5 sec.

3.34 Consider the system shown in Fig. 3.64, where

1 Kis+z
and Di(s) = “—} (3.101)

Gis) =
) sy +3) s+p

Find K, z, and p so that the closed-loop system has a 10% overshoot to a step input and a settling time of 1.5 sec

(1% criterion).

—

- | )
R(s) D(s) — G(s) O K(s)

Figure 3.64 Unity feedback system for Problem 3.34

3.35 Sketch the step response of a system with the transfer function

) s/2+1
{rf.ﬂ = 5 . :
(s/40 + D[(s/4)= +5/4 + 1]

Justify your answer on the basis of the locations of the poles and zeros. (Do not find the inverse Laplace transform.)

Then compare your answer with the step response computed using MATLAB.

3.36 Consider the two nonminimum-phase systems,

2(s —1)

i) =——mm—,
14 s+ 1)s+42)

(3.102)

Is—=1s—=2)

Gals) = ‘ -
(4 1yis+ 205+ 3)

(3.103)

(a) Sketch the unit step responses for G;(s) and G,(s), paying close attention to the transient part of the response.

(b) Explain the difference in the behavior of the two responses as it relates to the zero locations.

(c) Consider a stable, strictly proper system (that is, m zeros and n poles, where m < n). Let y(t) denote the step
response of the system. The step response is said to have an undershoot if it initially starts off in the “wrong”
direction. Prove that a stable, strictly proper system has an undershoot if and only if its transfer function has an

odd number of real RHP zeros.

3.37 Find the relationships for the impulse response and the step response corresponding to Equation (3.57) for the

cases where
(a) the roots are repeated.

(b) the roots are both real. Express your answers in terms of hyperbolic functions (sinh, cosh) to best show the

properties of the system response.

(c) the value of the damping coefficient, ¢, is negative.

3.38 Consider the following second-order system with an extra pole:
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Show that the unit-step response is

y(t) = 1+ Ae™P" + Be™ 7 sin(wyr — ),

where
.-'-Jl. o2 —(:)ﬁ 1
w2 — 2L wpp + p?
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B — T : 3
qlr.'ll tpz = Effu,;j’? + fl-"%}l:] — -i:z]'
i — 2 f1. =2
o ==l Y18 pp-1 Oavl L7
o P — oy

(a) Which term dominates y(t) as p gets large?

(b) Give approximate values for A and B for small values of p.

(c) Which term dominates as p gets small? (Small with respect to what?)

(d) Using the preceding explicit expression for y(t) or the step command in MATLAB, and assuming that w, = 1
and ¢ = 0.7, plot the step response of the preceding system for several values of p ranging from very small to

very large. At what point does the extra pole cease to have much effect on the system response?

3.39 Consider the second-order unity DC gain system with an extra zero,

mﬁ (s +2)

His) = )
2(52 + 2L s + m,::]

(a) Show that the unit-step response for the system is given by

| 4
| ay; 2tay
[l =

yi) =1+ — —e """ cos(wgt + f1),
."III e E:'_
\

where

_{+ﬂ

V1-1¢2

A1 — tan™!

(b) Derive an expression for the step response overshoot, My, of this system.

(c) For a given value of overshoot, Mp, how do we solve for ¢ and w,?

3.40 The block diagram of an autopilot designed to maintain the pitch attitude 0 of an aircraft is shown in Fig. 3.65.
The transfer function relating the elevator angle 3. and the pitch attitude 6 is



Ais) " S0(s + 1is 4+ 2)
: = C"L"..:I — ) 2 L]
Sels) (5= 4+ 55 + 40 (5= + 0.035 + 0.06)

where 0 is the pitch attitude in degrees and 3, is the elevator angle in degrees. The autopilot controller uses the pitch

attitude error e to adjust the elevator according to the transfer function

e":{r{.'i} . { . K{‘T—F qf
Eis) = s+ 10

Using MATLAB, find a value of K that will provide an overshoot of less than 10% and a rise time faster than 0.5 sec

for a unit-step change in 9,. After examining the step response of the system for various values of K, comment on the

difficulty associated with making rise time and overshoot measurements for complicated systems.

Control | 5 ] Aircraft| o
| & o O
Dis) | Gis)

Figure 3.65 Block diagram of autopilot

Problems for Section 3.6: Stability
3.41 A measure of the degree of instability in an unstable aircraft response is the amount of time it takes for the
amplitude of the time response to double (see Fig. 3.66), given some nonzero initial condition.

(a) For a first-order system, show that the time to double is

In2
T =—),
P

where p is the pole location in the RHP.

(a) For a second-order system (with two complex poles in the RHP), show that

In2

—Lwy

T =

+ Amplitude

Figure 3.66 Time to double

3.42 Suppose that unity feedback is to be applied around the listed open-loop systems. Use Routh’s stability criterion

to determine whether the resulting closed-loop systems will be stable.

2 Hs+2)
(@) KG(G) = c=m 7 5y
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3.43 Use Routh’s stability criterion to determine how many roots with positive real parts the following equations

have:

(@) 5* + 85 + 3257 + 8Os+ 100 = 0.

(b) 57 + 10s* + 305% + 8057 + 3445 + 480 = 0.
(© s'+23 +72 — 25 +8=0.

(d) 5° + 52 +205+ 78 = 0.

() s* + 657 +25=0.

3.44 Find the range of K for which all the roots of the following polynomial are in the LHP:

s> + 5s* + 10s® + 10s* + 55 + K = 0.
Use MATLAB to verify your answer by plotting the roots of the polynomial in the s-plane for various values of K.
3.45 The transfer function of a typical tape-drive system is given by

Kis+4)

Gis) = = :
s[(s 4+ 0.5)(s 4+ 1)(s= + 045 4+ 4)]

where time is measured in milliseconds. Using Routh’s stability criterion, determine the range of K for which this

system is stable when the characteristic equation is 1 + G(s) = 0.

3.46 Consider the closed-loop magnetic levitation system shown in Fig. 3.67. Determine the conditions on the system

parameters (a, K, z, p, K,) to guarantee closed-loop system stability.

g5 g (s42) u K,

Kiz+p) i {.~u"1 —a”)

Figure 3.67 Magnetic levitation system

3.47 Consider the system shown in Fig. 3.68.
(a) Compute the closed-loop characteristic equation.

(b) For what values of (T,A) is the system stable? Hint: An approximate answer may be found using

eTs=1-Ts

Figure 3.68 Control system for Problem 3.47

or
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for the pure delay. As an alternative, you could use the computer MATLAB (SIMULINK®) to simulate the

system or to find the roots of the system’s characteristic equation for various values of T and A.

3.48 Modify the Routh criterion so that it applies to the case in which all the poles are to be to the left of — a when a
> 0. Apply the modified test to the polynomial

$2 4+ (6 + K)s?> + (5 + 6K)s + 5K = 0,
finding those values of K for which all poles have a real part less than -1

3.49 Suppose the characteristic polynomial of a given closed-loop system is computed to be

ST+ K8 + 121+ K5 + (K + K1 K2+ 110K2 421005+ 11K 4+ 100 = 0.

Find constraints on the two gains K; and K, that guarantee a stable closed-loop system, and plot the allowable

region(s) in the (K;, K,) plane. You may wish to use the computer to help solve this problem.

3.50 Overhead electric power lines sometimes experience a low-frequency, high-amplitude vertical oscillation, or
gallop, during winter storms when the line conductors become covered with ice. In the presence of wind, this ice
can assume aerodynamic lift and drag forces that result in a gallop up to several meters in amplitude. Large-
amplitude gallop can cause clashing conductors and structural damage tothe line support structures caused by the
large dynamic loads. These effects in turn can lead to power outages. Assume that the line conductor is a rigid
rod, constrained to vertical motion only, and suspended by springs and dampers as shown in Fig. 3.69.A simple

model of this conductor galloping is

my + — ;
PTG )2

Do)y — Lia)v T (n:r ) y=0,

Wind v

constant

Relative wind = Vi + 1=
Conductor

Figure 3.69 Electric power-line conductor

where



m = mass of conductor,

v = conductor’s vertical displacement,

1) = aerodynamic drag force,

L = aerodynamic lift force.

v = wind velocity,

a = aerodynamic angle of attack = — tan™! (v/v),
T = conductor tension,

n = number of harmonic requencies,

¢ = length of conductor.

Assume that L(0) =0 and D(0) = D, (a constant), and linearize the equation around the value y = ¥V =0.Use
Routh’s stability criterion to show that galloping can occur whenever
dl.

— + Dy < 0.
oy



1 Notice that this input is exponential for all time and Eq. (3.14) represents the response for all time. If the system is causal, then h(t) = 0 fort < O,
and the integral reduces to H(s) = th?” h(r)e™" dr.

2 Note that % is used in MATLAB to denote comments.

3 The phase difference may also be determined by a Lissajous pattern.

4 The other possible one-sided transform is, of course, L4, in which the lower limit of the integral is 07 . It is sometimes used in other applications.

5 Identically zero means that the output and all of its derivatives are zero for t > 0.

6 The meaning of the pole can also be appreciated by visualizing a 3-D plot of the transfer function, where the real and imaginary parts of s are
plotted on the x and y axes, and the magnitude of the transfer function is plotted on the vertical z axis. For a single pole, the resulting 3-D plot will

look like a tent with the “tent-pole” being located at the pole of the transfer function!

7 In communications and filter engineering, the standard second-order transfer function is written as H = 1/[1 + Q(s/wp + wp/s)]. Here, wy is

called the band center and Q is the quality factor. Comparison with Eq. (3.55) shows that Q = 1/2C.

8 We assume that b(s) and a(s) have no common factors. If this is not so, it is possible for b(s) and a(s) to be zero at the same location and for H(s) to

not equal zero there. The implications of this case will be discussed in Chapter 7, when we have a state-space description.
9 Without loss of generality, we can assume the polynomial to be monic (that is, the coefficient of the highest power of s is 1).
10 This s easy to see if we construct the polynomial as a product of first- and second-order factors.

11 The actual roots of the polynomial computed with the MATLAB roots command are —3.2644, 0.7488j, —-0.6046 = 0.9935j, and —0.8858, which, of

course, agree with our conclusion.
12 The actual roots computed with MATLAB are at -2.9043, 0.6567 + 1.2881j, —-0.7046 = 0.9929;j.

13 Ziegler and Nichols (1943), building on the earlier work of Callender et al. (1936), use the step response directly in designing the controls for

certain classes of processes. See Chapter 4 for details.



4 A First Analysis of Feedback

A Perspective on the Analysis of Feedback

In the next three chapters we will introduce three techniques for the design of controllers. Before doing so, it is useful
to develop the assumptions to be used and to derive the equations that are common to each of the design approaches
we describe. As a general observation, the dynamics of systems to which control is applied are nonlinear and very
complex. However, in this initial analysis, we assume that the plant to be controlled as well as the controller can be
represented as dynamic systems which are linear and time invariant (LTI). We also assume that they have only single
inputs and single outputs, for the most part, and may thus be represented by simple scalar transfer functions. As we
mentioned in Chapter 1, our basic concerns for control are stability, tracking, regulation, and sensitivity. The goal of
the analysis in this chapter is to revisit each of these requirements in a linear dynamic setting and to develop
equations that will expose constraints placed on the controller and identify elementary objectives to be suggested for

the controllers.

Open-loop and closed-loop control

The two fundamental structures for realizing controls are the open-loop structure as shown in Fig. 4.1, and the
closed-loop structure, also known as feedback control, as shown in Fig. 4.2. The definition of open-loop control is
that there is no closed signal path whereby the output influences the control effort. In the structure shown in Fig. 4.1,
the controller transfer function modifies the reference input signal before it is applied to the plant. This controller
might cancel the unwanted dynamics of the plant and replace them with the more desirable dynamics of the
controller. In other cases open-loop control actions are taken on the plant as the environment changes, actions that
are calibrated to give a good response but are not dependent on measuring the actual response. An example of this
would be an aircraft autopilot whose parameters are changed with altitude or speed but not by feedback of the
craft’s motion. Feedback control, on the other hand, uses a sensor to measure the output and by feedback indirectly
modifies the dynamics of the system. Although it is possible that feedback may cause an otherwise stable system to
become unstable (a vicious circle), feedback gives the designer more flexibility and a preferable response to each of

our objectives when compared to open-loop control.

Chapter Overview

The chapter begins with consideration of the basic equations of a simple open-loop structure and of an elementary
feedback structure. In Section 4.1 the equations for the two structures are presented in general form and compared in

turn with respect to stability, tracking, regulation, and sensitivity. In Section 4.2 the steady-state errors in response to



polynomial inputs are analyzed in more detail. As part of the language of steady-state performance, control systems
are assigned a type number according to the maximum degree of the input polynomial for which the steady-state
error is a finite constant. For each type an appropriate error constant is defined, which allows the designer to easily

compute the size of this error.

Although Maxwell and Routh developed a mathematical basis for assuring stability of a feedback system, design of
controllers from the earliest days was largely trial and error based on experience. From this tradition there emerged
an almost universal controller, the proportional-integral-derivative (PID) structure considered in Section 4.3. This
device has three elements: a Pro-portional term to close the feedback loop, an Integral term to assure zero error to
constant reference and disturbance inputs, and a Derivative term to improve (or realize!) stability and good dynamic
response. In this section these terms are considered and their respective effects illustrated. As part of the evolution of
the PID controller design, a major step was the development of a simple procedure for selecting the three
parameters, a process called “tuning the controller.” Ziegler and Nichols developed and published a set of
experiments to be run, characteristics to be measured, and tuning values to be recommended as a result. These
procedures are discussed in this section. Finally, in optional Section 4.4, a brief introduction to the increasingly
common digital implementation of controllers is given. Sensitivity of time response to parameter changes is discussed

in Appendix W4 on the web.

4.1 The Basic Equations of Control

We begin by collecting a set of equations and transfer functions that will be used throughout the rest of the text. For

the open-loop system of Fig. 4.1, if we take the disturbance to be at the input of the plant, the output is given by

III?"I'.l

}.rl &1

Controller
D (5)

¥ +
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Figure 4.2 Closed-loop system showing the reference, R, control, U, disturbance, W, output, Y, and sensor noise, V

Y,y = GD,R + GW (4.1)

and the error, the difference between reference input and system output, is given by

Eot =R — Yo (4.2)
=R — [GDyR 4+ GW] 4.3)
= [1 = GDyIR — GW. (4.4)



The open-loop transfer function in this case is T;(s) = G(s)D(s).

For feedback control, Fig. 4.2 gives the basic unity feedback structure of interest. There are three external inputs:
the reference, R, which the output is expected to track, the plant disturbance, W, which the control is expected to
counteract so it does not disturb the output, and the sensor noise, V, which the controller is supposed to ignore.

For the feedback block diagram of Fig. 4.2, the equations for the output and the control are given by the

superposition of the responses to the three inputs individually, as follows:

GD,; G GD,;

4 LEGDs | L+ODy"  LiGDy )
D, GD, D.
joDd_p  GDa o Do @6)
1 4+ GDy | +GDy 1 + GDy
Perhaps more important than these is the equation for the error, E;; = R - Y.
GD, G GDy
BamiR — | e i = —————— ] (4.7
- { T4 6D; = " 1+6Dy  1+GDy }
| G GD,
=R — W+ ——— (4.8)
1+ GDy 1 + GDy 1+ GDy
GDy
di=
In this case, the closed-loop transfer function is 1 +GDy

With these equations we will explore the four basic objectives of stability, tracking, regulation, and sensitivity for

both the open-loop and the closed-loop cases.

4.1.1 Stability

As we saw in Chapter 3, the requirement for stability is simply stated: All poles of the transfer function must be in
the left half-plane (LHP). In the open-loop case described by Eq. (4.1), these are the poles of GD;. To see the

restrictions this requirement places on the controller, we define the polynomials a(s), b(s), c(s), and d(s) so that

Bis) * .
- GD; = 2

G(s) = 22 Dgi(s) = & be . o . .
dis), Therefore ad . With these definitions, the stability requirement is that

neither a(s) nor d(s) may have roots in the right half-plane (RHP). A naive engineer might believe that if the plant is

alsh and

unstable with a(s) having a root in the RHP, the system might be made stable by canceling this pole with a zero of
c(s). However, the unstable pole remains and the slightest noise or disturbance will cause the output to grow until
stopped by saturation or system failure. Likewise, if the plant shows poor response because of a zero of b (s) in the
RHP, an attempt to fix this by cancellation using a root of d(s) will similarly result in an unstable system. We
conclude that an open-loop structure cannot be used to make an unstable plant to be stable and therefore cannot be

used if the plant is already unstable.
For the feedback system, from Eq. (4.8), the system poles are the roots of 1 + GD_, = 0. Again using the

polynomials defined above, the system characteristic equation is

1 + GDy =0 (4.9)



b(s)c(s)

i ) 4.10
ai(syd(s) ( )

al(s)1d(s) + b(s)c(s) = 0. {4.11)

From this equation, it is clear that the feedback case grants considerably more freedom to the controller design
than does the open-loop case. However, one must still avoid unstable cancellations. For example, if the plant is
unstable and therefore a (s) has a root in the RHP, we might cancel this pole by putting a zero of c(s) at the same
place. However, Eq. (4.11) shows that as a result, the unstable pole remains a pole of the system and this method
will not work. However, unlike the open-loop case, having a pole of a(s) in the RHP does NOT prevent our

designing a feedback controller that will make the system stable. For example, in Chapter 2 we derived the transfer

G(s) = -

function for the inverted pendulum, which, for simple values, might be =1 for which we have b(s) = 1

D(s) = Xutr)

anda(s) = s2-1 = (s + 1)(s-1). Suppose we try s+4 | The characteristic equation that results for the

system is

s+ D(s—1s+8)+K(s+y)=0. (4.12)

This is the problem that Maxwell faced in his study of governors, namely under what conditions on the parameters
will all the roots of this equation be in the LHP? The problem was solved by Routh. In our case, a simple solution is
to take y = 1 and the common (stable) factor cancels. The resulting second-order equation can be easily solved to

place the remaining two poles at any point desired.

Exercise. If we wish to force the characteristic equation to be s> + 2&ws + w? = 0, solve for K and & in terms of £

and w

4.1.2 Tracking

The tracking problem is to cause the output to follow the reference input as closely as possible. In the open-loop
case, if the plant is stable and has neither poles nor zeros in the RHP, then in principle the controller can be selected
to cancel the transfer function of the plant and substitute whatever desired transfer function the engineer wishes. This
apparent freedom, however, comes with three caveats. First, in order to physically build it, the controller transfer
function must be proper, meaning that it cannot be given more zeros than it has poles. Second, the engineer must not
get greedy and request an unrealistically fast design. This entire analysis has been based on the assumption that the
plant is linear and a demand for a fast response will demand large inputs to the plant, inputs that will be sure to
saturate the system if the demand is too great. Again, it is the responsibility of the engineer to know the limits of the
plant and to set the desired overall transfer function to a reasonable value with this knowledge. Third and finally,
although one can, in principle, stably cancel any pole in the LHP, the next section on sensitivity faces up to the fact
that the plant transfer function is subject to change and if one tries to cancel a pole that is barely inside the LHP
there is a good chance of disaster as that pole moves a bit and exposes the system response to unacceptable

transients.
Sy ,,E_, F
Exercise. For a plant having the transfer function s*+35+9 it is proposed to use a controller in a unity feedback system
(".v.\: +C 540
and having the transfer function #*+¢i]  Solve for the parameters of this controller so that the closed-loop will

have the characteristic equation (s + 6)(s + 3)(s®> + 3s + 9) = 0L



{ans: ¢y = 34,¢; = 36,¢c5 = 162,d; = 11}

Exercise. Show that if the reference input to the system of the above exercise is a step of amplitude A, the steady-

state error will be zero.

4.1.3 Regulation

The problem of regulation is to keep the error small when the reference is at most a constant set point and
disturbances are present. A quick look at the open-loop block diagram reveals that the controller has no influence at
all on the system response to either of the disturbances, w, or v, so this structure is useless for regulation. We turn to

the feedback case. From Eq. (4.8) we find a conflict between w and v in the search for a good controller. For
G__
example, the term giving the contribution of the plant disturbance to the system error is !+&PaW. To select D to

make this term small, we should make D, as large as possible and infinite if that is feasible. On the other hand, the
_GDy
error term for the sensor noise is TGP | In this case, unfortunately, if we select D, to be large, the transfer
function tends to unity and the sensor noise is not reduced at all! What are we to do? The resolution of the dilemma
is to observe that each of these terms is a function of frequency so one of them can be large for some frequencies and
small for others. With this in mind, we also note that the frequency content of most plant disturbances occurs at very
low frequencies and in fact, the most common case is a bias, which is all at zero frequency! On the other hand, a
good sensor will have no bias and can be constructed to have very little noise over the entire range of low
frequencies of interest. Thus, using this information, we design the controller transfer function to be large at the low
frequencies, where it will reduce the effect of w, and we make it small at the higher frequencies, where it will reduce
the effects of the high frequency sensor noise. The control engineer must determine in each case the best place on the

frequency scale to make the cross over from amplifying to attenuation.
Exercise. Show that if w is a constant bias and if D, has a pole at s = 0 then the error due to this bias will be zero.

However, show that if G has a pole at zero, it does not help with a disturbance bias.

4.1.4 Sensitivity

Suppose a plant is designed with gain G at a particular frequency but in operation it changes to be G + 8G. This
represents a fractional or percent change of gain of 36/G. For the purposes of this analysis, we set the frequency at

zero and take the open-loop controller gain to be fixed at D,;(0). In the open-loop case the nominal overall gain is

thus T,; = GD,,, and with the perturbed plant gain, the overall gain would be

Tot + 8T = Dop(G 4+ 8G) = DG + DypdG = Ty + Dp1dG.

s
G, of a transfer function, T, to a plant gain, G, is
AT

defined to be the ratio of the fractional change in T,; defined as 7. to the fractional change in G. In equation form

Therefore, the gain change is 8 T,; = D,;8G. The sensitivity,
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This means that a 10% error in G would yield a 10% error in T,;. In the open-loop case, therefore, we have
computed that S =1.
From Eq. (4.5), the same change in G in the feedback case yields the new steady-state feedback gain as

(G +8G)D

T+ 8T, = _ .
t+old = TG seD,

where T is the closed-loop gain. We can compute the sensitivity of this closed-loop gain directly using differential

calculus. The closed-loop steady-state gain is

GDy

i Y
& TG

The first-order variation is proportional to the derivative and is given by

dTa’.'.’ %
P41
S

The general expression for sensitivity from Eq. (4.13) is given by

Sé"r 2 sensitivity of T,y with respect to G,
r+ & G dlg
Sid 8 . 4.16
6 " dG Gl
o)
ST _ G (1 +GDy)Dy — Dy(GDy)
G ™ GDy/(1 +GDy) (1+ GDy)?
|
= — 4.17
1 + GD, { )

Advantage of feedback

This result exhibits a major advantage of feedback:?



In feedback control, the error in the overall transfer function gain is less sensitive to variations in the plant gain by

o 1
a factor of §= I+DG compared to errors in open-loop control gain.

If the gain is such that 1 + DG = 100, a 10% change in plant gain G will cause only a 0.1% change in the steady-
state gain. The open-loop controller is 100 times more sensitive to gain changes than the closed-loop system with
loop gain of 100. The example of the unity feedback case is so common that we will refer to the result of Eq. (4.17)

simply as the sensitivity, S, without subscripts or superscripts.

The results in this section so far have been computed under the assumption of the steady-state error in the
presence of constant inputs, either reference or disturbance. Very similar results can be obtained for the steady-state
behavior in the presence of a sinusoidal reference or disturbance signal. This is important because there are times
when such signals naturally occur as, for example, with a disturbance of 60 Hertz due to power-line interference in
an electronic system. The concept is also important because more complex signals can be described as containing
sinusoidal components over a band of frequencies and analyzed using superposition of one frequency at a time. For
example, it is well known that human hearing is restricted to signals in the frequency range of about 60 to 15,000
Hertz. A feedback amplifier and loudspeaker system designed for high-fidelity sound must accurately track any
sinusoidal (pure tone) signal in this range. If we take the controller in the feedback system shown in Fig. 4.2 to have
the transfer function D(s) and we take the process to have the transfer function G(s), then the steady-state open-loop

gain at the sinusoidal signal of frequency w, will be |G(jw,)D(jw,)| and the error of the feedback system will be
Thus, to reduce errors to 1% of the input at the frequency w,, we must make |1 +DG| = 100 or, effectively,
IDGw,)G(w,)| Eii 100 and a good audio amplifier must have this loop gain over the range 2160 < w < 2 15000.

We will revisit this concept in Chapter 6 as part of the design based on frequency response techniques.

|E(jw,)| = [R{jw,)| (4.18)

| + G(jaw,)D(jw,) |

The Filtered Case
Thus far the analysis has been based on the simplest open- and closed-loop structures. A more general case includes a
dynamic filter on the input and also dynamics in the sensor. The filtered open-loop structure is shown in Fig. 4.3
having the transfer function T,; = GD,F. In this case, the open-loop controller transfer function has been simply
replaced by DF and the discussion given for the unfiltered open-loop case is easily applied to this change.

For the filtered feedback case shown in Fig. 4.4, the changes are more siginificant. In that case, the transform of the
system output is given by

GD,F G HGD,

Yy =— R+ - W — — V. (4.19)
1 +GD4H | +GDH | + GDH

As is evident from this equation, the sensor dynamics, H is part of the loop transfer function and enters into the
question of stability with D H replacing the D, of the unity feedback case. In fact, if F = H then, with respect to
stability, tracking, and regulation, the filtered case is identical to the unity case with D H replacing D ;. On the other

hand, the filter transfer function F can play the role of the open-loop controller except that here the filter F would be
Gl
called on to modify the entire loop transfer function, !+4D.H | rather than simply GD,;. Therefore the filtered closed-



loop structure can realize the best properties of both the open-loop and the unity feedback closed-loop cases. The
controller, D, can be designed to effectively regulate the system for the disturbance W and the sensor noise, V, while
the filter F is designed to improve the tracking accuracy. If the sensor dynamics, H, are accessible to the designer, this

term can also be designed to improve the response to the sensor noise. The remaining issue is sensitivity.

Ry  [=—1Rs) v,
i5) Filter iy Controlles Plant
| o1 M e : S ——0
Fisi | D,5) (5}
Figure 4.3 Filtered open-loop system
ow
[
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Hix)

Figure 4.4 Filtered closed-loop. R = reference, u = control, Y = output, and V = sensor noise

Using the formula given in Eq. (4.13), with changes in the parameter of interest, we can compute

St = 1.0, (4.20)
T |

Sofl = — 4.21
¢ | + GD.H “4321)
y GDuH

S — O 4.22)
H | + GDH (

Of these, the most interesting is the last. Notice that with respect to H, the sensitivity approaches unity as the loop
gain grows. Therefore it is particularly important that the transfer function of the sensor be not only low in noise but

also very stable in gain. Money spent on the sensor is money well spent.

4.2 Control of Steady-State Error to Polynomial Inputs: System Type

In studying the regulator problem, the reference input is taken to be a constant. It is also the case that the most
common plant disturbance is a constant bias. Even in the general tracking problem the reference input is often
constant for long periods of time or may be adequately approximated as if it were a polynomial in time, usually one
of low degree. For example, when an antenna is tracking the elevation angle to a satellite, the time history as the
satellite approaches overhead is an S-shaped curve as sketched in Fig. 4.5. This signal may be approximated by a
linear function of time (called a ramp function or velocity input) for a significant time relative to the speed of
response of the servomechanism. As another example, the position control of an elevator has a ramp function
reference input, which will direct the elevator to move with constant speed until it comes near the next floor. In rare
cases, the input can even be approximated over a substantial period as having a constant acceleration. Consideration

of these cases leads us to consider steady-state errors in stable systems with polynomial inputs.



As part of the study of steady-state errors to polynomial inputs, a terminology has been developed to express the
results. For example, we classify systems as to “type” according to the degree of the polynomial that they can
reasonably track. For example, a system that can track a polynomial of degree 1 with a constant error is called Type
1. Also, to quantify the tracking error, several “error constants” are defined. In all of the following analysis, it is

assumed that the systems are stable, else the analysis makes no sense at all.
Figure 4.5 Signal for satellite tracking
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4.2.1 System Type for Tracking

In the unity feedback case shown in Fig. 4.2, the system error is given by Eq. (4.8). If we consider tracking the

reference input alone and set W = V = 0, then the equation for the error is simply

E=—+—R=_SR. (4.23)
N
To consider polynomial inputs, we let r(t) = tk/k!].(t) for which the transform is R = ##+1 We take a mechanical
system as the basis for a generic reference nomenclature, calling step inputs for which k = 0 “position” inputs, ramp

inputs for which k = 1 are called “velocity” inputs and if k = 2, the inputs are called “acceleration” inputs,

regardless of the units of the actual signals. Application of the Final Value Theorem to the error formula gives the

result

lim e(t) = ey = lim sE(5) (4.24)

—0a s—0

]
= lims———R(. 4.25
s W (4.23)

] ]

= lims (4.26)

s=0 1 4+ GDy sk+1°

We consider first a system for which GD; has no pole at the origin and a step input for which R(s) = !/,. Thus r(t) is

a polynomial of degree 0. In this case, Eq. (4.26) reduces to

I 1

o T i 4.27
R | +GD s ( }

1
s (4.28
[+ GD(0) J

We define this system to be Type 0 and we define the constant, GD(0) = K, as the “position error constant.” Notice

that if the input should be a polynomial of degree higher than 1, the resulting error would grow without bound. A
polynomial of degree O is the highest degree a system of Type 0 can track at all. If GD_(s) has one pole at the origin,



we could continue this line of argument and consider first-degree polynomial inputs but it is quite straightforward to
evaluate Eq. (4.26) in a general setting. For this case, it is necessary to describe the behavior of the controller and
plant as s approaches 0. For this purpose, we collect all the terms except the pole(s) at the origin into a function

GD,,,(s), which is finite at s = 0 so that we can define the constant GD,;,(0) =K, and write the loop transfer

function as

GD{ o (5)

I:_;.I"i‘

GD(s) = ] (4.29)

For example, if GD_ has no integrator, then n = 0. If the system has one integrator, then n = 1, and so forth.

Substituting this expression into Eq. (4.26),

1 1

55 = lims 4.3
S e 30
_I_
b-."l'
s" I
= li —. 4.31
s—=0) q.fi' _|_ K’r .5'5' { ,}

From this equation we can see at once that if n > kthene = O and ifn > kthene — «.If n = k = 0, then

1
Eop = ————
7 4Ko and if n = k = 0, then e;, = !/k,. As we saw above, if n = k = 0, the input is a zero-degree

polynomial otherwise known as a step or position, the constant K, is called the “position constant” written as K,

and the system is classified as “Type 0.” If n = k = 1, the input is a first-degree polynomial otherwise known as a

ramp or velocity input and the constant K; is called the “velocity constant” written as K,. This system is classified

“Type 1” (read “type one”). In a similar way, systems of Type 2 and higher types may be defined. A clear picture of

the situation is given by the plot in Fig. 4.6 for a system of Type 1 having a ramp reference input. The error between
I
input and output of size A+ is clearly marked.

Using Eq (4.29), these results can be summarized by the equations:

Kp = lim GD(s),  n=0, (4.32)
K, = I_irrE] sGD.(s), n=1, (4.33)
K, = lim s*GD,(s), n=2. (4.34)

The type information can also be usefully gathered in a table of error values as a function of the degree of the

input polynomial and the type of the system as shown in Table 4.1.
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Figure 4.6 Relationship between ramp response and K,

TABLE 4.1 Errors as a Function of System Type

Type Input  Step (position) Ramp(velocity) Parabola (acceleration)

1

Type 0 o
w» 1+ Kp = =

1
Type 1 0 o o0
Ky ;
Type 2 0 0 T
Ka

EXAMPLE 4.1 System Type for Speed Control

Determine the system type and the relevant error constant for speed control with proportional feedback given by

A

D(s) = kp. The plant transfer function is G= ts+l1,

GD. = o2

Solution. In this case, rs+1 and applying Eq. (4.32) we see that n = 0 in this case as there is no pole at s =

0. Thus the system is Type 0 and the error constant is a position constant given by K, = kA

EXAMPLE 4.2 System Type Using Integral Control

Determine the system type and the relevant error constant for the speed control example with proportional plus
A
integral control having controller given by D, = k;, + K/ . The plant transfer function is O=zh .

A '[ kll.l.'l'+;{,l' _]'

GDa(s) = =yrem and, as a unity feedback system with a single

Solution. In this case, the loop transfer function is

pole at s = 0, the system is immediately seen as Type 1. The velocity constant is given by Eq. (4.33) to be
K= iila.sfiﬂt-;{s} = Ak;

The definition of system type helps us to identify quickly the ability of a system to track polynomials. In the unity
feedback structure, if the process parameters change without removing the pole at the origin in a Type 1 system, the

velocity constant will change but the system will still have zero steady-state error in response to a constant input and



will still be Type 1. Similar statements can be made for systems of Type 2 or higher. Thus we can say that system
type is a robust property with respect to parameter changes in the unity feedback structure. Robustness is a major

reason for preferring unity feedback over other kinds of control structure.

Robustness of system type

Another form of the formula for the error constants can be developed directly in terms of the closed-loop transfer

function T(s). From Fig. 4.4 the transfer function including a sensor transfer function is

Y(s) GD

— =T(5) = ———, 4.35
R(s) ) | + GDH : J

and the system error is
E(s) = R(s) — Y(s) = R(s) — T(s)R(s).

The reference-to-error transfer function is thus

E(s) B _
m =1 T{&}.

and the system error transform is

E(s) = [1 - T(s)IR(s),
We assume that the conditions of the Final Value Theorem are satisfied, namely that all poles of sE(s) are in the LHP.
In that case the steady-state error is given by applying the Final Value Theorem to get

Cm FIim e(t) = lim sE(s) = Hmﬂxll — T (5)|R(s). (4.36)

— 20 s={ =

If the reference input is a polynomial of degree k, the error transform becomes

1
E(s) = —[1 = T(s)]

Gk

and the steady-state error is given again by the Final Value Theorem:

. 1 =T(s . 1 =T(s)
e =lims——— = lim ——,

s—0  ght] s—0 sk Lol

As before, the result of evaluating the limit in Eq. (4.37) can be zero, a nonzero constant, or infinite and if the
solution to Eq. (4.37) is a nonzero constant, the system is referred to as Type k. Notice that a system of Type 1 or

higher has a closed-loop DC gain of 1.0, which means that T(0) = 1 in these cases.

EXAMPLE 4.3 System Type for a Servo with Tachometer Feedback
Consider an electric motor position control problem including a non-unity feedback system caused by having a
tachometer fixed to the motor shaft and its voltage (which is proportional to shaft speed) is fed back as part of the

control. The parameters are



I

G(s) = ———,
(5) s(ts+ 1)

J':J{Tr} —_ Jfl'lfh

ff{.?]’ = ]. —i—kr.f.

F(s) = 1.

Determine the system type and relevant error constant with respect to reference inputs.

Solution. The system error is

E(s) = R(s) — Y(5)
= Kis) — T(5)R(5)
DGis)
= R(5) = ——————R(,
) = 1T EDGH ™
14 (HE — E}D(}{.s}H 5)
B | + HDG(s) o

The steady-state system error from Eq. (4.37) is

A I_irré.fR{s]l | — T(s)].

For a polynomial reference input, R(s) = !/s+! and hence

[ =T(9] . ls(ts+ D+ (1 4+ks— Dk,
&gy = lim ————— = lim —
§—0 sk =058 s(zs+ D+ (1 + ks)k,
==}, k=0
W W
ky
K, = to_
therefore the system is Type 1 and the velocity constant is I+kks | Notice that if k, > 0, perhaps to improve

stability or dynamic response, the velocity constant is smaller than with simply the unity feedback value of k;,. The
conclusion is that if tachometer feedback is used to improve dynamic response, the steady-state error is usually

increased.

4.2.2 System Type for Regulation and Disturbance Rejection

A system can also be classified with respect to its ability to reject polynomial disturbance inputs in a way analogous
to the classification scheme based on reference inputs. The transfer function from the disturbance input W(s) to the
error E(s) is

E(s) —-Y(s)

- = T (s 4.38
W(s) Wi(s) (5) { )

because, if the reference is equal to zero, the output is the error. In a similar way as for reference inputs, the system



is Type O if a step disturbance input results in a nonzero constant steady-state error and is Type 1 if a ramp
disturbance input results in a steady-state value of the error that is a non zero constant, etc. In general, following the

same approach used in developing Eq. (4.31), we assume that a constant n and a function T, ,,(s) can be defined with

the properties that T, ,,(0) = 1/Kn,W and that the disturbance-to-error transfer function can be written as

50 S gl O g (4.39)

Then the steady-state error to a disturbance input, which is a polynomial of degree k, is

. - i
Yss = himy [ﬂ onds) ﬁj‘__]j|

5
= li Tow(s)—|. 4.40
[ s

5=

From Eq. (4.40), if n > k, then the error is zero and if n < k, the error is unbounded. If n = k, the system is type k

and the error is given by /K .

oV
sty + 1) !

k4

|
=
3

Figure 4.7 DC motor with unity feedback

EXAMPLE 4.4 System Type for a DC Motor Position Control

Consider the simplified model of a DC motor in unity feedback as shown in Fig. 4.7, where the disturbance torque is

labeled W(s). This case was considered in Example 2.11.

(a) Use the controller
D(s) = kp, (4.41)

and determine the system type and steady-state error properties with respect to disturbance inputs.

(b) Let the controller transfer function be given by

Iel'
D(s) =k, + —, (4.42)
&

and determine the system type and the steady-state error properties for disturbance inputs.

Solution. (a) The closed-loop transfer function from W to E (where R = 0) is



—B

T.(5) =
)= D + Ak,
= SUTrr.u'-
H=10;
—Ak,
JIE:rl.'-r — £ .
B

Applying Eq. (4.40) we see that the system is Type 0 and the steady-state error to a unit step torque input is e, =
‘B/Akp. From the earlier section, this system is seen to be Type 1 for reference inputs and illustrates that system type
can be different for different inputs to the same system.

(b) For this controller the disturbance error transfer function is

—Bs
T.(s) = ; 4.43
(ﬁ} -FELTS T ]} + {k!,_ﬁ + k.f}-"l ( }
n=1, (4.44)
Ak;
Kn.n' — 4.45
— (4.45)

and therefore the system is Type 1 and the error to a unit ramp disturbance input will be

—B

5= 44
es = 7p (4.46)

Truxal’s Formula for the Error Constants

Truxal (1955) derived a formula for the velocity constant of a Type 1 system in terms of the closed-loop poles and
zeros, a formula that connects the steady-state error to the system’s dynamic response. Since control design often
requires a trade-off between these two characteristics, Truxal’s formula can be useful to know. Its derivation is quite
direct. Suppose the closed-loop transfer function T (s) of a Type 1 system is

(5 —21)(8—22) -+ (85 — Zm)

Tilsy=K- - . (4.47)
(s—mMs—p2):---(5—pa)

Since the steady-state error in response to a step input in a Type 1 system is zero, the DC gain is unity; thus

T = I (4.48)

The system error is given by

i & . - L ot 3 Y(S} — - T e 7 {
Es)=R(s)=Y(s)=R(s)|1 - m = R(s)[1 — T (s)]. (4.49)
s

The system error due to a unit ramp input is given by



1 —T(s5)

E(s) = (4.50)
5=
Using the Final Value Theorem, we get
1 —T7(5)
ey = him —[ (4.51)
5—) 8
Using L’Ho6pital’s rule we rewrite Eq. (4.51) as
dT
€y = — lim — 4.52
53 i (4.52)
or
I L2} | (4.53)
ey = — liM — = —, (4.5
' s—=0 {’IIS K|'

Equation (4.53) implies that !/K, is related to the slope of the transfer function at the origin, a result that will also be

shown in Section 6.1.2. Using Eq. (4.48), we can rewrite Eq. (4.53) as

dT |

o I- e 4.54
~ 650 ds. T : :I
or
d
e = — lim —[In7 (5)]. (4.55)
s—0 (s

Substituting Eq. (4.47) into Eq. (4.55), we get

1 AL o
egs = — lim — iln {KM} I (4.56)
s—0 ds [Tizi(s = pi)

- ;_’f i L
= — ah—,n::l] e [K + ; In(s — z;) — ; In(s —p,—]] (4.57)

or

== —— = (4.58)

EXAMPLE 4.5 Truxal’s formula
We observe from Eq. (4.58) that K, increases as the closed-loop poles move away from the origin. Similar

relationships exist for other error coefficients, and these are explored in the problems.



Truxal’s Formula

A third-order Type 1 system has closed-loop poles at — 2 + 2j and -0.1. The system has only one closed-loop zero.
Where should the zero be if a K, = 10 is desired?

Solution. From Truxal’s formula we have,

-
(%}
b
e
T
(%1
[
b

=

|
0.1=05+10+ -,

4,

or

I
- =0.1-05-10,
=—104

Therefore, the closed-loop zero should be at z = 1/-10.4 = —0.0962.

4.3 The Three-Term Controller: PID Control

In later chapters we will study three general analytic and graphical design techniques based on the root locus, the
frequency response, and the state space formulation of the equations. Here we describe a control method having an
older pedigree that was developed through long experience and by trial and error. Starting with simple proportional
feedback, engineers early discovered integral control action as a means of eliminating bias offset. Then, finding poor
dynamic response in many cases, an “anticipatory” term based on the derivative was added. The result is called the

three-term or PID controller and has the transfer function®

; K z
Dis) = k.” - i + kps, (4.59)
L
where k;, is the proportional term, k; is the integral term, and ky, is the derivative term. We’ll discuss them in turn.

4.3.1 Proportional Control (P)

When the feedback control signal is linearly proportional to the system error, we call the result proportional
feedback. This was the case for the feedback used in the controller of speed in Section 4.1 for which the controller
transfer function is
U(s) .
— = D.(5) = k. (4.60)
I3 (5) 1(5) o
If the plant is second order, as, for example, for a motor with nonnegligible inductance, then the plant transfer

function can be written as

Gis) = (4.61)

52 + a15 + ::13'



In this case, the characteristic equation with proportional control is

| + k,G(s) =0, (4.62)

51'2 -+ a) s -+ az =T kpldl —_ n. {463}

The designer can control the constant term in this equation, which determines the natural frequency, but cannot

control the damping of the equation. The system is Type 0 and if k,, is made large to get adequately small steady-

state error, the damping may be much too low for satisfactory transient response with proportional control alone.

4.3.2 Proportional Plus Integral Control (PI)

Adding an integral term to the controller to get the automatic reset effect results in the proportional plus integral

control equation in the time domain:

Proportional plus integral control

!

u(f) = kpe + .ﬁ:.rf e(t)dr. (4.64)

|

for which the D.(s) in Fig. 4.2 becomes

= Dyy(s) =k, + - (4.65)

Introduction of the integral term raises the type to Type 1 and the system can therefore reject completely constant

bias disturbances. For example, consider PI control in a speed control example, where the plant is described by

Y =

(U + W), (4.66)
5+ 1

The transform equation for the controller is

U lall=Hh = (4.67)
5

and the system transform equation with this controller is

k
(rs+1)Y=A (A‘,, -+ --'r-) (R—Y)+AW, (4.68)
8
and, if we multiply by s and collect terms,

(157 + (Akp + 1)s + AkDY = Akys + kR + sAW. (4.69)

Because the PI controller includes dynamics, use of this controller will change the dynamic response. This we can

understand by considering the characteristic equation given by



752 + (Ak, + 1)s + Ak; = 0, (4.70)

e

The two roots of this equation may be complex and, if so, the natural frequency is “n = v A4/t and the damping
o Akpl

ratio is ¢ = Zram . These parameters may both be determined by the controller gains. On the other hand, if the

plant is second order, described by

G(s) = A (4.71
() 52 +ays + a }
then the characteristic equation of the system is
kps + k A
gt T e =0, 4.72)
5 s 4 a5+ a
> + ajs® + ars + Akys + Ak = 0. (4.73)

In this case, the controller parameters can be used to set two of the coefficients but not the third. For this we need

derivative control.

4.3.3 PID Control

The final term in the classical controller is derivative control, D. An important effect of this term is that it gives a
sharp response to suddenly changing signals. Because of this, the “D” term is sometimes introduced into the feedback
path as shown in Fig. 4.8(a). This could be either a part of the standard controller or could describe a velocity sensor
such as a tachometer on the shaft of a motor. The closed-loop characteristic equation is the same as if the term were
in the forward path as given by Eq. (4.59) and drawn in Fig. 4.8(b). It is important to notice that the zeros from the
reference to the output are different in the two cases. With the derivative in the feedback path, the reference is not

differentiated, which is how the undesirable response to sudden changes is avoided.

(rix) oY

ks fe—oi

1a)

(%) O ¥

(b}



Figure 4.8 Block diagram of the PID controller: (a) with the D-term in the feedback path; and (b) with the D-term in
the forward path

To illustrate the effect of a derivative term on PID control, consider speed control but with the second-order plant.

In that case, the characteristic equation is

k
5 + a5+ a» -{-r’.{%, -+ 0. + kps) =0,
5
> + a15? + azs + Alkps + ki + kps*) = 0. (4.74)

Collecting terms results in

s* 4 (a1 + Akp)s™ + (a2 + Aky)s + Ak; = 0. (4.75)

The point here is that this equation, whose three roots determine the nature of the dynamic response of the system,

has three free parameters in kp, kI, and kD and that by selection of these parameters, the roots can be uniquely and,

in theory, arbitrarily determined. Without the derivative term, there would be only two free parameters, but with
three roots, the choice of roots of the characteristic equation would be restricted. To illustrate the effect more

concretely, a numerical example is useful.

EXAMPLE 4.6 PID Control of Motor Speed

Consider the DC motor speed control with parameters*

Jp =113 x 1072 b = 0.028 N-m-sec/rad, L, = 10" "henry,
N-m- sec” /rad,
R, = 0.45 ohms, K, = 0.067 N-m/amp, K, = 0.067 volt-sec/rad

(4.76)

These parameters were defined in Example 2.11 in Chapter 2. Use the controller parameters
ky, = 3, ki = 135 sec, kp = 0.3 sec. (4.77)

Discuss the effects of P, PI, and PID control on the responses of this system to steps in the disturbance torque and

steps in the reference input. Let the unused controller parameters be zero.

Solution. Figure 4.9(a) illustrates the effects of P, PI, and PID feedback on the step disturbance response of the
system. Note that adding the integral term increases the oscillatory behavior but eliminates the steady-state error and
that adding the derivative term reduces the oscillation while maintaining zero steady-state error. Figure 4.9(b)
illustrates the effects of P, PI, and PID feedback on the step reference response with similar results. The step
responses can be computed by forming the numerator and denominator coefficient vectors (in descending powers of
s) and using the step function in MATLAB.®
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Figure 4.9 Responses of P, PI, and PID control to (a) step disturbance input (b) step reference input

EXAMPLE 4.7 PI Control for a DC Motor Position Control

Consider the simplified model of a DC motor in unity feedback as shown in Fig. 4.7 where the disturbance torque is
labeled W(s). Let the sensor be -h rather than -1.

(a) Use the proportional controller
D(s) = ky (4.78)

and determine the system type and steady-state error properties with respect to disturbance inputs.

(b) Let the control be PI as given by

k
D(s) =k, + i_; (4.79)

and determine the system type and the steady-state error properties for disturbance inputs.

Solution. (a) The closed-loop transfer function from W to E (where R = 0) is

B
Tw(s) =
(5) s(ts+ 1) + Akyh
= ‘-".{}?-:J.H"
n=10,
—Akyf
Kr}.l-!:' — B I-
B

Applying Eq. (4.40) we see that the system is Type 0 and the steady-state error to a unit step torque input is e, =
B/Akph. From the earlier section, this system is seen to be Type 1 for reference inputs and illustrates that system type
can be different for different inputs to the same system. However, in this case the system is Type O for reference
inputs.

(b) If the controller is PI, the disturbance error transfer function is



—Bs

Tyis) = = : 4.80

) s=(Ts + 1) + (kps + kp)Ah o)

n=1, (4.81)
Akh ;

Kﬂ_l“' — __B‘ [.4.32]

and therefore the system is Type 1 and the error to a unit ramp disturbance input in this case will be

—B
e fA

e 4.83
- Akih ( )

EXAMPLE 4.8 Satellite Attitude Control

Consider the model of a satellite attitude control system shown in Fig. 4.10 (a) where
J = moment of inertia,
W = disturbance torque,
K = sensor and reference gain,
D(s) = the compensator.

With equal input filter and sensor scale factors, the system with PD control can be redrawn with unity feedback as in
Fig. 4.10(b) and with PID control drawn as in Fig. 4.10(c). Assume that the control results in a stable system and

determine the system types and error responses to disturbances of the control system for

(a) System Fig. 4.10(b) Proportional plus derivative control where D(s) = kp + kps
(b) System Fig. 4.10(c) Proportional plus integral plus derivative control where D = kp + K/g 4 sz.5

Solution. (a) We see from inspection of Fig. 4.10(b) that with two poles at the origin in the plant, the system is Type

2 with respect to reference inputs. The transfer function from disturbance to error is

T (5) =

_ 4.84
Js + kps + k, (%54

= Tpwis) (4.85)

for whichn = 0 and K, ;, = k. The system is Type 0 and the error to a unit disturbance step is 1/kp.
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Figure 4.10 Model of a satellite attitude control: (a) basic system; (b) PD control; (c) PID control

(b) With PID control, the forward gain has three poles at the origin, so this system is Type 3 for reference inputs

but the disturbance transfer function is

)

Tio(s) = ‘ , 4.86
W PRt th (80
n=1, (4.87)

T o= 1 (4.88)

Js3 + kps* + kps + ki

from which the system is Type 1 and the error constant is k; ; so the error to a disturbance ramp of unit slope will be

1/kI‘

4.3.4 Ziegler-Nichols Tuning of the PID Controller

When the PID controller was being developed, selecting values for the several terms (known as “tuning” the
controller) was often a hit and miss affair. To bring order to the situation and make life easier for plant operators,
control engineers looked for ways to make the tuning more systematic. Callender et al. (1936) proposed a design for

PID controllers by specifying satisfactory values for the terms based on estimates of the plant parameters that an



operating engineer could make from experiments on the process itself. This approach was extended by J. G. Ziegler
and N. B. Nichols (1942, 1943) who recognized that the step responses of a large number of process control systems
exhibit a process reaction curve like that shown in Fig. 4.11, which can be generated from experimental step
response data. The S-shape of the curve is characteristic of many systems and can be approximated by the step

response of a plant with transfer function
Figure 4.11 Process reaction curve

+ (1)

A ; :
= Reaction rate

4 Slope R =

bl

Transfer function for a high-order system with a characteristic process reaction curve

Y(s) Ae*
UGs)  Topr @

which is a first-order system with a time delay or “transportation lag” of ty sec. The constants in Eq. (4.89) can be

determined from the unit step response of the process. If a tangent is drawn at the inflection point of the reaction

curve, then the slope of the line is R = %/, the intersection of the tangent line with the time axis identifies the time

delay L. = td and the final value gives the value of A.°

Tuning by decay ratio of 0.25

Ziegler and Nichols gave two methods for tuning the PID controller for such a model. In the first method the choice
of controller parameters is designed to result in a closed-loop step response transient with a decay ratio of
approximately 0.25. This means that the transient decays to a quarter of its value after one period of oscillation, as
shown in Fig. 4.12. A quarter decay corresponds to { = 0.21 and, while low for many applications, was seen as a
reasonable compromise between quick response and adequate stability margins for the process controls being
considered. The authors simulated the equations for the system on an analog computer and adjusted the controller
parameters until the transients showed the decay of 25% in one period. The regulator parameters suggested by

Ziegler and Nichols for the controller terms defined by

: I e ;
-';..},:-f” = Jtt'lr:-{I + T: = I{Jﬁ'} [4{;{}]

are given in Table 4.2.
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Figure 4.12 Quarter decay ratio

TABLE 4.2 Ziegler-Nichols Tuning for the Regulator D(s) = K(1 + 1/T;s + Tps), for a Decay Ratio of 0.25

Type of Controller Optimum Gain

P ko = 1/RL
':‘f,[} = D,QI."'RL
it ! T; = L_.-'":'q-}
kp = 1.2/RL
PID T =21
Tp = 0.5L

LTS B y |
Fo o 2 " K, # Process O,r\/\\

Figure 4.13 Determination of ultimate gain and period

Tuning by evaluation at limit of stability (ultimate sensitivity method)

In the ultimate sensitivity method the criteria for adjusting the parameters are based on evaluating the amplitude
and frequency of the oscillations of the system at the limit of stability rather than on taking a step response. To use
the method, the proportional gain is increased until the system becomes marginally stable and continuous
oscillations just begin with amplitude limited by the saturation of the actuator. The corresponding gain is defined as

K, (called the ultimate gain) and the periodofoscillation is P, (called the ultimate period). These are determined as
shown in Figs. 4.13 and 4.14. P, should be measured when the amplitude of oscillation is as small as possible. Then
the tuning parameters are selected as shown in Table 4.3.

Experience has shown that the controller settings according to Ziegler-Nichols rules provide acceptable closed-loop
response for many systems. The process operator will often do final tuning of the controller iteratively on the actual

process to yield satisfactory control.
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Figure 4.14 Neutrally stable system

TABLE 4.3 Ziegler-Nichols Tuning for the Regulator D.(s) = k,(1 + 1/T;s + Tps), Based on the Ultimate Sensitivity
Method

Type of Controller Optimum Gain

P kp = 0.5K,
‘ ky = 0.45K,
I Py
Tj= ok
=12
kp = 1.6Ky
PID Tr = 0.5P,
Tp = 0.125P,

0.0 100.0 200.0 300.0 400.0
Time (sec)

Figure 4.15 A measured process reaction curve

EXAMPLE 4.9 Tuning of a Heat Exchanger: Quarter Decay Ratio
Consider the heat exchanger discussed in Chapter 2. The process reaction curve of this system is shown in Fig. 4.15.
Determine proportional and PI regulator gains for the system using the Zeigler—Nichols rules to achieve a quarter

decay ratio. Plot the corresponding step responses.
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Figure 4.16 Closed-loop step responses

Solution. From the process reaction curve we measure the maximum slope to be R= % and the time delay to be L
= 13 sec. According to the Zeigler—Nichols rules of Table 4.2 the gains are
. 1 90
Proportional : k, = -1 6.52,
PL k= g = b2 and Tpe= i = E =43.3.
P RL 03 03

Figure 4.16(a) shows the step responses of the closed-loop system to these two regulators. Note that the proportional
regulator results in a steady-state offset, while the PI regulator tracks the step exactly in the steady state. Both

regulators are rather oscillatory and have considerable overshoot. If we arbitrarily reduce the gain k,, by a factor of 2

in each case, the overshoot and oscillatory behaviors are substantially reduced, as shown in Fig. 4.16(b).

EXAMPLE 4.10 Tuning of a Heat Exchanger: Oscillatory Behavior

Proportional feedback was applied to the heat exchanger in the previous example until the system showed
nondecaying oscillations in response to a short pulse (impulse) input, as shown in Fig. 4.17. The ultimate gain is
measured to be K, = 15.3, and the period was measured at P, = 42 sec. Determine the proportional and PI
regulators according to the Zeigler—Nichols rules based on the ultimate sensitivity method. Plot the corresponding

step responses.
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Figure 4.18 Closed-loop step response

Solution. The regulators from Table 4.3 are
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The step responses of the closed-loop system are shown in Fig. 4.18(a). Note that the responses are similar to those

in Example 4.9. If we reduce k,, by 50%, then the overshoot is substantially reduced, as shown in Fig. 4.18(b).

4.4 Introduction to Digital Control

As a result of the revolution in the cost-effectiveness of digital computers, there has been an increasing use of digital

logic in embedded applications such as controllers in feedback systems. A digital controller gives the designer much

more flexibility to make modifications to the control law after the hardware design is fixed because the formula for

calculating the control signal is in the software rather than the hardware. In many instances, this means that the

hardware and software designs can proceed almost independently, saving a great deal of time. Also, it is relatively



easy to include binary logic and nonlinear operations as part of the function of a digital controller as compared to an
analog controller. Special processors designed for real-time signal processing and known as digital signal processors
(DSPs) are particularly well suited for use as real-time controllers. Chapter 8 includes a more extensive introduction
to the math and concepts associated with the analysis and design of digital controllers and digital control systems.
However, in order to be able to compare the analog designs of the next three chapters with reasonable digital

equivalents, we give here a brief introduction to the most simple techniques for digital designs.

A digital controller differs from an analog controller in that the signals must be sampled and quantized.” A signal
to be used in digital logic needs to be sampled first and then the samples need to be converted by an analog-to-
digital converter or A/D® into a quantized digital number. Once the digital computer has calculated the proper next
control signal value, this value needs to be converted back into a voltage and held constant or otherwise extrapolated
by a digital-to-analog converter or D/A° in order to be applied to the actuator of the process. The control signal is
not changed until the next sampling period. As a result of sampling, there are strict limits on the speed and
bandwidth of a digital controller. Discrete design methods that tend to minimize these limitations are described in
Chapter 8, which tend to minimize these limitations. A reasonable rule of thumb for selecting the sampling period is
that during the rise-time of the response to a step, the input to the discrete controller should be sampled
approximately six times. By adjusting the controller for the effects of sampling, the sample period can be as large as
two to three times per rise time. This corresponds to a sampling frequency that is 10 to 20 times the system’s closed-
loop bandwidth. The quantization of the controller signals introduces an equivalent extra noise into the system and
to keep this interference at an acceptable level, the A/D converter usually has an accuracy of 10 to 12 bits although
inexpensive systems have been designed with only 8 bits. For a first analysis, the effects of the quantization are
usually ignored, as they will be in this introduction. A simplified block diagram of a system with a digital controller

is shown in Fig. 4.19.

For this introduction to digital control, we will describe a simplified technique for finding a discrete (sampled but

not quantized) equivalent to a given continuous controller. The method depends on the sampling period, T, being

short enough that the reconstructed control signal is close to the signal that the original analog controller would have
produced. We also assume that the numbers used in the digital logic have enough accurate bits so that the
quantization implied in the A/D and D/A processes can be ignored. While there are good analysis tools to determine
how well these requirements are met, here we will test our results by simulation, following the well-known advice

that “The proof of the pudding is in the eating.”
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Figure 4.19 Block diagram of a digital controller

Finding a discrete equivalent to a given analog controller is equivalent to finding a recurrence equation for the
samples of the control, which will approximate the differential equation of the controller. The assumption is that we

have the transfer function of an analog controller and wish to replace it with a discrete controller that will accept



samples of the controller input, e(kT,), from a sampler and, using past values of the control signal, u(kT,) and
present and past samples of the input, e(kT,) will compute the next control signal to be sent to the actuator. As an

example, consider a PID controller with the transfer function

J{'
U(s) = (ky + Tf + kps)E(s), 4.91)

which is equivalent to the three terms of the time-domain expression

I
u(t) = kpe(t) + k; f e(t)dt + kpe(t) (4.92)
{0

= up + uy + up. (4.93)

Based on these terms and the fact that the system is linear, the next control sample can be computed term-by-term.

The proportional term is immediate:
up(kTs + Ty) = kpe(kTs + Ty). (4.94)

The integral term can be computed by breaking the integral into two parts and approximating the second part,

which is the integral over one sample period, as follows.

kT +T,
u (KT, +T) = ki [ e(r)dr (4.95)
0
kT kT5+Ts
= F'(,r[ e(t)dt + r’h[ e(t)dr (4.96)
0 kT,
= uy(kT,) + {area under e(1) over one period} (4.97)
T, .
= uy(kT,) + i‘fﬁii’{kﬂ- + T;) + e(kTy)). (4.98)

In Eq. (4.98) the area in question has been approximated by that of the trapezoid formed by the base T, and vertices
e(kT, + T,) and e(kT,) as shown by the dashed line in Fig. 4.20.

X = flx, u)

{101

Figure 4.20 Graphical interpretation of numerical integration

The area can also be approximated by the rectangle of amplitude e(kT,) and width T, shown by the solid blue in
Fig. 4.20 to give ui(kT, + T,) = u(kT,) + k; T,e(kT,). These and other possibilities are considered in Chapter 8.



In the derivative term, the roles of u and e are reversed from integration and the consistent approximation

canbewrittendownatonce from Eq. (4.98) and Eq. (4.92) as

T,
— (up(kTs + Ty) + up(kT5)} = kple(kTs + Ty) — e(kTs)). (4.99)

As with linear analog transfer functions, these relations are greatly simplified and generalized by the use of transform
ideas. At this time, the discrete transform will be introduced simply as a prediction operator z much as if we
described the Laplace transform variable, s, as a differential operator. Here we define the operator z as the forward

shift operator in the sense that if U(z) is the transform of u(kT,) then zU(z) will be the transform of u(kT, + T,).

With this definition, the integral term can be written as
Ty :
Uz} = Up(2) + k,.r7 [zE(z} + E(2)], (4.100)

z+1

;,_.I

£1(2), (4.101)

T

Ur(z) = kg =

f f 7

and from Eq. (4.99), the derivative term becomes the inverse as

z—1

2
?x:—kl

Up(z) =kp

E(z). (4.102)

The complete discrete PID controller is thus described by

Tiz+1
i) = kp—ij—'
2 z—1

2z—1
ko )E{:;. (4.103)

z+ 1

Trapezoid rule

Comparing the two discrete equivalents of integration and differentiation with the corresponding analog terms, it is

seen that the effect of the discrete approximation in the z domain is as if everywhere in the analog transfer function,
2 z=1
the operator s has been replaced by the composite operator 7 +1, This is the trapezoid rule!? of discrete

equivalents:

The discrete equivalent to D,(s) is

2z—1
Dy(z) = D, (?__Jr :) (4.104)

EXAMPLE 4.11 Discrete Equivalent

Find the discrete equivalent to the analog controller having transfer function

Us) 115+

W 5]

(4.105)




using the sample period T, = 1.
2(z=1})

Solution. The discrete operator is z+! and thus the discrete transfer function is

U(z)
Dy(z) = 22) =D(s)| 2,1 (4.106)
o -,'_F: - + ]
2{z—1)
NE=SES
e (4.107)
3 |:-;+| ] +1
Clearing fractions, the discrete transfer function is
Uz) 23z-21
S (O (4.108)

 E(@ 1z=-5"

Converting the discrete transfer function to a discrete difference equation using the definition of z as the forward shift

operator is done as follows. First we cross-multiply in Eq. (4.108) to obtain
(7z = 5)U(2) = 23z — 21)E(2) (4.109)
and, interpreting z as a shift operator, this is equivalent to the difference equation'!

Tulk + 1) — Sulk) = 23elk + 1) — 21e(k), (4.110)

where we have replaced kT, + T, with k + 1 to simplify the notation. To compute the next control at time kT, +

T,, therefore, we solve the difference equation

23

21
e(k + 1) — —e(k). (4.111)

q
u{k—l—l}:‘?u(k}-l— 7 E

Now let’s apply these results to a control problem. Fortunately MATLAB® provides us with the SIMULINK®
capability to simulate both continuous and discrete systems allowing us to compare the responses of the systems with

continuous and discrete controllers.

EXAMPLE 4.12 Equivalent Discrete Controller for Speed Control
A motor speed control is found to have the plant transfer function
Y 45

—_ = ; 4.112
U (s+9(s+35) ( ;

A PI controller designed for this system has the transfer function

7
RN ] 4.113)
E 5




The closed-loop system has a rise time of about 0.2 sec and an overshoot of about 20%. Design a discrete equivalent
to this controller and compare the step responses and control signals of the two systems. (a) Compare the responses
if the sample period is 0.07, which is about three samples per rise time. (b) Compare the responses with a sample

period of T, = 0.035, which corresponds to about six samples per rise time.

Solution. (a) Using the substitution given by Eq. (4.104), the discrete equivalent for T, = 0.07 is given by replacing s

2 z-1

byS 00741 in D(s) as follows:
¥ s W
Dyx) = 140072+ 1 (4.114)
0.07z+ 1
=|‘42{z—ll+fy*{}.ﬂ7{z+l} @.115)
2(z—1)
21z—-0.79
L e 4.116)

{21}
Based on this expression, the equation for the control is (the sample period is suppressed)
ulk + 1) =wik) + 1.4 % [1.21e(k + 1) — 0.79e(k)}]. (4.117)

(b) For T, = 0.035, the discrete transfer function is

1.105z — 0.895

2 — ]
4

for which the difference equation is

w(k + 1) = u(k) + 1.4[1.105 e(k + 1) — 0.895 e(k)].

A SIMULINK block diagram for simulating the two systems is given in Fig. 4.21 and plots of the step responses are
given in Fig. 4.22(a). The respective control signals are plotted in Fig. 4.22(b). Notice that the discrete controller for

T, = 0.07 results in a substantial increase in the overshoot in the step response while with T = 0.035 the digital

controller matches the performance of the analog controller fairly well.

For controllers with many poles and zeros, making the continuous-to-discrete substitution called for in Eq. (4.104)

can be very tedious. Fortunately, MATLAB provides a command that does all the work. If one has a continuous

- A numD
transfer function given by Dc(s) = Fend represented in MATLAB as sysDa = tf(numD,denD), then the discrete

equivalent with sampling period T is given by

svsDd = c2d(sysDa, Ty, 7). (4.119)

In this expression, of course, the polynomials are represented in MATLAB form. The last parameter in the c2d

function given by ‘t’ calls for the conversion to be done
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Comparison plots of a speed control system with continuous and discrete controllers: (a) output responses. (b)
control signals
using the trapezoid method. The alternatives can be found by asking MATLAB for help c2d. For example, to

compute the polynomials for T, = 0.07 for the example above, the commands would be

numDa = [1 6];

denDa = [1 - 0];

sysDa = tf(numD,denD)
sysDd = c2d(sysDa,0.07,’t")

4.5 Historical Perspective

The field of control is characterized by two paths: theory and practice. Control theory is basically the application of
mathematics to solve control problems while control practice, as used here, is the practical application of feedback
in devices where it is found to be useful. Historically, practical applications have come first with control being
introduced by trial and error. Although the applicable mathematics is often known, the theory describing how the
control works and pointing the way to improvements has typically been applied later. For example, James Watt’s
company began manufacturing steam engines using the fly-ball governor in 1788 but it was not until 1840 that G. B.
Airy described instability in a similar device and not until 1868 than J. C. Maxwell published “On Governors” with a
theoretical description of the problem. Then it was not until 1877, almost 100 years after the steam engine control

was introduced, that E. J. Routh published a solution giving the requirements for stability. This situation has been



called the “Gap between Theory and Practice” and continues to this day as a source of creative tension that stimulates

both theory and practice.

Regulation is central to the process industries, from making beer to making gasoline. In these industries there are a
host of variables that need to be kept constant. Typical examples are temperature, pressure, volume, flow rates,
composition, and chemical properties such as pH level. However, before one can regulate by feedback, one must be
able to measure the variable of interest and before there was control there were sensors. In 1851, George Taylor and
David Kendall founded the company that later became the Taylor Instrument Company in Rochester, NY, to make
thermometers and barometers for weather forecasting. In 1855 they were making thermometers for several
industries, including the brewing industry where they were used for manual control. Other early entries into the
instrument field were the Bristol Company, founded in Naugatuck, CT, in 1889 by William Bristol, and the Foxboro
Company, founded in Foxboro, MA, in 1908 by William’s father and two of his brothers. For example, one of
Bristol’s instruments was used by Henry Ford to measure (and presumably control) steam pressure while he worked
at the Detroit Edison Company. The Bristol Company pioneered in telemetry that permitted instruments to be placed
at a distance from the process so a plant manager could monitor several variables at once. As the instruments became
more sophisticated, and devices such as motor-driven valves became available, they were used in feedback control
often using simple on—off methods as described in Chapter 1 for the home furnace. An important fact was that the
several instrument companies agreed upon standards for the variables used so a plant could mix and match
instruments and controllers from different suppliers. In 1920 Foxboro introduced a controller based on compressed
air that included reset or integral action. Eventually, each of these companies introduced instruments and controllers
that could implement full PID action. A major step was taken for tuning PID controllers in 1942 when Ziegler and

Nichols, working for Taylor Instruments, published their method for tuning based on experimental data.

The poster child for the tracking problem was that of the anti-aircraft gun, whether on land or at sea. The idea was
to use radar to track the target and to have a controller that would predict the path of the aircraft and aim the gun to
a position such that the projectile would hit the target when it got there. The Radiation Laboratory was set up at MIT
during World War II to develop such radars, one of which was the SCR-584. Interestingly, one of the major
contributors to the control methods developed for this project was none other than Nick Nichols who had earlier
worked on tuning PID controllers. When the record of the Rad Lab was written, Nichols was selected to be one of the
editors of volume 25 on control.

H. S. Black joined Bell Laboratories in 1921 and was assigned to find a design for an electronic amplifier suitable
for use as a repeater on the long lines of the telephone company. The basic problem was that the gain of the vacuum
tube components he had available drifted over time and he needed a design that, over the audio frequency range,
maintained a specific gain with great precision in the face of these drifts. Over the next few years he tried many
approaches, including a feed-forward technique designed to cancel the tube distortion. While this worked in the
laboratory, it was much too sensitive to be practical in the field. Finally, in August of 1927,'2 while on the ferry boat
from Staten Island to Manhattan, he realized that negative feedback might work and he wrote the equations on the
only paper available, a page of the New York Times. He applied for a patent in 1928 but it was not issued until

December 1937.12 The theory of sensitivity and many other theories of feedback were worked out by H. W. Bode.

SUMMARY

» The most important measure of the performance of a control system is the system error to all inputs.

« Compared to open-loop control, feedback can be used to stabilize an otherwise unstable system, to reduce errors to



plant disturbances, to improve the tracking of reference inputs and to reduce the system’s transfer function
sensitivity to parameter variations.

+ Sensor noise introduces a conflict between efforts to reduce the error caused by plant disturbances and efforts to
reduce the errors caused by the sensor noise.

+ Classifying a system as Type k indicates the ability of the system to achieve zero steady-state error to polynomials
of degree less than but not equal to k. A stable unity feedback system is Type k with respect to reference inputs if

the loop gain G(s)D(s) has k poles at the origin in which case we can write

As+ 15+ z22)---
k(s 4+ p1)(s+pa)--

Gis)D(s) =

and the error constant is given by
Ky = |in}Js"~'UmU(s; (4.120)
F—>

* A table of steady-state errors for unity feedback systems of Types 0, 1, and 2 to reference inputs is given in Table
4.1.

« Systems can be classified as to type for rejecting disturbances by computing the system error to polynomial
disturbance inputs. The system is Type k to disturbances if the error is zero to all disturbance polynomials of

degree less than k but nonzero for a polynomial of degree k.

« Increasing the proportional feedback gain reduces steady-state errors but high gain almost always destabilizes the
system. Integral control provides robust reduction in steady-state errors, but also may make the system less stable.
Derivative control increases damping and improves stability. These three kinds of control combined form the

classical PID controller.

« The standard PID controller is described by the equations
’ ks
Us) = (k,, +L rkps)EG) or
§
1 ;
U(s) = kp (I o+ T_ + Tns) E(s) = D(s)E(s).
I

This latter form is ubiquitous in the process-control industry and describes the basic controller in many control

systems.
+ Useful guidelines for tuning PID controllers were presented in Tables 4.2 and 4.3.

* A difference equation describing a digital controller to be used to replace a given analog controller can be found
2 =

I—

by replacing s with T; 241 in the transfer function and using z as a forward shift operator. Thus, if U(z)

corresponds to u(kT,) then zU(z) corresponds to u(kT + T,).

* MATLAB can compute a discrete equivalent with the command c2d.

REVIEW QUESTIONS

1. Give three advantages of feedback in control.



2. Give two disadvantages of feedback in control.

3. A temperature control system is found to have zero error to a constant tracking input and an error of 0.5°C to a
tracking input that is linear in time, rising at the rate of 40°C/sec. What is the system type of this control system

and what is the relevant error constant (Kp or K, or etc.)?
What are the units of Ko, K, and K?

What is the definition of system type with respect to reference inputs?

4.
5.
6. What is the definition of system type with respect to disturbance inputs?
7. Why does system type depend on where the external signal enters the system?

8. What is the main objective of introducing integral control?

9. What is the major objective of adding derivative control?

10. Why might a designer wish to put the derivative term in the feedback rather than in the error path?

11. What is the advantage of having a “tuning rule” for PID controllers?

12. Give two reasons to use a digital controller rather than an analog controller.

13. Give two disadvantages to using a digital controller.

14. Give the substitution in the discrete operator z for the Laplace operator s if the approximation to the integral in

Eq. (4.98) is taken to be the rectangle of height e(kT,) and base T..

PROBLEMS

Problems for Section 4.1: The Basic Equations of Control

4.1 If S is the sensitivity of the unity feedback system to changes in the plant transfer function and T is the transfer
function from reference to output, show that S + T = 1.
4.2 We define the sensitivity of a transfer function G to one of its parameters k as the ratio of percent change in G to
percent change in k.
g dG/G  dinG  kdG

S‘: = e o
k7 dk/k  dink G dk

The purpose of this problem is to examine the effect of feedback on sensitivity. In particular, we would like to
compare the topologies shown in Fig. 4.23 for connecting three amplifier stages with a gain of — K into a single
amplifier with a gain of -10.

(a) For each topology in Fig. 4.23, compute 3; so that if K= 10, Y= -10R.

0
(b) For each topology, compute Sk when G= Y/g. [Use the respective B; values found in part (a).] Which case is

the least sensitive?
(c) Compute the sensitivities of the systems in Fig. 4.23(b,c) to B, and B5. Using your results, comment on the

relative need for precision in sensors and actuators.

Figure 4.23 Three-amplifier topologies for Problem 4.2



(c)

4.3 Compare the two structures shown in Fig. 4.24 with respect to sensitivity to changes in the overall gain due to

changes in the amplifier gain. Use the relation

dinF K dF

~dink FdK

as the measure. Select H; and H, so that the nominal system outputs satisfy F; = F,, and assume KH; > 0.
I \'j._. Y h3 h‘]—(?f-', R o -ﬁ) - K - & | {of,
T FI“_ Hy

Figure 4.24 Block diagrams for Problem 4.3
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4.4 A unity feedback control system has the open-loop transfer function

G(s) =

s(s +a)

(a) Compute the sensitivity of the closed-loop transfer function to changes in the parameter A.
(b) Compute the sensitivity of the closed-loop transfer function to changes in the parameter a.
(c) If the unity gain in the feedback changes to a value of f = 1, compute the sensitivity of the closed-loop
transfer function with respect to f3.
4.5 Compute the equation for the system error for the filtered feedback system shown in Fig. 4.4.
4.6 If S is the sensitivity of the filtered feedback system to changes in the plant transfer function and T is the transfer
function from reference to output, compute the sum of S + T. Show thatS + T = 1 if F = H.

(a) Compute the sensitivity of the filtered feedback system shown in Fig. 4.4 with respect to changes in the plant



transfer function, G.

(b) Compute the sensitivity of the filtered feedback system shown in Fig. 4.4 with respect to changes in the

controller transfer function, D

(c) Compute the sensitivity of the filtered feedback system shown in Fig. 4.4 with respect to changes in the filter

transfer function, F.

(d) Compute the sensitivity of the filtered feedback system shown in Fig. 4.4 with respect to changes in the sensor

transfer function, H.

Problems for Section 4.2: Control of Steady-State Error

4.7 Consider the DC-motor control system with rate (tachometer) feedback shown in Fig. 4.25(a).
(a) Find values for K’ and ki so that the system of Fig. 4.25(b) has the same transfer function as the system of Fig.
4.25(a).
(b) Determine the system type with respect to tracking 6, and compute the system K, in terms of parameters K’
and k;.
(c) Does the addition of tachometer feedback with positive k; increase or decrease K,?
4.8 Consider the system shown in Fig. 4.26, where

(54w ]I2
.';'2 -} {r)?; 3

Dis) =K
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Figure 4.25 Control system for Problem 4.7
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Figure 4.26 Control system for Problem 4.8

(a) Prove that if the system is stable, it is capable of tracking a sinusoidal reference input r = sin w,t with zero
steady-state error. (Look at the transfer function from R to E and consider the gain at w,,.)
(b) Use Routh’s criterion to find the range of K such that the closed-loop system remains stable if w, = 1 and a =
0.25.
4.9 Consider the system shown in Fig. 4.27, which represents control of the angle of a pendulum that has no
damping.

(a) What condition must D (s) satisfy so that the system can track a ramp reference input with constant steady-state



error?

(b) For a transfer function D(s) that stabilizes the system and satisfies the condition in part (a), find the class of

disturbances w(t) that the system can reject with zero steady-state error.

Figure 4.27 Control system for Problem 4.9
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4.10 A unity feedback system has the overall transfer function
Y(s) i
L‘s‘ AT ; Wy 5.
Ris) §° + 2 wps + w;

Give the system type and corresponding error constant for tracking polynomial reference inputs in terms of ¢ and w,,.

4.11 Consider the second-order system

G(s) = =———.
%) 52 4205+ 1

D(s) = Ki{s4a)

We would like to add a transfer function of the form (s+F) " in series with G(s) in a unity feedback

structure.
(a) Ignoring stability for the moment, what are the constraints on K, a, and b so that the system is Type 1?
(b) What are the constraints placed on K, a, and b so that the system is both stable and Type 1?
(c) What are the constraints on a and b so that the system is both Type 1 and remains stable for every positive
value for K?
4.12 Consider the system shown in Fig. 4.28(a).

(a) What is the system type? Compute the steady-state tracking error due to a ramp input r(t) = r,tl (t).

(b) For the modified system with a feed-forward path shown in Fig. 4.28(b), give the value of H; so the system is

Type 2 for reference inputs and compute the K, in this case.

(c) Is the resulting Type 2 property of this system robust with respect to changes in H;? i.e., will the system

remain Type 2 if H; changes slightly?

Figure 4.28 Control system for Problem 4.12
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4.13 A controller for a satellite attitude control with transfer function G = 1/s2 has been designed with a unity
A 10{s42)
feedback structure and has the transfer function D) = =33

(a) Find the system type for reference tracking and the corresponding error constant for this system.
(b) If a disturbance torque adds to the control so that the input to the process is u + w, what is the system type

and corresponding error constant with respect to disturbance rejection?

4.14 A compensated motor position control system is shown in Fig. 4.29. Assume that the sensor dynamics are H(s) =
1.

Figure 4.29 Control system for Problem 4.14
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(a) Can the system track a step reference input r with zero steady-state error? If yes, give the value of the velocity

constant.
(b) Can the system reject a step disturbance w with zero steady-state error? If yes, give the value of the velocity
constant.

(c) Compute the sensitivity of the closed-loop transfer function to changes in the plant pole at -2.

His) = 20

(d) In some instances there are dynamics in the sensor. Repeat parts (a) to (c) for (s+20) and compare the

corresponding velocity constants.

4.15 The general unity feedback system shown in Fig. 4.30 has disturbance inputs w;, w,, and ws and is

asymptotically stable. Also,



II—IHHI{u—f- Z1) 14[#} j;' I—[ih‘l (5+z
sl ﬂﬂl{.‘. +p1) s ]_]m' fﬁ-l—j'h i

Gy(s) =

(a) Show that the system is of Type 0, Type 1;, and Type (1; + 1,) with respect to disturbance inputs w;, w,, and

Wy respectively.

Figure 4.30 Single input-single output unity feedback system with disturbance inputs
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4.16 One possible representation of an automobile speed-control system with integral control is shown in Fig. 4.31.

Figure 4.31 System using integral control

m
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(a) With a zero reference velocity input (v, = 0), find the transfer function relating the output speed v to the wind
disturbance w.
(b) What is the steady-state response of v if w is a unit ramp function?
(c) What type is this system in relation to reference inputs? What is the value of the corresponding error constant?
(d) What is the type and corresponding error constant of this system in relation to tracking the disturbance w?
4.17 For the feedback system shown in Fig. 4.32, find the value of a that will make the system Type 1 for K = 5.

Give the corresponding velocity constant. Show that the system is not robust by using this value of a and

computing the tracking error e = r — y to a step reference for K = 4 and K = 6.

Figure 4.32 Control system for Problem 4.17

4.18 Suppose you are given the system depicted in Fig. 4.33(a), where the plant parameter a is subject to variations.



+ | | [ 1 -I-/'l_-'. + Ein
Ro— X 4 — : , {3 )— ! t——ov .fm—{f};"'—- Gis) F—g—0 ¥
oy BT 5

taj ih)

Figure 4.33 Control system for Problem 4.18

(a) Find G(s) so that the system shown in Fig. 4.33(b) has the same transfer function from r to y as the system in
Fig. 4.33(a).

(b) Assume that a = 1 is the nominal value of the plant parameter. What is the system type and the error constant
in this case?

(c) Now assume thata = 1 + 8a, where 8a is some perturbation to the plant parameter. What is the system type
and the error constant for the perturbed system?

4.19 Two feedback systems are shown in Fig. 4.34.
(a) Determine values for K;, K,, and K3 so that

(i) both systems exhibit zero steady-state error to step inputs (that is, both are Type 1), and

(ii) their static velocity error constant K, = 1 when K, = 1.

+ K, U Ky : T L Ky
—_— — O O— - 8
RO o - P ¥ R K, K R oy

(a) (b}

Figure 4.34 Two feedback systems for Problem 4.19

(b) Suppose K, undergoes a small perturbation: K, — K, + 8K,. What effect does this have on the system type in

each case? Which system has a type which is robust? Which system do you think would be preferred?

4.20 You are given the system shown in Fig. 4.35, where the feedback gain [} is subject to variations. You are to

design a controller for this system so that the output y(t) accurately tracks the reference input r(t).

Figure 4.35 Control system for Problem 4.20
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(a) Let B = 1. You are given the following three options for the controller D;(s):
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Choose the controller (including particular values for the controller constants) that will result in a Type 1 system

|
with a steady-state error to a unit reference ramp of less than T0.

(b) Next, suppose that there is some attenuation in the feedback path that is modeled by f = 0.9. Find the steady-

state error due to a ramp input for your choice of D;(s) in part (a).
(c) If p = 0.9, what is the system type for part (b)? What are the values of the appropriate error constant?

4.21 Consider the system shown in Fig. 4.36.
(a) Find the transfer function from the reference input to the tracking error.

(b) For this system to respond to inputs of the form r(t) = t"1(t) (where n < q) with zero steady-state error, what

constraint is placed on the open-loop poles py, py, . . ., Pq?

Figure 4.36 Control system for Problem 4.21
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4.22 A linear ODE model of the DC motor with negligible armature inductance (L, = 0) and with a disturbance

torque w was given earlier in the chapter; it is restated here, in slightly different form, as

JR; . — R,
Tx”nr + Kol = vy + K_,I“\

where 6, is measured in radians. Dividing through by the coefficient of i, we obtain

By + '-'f]"";'m = bgug + cow,

where

KK, K 1

. b= —, o= -,
R T

a] =

With rotating potentiometers, it is possible to measure the positioning error between 6 and the reference angle 6, or
e = B, — 0, With a tachometer we can measure the motor speed #,,,. Consider using feedback of the error e and the

motor speed . in the form

Uy = Kie — Tpfy),

where K and Ty, are controller gains to be determined.

(a) Draw a block diagram of the resulting feedback system showing both 8., and _, as variables in the diagram

representing the motor.



(b) Suppose the numbers work out so that a; = 65, by, = 200, and ¢, = 10. If there is no load torque (w = 0),

what speed (in rpm) results from v, = 100 V?

(0) Using the parameter values given in part (b), let the control be D = k;, + kps and find k,, and kp, so that, using
the results of Chapter 3, a step change in 6, with zero load torque results in a transient that has an
approximately 17% overshoot and that settles to within 5% of steady-state in less than 0.05 sec.

(d) Derive an expression for the steady-state error to a reference angle input, and compute its value for your
design in part (c) assuming 6, = 1 rad.

(e) Derive an expression for the steady-state error to a constant disturbance torque when 6,.; = 0 and compute its

value for your design in part (c) assuming w = 1.0.

4.23 We wish to design an automatic speed control for an automobile. Assume that (1) the car has a mass m of 1000
kg, (2) the accelerator is the control U and supplies a force on the automobile of 10 N per degree of accelerator

motion, and (3) air drag provides a friction force proportional to velocity of 10 N - sec/m.
(a) Obtain the transfer function from control input U to the velocity of the automobile.

(b) Assume the velocity changes are given by

| i
Vis) = (s 4

. - Wis),
s+ 0.02 s+ 0.02

where V is given in meters per second, U is in degrees, and W is the percent grade of the road. Design a

proportional control law U = —k,V that will maintain a velocity error of less than 1 m/sec in the presence of a
constant 2% grade.

(c) Discuss what advantage (if any) integral control would have for this problem.

(d) Assuming that pure integral control (that is, no proportional term) is advantageous, select the feedback gain so

that the roots have critical damping (¢ = 1).

4.24 Consider the automobile speed control system depicted in Fig. 4.37.
Figure 4.37 Automobile speed-control system
W
R = Desired speed T

¥ = Actual speed B
W = Road grade, % 4+ a

ERo—s H,

(a) Find the transfer functions from W(s) and from R(s) to Y(s).
(b) Assume that the desired speed is a constant reference r, so that R(s) = ™/,. Assume that the road is level, so

w(t) = 0. Compute values of the gains K, H,, and H; to guarantee that



lim yir) = rp.
F— 20

Include both the open-loop (assuming Hy = 0) and feedback cases (Hy = () in your discussion.

(c) Repeat part (b) assuming that a constant grade disturbance W(s) = "°/, is present in addition to the reference

input. In particular, find the variation in speed due to the grade change for both the feed-forward and feedback

cases. Use your results to explain (1) why feedback control is necessary and (2) how the gain k, should be
chosen to reduce steady-state error.

(d) Assume that w(t) = 0 and that the gain A undergoes the perturbation A + SA. Determine the error in speed
due to the gain change for both the feed-forward and feedback cases. How should the gains be chosen in this

case to reduce the effects of §A?

4.25 Consider the multivariable system shown in Fig. 4.38. Assume that the system is stable. Find the transfer
functions from each disturbance input to each output and determine the steady-state values of y1 and y2 for
constant disturbances. We define a multivariable system to be type k with respect to polynomial inputs at wi if
the steady-state value of every output is zero for any combination of inputs of degree less than k and at least one
input is a non zero constant for an input of degree k. What is the system type with respect to disturbance

rejection at w;? At wy?

Figure 4.38 Multivariable system
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Problems for Section 4.3: The Three-Term Controller. PID Control

4.26 The transfer functions of speed control for a magnetic tape-drive system are shown in Fig. 4.39. The speed
sensor is fast enough that its dynamics can be neglected and the diagram shows the equivalent unity feedback

system.

(a) Assuming the reference is zero, what is the steady-state error due to a step disturbance torque of 1 N - m? What
must the amplifier gain K be in order to make the steady-state error e;; < 0.01 rad/sec?

(b) Plot the roots of the closed-loop system in the complex plane, and accurately sketch the time response of the
output for a step reference input using the gain K computed in part (a).

(c) Plot the region in the complex plane of acceptable closed-loop poles corresponding to the specifications of a
1% settling time of t; < 0.1 sec and an overshoot M, < 5%.

(d) Give values for kp and kp, for a PD controller, which will meet the specifications.

(e) How would the disturbance-induced steady-state error change with the new control scheme in part (d)? How



could the steady-state error to a disturbance torque be eliminated entirely?
Figure 4.39 Speed-control system for a magnetic tape-drive
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4.27 Consider the system shown in Fig. 4.40 with PI control.
(a) Determine the transfer function from R to Y.
(b) Determine the transfer function from W to Y.
(c) What is the system type and error constant with respect to reference tracking?

(d) What is the system type and error constant with respect to disturbance rejection?

Figure 4.40 Control system for Problem 4.27
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4.28 Consider the second-order plant with transfer function

1
s+ 1355+ 1)

Gils) =

and in a unity feedback structure.

(a) Determine the system type and error constant with respect to tracking polynomial reference inputs of the
system for P [D = kp], PD [D = kp + kpsl, and PID [D = kp + kl/S + kps] controllers. Let kp = 19,kI =
0.5, and kp =4/ 19.

(b) Determine the system type and error constant of the system with respect to disturbance inputs for each of the
three regulators in part (a) with respect to rejecting polynomial disturbances w (t) at the input to the plant.

(c) Is this system better at tracking references or rejecting disturbances? Explain your response briefly.

(d) Verify your results for parts (a) and (b) using MATLAB by plotting unit step and ramp responses for both
tracking and disturbance rejection.

4.29 The DC-motor speed control shown in Fig. 4.41 is described by the differential equation
V + 60y = 600v, — 1500w,

where y is the motor speed, v, is the armature voltage, and w is the load torque. Assume the armature voltage is



computed using the PI control law
f
Vg = — (k‘r}(} +kf [ l:‘-'df),
S0

(a) Compute the transfer function from W to Y as a function of kp and k;.

wheree = r-y.

(b) Compute values for kp and kI so that the characteristic equation of the closed-loop system will have roots at —
60 + 60j.

Figure 4.41 DC Motor speed-control block diagram for Problems 4.29 and 4.30
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4.30 For the system in Problem 4.29, compute the following steady-state errors:

D

(a) to a unit-step reference input;

(b) to a unit-ramp reference input;
(c) to a unit-step disturbance input;
(d) for a unit-ramp disturbance input.

(e) Verify your answers to (a) and (d) using MATLAB. Note that a ramp response can be generated as a step

response of a system modified by an added integrator at the reference input.
4.31 Consider the satellite-attitude control problem shown in Fig. 4.42 where the normalized parameters are
J = 10 spacecraft inertia, N-m-sec?/rad

6, = reference satellite attitude, rad.

Figure 4.42 Satellite attitude control

o o—s H, D(s)
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0 = actual satellite attitude, rad.

Hy, = 1 sensor scale, factor V/rad.

H, = 1 reference sensor scale factor, V/rad.



w = disturbance torque. Ném

(a) Use proportional control, P, with D(s) = kp,, and give the range of values for k;, for which the system will be
stable.

(b) Use PD control and let D(s) = (kp +kps) and determine the system type and error constant with respect to
reference inputs.

(c) Use PD control, let D(s) = (kp + kps) and determine the system type and error constant with respect to
disturbance inputs.

(d) Use PI control, let D(s) = (kp + kl/s), and determine the system type and error constant with respect to
reference inputs.

(e) Use PI control, let D(s) = (kp + kl/s), and determine the system type and error constant with respect to
disturbance inputs.

(f) Use PID control, let D(s) = D(s) = (kp + K/g 4 kps) and determine the system type and error constant with
respect to reference inputs.

(g) Use PID control, let D(s) = D(s) = D(s) = (kp + K/g 4 kps) and determine the system type and error
constant with respect to disturbance inputs.

4.32 The unit-step response of a paper machine is shown in Fig. 4.43(a) where the input into the system is stock flow

onto the wire and the output is basis weight (thickness). The time delay and slope of the transient response may

be determined from the figure.
(a) Find the proportional, PI, and PID-controller parameters using the Zeigler—Nichols transient-response method.

(b) Using proportional feedback control, control designers have obtained a closed-loop system with the unit

impulse response shown in Fig. 4.43(b). When the gain K, = 8.556, the system is on the verge of instability.

Determine the proportional-, PI-, and PID-controller parameters according to the Zeigler-Nichols ultimate

sensitivity method.

4.33 A paper machine has the transfer function

{X—E.l.'
3s+1°

Gils) =

where the input is stock flow onto the wire and the output is basis weight or thickness.
(a) Find the PID-controller parameters using the Zeigler-Nichols tuning rules.
(b) The system becomes marginally stable for a proportional gain of K, = 3.044 as shown by the unit impulse

response in Fig. 4.44. Find the optimal PID-controller parameters according to the Zeigler-Nichols tuning rules.
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Figure 4.43 Paper-machine response data for Problem 4.32
Figure 4.44 Unit impulse response for the paper machine in Problem 4.33
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A Problems for Section 4.4: Introduction to Digital Control

4.34 Compute the discrete equivalents for the following possible controllers using the trapezoid rule of Eq. (4.104).
Let T, = 0.05 in each case.

(@) D1(s) = (s + 2)/2

(b) uzm_zii

o AEe)
(c) DB{”_SA-—HD
D & (5 +2)(s +0.1)

(s + 10)(s + 0.01)
4.35 Give the difference equations corresponding to the discrete controllers found in Problem 4.34 respectively.
(@) part 1
(b) part 2
(c) part 3
(d) part 4



1 This process is called “pole placement,” a technique to be discussed in Chapter 7.

2 Bode, who developed the theory of sensitivity as well as many other properties of feedback, defined sensitivity as S = 1 + GD, the inverse of our

choice.

3 The derivative term alone makes this transfer function nonproper and impractical. However adding a high-frequency pole to make the term proper

only slightly modifies the performance.

4 These values have been scaled to measure time in milliseconds by multiplying the true Ly and J; by 1000 each.

S Notice that these controller transfer functions have more zeros than poles and are therefore not practical. In practice, the derivative term would

have a high-frequency pole, which has been omitted for simplicity in these examples.

6 K. J. Astrom and others have pointed out that a time constant, T, can also be estimated from the curve and claim that a more effective tuning can be

done by including that parameter.

7 A controller that operates on signals that are sampled but not quantized is called discrete while one that operates on signals that are both sampled

and quantized is called digital.

8 pronounced “A to D.”

9 Often spelled DAC and pronounced as one word to rhyme with quack.

10 The formula is also called Tustin’s Method after the English engineer who used the technique to study the responses of nonlinear circuits.

11 The process is entirely similar to that used in Chapter 3 to find the ordinary differential equation to which a rational Laplace transform

corresponds.
12 Black was 29 years old at the time.

13 According to the story, many of Black’s colleagues at the Bell laboratories did not believe it was possible to feed back a signal 100 times as large as

was the input and still keep the system stable. As will be discussed in Chapter 6, this dilemma was solved by H. Nyquist, also at the Labs.



5 The Root-Locus Design Method

A Perspective on the Root-Locus Design Method

In Chapter 3 we related the features of a step response, such as rise time, overshoot, and settling time, to pole

locations in the s-plane of the transform of a second-order system characterized by the natural frequency w,, the

damping ratio ¢, and the real part o. This relationship is shown graphically in Fig. 3.15. We also examined the
changes in these transient-response features when a pole or a zero is added to the transfer function. In Chapter 4 we
saw how feedback can improve steady-state errors and can also influence dynamic response by changing the system’s
pole locations. In this chapter we present a specific technique that shows how changes in one of a system’s
parameters will modify the roots of the characteristic equation, which are the closed-loop poles, and thus change the
system’s dynamic response. The method was developed by W. R. Evans who gave rules for plotting the paths of the
roots, a plot he called the Root Locus. With the development of MATLAB® and similar software the rules are no
longer needed for detailed plotting, but we feel it is essential for a control designer to understand how proposed
dynamic controllers will influence a locus as a guide in the design process. We also feel that it is important to
understand the basics of how loci are generated in order to perform sanity checks on the computer results. For these

reasons, study of the Evans rules is important.

The root locus is most commonly used to study the effect of loop gain variations; however, the method is general
and can be used to plot the roots of any polynomial with respect to any one real parameter that enters the equation
linearly. For example, the root-locus method can be used to plot the roots of a characteristic equation as the gain of a
velocity sensor feedback changes, or the parameter can be a physical parameter such as motor inertia or armature
inductance. Finally, a root locus can be plotted for a characteristic equation that results from the analysis of digital

control systems using the z-transform, a topic we introduced in Chapter 4 and will discuss further in Chapter 8.

Chapter Overview

We open in Section 5.1 by illustrating the root locus for some simple feedback systems for which the equations can
be solved directly. In Section 5.2 we show how to put an equation into the proper form for developing the rules for
the root-locus behavior. In Section 5.3 this approach is applied to determine the locus for a number of typical
control problems, which illustrate the factors that influence the final shape. MATLAB is used for detailed plotting of
specific loci. When adjustment of the selected parameter alone cannot produce a satisfactory design, designs using
other parameters can be studied or dynamic elements such as lead, lag, or notch compensations can be introduced, as
described in Section 5.4. In Section 5.5 the uses of the root locus for design are summarized by a comprehensive

design for the attitude control of a small airplane. In Section 5.6, the root-locus method is extended to guide the



design of systems with a negative parameter, systems with more than one variable parameter, and systems with

simple time delay. Finally, Section 5.7 gives historical notes on the origin of root-locus design.

5.1 Root Locus of a Basic Feedback System

We begin with the basic feedback system shown in Fig. 5.1. For this system, the closed-loop transfer function is

Yis) (s) D(5)G(s)
—— =T(s5) = : i
Ris) | + Di(s)G(s)H(5)

(5.1)

and the characteristic equation, whose roots are the poles of this transfer function, is

| + Dis)G(s)H(s) = 0. (3.2)

Controller Plant

Dis) ({5}

Sensor

Hix)

Figure 5.1 Basic closed-loop block diagram

To put the equation in a form suitable for study of the roots as a parameter changes, we first put the equation in
polynomial form and select the parameter of interest, which we will call K. We assume that we can define

component polynomials a(s) and b(s) so that the characteristic polynomial is in the form a(s) + Kb(s). We then

L(s) = 1 )

define the transfer function a(s) so that the characteristic equation can be written as

1 4+ KL(s) = 0. (5.3)

Evans’s method

If, as is often the case, the parameter is the gain of the controller, then L(s) is simply proportional to D(s)G(s)H(s).
Evans suggested that we plot the locus of all possible roots of Eq. (5.3) as K varies from zero to infinity and then use
the resulting plot to aid us in selecting the best value of K. Furthermore, by studying the effects of additional poles
and zeros on this graph, we can determine the consequences of additional dynamics added to D(s) as compensation
in the loop. We thus have a tool not only for selecting the specific parameter value but for designing the dynamic
compensation as well. The graph of all possible roots of Eq. (5.3) relative to parameter K is called the root locus, and
the set of rules to construct this graph is called the root-locus method of Evans. We begin our discussion of the
method with the mechanics of constructing a root locus, using the equation in the form of Eq. (5.3) and K as the

variable parameter.

To set the notation for our study, we assume here that the transfer function L(s) is a rational function whose



numerator is a monic? polynomial b(s) of degree m and whose denominator is a monic polynomial a(s) of degree n

such that® n> m. We can factor these polynomials as

by} = b hie® essa B

= =20ls—22) - (8—2m)

m

=[]t~ (5.4)

i=1

a(s) = "+ a1 + -+ ay

n

- H{s - pi).

i=1

The roots of b(s) = 0 are the zeros of L(s) and are labeled z;, and the roots of a(s) = 0 are the poles of L(s) and

are labeled p ;. The roots of the characteristic equation itself are r; from the factored form (n > m),

als) + Kbis) =(s=r)s—=r) (5 = ry). (5.5)

We may now state the root-locus problem expressed in Eq. (5.3) in several equivalent but useful ways. Each of the

following equations has the same roots:

1+ KL(s) =10, (5.6)
1 + KM—S} = (), (5.7
il 5)
a(s) + Kb(s) = 0, (5.8)
Lis) = I (5.9)
&)= ra 5.

Root-locus forms

Equations (5.6)—(5.9) are sometimes referred to as the root-locus form or Evans form of a characteristic equation. The
root locus is the set of values of s for which Egs. (5.6)—(5.9) hold for some positive real value* of K. Because the
solutions to Egs. (5.6)-(5.9) are the roots of the closed-loop system characteristic equation and are thus closed-loop
poles of the system, the root-locus method can be thought of as a method for inferring dynamic properties of the

closed-loop system as the parameter K changes.

EXAMPLE 5.1 Root Locus of a Motor Position Control

In Chapter 2 we saw that a normalized transfer function of a DC motor voltage-to-position can be

=

Omls)  Y(s) A




Solve for the root locus of closed-loop poles of the system created by feeding back the output ©, as shown in Fig.
5.1 with respect to the parameter A if D(s) = H(s) = 1 and also c = 1.

Solution. In terms of our notation, the values are

|
Liz) = LD’ b5y =1, m =, zi = {empty}. (5.10)

K=A, a(s) = s> + 5, =12 pi=0,—-1.

From Eq. (5.6) the root locus is a graph of the roots of the quadratic equation

a(s) + Kb(s) = s> +s+ K = 0. £5.11)

Using the quadratic formula, we can immediately express the roots of Eq. (5.11) as

r|..rg=—%:|:l+mi (5.12)

A plot of the corresponding root locus is shown in Fig. 5.2. For 0 < K < 1/,, the roots are real between — 1 and 0.
AtK = !/, there are two roots at —!/,, and for K > /4 the roots become complex with real parts constant at — 1/2

and imaginary parts that increase essentially in proportion to the square root of K. The dashed lines in Fig. 5.2

correspond to roots with a damping ratio { = 0.5. The poles of L(s) ats = 0 and

Ty e
Figure 5.2 Root locus for ) s(5+1)
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= — 1 are marked by the symbol X, and the points where the locus crosses the lines where the damping ratio
equals 0.5 are marked with dots (+). We can compute K at the point where the locus crosses { = 0.5, because we

know that, if { = 0.5, then 6 = 30° and the magnitude of the imaginary part of the root is V3 times the magnitude

|
of the real part. Since the size of the real part is 2, from Eq. (5.12) we have

VIK =T /3
F 2

and, therefore, K = 1.



Breakaway points are where roots move away from the real axis

We can observe several features of this simple locus by looking at Egs. (5.11) and (5.12) and Fig. 5.2. First, there are
two roots and thus two branches of the root locus. At K = 0 these branches begin at the poles of L(s) (which are at 0

and -1), as they should, since for K = 0 the system is open loop and the characteristic equation is a(s) = 0. As K is

increased, the roots move toward each other, coming together at HE %, and at that point they break away from the
real axis. After the breakaway point the roots move off to infinity with equal real parts, so the sum of the two roots
is always —1. From the viewpoint of design, we see that by altering the value of the parameter K, we can cause the
closed-loop poles to be at any point along the locus in Fig. 5.2. If some points along this locus correspond to a
satisfactory transient response, then we can complete the design by choosing the corresponding value of K; otherwise,
we are forced to consider a more complex controller. As we pointed out earlier, the root locus technique is not
limited to focusing on the system gain (K = A in Example 5.1); the same ideas are applicable for finding the locus

with respect to any parameter that enters linearly in the characteristic equation.

EXAMPLE 5.2 Root Locus with Respect to a Plant Open-Loop Pole

Consider the characteristic equation as in Example 5.1, except that now let D(s) = H(s) = 1 and also let A = 1.

Select c as the parameter of interest in the equation

1+ G5 =1+ (5.13)

s(s+c)

Find the root locus of the characteristic equation with respect to c.

Solution. The corresponding closed-loop characteristic equation in polynomial form is

s+es+1=0, (5.14)

The alternatives of Eq. (5.6) with the associated definitions of poles and zeros will apply if we let

= jb—l b(s) = s. m=1, zti=Lk
s+ (5.15)
K=, a(s)y =s* +1, =2 pi = +i, —j.

Thus, the root-locus form of the characteristic equation is

The solutions to Eq. (5.14) are easily computed as

2 Mo (5.16)
r.ip =——=t — 5 &
: 2 2
The locus of solutions is shown in Fig. 5.3, with the poles [roots of a(s)] again indicated by Xx’s and the zero [root of
b(s)] by the circle (O) symbol. Note that when ¢ = 0, the roots are at the X’s on the imaginary axis and the
corresponding response would be oscillatory. The damping ratio { grows as c increases from 0. At ¢ = 2, there are

two roots at s =-1, and the two locus segments abruptly change direction and move in opposite directions along the



real axis; this point of multiple roots where two or more roots come into the real axis is called a break-in point.

Break-in point

Of course, computing the root locus for a quadratic equation is easy to do since we can solve the characteristic
equation for the roots, as was done in Egs. (5.12) and (5.16), and directly plot these as a function of the parameter K.
To be useful, the method must be suitable for higher-order systems for which explicit solutions are difficult to obtain
and rules for the construction of a general root locus were developed by Evans. With the availability of MATLAB,
these rules are no longer necessary to plot a specific locus. The command rlocus(sys) will do that. However, in

control design we are interested not only in a specific locus but also in how to modify the dynamics in

14635 = R
Figure 5.3 Root locus vs. damping factor tols) =1+ s(s+c) 0

Imaginary axis
=

-1.5
Real axis

such a way as to propose a system that will meet the dynamic response specifications for good control performance.
For this purpose, it is very useful to be able to roughly sketch a locus so as to be able to evaluate the consequences of
possible compensation alternatives. It is also important to be able to quickly evaluate the correctness of a computer-
generated locus to verify that what is plotted by MATLAB is in fact what was meant to be plotted. It is easy to get a

constant wrong or to leave out a term and GIGO® is the well-known first rule of computation.

5.2 Guidelines for Determining a Root Locus

We begin with a formal definition of a root locus. From the form of Eq. (5.6), we define the root locus this way:

Definition I. The root locus is the set of values of s for which 1 + KL(s) = O is satisfied as the real parameter K
varies from 0 to + <. Typically, 1 +KL(s) = 0 is the characteristic equation of the system, and in this case the

roots on the locus are the closed-loop poles of that system.
Now suppose we look at Eq. (5.9). If K is to be real and positive, L(s) must be real and negative. In other words, if

we arrange L(s) in polar form as magnitude and phase, then the phase of L(s) must be 180° in order to satisfy Eq.

(5.9). We can thus define the root locus in terms of this phase condition as follows.

The basic root-locus rule; the phase of L(s) = 180°



Definition II. The root locus of L(s) is the set of points in the s-plane where the phase of L(s) is 180°. If we define

the angle to the test point from a zero as y; and the angle to the test point from a pole as g; then Definition II is

expressed as those points in the s-plane where, for integer 1,

D Wi— ) ¢i = 180°+360°( — 1), (5.17)

The immense merit of Definition II is that, while it is very difficult to solve a high-order polynomial by hand,
computing the phase of a transfer function is relatively easy. The usual case is when K is real and positive, and we
call this case the positive or 180° locus. When K is real and negative, L(s) must be real and positive with a phase of

0°, and this case is called the negative or 0° locus.

From Definition II we can, in principle, determine a positive root locus for a complex transfer function by
measuring the phase and marking those places where we find 180°. This direct approach can be illustrated by
considering the example

5+ 1

_L{._' _— o 5-"%3}
%) s(s + 3)[(s +2)2 + 4] S

In Fig. 5.4 the poles of this L(s) are marked x and the zero is marked O. Suppose we select the test point s, = -1 +

2j. We would like to test whether or not s lies on

Figure 5.4 Measuring the phase of Eq. (5.18)
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the root locus for some value of K. For this point to be on the locus, we must have ZL(sy,) = 180° + 360°(1 - 1) for

some integer 1, or equivalently, from Eq. (5.18),

L(so+ 1) = Zso — Z(so + 5) — Zl(so + 2)* + 4] = 180° + 360°(/ — 1). (5.19)

The angle from the zero term sO + 1 can be computed® by drawing a line from the location of the zero at -1 to

the test point s,. In this case the line is vertical and has a phase angle marked y; = 90° in Fig. 5.4. In a similar
fashion, the vector from the pole ats = 0 to the test point s, is shown with angle ¢, and the angles of the two
vectors from the complex poles at -2 * 2j to sy are shown with angles ¢, and ¢5. The phase of the vector s, + 5 is

shown with angle @,. From Eq. (5.19) we find the total phase of L(s) at s = sO to be the sum of the phases of the



numerator term corresponding to the zero minus the phases of the denominator terms corresponding to the poles:

L=y —¢1— 2 — 3 — s
=00° — 116.6° — 0° — 76" — 26.6"
= —129.2°,

Since the phase of L(s) is not 180°, we conclude that s is not on the root locus, so we must select another point and
try again. Although measuring phase is not particularly hard, measuring phase at every point in the s-plane is hardly
practical. Therefore, to make the method practical, we need some general guidelines for determining where the root
locus is. Evans developed a set of rules for the purpose, which we will illustrate by applying them to the root locus

for

|
sl(s+ 42 +16]

L(s) (5.20)

We begin by considering the positive locus, which is by far the most common case.” The first three rules are
relatively simple to remember and are essential for any reasonable sketch. The last two are less useful but are used
occasionally. As usual, we assume that MATLAB or its equivalent is always available to make an accurate plot of a

promising locus.

5.2.1 Rules for Plotting a Positive (180°) Root Locus

RULE 1. The n branches of the locus start at the poles of L(s) and m of these branches end on the zeros of L(s).

From the equation a(s) + Kb(s) = 0, if K = 0, the equation reduces to a(s) = 0, whose roots are the poles. When
K approaches infinity, s must be such that either b(s) = 0 or s — <. Since there are m zeros where b(s) = 0, m
branches can end in these places. The case for s — <o is considered in Rule 3.

RULE 2. The loci are on the real axis to the left of an odd number of poles and zeros.

If we take a test point on the real axis, such as sy in Fig. 5.5, we find that the angles ¢; and @, of the two complex
poles cancel each other, as would the angles from complex conjugate zeros. Angles from real poles or zeros are 0° if
the test point is to the right and 180° if the test point is to the left of a given pole or zero. Therefore, for the total
angle to add to 180° + 360° (1 — 1), the test point must be to the left of an odd number of real-axis poles plus zeros

as shown in Fig. 5.5.

RULE 3. For large s and K, n — m of the loci are asymptotic to lines at angles @, radiating out from the points = a
on the real axis, where
180® 4+ 360°({ — 1)

Py = - =12 ..., -, (5.21)
n—m

ZPF_ZZ:'

fl—m

¥ =

As K — oo, the equation

1
L(s) = ——
(%) X



can be satisfied only if L(s) = 0. This can occur in two apparently different ways. In the first instance, as discussed in
Rule 1, m roots will be found to approach the zeros of L(s). The second manner in which L(s) may go to zero is if s
— oo since, by assumption, n is larger than m. The asymptotes describe how these n — m roots approach — <. For

large s, the equation

&4 lf?|.5”?_| o B bn.'
st+apstl 4+ 4ay

| +K =4 (3:d2)

Figure 5.5 Rule 2. The real-axis parts of the locus are to the left of an odd number of poles and zeros
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can be approximated® by
1
| + K— =1 (5.23)

{ § — ﬁ.}”—fi‘.'

This is the equation for a system in which there are n — m poles, all clustered at s = a. Another way to visualize this
same result is to consider the picture we would see if we could observe the locations of poles and zeros from a
vantage point of very large s: They would appear to cluster near the s-plane origin. Thus, m zeros would cancel the
effects of m of the poles, and the other n — m poles would appear to be in the same place. We say that the locus of
Eq. (5.22) is asymptotic to the locus of Eq. (5.23) for large values of K and s. We need to compute a and to find the
locus for the resulting asymptotic system. To find the locus, we choose our search point s gsuch that s, = Rel® for
some large fixed value of R and variable g. Since all poles of this simple system are in the same place, the angle of

its transfer function is 180° if all n — m angles, each equal to g;, sum to 180°. Therefore, g, is given by

(n -m)g; = 180° + 360°(1 - 1)

The angles of the asymptotes
for some integer 1. Thus, the asymptotic root locus consists of radial lines at the n — m distinct angles given by
1807 +360°(/ — 1)

ity = , =12 ....n—m (5.24)
n—m

For the system described by Eq. (5.20), n—m = 3 and 9, 5 3 = 60°, 180°, and 300" or +60°, 180°.



The lines of the asymptotic locus come from s, = a on thereal axis. To determine a, we make use of a simple
property of polynomials. Suppose we consider the monic polynomial a(s) with coefficients ai and roots p;, as in Eq.

(5.4), and we equate the polynomial form with the factored form
s" + als™! 4+ a2s"2 + ...+ an = (s-pl)(s—py)...(5- Py
If we multiply out the factors on the right side of this equation, we see that the coefficient of s" ! is —pl - p2—...-

P, On the left side of the equation, we see that this term is a;. Thus a; = - Xpi; in other words, the coefficient of the

second highest term in a monic polynomial is the negative sum of its roots—in this case, the poles of L(s). Applying

this result to the polynomial b(s), we find the negative sum of the zeros to be bl. These results can be written as

_bl — Z:i- s
—a; =Y pi. (3.25)

Finally, we apply this result to the closed-loop characteristic polynomial obtained from Eq. (5.22):

gl dogupf b b geat B L bbb o By (5.26)
=(s—r)s—r) - (s—r) =0.

Note that the sum of the roots is the negative of the coefficient of s"! and is independent of Kif m < n - 1.

Therefore, if L(s) has at least two more poles than zeros,

we have @1 = — 2_7i. We have thus shown that the center point of the roots does not change with Kifm < n-1

and that the open-loop and closed-loop sum is the same and is equal to —a;, which can be expressed as

—er = —Zp,-. 2.27)

For large values of K, we have seen that m of the roots ri approach the zeros z; and n — m of the roots approach the

l
branches of the a symptotic system 5=@!"~" whose poles add up to (n — m)a. Combining these results we conclude

that the sum of all the roots equals the sum of those roots that go to infinity plus the sum of those roots that go to the

zeros of L(s):

The center of the asymptotes

— Zr',- = —in—mo — Z;,- == —Zp;.

Solving for a, we get

o = Lﬁ'a L"r (5.28)

n—m

Notice that in the sums Zpi and ¥ zi the imaginary parts always add to zero, since complex poles and zeros always

occur in complex conjugate pairs. Thus Eq. (5.28) requires information about the real parts only. For Eq. (5.20),
p jugate p q q p y q



—4—4+40
30

8
= —= = =2.67.
3
The asymptotes at +60° are shown dashed in Fig. 5.6. Notice that they cross the imaginary axis at

+(2.67)j V3= £4.62] The asymptote at 180° was already found on the real axis by Rule 2.
RULE 4. The angle(s) of departure of a branch of the locus from a pole of multiplicity q is given by

Gbraep = Y Wi — Y _ i — 180° —360°(I — 1), (5.29)
i#l
and the angle(s) of arrival of a branch at a zero of multiplicity q is given by
GWrare =Y _¢i— »_ i+ 180° +360°( — 1). (5.30)
i#l

Figure 5.6 The asymptotes are n-m radial lines from a at equal angles
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Figure 5.7 The departure and arrival angles are found by looking near a pole or zero
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If a system has poles near the imaginary axis it can be important to know if the locus, which starts at such a pole,

starts off toward the stable left half-plane (LHP) or heads toward the unstable right half-plane (RHP). To compute the



angle by which a branch of the locus departs from one of the poles we take a test point s, very near the pole in
question, define the angle from that pole to the test point as ¢; 4., and transpose all other terms of Eq.(5.17) to the
right-hand side. We can illustrate the process by taking the test point s, to be near the pole at -4 + 4j of our
example and computing the angle of L(sy). The situation is sketched in Fig. 5.7, and the angle from — 4 + 4j to the
test point we define as @¢;. We select the test point close enough to the pole that the angles g, and @5j to the test
point can be considered the same as those angles to the pole. Thus, 8, = 90°, g3 = 135°, and ¢; can be calculated

from the angle condition as whatever it takes to make the total be 180°. The calculation is (1 = 1)

¢ = —90° — 135° — 180° (5.31)
= —405° (5.32)
= —45°, (5.33)

Rule for departure angles
By the complex conjugate symmetry of the plots, the angle of departure of the locus near the pole at -4 —4j will be
+ 45°.

If there had been zeros in L(s), the angles from the pole to the zeros would have been added to the right side of

Eq. (5.31). For the general case, we can see from Eq. (5.31) that the angle of departure from a single pole is

Praep = ) Vi— ) ¢i— 180°, (5.34)

i#1

where Zg, is the sum of the angles to the remaining poles and Xy, is the sum of the angles to all the zeros. For a

multiple pole of order q, we must count the angle from the pole q times. This alters Eq. (5.34) to

Abraep = Y _Wi— ) ¢ —180° —360°(1 — 1), (5.35)

il

where 1 takes on q values because there are q branches of the locus that depart from such a multiple pole.

Rule for arrival angles

The process of calculating a departure angle for small values of K, as shown in Fig. 5.7, is also valid for computing

the angle by which a root locus arrives at a zero of L{s) for large values of K. The general formula that results is

GUrar =Y i — Y _ Wi+ 180° +360°(1 — 1) (5.36)
il
where Zg; is the sum of the angles to all the poles, Zyi is the sum of the angles to the remaining zeros, and | is an
integer as before.

RULE 5. The locus can have multiple roots at points on the locus and the branches will approach a point of q roots

at angles separated by



1807 + 360°(I — 1)
q

k.27

and will depart at angles with the same separation. As with any polynomial, it is possible for a characteristic
polynomial of a degree greater than 1 to have multiple roots. For example, in the second-order locus of Fig. 5.2,
there are two roots at s = —!/2 when K = /4. Here the horizontal branches of the locus come together and the
vertical branches break away from the real axis, becoming complex for K > 1/4. The locus arrives at 0° and 180° and
departs at +90° and -90°.

Continuation locus

In order to compute the angles of arrival and departure from a point of multiple roots, it is useful to use a trick we

call the continuation locus. We can imagine plotting a root locus for an initial range of K, perhaps for 0 < K < K;. If
we let K = K; + K,, we can then plot a new locus with parameter K,, a locus which is the continuation of the
original locus and whose starting poles are the roots of the original system at K = K;. To see how this works, we
return to the second-order root locus of Eq.(5.11) and let K; be the value corresponding to the breakaway point K;

= 1/4.1f we let K = 1/4 + K,, we have the locus equation s> + s + /4 + K, = 0, or

4

I\ 2
(H;) + K =0. (5.38)

The steps for plotting this locus are, of course, the same as for any other, except that now the initial departure of the
locus of Eq. (5.38) corresponds to the breakaway point of the original locus of Eq. (5.11). Applying the rule for
departure angles [Eq. (5.35)] from the double pole ats = -1/ 2, we find that

2¢4ep = —180° — 360°(1 — 1), (5.39)
Paep = —90° — 180°(1 — 1), (5.40)
$uaep = £90° (departure angles at breakaway). (5.41)
In this case, the arrival angles at s = —1/2 are, from the original root locus, along the real axis and are clearly 0° and

180°.

The complete locus for our third-order example is drawn in Fig. 5.8. It combines all the results found so far-that is,
the real-axis segment, the center of the asymptotes and their angles, and the angles of departure from the poles. It is
usually sufficient to draw the locus by using only Rules 1 to 3, which should be memorized. Rule 4 is sometimes
useful to understand how locus segments will depart, especially if there is a pole near thejco axis. Rule 5 is
sometimes useful to help interpret plots that come

. L(s) = 2;
Figure 5.8 Root locus for sist+As432)



6 r
1 e
A
[}
2 0 >
=
(o]
E —2
—A \(ﬁh\\
—6 .
—10 —5 0 5
Real axis

from the computer and, as we shall see in the next section, to explain qualitative changes in some loci as a pole or

zero is moved. The actual locus in Fig. 5.8 was drawn using the MATLAB commands

numL = [1];
denL = [1 8 32 0];
sysL = tf(numL,denL);

rlocus(sysL)
We will next summarize the rules for drawing a root locus.

5.2.2 Summary of the Rules for Determining a Root Locus

RULE 1. The n branches of the locus start at the poles of L(s) and m branches end on the zeros of L(s).

RULE 2. The loci are on the real axis to the left of an odd number of poles and zeros.

RULE 3. For large s and K, n — m of the loci are asymptotic to lines at angles g, radiating out from the center point s

= a on the real axis, where

180° + 360°(/ — 1
diy = RO, Gl B g (5.42)
H=—m

Lpi—2 (5.43)

n—m

=
RULE 4. The angle(s) of departure of a branch of the locus from a pole of multiplicity q is given by

Gbrep = ) Vi — D ¢ —180° —360°( — 1), (5.44)

and the angle(s) of arrival of a branch at a zero of multiplicity q is given by

QUtarr =Y i — Y Ui+ 180° +360°(/ — 1). (5.45)

RULE 5. The locus can have multiple roots at points on the locus of multiplicity q. The branches will approach a
point of q roots at angles separated by



180° + 360°(1 — 1)
q

(5.46)

and will depart at angles with the same separation, forming an array of 2q rays equally spaced. If the point is on the
real axis, then the orientation of this array is given by the real-axis rule. If the point is in the complex plane, then the

angle of departure rule must be applied.

5.2.3 Selecting the Parameter Value

The positive root locus is a plot of all possible locations for roots to the equation 1 + KL(s) = 0 for some real
positive value of K. The purpose of design is to select a particular value of K that will meet the specifications for
static and dynamic response. We now turn to the issue of selecting K from a particular locus so that the roots are at
specific places. Although we shall show how the gain selection can be made by hand calculations from a plot of the
locus, this is almost never done by hand because the determination can be accomplished easily by MATLAB. It is
useful, however, to be able to perform a rough sanity check on the computer-based results by hand.

Using Definition II of the locus, we developed rules to sketch a root locus from the phase of L(s) alone. If the
equation is actually to have a root at a particular place when the phase of L(s) is 180°, then a magnitude condition

must also be satisfied. This condition is given by Eq. (5.9), rearranged as

For values of s on the root locus, the phase of L(s) is 180, so we can write the magnitude condition as

e 5
K Tk (5.47)

Equation (5.47) has both an algebraic and a graphical interpretation. To see the latter, consider the locus of 1 +
KL(s), where

: |
L(s)

) = - : (5.48)
s|(s+4)- 4+ 16]

For this transfer function, the locus is plotted in Fig. 5.9. In Fig. 5.9, the lines corresponding to a damping ratio of
= 0.5 are sketched and the points where the locus crosses these lines are marked with dots (+). Suppose we wish to
set the gain so that the roots are located at the dots. This corresponds to selecting the gain so that two of the closed-
loop system poles have a damping ratio of { = 0.5. (We will find the third pole shortly.) What is the value of K

when a root is at the dot? From Eq. (5.47), the value of K is given by 1 over the magnitude of L(s0), where s, is the

coordinate of the dot. On the figure we have plotted three vectors marked sj — s;,59, and s, — s3, which are the vectors
from the poles of L(s) to the point s, (Since s; = 0, the first vector equals s,.) Algebraically, we have
I

Lsp) = 3 (5.49)
v splsg — s2)(sp — 53)

Using Eq. (5.47), this becomes



-

= oo = lsollso = s2llso = sl (5.50)
L(s0)]

L(S) = ——r—=
Figure 5.9 Root locus for s1{s+4)°+16] showing calculations of gain K
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Graphical calculation of the desired gain

The graphical interpretation of Eq. (5.50) shows that its three magnitudes are the lengths of the corresponding
vectors drawn on Fig. 5.9 (see Appendix WD). Hence we can compute the gain to place the roots at the dot (s = s;)
by measuring the lengths of these vectors and multiplying the lengths together, provided that the scales of the

imaginary and real axes are identical. Using the scale of the figure, we estimate that

[sol = 4.0,
|5U — .’5'3| = 2.1,
|J-.'(] pa .5.'3| =T

Thus the gain is estimated to be
K = 4.0(21)(7.7) = 65.

We conclude that if K is set to the value 65, then a root of 1 + KL will be at sy, which has the desired damping ratio
of 0.5. Another root is at the conjugate of sy. Where is the third root? The third branch of the locus lies along the

negative real axis. If performing the calculations by hand, we would need to take a test point, compute a trial gain,
and repeat this process until we have found the point where K = 65. However, if performing a check on MATLAB’s
determination, it is sufficient to merely use the procedure above to verify the gain at the root location indicated by
the computer.

To use MATLAB, plot the locus using the command rlocus(sysL), for example, then the command [K,p] =
rlocfind(sysL) will produce a crosshair on the plot and, when spotted at the desired location of the root and selected
with a mouse click, the value of the gain K is returned as well as the roots corresponding to that K in the variable p.

The use of rltool makes this even easier, and will be discussed in more detail in Example 5.7.

Finally, with the gain selected, it is possible to compute the error constant of the control system. A process with



the transfer function given by Eq. (5.48) has one integrator and, in a unity feedback configuration, will be a Type 1

control system.

In this case the steady-state error in tracking a ramp input is given by the velocity constant:

Ky Iin}]sKL{s} (5.51)
S
K
= lim s - [3.52)
s—0 s[{s+4)- 4 16]
K
e 3.53
3 (3:33)

With the gain set for complex roots at a damping ¢ = 0.5, the root-locus gain is K = 65, so from Eq. (5.53) we get

K, = 2. If the closed-loop dynamic response, as determined by the root locations, is satisfactory and the steady-state
accuracy, as measured by K,, is good enough, then the design can be completed by gain selection alone. However, if

no value of K satisfies all of the constraints, as is typically the case, then additional modifications are necessary to

meet the system specifications.

5.3 Selected Illustrative Root Loci

A number of important control problems are characterized by a process with the simple “double integrator” transfer

function

I
57

The control of attitude of a satellite is described by this equation. Also, the read/write head assembly of a computer
hard-disk drive is typically floating on an air bearing so that friction is negligible for all but the smallest motion. The
motor is typically driven by a current source so the back emf does not affect the torque. The result is a plant
described by Eq. (5.54). If we form a unity feedback system with this plant, and a proportional controller, the root

locus with respect to controller gain is

If we apply the rules to this (trivial) case, the results are as follows:
RULE 1. The locus has two branches that start at s = 0.
RULE 2. There are no parts of the locus on the real axis.
RULE 3. The two asymptotes have origin at s = 0 and are at the angles of +90°.
RULE 4. The loci depart from s = 0 at the angles of +90°.
Conclusion: The locus consists of the imaginary axis and the transient would be oscillatory for any value of k. A

more useful design results with the use of proportional plus derivative control.

EXAMPLE 5.3Root Locus for Satellite Attitude Control with PD Control

The characteristic equation with PD control is



. |
+%H¢mh§:& (5.56)

L(s) = G(s) = £

Figure 5.10 Root locus for
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To put the equation in root-locus form, we define K = kp, and for the moment arbitrarily select the gain ratio® as
k,/kp = 1, which results in the root-locus form

e
T i (5.57)

5

Solution. Again we compute the results of the rules:

RULE 1. There are two branches that start at s = 0, one of which terminates on the zero at s = — 1 and the other of

which approaches infinity.

RULE 2. The real axis to the left of s = -1 is on the locus.

RULE 3. Since n — m = 1, there is one asymptote along the negative real axis.

RULE 4. The angles of departure from the double pole ats = 0 are =90°.

RULE 5. From Rules 1-4, it should be clear that the locus will curl around the zero, rejoin the real axis to the left of
the zero, and terminate as indicated by Rule 1. It turns out that the locus segments rejoin the real axis at s =-2,
which creates a point of multiple roots. Evaluation of the angle of arrival at this point will show that the segments
arrive at =90°, from which on the locus from Rule 2: it is a point of multiple roots, in this case a point of break in.

We conclude that two branches of the locus leave the origin going north and south and that they curve around'®

without passing into the RHP and break into the real axis at s = -2, from which point one branch goes west toward
infinity and the other goes east to rendezvous with the zero at s = —1. The locus is plotted in Fig. 5.10 with the
commands

numS = [1 1];

denS = [1 0 0];
sysS = tf(numS,denS);

rlocus(sysS)



Comparing this case with that for the simple !/s?, we see that

Effect of a Zero in the LHP

The addition of the zero has pulled the locus into the LHP, a point of general importance in constructing a

compensation.

In the previous case, we considered pure PD control. However, as we have mentioned earlier, the physical
operation of differentiation is not practical and in practice PD control is approximated by
kps
D(s) = ky + —2— (5.58)

s/p+ 1

which can be put in root-locus form by defining K = k, + pyp and z = pk,/K so that!!

| =

ST Z
Di{s) = K- : (5.59)
S+ p
For reasons we will see when we consider design by frequency response, this controller transfer function is called a
“lead compensator” or, referring to the frequent implementation by electrical components, a “lead network.” The

characteristic equation for the !/s? plant with this controller is

1+ D(s5)G(s) =14+ KL(5s) =0,
R R W
ss+p)

EXAMPLE 5.4Root Locus of the Satellite Control with Modified PD or Lead Compensation

To evaluate the effect of the added pole, we will again set z = 1 and consider three different values for p. We begin

with a somewhat large value, p = 12, and consider the root locus for

%41
PR (5.60)

52{5 e IZ}.

Solution. Again, we apply the rules for plotting a root locus:
RULE 1. There are now three branches to the locus, two starting at s = 0 and one starting at s = -12.

RULE 2. The real axis segment - 12 < s < -1 is part of the locus.

12—{—1)

RULE 3. There are n — m = 3 -1 = 2 asymptotes centered at = 2

/2 and at the angles +90°.
RULE 4. The angles of departure of the branches at s = 0 are again =90°. The angle of departure from the pole at s
= -12isat 0.

There are several possibilities on how the locus segments behave while still adhering to the guidance above.
MATLAB is the expedient way to discover the paths. The MATLAB commands



L(5) = -t
Figure 5.11 Root locus for 52(5+12)
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numL = [1 1];

denL = [1 120 0];

sysL = tf(numL,denL);

rlocus(sysL)

show that two branches of locus break vertically from the poles at s = 0, curve around to the left without passing
into the RHP, and break in at s = -2.3, where one branch goes right to meet the zero at s = -1 and the other goes

left, where it is met by the root that left the pole at s = —12. These two form a multiple root at s = -5.2 and break
away there and approach the vertical asymptotes located at s = -5.5. The locus is plotted in Fig. 5.11.

Considering this locus, we see that the effect of the added pole has been to distort the simple circle of the PD
control but, for points near the origin, the locus is quite similar to the earlier case. The situation changes when the

pole is brought closer in.

EXAMPLE 5.5 Root Locus of the Satellite Control with Lead Having a Relatively Small Value for the Pole

Now consider p = 4 and draw the root locus for

s+ 1

1+ K5———=10
sS(s+4)

(5.61)

Solution. Again, by the rules, we have the following:

RULE 1. There are again three branches to the locus, two starting from s = 0 and one from s = - 4.
RULE 2. The segment of the real axis -4 < s < — 1 is part of the locus.

RULE 3. There are two asymptotes centered at a = — 3/2 and at the angles +90°.

RULE 4. The branches again depart from the poles ats = 0 at +90°.

RULE 5. The MATLAB commands

numL=1[1 1];

denL=1[14 0 0];



) = (5+1)
Figure 5.12 Root locus for s¢(s+4)
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sysL = tf(numL,denL)
rlocus(sysL)
show that two branches of this locus break away vertically from the poles at s = 0, curve slightly to the left and join
the asymptotes going north and south. The locus segment from the root at s = -4 goes east and terminates at the
zero. In this case, the locus differs from the case when p = -12 in that there are no break-in or breakaway points on

the real axis as part of the locus. The MATLAB plot is given in Fig. 5.12.

In these two cases we have similar systems, but in one case, p = -12, there were both a break-in and a breakaway
on the real axis, whereas for p = —4, these features have disappeared. A logical question might be to ask at what

point they went away. As a matter of fact, it happens at p = 9, and we’ll look at that locus next.

EXAMPLE 5.6 The Root Locus for the Satellite with a Transition Value for the Pole

Plot the root locus for

0. (5.62)

Solution
RULE 1. The locus has three branches, starting from s = 0 and s = -9.
RULE 2. The real axis segment -9 < s < -1 is part of the locus.

RULE 3. The two asymptotes are centered at a = -8/, = —4.

RULE 4. The departures are, as before, at =90° from s = 0.
RULE 5. The MATLAB commands

numL=[1 1];
denL.=[19 0 0]
sysL = tf(numL,denL);

rlocus(sysL)



produces the locus in Fig. 5.13. It shows the two branches of this locus break away vertically from the polesats = 0

and curl around and join the real axis again at

Imaginary axis

Real axis

) = st+1)
Figure 5.13 Root locus for 52 (540)

= — 3 with an angle of arrival of =60° while the branch from the pole at s = -9 heads east and joins the other
two poles ats =-3 with an angle of arrival of 0°. These three locus segments continue on by splitting out of s =-3 at
the departure angles of 0° and +120°, with one heading into the zero and the other two heading away to the

northwest to join the asymptotes. Using Rule 5 would confirm these angles of arrival and departure.'?

From Figs. 5.11 through 5.13, it is evident that when the third pole is near the zero (p near 1), there is only a

ATy I
Ds)G(s) = & s, which consists of two straight-line locus

modest distortion of the locus that would result for
branches departing at +90° from the two poles at s = 0. Then, as we increase p, the locus changes until atp = 9
the locus breaks in at -3 in a triple multiple root. As the pole p is moved to the left beyond -9, the locus exhibits
distinct break-in and breakaway points, approaching, as p gets very large, the circular locus of one zero and two
poles. Figure 5.13, when p = 9, is thus a transition locus between the two second-order extremes, which occur at p

= 1 (when the zero is canceled) and p — o« (where the extra pole has no effect).

EXAMPLE 5.7An Exercise to Repeat the Prior Examples Using RLTOOL
Repeat Examples 5.3 through 5.6 using MATLAB’s RLTOOL feature.

Solution. RLTOOL is an interactive root-locus design tool in MATLAB that provides a graphical user interface (GUI)
for performing root-locus analysis and design. RLTOOL provides an easy way to design feedback controllers because
it allows rapid iterations and quickly shows their effect on the resulting root locus. To illustrate the use of the tool,
the MATLAB commands

numL=1[1 1];
denL=1[1 0 0];

sysL = tf(numL,denL)
rltool(sysL)

Figure 5.14 RLTOOL graphical user interface
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will initiate the GUI and produce the root locus shown in Fig. 5.10, which is similar to Examples 5.4 through 5.6,
but without the pole on the negative real axis that was moved around for illustration purposes in the three prior
examples. By clicking on “Compensator Editor” in the “Control and Estimation Tools Manager” window, right
clicking on the “Dynamics” dialog window and selecting “add pole/zero”, you can add a pole at the location s = —
12. This will produce the locus that is shown in Fig. 5.11 and Fig. 5.14. Now put your mouse on the pole ats = -12,
hold down the mouse button, and slide it from s = -12 to s = —4 slowly, so you can examine the locus shapes at all
intermediate points. Be especially careful (and slow) as you pass through s = -9 because the locus shape changes
very quickly with the pole in this region. Note that you can also put your mouse on one of the closed-loop poles
(squares) and slide that along the locus. It will show you the location of the other roots that correspond to that value
of the gain, K, and the frequency and damping of the closed-loop roots will be shown for when the roots are

complex pairs. More detail can be found in the RLTOOL Tutorial in Appendix WR.

A useful conclusion drawn from this example is the following:

An additional pole moving in from the far left tends to push the locus branches to the right as it approaches a

given locus.

The double integrator is the simplest model of the examples, assuming a rigid body with no friction. A more

realistic case would include the effects of flexibility in the satellite attitude control, where at least the solar panels



would be flexible. In the case of the disk drive read/write mechanism, the head and supporting arm assembly always
has flexibility and usually a very complex behavior with a number of lightly damped modes, which can often be
usefully approximated by a single dominant mode. In Section 2.1 it was shown that flexibility in the disk drive

added a set of complex poles to the !/,2 model. Generally there are two possibilities, depending on whether the

sensor is on the same rigid body as the actuator, which is called the collocated case,'3

or is on another body, in
which case we have the noncollocated case.'* We begin with consideration of the collocated case similar to that
given by Eq. (2.20). As we saw in Chapter 2, the transfer function in the collocated case has not only a pair of
complex poles but also a pair of nearby complex zeros located at a lower natural frequency than the poles. The
numbers in the examples that follow are chosen more to illustrate the root-locus properties than to represent

particular physical models.

EXAMPLE 5.8 Root Locus of the Satellite Control with a Collocated Flexibility

Plot the root locus of the characteristic equation 1 + G(s)D(s) = 0, where

(s+ 0.1)> 4 &°

GEs) = > —— : (5.63)
s [{s 4+ 0.1) 4+ 6.67]
is in a unity feedback structure with the controller transfer function
541 ,
Dis) =K : (5.64)
s+ 12
Solution. In this case
s+1 (s+0.1)7+6°
L(s) = i sk

s+ 12 (s + 0.1)% + 6.67]

has both poles and zeros near the imaginary axis and we should expect to find the departure angles of particular

importance.

RULE 1. There are five branches to the locus, three of which approach finite zeros and two of which approach

asymptotes.

RULE 2. The real-axis segment -12 < s< -1 is part of the locus.

Ly (5+0.1)24+6%
Figure 5.15 Figure for computing a departure angle for SP1(5+0.1)%+6.67]
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RULE 3. The center of the two asymptotes is at
—-12-01-01-(-01-01-1) 11
i s S
5-3 2

The angle of the asymptotes is +90°.
RULE 4. We compute the departure angle from the pole ats = 0.1 + j6.6. The angle at this pole we will define to

be @;. The other angles are marked on Fig. 5.15. The root-locus condition is

d1 = Y1 + Y2+ 3 — (2 + 3 + s + bs) — 1807,
$1 = 90° +90° + tan "' (6.6) — [90° 4 90° + 90°

6.6
+ tan™! (1_’1)|_ 180°, (5.65)

¢ = 81.4° — 90° — 28.8° — 180°,
— —2]?45 — I42.'Elﬂ,
so the root leaves this pole up and to the left, into the stable region of the plane. An interesting exercise would be to
compute the arrival angle at the zero located ats = -0.1 + j 6.

Using MATLAB, the locus is plotted in Fig. 5.16. Note that all the attributes that were determined using the simple

rules were exhibited by the plot, thus verifying in part that the data were entered correctly.

The previous example showed that

In the collocated case, the presence of a single flexible mode introduces a lightly damped root to the characteristic

equation but does not cause the system to be unstable.

The departure angle calculation showed that the root departs from the pole introduced by the flexible mode

toward the LHP. Next, let’s consider the noncollocated

I(s (5+0.1)%+6°
Figure 5.16 Root locus for s2(s+0.1)2+6.67]
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case, for which we take the plant transfer function to be
G(s) I (5.60)
5} = 3 5.6
s[(s 4+ 0.1)% + 6.67]
compensated again by the lead
s+ 1
D) =K——. .67
; s+ 12 { }

As these equations show, the noncollocated transfer function has the complex poles but does not have the associated
complex zeros as occurred in the previous example and that we also saw for the collated case of Chapter 2 in Eq.
(2.20). This will have a substantial effect, as illustrated by Example 5.9.

EXAMPLE 5.9 Root Locus for the Noncollocated Case

Apply the rules and draw the root locus for

1 |
KL(s) = DG = K27 : (5.68)

s+ 12 82(s +0.1)° + 6.6%]

paying special attention to the departure angles from the complex poles.

RULE 1. There are five branches to the root locus, of which one approaches the zero and four approach the

asymptotes.
RULE 2. The real-axis segment defined by -12 < s < -1 is part of the locus.
RULE 3. The center of the asymptotes is located at

—12-02—-(=1) ~-—11.2
5—1 4

o =

-

and the angles for the four asymptotic branches are at +45°, +135°.

RULE 4. We again compute the departure angle from the pole at s = -0.1 +j6.6. The angle at this pole we will
define to be ¢;. The other angles are marked on Fig. 5.17.



L(s) = !
Figure 5.17 Figure to compute a departure angle for () $2[(54+0.1)2+6.6]
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The root locus condition is

d1 = Y — (g2 + 3 + s + ¢5) — 180°,
6.6
¢ = tan~ ' (6.6) — |:9{}° + 90° 4 90° + tan ™! (—)] — 180°,

12
@1 = 81.4° —90° — 90° — 90° — 28.8° — 180°, (5.69)
¢1 = 81.4° — 90° — 28.8° — 360°,
¢ = —37.4°.

In this case, the root leaves the pole down and to the right, toward the unstable region. We would expect the system

to soon become unstable as gain is increased.

RULE 5. The locus is plotted in Fig. 5.18 with the commands

numG = 1;
denG = [1.0 0.20 43.57 0 0];
sysG = tf(numG,denG);



numD = [1 1];

denD = [1 12];

sysD = tf(numD,denD);
sysL = sysD*sysG;
rlocfind(sysL)

and is seen to agree with the calculations above. By using RLTOOL, we see that the locus from the complex poles
enter into the RHP almost immediately as the gain is increased. Furthermore, by selecting those roots so that they are
just to the left of the imaginary axis, it can be seen that the dominant slow roots down near the origin have
extremely low damping. Therefore, this system will have a very lightly damped response with very oscillatory

flexible modes. It would not be considered acceptable with the lead compensator as chosen for this example.

A Locus with Complex Multiple Roots

We have seen loci with break-in and breakaway points on the real axis. Of course, an equation of fourth or higher
order can have multiple roots that are complex. Although such a feature of a root locus is a rare event, it is an

interesting curiosity that is illustrated by the next example.

EXAMPLE 5.10 Root Locus Having Complex Multiple Roots
Sketch the root locus of 1 + KL(s) = 0, where

1
Lis) = e :
s(s+2)[(s+ 1)= + 4]
Solution
RULE 1. There are four branches of the locus, all of which approach asymptotes.
RULE 2. The real-axis segment -2 < s < 0 is on the locus.
RULE 3. The center of the asymptotes is at
2—-1-1-04+0

= =_1
* 1-0

and the angles are ¢; = 45°, 135°, -45°, -135".
RULE 4. The departure angle @4, from the pole at = -1 + 2j, based on Fig. 5.19, is

L(s) = :

Figure 5.19 Figure to compute departure angle for s(s+2)[(s+1)°+4]
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We can observe at once that, along the line s = -1 + jw, ¢, and ¢, are angles of an isosceles triangle and always
add to 180°. Hence, the entire line from one complex pole to the other is on the locus in this special case.

RULE 5. Using MATLAB, we see that there are multiple roots at s = -1 = 1.22j, and branches of the locus come
together at -1 + 1.22j. Using Rule 5, we can verify that the locus segments break away at 0° and 180° as shown by
MATLAB.

The locus in this example is a transition between two types of loci: one where the complex poles are to the left of
the example case and approach the asymptotes at +135 and another where the complex poles are to the right of

their positions in the example and approach the asymptotes at =45 .

5.4 Design Using Dynamic Compensation

Consideration of control design begins with the design of the process itself. The importance of early consideration of



potential control problems in the design of the process and selection of the actuator and sensor cannot be
overemphasized. It is not uncommon for a first study of the control to suggest that the process itself can be changed
by, for example, adding damping or stiffness to a structure to make a flexibility easier to control. Once these factors
have been taken into account, the design of the controller begins. If the process dynamics are of such a nature that a
satisfactory design cannot be obtained by adjustment of the proportional gain alone, then some modification or
compensation of the dynamics is indicated. While the variety of possible compensation schemes is great, three
categories have been found to be particularly simple and effective. These are lead, lag, and notch compensations.'®
Lead compensation approximates the function of PD control and acts mainly to speed up a response by lowering rise
time and decreasing the transient overshoot. Lag compensation approximates the function of PI control and is usually
used to improve the steady-state accuracy of the system. Notch compensation will be used to achieve stability for
systems with lightly damped flexible modes, as we saw with the satellite attitude control having noncollocated
actuator and sensor. In this section we will examine techniques to select the parameters of these three schemes. Lead,
lag, and notch compensations have historically been implemented using analog electronics and hence were often
referred to as networks. Today, however, most new control system designs use digital computer technology, in which
the compensation is implemented in the software. In this case, one needs to compute discrete equivalents to the

analog transfer functions, as described in Chapter 4 and discussed further in Chapter 8 and in Franklin et al. (1998).

Lead and lag compensations
Compensation with a transfer function of the form
i

D(s) = K—
S+ p

(5.70)

is called lead compensation if z < p and lag compensation if z > p. Compensation is typically placed in series with
the plant in the feed-forward path, as shown in Fig. 5.21. It can also be placed in the feedback path and in that
location has the same effect on the overall system poles but results in different transient responses from reference

inputs. The characteristic equation of the system in Fig. 5.21 is

| + Dis)Gis) =0,
1+ KL{.'-.‘] =1,

where K and L(s) are selected to put the equation in root-locus form as before.

5.4.1 Design Using Lead Compensation

To explain the basic stabilizing effect of lead compensation on a system, we first consider proportional control for
which D(s) = K. If we apply this compensation to a second-order position control system with normalized transfer

function

Ols) = ——,
2} s(s+ 1)

Figure 5.21 Feedback system with compensation
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the root locus with respect to K is shown as the solid-line portion of the locus in Fig. 5.22. Also shown in Fig. 5.22 is
the locus produced by proportional plus derivative control, where D(s) = K(s+ 2). The modified locus is the circle
sketched with dashed lines. As we saw in the examples, the effect of the zero is to move the locus to the left, toward
the more stable part of the s-plane. If, now, our speed-of-response specification calls for w, = 2, then proportional
control alone (D = K) can produce only a very low value of damping ratio { when the roots are put at the required
value of w,. Hence, at the required gain, the transient overshoot will be substantial. However, by adding the zero of
PD control we can move the locus to a position having closed-loop roots at w, = 2 and damping ratio { > 0.5. We
have “compensated” the given dynamics by using D(s) = K(s + 2).

As we observed earlier, pure derivative control is not normally practical because of the amplification of sensor
noise implied by the differentiation and must be approximated. If the pole of the lead compensation is placed well
outside the range of the design w,, then we would not expect it to upset the dynamic response of the design in a

serious way. For example, consider the lead compensation

5+ 2
s+p

D(s) =K

Selection of the zero and pole of a lead
The root loci for two cases with p = 10 and p = 20 are shown in Fig. 5.23, along with the locus for PD control. The
important fact about these loci is that for small gains, before the real root departing from — p approaches -2, the loci

with lead compensation are almost identical to the locus for which D(s) = K(s + 2). Note that the effect of the pole



is to lower the damping, but for the early part of the locus, the effect of the pole is not great if p > 10.

Selecting exact values of z and p in Eq. (5.70) for particular cases is usually done by trial and error, which can be

minimized with experience. In general, the zero is placed in the neighborhood of the closed-loop w ,, as determined

by rise-time or settling-time requirements, and the pole is located at a distance 5 to 20 times the value of the zero
location. The choice of the exact pole location is a compromise between the conflicting effects of noise suppression,
for which one wants a small value for p, and compensation effectiveness for which one wants a large p. In general, if
the pole is too close to the zero, then, as seen in Fig. 5.23, the root locus moves back too far toward its
uncompensated shape and the zero is not successful in doing its job. On the other hand, for reasons that are perhaps
easier to understand from the frequency response, when the pole is too far to the left, the magnification of sensor
noise appearing at the output of D(s) is too great and the motor or other actuator of the process can be overheated
by noise energy in the control signal, u(t). With a large value of p, the lead compensation approaches pure PD

control. A simple example will illustrate the approach.
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Figure 5.23 Root loci for three cases with s(s+1)
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EXAMPLE 5.11 Design Using Lead Compensation

Find a compensation for G(s) = 1/[s(s + 1)] that will provide overshoot of no more than 20% and rise time of no

more than 0.3 sec.

v=

~ LB ~s
Solution. From Chapter 3, we estimate that a damping ratio of ¢ = 0.5 and a natural frequency of W =3 =0

should satisfy the requirements. To provide some margin, we will shoot for { = 0.5 and w, = 7 rad/sec.

Considering the root loci plotted in Fig. 5.23, we will first try

s+2

s+ 10

Dis) =K

Figure 5.24 shows that K = 70 will yield { = 0.56 and w,, = 7.7 rad/sec, which satisfies the goals based the initial



estimates. The third pole will be at s = -2.4 with K = 70. Because this third pole is so near the lead zero at -2, the
overshoot should not be increased very much from the second-order case. However, Fig. 5.25 shows the step
response of the system exceeds the overshoot specification a small amount. Typically, lead compensation in the feed-
forward path will increase the step-response overshoot because the zero of the compensation has a differentiating
effect, as discussed in Chapter 3. The rise-time specification has been met because the time for the amplitude to go
from 0.1 to 0.9 is less than 0.3 sec.

We want to tune the compensator to achieve better damping in order to reduce the overshoot in the transient

response. The expedient way to do this is to use RLTOOL,
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Figure 5.25 Step response for Example 5.11
sysG=tf(1,[1 1 0]);
sysD=tf([1 2],[1 10]);

rltool(sysG,sysD)

By moving the pole of the lead compensator more to the left in order to pull the locus in that direction, and



selecting K = 91, we obtain

(s+2)

D(s) = 9] —————,
k= (s+13)

which will provide more damping than the previous design iteration. Figure 5.26 shows the root locus with the s-
plane regions superimposed on the same plot from RLTOOL. The transient response from RLTOOL is shown in Fig.

5.27 and demonstrates that the overshoot specification is now met (in fact exceeded) with M, = 17% and the rise

time has degraded some from the previous iteration, but still satisfies the 0.3-sec specification.
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Figure 5.26 Illustration of the tuning of the dynamic lead compensator using RLTOOL
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Figure 5.27 Step response for K =91 and (5+13) s(s+1)

As stated earlier, the name lead compensation is a reflection of the fact that to sinusoidal signals, these transfer

functions impart phase lead. For example, the phase of Eq. (5.70) at s = jw is given by

¢ = tan~"! (f) — tan! (E) (5.71)

If Z < p, then ¢ is positive, which by definition indicates phase lead. The details of design using the phase angle of

the lead compensation will be treated in Chapter 6.

5.4.2 Design Using Lag Compensation
Once satisfactory dynamic response has been obtained, perhaps by using one or more lead compensations, we may
discover that the low-frequency gain—the value of the relevant steady-state error constant, such as K,—is still too

low. As we saw in Chapter 4, the system type, which determines the degree of the polynomial the system is capable
of following, is determined by the order of the pole of the transfer function D(s)G(s) at s = 0. If the system is Type 1,

the velocity-error constant, which determines the magnitude of the error to a ramp input, is given by lim,_,,

sD(s)G(s). In order to increase this constant, it is necessary to do so in a way that does not upset the already
satisfactory dynamic response. Thus, we want an expression for D(s) that will yield a significant gain at s = 0 to raise

K, (or some other steady-state error constant) but is nearly unity (no effect) at the higher frequency w,, where

dynamic response is determined. The result is

D(s) = e (5.72)




An example of lag compensation
where the values of z and p are small compared with w,,, yet D(0) = Z/p = 3 to 10 (the value depending on the

extent to which the steady-state gain requires boosting). Because z > p, the phase g given by Eq. (5.71) is negative,

corresponding to phase lag. Hence a device with this transfer function is called lag compensation.

The effects of lag compensation on dynamic response can be studied by looking at the corresponding root locus.

Gils) = . I - - Kis+2)
Again, we take +(5) lsts+11 | include the lead compensation KD(s) = 7315, that produced the locus in Fig.

5.26. With the gain of K = 91 from the previous tuned example, we find that the velocity constant is

K, = t_irrb sKhG

5§42 1
= lim s({91) it
s—0) s+ 13s(s+ 1)
a1 %2
= = 14,
13

Suppose we require that K, = 70. To obtain this, we require a lag compensation with Z/, = 5 in order to increase
the velocity constant by a factor of 5. This can be accomplished with a pole at p= -0.01 and a zero at Z = -0.05,
which keeps the values of both Z and p very small so that D, (s) would have little effect on the portions of the locus

representing the dominant dynamics around w,, = 7. The result is a lag compensation with the transfer function of

N (5+0.05)
Da(s) = {sxo0n) The root locus with both lead and lag compensation is plotted in Fig. 5.28 and we see that, for the

large scale on the left, the locus is not noticeably different from that in Fig. 5.26. This was the result of selecting very
small values for the pole and zero. With K = 91, the dominant roots are at -5.8 *j6.5. The effect of the lag
compensation can be seen by expanding the region of the locus around the origin as shown on the right side of Fig.
5.28. Here we can see the circular locus that is a result of the small pole and zero. A closed-loop root remains very
near the lag-compensation zero at —-0.05 + 0j; therefore, the transient response corresponding to this root will be a
very slowly decaying term, which will have a small magnitude because the zero will almost cancel the pole in the
transfer function. Still, the decay is so slow that this term may seriously influence the settling time. Furthermore, the
zero will not be present in the step response to a disturbance torque and the slow transient will be much more
evident there. Because of this effect, it is important to place the lag pole-zero combination at as high a frequency as

possible without causing major shifts in the dominant root locations.

......



Figure 5.28 Root locus with both lead and lag compensations

5.4.3 Design Using Notch Compensation

Suppose the design has been completed with lead and lag compensation given by

s+2 54+ 005
KD(s) =91 : (5.73)
: 5418 5+ D01

but is found to have a substantial oscillation at about 50 rad/sec when tested, because there was an unsuspected

flexibility of the noncollocated type at a natural frequency of w,, = 50. On reexamination, the plant transfer

function, including the effect of the flexibility, is estimated to be

2500

Gis) = s(s + IH-?E + 5+ 2500 ;

(3.74)

Gain and phase stabilization

A mechanical engineer claims that some of the “control energy” has spilled over into the lightly damped flexible
mode and caused it to be excited. In other words, as we saw from the similar system whose root locus is shown in
Fig. 5.18, the very lightly damped roots at 50 rad/sec have been made even less damped or perhaps unstable by the
feedback. The best method to fix this situation is to modify the structure so that there is a mechanical increase in
damping. Unfortunately, this is often not possible because it is found too late in the design cycle. If it isn’t possible,
how else can this oscillation be corrected? There are at least two possibilities. An additional lag compensation might
lower the loop gain far enough that there is greatly reduced spillover and the oscillation is eliminated. Reducing the
gain at the high frequency is called gain stabilization. If the response time resulting from gain stabilization is too
long, a second alternative is to add a zero near the resonance so as to shift the departure angles from the resonant
poles so as to cause the closed-loop root to move into the LHP, thus causing the associated transient to die out. This
approach is called phase stabilization, and its action is similar to that of flexibility in the collocated motion control
discussed earlier. Gain and phase stabilization are explained more precisely by their effect on the frequency response
(Chapter 6) where these methods of stabilization will be discussed further. For phase stabilization, the result is called

a notch compensation, and an example has a transfer function

g ]
8% 4+ 2L was + w,

'U.rr-u!r'nr.'f‘q} == 2
(54,

(5.75)

A necessary design decision is whether to place the notch frequency above or below that of the natural resonance of
the flexibility in order to get the necessary phase. A check of the angle of departure shows that with the plant as
compensated by Eq. (5.73) and the notch as given, it is necessary to place the frequency of the notch above that of
the resonance to get the departure angle to point toward the LHP. Thus the compensation is added with the transfer

function

s 4+ 0.85 + 3600

Do (8) = <
A (5 4+ 60)°

(3.76)



The gain of the notch at s = 0 has been kept at 1 so as not to change the K,. The new root locus is shown in Fig.

5.29 and the step response is shown in Fig 5.30. Note from the step response that the oscillations are well damped,
the rise-time specification is still met, but the overshoot has degraded. To rectify the increased overshoot and strictly
meet all the specifications, further iteration should be carried out in order to provide more damping of the fast roots

in the vicinity of w, = 7 rad/sec.

When considering notch or phase stabilization, it is important to understand that its success depends on
maintaining the correct phase at the frequencyofthe resonance. If that frequency is subject to significant change,
which is common in many cases, then the notch needs to be removed far enough from the nominal frequency in
order to work for all cases. The result may be interference of the notch with the rest of the dynamics and poor

performance. As a general rule, gain stabilization is substantially more robust to plant changes than is phase

stabilization.
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Figure 5.29 Root locus with lead, lag, and notch compensations
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Figure 5.30 Step response with lead, lag, and notch compensations

Lead compensation can be implemented using analog electronics, but digital computers are preferred.

5.4.4 Analog and Digital Implementations

Lead compensation can be physically realized in many ways. In analog electronics a common method is to use an

operational amplifier, an example of which is shown

V,

Figure 5.31 Possible circuit of a lead compensation

in Fig. 5.31. The transfer function of the circuit in Fig. 5.31 is readily found by the methods of Chapter 2 to be

547

o (5.77)

”."rud(ﬂ = —d
where

a=

if Rf = R + R»,

S =
g

1
RC
_Rl-l-Rg I

R R

-
e

P

If a design for D(s) is complete and a digital implementation is desired, then the technique of Chapter 4 can be



2z=1
used by first selecting a sampling period T, and then making substitution of s 2+1 for s. For example, consider the

542
D(s) = 3313 3. Then, since the rise time is about 0.3, a sampling period of six samples per rise
2 z7-1

. e

time results in the selection of T, = 0.05 sec. With the substitution of 0.05 z+1 for s into this transfer function, the

lead compensation

discrete transfer function is

z—1
9
Uz) 4DZ ] + 2
E(z) 4(:-“? = 14
1.55z — 1.4
= —. 5.78
1.96z — 1 { )

Clearing fractions and using the fact that operating on the time functions zu(kT,) = u(kT; + T,), we see that Eq.

(5.78) is equivalent to the formula for the controller given by

| 1.55 1.4
= — —_ ——J 5
ulkT; + T;) I gﬁu{kT}+ 106 e(kT; + T;) ({ﬁ'cT Y, (5.79)

The MATLAB commands to generate the discrete equivalent controller are

sysC=tf([1 2],[1 13]);

sysD = c2D(sysC,0.05)

Fig. 5.32 shows the SIMULINK diagram for implementing the digital controller. The result of the simulation is
contained in Fig. 5.33, which shows the comparison of analog and digital control outputs, and Fig. 5.34, which

shows the analog and digital control outputs.
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Figure 5.32 SIMULINK® diagram for comparison of analog and digital control
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Figure 5.33 Comparison of analog and digital control output responses

As with lead compensation, lag or notch compensation can be implemented using a digital computer and
following the same procedure. However, they, too, can be implemented using analog electronics, and a circuit

diagram of a lag network is given in Fig. 5.35. The transfer function of this circuit can be shown to be
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Figure 5.34 Comparison of analog and digital control time histories



Figure 5.35 Possible circuit of lag compensation

where

R
(!‘=E,
Rtk

R\R,C 7

B |
P—?-

Usually R; = R,, so the high-frequency gain is unity, or a = 1, and the low-frequency increase in gain to enhance K,

, k=ai =8tk
or other error constant is set by p Rz

5.5 A Design Example Using the Root Locus

EXAMPLE 5.12 Control of a Small Airplane

For the Piper Dakota shown in Fig. 5.36, the transfer function between the elevator input and the pitch attitude is



(a)

Trim tab &,

Elevator 8,

(b}

Figure 5.36 Autopilot design in the Piper Dakota, showing elevator and trim tab Source: Photo courtesy of Denise

Freeman

B(s) B 160(s + 2.5)(s + 0.7)
8o(5) (52 4+ 55+ 40)(s2 + 0.03s + 0.06)"

Giy) = (5.80)

where

6 = pitch attitude, degrees (see Fig. 10.30),

8. = elevator angle, degrees.

(For a more detailed discussion of longitudinal aircraft motion, refer to Section 10.3.)

1. Design an autopilot so that the response to a step elevator input has a rise time of 1 sec or less and an overshoot
less than 10%.

2. When there is a constant disturbing moment acting on the aircraft so that the pilot must supply a constant force on

the controls for steady flight, it is said to be out of trim. The transfer function between the disturbing moment and

the attitude is the same as that due to the elevator; that is,

H(s) 160(s + 2.5)(s + 0.7)
My(s) (52 + 55 4+ 40)(s2 + 0.03s + 0.06)

(5.81)
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Figure 5.37 Block diagrams for autopilot design: (a) open loop; (b) feedback scheme excluding trim control

(b}

where M, is the moment acting on the aircraft. There is a separate aerodynamic surface for trimming, §,, that can be

actuated and will change the moment on the aircraft. It is shown in the close-up of the tail in Fig. 5.36. Its influence
is depicted in the block diagram shown in Fig. 5.37(a). For both manual and autopilot flight, it is desirable to adjust

the trim so that there is no steady-state control effort required from the elevator (that is, so 8. = 0). In manual flight,

this means that no force is required by the pilot to keep the aircraft at a constant altitude, whereas in autopilot
control it means reducing the amount of electrical power required and saving wear and tear on the servomotor that

drives the elevator. Design an autopilot that will command the trim 3, so as to drive the steady-state value of 3, to

zero for an arbitrary constant moment My as well as meet the specifications in part (a).

Solution
1. To satisfy the requirement that the rise time t, < 1 sec, Eq. (3.60) indicates that, for the ideal second-order case,
w,, must be greater than 1.8 rad/sec. And to provide an overshoot of less than 10%, Fig. (3.23) indicates that {

should be greater than 0.6, again, for the ideal second-order case. In the design process, we can examine a root
locus for a candidate for feedback compensation and then look at the resulting time response when the roots
appear to satisfy the design guidelines. However, since this is a fourth-order system, the design guidelines might

not be sufficient, or they might be overly restrictive.

To initiate the design process, it is often instructive to look at the system characteristics with proportional
feedback, that is, where D(s) = 1 in Fig. 5.37(b). The statements in MATLAB to create a root locus with respect to K

and a time response for the proportional feedback case with K = 0.3 are as follows:
numG = 160*conv([1 2.5],[1 0.7]);

denG = conv([1 5 40],[1 0.03 0.06]);

sysG = tf(numG,denG);

rlocus(sysG)

K =103

sysL = K*sysG

sysH =tf(1,1);

[sysT] = feedback (sysL,sysH)

step(sysT)

The resulting root locus and time response are shown with dashed lines in Figs. 5.38 and 5.39. Notice from Fig. 5.38
that the two faster roots will always have a damping ratio C that is less than 0.4; therefore, proportional feedback

will not be acceptable. Also, the slower roots have some effect on the time response shown in Fig. 5.39 (dashed



curve) with K = 0.3 in that they cause a long-term settling. However, the dominating characteristic of the response

that determines whether or not the compensation meets the specifications is the behavior in the first few seconds,

which is dictated by the fast roots. The low damping of the fast roots causes the time response to be oscillatory,

which leads to excess overshoot and a longer settling time than desired.
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Figure 5.39 Time-response plots for autopilot design

We saw in Section 5.4.1 that lead compensation causes the locus to shift to the left, a change needed here to

increase the damping. Some trial and error will be required to arrive at a suitable pole and zero location. Values of z

= 3 and p = 20 in Eq. (5.70) have a substantial effect in moving the fast branches of the locus to the left; thus

Di(s) =

Trial and error is also required to arrive at a value of K that meets the specifications. The statements in MATLAB to

add this compensation are

s+3
5420




Lead compensation via MATLAB

numD=[1 3];

denD = [1 20];

sysD = tf(numD,denD);

sysDG = sysD*sysG
rlocus(sysDG)

K = 1.5

sysKDG = K*sysDG;

sysH =tf(1,1)

sysT = feedback(sysKDG,sysH)
step(sysT)

The root locus for this case and the corresponding time response are also shown in Figs. 5.38 and 5.39 by the solid

lines. Note that the damping of the fast roots that corresponds to K = 1.5 is { = 0.52, which is slightly lower than

we would like; also, the natural frequency is w, = 15 rad/sec, much faster than we need. However, these values are

close enough to meeting the guidelines to suggest a look at the time response. In fact, the time response shows that t,

= 0.9 sec and M,, = 8%, both within the specifications, although by a very slim margin.

In sum, the primary design path consisted of adjusting the compensation to influence the fast roots, examining

their effect on the time response, and continuing the design iteration until the time specifications were satisfied.

2. The purpose of the trim is to provide a moment that will eliminate a steady-state nonzero value of the elevator.

Therefore, if we integrate the elevator command 3, and feed this integral to the trim device, the trim should

eventually provide the moment required to hold an arbitrary altitude, thus eliminating the need for a steady-state

8.. This idea is shown in Fig. 5.40(a). If the gain on the integral term K; is small enough, the destabilizing effect of

adding the integral should be small and the system should behave approximately as before, since that feedback

loop has been left intact. The block diagram in Fig. 5.40(a) can be reduced to that in However, it is important to

keep in mind that, physically, there will be two outputs from the compensation: §, (used by the elevator

servomotor) and 3, (used by the trim servomotor).

tho—sl T ——n K5

Figure 5.40 Block diagram showing the trim-command loop

Fig. 5.40(b) for analysis purposes by defining the compensation to include the PI form



K;
Diis) =KD(s)| 1 +— ).
§
The characteristic equation of the system with the integral term is
g
|1 4+ KDG + —KDG = 0.
5

To aid in the design process, it is desirable to find the locus of roots with respect to K;, but the characteristic equation

is not in any of the root-locus forms given by Egs. (5.6)-(5.9). Therefore, dividing by 1 + KDG yields

(Ki/$)KDG _

1 + KDG
To put this system in root locus form, we define
1 KDG
Lis)= ———. (5.82)
s 14+ KDG

KD
In MATLAB, with 1+KGD already computed as sysT, we construct the integrator as sysIn = tf(1,[1 0]), the loop gain

of the system with respect to K; as sysL. = sysIn*sysT, and the root locus with respect to K; is found with rltool(sysL).

It can be seen from the locus in Fig. 5.41 that the damping of the fast roots decreases as K; increases, as is typically
the case when integral control is added. This shows the necessity for keeping the value of K; as low as possible. After
some trial and error, we select K; = 0.15. This value has little effect on the roots—note the roots are virtually on top

of the previous roots obtained without the integral term—and little effect on the short-term behavior of the step
response, as shown in Fig. 5.42(a), so the specifications are still met. K; = 0.15 does cause the longer-term attitude
behavior to approach the commanded value with no error, as we would expect with integral control. It also causes
8. to approach zero [Fig. 5.42(b) shows it settling in approximately 30 sec], which is good because this is the reason
for choosing integral control in the first place. The time for the integral to reach the correct value is predicted by the
new, slow real root that is added by the integral term at s = —0.14. The time constant associated with this root is T =

10.14 = 7 sec. The settling time to 1% for a root with o = 0.14 is shown by Eq. (3.65) to be t; = 33 sec, which
agrees with the behavior in Fig. 5.42(b).
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Figure 5.41 Root locus versus K; : assumes an added integral term and lead compensation with a gain K = 1.5; roots

for K; = 0.15 marked with -

5.6 Extensions of the Root-Locus Method

As we have seen in this chapter, the root-locus technique is a graphical scheme to show locations of possible roots of
an algebraic equation as a single real parameter varies. The method can be extended to consider negative values of
the parameter, a sequential consideration of more than one parameter, and systems with time delay. In this section

we examine these possibilities. Another interesting extension to nonlinear systems is in Chapter 9.

5.6.1 Rules for Plotting a Negative (0°) Root Locus

We now consider modifying the root-locus procedure to permit analysis of negative values of the parameter. In a
number of important cases, the transfer function of the plant has a zero in the RHP and is said to be nonminimum
phase. The result is often a locus of the form 1 +A(Zi -s)G’(s) = 1 + (- A)(s — Zi)G’(s) = 0, and in the standard
form the parameter K = —A must be negative. Another important issue calling for understanding the negative locus
arises in building a control system. In any physical implementation of a control system there are inevitably a number
of amplifiers and components whose gain sign must be selected. By Murphy’s Law,'® when the loop is first closed,
the sign will be wrong and the behavior will be unexpected unless the engineer understands how the response will
go if the gain which should be positive is instead negative. So what are the rules for a negative locus (a root locus
relative to a negative parameter)? First of all, Egs. (5.6)-(5.9) must be satisfied for negative values of K, which

implies that L(s) is real and positive. In other words, for the negative locus, the phase condition is
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Figure 5.42 Step response for the case with an integral term and 5° command

Definition of a Negative Root Locus
The angle of L(s) is 0° + 360° (1 — 1) for s on the negative locus.

The steps for plotting a negative locus are essentially the same as for the positive locus, except that we search for
places where the angle of L(s) is 0° + 360° (1 - 1)
instead of 180° + 360° (1 — 1). For this reason, a negative locus is also referred to as a 0 ° root locus. This time we
find that the locus is to the left of an even number of real poles plus zeros (the number zero being even).
Computation of the asymptotes for large values of s is, as before, given by

2Pz L (5.83)

¥ = —m,

ft—m

but we modify the angles to be

360°(1 —
B O] v i o
H—m

1807
(shifted by (#—m} from the 180° locus). Following are the guidelines for plotting a 0° locus:




RULE 1. (As before) The n branches of the locus leave the poles and m approach the zeros and n — m approach

asymptotes to infinity.
RULE 2. The locus is on the real axis to the left of an even number of real poles plus zeros.

RULE 3. The asymptotes are described by

-y Nopi—Y z _—aj + by
n—m n—m

360°( —1
ﬁbf:—{ }, == (0 B R
n—m

Notice that the angle condition here is measured from 0° rather than from 180° as it was in the positive locus.

RULE 4. Departure angles from poles and arrival angles to zeros are found by searching in the near neighborhood of

the pole or zero where the phase of L(s)is 0°, so that

ﬁf‘ﬁ!’[{t:p = Z Wi — Z P — 360°(1 - 1),
G =Y ¢ — Y Ui +360°( = 1),

where q is the order of the pole or zero and | takes on q integer values such that the angles are between +180°.

RULE 5. The locus can have multiple roots at points on the locus and the branches will approach a point of q roots

at angle separated by

180° + 360°(1 — 1)
g

and will depart at angles with the same separation.

The result of extending the guidelines for constructing root loci to include negative parameters is that we can
visualize the root locus as a set of continuous curves showing the location of possible solutions to the equation 1 +
KL(s) = 0 for all real values of K, both positive and negative. One branch of the locus departs from every pole in one
direction for positive values of K, and another branch departs from the same pole in another direction for negative K.
Likewise, all zeros will have two branches arriving, one with positive and the other with negative values of K. For
the n — m excess poles, there will be 2(n — m) branches of the locus asymptotically approaching infinity as K
approaches positive and negative infinity, respectively. For a single pole or zero, the angles of departure or arrival
for the two locus branches will be 180° apart. For a double pole or zero, the two positive branches will be 180°

apart and the two negative branches will be at 90° to the positive branches.

The negative locus is often required when studying a nonminimum phase transfer function. A well-known example
is that of the control of liquid level in the boiler of a steam power plant. If the level is too low, the actuator valve
adds (relatively) cold water to the boiling water in the vessel. The initial effect of the addition is to slow down the
rate of boiling, which reduces the number and size of the bubbles and causes the level to fall momentarily before the
added volume and heat cause it to rise again to the new increased level. This initial underflow is typical of
nonminimum phase systems. Another typical nonminimum phase transfer function is that of the altitude control of
an airplane. To make the plane climb, the upward deflection of the elevators initially causes the plane to drop

before it rotates and climbs. A Boeing 747 in this mode can be described by the scaled and normalized transfer



function

; 6—s
G(s) = — ! (5.84)
sis+ 45+ 13
To put 1 + KG(s) in root-locus form, we need to multiply by -1 to get
s—6
G(s) =—— : (5.85)
s(s“+4s+ 13)
EXAMPLE 5.13 Negative Root Locus for an Airplane
Sketch the negative root locus for the equation
%=0
1+ K (0. (5.86)

s(s2 +4s + 13) -

Solution
RULE 1. There are three branches and two asymptotes.

RULE 2. A real-axis segment is to the right of s = 6 and a segment is to the left of s = 0.

=036t e
RULE 3. The angles of the asymptotes are ¢ = 2 =Y , 180°, and the center of the asymptotes is at

o —=2-2—ia) _
o ]

RULE 4. The branch departs the pole ats = — 2 + j3 at the angle

3 3 _ :
¢ = tan™! (_3) —tap (—2) —90° 4+ 360°(1 - 1),

b = 159.4 — 123.7 — 90 + 360°(1 — 1),
b = —54.3°.

The locus is plotted in Fig. 5.43 by MATLAB, which is seen to be consistent with these values.

Imaginary axis
=

Real axis

Figure 5.43 Negative root locus corresponding to L(s) = (s - 6)/s(s> + 4s + 13)



A 5.6.2 Consideration of Two Parameters

Successive loop closure

An important technique for practical control is to consider a structure with two loops, an inner loop around an
actuator or part of the process dynamics and an outer loop around the entire plant-plus-inner-controller. The process
is called successive loop closure. A controller is selected for the inner loop to be robust and give good response
alone, and then the outer loop can be designed to be simpler and more effective than if the entire control was done
without the aid of the inner loop. The use of the root locus to study such a system with two parameters can be

illustrated by a simple example.

EXAMPLE 5.14 Root Locus Using Two Parameters in Succession
A block diagram of a relatively common servomechanism structure is shown in Fig. 5.44. Here a speed-measuring
device (a tachometer) is available and the problem is to use the root locus to guide the selection of the tachometer
gain Ky as well as the amplifier gain K,. The characteristic equation of the system in Fig. 5.44 is

Ka Kt

1 + - =0,
sis+1) s+1

which is not in the standard 1 + KL(s) form. After clearing fractions, the characteristic equation becomes

s+ Ky +Kps =0, (5.87)

which is a function of two parameters, whereas the root locus technique can consider only one parameter at a time.

In this case, we set the gain K, to a nominal value of 4

|
5

Figure 5.44 Block diagram of a servomechanism structure, including tachometer feedback

and consider first the locus with respect to K. With K, = 4, Eq. (5.87) can be put into root-locus form for a root-

— &
locus study with respect to Kt with Lis} = s +5+4, or
|+ K= (5.88)
) s24+s+4 o
- : 2 s = —141.94;
For this root locus, the zero is at s = 0 and the poles are at the roots of s + s + 4 = 0, or* 2— 74, A sketch

of the locus using the rules as before is shown in Fig. 5.45.



From this locus, we can select Ky so the complex roots have a specific damping ratio or take any other value of Ky
that would result in satisfactory roots for the characteristic equation. Consider Kt = 1. Having selected a trial value of
K, we can now re-form the equation to consider the effects of changing from K, = 4 by taking the new parameter

L(s) = sk

to be K; so that K, = 4 + K;. The locus with respect to K; is governed by Eq. (5.50), now with s*+2s+4, 50

that the locus is for the equation

14+ Kj—= (5.89)

s+ 25+ 4 -
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Figure 5.45 Root locus of closed-loop poles of the system in Fig. 5.44 versus Ky
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Figure 5.46 Root locus versus K; = K, + 4 after choosing Kt = 1

Note that the poles of the new locus corresponding to Eq. (5.89) are the roots of the previous locus, which was

drawn versus K, and the roots were taken at Kt = 1. The locus is sketched in Fig. 5.46, with the previous locus
versus Ky left dashed. We could draw a locus with respect to K; for a while, stop, resolve the equation, and continue
the locus with respect to Ky, in a sort of see-saw between the parameters K, and K, and thus use the root locus to

study the effects of two parameters on the roots of a characteristic equation. Notice, of course, that we can also plot

the root locus for negative values of K; and thus consider values of K, less than 4.



A 5.6.3 Time Delay

Time delays always reduce the stability of a system.

An example of a root locus with time delay

Time delays often arise in control systems, both from delays in the process itself and from delays in the processing of
sensed signals. Chemical plants often have processes with a time delay representing the time material takes to be
transported via pipes or other conveyer. In measuring the attitude of a spacecraft en route to Mars, there is a
significant time delay for the sensed quantity to arrive back on Earth due to the speed of light. There is also a small
time delay in any digital control system due to the cycle time of the computer and the fact that data is processed at
discrete intervals. Time delay always reduces the stability of a system; therefore, it is important to be able to analyze
its effect. In this section we discuss how to use the root locus for such analysis. Although an exact method of
analyzing time delay is available in the frequency-response methods to be described in Chapter 6, knowing several
different ways to analyze a design provides the control designer with more flexibility and an ability to check the

candidate solutions.

Consider the problem of designing a control system for the temperature of the heat exchanger described in Chapter
2. The transfer function between the control A, and the measured output temperature T, is described by two first-
order terms plus a time delay T4 of 5 sec. The time delay results because the temperature sensor is physically located

downstream from the exchanger, so that there is a delay in its reading. The transfer function is

) f,,—f\.w'
O I[.S' )

— ; 5.90
0 (10s4+ D(60s 4+ 1) { J

where the e term arises from the time delay.!”

The corresponding root-locus equations with respect to proportional gain K are

1 + KG(5) =10,

ff’_"'"

1+ K =)
(105 4+ 1)(60s + 1)

60052 + 705 + 1 + Ke™* = 0. (5.91)

How would we plot the root locus corresponding to Eq. (5.91)? Since it is not a polynomial, we cannot proceed with
the methods used in previous examples. So we reduce the given problem to one we have previously solved by
approximating the nonrational function e™* with a rational function. Since we are concerned with control systems
and hence typically with low frequencies, we want an approximation that will be good for small s.'® The most
common means for finding such an approximationis attributed to H. Padé. It consists of matching the series
expansion of the transcendental function e with the series expansion of a rational function whose numerator is a
polynomial of degree p and whose denominator is a polynomial of degree q. The result is called a (p, q) Padé
approximant'® to e™%, We will initially compute the approximants to e, and in the final result we will substitute

Tgs for s to allow for any desired delay.



Padé approximant

The resulting (1, 1) Padé approximant (p = q = 1) is (see Appendix W5 for details)

1 —(Tys/2)
| + (Tys/2)

,—Tas ~

€ (5.92)
If we assume p = q = 2, we have five parameters and a better match is possible. In this case we have the (2, 2)

approximant, which has the transfer function

1y o 1 = Tas/2 + (Tas)*/12

= S (5.93)
| + Tus/2 + (Tys)2/12

-

The comparison of these approximants can be seen from their pole-zero configurations as plotted in Fig. 5.47. The
locations of the poles are in the LHP and the zeros are in the RHP at the reflections of the poles.
In some cases a very crude approximation is acceptable. For small delays the (0, 1) approximant can be used,

which is simply a first-order lag given by

L~ (5.94)

Contrasting methods of approximating delay

To illustrate the effect of a delay and the accuracy of the different approximations, root loci for the heat exchanger
are drawn in Fig. 5.48 for four cases. Notice that, for low gains and up to the point where the loci cross the
imaginary axis, the approximate curves are very close to the exact. However, the (2, 2) Padé curve follows the exact
curve much further than does the first-order lag, and its increased accuracy would be useful if the delay were larger.

All analyses of the delay show its destabilizing effect and how it limits the achievable response time of the system.
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Figure 5.47 Poles and zeros of the Padé approximants to e™, with superscripts identifying the corresponding

approximants; for example, x! represents the (1, 1) approximant
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Figure 5.48 Root loci for the heat exchanger with and without time delay

While the Padé approximation leads to a rational transfer function, in theory it is not necessary for plotting a root
locus. A direct application of the phase condition can be used to plot portions of an exact locus of a system with
time delay. The phase-angle condition does not change if the transfer function of the process is nonrational, so we

still must search for values of s for which the phase is 180° + 360°1. If we write the transfer function as

G(s) = e T5G(s),

the phase of G(s) is the phase of G(s) minus Aw for s = o + jw. Thus we can formulate a root-locus problem as

searching for locations where the phase of G(s) is 180° + Tqw + 360° (1 — 1). To plot such a locus, we would fix w

and search along a horizontal line in the s-plane until we found a point on the locus, then raise the value of w,

change the target angle, and repeat. Similarly, the departure angles are modified by T w, where w is the imaginary

part of the pole from which the departure is being computed. MATLAB does not provide a program to plot the root
locus of systems with delay, so we must be satisfied here with Padé approximants. Since it is possible to plot the
frequency response (or Bode plot) of delay exactly and easily, if the designer feels that the Padé approximant is not

satisfactory, the expedient approach is to use the frequency-response design methods described in Chapter 6.

5.7 Historical Perspective

In Chapter 1 we gave an overview of the early development of feedback control analysis and design including
frequency response and root-locus design. Root-locus design was introduced in 1948 by Walter R. Evans, who was
working in the field of guidance and control of aircraft and missiles at the Autonetics Division of North American
Aviation (now a part of The Boeing Co.). Many of his problems involved unstable or neutrally stable dynamics,
which made the frequency methods difficult, so he suggested returning to the study of the characteristic equation that
had been the basis of the work of Maxwell and Routh nearly 70 years earlier. However, rather than treat the
algebraic problem, Evans posed it as a graphical problem in the complex s-plane. Evans was also interested in the
character of the dynamic response of the aerospace vehicles being controlled; therefore he wanted to solve for the
closed loop roots in order to understand the dynamic behavior. To facilitate this understanding, Evans developed
techniques and rules allowing one to follow graphically the paths of the roots of the characteristic equation as a
parameter was changed. His method is suitable for design as well as for stability analysis and remains an important

technique today. Originally, it enabled the solutions to be carried out by hand since computers were not available to



design engineers during the 1940s; however, they remain an important tool today for aiding the design process. As
we learned in this chapter, Evans method involves finding a locus of points where the angles to the other poles and
zeros add up to a certain value. To aid in this determination, Evans invented the “Spirule” that is shown in Fig. 5.49.
The device could be used to measure the angles and to perform the addition or subtraction very quickly. A skilled
controls engineer could evaluate whether the angle criterion was met for a fairly complex design problem in a few
seconds. In addition, the spiral curve on the rectangular portion of the device allowed the designer to multiply

distances in order to determine the gain at a selected spot on the locus in a manner analogous to a slide rule.

Figure 5.49 A Spirule: used to sketch a root locus before computers Source: Photo courtesy of David Powell

Evans was clearly motivated to aid the engineer who had no access to a computer in their design and analysis of
control systems. Computers were virtually nonexistent in the 1940s. Large mainframe computers started being used
somewhat for large-scale data processing by corporations in the 1950s, but there were no courses in engineering
programs that taught the use of computers for analysis and design until about 1960. Engineering usage became
commonplace through the 1960s, but the process involved submitting a job to a mainframe computer via a large
deck of punched cards and waiting for the results for hours or overnight, a situation that was not conducive to any
kind of design iteration. Mainframe computers in that era were just transitioning from vacuum tubes to transistors,
random access memory would be in the neighborhood of 32k!, and the long-term data storage was by a magnetic
tape drive. Random access drums and disks arrived during that decade, thus greatly speeding up the process of
retrieving data. A big step forward in computing for engineers occurred when the batch processing based on punched
cards was replaced by time share with many users at remote terminals during the late 1960s and early 1970s.
Mechanical calculators were also available through the 1940s, 1950s and 1960s that could add, subtract, multiply,
and divide and cost about $2000 in 1960. The very high-end devices could also do square roots. These machines
were the basis for the complex computations done at Los Alamos during World War II. They were the size of a
typewriter, had a large carriage that went back and forth during the calculations, and would occasionally ring a bell
at the end of the carriage stroke (see Fig. 5.50). They were accurate to eight or more decimal places and were often
used after the advent of computers to perform spot checks of the results, but a square root could take tens of seconds
to complete, the machines were noisy, and the process was tedious. Enterprising engineers learned which particular

calculations played certain tunes and it was not unusual to hear favorites, such as Jingle Bells.



Figure 5.50 The Frieden mechanical calculator Source: Courtesy of the Computer History Museum

The personal computer arrived in the late 1970s, although the ones at that time utilized an audio cassette tape for
data storage and had very limited random access memory, usually less than 16k. But as these desktop machines
matured over the ensuing decade, the age of the computer for engineering design came into its own. First came the
floppy disk for long-term data storage, followed by the hard drive toward the mid- and late-1980s. Initially, the
BASIC and APL languages was the primary methods of programming. MATLAB was introduced by Cleve Moler in the
1970s. Two things happened in 1984: Apple introduced the point and click MacIntosh and PC-MATLAB was
introduced by The Mathworks, which was specifically founded to commercialize MATLAB on personal computers.
Initially, The Mathworks’MAT-LAB was primarily written for control system analysis, but has branched out into many
fields since the initial introduction. At that point in the evolution, the engineer could truly perform design iterations
with little or no time between trials. Other similar programs were available for mainframe computers before that
time; two being CTRL-C and MATRIXx; however, those programs have not adapted to the personal computer

revolution and are fading from general use.

SUMMARY

* A root locus is a graph of the values of s that are solutions to the equation
1+ KL(s) =0

with respect to a real parameter K.
1. When K > 0, s is on the locus if ZL(s) = 180°, producing a 180° or positive K locus.
2. When K < 0, s is on the locus if ZL(s) = 0°, producing a 0° or negative K locus.

« If KL(s)is the loop transfer function of a system with negative feedback, then the characteristic equation of the

closed-loop system is
1+ KL(s) =0

and the root-locus method displays the effect of changing the gain K on the closed-loop system roots.
* A specific locus for a system sysL in MATLAB notation can be plotted by rlocus(sysL) and rltool(sysL)

« A working knowledge of how to determine a root locus is useful for verifying computer results and for suggesting

design alternatives.
* The key features for the aid in sketching a 180° locus are as follows:
1. The locus is on the real axis to the left of an odd number of poles plus zeros.

2. Of the n branches, m approach the zeros of L(s) and n — m branches approach asymptotes centered at a and

leaving at angles @;:



n = number of poles,
m = number of zeros,

n — m = number of asymptotes,
H—m '
_180° +360°( — 1)

¢ = o b= L 2 e i —
n—m

¥ =

3. Branches of the locus depart from the poles of order q and arrive at the zeros of order q with angles

|
D dep = S Z Wi — Zfﬁf — 180° — 360°( — 1)
il

I :
Viarr = S i — > i+ 180° +360°( — 1)
il

where

g = order of the pole or zero,
Yr; = angles from the zeros.

¢; = angles from the poles.

+ The parameter K corresponding to a root at a particular point s, on the locus can be found from

1
~|L(so)|’

where |L(sy)| can be found graphically by measuring the distances from s, to each of the poles and zeros

« For a locus drawn with rlocus(sysL), the parameter and corresponding roots can be found with [K, p] =
rlocfind(sysL) or with rltool.

* Lead compensation, given by

8-z

D(s) = :
s+p

i

approximates proportional-derivative (PD) control. For a fixed error coefficient, it generally moves the locus to
the left and improves the system damping.

 Lag compensation, given by

itz
D)= —, z> B
s+ p

approximates proportional-integral (PI) control. It generally improves the steady-state error for fixed speed of
response by increasing the low-frequency gain and typically degrades stability.



A+ The root locus can be used to analyze successive loop closures by studying two (or more) parameters in
succession.

A+ The root locus can be used to approximate the effect of time delay.

REVIEW QUESTIONS

1. Give two definitions for the root locus.

2. Define the negative root locus.

3. Where are the sections of the (positive) root locus on the real axis?

4. What are the angles of departure from two coincident poles at s = —a on the real axis? There are no poles or
zeros to the right of —a.

5. What are the angles of departure from three coincident poles at s = —a on the real axis? There are no poles or
zeros to the right of —a.

6. What is the principal effect of a lead compensation on a root locus?

7. What is the principal effect of a lag compensation on a root locus in the vicinity of the dominant closed-loop
roots?

8. What is the principal effect of a lag compensation on the steady-state error to a polynomial reference input?

9. Why is the angle of departure from a pole near the imaginary axis especially important?

10. Define a conditionally stable system.

11. Show, with a root-locus argument, that a system having three poles at the origin MUST be conditionally stable.

PROBLEMS

Problems for Section 5.1: Root Locus of a Basic Feedback System

5.1 Set up the listed characteristic equations in the form suited to Evans’s root-locus method. Give L(s), a(s), and b(s)
and the parameter K in terms of the original parameters in each case. Be sure to select K so that a(s) and b(s) are
monic in each case and the degree of b(s) is not greater than that of a(s).

(@) s + (1/1) = 0 versus parameter T
(b)s® + ¢cs + ¢ + 1 = 0 versus parameter ¢
@G+ +ATs+1)=0
(i) versus parameter A,
(ii) versus parameter T,
(iii) versus the parameter c, if possible. Say why you can or cannot. Can a plot of the roots be drawn versus ¢

for given constant values of A and T by any means at all?

@'t [k + 4 + 225 ]G5y = 0

clx)

Gis) = Am, where c¢(s) and d(s) are monic polynomials with the

i+l . Assume that
degree of d(s) greater than that of c(s).

(1) versus kp

(ii) versus k;

(iii) versus ky,



(iv) versus T

Problems for Section 5.2: Guidelines for Sketching a Root Locus

5.2 Roughly sketch the root loci for the pole-zero maps as shown in Fig. 5.51 without the aid of a computer. Show
your estimates of the center and angles of the asymptotes, a rough evaluation of arrival and departure angles for
complex poles and zeros, and the loci for positive values of the parameter K. Each pole-zero map is from a
characteristic equation of the form

bis)
14+ K— =0,
als)
where the roots of the numerator b(s) are shown as small circles o and the roots of the denominator a(s) are shown

as X’s on the s-plane. Note that in Fig. 5.51(c) there are two poles at the origin.

() )] (ch

(d) ie) (f)

Figure 5.51 Pole-zero maps
5.3 For the characteristic equation

K
l4+— =
s+ 1)s 4+ 5)

]

(a) Draw the real-axis segments of the corresponding root locus.
(b) Sketch the asymptotes of the locus for K — oo.

(c) Sketch the locus?

(d) Verify your sketch with a MATLAB plot.

5.4 Real poles and zeros. Sketch the root locus with respect to K for the equation 1 + KL(s) = 0 and the listed

choices for L(s). Be sure to give the asymptotes, and the arrival and departure angles at any complex zero or pole.



After completing each hand sketch, verify your results using MATLAB. Turn in your hand sketches and the

MATLAB results on the same scales.
— s+ 2)
@ L) = I DG+ 96 F 10

A |
®} LG) = (e Do+ 56 F10)

: — (s +2)s+6)
© LW = GFD6 + 96 + 10
i (s+2)s+4)
@ LS = FFD6 + 96 £ 10
5.5 Complex poles and zeros. Sketch the root locus with respect to K for the equation 1 + KL(s) = 0 and the listed
choices for L(s). Be sure to give the asymptotes and the arrival and departure angles at any complex zero or pole.

After completing each hand sketch, verify your results using MATLAB. Turn in your hand sketches and the

MATLAB results on the same scales.

1
(a) Lis) = T
574+ 35+ 10

1
s(s” + 35+ 10)

{.1;2 + 25 + B)

(b) Lis) =

(e) Lis) =
b s(s” + 25 + 10
“¥
! (s + 25+ 12)
d) Lis) =
d). Lis) s(s* + 25 + 10
G B+
(e) L(s) = ———
) %) iy +4)

¥
(f) Lis) = S,
(5 4+ 1)

5.6 Multiple poles at the origin. Sketch the root locus with respect to K for the equation 1 + KL(s) = 0 and the listed
choices for L(s). Be sure to give the asymptotes and the arrival and departure angles at any complex zero or pole.
After completing each hand sketch, verify your results using MATLAB. Turn in your hand sketches and the

MATLAB results on the same scales.

{3} L{'s]l = jl_

s2(s+8)
(b) L(s) = m
(¢) Lis) = m
(e) Lis) = ﬁ
2

iy Liz) = :_"'J:};”

2
(g) L(s) = ﬁ

5.7 Mixed real and complex poles. Sketch the root locus with respect to K for the equation 1 + KL(s) = 0 and the
listed choices for L(s). Be sure to give the asymptotes and the arrival and departure angles at any complex zero or
pole. After completing each hand sketch, verify your results using MATLAB. Turn in your hand sketches and the

MATLAB results on the same scales.



s+ 2)

(a) Lix) =
s(s + l[J‘Jl[.'.'j + 25+ 2)
oo {s 4+ 2)
b] f{‘r} = -
( .'s'z{.\' + 10V (5" + 65 + 23)
: 22
(¢) Lis) = (s +2)

.1;2{3' + I{'}}[.'q'2 + 05 4 25)

i (s + 2}{.~.‘2 + 45 4 68)
(d) Lix) = .
) .1;2{3' -+ I'lffi}[sf2 + 45 4+ 85)

[s+ 1% 4+ 1]
.'.'2{.1{ + 235 4+ 3)
5.8 RHP and zeros. Sketch the root locus with respect to K for the equation 1 + KL(s) = 0 and the listed choices for
L(s). Be sure to give the asymptotes and the arrival and departure angles at any complex zero or pole. After

completing each hand sketch, verify your results using MATLAB. Turn in your hand sketches and the MATLAB

{E] Lis) =

results on the same scales.

LA |
(@) L(s) = & ——
$+105% — 1 the model for a case of magnetic levitation with lead compensation.

A s Bl 1
G (s = 1); the magnetic levitation system with integral control and lead compensation.

(¢) L(s) = 51

§

2 ;
{d‘] I.{.'{} i & 1‘2‘.2\ + I
s(s 4+ 20)7(s” — 25 4+ 2) What is the largest value that can be obtained for the damping ratio of the stable

complex roots on this locus?
(s 4+ 2)
s5(s — 1)(s + 6)2
|
(s — DI(s +2)% +3]

f) Lix) =

5.9 Put the characteristic equation of the system shown in Fig. 5.52 in root-locus form with respect to the parameter

a, and identify the corresponding L(s), a(s), and b(s). Sketch

.R‘ O ‘l _..5._ i)
sy +2)

Figure 5.52 Control system for Problem 5.9

the root locus with respect to the parameter a, estimate the closed-loop pole locations, and sketch the corresponding

step responses when a = 0, 0.5, and 2. Use MATLAB to check the accuracy of your approximate step responses.

5.10 Use the MATLAB function rltool to study the behavior of the root locus of 1 + KL(s) for

(s +a)

f{‘.]l =
s(s + (5% + 85 + 52)

as the parameter a is varied from 0 to 10, paying particular attention to the region between 2.5 and 3.5. Verify that a

multiple root occurs at a complex value of s for some value of a in this range.



5.11 Use Routh’s criterion to find the range of the gain K for which the systems in Fig. 5.53 are stable, and use the

root locus to confirm your calculations.

b 1 24542 s = | s+12
Ro—{ 5 }— K |— : —r—c ¥y R I kK ——— oy
\‘r | ws 4+ SHx 0 4+ 4+ 1) ‘ sz — 2Hs + 25+ 1)

Figure 5.53 Feedback systems for Problem 5.11

5.12 Sketch the root locus for the characteristic equation of the system for which

s+ 2)

Lis) = ;
i) s(s 4 1)s+5)

and determine the value of the root-locus gain for which the complex conjugate poles have a damping ratio of
0.5.

5.13 For the system in Fig. 5.54,
(a) Find the locus of closed-loop roots with respect to K.
(b) Is there a value of K that will cause all roots to have a damping ratio greater than 0.5?
(c) Find the values of K that yield closed-loop poles with the damping ratio { = 0.707.
(d) Use MATLAB to plot the response of the resulting design to a reference step.

K(k+]) c '\-Fh':-!_Hl oF
s+ 13 s + 100)

R

- 7y - O ¥

Figure 5.55 Feedback system for Problem 5.14
5.14 For the feedback system shown in Fig. 5.55, find the value of the gain K that results in dominant closed-loop

poles with a damping ratio { = 0.5.

Problems for Section 5.3: Selected Illustrative Root Loci

5.15 A simplified model of the longitudinal motion of a certain helicopter near hover has the transfer function



9.8(s2 — 0.55 + 6.3)

G(s) = n
(s + 0.66)(s2 — 0.245 + 0.15)

and the characteristic equation 1 + D(s)G(s) =0. Let D(s) = kp at first.
(a) Compute the departure and arrival angles at the complex poles and zeros.

(b) Sketch the root locus for this system for parameter K = 9.8 k,. Use axes-4 < x < 4,-3 <y < 3.

(c) Verify your answer using MATLAB. Use the command axis([-4 4 -3 3]) to get the right scales.

(d) Suggest a practical (at least as many poles as zeros) alternative compensation D(s) that will at least result in a

stable system.
5.16 (a) For the system given in Fig. 5.56, plot the root locus of the characteristic equation as the parameter K; is
varied from 0 to - with A = 2. Give the corresponding L(s), a(s), and b(s).
(b) Repeat part (a) with A = 5. Is there anything special about this value?
(c) Repeat part (a) for fixed K; = 2, with the parameter K = A varying from 0 to .

g | 2 K
HD_@_' Y [s+10 15+

o

(0]

Figure 5.56 Control system for Problem 5.16

5.17 For the system shown in Fig. 5.57, determine the characteristic equation and sketch the root locus of it with
respect to positive values of the parameter c. Give L(s), a(s), and b(s), and be sure to show with arrows the

direction in which c increases on the locus.

oY

,,
=
“Fale

Figure 5.57 Control system for Problem 5.17

5.18 Suppose you are given a system with the transfer function

(s4+2)
Lis) = 5
(s + p)-

where Z and p are real and Z > p. Show that the root locus for 1 + KL(s) = 0 with respect to K is a circle

centered at Z with radius given by
r = (z-p).

Hint: Assume s + Z = re? and show that L(s) is real and negative for real ¢ under this assumption.

5.19 The loop transmission of a system has two poles ats = — 1 and a zero at s = —-2. There is a third real-axis pole



p located somewhere to the left of the zero. Several different root loci are possible, depending on the exact
location of the third pole. The extreme cases occur when the pole is located at infinity or when it is located at s
= -2. Give values for p and sketch the three distinct types of loci.

5.20 For the feedback configuration of Fig. 5.58, use asymptotes, center of asymptotes, angles of departure and
arrival, and the Routh array to sketch root loci for the characteristic equations of the listed feedback control

systems versus the parameter K. Use MATLAB to verify your results.

1 s+2

i) = , His) = —

L sis+14+3/0s+1-3) () s+ 8

| s+ 1

b Y _ H.' — —

(b) G(s) 3 () g

(s 4+ 5) s+7

i) = ’ His) = —

(060 =5 W=ir3
i+ 3 s +3—44

O ) I o b s | H(s) =1+ 3

ssF1+2DG+1 -2

Cis) o¥

Hix)

Figure 5.58 Feedback system for Problem 5.20

5.21 Consider the system in Fig. 5.59.
(a) Using Routh’s stability criterion, determine all values of K for which the system is stable.

(b) Use MATLAB to draw the root locus versus K and find the values of K at the imaginary-axis crossings.

» & §+3
K i@+ a5 o
|
5+ E
Figure 5.59 Feedback system for Problem 5.21
Problems for Section 5.4: Design Using Dynamic Compensation
5.55 Let
1 §+a
G(s) = ——————— d Ds}=K :
O =76+ ™ PG

Using root-locus techniques, find values for the parameters a, b, and K of the compensation D(s) that will

produce closed-loop poles ats = -1 * j for the system shown in Fig. 5.60.

) {r(5) oF




Figure 5.60 Unity feedback system for Problems 5.22 to 5.28 and 5.33
5.23 Suppose that in Fig. 5.60

1
Gis) = ——— and Dis) = ;
: .'s'l[.i.'1 + 254+ 2) v 542

Sketch the root locus with respect to K of the characteristic equation for the closed-loop system, paying

particular attention to points that generate multiple roots if KL(s) = D(s)G(Ss).

5.24 Suppose the unity feedback system of Fig. 5.60 has an open-loop plant given by G(s) = 1/s. Design a lead

Dis) = K&

compensation 5+ to be added in series with the plant so that the dominant poles of the closed-loop

system are located ats = — 2 + 2j.

5.25 Assume that the unity feedback system of Fig. 5.60 has the open-loop plant

1

G = ———,
() §(x+3)s+6)

Design a lag compensation to meet the following specifications:

« The step response settling time is to be less than 5 sec.

« The step response overshoot is to be less than 17%.

« The steady-state error to a unit-ramp input must not exceed 10%.

5.26 A numerically controlled machine tool positioning servomechanism has a normalized and scaled transfer

function given by

(ix) =

sis+ 1)

Performance specifications of the system in the unity feedback configuration of Fig. 5.60 are satisfied if the
closed-loop poles are located at * = —1&j “‘ﬁ.

(a) Show that this specification cannot be achieved by choosing proportional control alone, D(s) = k,,.

'L.-'ﬂ o— =

Light

Photo
detector

Figure 5.61 Elementary magnetic suspension

D(s) = K=

(b) Design a lead compensator P that will meet the specification.



5.27 A servomechanism position control has the plant transfer function

10
sis 4+ s+ 100

Gis) =

You are to design a series compensation transfer function D(s) in the unity feedback configuration to meet the

following closed-loop specifications:

« The response to a reference step input is to have no more than 16% overshoot.
« The response to a reference step input is to have a rise time of no more than 0.4 sec.

« The steady-state error to a unit ramp at the reference input must be less than 0.02.

(a) Design a lead compensation that will cause the systemtomeet the dynamic response specifications.

(b) If D(s)is proportional control, D(s) = kp, what is the velocity constant K,?

(c) Design a lag compensation to be used in series with the lead you have designed to cause the system to meet
the steady-state error specification.

(d) Give the MATLAB plot of the root locus of your final design.

(e) Give the MATLAB response of your final design to a reference step.

5.28 Assume that the closed-loop system of Fig. 5.60 has a feed-forward transfer function

Gis) = G2
Design a lag compensation so that the dominant poles of the closed-loop system are located ats = -1 + j and
the steady-state error to a unit-ramp input is less than 0.2.

5.29 An elementary magnetic suspension scheme is depicted in Fig. 5.61. For small motions near the reference
position, the voltage e on the photo detector is related to the ball displacement x (in meters) by e = 100x. The
upward force (in newtons) on the ball caused by the current i (in amperes) may be approximated by f = 0.5i +
20x. The mass of the ball is 20 g and the gravitational force is 9.8 N/kg. The power amplifier is a voltage-to-

current device with an output (in amperes) of i = u + V,,.
(a) Write the equations of motion for this set-up.
(b) Give the value of the bias V, that results in the ball being in equilibrium at x = 0.

(c) What is the transfer function from u to e?

(d) Suppose that the control input u is given by u = —Ke. Sketch the root locus of the closed-loop system as a

function of K.

Hig) e

Figure 5.62 Block diagram for rocket-positioning control system



Y =D(s) = K&

(e) Assume that a lead compensation is available in the form ~ ", Give values of K, Z, and p that

yield improved performance over the one proposed in part (d).

5.30 A certain plant with the nonminimum phase transfer function

4 — g

G(s) = ——
(8) 2 4+5+9

is in a unity positive feedback system with the controller transfer function D(s).

(a) Use MATLAB to determine a (negative) value for D(s) = K so that the closed-loop system with negative
feedback has a damping ratio { = 0.707.

(b) Use MATLAB to plot the system’s response to a reference step.
5.31 Consider the rocket-positioning system shown in Fig. 5.62.
(a) Show that if the sensor that measures x has a unity transfer function, the lead compensator
s+ 2

H(s) = K-
(5) s+ 4

stabilizes the system.

(b) Assume that the sensor transfer function is modeled by a single pole with a 0.1 sec time constant and unity DC

gain. Using the root-locus procedure, find a value for the gain K that will provide the maximum damping ratio.

- [V
(x+6+2(s+6-—12

QY

Figure 5.63 Control system for Problem 5.32

5.32 For the system in Fig. 5.63,
(a) Find the locus of closed-loop roots with respect to K.

(b) Find the maximum value of K for which the system is stable. Assume K = 2 for the remaining parts of this

problem.
(c) What is the steady-state error (e = r —y) for a step change in r?
(d) What is the steady-state error in y for a constant disturbance w?
(e) What is the steady-state error in y for a constant disturbance w,?
(f) If you wished to have more damping, what changes would you make to the system?

5.33 Consider the plant transfer function



bhs + k

Gls) = = 3
s<|mMs= + (M + m)bs + (M + m k]

to be put in the unity feedback loop of Fig. 5.60. This is the transfer function relating the input force u(t) and
the position y(t) of mass M in the noncollocated sensor and actuator problem. In this problem we will use root-
locus techniques to design a controller D(s) so that the closed-loop step response has a rise time of less than 0.1
sec and an overshoot of less than 10%. You may use MATLAB for any of the following questions:

(a) Approximate G(s) by assuming that m = 0, and letM = 1, K = 1, b = 0.1, and D(s) = K. Can K be chosen to
satisfy the performance specifications? Why or why not?

(b) Repeat part (a) assuming that D (s) = K(s + Z), and show that K and Z can be chosen to meet the
specifications.

(c) Repeat part (b), but with a practical controller given by the transfer function

pls+z)

i+p

Pick p so that the values for K and Z computed in part (b) remain more or less valid.

(d) Now suppose that the small mass m is not negligible, but is given by m = M/10. Check to see if the controller
you designed in part (c) still meets the given specifications. If not, adjust the controller parameters so that the

specifications are met.
5.34 Consider the Type 1 system drawn in Fig. 5.64. We would like to design the compensation D(s) to meet the
following requirements: (1) The steady-state value of y due to a constant unit disturbance w should be less than
%, and (2) the damping ratio { = 0.7. Using root-locus techniques,
(a) Show that proportional control alone is not adequate.
(b) Show that proportional-derivative control will work.

(c) Find values of the gains kp and kp, for D (s) = kp + kps that meet the design specifications.

Figure 5.64 Control system for Problem 5.34
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Figure 5.65 Positioning servomechanism Source: Reprinted from Clark, 1962, with permission

Problems for Section 5.5: A Design Example Using the Root Locus

5.35 Consider the positioning servomechanism system shown in Fig. 5.65, where

e = Kpolliy, €5 = Kpﬂf”fh K;w! = 10 V/rad,
T = motor torque = Kiig.
km

= K; = torque constant = (.1 N-m/A,
Ru —

= armature resistance = 10 £2,

Gearratio=1: 1,

Ji, + Jy = total inertia = 1073 kg~n12,

C = 200 uF,

Vg = K:_.‘ I{f:'J: —_ f-r’]

(a) What is the range of the amplifier gain K, for which the system is stable? Estimate the upper limit graphically
using a root-locus plot.

K,?

(b) Choose a gain K, that gives roots at { = 0.7. Where are all three closed-loop root locations for this value of
5.36 We wish to design a velocity control for a tape-drive servomechanism. The transfer function from current I(s) to
tape velocity Q (s) (in millimeters per millisecond per ampere) is

s -

15(s% + 0.95 + 0.8)
) G+DE2 1041y

We wish to design a Type 1 feedback system so that the response to a reference step satisfies

t. < 4 msec, t; < 15 msec, M, < 0.05.



(a) Use the integral compensator k;/s to achieve Type 1 behavior, and sketch the root locus with respect to k;.
Show on the same plot the region of acceptable pole locations corresponding to the specifications.

(b) Assume a proportional-integral compensator of the form k;, (s + a)/s, and select the best possible values of k,
and a you can find. Sketch the root-locus plot of your design, giving values for k, and o, and the velocity
constant K, your design achieves. On your plot, indicate the closed-loop poles with a dot (+) and include the
boundary of the region of acceptable root locations.

5.37 The normalized, scaled equations of a cart as drawn in Fig. 5.66 of mass m. holding an inverted uniform

pendulum of mass m, and length 1 with no friction are

B—8=—w (5.95)
"; + At = v,

Iy

where Hom+mp )

2 Ipinme+my)
k— : 3x
ey I . . . . E— : . .
¢ Hamc4ep) The cart motion y is measured in units of pendulum length as ¥ = 37 and the input is force
]

is a mass ratio bounded by 0 < B < 0.75. Time is measured in terms of T = w,t where

y— — 4
normalized by the system weight glme+mp) These equations can be used to compute the transfer functions

=) 1 =

. (5.96)

v 5 =1

5
e =14 -
Vv (5= —1)

In this problem you are to design a control for the system by first closing a loop around the pendulum, Eq. (5.96),

and then, with this loop closed, closing a second loop around the cart plus pendulum, Eq. (5.97). For this problem,
let the mass ratio be m, = 5Sm,,
(a) Draw a block diagram for the system with V input and both Y and © as outputs.

IJ{.II.} — Kpi

(b) Design a lead compensation 5+ for the © loop to cancel the pole at s = — 1 and place the two

remaining poles at -4 * j4. The new control is U(s), where the force is V (s) = U(s) + D(s)O(s). Draw the

root locus of the angle loop.
(c) Compute the transfer function of the new plant from U to Y with D(s) in place.
(d) Design a controller D.(s) for the cart position with the pendulum loop closed. Draw the root locus with

respect to the gain of D.(s).

(e) Use MATLAB to plot the control, cart position, and pendulum position for a unit step change in cart position.



Trolley or cart

6 ©

Figure 5.66 Figure of cart pendulum for Problem 5.37

5.38 Consider the 270-ft U.S. Coast Guard cutter Tampa (902) shown in Fig. 5.67. Parameter identification based on
sea-trials data (Trankle, 1987) was used to estimate the hydro-dynamic coefficients in the equations of motion.

The result is that the response of the heading angle of the ship y to rudder angle 8 and wind changes w can be

described by the second-order transfer functions

Ga(s) i (s} —0.0184(s + 0.0068)

5ty = — =

J 5(s)  s(s +0.2647)(s + 0.0063)
L (s 0.0000064

(_:“-L.u_r — —

wix) s(s + 0.2647)(s + 0.0063)

where
Y = heading angle, rad,
r = reference heading angle, rad,
r = yaw rate, rad/sec,
8 = rudder angle, rad,
w = wind speed, m/sec.

(a) Determine the open-loop settling time of r for a step change in 3.

(b) In order to regulate the heading angle y, design a compensator that uses y and the measurement provided by

a yaw-rate gyroscope (that is, by y = r). The settling time of y to a step change in y; is specified to be less

than 50 sec, and for a 5° change in heading, the maximum allowable rudder angle deflection is specified to be

less than 10°.

(c) Check the response of the closed-loop system you designed in part (b) to a wind gust disturbance of 10 m/sec.
(Model the disturbance as a step input.) If the steady-state value of the heading due to this wind gust is more

than 0.5°, modify your design so that it meets this specification as well.



Figure 5.67 USCG cutter Tampa (902) for Problem 5.38

5.39 Golden Nugget Airlines has opened a free bar in the tail of their airplanes in an attempt to lure customers. In
order to automatically adjust for the sudden weight shift due to passengers rushing to the bar when it first opens,
the airline is mechanizing a pitch-attitude autopilot. Figure 5.68 shows the block diagram of the proposed

arrangement. We will model the passenger moment as a step disturbance My(s) = Mos, with a maximum
expected value for M, of 0.6.

(a) What value of K is required to keep the steady-state error in 6 to less than 0.02 rad (= 1°)? (Assume the system
is stable.)

(b) Draw a root locus with respect to K.

(c) Based on your root locus, what is the value of K when the system becomes unstable?

(d) Suppose the value of K required for acceptable steady-state behavior is 600. Show that this value yields an
unstable system with roots at

= -29,-13.5,+1.2 + 6.6j.

(e) You are given a black box with rate gyro written on the side and told that, when installed, it provides a perfect
measure of , with output K. Assume that K = 600 as in part (d) and draw a block diagram indicating how
you would incorporate the rate gyro into the autopilot. (Include transfer functions in boxes.)

(f) For the rate gyro in part (e), sketch a root locus with respect to K.

(g) What is the maximum damping factor of the complex roots obtainable with the configuration in part (e)?

(h) What is the value of Ky for part (g)?

(i) Suppose you are not satisfied with the steady-state errors and damping ratio of the system with a rate gyro in
parts (e) through (h). Discuss the advantages and disadvantages of adding an integral term and extra lead

networks in the control law. Support your comments using MATLAB or with rough root-locus sketches.
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Figure 5.68 Golden Nugget Airlines autopilot

5.40 Consider the instrument servomechanism with the parameters given in Fig. 5.69. For each of the following

cases, draw a root locus with respect to the parameter K, and indicate the location of the roots corresponding to
your final design:

(a) Lead network: Let

s+ z

)
His)=1, D(s)=K L —%
F4p z
Compensator
-+ u I 1
R Dix) H = - — oY
5=+ 515 + 550 ¥
Sensor
Hisy

Figure 5.69 Control system for Problem 5.40

Select z and K so that the roots nearest the origin (the dominant roots) yield

2
¢ =i, —gaT Kz masec—].

(b) Output-velocity (tachometer) feedback: Let
H(s) = 1 + Kys and D(s) = K.

Select Kt and K so that the dominant roots are in the same location as those of part (a). Compute K,. If you can,
give a physical reason explaining the reduction in K, when output derivative feedback is used.

(c) Lag network: Let

s+ 1
s+p

Hisy=1 and D{s) =K

Using proportional control, it is possible to obtain a K, = 12 at { = 0.4. Select K and p so that the dominant



roots correspond to the proportional-control case but with K, = 100 rather than K, = 12.

Problems for Section 5.6: Extensions of the Root Locus Method
5.41 Plot the loci for the 0° locus or negative K for each of the following:
(a) The examples given in Problem 5.3
(b) The examples given in Problem 5.4
(c) The examples given in Problem 5.5
(d) The examples given in Problem 5.6
(e) The examples given in Problem 5.7
(f) The examples given in Problem 5.8
5.42 Suppose you are given the plant

|
24+(14+as+0+a)

where a is a system parameter that is subject to variations. Use both positive and negative root-locus methods to

determine what variations in a can be tolerated before instability occurs.
5.43 Consider the system in Fig. 5.70.

(a) Use Routh’s criterion to determine the regions in the (K;, K,) plane for which the system is stable.

(b) Use RLTOOL to verify your answer to part (a).

L I

D e S - O F
i (s + 1)x + 0.5 !

Figure 5.70 Feedback system for Problem 5.43

5.44 The block diagram of a positioning servomechanism is shown in Fig. 5.71.

(a) Sketch the root locus with respect to K when no tachometer feedback is present (K = 0).

(b) Indicate the root locations corresponding to K = 16 on the locus of part (a). For these locations, estimate the

transient-response parameters t., M, and t;,. Compare your estimates to measurements obtained using the step
command in MATLAB.

(c) For K = 16, draw the root locus with respect to Kr.

(d) For K = 16 and with Ky set so that M, = 0.05 (¢ = 0.707), estimate t, and t,. Compare your estimates to the
actual values of t, and t, obtained using MATLAB.

(e) For the values of K and Ky in part (d), what is the velocity constant K, of this system?



Figure 5.71 Control system for Problem 5.44

5.45 Consider the mechanical system shown in Fig. 5.72, where g and a, are gains. The feedback path containing gs
controls the amount of rate feedback. For a fixed value of a,, adjusting g corresponds to varying the location of a
zero in the s-plane.

(a) With g = O and 1 = 1, find a value for a; such that the poles are complex.

(b) Fix a, at this value, and construct a root locus that demonstrates the effect of varying g.

f,

i srs+ 1)

Figure 5.72 Control system for Problem 5.45

5.46 Sketch the root locus with respect to K for the system in Fig. 5.73 using the Padé(1,1) approximation and the
first-order lag approximation. For both approximations, what is the range of values of K for which the system is

unstable?

=

Figure 5.73 Control system for Problem 5.46

A 5.47 Prove that the plant G(s) = !/ cannot be made unconditionally stable if pole cancellation is forbidden.

A 5.48 For the equation 1 + KG(s), where

|
sGs+p)(s+ 12+ 4]

Gis) =

use MATLAB to examine the root locus as a function of K for p in the range from p = 1 to p = 10, making sure

to include the pointp = 2.



L In the most common case, L(s) is the loop transfer function of the feedback system and K is the gain of the controller-plant combination. However,

the root locus is a general method suitable for the study of any polynomial and any parameter that can be put in the form of Eq. (5.3).

2 Monic means that the coefficient of the highest power of s is 1.

31f L(s) is the transfer function of a physical system, it is necessary that n = m or else the system would have an infinite response to a finite input. If
the parameter should be chosen so that n < m, then we can consider the equivalent equation 1 + K1 L(s)” = 0.

4IFK is positive, the locus is called the “positive” locus. We will consider later the simple changes if K < 0, resulting in a “negative” locus.

5 Garbage in, Garbage out.

6 The graphical evaluation of the magnitude and phase of a complex number is reviewed in Appendix WD, Section 3.

7 The negative locus will be considered in Section 5.6.

8 This approximation can be obtained by dividing a(s) by b(s) and matching the dominant two terms (highest powers in s) to the expansion of (- o)™

m

9 Given a specific physical system, this number would be selected with consideration of the specified rise time of the design or the maximum control
signal (control authority) of the actuator.
i0

10 yoyu can prove that the path is a circle by assuming that s + 1 = e~ and showing that the equation has a solution for a range of positive K and

real 6 under this assumption. (See Problem 5.18.)

11 The use of z here for zero is not to be confused with the use of the operator z used in defining the discrete transfer function needed to describe

digital controllers.
12 The shape of this special root locus is a trisectrix of Maclaurin, a plane curve that can be used to trisect an angle.

13 Typical of the satellite attitude control, where the flexibility arises from solar panels and both actuator and sensor act on the main body of the

satellite.

14 Typical of the satellite, where the flexibility arises from a scientific package whose attitude is to be controlled from a command body coupled to
the package by a flexible strut. This case is also typical of computer hard-disk read/write head control, where the motor is on one end of the arm and

the head is on the other.

15 The names of these compensation schemes derive from their frequency (sinusoidal) responses, wherein the output leads the input in one case (a
positive phase shift) and lags the input in another (a negative phase shift). The frequency response of the third looks as if a notch had been cut in an

otherwise flat frequency response. See Chapter 6.
16 Anything that can go wrong, will go wrong.

17 Time delay is often referred to as “transportation lag” in the process industries.

S

18 The nonrational function e is analytic for all finite values of s and so may be approximated by a rational function. If nonanalytic functions such

T
as %Y were involved, great caution would be needed in selecting an approximation valid near s = 0.

19 The (p,p) Padé approximant for a delay of T seconds is most commonly used and is computed by the MATLAB command [num,den] = pade(T, P).



6 The Frequency-Response Design Method

A Perspective on the Frequency-Response Design Method

The design of feedback control systems in industry is probably accomplished using frequency-response methods more
often than any other. Frequency-response design is popular primarily because it provides good designs in the face of
uncertainty in the plant model. For example, for systems with poorly known or changing high-frequency resonances,
we can temper the feedback compensation to alleviate the effects of those uncertainties. Currently, this tempering is

carried out more easily using frequency-response design than with any other method.

Another advantage of using frequency response is the ease with which experimentalinformationcanbeusedfor
design purposes. Rawmeasurements of the output amplitude and phase of a plant undergoing a sinusoidal input
excitation are sufficient to design a suitable feedback control. No intermediate processing of the data (such as finding
poles and zeros or determining system matrices) is required to arrive at the system model. The wide availability of
computers has rendered this advantage less important now than it was years ago; however, for relatively simple
systems, frequency response is often still the most cost-effective design method. The method is most effective for

systems that are stable in open loop.

Yet another advantage is that it is the easiest method to use for designing compensation. A simple rule can be used

to provide reasonable designs with a minimum of trial and error.

Although the underlying theory is somewhat challenging and requires a rather broad knowledge of complex
variables, the methodology of frequency-response design is easy, and the insights gained by learning the theory are

well worth the struggle.

Chapter Overview

The chapter opens with a discussion of how to obtain the frequency response of a system by analyzing its poles and
zeros. An important extension of this discussion is how to use Bode plots to graphically display the frequency
response. In Sections 6.2 and 6.3 we discuss stability briefly and then in more depth the use of the Nyquist stability
criterion. In Sections 6.4 through 6.6 we introduce the notion of stability margins, discuss Bode’s gain—phase
relationship, and study the closed-loop frequency response of dynamic systems. The gain—phase relationship suggests
a very simple rule for compensation design: Shape the frequency-response magnitude so that it crosses magnitude 1
with a slope of —-1. As with our treatment of the root-locus method, we describe how adding dynamic compensation
can adjust the frequency response (Section 6.7) and improve system stability and/or error characteristics. We also
show how to implement compensation digitally in an example.

In optional Sections 6.7.7 and 6.7.8 we discuss issues of sensitivity that relate to the frequency response, including
material on sensitivity functions and stability robustness. The next two sections on analyzing time delays in the

system and Nichols chartsrepresents additional, somewhat advanced material that may also be considered optional.



The final Section 6.10 is a short history of the Frequency Response design method.

6.1 Frequency Response
The basic concepts of frequency response were discussed in Section 3.1.2. In this section we will review those ideas
and extend the concepts for use in control system design.

A linear system’s response to sinusoidal inputs—called the system’s frequency response—can be obtained from

knowledge of its pole and zero locations.

To review the ideas, we consider a system described by

Y(s) :
= sy,
U0s) (s)

where the input u(t) is a sine wave with an amplitude A:
u(t) = A sin(w, (1)

This sine wave has a Laplace transform

A
l{.-'r{.'f} = %
Lol o
Frequency Response

With zero initial conditions, the Laplace transform of the output is

Y(s) = G(s) ——2. (6.1)

Partial-fraction expansion

A partial-fraction expansion of Eq. (6.1) [assuming that the poles of G(s) are distinct] will result in an equation of

the form

o o o a, a*
V() = et s 0 e T . (69)
s—p1 s—p S—pn  s+jw, §— jw,

3

where pq, s, - - - , P, are the poles of G(s), a, would be found by performing the partial-fraction expansion, and “»

is the complex conjugate of a,. The time response that corresponds to Y(s) is

v(1) = 1€ + a2 + - - - F @™ + 2|a,| cos(w,t + ¢), t>0, (6.3

where

¢ = tan~! |:lmm”}:| .

Rel(a,)



If all the poles of the system represent stable behavior (the real parts of py, ps, - - ., P, < 0), the natural unforced

response will die out eventually, and therefore the steady-state response of the system will be due solely to the

sinusoidal term in Eq. (6.3), which is caused by the sinusoidal excitation. Example 3.5 determined the response of

G(s) = —

the system (s+1) to the input u = sin 10t and showed that response in Fig. 3.4, which is repeated here as
Fig. 6.1. It shows that e, the natural part of the response associated with G(s), disappears after several time
constants, and the pure sinusoidal response is essentially all that remains. Example 3.5 showed that the remaining

sinusoidal term in Eq. (6.3) can be expressed as

v(t) = AM cos(w,t + ¢), (6.4)

where

M = |G(jw,)| = |G()]smju, = y/ [RelG(jwp) ]} + (Im[G(je)]}2.  (6.5)

_ _[mIG[j”Jf}}] g
I .
= tan — | =24 . 6.6
P _RE|G(jLU,;:J |:| (Jewy) (6.0)
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Figure 6.1 Response of G4 {s+1) to sin 10t
Frequency-response plot
Magnitude and phase
In polar form,
G(jw,) = Me'®. (6.7)

Equation (6.4) shows that a stable system with transfer function G(s) excited by a sinusoid with unit amplitude and

frequency w, will, after the response has reached steady state, exhibit a sinusoidal output with a magnitude M(w,,)



and a phase g(w,) at the frequency w,. The facts that the output y is a sinusoid with the same frequency as the input

u and that the magnitude ratio M and phase ¢ of the output are independent of the amplitude A of the input are a
consequence of G(s) being a linear constant system. If the system being excited were a nonlinear or time-varying
system, the output might contain frequencies other than the input frequency, and the output-input ratio might be
dependent on the input magnitude.

More generally, the magnitude M is given by |G(jw)|, and the phase ¢ is given by Z[G(jw)]; that is, the magnitude
and angle of the complex quantity G(s) are evaluated with s taking on values along the imaginary axis (s = jw). The
frequency response of a system consists of these functions of frequency that tell us how a system will respond to a
sinusoidal input of any frequency. We are interested in analyzing the frequency response not only because it will
help us understand how a system responds to a sinusoidal input, but also because evaluating G(s) with s taking on
values along the jw axis will prove to be very useful in determining the stability of a closed-loop system. As we saw
in Chapter 3, the jw axis is the boundary between stability and instability; we will see in Section 6.4 that evaluating

G(jw) provides information that allows us to determine closed-loop stability from the open-loop G(s).

EXAMPLE 6.1 Frequency-Response Characteristics of a Capacitor

Consider the capacitor described by the equation

= (’.Tﬂ.
et

where v is the input and i is the output. Determine the sinusoidal steady-state response of the capacitor.
Solution. The transfer function of this circuit is
1(5)

= G(s) = Cs,
Vi(s) 8D d

SO
G(jw) = Cjw

Computing the magnitude and phase, we find that

M= |Cjw| =Cw and ¢ = ~L(Cjw) = 90°.

For a unit-amplitude sinusoidal input v, the output i will be a sinusoid with magnitude Cw, and the phase of the
output will lead the input by 90°. Note that for this example the magnitude is proportional to the input frequency

while the phase is independent of frequency.

EXAMPLE 6.2 Frequency-Response Characteristics of a Lead Compensator

Recall from Chapter 5 [Eq. (5.70)] the transfer function of the lead compensation, which is equivalent to

Ts+1

Disy =K .
\ als+ 1

a < . (6.8)



1. Analytically determine its frequency-response characteristics and discuss what you would expect from the result.
2. Use MATLAB® to plot D(jw)withK =1, T = 1,and a = 0.1 for 0.1 < w < 100, and verify the features

predicted from the analysis in 1, above.

Solution

1. Analytical evaluation: Substituting s = jw into Eq. (6.8), we get

Tjw + 1
Dijw)=K——.
(e) aljo + 1
From Egs. (6.5) and (6.6) the amplitude is

\.-"ll] + {('.UT}E
J1+ @ol)?’

M = |D| = |K|

and the phase is given by

¢ = 21 +jwT) — Z(1 + jawT)

— tan~! (wT) — tan”! (awT).

At very low frequencies the amplitude is just |K|, and at very high frequencies it is |¥/,|. Therefore, the amplitude is
higher at very high frequency. The phase is zero at very low frequencies and goes back to zero at very high
frequencies. At intermediate frequencies, evaluation of the tan~!(.) functions would reveal that ¢ becomes positive.
These are the general characteristics of lead compensation.
2. Computer evaluation: A MATLAB script for frequency-response evaluation was shown for Example 3.5. A similar
script for the lead compensation:
num=[1 1];

den=[0.1 1];
sysD = tf(num,den);

w=logspace(—1,2); % determines frequencies over range
of interest )
[mag,phase] = bode(sysD,w); % computes magnitude and phase over

frequency range of interest
loglog(w,squeeze{mag)),grid;
semilogx(w,squeeze(phase)),grid;

produces the frequency-response magnitude and phase plots shown in Fig 6.2.
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Figure 6.2 (a) Magnitude; (b) phase for the lead compensation in Example 6.2

The analysis indicated that the low-frequency magnitude should be K (= 1) and the high-frequency magnitude
should be ¥/a (= 10), which are both verified by the magnitude plot. The phase plot also verifies that the value

approaches zero at high and low frequencies and that the intermediate values are positive.

In the cases for which we do not have a good model of the system and wish to determine the frequency-response
magnitude and phase experimentally, we can excite the system with a sinusoid varying in frequency. The magnitude
M (w) is obtained by measuring the ratio of the output sinusoid to input sinusoid in the steady state at each

frequency. The phase ¢(w) is the measured difference in phase between input and output signals.!

A great deal can be learned about the dynamic response of a system from knowledge of the magnitude M (w) and
the phase g¢(w) of its transfer function. In the obvious case, if the signal is a sinusoid, then M and ¢ completely
describe the response. Furthermore, if the input is periodic, then a Fourier series can be constructed to decompose
the input into a sum of sinusoids, and again M (w) and ¢(w) can be used with each component to construct the total
response. For transient inputs, our best path to understanding the meaning of M and ¢ is to relate the frequency
response G(jw) to the transient responses calculated by the Laplace transform. For example, in Fig.3.18(b) we

plotted the step response of a system having the transfer function

(r(s) = 7 2
( (sfwn)= + 28(s/wy) + 1

(6.9)

for various values of . These transient curves were normalized with respect to time as wt. In Fig. 6.3 we plot M(w)

and ¢(w) for these same values of ¢ to help us see what features of the frequency response correspond to the
transient-response characteristics. Specifically, Figs. 3.18(b) and 6.3 indicate the effect of damping on system time
response and the corresponding effect on the frequency response. They show that the damping of the system can be
determined from the transient response overshoot or from the peak in the magnitude of the frequency response

[(Fig. 6.3 (a)]. Furthermore, from the frequency response, we see that w,, is approximately equal to the bandwidth—



the frequency where the magnitude starts to fall off from its low-frequency value. (We will define bandwidth more
formally in the next paragraph.) Therefore, the rise time can be estimated from the bandwidth. We also see that the
peak overshoot in frequency is approximately /2 for { < 0.5, so the peak overshoot in the step response can be
estimated from the peak overshoot in the frequency response. Thus, we see that essentially the same information is

contained in the frequency-response curve as is found in the transient-response curve.

A natural specification for system performance in terms of frequency response is the bandwidth, defined to be the
maximum frequency at which the output of a system will track an input sinusoid in a satisfactory manner. By
convention, for the system shown in Fig. 6.4 with a sinusoidal input r, the bandwidth is the frequency of r at which
the output y is attenuated to a factor of 0.707 times the input.? Figure 6.5 depicts the idea graphically for the

frequency response of the closed-loop transfer function

Bandwidth

gl . T KGis)

R(s) k= 1 + KG(s)

The plot is typical of most closed-loop systems in that (1) the output follows the input (|T|= 1) at the lower
excitation frequencies, and (2) the output ceases to follow the input (|T| <1) at the higher excitation frequencies.

The maximum value of the frequency-response magnitude is referred to as the resonant peak M,.

Bandwidth is a measure of speed of response and is therefore similar to time-domain measures such as rise time
and peak time or the s-plane measure of dominant-root(s) natural frequency. In fact, if the KG(s) in Fig. 6.4 is such
that the closed-loop response is given by Fig. 6.3, we can see that the bandwidth will equal the natural frequency of

the closed-loop root (that is, wgy = w, for a closed-loop damping ratio of { = 0.7). For other damping ratios, the

bandwidth is approximately equal to the natural frequency of the closed-loop roots, with an error typically less than

a factor of 2.

The definition of the bandwidth stated here is meaningful for systems that have a low-pass filter behavior, as is the
case for any physical control system. In other applications the bandwidth may be defined differently. Also, if the
ideal model of the system does not have a high-frequency roll-off (e.g., if it has an equal number of poles and zeros),

the bandwidth is infinite; however, this does not occur in nature as nothing responds well at infinite frequencies.

In many cases, the designer’s primary concern is the error in the system due to disturbances rather than the ability
to track an input. For error analysis, we are more interested in one of the sensitivity functions defined in Section 4.1,
S(s), rather than T(s). For most open-loop systems with high gain at low frequencies, S(s) for a disturbance input will
have very low values at low frequencies and grows as the frequency of the input or disturbance approaches the
bandwidth. For analysis of either T(s) or S(s), it is typical to plot their response versus the frequency of the input.
Either frequency response for control systems design can be evaluated using the computer, or can be quickly sketched
for simple systems using the efficient methods described in the following Section 6.1.1. The methods described next

are also useful to expedite the design process as well as to perform sanity checks on the computer output.
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Figure 6.5 Definitions of bandwidth and resonant peak

6.1.1 Bode Plot Techniques

Display of frequency response is a problem that has been studied for a long time. Before computers, this was
accomplished by hand; therefore, it was useful to be able to accomplish this quickly. The most useful technique for
hand plotting was developed by H. W. Bode at Bell Laboratories between 1932 and 1942. This technique allows
plotting that is quick and yet sufficiently accurate for control systems design. Most control systems designers now
have access to computer programs that diminish the need for hand plotting; however, it is still important to develop
good intuition so that you can quickly identify erroneous computer results, and for this you need the ability to

perform a sanity check and in some cases to determine approximate results by hand.

The idea in Bode’s method is to plot magnitude curves using a logarithmic scale and phase curves using a linear
scale. This strategy allows us to plot a high-order G(jw) by simply adding the separate terms graphically, as discussed
in Appendix B. This addition is possible because a complex expression with zero and pole factors can be written in

polar (or phasor) form as

e 11 @1 o 2 P .
516 o ST et e (0L B L Sl TS
: 535485  rielrqeifirsel’s F3rars

Composite plot from individual terms

(The overhead arrow indicates a phasor.) Note from Eq. (6.10) that the phases of the individual terms are added

directly to obtain the phase of the composite expression, G(jw). Furthermore, because

e Firz
|G(jw)| = )
rarqrs
it follows that
log |GUjw)| = logyg r1 + logyg r2 — log,g ra — log g ra — logq rs. (6.11)

Bode plot

We see that addition of the logarithms of the individual terms provides the logarithm of the magnitude of the
composite expression. The frequency response is typically presented as two curves; the logarithm of magnitude

versus log w and the phase versus log w. Together these two curves constitute a Bode plot of the system. Because

log,q Me!® = log,qs M + j¢ log,q e, (6.12)
Decibel
we see that the Bode plot shows the real and imaginary parts of the logarithm of G(jw). In communications it is

standard to measure the power gain in decibels (db):3

| P,
[Glan = 101ogy 5 (6.13)
|



Here P; and P, are the input and output powers. Because power is proportional to the square of the voltage, the

power gain is also given by

Vs
|Glan = 201ogyq —. (6.14)
Vi

Hence we can present a Bode plot as the magnitude in decibels versus log w and the phase in degrees versus log w.*
In this book we give Bode plots in the form log |G| versus log w; also, we mark an axis in decibels on the right-hand
side of the magnitude plot to give you the choice of working with the representation you prefer. However, for
frequency-response plots, we are not actually plotting power, and use of Eq. (6.14) can be somewhat misleading. If
the magnitude data are derived in terms of log |G|, it is conventional to plot them on a log scale but identify the
scale in terms of |G| only (without “log”). If the magnitude data are given in decibels, the vertical scale is linear such

that each decade of |G| represents 20 db.
Advantages of Working with Frequency Response in Terms of Bode Plots

Advantages of Bode plots

1. Dynamic compensator design can be based entirely on Bode plots.

2. Bode plots can be determined experimentally.

3. Bode plots of systems in series (or tandem) simply add, which is quite convenient.

4. The use of a log scale permits a much wider range of frequencies to be displayed on a single plot than is possible

with linear scales.

It is important for the control systems engineer to understand the Bode plot techniques for several reasons: This
knowledge allows the engineer not only to deal with simple problems, but also to perform a sanity check on
computer results for more complicated cases. Often approximations can be used to quickly sketch the frequency
response and deduce stability, as wellastodetermine the formofthe needed dynamic compensations. Finally, an
understanding of the plotting method is useful in interpreting frequency-response data that have been generated

experimentally.

In Chapter 5 we wrote the open-loop transfer function in the form

AT e Lo i (6.15)
(s—pis—p2)---

Bode form of the transfer function
because it was the most convenient form for determining the degree of stability from the root locus with respect to
the gain K. In working with frequency response, it is more convenient to replace s with jw and to write the transfer

functions in the Bode form

(jor + 1){(jots + 1) .-
§ (jor, + 1M jorp + 1) ---

KG(jw) =K (6.16)



because the gain K, in this form is directly related to the transfer-function magnitude at very low frequencies. In fact,
for Type 0O systems, K, is the gain at w= 0 in Eq. (6.16) and is also equal to the DC gain of the system. Although a
straightforward calculation will convert a transfer function in the form of Eq. (6.15) to an equivalent transfer function

in the form of Eq. (6.16), note that K and K, will not usually have the same value in the two expressions.

Transfer functions can also be rewritten according to Egs. (6.10) and (6.11). As an example, suppose that

ety + 1
KG Loy e Ky oo : 6.17)
(je)=(jot, + 1)
Then
LZKG(jw) = LK, + Z(jor) + 1) — Z{_fm]z — S jwt, + 1) (6.18)
and
log |KG{ jw)| = log |K,| + log jewty + 1| — log |[_jm}1| — log |jwt, + 1|. (6.19)

In decibels, Eq. (6.19) becomes

|[KG( jw)|gn = 201og | K| + 201og |jwt) + 1| — 201og |{jm}2|
— 20log |jwt, + 1]. (6.20)

Classes of terms of transfer functions

All transfer functions for the kinds of systems we have talked about so far are composed of three classes of terms:
1. K,(jw)".
2. (jor+ DL

- +1
jeo \ fire)
3. {(E) +25E o+ I] ;
First we will discuss the plotting of each individual term and how the terms affect the composite plot including all

the terms; then we will discuss how to draw the composite curve.
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Figure 6.6 Magnitude of (jw)"

Class 1: singularities at the origin

1. K, (jw)™ Because
log K, |(jw)"| = log K, + nlog |jw],

the magnitude plot of this term is a straight line with a slope n X (20 db per decade). Examples for different values
of n are shown in Fig. 6.6. K (jw)" is the only class of term that affects the slope at the lowest frequencies, because
all other terms are constant in that region. The easiest way to draw the curve is to locate w = 1 and plot log K, at
that frequency. Then draw the line with slope n through that point.> The phase of (jw)*is = n x 90°; it is
independent of frequency and is thus a horizontal line: -90° for n = -1, -180° forn = -2, +90° forn = +1, and so
forth.

Class 2: first-order term

2. jwt + 1 The magnitude of this term approaches one asymptote at very low frequencies and another asymptote at
very high frequencies:
(@) For wT << 1jwt + 1 = 1.
(b) For wt 2> 1, jwt + 1 =jwr.

Break point

If we call w = 1/1the break point, then we see that below the break point the magnitude curve is approximately
constant (= 1), while above the break point the magnitude curve behaves approximately like the class 1 term K,
(jw). The example plotted in Fig. 6.7, G(s) = 10s+ 1, shows how the two asymptotes cross at the break point and
how the actual magnitude curve lies above that point by a factor of 1.4 (or + 3 db). (If the term were in the
denominator, it would be below the break point by a factor of 0.707 or —3 db.) Note that this term will have only a



small effect on the composite magnitude curve below the break point, because its value is equal to 1 (= 0 db) in this
region. The slope at high frequencies is +1 (or +20 db per decade). The phase curve can also be easily drawn by

using the following low-and high-frequency asymptotes:
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Figure 6.7 Magnitude plot for jwt + 1; 7 = 10
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Figure 6.8 Phase plot for jwt + 1; T = 10

(a) Forwr < 1, 21 =0°.

(b) For wtr > 1, Zjwt = 90°.

(¢) Forwtr = 1, Z(jor + 1) = 45°.
For wr =1, the Z(jw + 1) curve is tangent to an asymptote going from 0° at wt = 0.2 to 90° at wT = 5, as shown in
Fig. 6.8. The figure also illustrates the three asymptotes (dashed lines) used for the phase plot and how the actual
curve deviates from the asymptotes by 11° at their intersections. Both the composite phase and magnitude curves are

unaffected by this class of term at frequencies below the break point by more than a factor of 10 because the term’s

magnitude is 1 (or 0 db) and its phase is less than 5°.

Class 3: second-order term
3. [(w/ oon)2 + 2¢(jw/w,) + 1] *1 This term behaves in a manner similar to the class 2 term, with differences in

detail: The break point is now w = w,. The magnitude changes slope by a factor of +2 (or +40 db per decade)
at the break point (and -2, or —-40 db per decade, when the term is in the denominator). The phase changes by



+180°, and the transition through the break-point region varies with the damping ratio . Figure 6.3 shows the
magnitude and phase for several different damping ratios when the term is in the denominator. Note that the
magnitude asymptote for frequencies above the break point has a slope of -2 (or —-40 db per decade), and that the
transition through the break-point region has a large dependence on the damping ratio. A rough determination of

this transition can be made by noting that
Peak amplitude

g I _
|G(jw)| = — at w= wy, (6.21)
2¢
for this class of second-order term in the denominator. If the term was in the numerator, the magnitude would be the

reciprocal of the curve plotted in Fig. 6.3(a).

No such handy rule as Eq. (6.21) exists for sketching in the transition for the phase curve; therefore, we would
have to resort to Fig. 6.3(b) for an accurate plot of the phase. However, a very rough idea of the transition can be
gained by noting that it is a step function for {= 0, while it obeys the rule for two first-order (class 2) terms when
(= 1 with simultaneous break-point frequencies. All intermediate values of C fall between these two extremes. The

phase of a second-order term is always +90° at w,.

Composite curve

When the system has several poles and several zeros, plotting the frequency response requires that the components
be combined into a composite curve. To plot the composite magnitude curve, it is useful to note that the slope of the
asymptotes is equal to the sum of the slopes of the individual curves. Therefore, the composite asymptote curve has
integer slope changes at each break-point frequency: +1 for a first-order term in the numerator, — 1 for a first-order
term in the denominator, and * 2 for second-order terms. Furthermore, the lowest-frequency portion of the

asymptote has a slope determined by the value of n in the (jw)" term and is located by plotting the point K,w" at w

= 1. Therefore, the complete procedure consists of plotting the lowest-frequency portion of the asymptote, then
sequentially changing the asymptote’s slope at each break point in order of ascending frequency, and finally drawing
the actual curve by using the transition rules discussed earlier for classes 2 and 3.

The composite phase curve is the sum of the individual curves. Addition of the individual phase curves graphically
is made possible by locating the curves so that the composite phase approaches the individual curve as closely as
possible. A quick but crude sketch of the composite phase can be found by starting the phase curve below the lowest
break point and setting it equal to n X 90°. The phase is then stepped at each break point in order of ascending
frequency. The amount of the phase step is +90° for a first-order term and +180° for a second-order term. Break
points in the numerator indicate a positive step in phase, while break points in the denominator indicate a negative
phase step.® The plotting rules so far have only considered poles and zeros in the left half-plane (LHP). Changes for
singularities in the right half-plane (RHP) will be discussed at the end of the section.

Summary of Bode Plot Rules

1. Manipulate the transfer function into the Bode form given by Eq. (6.16).



2. Determine the value of n for the K, (jw)" term (class 1). Plot the low-frequency magnitude asymptote through the
point K, at w = 1 with a slope of n (or n X 20 db per decade).

3. Complete the composite magnitude asymptotes: Extend the low-frequency asymptote until the first frequency
break point. Then step the slope by = 1 or =2, depending on whether the break point is from a first-or second-

order term in the numerator or denominator. Continue through all break points in ascending order.

4. The approximate magnitude curve is increased from the asymptote value by a factor of 1.4 (+ 3 db) at first-order
numerator break points, and decreased by a factor of 0.707 (-3 db) at first-order denominator break points. At
second-order break points, the resonant peak (or valley) occurs according to Fig. 6.3(a), using the relation |G(jw)|
= 1/2C at denominator, (or|G(jw)| = 2 at numerator) breakpoints.

5. Plot the low-frequency asymptote of the phase curve, ¢ = nx 90°.

6. As a guide, the approximate phase curve changes by +90° or +180° at each break point in ascending order. For
first-order terms in the numerator, the change of phase is +90°; for those in the denominator the change is -90°.

For second-order terms, the change is +180°.

7. Locate the asymptotes for each individual phase curve so that their phase change corresponds to the steps in the
phase toward or away from the approximate curve indicated by Step 6. Each individual phase curve occurs as
indicated by Fig. 6.8 or Fig. 6.3(b).

8. Graphically add each phase curve. Use grids if an accuracy of about +5? is desired. If less accuracy is acceptable,
the composite curve can be done by eye. Keep in mind that the curve will start at the lowest-frequency asymptote

and end on the highest-frequency asymptote and will approach the intermediate asymptotes to an extent that is

determined by how close the break points are to each other.

EXAMPLE 6.3 Bode Plot for Real Poles and Zeros

Plot the Bode magnitude and phase for the system with the transfer function

2000(s 4+ 0.5)

KGis) = —,
s(s + 1M(s 4+ 500

Solution

1. We convert the function to the Bode form of Eq. (6.16):

21(jw/0.5) + 1]

KG(jw) = .
i) jol(jw/10) + 1][(jo/50) + 1]

2. We note that the term in jw is first order and in the denominator, so n= -1. Therefore, the low-frequency

asymptote is defined by the first term:

o 2
KG(jw) = —.
Jw
This asymptote is valid for w <0.1, because the lowest break point is at w = 0.5. The magnitude plot of this term
has the slope of — 1 (or —20 db per decade). We locate the magnitude by passing through the value 2 at w = 1 even

though the composite curve will not go through this point because of the break point at w = 0.5. This is shown in



Fig. 6.9(a).

3. We obtain the remainder of the asymptotes, also shown in Fig. 6.9(a): The first break point is at w = 0.5 and is a
first-order term in the numerator, which thus calls for a change in slope of +1. We therefore draw a line with 0
slope that intersects the original — 1 slope. Then we draw a — 1 slope line that intersects the previous one at w =
10. Finally, we draw a -2 slope line that intersects the previous -1 slope at w = 50.

4. The actual curve is approximately tangent to the asymptotes when far away from the break points, a factor of 1.4
(+3 db) above the asymptote at the w = 0.5 break point, and a factor of 0.7 (-3 db) below the asymptote at the
w = 10 and w = 50 break points.

5. Because the phase of 2/jw is -90°, the phase curve in Fig. 6.9(b) starts at -90 ° at the lowest frequencies.

6. The result is shown in Fig. 6.9(c).

7. The individual phase curves, shown dashed in Fig. 6.9(b), have the correct phase change for each term and are
aligned vertically so that their phase change corresponds to the steps in the phase from the approximate curve in
Fig. 6.9(c). Note that the composite curve approaches each individual term.

8. The graphical addition of each dashed curve results in the solid composite curve in Fig. 6.9(b). As can be seen
from the figure, the vertical placement of each individual phase curve makes the required graphical addition

particularly easy because the composite curve approaches each individual phase curve in turn.

EXAMPLE 6.4 Bode Plot with Complex Poles

As a second example, draw the frequency response for the system

10

: -, (6.22
s[s2 4+ 0.4s + 4] hed

Solution. A system like this is more difficult to plot than the one in the previous example because the transition
between asymptotes is dependent on the damping ratio; however, the same basic ideas illustrated in Example 6.3
apply.

This system contains a second-order term in the denominator. Proceeding through the steps, we convert Eq. (6.22)

to the Bode form of Eq. (6.16):

10 !
KG(s) = — .
VT A (24200524 1)

Starting with the low-frequency asymptote, we have n = — 1 and |G(jw)| = 2.5/w. The magnitude plot of this term
has a slope of -1 (-20 db per decade) and passes through the value of 2.5 at w = 1 as shown in Fig. 6.10(a). For the
second-order pole, note that w,, = 2 and { = 0.1. At the break-point frequency of the poles, w = 2, the slope shifts
to =3 (=60 db per decade). At the pole break point the magnitude ratio above the asymptote is 1/2{ = 1/0.2 = 5.
The phase curve for this case starts at ¢ = — 90°, corresponding to the 1/s term, falls to @ — 180° at w = 2 due to the
pole as shown in Fig. 6.10(b), and then approaches ¢ = —-270° for higher frequencies. Because the damping is small,

the stepwise approximation is a very good one. The true composite phase curve is shown in Fig. 6.10(b).
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Figure 6.10 Bode plot for a transfer function with complex poles: (a) magnitude; (b) phase

EXAMPLE 6.5 Bode Plot for Complex Poles and Zeros: Satellite with Flexible Appendages

As a third example, draw the Bode plots for a system with second-order terms. The transfer function represents a
mechanical system with two equal masses coupled with a lightly damped spring. The applied force and position
measurement are collocated on the same mass. For the transfer function, the time scale has been chosen so that the
resonant frequency of the complex zeros is equal to 1. The transfer function is

0.01(s> +0.01s + 1)

KG(s) = .
) = I /4) +0.02(s/2) + 1]

Solution. Proceeding through the steps, we start with the low-frequency asymptote, 0.01/w?. It has a slope of -2 (-40
db per decade) and passes through magnitude = 0.01 at w= 1, as shown in Fig. 6.11(a). At the break-point

frequency of the zero, w = 1, the slope shifts to zero until the break point of the pole, which is located at w

2,
when the slope returns to a slope of —2. To interpolate the true curve, we plot the point at the zero break point, w

= 1, with a magnitude ratio below the asymptote of 2 { = 0.01. At the pole break point, the magnitude ratio above
the asymptote is 1/2¢ = 1/0.02 = 50. The magnitude curve is a “doublet” of a negative pulse followed by a positive
pulse. Figure 6.11(b) shows that the phase curve for this system starts at —~180° (corresponding to the !/2 term),

jumps 180° to ¢ = 0 at w = 1, due to the zeros, and then falls 180° back to g = -180° at w = 2, due to the pole.



With such small damping ratios the stepwise approximation is quite good. (We haven’t drawn this on Fig. 6.11(b),
because it would not be easily distinguishable from the true phase curve.) Thus, the true composite phase curve is a

nearly square pulse between w = 1 and w = 2.
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Figure 6.11 Bode plot for a transfer function with complex poles and zeros: (a) magnitude; (b) phase

In actual designs, Bode plots are made with a computer. However, acquiring the ability to determine how Bode plots
should behave is a useful skill, because it gives the designer insight into how changes in the compensation

parameters will affect the frequency response. This allows the designer to iterate to the best designs more quickly.

EXAMPLE 6.6 Computer-Aided Bode Plot for Complex Poles and Zeros
Repeat Example 6.5 using MATLAB.
Solution. Toobtain Bode plots using MATLAB, we call the function bode as follows:

numG = 0.01*[1 0.01 1];
denG = [0.25 0.01 1 0 0];
sysG = tf(numG,denG);

[mag, phase, w] = bode(sysG);



loglog(w,squeeze(mag))

semilogx(w,squeeze(phase))

These commands will result in a Bode plot that matches that in Fig. 6.11 very closely. To obtain the magnitude

plot in decibels, the last three lines can be replaced with

bode(sysG)

Nonminimum-Phase Systems

A system with a zero in the RHP undergoes a net change in phase when evaluated for frequency inputs between zero
and infinity, which, for an associated magnitude plot, is greater than if all poles and zeros were in the LHP. Such a
system is called nonminimum phase. As can be seen from the construction in Fig. WD.3 in Appendix WD, if the zero
is in the RHP, then the phase decreases at the zero break point instead of exhibiting the usual phase increase that
occurs for an LHP zero. Consider the transfer functions
2 s+ 1

Gi(s) = Iﬂ\ T H'i.

s—1

Ga(s) = 10 .
s+ 10

Both transfer functions have the same magnitude for all frequencies; that is,
|G1Gw)| = |Ga(jw)

as shown in Fig. 6.12(a). But the phases of the two transfer functions are drastically different [Fig. 6.12(b)]. A
minimum-phase system (all zeros in the LHP) with a given magnitude curve will produce the smallest net change in

the associated phase, as shown in G;, compared with what the nonminimum-phase system will produce, as shown by
the phase of G,. Hence, G, is nonminimum phase. The discrepancy between G; and G, with regard to the phase

change would be greater if two or more zeros of the plant were in the RHP.

6.1.2 Steady-State Errors

We saw in Section 4.2 that the steady-state error of a feedback system decreases as the gain of the open-loop transfer
function increases. In plotting a composite magnitude curve, we saw in Section 6.1.1 that the open-loop transfer

function, at very low frequencies, is approximated by
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Figure 6.12 Bode plot minimum-and nonminimum-phase systems: for (a) magnitude; (b) phase

KG(jw) = K,(jo)". (6.23)

Position error constant
Therefore, we can conclude that the larger the value of the magnitude on the low-frequency asymptote, the lower the
steady-state errors will be for the closed-loop system. This relationship is very useful in the design of compensation:
Often we want to evaluate several alternate ways to improve stability and to do so we want to be able to see quickly
how changes in the compensation will affect the steady-state errors.

For a system of the form given by Eq. (6.16)—that is, where n= 0 in Eq. (6.23) (a Type 0 system)—the low-
frequency asymptote is a constant and the gain K, of the open-loop system is equal to the position-error constant Ki,.
For a unity feedback system with a unit-step input, the Final Value Theorem (Section 3.1.6) was used in Section

4.2.1 to show that the steady-state error is given by

Velocity error coefficient

For a unity-feedback system in which n= -1 in Eq. (6.23), defined to be a Type 1 system in Section 4.2.1, the low-



frequency asymptote has a slope of —1. The magnitude of the low-frequency asymptote is related to the gain
according to Eq. (6.23); therefore, we can again read the gain, K,/w, directly from the Bode magnitude plot.

Equation (4.33) tells us that the velocity-error constant
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Figure 6.13 Determination of K, from the Bode plot for the system ME(s) = sis+1)

K, = K,

where, for a unity-feedback system with a unit-ramp input, the steady-state error is

The easiest way of determining the value of K, in a type 1 system is to read the magnitude of the low-frequency
asymptote at w = 1 rad/sec, because this asymptote is A (w) = K,/w. In some cases the lowest-frequency break
point will be below w = 1 rad/sec; therefore, the asymptote needs to extend to w = 1 rad/sec in order to read K,
directly. Alternately, we could read the magnitude at any frequency on the low-frequency asymptote and compute it

from K, = wA(w).

EXAMPLE 6.7 Computation of K,

As an example of the determination of steady-state errors, a Bode magnitude plot of an open-loop system is shown
in Fig. 6.13. Assuming that there is unity feedback as in Fig. 6.4, find the velocity-error constant, K,.

Solution. Because the slope at the low frequencies is -1, we know that the system is Type 1. The extension of the
low-frequency asymptote crosses w = 1 rad/sec at a magnitude of 10. Therefore, K, = 10 and the steady-state error
to a unit ramp for a unity-feedback system would be 0.1. Alternatively, at w = 0.01 we have |A(w)| = 1000;
therefore, from Eq. (6.23) we have

K, = K, = w|A(w)| = 0.01(1000) = 10.



6.2 Neutral Stability

In the early daysofelectronic communications, most instruments were judged interms of their frequency response. It is
therefore natural that when the feedback amplifier was introduced, techniques to determine stability in the presence

of feedback were based on this response.

Suppose the closed-loop transfer function of a system is known. We can determine the stability of a system by
simply inspecting the denominator in factored form (because the factors give the system roots directly) to observe
whether the real parts are positive or negative. However, the closed-loop transfer function is usually not known; in
fact, the whole purpose behind understanding the root-locus technique is to be able to find the factors of the
denominator in the closed-loop transfer function, given only the open-loop transfer function. Another way to
determine closed-loop stability is to evaluate the frequency response of the open-loop transfer function KG(jw) and
then perform a test on that response. Note that this method also does not require factoring the denominator of the
closed-loop transfer function. In this section we will explain the principles of this method.

Suppose we have a system defined by Fig. 6.14(a) and whose root locus behaves as shown in Fig. 6.14(b); that is,
instability results if K is larger than 2. The neutrally stable points lie on the imaginary axis—that is, where K = 2 and

s = j1.0. Furthermore, we saw in Section 5.1 that all points on the locus have the property that
|[KG(s)| = 1 and £G(s) = 180°.

At the point of neutral stability we see that these root-locus conditions hold for s= jw, so

IKG(jw)l =1 and ZG(jw)= 180°, (6.24)

Thus a Bode plot of a system that is neutrally stable (that is, with K defined such that a closed-loop root falls on the
imaginary axis) will satisfy the conditions of Eq. (6.24). Figure 6.15 shows the frequency response for the system
whose root locus is plotted in Fig. 6.14 for various values of K. The magnitude response corresponding to K = 2
passes through 1 at the same frequency (w = 1 rad/sec) at which the phase passes through 180°, as predicted by Eq.
(6.24).

Having determined the point of neutral stability, we turn to a key question: Does increasing the gain increase or
decrease the system’s stability? We can see from the root locus in Fig. 6.14(b) that any value of K less than the value
at the neutrally stable point will result in a stable system. At the frequency w where the phase ZG(jw) = -180° (w
= 1 rad/sec), the magnitude |KG(jw)| < 1.0 for stable
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Figure 6.14 Stability example: (a) system definition; (b) root locus
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Figure 6.15 Frequency-response magnitude and phase for the system in Fig. 6.14

Stability condition
values of K and > 1 for unstable values of K. Therefore, we have the following trial stability condition, based on the

character of the open-loop frequency response:
IKG(jw)| =1 at ZG(jw) = —180°, (6.25)

This stability criterion holds for all systems for which increasing gain leads to instability and |KG(j w)| crosses the

magnitude (=1) once, the most common situation. However, there are systems for which an increasing gain can lead

from instability to stability; in this case, the stability condition is

IKG(jw)| =1 at ZG(jw) = —180°. (6.26)

There are also cases when |KG(j w)| crosses magnitude (=1) more than once. One way to resolve the ambiguity that
is usually sufficient is to perform a rough sketch of the root locus. Another, more rigorous, way to resolve the
ambiguity is to use the Nyquist stability criterion, the subject of the next section. However, because the Nyquist
criterion is fairly complex, it is important while studying it to bear in mind the theme of this section, namely, that for

most systems a simple relationship exists between closed-loop stability and the open-loop frequency response.

6.3 The Nyquist Stability Criterion



For most systems, as we saw in the previous section, an increasing gain eventually causes instability. In the very early
days of feedback control design, this relationship between gain and stability margins was assumed to be universal.
However, designers found occasionally that in the laboratory the relationship reversed itself; that is, the amplifier
would become unstable when the gain was decreased. The confusion caused by these conflicting observations
motivated Harry Nyquist of the Bell Telephone Laboratories to study the problem in 1932. His study explained the
occasional reversals and resulted in a more sophisticated analysis with no loopholes. Not surprisingly, his test has
come to be called the Nyquist stability criterion. It is based on a result from complex variable theory known as the

argument principle,” as we briefly explain in this section and in more detail in Appendix WD.

The Nyquist stability criterion relates the open-loop frequency response to the number of closed-loop poles of the
system in the RHP. Study of the Nyquist criterion will allow you to determine stability from the frequency response
of a complex system, perhaps with one or more resonances, where the magnitude curve crosses 1 several times
and/or the phase crosses 180° several times. It is also very useful in dealing with open-loop, unstable systems,

nonminimum-phase systems, and systems with pure delays (transportation lags).

6.3.1 The Argument Principle

Consider the transfer function H1(s) whose poles and zeros are indicated in the s-plane in Fig. 6.16(a). We wish to
evaluate H1 for values of s on the clockwise contour C;.(Hence this is called a contour evaluation.) We choose the
test point s, for evaluation. The resulting complex quantity has the form Hi(s0) = v = |.’:'5f’m. The value of the

argument of H,(s,) is
a = 61 + 62—(Q1 + Qz)

As s traverses C; in the clockwise direction starting at s, the angle a of H,(s) in Fig. 6.16(b) will change (decrease or
increase), but it will not undergo a net change of 360° as long as there are no poles or zeros within C;. This is
because none of the angles that make up a go through a net revolution. The angles 6,, 6,, 8; and @, increase or
decrease as s traverses around C;, but they return to their original values as s returns to s, without rotating through
360°. This means that the plot of H;(s) [Fig. 6.16(b)] will not encircle the origin. This conclusion follows from the
fact that a is the sum of the angles indicated in Fig. 6.16(a), so the only way that a can be changed by 360° after s
executes one full traverse of C; is for C; to contain a pole or zero.

Now consider the function H,(s), whose pole-zero pattern is shown in Fig. 6.16(c). Note that it has a singularity
(pole) within C;. Again, we start at the test point s,. As s traverses in the clockwise direction around C;, the
contributions from the angles 6;, 65, and @, change, but they return to their original values as soon as s returns to s,.
In contrast, @,, the angle from the pole within C;, undergoes a net change of —360° after one full traverse of C;.
Therefore, the argument of H,(s) undergoes the same change, causing H, to encircle the origin in the
counterclockwise direction, as shown in Fig. 6.16(d). The behavior would be similar if the contour C; had enclosed a
zero instead of a pole. The mapping of C; would again enclose the origin once in the H,(s)-plane, except it would

do so in the clockwise direction.
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Figure 6.16 Contour evaluations: (a) s-plane plot of poles and zeros of H; (s) and the contour C;; (b) H; (s) for s on
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Argument principle

Thus we have the essence of the argument principle:

A contour map of a complex function will encircle the origin Z — P times, where Z is the number of zeros and P is

the number of poles of the function inside the contour.

For example, if the number of poles and zeros within C; is the same, the net angles cancel and there will be no net

encirclement of the origin.

6.3.2 Application to Control Design

To apply the principle to control design, we let the C; contour in the s-plane encircle the entire RHP, the region in
the s-plane where a pole would cause an unstable system (Fig. 6.17). The resulting evaluation of H(s) will encircle
the origin only if H(s) has an RHP pole or zero.

As stated earlier, what makes all this contour behavior useful is that a contour evaluation of an open-loop KG(s)

can be used to determine stability of the closed-loop system. Specifically, for the system in Fig. 6.18, the closed-loop

transfer function is
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Therefore, the closed-loop roots are the solutions of
1 + KG(s) = 0,

and we apply the principle of the argument to the function 1+ KG(s). If the evaluation contour of this function of s
enclosing the entire RHP contains a zero or pole of 1 + KG(s), then the evaluated contour of 1 + KG(s) will encircle
the origin. Notice that 1 + KG(s) is simply KG(s) shifted to the right 1 unit, as shown in Fig. 6.19. Therefore, if the
plot of 1+ KG(s) encircles the origin, the plot of KG(s) will encircle — 1 on the real axis. Therefore, we can plot the
contour evaluation of the open-loop KG(s), examine its encirclements of -1, and draw conclusions about the origin
encirclements of the closed-loop function 1 + KG(s). Presentation of the evaluation of KG(s) in this manner is often

referred to as a Nyquist plot, or polar plot, because we plot the magnitude of KG(s) versus the angle of KG(s).



Nyquist plot; polar plot
To determine whether an encirclement is due to a pole or zero, we write 1 +KG(s) in terms of poles and zeros of
KG(s):

bis) _als) + Kb(s)

| +KGsi =1+ K =
als) als)

(6.27)

Equation (6.27) shows that the poles of 1 + KG(s) are also the poles of G(s). Because it is safe to assume that the
poles of G(s)[or factors of a(s)] are known, the (rare) existence of any of these poles in the RHP can be accounted
for. Assuming for now that there are no poles of G(s) in the RHP, an encirclement of — 1 by KG(s) indicates a zero of
1 + KG(s) in the RHP, and thus an unstable root of the closed-loop system.

We can generalize this basic idea by noting that a clockwise contour C1 enclosing a zero of 1 +KG(s)—that is, a
closed-loop system root—will result in KG(s) encircling the — 1 point in a clockwise direction. Likewise, if C1
encloses a pole of 1 + KG(s)—that is, if there is an unstable open-loop pole—there will be a counterclockwise KG(s)
encirclement of — 1. Furthermore, if two poles or two zeros are in the RHP, KG(s) will encircle — 1 twice, and so on.
The net number of clockwise encirclements, N, equals the number of zeros (closed-loop system roots) in the RHP, Z,

minus the number of open-loop poles in the RHP, P:
N=Z-P

This is the key concept of the Nyquist stability criterion.
A simplification in the plotting of KG(s) results from the fact that any KG(s) that represents a physical system will

have zero response at infinite frequency (i.e., has more poles than zeros). This means that the big arc of C;

corresponding to s at infinity (Fig. 6.17) results in KG(s) being a point of infinitesimally small value near the origin

for that portion of C;. Therefore, we accomplish a complete evaluation of a physical system KG(s) by letting s

traverse the imaginary axis from —je to +jeo (actually, from —jwh to +jwh, where wh is large enough that |[KG(jw)|
is much less than 1 for all w > wh). The evaluation of KG(s) from s = 0 to s = je has already been discussed in
Section 6.1 under the context of finding the frequency response of KG(s). Because G(—jw) is the complex conjugate of
G(jw), we can easily obtain the entire plot of KG(s) by reflecting the 0 < s < +je portion about the real axis, to
get the (j < s < 0) portion. Hence we see that closed-loop stability can be determined in all cases by
examination of the frequency response of the open-loop transfer function on a polar plot. In some applications,
models of physical systems are simplified so as to eliminate some high-frequency dynamics. The resulting reduced-

order transfer function might have an equal number of poles and zeros. In that case the big arc of C; at infinity needs
to be considered.

In practice, many systems behave like those discussed in Section 6.2, so you need not carry out a complete
evaluation of KG(s) with subsequent inspection of the — 1 encirclements; a simple look at the frequency response
may suffice to determine stability. However, in the case of a complex system for which the simplistic rules given in

Section 6.2 become ambiguous, you will want to perform the complete analysis, summarized as follows:

Procedure for Determining Nyquist Stability

1. Plot KG(s) for -jeo < s < +jeo. Do this by first evaluating KG(jw) for w = 0 to wh, where wh is so large that



the magnitude of KG(jw) is negligibly small for w > wh, then reflecting the image about the real axis and
adding it to the preceding image. The magnitude of KG(jw) will be small at high frequencies for any physical
system. The Nyquist plot will always be symmetric with respect to the real axis. The plot is normally created by
the NYQUIST MATLAB m-file.

2. Evaluate the number of clockwise encirclements of — 1, and call that number N. Do this by drawing a straight
line in any direction from — 1 to 00. Then count the net number of left-to-right crossings of the straight line by

KG(s). If encirclements are in the counterclockwise direction, N is negative.
3. Determine the number of unstable (RHP) poles of G(s), and call that number P.

4. Calculate the number of unstable closed-loop roots Z:

Z=N+P. (6.28)

For stability we wish to have Z= 0; that is, no characteristic equation roots in the RHP.

Let us now examine a rigorous application of the procedure for determining stability using Nyquist plots for some

examples.

EXAMPLE 6.8 Nyquist Plot for a Second-Order System

Determine the stability properties of the system defined in Fig. 6.20. Solution. The root locus of the system in Fig.
6.20 is shown in Fig. 6.21. It shows that the system is stable for all values of K. The magnitude of the frequency
response of KG(s) is plotted in Fig. 6.22(a) for K = 1, and the phase is plotted in Fig. 6.22(b); this is the typical Bode
method of presenting frequency response and represents the evaluation of G(s) over the interesting range of
frequencies. The same information is replotted in Fig. 6.232 in the Nyquist (polar) plot form. Note how the points A,
B, C,

1| _
| s+ 1) | | 2

+ Imis)

Figure 6.20 Control system for Example 6.8

Ll

Root | —1
locus ™ 1

G(s) = —1
Figure 6.21 Root locus of { (s+1)* with respect to K



D, and E are mapped from the Bode plot to the Nyquist plot in Fig. 6.23. The arc from G(s) = + 1 (w = 0) to G(s)

) that lies below the real axis is derived from Fig. 6.22. The portion of the C1 arc at infinity from Fig.

6.17 transforms into G(s) = 0 in Fig. 6.23; therefore, a continuous evaluation of G(s) with s traversing
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C, is completed by simply reflecting the lower arc about the real axis. This creates the portion of the contour above
the real axis and completes the Nyquist (polar) plot. Because the plot does not encircle -1, N= 0. Also, there are no
poles of G(s) in the RHP, so P= 0. From Eq. (6.28), we conclude that Z= 0, which indicates there are no unstable
roots of the closed-loop system for K= 1. Furthermore, different values of K would simply change the magnitude of
the polar plot, but no positive value of K would cause the plot to encircle -1, because the polar plot will always
cross the negative real axis when KG(s)= 0. Thus the Nyquist stability criterion confirms what the root locus

indicated: the closed-loop system is stable for all K > 0.

The MATLAB statements that will produce this Nyquist plot are

numG = 1;

denG = [1 2 1];

sysG = tf(numG,denG);
w =logspace(-2,2);
nyquist(sysG,w);

Often the control systems engineer is more interested in determining a range of gains K for which the system is
stable than in testing for stability at a specific value of K. To accommodate this requirement, but to avoid drawing
multiple Nyquist plots for various values of the gain, the test can be slightly modified. To do so, we scale KG(s) by K
and examine G(s) to determine stability for a range of gains K. This is possible because an encirclement of -1 by

KG(s) is equivalent to an encirclement of ‘1/K by G(s). Therefore, instead of having to deal with KG(s), we need only
consider G(s), and count the number of the encirclements of the ‘1/K point.

Applying this idea to Example 6.8, we see that the Nyquist plot cannot encircle the "'/ point. For positive K, the -
1/« point will move along the negative real axis, so there will not be an encirclement of G(s) for any value of K > 0.

(There are also values of K < 0 for which the Nyquist plot shows the system to be stable; specifically, -1 < K <
0. This result may be verified by drawing the 0° locus.)

EXAMPLE 6.9 Nyquist Plot for a Third-Order System

As a second example, consider the system G(s) = 1/s(s + 1)? for which the closed-loop system isdefined in Fig.

6.24. Determine its stability properties using the Nyquist criterion.

T \"' [ - 1 — = #
R o 4-\_“ K —» G+ 1) T@ !

Figure 6.24 Control system for Example 6.9

Solution. This is the same system discussed in Section 6.2. The root locus in Fig. 6.14(b) shows that this system is
stable for small values of K but unstable for large values of K. The magnitude and phase of G(s) in Fig. 6.25 are
transformed into the Nyquist plot shown in Fig. 6.26. Note how the points A, B, C, D, and E on the Bode plot of Fig.
6.25 map into those on the Nyquist plot of Fig. 6.26. Also note the large arc at infinity that arises from the open-loop

pole at s = 0. This pole creates an infinite magnitude of G(s) at w = 0; in fact, a pole anywhere on the imaginary



axis will create an arc at infinity. To correctly determine the number of —1/K point encirclements, we must draw this
arc in the proper half-plane: Should it cross the positive real axis, as shown in Fig. 6.26, or the negative one? It is

also necessary to assess whether the arc should sweep out 180° (as in Fig. 6.26), 360°, or 540°.

A simple artifice suffices to answer these questions. We modify the C1 contour to take a small detour around the
pole either to the right (Fig. 6.27) or to the left. It makes no difference to the final stability question which way, but
it is more convenient to go to the right because then no poles are introduced within the C1 contour, keeping the
value of P equal to 0. Because the phase of G(s) is the negative of the sum of the angles from all of the poles, we see
that the evaluation results in a Nyquist plot moving from +90° for s just below the pole at s = 0, across the positive
real axis to —90° for s just above the pole. Had there been two poles at s = 0, the Nyquist plot at infinity would have
executed a full 360° arc, and so on for three or more poles. Furthermore, for a pole elsewhere on the imaginary axis,

a 180° clockwise arc would also result but would be oriented differently than the example shown in Fig. 6.26.
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The Nyquist plot crosses the real axis at w = 1 with |G| = 0.5, as indicated by the Bode plot. For K > 0, there are
two possibilities for the location of —1/K: inside the two loops of the Nyquist plot, or outside the Nyquist contour
completely. For large values of K (K; in Fig. 6.26), 0.5 <"!/K; < 0 will lie inside the two loops; hence N = 2, and

therefore, Z = 2, indicating that there are two unstable roots. This happens for K > 2. For small values of K (K, in

Fig. 6.26), "1 /K lies outside the loops; thus N = 0, and all roots are stable. All this information is in agreement with
the root locus in Fig. 6.14(b). (When K < 0, /K lies on the positive real axis, then N = 1, which means Z= 1 and

the system has one unstable root. The 0° root locus will verify this result.)
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Figure 6.27 C; contour enclosing the RHP for the system in Example 6.9

For this and many similar systems, we can see that the encirclement criterion reduces to a very simple test for
stability based on the open-loop frequency response: The system is stable if |[KG(jw)| < 1 when the phase of G(jw)
is 180°. Note that this relation is identical to the stability criterion given in Eq. (6.25); however, by using the Nyquist

criterion, we don’t require the root locus to determine whether |[KG(jw)| < 1 or |[KG(jw)| > 1.

We draw the Nyquist plot using MATLAB, with

numG = 1;

denG = [121 0];
sysG = tf(numG,denG);
nyquist(sysG)

axis([-3 3 -3 3]);

The axis command scaled the plot so that only points between +3 and — 3 on the real and imaginary axes were
included. Without manual scaling, the plot would be scaled based on the maximum values computed by MATLAB

and the essential features in the vicinity of the — 1 region would be lost.

For systems that are open-loop unstable, care must be taken because now P = 0 in Eq. (6.28). We shall see that the

simple rules from Section 6.2 will need to be revised in this case.

EXAMPLE 6.10 Nyquist Plot for an Open-Loop Unstable System



The third example is defined in Fig. 6.28. Determine its stability properties using the Nyquist criterion.
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Figure 6.28 Control system for Example 6.10

Solution. The root locus for this system is sketched in Fig. 6.29. The open-loop system is unstable because it has a
pole in the RHP. The open-loop Bode plot is shown in Fig. 6.30. Note in the Bode that |[KG(jw)| behaves exactly the
same as if the pole had been in the LHP. However, ZG(jw) increases by 90° instead of the usual decrease at a pole.
Any system with a pole in the RHP is unstable; hence it would be impossible to determine its frequency response
experimentally because the system would never reach a steady-state sinusoidal response for a sinusoidal input. It is,
however, possible to compute the magnitude and phase of the transfer function according to the rules in Section 6.1.

The pole in the RHP affects the Nyquist encirclement criterion, because the value of P in Eq. (6.28) is +1.

We convert the frequency-response information of Fig. 6.30 into the Nyquist plot (Fig. 6.31) as in the previous

examples. As before, the C; detour around the pole at s = 0 in Fig. 6.32 creates a large arc at infinity in Fig. 6.31.
This arc crosses the negative real-axis because of the 180° phase contribution of the pole in the RHP.

The real-axis crossing occurs at |G(s)| = 1 because in the Bode plot |G(s)| = 1 when £G(s) = 180°, which
happens to be at w = 3 rad/sec.

The contour shows two different behaviors, depending on the values of K (> 0). For large values of K (K; in Fig.
6.31), there is one counterclockwise encirclement; hence N = — 1. However, because P = 1 from the RHP pole, Z =
N + P = 0, so there are no unstable system roots and the system is stable for K > 1. For small values of K (K, in Fig.
6.31), N = +1 because of the clockwise encirclement and Z = 2, indicating two unstable roots. This happens if K <
1. These results can be verified qualitatively by the root locus in Fig. 6.29. (If K < 0, "1 /k is on the positive real-axis
so that N = 0 and Z = 1, indicating the system will have one unstable closed-loop pole, which can be verified by a

O° root locus.)

4+ Imis)

G[ } - (5+1)
Figure 6.29 Root locus for 5(5/10—1)
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Figure 6.32 C; contour for Example 6.10

As with all systems, the stability boundary occurs at |[KG(jw)| = 1 for the phase of ZG(jw) = 180°. However, in

this case, |KG(jw)| must be greater than 1 to yield the correct number of — 1 point encirclements to achieve stability.

To draw the Nyquist plot using MATLAB, use the following commands:

numG = [11];

denG = [0.1 -1 0];
sysG = tf(numG,denG);
nyquist(sysG)

axis([-3 3 -3 3])

The existence of the RHP pole in Example 6.10 affected the Bode plotting rules of the phase curve and affected the
relationship between encirclements and unstable closed-loop roots because P= 1 in Eq. (6.28). But we apply the
Nyquist stability criterion without any modifications. The same is true for systems with a RHP zero; that is, a

nonminimum-phase zero has no effect on the Nyquist stability criterion, but the Bode plotting rules are affected.

EXAMPLE 6.11 Nyquist Plot Characteristics
Find the Nyquist plot for the third-order system
5243

{_;{'j:] — K""’ —
(s -+ 1)-

and reconcile the plot with the characteristics of G(s). If the G(s) is to be included in a feedback system as shown in

Fig. 6.18, then determine whether the system is stable for all positive values of K.

Solution. To draw the Nyquist plot using MATLAB, use the following commands:
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numG=[1 0 3];
denG=[1 2 1];
sysG = tf(numG,denG);
nyquist(sysG)
axis([—2 3 -3 3])

Figure 6.33 Nyquist plot for Example 6.11

The result is shown in Fig. 6.33.!! Note that there are no arcs at infinity for this case due to the lack of any poles at
the origin or on the jw axis. Also note that the Nyquist curve associated with the Bode plot (s = +jw) starts at (3,0),
ends at (1,0), and, therefore, starts and ends with a phase angle of 0°. This is as it should be since the numerator and
denominator of G(s) are equal order and there are no singularities at the origin. So the Bode plot should start and
end with a zero phase. Also note that the Nyquist plot goes through (0,0) as s goes through ¥ = +J V3 as it should
since the magnitude equals zero when s is at a zero. Furthermore, note that the phase goes from — 120° as s
approaches (0,0) to +60° as s departs from (0,0). This behavior follows since a Bode plot phase will jump by +180°
instantaneously as s passes through a zero on the jw axis. The phase initially decreases as the plot leaves the starting
point at (3,0) because the lowest frequency singularity is the pole ats = -1.

Changing the gain, K, will increase or decrease the magnitude of the Nyquist plot but it can never cross the
negative real axis. Therefore, the closed-loop system will always be stable for positive K. Exercise: Verify this result

by making a rough root locus sketch by hand.

6.4 Stability Margins

A large fraction of control system designs behave in a pattern roughly similar to that of the system in Section 6.2 and
Example 6.9 in Section 6.3; that is, the system is stable for all small gain values and becomes unstable if the gain

increases past a certain critical point. Two commonly used quantities that measure the stability margin for such



systems are directly related to the stability criterion of Eq. (6.25): gain margin and phase margin. In this section we
will define and use these two concepts to study system design. Another measure of stability, originally defined by O.
J. M. Smith (1958), combines these two margins into one and gives a better indication of stability for complicated

cases.

Gain margin

The gain margin (GM) is the factor by which the gain can be raised before instability results. For the typical case, it
can be read directly from the Bode plot (for example, see Fig. 6.15) by measuring the vertical distance between the
|KG(jw)| curve and the |[KG(jw)| = 1 line at the frequency where ZG({w) = 180°. We see from the figure that when
K = 0.1, the system is stable and GM = 20 (or 26 db). When K = 2, the system is neutrally stable with GM = 1 (0
db), while K = 10 results in an unstable system with GM = 0.2 (-14 db). Note that GM is the factor by which the
gain K can be raised before instability results; therefore, |GM| <1 (or |GM| <0 db) indicates an unstable system. The
GM can also be determined from a root locus with respect to K by noting two values of K:(1) at the point where the

locus crosses the jw-axis, and (2) at the nominal closed-loop poles. The GM is the ratio of these two values.

Phase margin

Another measure that is used to indicate the stability margin in a system is the phase margin (PM). It is the amount
by which the phase of G(jw) exceeds —~180° when |KG(jw)| = 1, which is an alternative way of measuring the degree
to which the stability conditions of Eq. (6.25) are met. For the case in Fig. 6.15, we see that PM = 80° for K = 0.1,
PM = 0° for K = 2, and PM = -35° for K = 10. Apositive PM is required for stability.

Note that the two stability measures, PM and GM, together determine how far the complex quantity G(jw) passes
from the -1 point, which is another way of stating the neutral-stability point specified by Eq. (6.24).

The stability margins may also be defined in terms of the Nyquist plot. Figure 6.34 shows that GM and PM are
measures of how close the Nyquist plot comes to encircling the —1 point. Again we can see that the GM indicates
how much the gain can be raised before instability results in a system like the one in Example 6.9. The PM is the
difference between the phase of G(jw) and 180° when KG(jw) crosses the circle |[KG(s)| = 1; the positive value of

PM is assigned to the stable case (i.e., with no Nyquist encirclements).
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Figure 6.34 Nyquist plot for defining GM and PM

Crossover frequency



It is easier to determine these margins directly from the Bode plot than from the Nyquist plot. The term crossover
frequency, w,, is often used to refer to the frequency at which the gain is unity, or O db. Figure 6.35 shows the same
data plotted in Fig. 6.25, but for the case with K = 1. The same values of PM (= 22°) and GM (= 2) may be
obtained from the Nyquist plot shown in Fig. 6.26. The real-axis crossing at 0.5 corresponds to a GM of 1/0.5 or 2
and the PM could be computed graphically by measuring the angle of G(jw) as it crosses |G(jw)| circle.

One of the useful aspects of frequency-response design is the ease with which we can evaluate the effects of gain
changes. In fact, we can determine the PM from Fig. 6.35 for any value of K without redrawing the magnitude or
phase information. We need only indicate on the figure where |KG(jw)| = 1 for selected trial values of K, as has
been done with dashed lines in Fig. 6.36. Now we can see that K = 5 yields an unstable PM of -22°, while a gain of
K = 0.5 yields a PM of +45°. Furthermore, if we wish a certain PM (say 70°), we simply read the value of |G(jw)|
corresponding to the frequency that would create the desired PM (here w = 0.2 rad/sec yields 70°, where |G(jw)|
5), and note that the magnitude at this frequency is ' /K. Therefore, a PM of 70° will be achieved with K = 0.2.

10 20

5 \ ‘
2 ‘ /GM = 0.5,
\ l GM =2 (= 6dh)
]
|

0.5 : N
0.2 | -
\ -20

0.1
0.2 ro\2 10

i (rad/sec)

db

0

Magnitude. |Gijaw)]

— o

(il jew)

— 180"

]
L[N\

Phase. &

— 210"

o (rad/sec)

Figure 6.35 GM and PM from the magnitude and phase plots
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Figure 6.36 PM versus K from the frequency-response data

The PM is more commonly used to specify control system performance because it is most closely related to the

damping ratio of the system. This can be seen for the open-loop second-order system

2

(0
§) = —————, 2
K (s 4+ 2&ewy) 829

which, with unity feedback, produces the closed-loop system

2
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Tii= L " 6.30
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It can be shown that the relationship between the PM and  in this system is

28

f, (6.31)
Vv I1+4c =202

PM = tan~!

and this function is plotted in Fig. 6.37. Note that the function is approximately a straight line up to about PM =



60°. The dashed line shows a straight-line approximation to the function, where

PM
— 3
0 (6.32)

e
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It is clear that the approximation holds only for PM below about 70°. Furthermore, Eq. (6.31) is only accurate for the
second-order system of Eq. (6.30). In spite of these limitations, Eq. (6.32) is often used as a rule of thumb for relating
the closed-loop damping ratio to PM. It is useful as a starting point; however, it is important always to check the

actual damping of a design, as well as other aspects of the performance, before calling the design complete.

The gain margin for the second-order system [given by Eq. (6.29)] is infinite (GM = <o), because the phase curve

does not cross —180° as the frequency increases. This would also be true for any first-or second-order system.

Additional data to aid in evaluating a control system based on its PM can be derived from the relationship between

the resonant peak M, and ( seen in Fig. 6.3. Note that this figure was derived for the same system [Eq. (6.9)] as Eq.
(6.30). We can convert the information in Fig. 6.37 into a form relating M, to the PM. This is depicted in Fig. 6.38,
along with the step-response overshoot M. Therefore, we see that, given the PM, one can infer information about

what the overshoot of the closed-loop step response would be.
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Many engineers think directly in terms of the PM when judging whether a control system is adequately stabilized. In
these terms, a PM = 30° is often judged to be the lowest adequate value. In addition to testing the stability of a
system design using the PM, a designer would typically also be concerned with meeting a speed-of-response
specification such as bandwidth, as discussed in Section 6.1. In terms of the frequency-response parameters discussed
so far, the crossover frequency would best describe a system’s speed of response. This idea will be discussed further
in Sections 6.6 and 6.7.

In some cases the PM and GM are not helpful indicators of stability. For first-and second-order systems, the phase
never crosses the 180° line; hence, the GM is always o and not a useful design parameter. For higher-order systems it
is possible to have more than one frequency where |KG(jw)| = 1 or where ZKG(jw) = 180°, and the margins as
previously defined need clarification. An example of this can be seen in Fig. 10.12, where the magnitude crosses 1
three times. A decision was made to define PM by the first crossing, because the PM at this crossing was the smallest
of the three values and thus the most conservative assessment of stability. A Nyquist plot based on the data in Fig.
10.12 would show that the portion of the Nyquist curve closest to the — 1 point was the critical indicator of stability,
and therefore use of the crossover frequency yielding the minimum value of PM was the logical choice. At best, a
designer needs to be judicious when applying the margin definitions described in Fig. 6.34. In fact, the actual
stability margin of a system can be rigorously assessed only by examining the Nyquist plot to determine its closest

approach to the — 1 point.

Vector margin

To aid in this analysis, O. J. M. Smith (1958) introduced the vector margin, which he defined to be the distance to
the -1 point from the closest approach of the Nyquist plot.'? Figure 6.39 illustrates the idea graphically. Because the
vector margin is a single margin parameter, it removes all the ambiguities in assessing stability that come with using
GM and PM in combination. In the past it has not been used extensively due to difficulties in computing it. However,
with the widespread availability of computer aids, the idea of using the vector margin to describe the degree of

stability is much more feasible.

Conditionally stable systems

There are certain practical examples in which an increase in the gain can make the system stable. As we saw in
Chapter 5, these systems are called conditionally stable. A representative root-locus plot for such systems is shown in
Fig. 6.40. For a point on the root locus, such as A, an increase in the gain would make the system stable by bringing
the unstable roots into the LHP. For point B, either a gain increase or decrease could make the system become
unstable. Therefore, several gain margins exist that correspond to either gain reduction or gain increase, and the
definition of the GM in Fig. 6.34 is not valid.
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Figure 6.40 Root locus for a conditionally stable system

EXAMPLE 6.12 Stability Properties for a Conditionally Stable System

Determine the stability properties as a function of the gain K for the system with the open-loop transfer function

_ K(s+10)°

KGi(s) 3

Solution. This is a system for which increasing gain causes a transition from instability to stability. The root locus in
Fig. 6.41(a)'3 shows that the system is unstable for K < 5 and stable for K > 5. The Nyquist plot in Fig. 6.41(b) was
drawn for the stable value K = 7. Determination of the margins according to Fig. 6.34 yields PM = +10° (stable)
and GM = 0.7 (unstable). According to the rules for stability discussed earlier, these two margins yield conflicting

signals on the system’s stability.
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Figure 6.41 System in which increasing gain leads from instability to stability: (a) root locus; (b) Nyquist plot

We resolve the conflict by counting the Nyquist encirclements in Fig. 6.41(b). There is one clockwise encirclement
and one counterclockwise encirclement of the — 1 point. Hence there are no net encirclements, which confirms that
the system is stable for K = 7. For systems like this it is best to resort to the root locus and/or Nyquist plot (rather
than the Bode plot) to determine stability.

EXAMPLE 6.13 Nyquist Plot for a System with Multiple Crossover Frequencies
Draw the Nyquist plot for the system

85(s + 1)(s? + 25 + 43.25)
s2(s% 4+ 25 + 82) (s> + 25 + 101)

85(s + 1)(s + 1 £ 6.5/)
s+ 19+ 1£10)°

Gis) =

and determine the stability margins.

Solution. The Nyquist plot (Fig. 6.42) shows that there are three crossover frequencies (w = 0.75, 9.0, and 10.1
rad/sec) with three corresponding PM values of 37°, 80°, and 40°, respectively. However, the key indicator of stability
is the proximity of the Nyquist plot as it approaches the —1 point while crossing the real-axis. In this case, only the
GM indicates the poor stability margins of this system. The Bode plot for this system (Fig. 6.43) shows the same three
crossings of magnitude = 1 at 0.75, 9.0, and 10.1 rad/sec. The GM value of 1.26 from the Bode plot corresponding
to w = 10.4 rad/sec qualitatively agrees with the GM from the Nyquist plot and would be the most useful and

unambiguous margin for this example.

In summary, many systems behave roughly like Example 6.9, and for them, the GM and PM are well defined and
useful. There are also frequent instances of more complicated systems with multiple magnitude 1 crossovers or
unstable open-loop systems for which the stability criteria defined by Fig. 6.34 are ambiguous or incorrect; therefore,
we need to verify the GM and PM as previously defined, and/or modify them by reverting back to the Nyquist

stability criterion.
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Figure 6.43 Bode plot of the system in Example 6.13

Bode’s theorem

6.5 Bode’s Gain-Phase Relationship

One of Bode’s important contributions is the following theorem:



For any stable minimum-phase system (i.e., one with no RHP zeros or poles), the phase of G(jw) is uniquely
related to the magnitude of G(jw).

When the slope of | G(jw) | versus won a log-log scale persists at a constant value for approximately a decade of

frequency, the relationship is particularly simple and is given by

ZG(jw) = n x 90°, (6.33)

where n is the slope of |G(jw)| in units of decade of amplitude per decade of frequency. For example, in considering

the magnitude curve alone in Fig. 6.44, we see that Eq. (6.33) can be applied to the two frequencies w; =0.1 (where

= -2) and w2 = 10 (where n = - 1), which are a decade removed from the change in slope, to yield the
approximate values of phase, —180° and —90°. The exact phase curve shown in the figure verifies that indeed the
approximation is quite good. It also shows that the approximation will degrade if the evaluation is performed at

frequencies closer to the change in slope.
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Figure 6.44 An approximate gain—phase relationship demonstration

An exact statement of the Bode gain-phase theorem is

= 1 [T faM - R
2G(jw,) = —f (—) Wi{u)du (in radians), (6.34)
T Joxs \du

where



M = log magnitude = In |G(jw)|,
u = normalized frequency = In(w/w,),
dM /du = slope n, as defined in Eq. (6.33),
W(u) = weighting function = In(coth|u|/2).

Figure 6.45 is a plot of the weighting function W(u) and shows how the phase is most dependent on the slope at

w,; it is also dependent, though to a lesser degree, on slopes at neighboring frequencies. The figure also suggests that

the weighting could be approximated by an impulse function centered at w,. We may approximate the weighting

function as

2
W) = %ﬁiu},

which is precisely the approximation made to arrive at Eq. (6.33) using the “sifting” property of the impulse function

(and conversion from radians to degrees).
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Figure 6.45 Weighting function in Bode’s gain—phase theorem

In practice, Eq. (6.34) is never used, but Eq. (6.33) is used as a guide to infer stability from |G(w)| alone. When
IKGGw)| = 1,

ZG(Jw) = =90° ifn=—1,
ZG(jw) = —180° itn=-2.

Crossover frequency

For stability we want £ZG(jw) > -180° for PM > 0. Therefore, we adjust the |[KG(jw)| curve so that it has a slope of

-1 at the “crossover” frequency, w,, (i.e., where |KG(jw) | = 1). If the slope is — 1 for a decade above and below the

crossover frequency, then PM = 90°; however, to ensure a reasonable PM, it is usually necessary only to insist that a —
1 slope (-20 db per decade) persist for a decade in frequency that is centered at the crossover frequency. We

therefore see that there is a very simple design criterion:



Crossover at -1 slope

Adjust the slope of the magnitude curve |KG(jw)| so that it crosses over magnitude 1 with a slope of — 1 for a
decade around w..

This criterion will usually be sufficient to provide an acceptable PM, and hence provide adequate system damping.
To achieve the desired speed of response, the system gain is adjusted so that the crossover point is at a frequency that
will yield the desired bandwidth or speed of response as determined by Eq. (3.60). Recall that the natural frequency

w,, bandwidth, and crossover frequency are all approximately equal, as will be discussed further in Section 6.6.

EXAMPLE 6.14 Use of Simple Design Criterion for Spacecraft Attitude Control

For the spacecraft attitude-control problem defined in Fig. 6.46, find a suitable expression for KD(s) that will provide
good damping and a bandwidth of approximately 0.2 rad/sec. Also determine the value of the sensitivity function, S,

at w = 0.05 rad/sec in order to evaluate the magnitude of the tracking error for a reference input at that frequency.

Compensation Spacecraft

B © —-(?— kDG —| G =1 o0
| ¥

Figure 6.46 Spacecraft attitude-control system
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Figure 6.47 Magnitude of the spacecraft’s frequency response

Solution. The magnitude of the frequency response of the spacecraft (Fig. 6.47) clearly requires some reshaping,
because it has a slope of -2 (or —40 db per decade) everywhere. The simplest compensation to do the job consists of

using proportional and derivative terms (a PD compensator), which produces the relation

KD(s) = K(Tps + 1). (6.35)

We will adjust the gain K to produce the desired bandwidth, and adjust break point w; = !/Tp to provide the -1

slope at the crossover frequency. The actual design process to achieve the desired specifications is now very simple:

We pick a value of K to provide a crossover at 0.2 rad/sec and choose a value of w; that is about four times lower

than the crossover frequency, so that the slope will be — 1 in the vicinity of the crossover. Figure 6.48 shows the steps



we take to arrive at the final compensation:

1. Plot |G(w)|.

2. Modify the plot to include |G(jw)|, with w; = 0.05 rad/sec (T = 20), so that the slope will be = -1 atw = 0.2
rad/sec.

3. Determine that |[DG| = 100, where the |DG| curve crosses the line w = 0.2 rad/sec, which is where we want

magnitude 1 crossover to be.

4. In order for crossover to be at w = 0.2 rad/sec, compute

| I

K= = — 0.01.
[|PG =02 100

Therefore,
KD(s) = 0.01(20s + 1)

will meet the specifications, thus completing the design.

If we were to draw the phase curve of KDG, we would find that PM = 75°, which is certainly quite adequate. A plot
of the closed-loop frequency-response magnitude (Fig. 6.49) shows that, indeed, the crossover frequency and the

bandwidth are almost identical in this case. The sensitivity function was defined by Eq. (4.17) and for this problem is
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Figure 6.48 Compensated open-loop transfer function
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Figure 6.49 Closed-loop frequency response of T(s) and S(s)

=
1 + KDG

It is shown on the graph along with T(s), the output response versus input command. The frequency response of T
confirms that the design achieved the desired bandwidth of 0.2 rad/sec, and it can also be seen that S has the value of

0.2 at w = 0.05 rad/sec. The step response of the closed-loop system is shown in Fig. 6.50 and its 14% overshoot
confirms the adequate damping.
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Figure 6.50 Step response for PD compensation

6.6 Closed-Loop Frequency Response

The closed-loop bandwidth was defined in Section 6.1 and in Fig. 6.5. Figure 6.3 showed that the natural frequency
is always within a factor of two of the bandwidth for a second-order system. In Example 6.14, we designed the

compensation so that the crossover frequency was at the desired bandwidth and verified by computation that the



bandwidth was identical to the crossover frequency. Generally, the match between the crossover frequency and the
bandwidth is not as good as in Example 6.14. We can help establish a more exact correspondence by making a few

observations. Consider a system in which |G(jw)| shows the typical behavior

IKG(jaw)l > 1 for o < a,,
IKG(ja)| < 1 for w3 o,

where w, is the crossover frequency. The closed-loop frequency-response magnitude is approximated by

ks 0 << W,

KG( jo
(jw) ‘; IKG|. ®> o,. (6.36)

Tol =—— =
£z ‘ [+ KG(jo)
In the vicinity of crossover, where |G(jw)| = 1, |T(jw)| depends heavily on the PM. A PM of 90° means that
£G(jw,.) = -90°, and therefore |T(jw.)| =0.707. On the other hand, PM = 45° yields |T(jw.)| = 1.31.
The exact evaluation of Eq. (6.36) was used to generate the curves of |T(jw)| in Fig. 6.51. It shows that the

bandwidth for smaller values of PM is typically somewhat greater than w., though usually it is less than 2w_; thus
W. < Wy = 2W,.

Another specification related to the closed-loop frequency response is the resonant-peak magnitude M,, defined in
Fig. 6.5. Figures 6.3 and 6.38 show that, for linear systems, M, is generally related to the damping of the system. In
practice, M, is rarely used; most designers prefer to use the PM to specify the damping of a system, because the
imperfections that make systems nonlinear or cause delays usually erode the phase more significantly than the
magnitude.

As demonstrated in the last example, it is also important in the design to achieve certain error characteristics and
these are often evaluated as a function of the input or disturbance frequency. In some cases, the primary function of
the control system is to regulate the output to a certain constant input in the presence of disturbances. For these

situations, the key item of interest for the design would be the closed-loop frequency response of the error with

respect to disturbance inputs.
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Figure 6.51 Closed-loop bandwidth with respect to PM



6.7 Compensation

As we discussed in Chapters 4 and 5, dynamic elements (or compensation) are typically added to feedback
controllers to improve the system’s stability and error characteristics because the process itself cannot be made to

have acceptable characteristics with proportional feedback alone.

Section 4.3 discussed the basic types of feedback: proportional, derivative, and integral. Section 5.4 discussed three
kinds of dynamic compensation: lead compensation, which approximates proportional-derivative (PD) feedback, lag
compensation, which approximates proportional-integral (PI) control, and notch compensation, which has special
characteristics for dealing with resonances. In this section we discuss these and other kinds of compensation in terms
of their frequency-response characteristics. In most cases, the compensation will be implemented in a
microprocessor. Techniques for converting the continuous compensation D(s) into a form that can be coded in the
computer was briefly discussed in Section 4.4. It will be illustrated further in this section and will be discussed in
more detail in Chapter 8.

The frequency-response stability analysis to this point has usually considered the closed-loop system to have the
characteristic equation 1 + KG(s) = 0. With the introduction of compensation, the closed-loop characteristic
equation becomes 1 + KD(s)G(s) = 0, and all the previous discussion in this chapter pertaining to the frequency
response of KG(s) applies directly to the compensated case if we apply it to the frequency response of KD(s)G(s). We
call this quantity L(s), the “loop gain,” or open-loop transfer function of the system, where L(s) = KD(s)G(s).
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Figure 6.52 Frequency response of PD control



PD compensation

6.7.1 PD Compensation

We will start the discussion of compensation design by using the frequency response with PD control. The

compensator transfer function, given by

D(s) =(Tps+ 1), (6.37)

was shown in Fig. 5.22 to have a stabilizing effect on the root locus of a second-order system. The frequency-response
characteristics of Eq. (6.37) are shown in Fig. 6.52. A stabilizing influence is apparent by the increase in phase and
the corresponding + 1 slope at frequencies above the break point !/Tp,. We use this compensation by locating /Ty,
so that the increased phase occurs in the vicinity of crossover (that is, where |KD(s)G(s)| = 1), thus increasing the
PM.

Note that the magnitude of the compensation continues to grow with increasing frequency. This feature is
undesirable because it amplifies the high-frequency noise that is typically present in any real system and, as a
continuous transfer function, cannot be realized with physical elements. It is also the reason we stated in Section 5.4

that pure derivative compensation gives trouble.

6.7.2 Lead Compensation

In order to alleviate the high-frequency amplification of the PD compensation, a first-order pole is added in the
denominator at frequencies substantially higher than the break point of the PD compensator. Thus the phase increase
(or lead) still occurs, but the amplification at high frequencies is limited. The resulting lead compensation has a

transfer function of

Lead compensation

Ts + 1

D(5s) = ——,
als + 1

a < 1, (6.38)

where 1/, is the ratio between the pole/zero break-point frequencies. Figure 6.53 shows the frequency response of

this lead compensation. Note that a significant amount of phase lead is still provided, but with much less
amplification at high frequencies. A lead compensator is generally used whenever a substantial improvement in

damping of the system is required.

The phase contributed by the lead compensation in Eq. (6.38) is given by
¢ = tan'}(Tw) - tan' (aTw).

It can be shown (see Problem 6.44) that the frequency at which the phase is maximum is given by

I

Wi = 6.39
Cthmax T\HE ( )

The maximum phase contribution—that is, the peak of the £ZD(s) curve in Fig. 6.53—corresponds to
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Figure 6.53 Lead-compensation frequency response with 1/, = 10

Another way to look at this is the following: The maximum phase occurs at a frequency that lies midway between

the two break-point frequencies (sometimes called corner frequencies) on a logarithmic scale,

1//T
JaT

10g tmax = log

I I
VT VaT

Ao

as shown in Fig. 6.53. Alternatively, we may state these results in terms of the pole-zero locations. Rewriting D(s) in

= log

+ log

the form used for root-locus analysis, we have

5+z

D(s) = :
( i

(6.42)



Problem 6.44 shows that
Wmax = v/ |z |_,i'}| (6.43)
and
1
log wmax = ;{log |z| 4+ log |p|). (6.44)

These results agree with the previous ones if we let z = "!/T and p = "!/,T in Egs. (6.39) and (6.41).

For example, a lead compensator with a zero at s = -2(T = 0.5) and a pole ats = — 10 (aT = 0.1) (and thus

o =

)=

5 would yield the maximum phase lead at
tmay, = 2 i ].{} = 4.4? I‘Ild.l'rSt‘C.

Lead ratio

The amount of phase lead at the midpoint depends only on a in Eq. (6.40) and is plotted in Fig. 6.54. For a = 1/5,
Fig. 6.54 shows that g, ,, = 40°. Note from the figure that we could increase the phase lead up to 90° using higher
values of the lead ratio, !/,; however, Fig. 6.53 shows that increasing values of !/, also produces higher
amplifications at higher frequencies. Thus our task is to select a value of !/, that is a good compromise between an

acceptable PM and an acceptable noise sensitivity at high frequencies. Usually the compromise suggests that a lead
compensation should contribute a maximum of 70° to the phase. If a greater phase lead is needed, then a double-

lead compensation would be suggested, where
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Figure 6.54 Maximum phase increase for lead compensation

,
ITs+1 y*

;"Zl‘i;s}:(L :
als + 1

Even if a system had negligible amounts of noise present and the pure derivative compensation of Eq. (6.37) were
acceptable, a continuous compensation would look more like Eq. (6.38) than Eq. (6.37) because of the impossibility
of building a pure differentiator. No physical system—mechanical or electrical—responds with infinite amplitude at

infinite frequencies, so there will be a limit in the frequency range (or bandwidth) for which derivative information



(or phase lead) can be provided. This is also true with a digital implementation. Here, the sample rate limits the

high-frequency amplification and essentially places a pole in the compensation transfer function.

EXAMPLE 6.15 Lead Compensation for a DC Motor

As an example of designing a lead compensator, let us repeat the design of compensation for the DC motor with the

transfer function

G(s) = ———
(s sis+ 1)

that was carried out in Section 5.4.1. This also represents the model of a satellite tracking antenna (see Fig. 3.61).
This time we wish to obtain a steady-state error of less than 0.1 for a unit-ramp input. Furthermore, we desire an

overshoot Mp < 25%

1. Determine the lead compensation satisfying the specifications.

2. Determine the digital version of the compensation with T = 0.05 sec.

3. Compare the step and ramp responses of both implementations.

Solution

1. The steady-state error is given by

6, = T R(s), (6.45)

s—0 |il -+ KDI[.’E]IGLE'}:I

where R(s) = 1/Sz for a unit ramp, so Eq. (6.45) reduces to

1 1
AR = —,
a-—vﬂ{5+KD{5]III,’{5—|— I}I} KD(0)

Therefore, we find that KD(0), the steady-state gain of the compensation, cannot be less than 10 (K, = 10)if it is to

meet the error criterion, so we pick K = 10. To relate the overshoot requirement to PM, Fig. 6.38 shows that a PM of
45° should suffice. The frequency response of KG(s)in Fig. 6.55 shows that the PM = 20° if no phase lead is added by
compensation. If it were possible to simply add phase without affecting the magnitude, we would need an additional
phase of only 25° at the KG(s)crossover frequency of w = 3 rad/sec. However, maintaining the same low-frequency
gain and adding a compensator zero would increase the crossover frequency; hence more than a 25° phase
contribution will be required from the lead compensation. To be safe, we will design the lead compensator so that it
supplies a maximum phase lead of 40°. Fig. 6.54 shows that 1/, = 5 will accomplish that goal. We will derive the
greatest benefit from the compensation if the maximum phase lead from the compensator occurs at the crossover
frequency. With some trial and error, we determine that placing the zero at w = 2 rad/sec and the pole at w = 10

rad/sec causes the maximum phase lead to be at the crossover frequency. The compensation, therefore, is
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Figure 6.55 Frequency response for lead-compensation design

5/2+1

KD(s) = 10212~
) =10

The frequency-response characteristics of L(s) = KD(s)G(s) in Fig. 6.55 can be seen to yield a PM of 53°, which
satisfies the design goals.

The root locus for this design, originally given as Fig. 5.24, is repeated here as Fig. 6.56, with the root locations
marked for K = 10. The locus is not needed for the frequency-response design procedure; it is presented here only
for comparison with the root locus design method presented in Chapter 5. The entire process can be expedited by
the use of MATLAB’s SISOTOOL routine, which simultaneously provides the root locus and the Bode plot through an
interactive GUI interface. For this example, the MATLAB statements
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Figure 6.56 Root locus for lead compensation design

G=tf(1,[1 1 0]);
D=tf(10*[1/2 1],[1/10 11);
sisotool(G,D)

5

Rels)

will provide the plots as shown in Fig. 6.57. It can also be used to generate the Nyquist and time-response plots if

desired.

2. To find the discrete equivalent of D(s), we use the trapezoidal rule given by Eq. (4.104). That is,

2 7—1
Fig/2+1]
Da(2) = 525 : (6.46)
ﬁmjl{} o
which, with T, = 0.05 sec, reduces to
Ds(D 42z — 3.8 (6.47)
2lz) = T :
This same result can be obtained by the MATLAB statement
sysD = tf([0.5 1],[0.1 1]);
sysDd = c2d(sysD, 0.05, ‘tustin’).
Because
U(z)
= KDy(z), 6.48
the discrete control equation that results is
u(k + 1) = 0.6uk) + 10(4.2e(k + 1) — 3.8¢(k)). (6.49)

3. The SIMULINK® block diagram of the continuous and discrete versions of D(s) controlling the DC motor is shown



in Fig. 6.58. The step responses of the two controllers are plotted together in Fig. 6.59(a) and are reasonably close
to one another; however, the discrete controller does exhibit slightly increased overshoot, as is often the case. Both
overshoots are less than 25%, and thus meet the specifications. The ramp responses of the two controllers, shown

in Fig. 6.59(b), are essentially identical, and both meet the 0.1 specified error.
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Figure 6.59 Lead-compensation design: (a) step response; (b) ramp response

The design procedure used in Example 6.15 can be summarized as follows:
1. Determine the low-frequency gain so that the steady-state errors are within specification.

2. Select the combination of lead ratio 1/a and zero values (1/T) that achieves an acceptable PM at crossover.

3. The pole location is then at (1/aT).

This design procedure will apply to many cases; however, keep in mind that the specific procedure followed in

any particular design may need to be tailored to its particular set of specifications.

In Example 6.15 there were two specifications: peak overshoot and steady-state error. We transformed the
overshoot specification into a PM, but the steady-state error specification we used directly. No speed-of-response type
of specification was given; however, it would have impacted the design in the same way that the steady-state error
specification did. The speed of response or bandwidth of a system is directly related to the crossover frequency, as
we pointed out earlier in Section 6.6. Figure 6.55 shows that the crossover frequency was ~ 5 rad/sec. We could
have increased it by raising the gain K and increasing the frequency of the lead compensator pole and zero in order
to keep the slope of -1 at the crossover frequency. Raising the gain would also have decreased the steady-state error
to be better than the specified limit. The gain margin was never introduced into the problem because the stability
was adequately specified by the PM alone. Furthermore, the gain margin would not have been useful for this system

because the phase never crossed the 180° line and the GM was always infinite.

Design parameters for lead networks
In lead-compensation designs there are three primary design parameters:

1. The crossover frequency w,, which determines bandwidth wgy, rise time t,, and settling time t;
2. The PM, which determines the damping coefficient { and the overshoot Mp;

3. The low-frequency gain, which determines the steady-state error characteristics.



The design problem is to find the best values for the parameters, given the requirements. In essence, lead

compensation increases the value of w./L(0) (=w./K, for a Type 1 system). That means that, if the low-frequency

gain is kept the same, the crossover frequency will increase. Or if the crossover frequency is kept the same, the low-
frequency gain will decrease. Keeping this interaction in mind, the designer can assume a fixed value of one of these
three design parameters and then adjust the other two iteratively until the specifications are met. One approach is to
set the low-frequency gain to meet the error specifications and add a lead compensator to increase PM at the
crossover frequency. An alternative is to pick the crossover frequency to meet a time response specification, then
adjust the gain and lead characteristics so that the PM specification is met. A step-by-step procedure is outlined next
for these two cases. They apply to a sizable class of problems for which a single lead is sufficient. As with all such
design procedures, it provides only a starting point; the designer will typically find it necessary to go through several

design iterations in order to meet all the specifications.

Design Procedure for Lead Compensation

1. Determine open-loop gain K to satisfy error or bandwidth requirements:
(a) to meet error requirement, pick K to satisfy error constants (K, K,, or K,) so that e error specification is
met, or alternatively,

(b) to meet bandwidth requirement, pick K so that the open-loop crossover frequency is a factor of two below
the desired closed-loop bandwidth.

2. Evaluate the PM of the uncompensated system using the value of K obtained from Step 1.

3. Allow for extra margin (about 10°), and determine the needed phase lead @,,,.

4. Determine a from Eq. (6.40) or Fig. 6.54.

5. Pick w,,x to be at the crossover frequency; thus the zero is at 1/T = &maxv/& and the pole is at
VoT = @max/ V@ )

6. Draw the compensated frequency response and check the PM.

7. Iterate on the design. Adjust compensator parameters (poles, zeros, and gain) until all specifications are met.

Add an additional lead compensator (that is, a double-lead compensation) if necessary.

While these guidelines will not apply to all the systems you will enco