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Preface

In this Sixth Edition we again present a text in support of a first course in control and have retained the best features
of our earlier editions. For this edition, we have substantially rewritten Chapter 4 on the Basic Properties of
Feedback, placing the material in a more logical order and presenting it in a much more effective (bottom up?)
manner. We have also updated the text throughout on how computer-aided design is utilized to more fully reflect
how design is carried out today. At the same time, we also strive to equip control system engineers with a basic
understanding so that computer results can be guided and verified. In support of this updating, MATLAB® referrals
have been updated and include some of the latest capabilities in that software. The case studies in Chapter 10 have
been retained and a new case study of the emerging Bioengineering field has been added. A Historical Perspective
section has been added at the end of each chapter in order to add to the knowledge of how all these concepts came
into being. Finally, in order to guide the reader in finding specific topics, we have expanded the Table of Contents to
include subsections.

The basic structure of the book is unchanged and we continue to combine analysis with design using the three
approaches of the root locus, frequency response, and state-variable equations. The text continues to include many
carefully worked out examples to illustrate the material. As before, we provide a set of review questions at the end
of each chapter with answers in the back of the book to assist the students in verifying that they have learned the
material.

In the three central chapters on design methods we continue to expect the students to learn how to perform the
very basic calculations by hand and make a rough sketch of a root locus or Bode plot as a sanity check on the
computer results and as an aid to design. However, we introduce the use of MATLAB early on in recognition of the
universal use of software tools in control analysis and design. Furthermore, in recognition of the fact that increasingly
controllers are implemented in imbedded computers, we again introduce digital control in Chapter 4 and in a
number of cases compare the responses of feedback systems using analog controllers with those having a digital
“equivalent” controller. As before, we have prepared a collection of all the MATLAB files (both “m” files and
SIMULINK® files) used to produce the figures in the book. These are available at the following Web site:

www.FPE6e.com

For the SIMULINK files, there are equivalent LabView files that can be obtained by a link from the same web site.
We have removed some material that was judged to be less useful for the teaching of a first course in controls.

However, recognizing that there may still be some instructors who choose to teach the material, or students who
want to refer to enrichment and/or review material, we have moved the material to the website above for access by
anyone. The Table of Contents provides a guide as to where the various topics are located.

We feel that this Sixth Edition presents the material with good pedagogical support, provides strong motivation for
the study of control, and represents a solid foundation for meeting the educational challenges. We introduce the study
of feedback control, both as a specialty of itself and as support for many other fields.

Addressing the Educational Challenges
Some of the educational challenges facing students of feedback control are longstanding; others have emerged in
recent years. Some of the challenges remain for students across their entire engineering education; others are unique



to this relatively sophisticated course. Whether they are old or new, general or particular, the educational challenges
we perceived were critical to the evolution of this text. Here we will state several educational challenges and
describe our approaches to each of them.

• CHALLENGE Students must master design as well as analysis techniques.

Design is central to all of engineering and especially so to control systems. Students find that design issues, with
their corresponding opportunities to tackle practical applications, particularly motivating. But students also find
design problems difficult because design problem statements are usually poorly posed and lack unique solutions.
Because of both its inherent importance for and its motivational effect on students, design is emphasized throughout
this text so that confidence in solving design problems is developed from the start.

The emphasis on design begins in Chapter 4 following the development of modeling and dynamic response. The
basic idea of feedback is introduced first, showing its influence on disturbance rejection, tracking accuracy, and
robustness to parameter changes. The design orientation continues with uniform treatments of the root locus,
frequency response, and state variable feedback techniques. All the treatments are aimed at providing the knowledge
necessary to find a good feedback control design with no more complex mathematical development than is essential
to clear understanding.

Throughout the text, examples are used to compare and contrast the design techniques afforded by the different
design methods and, in the capstone case studies of Chapter 10, complex real-world design problems are attacked
using all the methods in a unified way.

• CHALLENGE New ideas continue to be introduced into control.

Control is an active field of research and hence there is a steady influx of new concepts, ideas, and techniques. In
time, some of these elements develop to the point where they join the list of things every control engineer must
know. This text is devoted to supporting students equally in their need to grasp both traditional and more modern
topics.

In each of our editions we have tried to give equal importance to root locus, frequency response, and state-variable
methods for design. In this edition we continue to emphasize solid mastery of the underlying techniques. coupled
with computer based methods for detailed calculation. We also provide an early introduction to data sampling and
discrete controllers in recognition of the major role played by digital controllers in our field. While this material can
be skipped to save time without harm to the flow of the text, we feel that it is very important for students to
understand that computer control is widely used and that the most basic techniques of computer control are easily
mastered.

• CHALLENGE Students need to manage a great deal of information.
The vast array of systems to which feedback control is applied and the growing variety of techniques available for
the solution of control problems means that today’s student of feedback control must learn many new ideas. How do
students keep their perspective as they plow through lengthy and complex textual passages? How do they identify
highlights and draw appropriate conclusions? How do they review for exams? Helping students with these tasks was
a criterion for the Fourth and Fifth Editions and continues to be addressed in this Sixth Edition. We outline these
features below.



FEATURE
1. Chapter openers offer perspective and overview. They place the specific chapter topic in the context of the

discipline as a whole and they briefly overview the chapter sections.
2. Margin notes help students scan for chapter highlights. They point to important definitions, equations, and

concepts.
3. Boxedhighlights identify key concepts within the running text. They also function to summarize important design

procedures.
4. Bulleted chapter summaries help with student review and prioritization. These summaries briefly reiterate the key

concepts and conclusions of the chapter.
5. Synopsis of design aids. Relationships used in design and throughout the book are collected inside the back cover

for easy reference.
6. The color blue is used (1) to highlight useful pedagogical features, (2) to highlight components under particular

scrutiny within block diagrams, (3) to distinguish curves on graphs, and (4) to lend a more realistic look to figures
of physical systems.

7. Review questions at the end of each chapter with solutions in the back to guide the student in self-study

• CHALLENGE Students of feedback control come from a wide range of disciplines.

Feedback control is an interdisciplinary field in that control is applied to systems in every conceivable area of
engineering. Consequently, some schools have separate introductory courses for control within the standard
disciplines and some, like Stanford, have a single set of courses taken by students from many disciplines. However, to
restrict the examples to one field is to miss much of the range and power of feedback but to cover the whole range
of applications is overwhelming. In this book we develop the interdisciplinary nature of the field and provide review
material for several of the most common technologies so that students from many disciplines will be comfortable
with the presentation. For Electrical Engineering students who typically have a good background in transform
analysis, we include in Chapter 2 an introduction to writing equations of motion for mechanical mechanisms. For
mechanical engineers, we include in Chapter 3 a review of the Laplace Transform and dynamic response as needed
in control. In addition, we introduce other technologies briefly and, from time to time, we present the equations of
motion of a physical system without derivation but with enough physical description to be understood from a
response point of view. Examples of some of the physical systems represented in the text include the read–write
head for a computer disk drive, a satellite tracking system, the fuel-air ratio in an automobile engine, and an airplane
automatic pilot system.

Outline of the Book
The contents of the book are organized into ten chapters and three appendixes. Optional sections of advanced or
enrichment material marked with a triangle (A) are included at the end of some chapters. There is additional
enrichment material on the website. Examples and problems based on this material are also marked with a triangle
(A). The appendices include background and reference material. The appendices in the book include Laplace
transform tables, answers to the end-of-chapter review questions, and a list of MATLAB commands. The appendixes
on the website include a review of complex variables, a review of matrix theory, some important results related to
State-Space design, a tutorial on RLTOOL for MATLAB, and optional material supporting or extending several of the



chapters.
In Chapter 1, the essential ideas of feedback and some of the key design issues are introduced. This chapter also

contains a brief history of control, from the ancient beginnings of process control to flight control and electronic
feedback amplifiers. It is hoped that this brief history will give a context for the field, introduce some of the key
figures who contributed to its development, and provide motivation to the student for the studies to come.

Chapter 2 is a short presentation of dynamic modeling and includes mechanical, electrical, electromechanical,
fluid, and thermodynamic devices. This material can be omitted, used as the basis of review homework to smooth
out the usual nonuniform preparation of students, or covered in-depth depending on the needs of the students.

Chapter 3 covers dynamic response as used in control. Again, much of this material may have been covered
previously, especially by electrical engineering students. For many students, the correlation between pole locations
and transient response and the effects of extra zeros and poles on dynamic response represent new material. Stability
of dynamic systems is also introduced in this Chapter. This material needs to be covered carefully.

Chapter 4 presents the basic equations and transfer functions of feedback along with the definitions of the
sensitivity function. With these tools, open-loop and closed-loop control are compared with respect to disturbance
rejection, tracking accuracy, and sensitivity to model errors. Classification of systems according to their ability to track
polynomial reference signals or to reject polynomial disturbances is described with the concept of system type.
Finally, the classical proportional, integral, and derivative (PID) control structure is introduced and the influence of
the controller parameters on a system’s characteristic equation is explored along with PID tuning methods. The end-
of-chapter optional section treats digital control.

Following the overview of feedback in Chapter 4, the core of the book presents the design methods based on root
locus, frequency response, and state-variable feedback in Chapters 5, 6, and 7, respectively.

Chapter 8 develops in more detail the tools needed to design feedback control for implementation in a digital
computer. However, for a complete treatment of feedback control using digital computers, the reader is referred to
the companion text,Digital Control of Dynamic Systems, by Franklin, Powell, and Workman; Ellis-Kagle Press, 1998.

In Chapter 9 the nonlinear material includes techniques for the linearization of equations of motion, analysis of
zero memory nonlinearity as a variable gain, frequency response as a describing function, the phase plane, Lyapunov
stability theory, and the circle stability criterion.

In Chapter 10 the three primary approaches are integrated in several case studies and a framework for design is
described that includes a touch of the real-world context of practical control design.

Course Configurations
The material in this text can be covered flexibly. Most first-course students in controls will have some dynamics and
Laplace transforms. Therefore, Chapter 2 and most of Chapter 3 would be a review for those students. In a ten-week
quarter, it is possible to review Chapter 3, and all of Chapters 1, 4, 5, and 6. Most boxed sections should be omitted.
In the second quarter, Chapters 7, and 9 can be covered comfortably including the boxed sections. Alternatively,
some boxed sections could be omitted and selected portions of Chapter 8 included. A semester course should
comfortably accommodate Chapters 1-7, including the review material of Chapters 2 and 3, if needed. If time
remains after this core coverage, some introduction of digital control from Chapter 8, selected nonlinear issues from
Chapter 9 and some of the case studies from Chapter 10 may be added.

The entire book can also be used for a three-quarter sequence of courses consisting of modeling and dynamic



response (Chapters 2 and 3), classical control (Chapters 4-6), and modern control (Chapters 7-10).
Two basic 10-week courses are offered at Stanford and are taken by seniors and first-year graduate students who

have not had a course in control, mostly in the departments of Aeronautics and Astronautics, Mechanical Engineering,
and Electrical Engineering. The first course reviews Chapters 2 and 3 and covers Chapters 4-6. The more advanced
course is intended for graduate students and reviews Chapters 4-6 and covers Chapters 7-10. This sequence
complements a graduate course in linear systems and is the prerequisite to courses in digital control, nonlinear
control, optimal control, flight control, and smart product design. Several of the subsequent courses include extensive
laboratory experiments. Prerequisites for the course sequence include dynamics or circuit analysis and Laplace
transforms.

Prerequisites to This Feedback Control Course
This book is for a first course at the senior level for all engineering majors. For the core topics in Chapters 4-7,
prerequisite understanding of modeling and dynamic response is necessary. Many students will come into the course
with sufficient background in those concepts from previous courses in physics, circuits, and dynamic response. For
those needing review, Chapters 2 and 3 should fill in the gaps.

An elementary understanding of matrix algebra is necessary to understand the state-space material. While all
students will have much of this in prerequisite math courses, a review of the basic relations is given in Appendix WE
and a brief treatment of particular material needed in control is given at the start of Chapter 7. The emphasis is on
the relations between linear dynamic systems and linear algebra.

Supplements
The Web site mentioned above includes the dot-m and dot-mdl files used to generate all the MATLAB figures in the
book and these may be copied and distributed to the students as desired. An instructor’s manual with complete
solutions to all homework problems is available. The Web site also includes advanced material and appendixes.
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1 An Overview and Brief History of Feedback Control

A Perspective on Feedback Control
Feedback control of dynamic systems is a very old concept with many characteristics that have evolved over time.
The central idea is that a system’s output can be measured and fed back to a controller of some kind and used to
effect the control. It has been shown that signal feedback can be used to control a vast array of dynamic systems
including, for example, airplanes and hard-disk data storage devices. To achieve good control there are four basic
requirements.

• The system must be stable at all times
• The system output must track the command input signal
• The system output must be prevented from responding too much to disturbance inputs
• These goals must be met even if the model used in the design is not completely accurate or if the dynamics of the

physical system change over time or with environmental changes.

The requirement of stability is basic and may have two causes. In the first place, the system may be unstable. This
is illustrated by the Segway vehicle, which will simply fall over if the control is turned off. On the other hand, adding
feedback may itself drive the system unstable. In ordinary experience such an instability is called a “vicious circle,”
where the feedback signal that is circled back makes the situation worse rather than better.

There are many examples of the requirement of having the system’s output track a command signal. For example,
driving a car so that the vehicle stays in its lane is command tracking. Similarly, flying an airplane in the approach to
a landing strip requires that a glide path be accurately tracked.

Disturbance rejection is one of the very oldest applications of feedback control. In this case, the “command” is
simply a constant set point to which the output is to be held as the environment changes. A very common example
of this is the room thermostat whose job it is to hold the room temperature close to the set point as outside
temperature and wind change, and as doors and windows are opened and closed.

Finally, to design a controller for a dynamic system, it is necessary to have a mathematical model of the dynamic
response of the system in all but the simplest cases. Unfortunately, almost all physical systems are very complex and
often nonlinear. As a result, the design will usually be based on a simplified model and must be robust enough that
the system meets its performance requirements when applied to the real device. Furthermore, again in almost all
cases, as time and the environment change, even the best of models will be in error because the system dynamics
have changed. Again, the design must not be too sensitive to these inevitable changes and it must work well enough



regardless.
The tools available to control engineers to solve these problems have evolved over time as well. Especially

important has been the development of digital computers both as computation aids and as embedded control
devices. As computation devices, computers have permitted identification of increasingly complex models and the
application of very sophisticated control design methods. Also, as embedded devices, digital devices have permitted
the implementation of very complex control laws. Control engineers must not only be skilled in manipulating these
design tools but also need to understand the concepts behind these tools to be able to make the best use of them.
Also important is that the control engineer understand both the capabilities and the limitations of the controller
devices available.

Chapter Overview
In this chapter we begin our exploration of feedback control using a simple familiar example: a household furnace
controlled by a thermostat. The generic components of a control system are identified within the context of this
example. In another example—an automobile cruise control—we develop the elementary static equations and assign
numerical values to elements of the system model in order to compare the performance of open-loop control to that
of feedback control when dynamics are ignored. In order to provide a context for our studies and to give you a
glimpse of how the field has evolved, Section 1.3 provides a brief history of control theory and design. In addition,
later chapters have brief sections of additional historical notes on the topics covered there. Finally, Section 1.4
provides a brief overview of the contents and organization of the entire book.

1.1 A Simple Feedback System
In feedback systems the variable being controlled—such as temperature or speed—is measured by a sensor and the
measured information is fed back to the controller to influence the controlled variable. The principle is readily
illustrated by a very common system, the household furnace controlled by a thermostat. The components of this
system and their interconnections are shown in Fig. 1.1. Such a picture identifies the major parts of the system and
shows the directions of information flow from one component to another.

We can easily analyze the operation of this system qualitatively from the graph. Suppose both the temperature in
the room where the thermostat is located and the outside temperature are significantly below the reference
temperature (also called the set point) when power is applied. The thermostat will be on and the control logic will
open the furnace gas valve and light the fire box. This will cause heat Qin to be supplied to the house at a rate that
will be significantly larger than the heat loss Qout. As a result, the room temperature will rise until it exceeds the
thermostat reference setting by a small amount. At this time the furnace will be turned off and the room temperature
will start to fall toward the outside value. When it falls a small amount below the set point, the thermostat will come
on again and the cycle will repeat. Typical plots of room temperature along with the furnace cycles of on and off are
shown in Fig. 1.1. The outside temperature is held at 50°F and the thermostat is initially set at 55°F. At 6 a.m., the
thermostat is stepped to 65°F and the furnace brings it to that level and cycles the temperature around that figure
thereafter.1 Notice that the house is well insulated, so that the fall of temperature with the furnace off is significantly
slower than the rise with the furnace on. From this example, we can identify the generic components of the
elementary feedback control system as shown in Fig. 1.2.



Figure 1.1
(a) Component block diagram of a room temperature control system; (b) plot of room temperature and furnace
action

The central component of this feedback system is the process whose output is to be controlled. In our example the
process would be the house whose output is the room temperature and the disturbance to the process is the flow of
heat from the house due to conduction through the walls and roof to the lower outside temperature. (The outward
flow of heat also depends on other factors such as wind, open doors, etc.) The design of the process can obviously
have a major impact on the effectiveness of the controls. The temperature of a well-insulated house with thermopane
windows is clearly easier to control than otherwise. Similarly, the design of aircraft with control in mind makes a
world of difference to the final performance. In every case, the earlier the issues of control are introduced into the
process design, the better. The actuator is the device that can influence the controlled variable of the process and in
our case, the actuator is a gas furnace. Actually, the furnace usually has a pilot light or striking mechanism, a gas
valve, and a blower fan, which turns on or off depending on the air temperature in the furnace. These details
illustrate the fact that many feedback systems contain components that themselves form other feedback systems.2 The
central issue with the actuator is its ability to move the process output with adequate speed and range. The furnace
must produce more heat than the house loses on the worst day and must distribute it quickly if the house
temperature is to be kept in a narrow range. Power, speed, and reliability are usually more important than accuracy.
Generally, the process and the actuator are intimately connected and the control design centers on finding a suitable
input or control signal to send to the actuator. The combination of process and actuator is called the plant and the
component that actually computes the desired control signal is the controller. Because of the flexibility of electrical
signal processing, the controller typically works on electrical signals although the use of pneumatic controllers based
on compressed air has a long and important place in process control. With the development of digital technology,



cost-effectiveness and flexibility have led to the use of digital signal processors as the controller in an increasing
number of cases. The component labeled thermostat in Fig. 1.1 measures the room temperature and is called the
sensor in Fig. 1.2, a device whose output inevitably contains sensor noise. Sensor selection and placement are very
important in control design, for it is sometimes not possible for the true controlled variable and the sensed variable
to be the same. For example, although we may really wish to control the house temperature as a whole, the
thermostat is in one particular room, which may or may not be at the same temperature as the rest of the house. For
instance, if the thermostat is set to 68°F but is placed in the living room near a roaring fireplace, a person working in
the study could still feel uncomfortably cold.3,4 As we will see, in addition to placement, important properties of a
sensor are the accuracy of the measurements as well as low noise, reliability, and linearity. The sensor will typically
convert the physical variable into an electrical signal for use by the controller. Our general system also includes an
input filter whose role is to convert the reference signal to electrical form for later manipulation by the controller. In
some cases the input filter can modify the reference command input in ways that improve the system response.
Finally, there is a comparator to compute the difference between the reference signal and the sensor output to give
the controller a measure of the system error.

Figure 1.2
Component block diagram of an elementary feedback control

This text will present methods for analyzing feedback control systems and their components and will describe the
most important design techniques engineers can use with confidence in applying feedback to solve control problems.
We will also study the specific advantages of feedback that compensate for the additional complexity it demands.
However, although the temperature control system is easy to understand, it is nonlinear as seen by the fact that the
furnace is either on or off, and to introduce linear controls we need another example.

1.2 A First Analysis of Feedback
The value of feedback can be readily demonstrated by quantitative analysis of a simplified model of a familiar
system, the cruise control of an automobile (Fig. 1.3). To study this situation analytically, we need a mathematical
model of our system in the form of a set of quantitative relationships among the variables. For this example, we
ignore the dynamic response of the car and consider only the steady behavior. (Dynamics will, of course, play a
major role in later chapters.) Furthermore, we assume that for the range of speeds to be used by the system, we can
approximate the relations as linear. After measuring the speed of the vehicle on a level road at 65 mph, we find that



a 1° change in the throttle angle (our control variable) causes a 10-mph change in speed. From observations while
driving up and down hills it is found that when the grade changes by 1%, we measure a speed change of 5 mph. The
speedometer is found to be accurate to a fraction of 1 mph and will be considered exact. With these relations, we can
draw the block diagram of the plant (Fig. 1.4), which shows these mathematical relationships in graphical form. In
this diagram the connecting lines carry signals and a block is like an ideal amplifier which multiplies the signal at its
input by the value marked in the block to give the output signal. To sum two or more signals, we show lines for the
signals coming into a summer, a circle with the summation sign Σ inside. An algebraic sign (plus or minus) beside
each arrow head indicates whether the input adds to or subtracts from the total output of the summer. For this
analysis, we wish to compare the effects of a 1% grade on the output speed when the reference speed is set for 65
with and without feedback to the controller.

Figure 1.3
Component block diagram of automobile cruise control

Figure 1.4
Block diagram of the cruise control plant



Figure 1.5
Open-loop cruise control

Open-loop control
In the first case, shown in Fig. 1.5, the controller does not use the speedometer reading but sets u = r/10. This is

an example of an open-loop control system. The term open loop refers to the fact that there is no closed path or
loop around which the signals go in the block diagram. In our simple example the open-loop output speed, yol, is
given by the equations

The error in output speed is

and the percent error is

If r = 65 and the road is level then w = 0 and the speed will be 65 with no error. However, if w = 1
corresponding to a 1% grade, then the speed will be 60 and we have a 5-mph error, which is a 7.69% error in the
speed. For a grade of 2%, the speed error would be 10 mph, which is an error of 15.38%, and so on. The example
shows that there would be no error when w = 0 but this result depends on the controller gain being the exact
inverse of the plant gain of 10. In practice, the plant gain is subject to change and if it does, errors are introduced by
this means also. If there is an error in the plant gain in open-loop control, the percent speed error would be the
same as the percent plant-gain error.

The block diagram of a feedback scheme is shown in Fig. 1.6, where the controller gain has been set to 10. Recall
that in this simple example, we have assumed that we have an ideal sensor whose block is not shown. In this case
the equations are



yd = 10u – 5w,
u = 10(r – ycl).

Combinig them yields

Thus the feedback has reduced the sensitivity of the speed error to the grade by a factor of 101 when compared with
the open-loop system. Note, however, that there is now a small speed error on level ground because even when w =
0,

This error will be small as long as the loop gain (product of plant and controller gains) is large.5 If we again consider
a reference speed of 65 mph and compare speeds with a 1% grade, the percent error in the output speed is

Figure 1.6
Closed-loop cruise control



The design trade-off
The reduction of the speed sensitivity to grade disturbances and plant gain in our example is due to the loop gain

of 100 in the feedback case. Unfortunately, there are limits to how high this gain can be made; when dynamics are
introduced, the feedback can make the response worse than before, or even cause the system to become unstable.
The dilemma is illustrated by another familiar situation where it is easy to change a feedback gain. If one tries to
raise the gain of a public-address amplifier too much, the sound system will squeal in a most unpleasant way. This is
a situation where the gain in the feedback loop—from the speakers to the microphone through the amplifier back to
the speakers—is too much. The issue of how to get the gain as large as possible to reduce the errors without making
the system become unstable and squeal is what much of feedback control design is all about.

1.3 A Brief History

Liquid-level control
An interesting history of early work on feedback control has been written by O. Mayr (1970), who traces the control
of mechanisms to antiquity. Two of the earliest examples are the control of flow rate to regulate a water clock and
the control of liquid level in a wine vessel, which is thereby kept full regardless of how many cups are dipped from
it. The control of fluid flow rate is reduced to the control of fluid level, since a small orifice will produce constant
flow if the pressure is constant, which is the case if the level of the liquid above the orifice is constant. The
mechanism of the invented in antiquity and still used today (for example, in the water tank of the ordinary flush
toilet) is the float valve. As the liquid level falls, so does the float, allowing the flow into the tank to increase; as the
level rises, the flow is reduced and if necessary cut off. Figure 1.7 shows how a float valve operates. Notice here that
sensor and actuator are not separate devices but are contained in the carefully shaped float-and-supply-tube
combination.

Drebbel’s incubator
A more recent invention described by Mayr (1970) is a system, designed by Cornelis Drebbel in about 1620, to

control the temperature of a furnace used to heat an incubator6 (Fig. 1.8). The furnace consists of a box to contain
the fire, with a flue at the top fitted with a damper. Inside the fire box is the double-walled incubator box, the
hollow walls of which are filled with water to transfer the heat evenly to the incubator. The temperature sensor is a
glass vessel filled with alcohol and mercury and placed in the water jacket around the incubator box. As the fire
heats the box and

Figure 1.7 Early historical control of liquid level and flow water, the alcohol expands and the riser floats up,
lowering the damper on the flue. If the box is too cold, the alcohol contracts, the damper is opened, and the fire
burns hotter. The desired temperature is set by the length of the riser, which sets the opening of the damper for a
given expansion of the alcohol.



Figure 1.8 Drebbel’s incubator for hatching chicken eggs

Source: Adapted from Mayr, 1970

Fly-ball governor
A famous problem in the chronicles of control systems was the search for a means to control the rotation speed of

a shaft. Much early work (Fuller, 1976) seems to have been motivated by the desire to automatically control the
speed of the grinding stone in a wind-driven flour mill. Of various methods attempted, the one with the most
promise used a conical pendulum, or fly-ball governor, to measure the speed of the mill. The sails of the driving
windmill were rolled up or let out with ropes and pulleys, much like a window shade, to maintain fixed speed.
However, it was adaptation of these principles to the steam engine in the laboratories of James Watt around 1788
that made the fly-ball governor famous. An early version is shown in Fig. 1.9, while Figs. 1.10 and 1.11 show a close-
up of a fly-ball governor and a sketch of its components.

The action of the fly-ball governor (also called a centrifugal governor) is simple to describe. Suppose the engine is
operating in equilibrium. Two weighted balls spinning around a central shaft can be seen to describe a cone of a
given angle with the shaft. When a load is suddenly applied to the engine, its speed will slow, and the balls of the
governor will drop to a smaller cone. Thus the ball angle is used to sense the output speed. This action, through the
levers, will open the main valve to the steam chest (which is the actuator) and admit more steam to the engine,
restoring most of the lost speed. To hold the steam valve at a new position it is necessary for the fly balls to rotate at



a different angle, implying that the speed under load is not exactly the same as before. We saw this effect earlier with
cruise control, where feedback control gave a very small error. To recover the exact same speed in the system, it
would require resetting the desired speed setting by changing the length of the rod from the lever to the valve.
Subsequent inventors introduced mechanisms that integrated the speed error to provide automatic reset. In Chapter 4
we will analyze these systems to show that such integration can result in feedback systems with zero steady-state
error to constant disturbances.

Figure 1.9
Photograph of an early Watt steam engine

Source: British Crown Copyright, Science Museum, London

Figure 1.10
Close-up of the fly-ball governor

Source: British Crown Copyright, Science Museum, London

Beginnings of control theory
Because Watt was a practical man, like the millwrights before him, he did not engage in theoretical analysis of the

governor. Fuller (1976) has traced the early development of control theory to a period of studies from Christian
Huygens in 1673 to James Clerk Maxwell in 1868. Fuller gives particular credit to the contributions of G. B. Airy,



professor of mathematics and astronomy at Cambridge University from 1826 to 1835 and Astronomer Royal at
Greenwich Observatory from 1835 to 1881. Airy was concerned with speed control; if his telescopes could be rotated
counter to the rotation of the earth, a fixed star could be observed for extended periods. Using the centrifugal-
pendulum governor he discovered that it was capable of unstable motion—“and the machine (if I may so express
myself) became perfectly wild” (Airy, 1840; quoted in Fuller, 1976). According to Fuller, Airy was the first worker to
discuss instability in a feedback control system and the first to analyze such a system using differential equations.
These attributes signal the beginnings of the study of feedback control dynamics.

Figure 1.11
Operating parts of a fly-ball governor

Stability analysis
The first systematic study of the stability of feedback control was apparently given in the paper “On Governors” by

J. C. Maxwell (1868).7 In this paper, Maxwell developed the differential equations of the governor, linearized them
about equilibrium, and stated that stability depends on the roots of a certain (characteristic) equation having negative
real parts. Maxwell attempted to derive conditions on the coefficients of a polynomial that would hold if all the
roots had negative real parts. He was successful only for second- and third-order cases. Determining criteria for
stability was the problem for the Adams Prize of 1877, which was won by E. J. Routh.8 His criterion, developed in
his essay, remains of sufficient interest that control engineers are still learning how to apply his simple technique.
Analysis of the characteristic equation remained the foundation of control theory until the invention of the electronic
feedback amplifier by H. S. Black in 1927 at Bell Telephone Laboratories.

Shortly after publication of Routh’s work, the Russian mathematician A. M. Lyapunov (1893) began studying the
question of stability of motion. His studies were based on the nonlinear differential equations of motion and also
included results for linear equations that are equivalent to Routh’s criterion. His work was fundamental to what is
now called the state-variable approach to control theory, but was not introduced into the control literature until
about 1958.



Frequency response
The development of the feedback amplifier is briefly described in an interesting article based on a talk by H. W.
Bode (1960) reproduced in Bellman and Kalaba (1964). With the introduction of electronic amplifiers, long-distance
telephoning became possible in the decades following World War I. However, as distances increased, so did the loss
of electrical energy; in spite of using larger-diameter wires, increasing numbers of amplifiers were needed to replace
the lost energy. Unfortunately, large numbers of amplifiers resulted in much distortion since the small nonlinearity of
the vacuum tubes then used in electronic amplifiers were multiplied many times. To solve the problem of reducing
distortion, Black proposed the feedback amplifier. As mentioned earlier in connection with the automobile cruise
control, the more we wish to reduce errors (or distortion), the more feedback we need to apply. The loop gain from
actuator to plant to sensor to actuator must be made very large. With high gain the feedback loop begins to squeal
and is unstable. Here was Maxwell’s and Routh’s stability problem again, except that in this technology the dynamics
were so complex (with differential equations of order 50 being common) that Routh’s criterion was not very helpful.
So the communications engineers at Bell Telephone Laboratories, familiar with the concept of frequency response
and the mathematics of complex variables, turned to complex analysis. In 1932 H. Nyquist published a paper
describing how to determine stability from a graphical plot of the loop frequency response. From this theory there
developed an extensive methodology of feedback-amplifier design described by Bode (1945) and extensively used
still in the design of feedback controls. Nyquist and Bode plots are discussed in more detail in Chapter 6.

PID control
Simultaneous with the development of the feedback amplifier, feedback control of industrial processes was

becoming standard. This field, characterized by processes that are not only highly complex but also nonlinear and
subject to relatively long time delays between actuator and sensor, developed proportional-integral-derivative (PID)
control. The PID controller was first described by Callender et al. (1936). This technology was based on extensive
experimental work and simple linearized approximations to the system dynamics. It led to standard experiments
suitable to application in the field and eventually to satisfactory “tuning” of the coefficients of the PID controller.
(PID controllers are covered in Chapter 4.) Also under development at this time were devices for guiding and
controlling aircraft; especially important was the development of sensors for measuring aircraft altitude and speed.
An interesting account of this branch of control theory is given in McRuer (1973).
An enormous impulse was given to the field of feedback control during World War II. In the United States engineers
and mathematicians at the MIT Radiation Laboratory combined their knowledge to bring together not only Bode’s
feedback amplifier theory and the PID control of processes but also the theory of stochastic processes developed by
N. Wiener (1930). The result was the development of a comprehensive set of techniques for the design of
servomechanisms, as control mechanisms came to be called. Much of this work was collected and published in the
records of the Radiation Laboratory by James et al. (1947).

Root locus
Another approach to control systems design was introduced in 1948 by W. R. Evans, who was working in the field

of guidance and control of aircraft. Many of his problems involved unstable or neutrally stable dynamics, which
made the frequency methods difficult, so he suggested returning to the study of the characteristic equation that had
been the basis of the work of Maxwell and Routh nearly 70 years earlier. However, Evans developed techniques and



rules allowing one to follow graphically the paths of the roots of the characteristic equation as a parameter was
changed. His method, the root locus, is suitable for design as well as for stability analysis and remains an important
technique today. The root-locus method developed by Evans is covered in Chapter 5.

State-variable design
During the 1950s several authors, including R. Bellman and R. E. Kalman in the United States and L. S. Pontryagin

in the U.S.S.R., began again to consider the ordinary differential equation (ODE) as a model for control systems.
Much of this work was stimulated by the new field of control of artificial earth satellites, in which the ODE is a
natural form for writing the model. Supporting this endeavor were digital computers, which could be used to carry
out calculations unthinkable 10 years before. (Now, of course, these calculations can be done by any engineering
student with a desktop computer.) The work of Lyapunov was translated into the language of control at about this
time, and the study of optimal controls, begun by Wiener and Phillips during World War II, was extended to
optimizing trajectories of nonlinear systems based on the calculus of variations. Much of this work was presented at
the first conference of the newly formed International Federation of Automatic Control held in Moscow in 1960.9
This work did not use the frequency response or the characteristic equation but worked directly with the ODE in
“normal” or “state” form and typically called for extensive use of computers. Even though the foundations of the
study of ODEs were laid in the late 19th century, this approach is now often called modern control to distinguish it
from classical control, which uses the complex variable methods of Bode and others. In the period from the 1970s
continuing through the present, we find a growing body of work that seeks to use the best features of each technique.

Modern control Classical control
Thus we come to the current state of affairs where the principles of control are applied in a wide range of

disciplines, including every branch of engineering. The well-prepared control engineer needs to understand the basic
mathematical theory that underlies the field and must be able to select the best design technique suited to the
problem at hand. With the ubiquitous use of computers it is especially important that the engineer is able to use his
or her knowledge to guide and verify calculations done on the computer.10

1.4 An Overview of the Book
The central purpose of this book is to introduce the most important techniques for single-input-single—output
control systems design. Chapter 2 will review the techniques necessary to obtain models of the dynamic systems that
we wish to control. These include model making for mechanical, electric, electromechanical, and a few other
physical systems. Chapter 2 also describes briefly the linearization of nonlinear models, although this will be
discussed more thoroughly in Chapter 9.

In Chapter 3 and Appendix A we will discuss the analysis of dynamic response using Laplace transforms along
with the relationship between time response and the poles and zeros of a transfer function. The chapter also includes
a discussion of the critical issue of system stability, including the Routh test.

In Chapter 4 we will cover the basic equations and features of feedback. An analysis of the effects of feedback on
disturbance rejection, tracking accuracy, sensitivity to parameter changes, and dynamic response will be given. The
idea of elementary PID control is discussed. Also in this chapter a brief introduction is given to the digital
implementation of transfer functions and thus of linear time-invariant controllers so that the effects of digital control



can be compared with analog controllers as these are designed.
In Chapters 5, 6, and 7 we introduce the techniques for realizing the control objectives first identified in Chapter 4

in more complex dynamic systems. These methods include the root locus, frequency response, and state-variable
techniques. These are alternative means to the same end and have different advantages and disadvantages as guides
to design of controls. The methods are fundamentally complementary, and each needs to be understood to achieve
the most effective control systems design.

In Chapter 8 we develop further the ideas of implementing controllers in a digital computer that were introduced
in Chapter 4. The chapter addresses how one “digitizes” the control equations developed in Chapters 5 through 7,
how the sampling introduces a delay that tends to destabilize the system, and how the sample rate needs to be a
certain multiple of the system frequencies for good performance. The analysis of sampled systems requires another
analysis tool—the z-transform—and that tool is described and its use is illustrated.

Most real systems are nonlinear to some extent. However, the analyses and design methods in most of the bookup
to here are for linear systems. In Chapter 9 we explain why the study of linear systems is pertinent, why it is useful
for design even though most systems are nonlinear, and how designs for linear systems can be modified to handle
most common nonlinearities in the systems being controlled. The chapter covers saturation, describing functions and
the anti windup controller, and contains a brief introduction to Lyapunov stability theory.

Application of all the techniques to problems of substantial complexity are discussed in Chapter 10, in which the
design methods are brought to bear simultaneously on specific case studies.

Computer aids
Control designers today make extensive use of computer-aided control systems design software that is

commercially available. Furthermore, most instructional programs in control systems design make software tools
available to the students. The most widely used software for the purpose are MATLAB® and SIMULINK® from The
Mathworks. MATLAB routines have been included throughout the text to help illustrate this method of solution and
many problems require computer aids for solution. Many of the figures in the book were created using MATLAB and
the files for their creation are available free of charge on the web at the site: http://www.FPE6e.com. Students and
instructors are invited to use these files as it is believed that they should be helpful in learning how to use computer
methods to solve control problems.

Needless to say, many topics are not treated in the book. We do not extend the methods to multivariable controls,
which are systems with more than one input and/or output, except as part of the case study of the rapid thermal
processor in Chapter 10. Nor is optimal control treated in more than a very introductory manner in Chapter 7.

Also beyond the scope of this text is a detailed treatment of the experimental testing and modeling of real
hardware, which is the ultimate test of whether any design really works. The book concentrates on analysis
anddesign of linear controllers for linear plant models—not because we think that is the final test of a design, but
because that is the best way to grasp the basic ideas of feedback and is usually the first step in arriving at a
satisfactory design. We believe that mastery of the material here will provide a foundation of understanding on
which to build knowledge of these more advanced and realistic topics—a foundation strong enough to allow one to
build a personal design method in the tradition of all those who worked to give us the knowledge we present here.

SUMMARY



• Control is the process of making a system variable adhere to a particular value, called the reference value. A
system designed to follow a changing reference is called tracking control or a servo. A system designed to maintain
an output fixed regardless of the disturbances present is called a regulating control or a regulator.

• Two kinds of control were defined and illustrated based on the information used in control and named by the
resulting structure. In open-loop control the system does not measure the output and there is no correction of the
actuating signal to make that output conform to the reference signal. In closed-loop control the system includes a
sensor to measure the output and uses feedback of the sensed value to influence the control variable.

• A simple feedback system consists of the process whose output is to be controlled, the actuator whose output
causes the process output to change, reference and output sensors that measure these signals, and the controller
that implements the logic by which the control signal that commands the actuator is calculated.

• Block diagrams are helpful for visualizing system structure and the flow of information in control systems. The
most common block diagrams represent the mathematical relationships among the signals in a control system.

• The theory and design techniques of control have come to be divided into two categories: classical control methods
use the Laplace or Fourier Transforms and were the dominant methods for control design until about 1960 while
modern control methods are based on ODEs in state form and were introduced into the field starting in the1960s.
Many connections have been discovered between the two categories and well prepared engineers must be familiar
with both techniques.

REVIEW QUESTIONS
1. What are the main components of a feedback control system?
2. What is the purpose of the sensor?
3. Give three important properties of a good sensor.
4. What is the purpose of the actuator?
5. Give three important properties of a good actuator.
6. What is the purpose of the controller? Give the input(s) and output(s) of the controller.
7. What physical variable(s) of a process can be directly measured by a Hall effect sensor?
8. What physical variable is measured by a tachometer?
9. Describe three different techniques for measuring temperature.
10. Why do most sensors have an electrical output, regardless of the physical nature of the variable being measured?

PROBLEMS
1.1 Draw a component block diagram for each of the following feedback control systems.

(a) The manual steering system of an automobile
(b) Drebbel’s incubator
(c) The water level controlled by a float and valve
(d) Watt’s steam engine with fly-ball governor

In each case, indicate the location of the elements listed below and give the units associated with each signal.
• the process
• the process desired output signal
• the sensor



• the actuator
• the actuator output signal
• the controller
• the controller output signal
• the reference signal
• the error signal

Notice that in a number of cases the same physical device may perform more than one of these functions.
1.2 Identify the physical principles and describe the operation of the thermostat in your home or office.
1.3 A machine for making paper is diagrammed in Fig. 1.12. There are two main parameters under feedback control:

the density of fibers as controlled by the consistency of the thick stock that flows from the headbox onto the wire,
and the moisture content of the final product that comes out of the dryers. Stock from the machine chest is diluted
by white water returning from under the wire as controlled by a control valve (CV). A meter supplies a reading of
the consistency. At the “dry end” of the machine, there is a moisture sensor. Draw a signal graph and identify the
nine components listed in Problem 1.1 part (d) for
(a) control of consistency
(b) control of moisture

1.4 Many variables in the human body are under feedback control. For each of the following controlled variables,
draw a graph showing the process being controlled, the sensor that measures the variable, the actuator that causes
it to increase and/or decrease, the information path that completes the feedback path, and the disturbances that
upset the variable. You may need to consult an encyclopedia or textbook on human physiology for information
on this problem.

Figure 1.12 A papermaking machine

Source: From Astrom (1970, p. 192); reprinted with permission

(a) blood pressure
(b) blood sugar concentration
(c) heart rate
(d) eye-pointing angle
(e) eye-pupil diameter

1.5 Draw a graph of the components for temperature control in a refrigerator or automobile air-conditioning system.
1.6 Draw a graph of the components for an elevator-position control. Indicate how you would measure the position



of the elevator car. Consider a combined coarse and fine measurement system. What accuracies do you suggest for
each sensor? Your system should be able to correct for the fact that in elevators for tall buildings there is
significant cable stretch as a function of cab load.

1.7 Feedback control requires being able to sense the variable being controlled. Because electrical signals can be
transmitted, amplified, and processed easily, often we want to have a sensor whose output is a voltage or current
proportional to the variable being measured. Describe a sensor that would give an electrical output proportional
to:
(a) temperature
(b) pressure
(c) liquid level
(d) flow of liquid along a pipe (or blood along an artery) force
(e) linear position
(f) rotational position
(g) linear velocity
(h) rotational speed
(i) translational acceleration
(j) torque

1.8 Each of the variables listed in Problem 1.7 can be brought under feedback control. Describe an actuator that could
accept an electrical input and be used to control the variables listed. Give the units of the actuator output signal.



1 Notice that the furnace had come on a few minutes before 6 a.m. on its regular nighttime schedule.
2 Jonathan Swift (1733) said it this way: “So, Naturalists observe, a flea Hath smaller fleas that on him prey; And these have smaller still to bite ‘em;
And so proceed, ad infinitum.”
3 In the renovations of the kitchen in the house of one of the authors, the new ovens were placed against the wall where the thermostat was mounted
on the other side. Now when dinner is baked in the kitchen on a cold day, the author freezes in his study unless the thermostat is reset.
4 The story is told of the new employee at the nitroglycerin factory who was to control the temperature of a critical part of the process manually. He
was told to “keep that reading below 300°.” On a routine inspection tour, the supervisor realized that the batch was dangerously hot and found the
worker holding the thermometer under cold water tap to bring it down to 300°. They got out just before the explosion. Moral: sometimes automatic
control is better than manual.
5 In case the error is too large, it is common practice to reset the reference, in this case , so the out reaches the true desired value.
6 French doctors introduced incubators into the care of premature babies over 100 years ago.
7 An exposition of Maxwell’s contribution is given in Fuller (1976).
8 E. J. Routh was first academically in his class at Cambridge University in 1854, while J. C. Maxwell was second. In 1877 Maxwell was on the Adams
Prize Committee that chose the problem of stability as the topic for the year.
9 Optimal control gained a large boost when Bryson and Denham (1962) showed that the path of a supersonic aircraft should actually dive at one
point in order to reach a given altitude in minimum time. This nonintuitive result was later demonstrated to skeptical fighter pilots in flight tests.
10 For more background on the history of control, see the survey papers appearing in the IEEE Control Systems Magazine of November 1984 and June
1996.



2 Dynamic Models

A Perspective on Dynamic Models
The overall goal of feedback control is to use the principle of feedback to cause the output variable of a dynamic
process to follow a desired reference variable accurately, regardless of the reference variable’s path and regardless of
any external disturbances or any changes in the dynamics of the process. This complex goalis met as the result of a
number of simple, distinct steps. The first of these is to develop a mathematical description (called a dynamic
model) of the process to be controlled. The term model, as it is used and understood by control engineers, means a
set of differential equations that describe the dynamic behavior of the process. A model can be obtained using
principles of the underlying physics or by testing a prototype of the device, measuring its response to inputs, and
using the data to construct an analytical model. We will focus only on using physics in this chapter. There are entire
books written on experimentally determining models, sometimes called System Identification, and these techniques
are described very briefly in Chapter 3. A careful control system designer will typically rely on at least some
experiments to verify the accuracy of the model when it is derived from physical principles.

In many cases the modeling of complex processes is difficult and expensive, especially when the important steps of
building and testing prototypes are included. However, in this introductory text, we will focus on the most basic
prindples of modeling for the most common physical systems. More comprehensive sources and specialized texts will
be referenced throughout the text where appropriate for those wishing more detail.

In later chapters we will explore a variety of analysis methods for dealing with the equations of motion and their
solution for purposes of designing feedback control systems.

Chapter Overview
The fundamental step in building a dynamic model is writing the equations of motion for the system. Through
discussion and a variety of examples, Section 2.1 demonstrates how to write the equations of motion for a variety of
mechanical systems. In addition, the section demonstrates the use of MATLAB® to find the time response of a simple
system to a step input. Furthermore, the ideas of transfer functions and block diagrams are introduced, along with the
idea that problems can also be solved via SIMULINK®.

Electric circuits and electromechanical systems are modeled in Sections 2.2 and 2.3, respectively.
For those wanting modeling examples for more diverse dynamic systems, Section 2.4, which is optional, extends

the discussion to heat and fluid-flow systems.
The chapter concludes with Section 2.5, a discussion of the history behind the discoveries that led to the

knowledge that we take for granted today.
The differential equations developed in modeling are often nonlinear. Because nonlinear systems are significantly

more challenging to solve than linear ones and because linear models are usually adequate, the emphasis in the early
chapters is primarily on linear systems. However, we do show how to linearize simple nonlinearities herein Chapter
2 and show how to use SIMULINK to numerically solve for the motion of a nonlinear system. A much more extensive



discussion of linearization and analysis of nonlinear systems is contained in Chapter 9.
In order to focus on the important first step of developing mathematical models, we will defer explanation of the

computational methods used to solve the equations of motion developed in this chapter until Chapter 3.

2.1 Dynamics of Mechanical Systems
2.1.1 Translational Motion

Newton’s law for translational motion
The cornerstone for obtaining a mathematical model, or the equations of motion, for any mechanical system is
Newton’s law,

where
F = the vector sum of all forces applied to each body in a system, newtons (N) or pounds (lb),
a = the vector acceleration of each body with respect to an inertial reference frame (i.e., one that is neither

accelerating nor rotating with respect to the stars); often called inertial acceleration, m/sec2 or ft/sec2,
m = mass of the body, kg or slug.

Note that here in Eq. (2.1), as throughout the text, we use the convention of boldfacing the type to indicate that the
quantity is a matrix or vector, possibly a vector function.

Figure 2.1 Cruise control model

Use of free-body diagram in applying Newton’s law
In SI units a force of 1 N will impart an acceleration of 1 m/sec2 to a mass of 1 kg. In English units a force of 1 lb

will impart an acceleration of 1 ft/sec2 to a mass of 1 slug. The “weight” of an object is mg, where g is the
acceleration of gravity (= 9.81 m/sec2 = 32.2 ft/sec2). In English units it is common usage to refer to the mass of an
object in terms of its weight in pounds, which is the quantity measured on scales. To obtain the mass in slugs for use
in Newton’s law, divide the weight by g. Therefore, an object weighing 1 lb has a mass of 1/32.2 slugs. A slug has
units lb·sec2/ft. In metric units, scales are typically calibrated in kilograms, which is a direct measure of mass.



Application of this law typically involves defining convenient coordinates to account for the body’s motion
(position, velocity, and acceleration), determining the forces on the body using a free-body diagram, and then writing
the equations of motion from Eq. (2.1). The procedure is simplest when the coordinates chosen express the position
with respect to an inertial frame because, in this case, the accelerations needed for Newton’s law are simply the
second derivatives of the position coordinates.

EXAMPLE 2.1 A Simple System; Cruise Control Model
1. Write the equations of motion for the speed and forward motion of the car shown in Fig. 2.1 assuming that the

engine imparts a force u as shown. Take the Laplace transform of the resulting differential equation and find the
transfer function between the input u and the output v.

2. Use MATLAB to find the response of the velocity of the car for the case in which the input jumps from being u =
0 at time t = 0 to a constant u = 500 N thereafter. Assume that the car mass m is 1000 kg and viscous drag
coefficient, b = 50 N·sec/m.

Solution
1. Equations of motion: For simplicity we assume that the rotational inertia of the wheels is negligible and that there

is friction retarding the motion of the car that is proportional to the car’s speed with a proportionality constant,
b.1 The car can then be approximated for modeling purposes using the free-body diagram seen in Fig. 2.2, which
defines coordinates, shows all forces acting on the body (heavy lines), and indicates the acceleration (dashed line).
The coordinate of the car’s position x is the distance from the reference line shown and is chosen so that positive
is to the right. Note that in this case the inertial acceleration is simply the second derivative of x (i.e., a= x)
because the car position is measured with respect to an inertial reference. The equation of motion is found using
Eq. (2.1). The friction force acts opposite to the direction of motion; therefore it is drawn opposite the direction of
positive motion and entered as a negative force in Eq. (2.1). The result is

Figure 2.2 Free-body diagram for cruise control

or

For the case of the automotive cruise control where the variable of interest is the speed, v (= ), the equation of
motion becomes



The solution of such an equation will be covered in detail in Chapter 3; however, the essence is that you assume a
solution of the form v = Voest given an input of the form u = Uoest. Then, since v = sVoest, the differential equation
can be written as

The est term cancels out, and we find that

For reasons that will become clear in Chapter 3, this is usually written as

Transfer function
This expression of the differential equation (2.4) is called the transfer function and will be used extensively in later
chapters. Note that, in essence, we have substituted s for d/dt in Eq. (2.4).2

2. Time response: The dynamics of a system can be prescribed to MATLAB in terms of row vectors containing the
coefficients of the polynomials describing the numerator and denominator of its transfer function. The transfer
function for this problem is that given in part (a). In this case, the numerator (called num) is simply one number
since there are no powers of s, so that num = 1/m = 1/1000. The denominator (called den) contains the
coefficients of the polynomial s+b/m, which are

Step response with MATLAB
The step function in MATLAB calculates the time response of a linear system to a unit step input. Because the system
is linear, the output for this case can be multiplied by the magnitude of the input step to derive a step response of
any amplitude. Equivalently, num can be multiplied by the magnitude of the input step.
The statements calculate and plot the time response for an input step with a 500-N magnitude. The step response is
shown in Fig. 2.3.



Newton’s law also can be applied to systems with more than one mass. In this case it is particularly important to
draw the free-body diagram of each mass, showing the applied external forces as well as the equal and opposite
internal forces that act from each mass on the other.

Figure 2.3 Response of the car velocity to a step in u

EXAMPLE 2.2 A Two-Mass System: Suspension Model
Figure 2.4 shows an automobile suspension system. Write the equations of motion for the automobile and wheel
motion assuming one-dimensional vertical motion of one quarter of the car mass above one wheel. A system
consisting of one of the four wheel suspensions is usually referred to as a quarter-car model. Assume that the model
is for a car with a mass of 1580 kg, including the four wheels, which have a mass of 20 kg each. By placing a known
weight (an author) directly over a wheel and measuring the car’s deflection, we find that ks = 130,000 N/m.
Measuring the wheel’s deflection for the same applied weight, we find that kw  1,000,000 N/m. By using the
results in Section 3.3, Fig. 3.18(b), and qualitatively observing that the car’s response as the author jumps off matches
the t, = 0.7 curve, we conclude that b = 9800 N-sec/m.
Solution. The system can be approximated by the simplified system shown in Fig. 2.5. The coordinates of the two
masses, x and y, with the reference directions as shown, are the displacements of the masses from their equilibrium
conditions. The equilibrium positions are offset from the springs’ unstretched positions because of the force of
gravity. The shock absorber is represented in the schematic diagram by a dashpot symbol with friction constant b.
The magnitude of the force from the shock absorber is assumed to be proportional to the rate of change of the
relative displacement of the two masses—that is, the force = b(y – x). The force of gravity could be included in the
free-body diagram; however, its effect is to produce a constant offset of x and y. By defining x and y to be the
distance from the equilibrium position, the need to include the gravity forces is eliminated.



Figure 2.4 Automobile suspension

Figure 2.5 The quarter-car model

Figure 2.6 Free-body diagrams for suspension system

The force from the car suspension acts on both masses in proportion to their relative displacement with spring
constant ks. Figure 2.6 shows the free-body diagram of each mass. Note that the forces from the spring on the two
masses are equal in magnitude but act in opposite directions, which is also the case for the damper. A positive
displacement y of mass m2 will result in a force from the spring on m2 in the direction shown and a force from the
spring on m 1 in the direction shown. However, a positive displacement x of mass m 1 will result in a force from the
spring ks on m1 in the opposite direction to that drawn in Fig. 2.6, as indicated by the minus x term for the spring
force.

The lower spring kw represents the tire compressibility, for which there is insufficient damping (velocity-
dependent force) to warrant including a dashpot in the model. The force from this spring is proportional to the



distance the tire is compressed and the nominal equilibrium force would be that required to support m 1 and m2
against gravity. By defining x to be the distance from equilibrium, a force will result if either the road surface has a
bump (r changes from its equilibrium value of zero) or the wheel bounces (x changes). The motion of the simplified
car over a bumpy road will result in a value of r(t) that is not constant.

As previously noted, there is a constant force of gravity acting on each mass; however, this force has been omitted,
as have the equal and opposite forces from the springs. Gravitational forces can always be omitted from vertical-
spring mass systems (1) if the position coordinates are defined from the equilibrium position that results when
gravity is acting, and (2) if the spring forces used in the analysis are actually the perturbation in spring forces from
those forces acting at equilibrium.

Applying Eq. (2.1) to each mass and noting that some forces on each mass are in the negative (down) direction
yields the system of equations

Some rearranging results in

Check for sign errors
The most common source of error in writing equations for systems like these are sign errors. The method for

keeping the signs straight in the preceding development entailed mentally picturing the displacement of the masses
and drawing the resulting force in the direction that the displacement would produce. Once you have obtained the
equations for a system, a check on the signs for systems that are obviously stable from physical reasoning can be
quickly carried out. As we will see when we study stability in Section 3.6, a stable system always has the same signs
on similar variables. For this system, Eq. (2.10) shows that the signs on the , , and x terms are all positive, as they
must be for stability. Likewise, the signs on the , , and y terms are all positive in Eq. (2.11).

The transfer function is obtained in a similar manner as before. Substituting s for d/dt in the differential equations
yields

which, after some algebra and rearranging, yields the transfer function



To determine numerical values, we subtract the mass of the four wheels from the total car mass of 1580 kg and
divide by 4 to find that m2 = 375 kg. The wheel mass was measured directly to be m1 = 20 kg. Therefore, the
transfer function with the numerical values is

Newton’s law for rotational motion

2.1.2 Rotational Motion
Application of Newton’s law to one-dimensional rotational systems requires that Eq. (2.1) be modified to

where
M = the sum of all external moments about the center of mass of a body, N·m or lb·ft,
I = the body’s mass moment of inertia about its center of mass, kg·m2 or slug·ft2,
a = the angular acceleration of the body, rad/sec2.

EXAMPLE 2.3 Rotational Motion: Satellite Attitude Control Model
Satellites, as shown in Fig. 2.7, usually require attitude control so that antennas, sensors, and solar panels are
properly oriented. Antennas are usually pointed toward a particular location on earth, while solar panels need to be
oriented toward the sun for maximum power generation. To gain insight into the full three-axis attitude control
system, it is helpful to consider one axis at a time. Write the equations of motion for one axis of this system and
show how they would be depicted in a block diagram. In addition, determine the transfer function of this system and
construct the system as if it were to be evaluated via MATLAB’s SIMULINK.

Figure 2.7 Communications satellite Source: Courtesy Space Systems/Loral



Solution. Figure 2.8 depicts this case, where motion is allowed only about the axis perpendicular to the page. The
angle θ that describes the satellite orientation must be measured with respect to an inertial reference—that is, a
reference that has no angular acceleration. The control force comes from reaction jets that produce a moment of Fcd
about the mass center. There may also be small disturbance moments MD on the

Figure 2.8 Satellite control schematic

Figure 2.9 Block diagrams representing Eq. (2.15) in the upper half and Eq. (2.16) in the lower half satellite, which
arise primarily from solar pressure acting on any asymmetry in the solar panels. Applying Eq. (2.14) yields the
equation of motion



Double-integrator plant

The output of this system, 0, results from integrating the sum of the input torques twice; hence this type of system is
often referred to as the double-integrator plant. The transfer function can be obtained as described for Eq. (2.7) and is

1/s2 plant
where U = Fcd + MD. In this form, the system is often referred to as the 1/s2 plant.
Figure 2.9 shows a block diagram representing Eq. (2.15) in the upper half and a block diagram representing Eq.
(2.16) in the lower half. This simple system can be analyzed using the linear analysis techniques that are described in
later chapters, or via MATLAB as we saw in Example 2.1. It can also be numerically evaluated for an arbitrary input
time history using SIMULINK. SIMULINK is a sister software package to MATLAB for interactive, nonlinear
simulation and has a graphical user interface with drag and drop properties. Figure 2.10 shows a block diagram of
the system as depicted by SIMULINK.

Figure 2.10 SIMULINK block diagram of the double-integrator plant

Figure 2.11 Disk read/write mechanism Source: Courtesy of Hewlett-Packard Company



In many cases a system, such as the disk-drive read/write head shown in Fig. 2.11, in reality has some flexibility,
which can cause problems in the design of a control system. Particular difficulty arises when there is flexibility, as in
this case, between the sensor and actuator locations. Therefore, it is often important to include this flexibility in the
model even when the system seems to be quite rigid.

EXAMPLE 2.4 Flexibility: Flexible Read/Write for a Disk Drive
Assume that there is some flexibility between the read head and the drive motor in Fig. 2.11. Find the equations of
motion relating the motion of the read head to a torque applied to the base.

Figure 2.12 Disk read/write head schematic for modeling

Figure 2.13 Free-body diagrams of the disk read/write head



Solution. The dynamic model for this situation is shown schematically in Fig. 2.12. This model is dynamically similar
to the resonant system shown in Fig. 2.5 and results in equations of motion that are similar in form to Eqs. (2.10) and
(2.11). The moments on each body are shown in the free-body diagrams in Fig. 2.13. The discussion of the moments
on each body is essentially the same as the discussion for Example 2.2, except that the springs and damper in that
case produced forces, instead of moments that act on each inertia, as in this case. When the moments are summed,
equated to the accelerations according to Eq. (2.14), and rearranged, the result is

Ignoring the disturbance torque MD and the damping b for simplicity, we find the transfer function from the
applied torque Mc to the read head motion to be

It might also be possible to sense the motion of the inertia where the torque is applied, θ1, in which case the
transfer function with the same simplifications would be

Figure 2.14 Pendulum



Collocated sensor and actuator
These two cases are typical of many situations in which the sensor and actuator may or may not be placed in the

same location in a flexible body. We refer to the situation between sensor and actuator in Eq. (2.19) as the
“noncollocated” case, whereas Eq. (2.20) describes the “collocated” case. You will see in Chapter 5 that it is far more
difficult to control a system when there is flexibility between the sensor and actuator (noncollocated case) than when
the sensor and actuator are rigidly attached to one another (the collocated case).

In the special case in which a point in a rotating body is fixed with respect to an inertial reference, as is the case
with a pendulum, Eq. (2.14) can be applied such that M is the sum of all moments about the fixed point and I is the
moment of inertia about the fixed point.

EXAMPLE 2.5 Rotational Motion: Pendulum
1. Write the equations of motion for the simple pendulum shown in Fig. 2.14, where all the mass is concentrated at

the end point and there is a torque, Tc, applied at the pivot.
2. Use MATLAB to determine the time history of θ to a step input in Tc of 1 N-m. Assume l =1 m, m = 1 kg, and g

= 9.81 m/sec2.

Solution
1. Equations of motion: The moment of inertia about the pivot point is I = ml2. The sum of moments about the

pivot point contains a term from gravity as well as the applied torque Tc. The equation of motion, obtained from
Eq. (2.14), is

which is usually written in the form

This equation is nonlinear due to the sin θ term. A general discussion of nonlinear equations is contained in Chapter
9; however, we can proceed with a linearization of this case by assuming the motion is small enough that sin θ = θ.
Then Eq. (2.22) becomes the linear equation



With no applied torque, the natural motion is that of a harmonic oscillator with a natural frequency of3

The transfer function can be obtained as described for Eq. (2.7), yielding

2. Time history: The dynamics of a system can be prescribed to MATLAB in terms of row vectors containing the
coefficients of the polynomials describing the numerator and denominator of its transfer function. In this case, the
numerator (called num) is simply one number, since there are no powers of s, so that

and the denominator (called den) contains the coefficients of the descending powers of s in (s2 + g/l) and is a row
vector with three elements:

The desired response of the system can be obtained by using the MATLAB step response function, called step. The
MATLAB statements

will produce the desired time history shown in Fig. 2.15.

SIMULINK
As we saw in this example, the resulting equations of motion are often nonlinear. Such equations are much more

difficult to solve than linear ones, and the kinds of possible motions resulting from a nonlinear model are much
more difficult to categorize than those resulting from a linear model. It is therefore useful to linearize models in
order to gain access to linear analysis methods. It may be that the linear models and linear analysis are used only for
the design of the control system (whose function may be to maintain the system in the linear region). Once a control



system is synthesized and shown to have desirable performance based on linear analysis, it is then prudent to carry
out further analysis or an accurate numerical simulation of the system with the significant nonlinearities in order to
validate that performance. SIMULINK SIMULINK is an expedient way to carry out these simulations and can handle
most nonlinearities. Use of this simulation tool is carried out by constructing a block diagram4 that represents the
equations of motion. The linear equation of motion for the pendulum with the parameters as specified in Example
2.5 can be seen from Eq. (2.23) to be and this is represented in SIMULINK by the block diagram in Fig. 2.16. Note
that the circle on the left side of the figure with the + and – signs indicating addition and subtraction implements
the equation above.

Figure 2.15 Response of the pendulum to a step input of 1 N-m in the applied torque

Figure 2.16 The SIMULINK block diagram representing the linear equation (2.26)

The result of running this numerical simulation will be essentially identical to the linear solution shown in Fig.
2.15 because the solution is for relatively small angles where sin θ ≅ θ. However, using SIMULINK to solve for the
response enables us to simulate the nonlinear equation so that we could analyze the system for larger motions. In this
case, Eq. (2.26) becomes and the SIMULINK block diagram shown in Fig. 2.17 implements this nonlinear equation.

Figure 2.17 The SIMULINK block diagram representing the nonlinear equation (2.27)



Figure 2.18 Block diagram of the pendulum for both the linear and nonlinear models

SIMULINK is capable of simulating all commonly encountered nonlinearities, including deadzones, on-off functions,
stiction, hysteresis, aerodynamic drag (a function of v2), and trigonometric functions. All real systems have one or
more of these characteristics in varying degrees.

EXAMPLE 2.6 Use of SIMULINK for Nonlinear Motion: Pendulum
Use SIMULINK to determine the time history of θ for the pendulum in Example 2.5. Compare it against the linear
solution for Tc values of 1 N-m and 4 N-m.
Solution. Time history: The SIMULINK block diagrams for the two cases discussed above are combined and both
outputs in Fig. 2.16 and 2.17 are sent via a “multiplexer block (Mux)” to the “scope” so they can be plotted on the
same graph. Fig. 2.18 shows the combined block diagram where the gain, K, represents the values of Tc. The outputs
of this system for Tc values of 1 N · m, and 4 N · m are shown in Fig. 2.19. Note that for Tc = 1 N·m, the outputs at
the top of the figure remain at 12° or less and the linear approximation is extremely close to the nonlinear output.
For Tc = 4 N·m, the output angle grows to near 50° and a substantial difference in the response magnitude and
frequency is apparent due to θ being a poor approximation to sin θ at these magnitudes.

Figure 2.19 Response of the pendulum SIMULINK numerical simulation for the linear and nonlinear models. (a) for
Tc = 1 N·m and (b) Tc = 4 N·m



Chapter 9 is devoted to the analysis of nonlinear systems and greatly expands on these ideas.

2.1.3 Combined Rotation and Translation
In some cases, mechanical systems contain both translational and rotational portions. The procedure is the same as
that described in Sections 2.1.1 and 2.1.2: sketch the free-body diagrams, define coordinates and positive directions,
determine all forces and moments acting, and apply Eqs. (2.1) and/or (2.14). An exact derivation of the equations for
these systems can become quite involved; therefore, the complete analysis for the following examples are contained
in Appendix W2 and only the linearized equations of motion and their transfer functions are given here.

Figure 2.20 Schematic of the crane with hanging load



Figure 2.21 Inverted pendulum

EXAMPLE 2.7 Rotational and Translational Motion: Hanging Crane
Write the equations of motion for the hanging crane shown schematically in Fig. 2.20. Linearize the equations about
θ 0, which would typically be valid for the hanging crane. Also linearize the equations for θ = `, which represents
the situation for the inverted pendulum shown in Fig. 2.21. The trolley has mass, mt, and the hanging crane (or
pendulum) has mass, mp, and inertia about its mass center of I. The distance from the pivot to the mass center of the
pendulum is l; therefore, the moment of inertia of the pendulum about the pivot point is (I + mpl2).
Solution. Free-body diagrams need to be drawn for the trolley and the pendulum and the reaction forces considered
where the two attach to one another. We carry out this process in Appendix W2. After Newton’s Laws are applied
for the translational motion of the trolley and the rotational motion of the pendulum, it will be found that the
reaction forces between the two bodies can be eliminated, and the only unknowns will be θ and x. The results are
two coupled second-order nonlinear differential equations in θ and x with the input being the force applied to the
trolley, u. They can be linearized in a similar manner that was done for the simple pendulum by assuming small
angles. For small motions about θ = 0, we let cosθ ≅ 1, sin θ ≅ θ, and θ2 ≅ thus the equations are approximated by

Note that the first equation is very similar to the simple pendulum, Eq. (2.21), where the applied torque arises
from the trolley accelerations. Likewise, the second equation representing the trolley motion, x, is very similar to the
car translation in Eq. (2.3) where the forcing term arises from the angular acceleration of the pendulum. Neglecting
the friction term b leads to the transfer function from the control input u to hanging crane angle θ:

For the inverted pendulum in Fig. 2.21, where θ ≅ π, assume θ = θ’, where θ’ represents motion from the vertical
upward direction. In this case, sin θ ≅ –θ’ cos θ≅–1, and the nonlinear equations become5

Inverted pendulum equations



As noted in Example 2.2, a stable system will always have the same signs on each variable, which is the case for
the stable hanging crane modeled by Eqs. (2.28). However, the signs on θ and θ in the top Eq. (2.30) are opposite,
thus indicating instability, which is the characteristic of the inverted pendulum.
The transfer function, again without friction, is

In Chapter 5 you will learn how to stabilize systems using feedback and will see that even unstable systems like an
inverted pendulum can be stabilized providing there is a sensor that measures the output quantity and a control
input. For the case of the inverted pendulum perched on a trolley, it would be required to measure the pendulum
angle, θ’, and provide a control input, u, that accelerated the trolley in such a way that the pendulum remained
pointing straight up. In years past, this system existed primarily in university control system laboratories as an
educational tool. However, more recently, there is a practical device in production and being sold that employs
essentially this same dynamic system: The Segway. It uses a gyroscope so that the angle of the device is known with
respect to vertical, and electric motors provide a torque on the wheels so that it balances the device and provides the
desired forward or backward motion. It is shown in Fig. 2.22.

2.1.4 Distributed Parameter Systems
All the preceding examples contained one or more rigid bodies, although some were connected to others by springs.
Actual structures—for example, satellite solar panels, airplane wings, or robot arms—usually bend, as shown by the
flexible beam in Fig. 2.23(a). The equation describing its motion is a fourth-order partial differential equation that
arises because the mass elements are continuously distributed along the beam with a small amount of flexibility
between elements. This type of system is called a distributed parameter system. The dynamic analysis methods
presented in this section are not sufficient to analyze this case; however, more advanced texts (Thomson and Dahleh,
1998) show that the result is

Figure 2.22 The Segway, which is similar to the inverted pendulum and is kept upright by a feedback control system
Source: Photo courtesy of David Powell



where
E = Young’s modulus,

I = beam area moment of inertia,
ρ = beam density,

w = beam deflection at length x along the beam.
The exact solution to Eq. (2.32) is too cumbersome to use in designing control systems, but it is often important to

account for the gross effects of bending in control systems design.
The continuous beam in Fig. 2.23(b) has an infinite number of vibration-mode shapes, all with different

frequencies. Typically, the lowest-frequency modes have the largest amplitude and are the most important to
approximate well. The simplified model in Fig. 2.23(c) can be made to duplicate the essential behavior of the first
bending mode shape and frequency and would usually be adequate for controller design. If frequencies higher than
the first bending mode are anticipated in the control system operation, it may be necessary to model the beam as
shown in Fig. 2.23(d), which can be made to approximate the first two bending modes and frequencies. Likewise,
higher-order models can be used if such accuracy and complexity are deemednecessary (Thomsonand Dahleh, 1998;
Schmitz, 1985). Whenacontinuously bending object is approximated as two or more rigid bodies connected by
springs, the resulting model is sometimes referred to as a lumped parameter model.

Figure 2.23 Flexible robot arm used for research at Stanford University; model for a continuous flexible beam; (c)
simplified model for the first bending mode; (d) model for the first and second bending modes Source: Photo
courtesy of E. Schmitz



A flexible structure can be approximated by a lumped parameter model

2.1.5 Summary: Developing Equations of Motion for Rigid Bodies
The physics necessary to write the equations of motion of a rigid body is entirely given by Newton’s laws of motion.
The method is as follows:
1. Assign variables such as x and θ that are both necessary and sufficient to describe an arbitrary position of the

object.
2. Draw a free-body diagram of each component. Indicate all forces acting on each body and their reference

directions. Also indicate the accelerations of the center of mass with respect to an inertial reference for each body.
3. Apply Newton’s law in translation [Eq. (2.1)] and/or rotation [Eq. (2.14)] form.
4. Combine the equations to eliminate internal forces.
5. The number of independent equations should equal the number of unknowns.

2.2 Models of Electric Circuits
Electric circuits are frequently used in control systems largely because of the ease of manipulation and processing of
electric signals. Although controllers are increasingly implemented with digital logic, many functions are still
performed with analog circuits. Analog circuits are faster than digital and, for very simple controllers, an analog



circuit would be less expensive than a digital implementation. Furthermore, the power amplifier for
electromechanical control and the anti-alias prefilters for digital control must be analog circuits.

Electric circuits consist of interconnections of sources of electric voltage and current, and other electronic elements
such as resistors, capacitors, and transistors. An important building block for circuits is an operational amplifier (or
op-amp),6 which is also an example of a complex feedback system. Some of the most important methods of
feedback system design were developed by the designers of high-gain, wide-bandwidth feedback amplifiers, mainly
at the Bell Telephone Laboratories between 1925 and 1940. Electric and electronic components also play a central
role in electromechanical energy conversion devices such as electric motors, generators, and electrical sensors. In this
brief survey we cannot derive the physics of electricity or give a comprehensive review of all the important analysis
techniques. We will define the variables, describe the relations imposed on them by typical elements and circuits,
and describe a few of the most effective methods available for solving the resulting equations.

Symbols for some linear circuit elements and their current–voltage relations are given in Fig. 2.24. Passive circuits
consist of interconnections of resistors, capacitors, and inductors. With electronics, we increase the set of electrical
elements by adding active devices, including diodes, transistors, and amplifiers.

Kirchhoff’s laws
The basic equations of electric circuits, called Kirchhoff’s laws, are as follows:

1. Kirchhoff’s current law (KCL): The algebraic sum of currents leaving a junction or node equals the algebraic sum
of currents entering that node.

2. Kirchhoff’s voltage law (KVL): The algebraic sum of all voltages taken around a closed path in a circuit is zero.

With complex circuits of many elements, it is essential to write the equations in a careful, well organized way. Of
the numerous methods for doing this, we choose for description and illustration the popular and powerful scheme
known as node analysis. One node is selected as a reference and we assume the voltages of all other nodes to be
unknowns. The choice of reference is arbitrary in theory, but in actual electronic circuits the common, or ground,
terminal is the obvious and standard choice. Next, we write equations for the selected unknowns using the current
law (KCL) at each node. We express these currents in terms of the selected unknowns by using the element equations
in Fig. 2.24. If the circuit contains voltage sources, we must substitute a voltage law (KVL) for such sources. Example
2.8 illustrates how node analysis works.

Figure 2.24 Elements of electric circuits



EXMPLE 2.8 Equations for the Bridged Tee Circuit
Determine the differential equations for the circuit shown in Fig. 2.25.

Solution. We select node 4 as the reference and the voltages v1, v2, and v3 at nodes 1, 2, and 3 as the unknowns. We
start with the degenerate KVL relationship

At node 2 the KCL is

Figure 2.25 Bridged tee circuit



and at node 3 the KCL is

These three equations describe the circuit.

Operational amplifier
Kirchhoff’s laws can also be applied to circuits that contain an operational amplifier. The simplified circuit of the

op-amp is shown in Fig. 2.26(a) and the schematic symbol is drawn in Fig. 2.26(b). If the positive terminal is not
shown, it is assumed to be connected to ground, v+ = 0, and the reduced symbol of Fig. 2.26(c) is used. For use in
control circuits, it is usually assumed that the op-amp is ideal with the values R1 = ∞, R0 =0, and A = ∞. The
equations of the ideal op-amp are extremely simple, being

The gain of the amplifier is assumed to be so high that the output voltage becomes vout = whatever it takes to
satisfy these equations. Of course, a real amplifier only

Figure 2.26 (a) Op-amp simplified circuit; (b) op-amp schematic symbol; (c) reduced symbol for v+ =0



Figure 2.27 The op-amp summer

approximates these equations, but unless they are specifically described, we will assume all op-amps are ideal. More
realistic models are the subjectofseveral problems given at the end of the chapter.

EXAMPLE 2.9 Op-Amp Summer
Find the equations and transfer functions of the circuit shown in Fig. 2.27.
Solution. Equation (2.37) requires that v- = 0, and thus the currents are i1 = v1/R1, i2 = v2/R2, and iout = vout/Rf. To
satisfy Eq. (2.36), i1 + i2 + iout = 0, from which it follows that v/R1 + v/R2 + v/Rf = 0, and we have

The op-amp summer
From this equation we see that the circuit output is a weighted sum of the input voltages with a sign change. The
circuit is called a summer.

A second important example for control is given by the op-amp integrator.

EXAMPLE 2.10 Integrator



Op-amp as integrator
Find the transfer function for the circuit shown in Fig. 2.28.
Solution. In this case the equations are differential and Eqs. (2.36) and (2.37) require

Solution.

Figure 2.28 The op-amp integrator

Eq. (2.40) can be written in integral form as

Using the operational notation that d/dt = s in Eq. (2.40), the transfer function (which assumes zero initial
conditions) can be written as

Thus the ideal op-amp in this circuit performs the operation of integration and the circuit is simply referred to as
an integrator.

2.3 Models of Electromechanical Systems
Electric current and magnetic fields interact in two ways that are particularly important to an understanding of the
operation of most electromechanical actuators and sensors. If a current of i amperes in a conductor of length l meters
is arranged at right angles in a magnetic field of B teslas, then there is a force on the conductor at right angles to the
plane of i and B, with magnitude

Law of motors
This equation is the basis of conversion of electric energy to mechanical work and is called the law of motors.



EXAMPLE 2.11 Modeling a Loudspeaker
A typical geometry for a loudspeaker for producing sound is sketched in Fig. 2.29. The permanent magnet
establishes a radial field in the cylindrical gap between the poles of the magnet. The force on the conductor wound
on the bobbin causes the voice coil to move, producing sound.46 The effects of the air can be modeled as if the cone
had equivalent mass M and viscous friction coefficient b. Assume that the magnet establishes a uniform field B of 0.5
tesla and the bobbin has 20 turns at a 2-cm diameter. Write the equations of motion of the device.

Figure 2.29 Geometry of a loudspeaker: (a) overall configuration; (b) the electromagnet and voice coil

Solution. The current is at right angles to the field, and the force of interest is at right angles to the plane of i and B,
so Eq. (2.43) applies. In this case the field strength is B = 0.5 tesla and the conductor length is

Thus, the force is
F = 0.5 × 1.26 × i = 0.63i N.

The mechanical equation follows from Newton’s laws, and for a mass M and friction coefficient b, the equation is

This second-order differential equation describes the motion of the loudspeaker cone as a function of the input
current i driving the system. Substituting s for d/dt in Eq. (2.44) as before, the transfer function is easily found to be

The second important electromechanical relationship is the effect of mechanical motion on electric voltage. If a
conductor of length l meters is moving in a magnetic field of B teslas at a velocity of v meters per second at mutually
right angles, an electric voltage is established across the conductor with magnitude



Law of generators

This expression is called the law of generators

EXAMPLE 2.12 Loudspeaker with Circuit
For the loudspeaker in Fig. 2.29 and the circuit driving it in Fig. 2.30, find the differential equations relating the
input voltage va to the output cone displacement x. Assume the effective circuit resistance is R and the inductance is
L.
Solution. The loudspeaker motion satisfies Eq. (2.44), and the motion results in a voltage across the coil as given by
Eq. (2.46), with the velocity x. The resulting voltage is

This induced voltage effect needs to be added to the analysis of the circuit. The equation of motion for the electric
circuit is

Figure 2.30 A loudspeaker showing the electric circuit

These two coupled equations, (2.44) and (2.48), constitute the dynamic model for the loudspeaker.
Again substituting s for d/dt in these equations, the transfer function between the applied voltage and the

loudspeaker displacement is found to be

DC motor actuators
A common actuator based on these principles and used in control systems is the DC motor actuators the DC motor

to provide rotary motion. A sketch of the basic components of a DC motor is given in Fig. 2.31. In addition to
housing and bearings, the nonturning part (stator) has magnets, which establish a field across the rotor. The magnets



may be electromagnets or, for small motors, permanent magnets. The brushes contact the rotating commutator,
which causes the current always to be in the proper conductor windings so as to produce maximum torque. If the
direction of the current is reversed, the direction of the torque is reversed.

Back emf
The motor equations give the torque T on the rotor in terms of the armature Back emf current ia and express the

back emf voltage in terms of the shaft’s rotational velocity 0m.8

Figure 2.31 Sketch of a DC motor

Thus

Torque
In consistent units, the torque constant Kt equals the electric constant Ke, but in some cases the torque constant will
be given in other units, such as ounce-inches per ampere, and the electric constant may be expressed in units of volts
per 1000 rpm. In such cases the engineer must make the necessary translations to be certain the equations are
correct.

EXAMPLE 2.13 Modeling a DC Motor
Find the equations for a DC motor with the equivalent electric circuit shown in Fig. 2.32(a). Assume that the rotor
has inertia Jm and viscous friction coefficient b. Solution. The free-body diagram for the rotor, shown in Fig. 2.32(b),
defines the positive direction and shows the two applied torques, T and bθm. Application of Newton’fs laws yields

Analysis of the electric circuit, including the back emf voltage, shows the electrical equation to be



With s substituted for d/dt in Eqs. (2.52) and (2.53), the transfer function for the motor is readily found to be

In many cases the relative effect of the inductance is negligible compared with the mechanical motion and can be
neglected in Eq. (2.53). If so, we can combine Eqs. (2.52) and (2.53) into one equation to get

Figure 2.32 DC motor: (a) electric circuit of the armature; (b) free-body diagram of the rotor

From Eq. (2.55) it is clear that in this case the effect of the back emf is indistinguishable from the friction, and the
transfer function is

where

In many cases, a transfer function between the motor input and the output speed (w = θm) is required. In such
cases, the transfer function would be



AC motor actuators
Another device used for electromechanical energy conversion is the alternating current (AC) induction motor

invented by N. Tesla. Elementary analysis of the AC motor is more complex than that of the DC motor. A typical
experimental set of curves of torque versus speed for fixed frequency and varying amplitude of applied (sinusoidal)
voltage is given in Fig. 2.33. Although the data in the figure are for a constant engine speed, they can be used to
extract the motor constants that will provide a dynamic model for the motor. For analysis of a control problem
involving an AC motor such as that described by Fig. 2.33, we make a linear approximation to the curves for speed
near zero and at a midrange voltage to obtain the expression

Figure 2.33 Torque-speed curves for a servo motor showing four amplitudes of armature voltage: (a) low-rotor-
resistance machine; (b) high-rotor-resistance machine showing four values of armature voltage, va

The constant K1 represents the ratio of a change in torque to a change in voltage at zero speed and is proportional
to the distance between the curves at zero speed. The constant K2 represents the ratio of a change in torque to a
change in speed at zero speed and a midrange voltage; therefore, it is the slope of a curve at zero speed as shown by
the line at V1. For the electrical portion, values for the armature resistance Ra and inductance La are also determined
by experiment. Once we have values for K1, K1, Ra, and La, the analysis proceeds as the analysis in Example 2.13 for
the DC motor. For the case in which the inductor can be neglected, we can substitute K1 and K2 into Eq. (2.55) in
place of Kt/Ra and KtKr/Ra, respectively.

In addition to the DC and AC motors mentioned here, control systems use brush-less DC motors (Reliance Motion
Control Corp., 1980) and stepping motors (Kuo, 1980). Models for these machines, developed in the works just cited,
do not differ in principle from the motors considered in this section. In general, the analysis, supported by
experiment, develops the torque as a function of voltage and speed similar to the AC motor torque-speed curves
given in Fig. 2.33. From such curves one can obtain a linearized formula such as Eq. (2.61) to use in the mechanical
part of the system and an equivalent circuit consisting of a resistance and an inductance to use in the electrical part.

Δ 2.4 Heat and Fluid-Flow Models



Thermodynamics, heat transfer, and fluid dynamics are each the subject of complete textbooks. For purposes of
generating dynamic models for use in control systems, the most important aspect of the physics is to represent the
dynamic interaction between the variables. Experiments are usually required to determine the actual values of the
parameters and thus to complete the dynamic model for purposes of control systems design.

2.4.1 Heat Flow
Some control systems involve regulation of temperature for portions of the system. The dynamic models of
temperature control systems involve the flow and storage of heat energy. Heat energy flows through substances at a
rate proportional to the temperature difference across the substance; that is,

where
q = heat energy flow, joules per second (J/sec), or British Thermal Unit/sec (BTU/sec),
R = thermal resistance, °C/J.sec or °F/BTU.sec,
T = temperature, °C or °F.

The net heat-energy flow into a substance affects the temperature of the substance according to the relation

where C is the thermal capacity. Typically, there are several paths for heat to flow into or out of a substance, and q
in Eq. (2.63) is the sum of heat flows obeying Eq. (2.62).

EXAMPLE 2.14 Equations for Heat Flow
A room with all but two sides insulated (1/R = 0) is shown in Fig. 2.34. Find the differential equations that
determine the temperature in the room.
Solution. Application of Eqs. (2.62) and (2.63) yields

where
C1 = thermal capacity of air within the room,
T0 = temperature outside,
T1 = temperature inside,
R2 = thermal resistance of the room ceiling
R1 = thermal resistance of the room all.

Specific heat



Normally the material properties are given in tables as follows:
1. The specific heat at constant volume cv, which is converted to heat capacity by

where m is the mass of the substance;

Thermal conductivity
2. The thermal conductivity9 k, which is related to thermal resistance R by

where A is the cross-sectional area and l is the length of the heat-flow path.

Figure 2.34 Dynamic model for room temperature

In addition to flow due to transfer, as expressed by Eq. (2.62), heat can also flow when a warmer mass flows into a
cooler mass, or vice versa. In this case,

where w is the mass flow rate of the fluid at T1 flowing into the reservoir at T2. For a more complete discussion of
dynamic models for temperature control systems, see Cannon (1967) or textbooks on heat transfer.

EXAMPLE 2.15 Equations for Modeling a Heat Exchanger
A heat exchanger is shown in Fig. 2.35. Steam enters the chamber through the controllable valve at the top, and
cooler steam leaves at the bottom. There is a constant flow of water through the pipe that winds through the middle
of the chamber so that it picks up heat from the steam. Find the differential equations that describe the dynamics of
the measured water outflow temperature as a function of the area As of the steam-inlet control valve when open. The
sensor that measures the water outflow temperature, being downstream from the exit temperature in the pipe, lags
the temperature by td seconds.
Solution. The temperature of the water in the pipe will vary continuously along the pipe as the heat flows from the
steam to the water. The temperature of the steam will also reduce in the chamber as it passes over the maze of
pipes. An accurate thermal model of this process is therefore quite involved because the actual heat transfer from the



steam to the water will be proportional to the local temperatures of each fluid. For many control applications it is
not necessary to have great accuracy because the feedback will correct for a considerable amount of error in the
model. Therefore, it makes sense to combine the spatially varying temperatures into single temperatures Ts and Tw
for the outflow steam and water temperatures, respectively. We then assume that the heat transfer from steam to
water is proportional to the difference in these temperatures, as given by Eq. (2.62). There is also a flow of heat into
the chamber from the inlet steam that depends on the steam flow rate and its temperature according to Eq. (2.65),

Figure 2.35 Heat exchanger

The net heat flow into the chamber is the difference between the heat from the hot incoming steam and the heat
flowing out to the water. This net flow determines the rate of temperature change of the steam according to Eq.
(2.63),

where
Cs = mscvs is the thermal capacity of the steam in the chamber with mass ms,

R = the thermal resistance equation describing the water temperature is



Likewise, the differential equation describing the water temperature is

where

To complete the dynamics, the time delay between the measurement and the exit flow is described by the relation
Tm(t) = Tw (t – td)

where Tm is the measured downstream temperature of the water and td is the time delay. There may also be a delay
in the measurement of the steam temperature Ts, which would be modeled in the same manner.

Equation (2.66) is nonlinear because the quantity Ts is multiplied by the control input As. The equation can be
linearized about (a specific value of Tso (a specific value of Ts) so that is Tsi – Ts assumed constant for purposes of
approximating the nonlinear term, which we will define as ΔTs. In order to eliminate the Twi term in Eq. (2.67), it is
convenient to measure all temperatures in terms of deviation in degrees from Twi. The resulting equations are then

Although the time delay is not a nonlinearity, we will see in Chapter 3 that operationally, 
Therefore, the transfer function of the heat exchanger has the form

2.4.2 Incompressible Fluid Flow
Fluid flows are common in many control systems components. One example is the hydraulic actuator, which is used
extensively in control systems because it can supply a large force with low inertia and low weight. They are often
used to move the aerodynamic control surfaces of airplanes, to gimbal rocket nozzles, to move the linkages in earth-
moving equipment, farm tractor implements, snow-grooming machines, and to move robot arms.

The continuity relation
The physical relations governing fluid flow are continuity, force equilibrium, and The continuity relation

resistance. The continuity relation is simply a statement of the conservation of matter; that is,



where
m = fluid mass within a prescribed portion of the system,

win = mass flow rate into the prescribed portion of the system.

wout = mass flow rate out of the prescribed portion of the system.

EXAMPLE 2.16 Equations for Describing Water Tank Height
Determine the differential equation describing the height of the water in the tank in Fig. 2.36.

Figure 2.36
Water tank example

Solution. Application of Eq. (2.69) yields

where

Force equilibrium must apply exactly as described by Eq. (2.1) for mechanical systems. Sometimes in fluid-flow
systems some forces result from fluid pressure acting on a piston. In this case the force from the fluid is

where



EXAMPLE 2.17 Modeling a Hydraulic Piston
Determine the differential equation describing the motion of the piston actuator shown in Fig. 2.37, given that there
is a force FD acting on it and a pressure P in the chamber.
Solution. Equations (2.1) and (2.71) apply directly, where the forces include the fluid pressure as well as the applied
force. The result is

where

Figure 2.37
Hydraulic piston actuator

In many cases of fluid-flow problems the flow is resisted either by a constriction in the path or by friction. The
general form of the effect of resistance is given by

where

Or, as is more commonly used in hydraulics,

where



Q = volume flow rate, where Q = w/p,
p = fluid density.

The constant a takes on values between 1 and 2. The most common value is approximately 2 for high flow rates
(those having a Reynolds number Re > 105) through pipes or through short constrictions or nozzles. For very slow
flows through long pipes or porous plugs wherein the flow remains laminar (Re  1000), α = 1. Flow rates
between these extremes can yield intermediate values of a. The Reynolds number indicates the relative importance of
inertial forces and viscous forces in the flow. It is proportional to a material’s velocity and density and to the size of
the restriction, and it is inversely proportional to the viscosity. When Re is small, the viscous forces predominate and
the flow is laminar. When Re is large, the inertial forces predominate and the flow is turbulent.

Note that a value of α = 2 indicates that the flow is proportional to the square root of the pressure difference and
therefore will produce a nonlinear differential equation. For the initial stages of control systems analysis and design,
it is typically very useful to linearize these equations so that the design techniques described in this book can be
applied. Linearization involves selecting an operating point and expanding the nonlinear term to be a small
perturbation from that point.

EXAMPLE 2.18 Linearization of Water Tank Height and Outflow
Find the nonlinear differential equation describing the height of the water in the tank in Fig. 2.36. Assume that there
is a relatively short restriction at the outlet and that α = 2. Also linearize your equation about the operating point
h0.
Solution. Applying Eq. (2.72) yields the flow out of the tank as a function of the height of the water in the tank:

Here,

Substituting Eq. (2.74) into Eq. (2.70) yields the nonlinear differential equation for the height:

Linearization involves selecting the operating point p0 = ρgh0 + pa and substituting p1 = po + Δp into Eq. (2.74).
Then we expand the nonlinear term according to the relation

where ε  1. Equation (2.74) can thus be written as



The linearizing approximation made in Eq. (2.77) is valid as long as Δp  po – pa; that is, as long as the deviations
of the system pressure from the chosen operating point are relatively small.

Combining Eqs. (2.70) and (2.77) yields the following linearized equation of motion for the water tank level:

Because Δp = ρgΔh, this equation reduces to

which is a linear differential equation for Δ  The operating point is not an equilibrium point because some control
input is required to maintain it. In other words, when the system is at the operating point (Δ  = 0) with no input
(win = 0), it will move from that point because Δ  ≠ 0. So if no water is flowing into the tank, the tank will drain,
thus moving it from the reference point. To define an operating point that is also an equilibrium point, we need to
require that there be a nominal flow rate,

and define the linearized input flow to be a perturbation from that value.

Hydraulic actuators
Hydraulic actuators obey the same fundamental relationships we saw in the

water tank: continuity [Eq. (2.69)], force balance [Eq. (2.71)], and flow resistance [Eq. (2.72)]. Although the
development here assumes the fluid is perfectly incompressible, in fact, hydraulic fluid has some compressibility due
primarily to entrained air. This feature causes hydraulic actuators to have some resonance because the
compressibility of the fluid acts like a stiff spring. This resonance limits their speed of response.

EXAMPLE 2.19 Modeling a Hydraulic Actuator
1. Find the nonlinear differential equations relating the movement θ of the control surface to the input displacement

x of the valve for the hydraulic actuator shown in Fig. 2.38.
2. Find the linear approximation to the equations of motion when  = constant, with and without an applied load

—that is, when F ≠ 0 and when F = 0. Assume that θ motion is small.

Solution



1. Equations of motion: When the valve is at x = 0, both passages are closed and no motion results. When x > 0, as
shown in Fig. 2.38, the oil flows clockwise as shown and the piston is forced to the left. When x< 0, the fluid
flows counterclockwise. The oil supply at high pressure ps enters the left side of the large piston chamber, forcing
the piston to the right. This causes the oil to flow out of the valve chamber from the rightmost channel instead of
the left.
We assume that the flow through the orifice formed by the valve is proportional to x; that is,

Similarly.

Figure 2.38
Hydraulic actuator with valve

The continuity relation yields

where
A = piston area.

The force balance on the piston yields

where



Furthermore, the moment balance of the control surface using Eq. (2.14) yields

where

To solve this set of five equations, we require the following additional kinematic relationship between θ and y:

The actuator is usually constructed so that the valve exposes the two passages equally; therefore, R1 = R2, and we
can infer from Eqs. (2.79) to (2.81) that

These relations complete the nonlinear differential equations of motion; they are formidable and difficult to solve.
2. Linearization and simplification: For the case in which  = a constant (ÿ = 0) and there is no applied load (F =

0), Eqs. (2.82) and (2.85) indicate that

Therefore, using Eq. (2.81) and letting sin θ = θ (since θ is assumed to be small), we get

This represents a single integration between the input x and the output θ, where the proportionality constant is a
function only of the supply pressure and the fixed parameters of the actuator. For the case  = constant but F ≠ 0,
Eqs. (2.82) and (2.85) indicate that

and

This result is also a single integration between the input x and the output θ, but the proportionality constant now
depends on the applied load F.

As long as the commanded values of x produce θ motion that has a sufficiently small value of  the approximation
given by Eqs. (2.87) or (2.88) is valid and no other linearized dynamic relationships are necessary. However, as soon
as the commanded values of x produce accelerations in which the inertial forces (m  and the reaction to I ) are a



significant fraction of ps – pe, the approximations are no longer valid. We must then incorporate these forces into the
equations, thus obtaining a dynamic relationship between x and θ that is much more involved than the pure
integration implied by Eqs. (2.87) or (2.88). Typically, for initial control system designs, hydraulic actuators are
assumed to obey the simple relationship of Eqs. (2.87) or (2.88). When hydraulic actuators are used in feedback
control systems, resonances have been encountered that are not explained by using the approximation that the device
is a simple integrator as in Eqs. (2.87) or (2.88). The source of the resonance is the neglected accelerations discussed
above along with the additional feature that the oil is slightly compressible due to small quantities of entrained air.
This phenomenon is called the “oil-mass resonance.”

2.5 Historical Perspective
Newton’s second law of motion (Eq. 2.1) was first published in his Philosophiae Naturalis Principia Mathematica in
1686 along with his two other famous laws of motion. The first: A body will continue with the same uniform motion
unless acted on by an external unbalanced force, and the third: To every action there is an equal and opposite
reaction. Isaac Newton also published his law of gravitation in this same publication, which stated that every mass
particle attracts all other particles by a force proportional to the inverse of the square of the distance between them
and the product of their two masses. His basis for developing these laws was the work of several other early
scientists, combined with his own development of the calculus in order to reconcile all the observations. It is amazing
that these laws still stand today as the basis for almost all dynamic analysis with the exception of Einstein’s additions
in the early 1900s for relativistic effects. It is also amazing that Newton’s development of calculus formed the
foundation of our mathematics that enable dynamic modeling. In addition to being brilliant, he was also very
eccentric. As Brennan writes in Heisenberg Probably Slept Here, “He was seen about campus in his disheveled
clothes, his wig askew, wearing run-down shoes and a soiled neckpiece. He seemed to care about nothing but his
work. He was so absorbed in his studies that he forgot to eat.” Another interesting aspect of Newton is that he
initially developed the calculus and the now famous laws of physics about 20 years prior to publishing them! The
incentive to publish them arose from a bet between three men having lunch at a pub in 1684: Edmond Halley,
Christopher Wren, and Robert Hooke. They all had the opinion that Kepler’s elliptical characterization of planetary
motion could be explained by the inverse square law, but nobody had ever proved it, so they “placed a bet as to who
could first prove the conjecture.”10 Halley went to Newton for help due to his fame as a mathematician, who
responded he had already done it many years ago and would forward the papers to him. He not only did that shortly
afterwards, but followed it up with the Principia with all the details two years later.

The basis for Newton’s work started with the astronomer Nicholas Copernicus more than a hundred years before
the Principia was published. He was the first to speculate that the planets revolved around the sun, rather than
everything in the skies revolving around the earth. But Copernicus’ heretical notion was largely ignored at the time,
except by the church who banned his publication. However, two scientists did take note of his work: Galileo Galilei
in Italy and Johannes Kepler in Austria. Kepler relied on a large collection of astronomical data taken by a Danish
astronomer, Tycho Brahe, and concluded that the planetary orbits were ellipses rather than the circles that
Copernicus had postulated. Galileo was an expert telescope builder and was able to clearly establish that the earth
was not the center of all motion, partly because he was able to see moons revolving around other planets. He also
did experiments with rolling balls down inclined planes that strongly suggested that F = ma (alas, it’s a myth that he
did his experiments by dropping objects out of the Leaning Tower of Pisa). Galileo published his work in 1632,



which raised the ire of the church who then later banned him to house arrest until he died.11 It was not until 1985
that the church recognized the important contributions of Galileo! These men laid the groundwork for Newton to put
it all together with his laws of motion and the inverse square gravitational law. With these two physical principles,
all the observations fit together with a theoretical framework that today forms the basis for the modeling of dynamic
systems.

The sequence of discoveries that ultimately led to the laws of dynamics that we take for granted today were
especially remarkable when we stop to think that they were all carried out without a computer, a calculator, or even
a slide rule. On top of that, Newton had to invent calculus in order to reconcile the data.

After publishing the Principia, Newton went on to be elected to Parliament and was given high honors, including
being the first man of science to be knighted by the Queen. He also got into fights with other scientists fairly
regularly and used his powerful positions to get what he wanted. In one instance, he wanted data from the Royal
Observatory that was not forthcoming fast enough. So he created a new board with authority over the Observatory
and had the Astronomer Royal expelled from the Royal Society. Newton also had other less scientific interests. Many
years after his death, John Maynard Keynes found that Newton had been spending as much of his time on
metaphysical occult, alchemy, and biblical works as he had been on physics.

More than a hundred years after Newton’s Principia, Michael Faraday performed a multitude of experiments and
postulated the notion of electromagnetic lines of force in free space. He also discovered induction (Faraday’s Law),
which led to the electric motor and the laws of electrolysis. Faraday was born into a poor family, had virtually no
schooling, and became an apprentice to a bookbinder at age 14. There he read many of the books being bound and
became fascinated by science articles. Enthralled by these, he maneuvered to get a job as a bottle washer for a
famous scientist, eventually learned enough to be a competitor to him, and ultimately became a professor at the
Royal Institution in London. But lacking a formal education, he had no mathematical skills, and lacked the ability to
create a theoretical framework for his discoveries. Faraday became a famous scientist in spite of his humble origins.
After he had achieved fame for his discoveries and was made a Fellow of the Royal Society, the prime minister asked
him what good his inventions could be.12 Faraday’s answer was, “Why Prime Minister, someday you can tax it.” But
in those days, scientists were almost exclusively men born into privilege; so Faraday had been treated like a second-
class citizen by some of the other scientists. As a result, he rejected knighthood as well as burial at Westminster
Abbey. Faraday’s observations, along with those by Coulomb and Ampere, led James Clerk Maxwell to integrate all
their knowledge on magnetism and electricity into Maxwell’s Equations. Against the beliefs of most prominent
scientists of the day (Faraday being an exception), Maxwell invented the concepts of fields and waves that explained
magnetic and electrostatic forces and was the key to creating the unifying theory. Although Newton had discovered
the spectrum of light, Maxwell was also the first to realize that light was one type of the same electromagnetic
waves, and its behavior was explained as well by Maxwell’s Equations. In fact, the only constant in his equations are
μ and ε. The constant speed of light is 

Maxwell was a Scottish mathematician and theoretical physicist. His work has been called the second great
unification in physics, the first being that due to Newton. Maxwell was born into the privileged class and was given
the benefits of an excellent education and he excelled at it. In fact, he was an extremely gifted theoretical and
experimental scientist as well as a very generous and kind man with many friends and little vanity. In addition to
unifying the observations of electromagnetics into a theory that still governs our engineering analyses today, he was
the first to present an explanation of how light travels, the primary colors, the kinetic theory of gases, the stability of
Saturn’s rings, and the stability of feedback control systems! His discovery of the three primary colors (red, green, and



blue) forms the basis of our color television to this day. His theory showing the speed of light is a constant was
difficult to reconcile with Newton’s laws and led Albert Einstein to create the special theory of relativity in the early
1900s. This led Einstein to say, “One scientific epoch ended and another began with James Clerk Maxwell.”13

SUMMARY
Mathematical modeling of the system to be controlled is the first step in analyzing and designing the required system
controls. In this chapter we developed models for representative systems. Important equations for each category of
system are summarized in Table 2.1.

TABLE 2.1

REVIEW QUESTIONS
1. What is a “free-body diagram”?
2. What are the two forms of Newton’s law?
3. For a structural process to be controlled, such as a robot arm, what is the meaning of “collocated control”?

“Noncollocated control”?
4. State Kirchhoff’s current law.
5. State Kirchhoff’s voltage law.
6. When, why, and by whom was the device named an “operational amplifier”?
7. What is the major benefit of having zero input current to an operational amplifier?
8. Why is it important to have a small value for the armature resistance Ra of an electric motor?
9. What are the definition and units of the electric constant of a motor?
10. What are the definition and units of the torque constant of an electric motor?
11. Why do we approximate a physical model of the plant (which is always nonlinear) with a linear model?



Δ 12. Give the relationships for
(a) heat flow across a substance, and
(b) heat storage in a substance.

Δ 13. Name and give the equations for the three relationships governing fluid flow.

PROBLEMS

Problems for Section 2.1: Dynamics of Mechanical Systems
2.1 Write the differential equations for the mechanical systems shown in Fig. 2.39. For (a) and (b), state whether you

think the system will eventually decay so that it has no motion at all, given that there are non-zero initial
conditions for both masses, and give a reason for your answer.

Figure 2.39
Mechanical systems

2.2 Write the differential equation for the mechanical system shown in Fig. 2.40. State whether you think the system
will eventually decay so that it has no motion at all, given that there are non-zero initial conditions for both
masses, and give a reason for your answer.

2.3 Write the equations of motion for the double-pendulum system shown in Fig. 2.41. Assume that the displacement
angles of the pendulums are small enough to ensure that the spring is always horizontal. The pendulum rods are
taken to be massless, of length I, and the springs are attached three-fourths of the way down.



Figure 2.40
Mechanical system for Problem 2.2

Figure 2.41
Double pendulum

2.4 Write the equations of motion of a pendulum consisting of a thin, 4 kg stick of length l suspended from a pivot.
How long should the rod be in order for the period to be exactly 2 sec? (The inertia l of a thin stick about an end
point is . Assume that θ is small enough that sin θ ≅ = θ.) Why do you think grandfather clocks are typically
about 6 ft high?

2.5 For the car suspension discussed in Example 2.2, plot the position of the car and the wheel after the car hits a
“unit bump”(i.e., r is a unit step) using MATLAB. Assume that m1 = 10 kg, m2 = 350 kg, Kw = 500,000 N/m, Ks
= 10,000 N/m. Find the value of b that you would prefer if you were a passenger in the car.

2.6 Write the equations of motion for a body of mass M suspended from a fixed point by a spring with a constant A;.
Carefully define where the body’s displacement is zero.

2.7 Automobile manufacturers are contemplating building active suspension systems. The simplest change is to make
shock absorbers with a changeable damping, b(u1). It is also possible to make a device to be placed in parallel
with the springs that has the ability to supply an equal force, u2, in opposite directions on the wheel axle and the
car body.
(a) Modify the equations of motion in Example 2.2 to include such control inputs.
(b) Is the resulting system linear?
(c) Is it possible to use the forcer u2 to completely replace the springs and shock absorber? Is this a good idea?

2.8 Modify the equation of motion for the cruise control in Example 2.1, Eq. (2.4), so that it has a control law; that is,
let

where



This is a “proportional” control law in which the difference between vr and the actual speed is used as a signal to
speed the engine up or slow it down. Revise the equations of motion with vr as the input and v as the output and
find the transfer function. Assume that m = 1000 kg and b = 50 N-sec/m, and find the response for a unit step in vr
using MATLAB. Using trial and error, find a value of K that you think would result in a control system in which the
actual speed converges as quickly as possible to the reference speed with no objectionable behavior.

Figure 2.42 Schematic of a system with flexibility

2.9 In many mechanical positioning systems there is flexibility between one part of the system and another. An
example is shown in Fig. 2.7 where there is flexibility of the solar panels. Fig. 2.42 depicts such a situation,
where a force u is applied to the mass M and another mass m is connected to it. The coupling between the
objects is often modeled by a spring constant k with a damping coefficient b, although the actual situation is
usually much more complicated than this.
(a) Write the equations of motion governing this system.
(b) Find the transfer function between the control input u and the output y.

Problems for Section 2.2: Models of Electric Circuits
2.10 A first step toward a realistic model of an op-amp is given by the following equations and is shown in Fig. 2.43:

Find the transfer function of the simple amplification circuit shown using this model.

Figure 2.43 Circuit for Problem 2.10



2.11 Show that the op-amp connection shown in Fig. 2.44 results in Vout = Vin if the op-amp is ideal. Give the
transfer function if the op-amp has the nonideal transfer function of Problem 2.10.

2.12 Show that, with the nonideal transfer function of Problem 2.10, the op-amp connection shown in Fig. 2.45 is
unstable.

Figure 2.44 Circuit for Problem 2.11

Figure 2.45 Circuit for Problem 2.12

2.13 A common connection for a motor power amplifier is shown in Fig. 2.46. The idea is to have the motor current
follow the input voltage, and the connection is called a current amplifier. Assume that the sense resistor rs is
very small compared with the feedback resistor R, and find the transfer function from Vin to Ia. Also show the
transfer function when Rf = ∞.

Figure 2.46 Op-amp circuit for Problem 2.13



2.14 An op-amp connection with feedback to both the negative and the positive terminals is shown in Fig. 2.47. If
the op-amp has the nonideal transfer function given in Problem 2.10, give the maximum value possible for the

positive feedback ratio,  in terms of the negative feedback ratio,  for the circuit to remain
stable.

2.15 Write the dynamic equations and find the transfer functions for the circuits shown in Fig. 2.48.
(a) passive lead circuit
(b) active lead circuit
(c) active lag circuit
(d) passive notch circuit

Figure 2.47 Op-amp circuit for Problem 2.14

Figure 2.48 (a) Passive lead; (b) active lead; (c) active lag; and (d) passive notch circuits



2.16 The very flexible circuit shown in Fig. 2.49 is called a biquad because its transfer function can be made to be
the ratio of two second-order or quadratic polynomials. By selecting different values for Ra, Rb, Rc, and Rd, the
circuit can realize a low-pass, band-pass, high-pass, or band-reject (notch) filter.

(a) Show that if Ra = R, and Rb = Rc = Rd = ∞, the transfer function from Vin to Vout can be written as the low-
pass filter

where



(b) Using the MATLAB command step, compute and plot on the same graph the step responses for the biquad of
Fig. 2.49 for A = 1, ωn = 1, and ζ = 0.1, 0.5, and 1.0.

2.17 Find the equations and transfer function for the biquad circuit of Fig. 2.49 if Ra = R1, and Rb = Rc = ∞.

Problems for Section 2.3: Models of Electromechanical Systems
2.18 The torque constant of a motor is the ratio of torque to current and is often given in ounce-inches per ampere.

(Ounce-inches have dimension force × distance, where an ounce is 1/16 of a pound.) The electric constant of a
motor is the ratio of back emf to speed and is often given in volts per 1000 rpm. In consistent units, the two
constants are the same for a given motor.

(a) Show that the units ounce-inches per ampere are proportional to volts per 1000 rpm by reducing both to MKS
(SI) units.

Figure 2.49 Op-amp biquad

Figure 2.50 Simplified model for capacitor microphone

(b) A certain motor has a back emf of 25 V at 1000 rpm. What is its torque constant in ounce-inches per ampere?
(c) What is the torque constant of the motor of part (b) in newton-meters per ampere?

2.19 The electromechanical system shown in Fig. 2.50 represents a simplified model of a capacitor microphone. The
system consists in part of a parallel plate capacitor connected into an electric circuit. Capacitor plate a is rigidly
fastened to the microphone frame. Sound waves pass through the mouthpiece and exert a force fs(t) on plate b,
which has mass M and is connected to the frame by a set of springs and dampers. The capacitance C is a function



of the distance x between the plates, as follows:

where

 = dielectric constant of the material between the plates,

A = surface area of the plates.

The charge q and the voltage e across the plates are related by
Q = C(x)e

The electric field in turn produces the following force fe on the movable plate that opposes its motion:

(a) Write differential equations that describe the operation of this system. (It is acceptable to leave in nonlinear
form.)

(b) Can one get a linear model?
(c) What is the output of the system?

2.20 A very typical problem of electromechanical position control is an electric motor driving a load that has one
dominant vibration mode. The problem arises in computer-disk-head control, reel-to-reel tape drives, and many
other applications. A schematic diagram is sketched in Fig. 2.51. The motor has an electrical constant Ke, a
torque constant Kt, an armature inductance La, and a resistance Ra. The rotor has an inertia J1 and a viscous
friction B. The load has an inertia j1 The two inertias are connected by a shaft with a spring constant k and an
equivalent viscous damping b. Write the equations of motion.

Figure 2.51 Motor with a flexible load



Figure 2.52 (a) Precision table kept level by actuators; (b) side view of one actuator

Δ Problems for Section 2.4: Heat and Fluid-Flow Models
2.21 A precision table-leveling scheme shown in Fig. 2.52 relies on thermal expansion of actuators under two corners

to level the table by raising or lowering their respective corners. The parameters are as follows:
Tact = actuator temperature,
Tamb = ambient air temperature,
     Rf = heat-flow coefficient between the actuator and the air,
      C = thermal capacity of the actuator,
       R = resistance of the heater.

Assume that (1) the actuator acts as a pure electric resistance, (2) the heat flow into the actuator is proportional to
the electric power input, and (3) the motion d is proportional to the difference between Tact and Tamb, due to
thermal expansion. Find the differential equations relating the height of the actuator d versus the applied voltage vi.
2.22 An air conditioner supplies cold air at the same temperature to each room on the fourth floor of the high-rise

building shown in Fig. 2.53(a). The floor plan is shown in Fig. 2.53(b). The cold airflow produces an equal
amount of heat flow q out of each room. Write a set of differential equations governing the temperature in each
room, where

To = temperature outside the building,

Ro = resistance to heat flow through the outer walls,

Ri = resistance to heat flow through the inner walls.



Figure 2.53 Building air conditioning: (a) high-rise building; (b) floor plan of the fourth floor

Assume that (1) all rooms are perfect squares, (2) there is no heat flow through the floors or ceilings, and (3)
the temperature in each room is uniform throughout the room. Take advantage of symmetry to reduce the
number of differential equations to three.

2.23 For the two-tank fluid-flow system shown in Fig. 2.54, find the differential equations relating the flow into the
first tank to the flow out of the second tank.

Figure 2.54 Two-tank fluid-flow system for Problem 2.23

2.24 A laboratory experiment in the flow of water through two tanks is sketched in Fig. 2.55. Assume that Eq. (2.74)
describes flow through the equal-sized holes at points A, B, or C.

(a) With holes at A and C, but none at B, write the equations of motion for this system in terms of h1 and h2.
Assume that h3, = 20 cm, h2 > 20 cm, and h2 < 20 cm. When h2 = 10 cm, the outflow is 200 g/min.

(b) Ath1 = 30 cm and h2 = 10 cm, compute a linearized model and the transfer function from pump flow (in
cubic centimeters per minute) to h2.

(c) Repeat parts (a) and (b) assuming hole A is closed and hole B is open.



Figure 2.55 Two-tank fluid-flow system for Problem 2.24

2.25 The equations for heating a house are given by Eqs. (2.62) and (2.63), and in a particular case can be written
with time in hours as

where
(a) C is the thermal capacity of the house, BTU/°F,
(b) Th is the temperature in the house, °F,
(c) T0 is the temperature outside the house, °F,
(d) K is the heat rating of the furnace, = 90,000 BTU/hour,
(e) R is the thermal resistance, °F per BTU/hour,
(f) u is the furnace switch, = 1 if the furnace is on and = 0 if the furnace is off.

It is measured that, with the outside temperature at 32°F and the house at 60°F, the furnace raises the temperature
2°F in 6 minutes (0.1 hour). With the furnace off, the house temperature falls 2°F in 40 minutes. What are the values
of C and R for the house?



1 If the speed is v, the aerodynamic friction force is proportional to v2. In this simple model we have taken a linear approximation.
2 The use of an operator for differentiation was developed by Cauchy about 1820 based on the Laplace transform, which was developed about 1780.
In Chapter 3 we will show how to derive transfer functions using the Laplace transform. Reference: Gardner and Barnes, 1942.
3 In a grandfather clock it is desired to have a pendulum period of exactly 2 sec. Show that the pendulum should be approximately 1 m in length.
4 A more extensive discussion of block diagrams is contained in Section 3.2.1.
5 The inverted pendulum is often described with the angle of the pendulum being positive for clockwise motion. If defined that way, then reverse the
sign on all terms in Eqs. (2.30) in θ’ or θ’.
6 Oliver Heaviside introduced the mathematical operation p to signify differentiation so that pv = dv/dt. The Laplace transform incorporates this idea,
using the complex variable s. Ragazzini et al. (1947) demonstrated that an ideal, high-gain electronic amplifier permitted one to realize arbitrary
“operations” in the Laplace transform variable s, so they named it the operational amplifier, commonly abbreviated to op-amp.
7 Similar voice-coil motors are commonly used as the actuator for the read/write head assembly of computer hard-disk data access devices.
8 Because the generated electromotive force (emf) works against the applied armature voltage, it is called the back emf.
9 In the case of insulation for houses, resistance is quoted as K-values; for example, R-ll refers to a substance that has a resistance to heat flow
equivalent to that given by 11 in. of solid wood.
10 Much of the background on Newton was taken from Heisenberg Probably Slept Here, by Richard P. Brennan, 1997. The book discusses his work
and the other early scientists that laid the groundwork for Newton.
11 Galileo’s life, accomplishments, and house arrest are very well described in Dava Sobel’s book, Galileo’s Daughter.
12 E = MC2, A Biography of the World’s Most Famous Equation, by David Bodanis, Walker and Co., New York, 2000.
13 The Man Who Changed Everything: The Life of James Clerk Maxwell, Basil Mahon, Wiley, 2003.



3 Dynamic Response

A Perspective on System Response
We saw in Chapter 2 how to obtain the dynamic model of a system. In designing a control system, it is important to
see how well a trial design matches the desired performance. We do this by solving the equations of the system
model.

There are two ways to approach solving the dynamic equations. For a quick, approximate analysis we use linear
analysis techniques. The resulting approximations of system response provide insight into why the solution has
certain features and how the system might be changed to modify the response in a desired direction. In contrast, a
precise picture of the system response typically calls for numerical simulation of nonlinear equations of motion using
computer aids. This chapter focuses on linear analysis and computer tools that can be used to solve for the time
response of linear systems.

There are three domains within which to study dynamic response: the s-plane, the frequency response, and the
state space (analysis using the state-variable description). The well-prepared control engineer needs to be fluent in
all of them, so they will be treated in depth in Chapters 5, 6, and 7, respectively. The purpose of this chapter is to
discuss some of the fundamental mathematical tools needed before studying analysis in the s-plane, frequency
response, and state space.

Chapter Overview
The Laplace transform, reviewed in Section 3.1 (and Appendix A), is the mathematical tool for transforming
differential equations into an easier-to-manipulate algebraic form. In addition to the mathematical tools at our
disposal, there are graphical tools that can help us to visualize the model of a system and evaluate the pertinent
mathematical relationships between elements of the system. One approach is the block diagram, which was
introduced in Chapter 1. Block diagram manipulation is discussed in Section 3.2 and allows the determination of
transfer functions.

Once the transfer function has been determined, we can identify its poles and zeros, which tell us a great deal
about system characteristics, including its frequency response introduced in Section 3.1. Sections 3.3 to 3.5 focus on



poles and zeros and some of the ways for manipulating them to steer system characteristics in a desired way. When
feedback is introduced, the possibility that the system may become unstable is introduced. To study this effect, in
Section 3.6 we consider the definition of stability and Routh’s test, which can determine stability by examining the
coefficients of the system’s characteristic equation. Development of a modelbased on experimental time–response
data is discussed in Section 3.7. Section 3.8 discusses amplitude and time scaling. Finally, Section 3.9 provides the
historical perspective for the material in this chapter. An alternative representation of a system in graphical form is
the signal-flow graph and flow graphs that allow the determination of complicated transfer functions are discussed in
Appendix W3 on the web.

3.1 Review of Laplace Transforms
Two attributes of linear time-invariant systems (LTIs) form the basis for almost all analytical techniques applied to
these systems:
1. A linear system response obeys the principle of superposition.
2. The response of an LTI system can be expressed as the convolution of the input with the unit impulse response of

the system.

The concepts of superposition, convolution, and impulse response will be defined shortly.
From the second property (as we will show), it follows immediately that the response of an LTI system to an

exponential input is also exponential. This result is the principal reason for the usefulness of Fourier and Laplace
transforms in the study of LTI systems.

3.1.1 Response by Convolution

Superposition
The principle of superposition states that if the system has an input that can be expressed as a sum of signals, then
the response of the system can be expressed as the sum of the individual responses to the respective signals. We can
express superposition mathematically. Consider the system to have input u and output y. Suppose further that, with
the system at rest, we apply the input u1(t) and observe the output y1(t). After restoring the system to rest, we apply
a second input u2(t) and again observe the output, which we call y2(t). Then, we form the composite input u(t) =
α1u1(t) + α2u2(t). Finally, if superposition applies, then the response will be y(t) = α1y1(t) + α2y2(t).
Superposition will apply if and only if the system is linear.

EXAMPLE 3.1 Superposition
Show that superposition holds for the system modeled by the first-order linear differential equation

 + ky = u
Solution. We let u = α1u1 + α2u2 and assume that y = α1y2 + α2y2. Then  = α1 2 + α2 2. If we substitute these
expressions into the system equation, we get



From this it follows that

If yi is the solution with input u1 and y2 is the solution with input u2, then Eq. (3.1) is satisfied, the response is the
sum of the individual responses, and superposition holds.

Notice that the superposition result of Eq. (3.1) would also hold if k were a function of time. If it were constant,
we call the system time invariant. In that case, it follows that if the input is delayed or shifted in time, then the
output is unchanged except also being shifted by exactly the same amount. Mathematically, this is expressed by
saying that, if y1(T) is the output caused by u1(t) then y1(t – τ) will be the response to u1(t – τ)

EXAMPLE 3.2 Time Invariance
Consider

and

where τ is a constant shift. Assume that y2(t) = y1(t – τ);then

Let us make the change of variable t – τ = η, then

If k(έ + τ) = k = constant, then

which is Eq. (3.1). Therefore, we conclude that if the system is time invariant y(t – τ) will be the response to u(t – τ);
that is if the input is delayed by τ sec, then the output is also delayed by τ sec.

We are able to solve for the response of a linear system to a general signal simply by decomposing the given signal
into a sum of the elementary components and, by superposition, concluding that the response to the general signal is
the sum of the responses to the elementary signals. In order for this process to work, the elementary signals need to
be sufficiently “rich” that any reasonable signal can be expressed as a sum of them, and their responses have to be
easy to And. The most common candidates for elementary signals for use in linear systems are the impulse and the
exponential.



Suppose the input signal to an LTI system is U1(t) = p(t), and the corresponding output signal is y1(t) = h(t) as
shown in Fig. 3.1(a). Now if the input is scaled to u1(t) = u(0)p(t), then by the scaling property of superposition, the
output response will be y1(t) = u(0)h(t). We showed that an LTI system obeys time invariance. If we delay the short
pulse signal in time by τ, then the input is of the form u2(t) = p(t – τ) and the output response will also be delayed
by the same amount y2 = h(t – τ) as shown in Fig. 3.1(b). Now by superposition, the response to the two short
pulses will be the sum of the two individual outputs as shown in Fig. 3.1(c). If we have four pulses as the input, then
the output will be the sum of the four individual responses as shown in Fig. 3.1(d). Any arbitrary input signal u(t)
may be approximated by a series of pulses as shown in Fig. 3.2. We define a short pulse pΔ(t) as a rectangular pulse
having unit area such that

Short pulse

as shown in Fig. 3.1(a). Suppose the response of the system to pΔ(t) is defined as hΔ(t). The response at time nΔ to
Δu(kΔ)pΔ(kΔ) is

Δu(kΔ)hΔ(Δn – Δk).

By superposition, the total response to the series of the short pulses at time t is given by

If we take the limit as A → 0, the basic pulse gets more and more narrow and taller and taller while holding a
constant area. We then have the concept of an impulse signal, δ(t), and that will allow us to treat continuous signals.
In that case we have,

Moreover, in the limit as A → 0, the summation in Eq. (3.4) is replaced by the integral

that is the convolution integral.



Figure 3.1 Illustration of convolution as the response of a system to a series of short pulse (impulse) input signals

The idea for the impulse comes from dynamics. Suppose we wish to study the motion of a baseball hit by a bat.
The details of the collision between the bat and ball can be very complex as the ball deforms and the bat bends;
however, for purposes of computing the path of the ball, we can summarize the effect of the collision as the net
velocity change of the ball over a very short time period. We assume that the ball is subjected to an impulse, a very
intense force for a very short time. The physicist Paul Dirac suggested that such forces could be represented by the
mathematical concept of an impulse 5(f), which has the property that

Impulse response

Definition of impulse



Sifting property of impulse
If f(t) is continuous at t = τ, then it has the “sifting property.”

Figure 3.2 Illustration of the representation of a general input signal as the sum of short pulses

In other words, the impulse is so short and so intense that no value of f matters except over the short range where
the 5 occurs. Since integration is a limit of a summation process, Eq. (3.10) can be viewed as representing the
function f as a sum of impulses. If we replace f by u, then Eq. (3.10) represents an input u(t) as a sum of impulses of
intensity u(t – τ). To find the response to an arbitrary input, the principle of superposition tells us that we need only
find the response to a unit impulse.

If the system is not only linear but also time invariant (LTI), then the impulse response is given by h(t – τ) because
the response at t to an input applied at τ depends only on the difference between the time the impulse is applied
and the time we are observing the response, i.e. the elapsed time. Time invariant systems are called shift invariant
for this reason. For time invariant systems, the output for a general input is given by the integral

or by changing of variables as τ1 = t – τ

The convolution integral
This is the convolution integral.

EXAMPLE 3.3 Convolution
We can illustrate convolution with a simple system. Determine the impulse response for the system described by the
differential equation

 + ky = u = δ(t),



with an initial condition of y(0) = 0 before the impulse.
Solution. Because δ(t) has an effect only near t = 0, we can integrate this equation from just before zero to just after
zero with the result that

The integral of  is simply y, the integral of y over so small a range is zero, and the integral of the impulse over the
same range is unity. Therefore,

y(0+) – y(0–) = 1

Because the system was at rest before application of the impulse, y(0–) = 0. Thus the effect of the impulse is that
y(0+) = 1. For positive time we have the differential equation

 + ky = 0, y(0+) = 1

If we assume a solution y = Aest, then  = Asest. The preceding equation then becomes

Unit step
Because y(0+) = 1, it is necessary that A = 1. Thus the solution for the impulse response is y(t) = h(t) = e–kt for t
> 0. To take care of the fact that h(t) = 0 for negative time, we define the unit-step function

With this definition, the impulse response of the first-order system becomes

h(t) = e–kt 1 (t)
The response of this system to a general input is given by the convolution of this impulse response with the input:

3.1.2 Transfer Functions and Frequency Response
An immediate consequence of convolution is that an input of the form est results in an output H(s)est. Note that both
input and output are exponential time functions, and that the output differs from the input only in the amplitude



H(s). H(s) is the transfer function of the system. The constant s may be complex, expressed as s = σ + jω.
Thus, both the input and the output may be complex. If we let u(t) = est in Eq. (3.12), then

where1

The integral in Eq. (3.14) does not need to be computed to find the transfer function of a system. Instead, one can
assume a solution of the form of Eq. (3.13), substitute that into the differential equation of the system, then solve for
the transfer function H(s).

Transfer function
The transfer function can be formally defined as follows: The function H(s), which is the transfer gain from U(s) to

Y(s)—input to output—is called the transfer function of the system. It is the ratio of the Laplace transform of the
output to the Laplace transform of the input,

with the key assumption that all of the initial conditions on the system are zero. If the input u(t) is the unit impulse
δ(t), then y(t) is the unit impulse response. The Laplace transform of u(t) is 1 and the transform of y(t) is H(s)
because

In words, this is to say

Transfer function

The transfer function H(s) is the Laplace transform of the unit impulse response h(t).

Thus if one wishes to characterize an LTI system, one applies a unit impulse and the resulting response is a



description (the inverse Laplace transform) of the transfer function.

EXAMPLE 3.4 Transfer Function
Compute the transfer function for the system of Example 3.1, and find the output y for the input u = est.
Solution. The system equation from Example 3.3 is

We assume that we can express y(t) as H(s)est. With this form, we have  = sH(s)est, and Eq. (3.17) reduces to

Solving for the transfer function H(s), we get

Substituting this back into Eq. (3.13) yields the output

A very common way to use the exponential response of LTIs is in finding the frequency response, or response to a
sinusoid. First we express the sinusoid as a sum of two exponential expressions (Euler’s relation):

Frequency response

If we let s = jω in the basic response formula Eq. (3.13), then the response to u(t) = ejωt is y(t) = H(jω)ejωt;
similarly, the response to u(t) = e–jωt is H (–jω)e–jωt. By superposition, the response to the sum of these two
exponentials, which make up the cosine signal, is the sum of the responses:

The transfer function H(jω) is a complex number that can be represented in polar form or in magnitude-and-phase
form as H(jω) = M(ω)ejφ(ω) or simply H = Mejφ. With this substitution, Eq. (3.19) becomes

where



M = |H(jω)|, φ = ∠H(jω).
This means that if a system represented by the transfer function H(s) has a sinusoidal input with magnitude A, the
output will be sinusoidal at the same frequency with magnitude AM and will be shifted in phase by the angle φ.

EXAMPLE 3.5 Frequency Response
For the system in Example 3.1, find the response to the sinusoidal input u = A cos (ωt). That is,

a. find the frequency response and plot the response for k = 1,
b. determine the complete response due to the sinusoidal input u(t) = sin(10t) again with k = 1.

Figure 3.3 Frequency response for k = 1

Solution. In Example 3.4 we found the transfer function. To find the frequency response, we let s = jω so that

From this we get

Therefore, the response of this system to a sinusoid will be

M is usually referred to as the amplitude ratio and φ is referred to as the phase and they are both functions of the
input frequency, ω. The MATLAB® program that follows is used to compute the amplitude ratio and phase for k =



1, as shown in Fig. 3.3. The logspace command is used to set the frequency range (on a logarithmic scale) and the
bode command is used to compute the frequency response in MATLAB. Presenting frequency response in this
manner (i.e., on a log-log scale) was originated by H. W. Bode; thus, these plots are referred to as “Bode plots.”2 (See
Chapter 6, Section 6.1.)

To determine the response to an input that begins at f = 0 as u(t) = sin(10t)1(t), notice that from Laplace
transform tables (Appendix A, Table A.2), we have

where L denotes the Laplace transform, and the output of the system using partial fraction expansion (see Section
3.1.5) is given by

The inverse Laplace transform of the output is given by (see Appendix A)

where

φ = tan–1 (–10) = –84.2°.
The component y1(t) is called the transient response as it decays to zero as time goes on and the component y2(t)

is called the steady state and equals the response given by Eq. (3.21). Figure 3.4(a) is a plot of the time history of the
output showing the different components (y1, y2) and the composite (y) output response. The output frequency is 10



rad/sec and the steady-state phase difference measured from Fig. 3.4(b) is approximately 10*δt = 1.47 rad = 84.2°3.
Figure 3.4(b) shows the output lags the input by 84.2°. Figure 3.4(b) shows that the steady-state amplitude of the

output is the amplitude ratio  (i.e., the amplitude of the input signal times the magnitude of the
transfer function evaluated at ω = 10 rad/sec).

This example illustrates that the response of an LTI system to a sinusoid of frequency ω is a sinusoid with the same
frequency and with an amplitude ratio equal to the magnitude of the transfer function evaluated at the input
frequency. Furthermore, the phase difference between input and output signals is given by the phase of the transfer
function evaluated at the input frequency. The magnitude ratio and phase difference can be computed from the
transfer function as just discussed; they can also be measured experimentally quite easily in the laboratory by driving
the system with a known sinusoidal input and measuring the steady-state amplitude and phase of the system’s
output. The input frequency is set to sufficiently many values so that curves such as the one in Fig. 3.3 are obtained.

Figure 3.4 (a) Complete transient response; (b) phase lag between output and input

We can generalize the frequency response by defining the Laplace transform of a signal f(t) as



The key property of Laplace transforms
If we apply this definition to both u(t) and y(t) and use the convolution integral Eq. (3.12), we find that

where Y(s) and U(s) are the Laplace transforms of y(t) and u(t), respectively. We prove this result in Appendix A.
Laplace transforms such as Eq. (3.22) can be used to study the complete response characteristics of feedback

systems, including the transient response—that is, the time response to an initial condition or suddenly applied
signal. This is in contrast to the use of Fourier transforms, where the steady-state response is the main concern. A
standard problem in control is to find the response y(t) of a system given the input u(t) and a model of the system.
With Eq. (3.22) we have a means for computing the response of LTI systems to quite general inputs. Given any input
into a system, we compute the transform of the input and the transfer function for the system. The transform of the
output is then given by Eq. (3.23) as the product of these two. If we wanted the time function of the output, we
would need to “invert” Y(s) to get what is called the inverse transform; this step is typically not carried out explicitly.
Nevertheless, understanding the process necessary for deriving y(t) from Y(s) is important because it leads to insight
into the behavior of linear systems. Hence, given a general linear system with transfer function H(s) and an input
signal u(t), the procedure for determining y(t) using the Laplace transform is given by the following steps:
STEP 1. Determine the transfer function: H(s) = L{impulse response of the system}. Compute H(s) by the following
steps:

(a) Take the Laplace transform of the equations of motion. A table of transform properties is frequently useful in
this process.

(b) Solve the resulting algebraic equations. Often this step is greatly helped by drawing the corresponding block
diagram and solving the equations by graphical manipulation of the blocks or using MATLAB.
STEP 2. Determine the Laplace transform of the input signal: U(s) = L{u(t)}.
STEP 3. Determine the Laplace transform of the output: Y(s) = H(s) U(s).
STEP 4. Break up Y(s) by partial-fraction expansion.
STEP 5. Find the output of the system by computing the inverse Laplace transform of Y(s) in Step 4, y(t) = L–1{Y(s)}
[i.e., invert Y(s) to get y(t)]:

(a) Look up the components of y(t) in a table of transform-time function pairs.
(b) Combine the components to give the total solution in the desired form.

As already mentioned, Steps 4 and 5 are almost never carried out in practice, and a modified solution for a
qualitative rather than a quantitative solution is often adequate and almost always used for control design purposes.
The process begins with the first three steps as before. However, rather than inverting Y(s), one can use prior
knowledge and intuition about the effects of pole and zero locations in Y(s) on the response y(t) to estimate key
parameters of y(t). That is, we get information about y(t) from the pole-zero constellation of Y(s) without actually
inverting it, as discussed in the rest of this chapter.

While it is possible to determine the transient response properties of the system using Eq. (3.22), it is generally
more useful to use a simpler version of the Laplace transform based on the input beginning at time zero.



3.1.3 The L_ Laplace Transform
In many applications it is useful to define a one-sided (or unilateral) Laplace transform, which uses 0– (that is, a
value just before t = 0) as the lower limit of integration in Eq. (3.22). The L_ Laplace transform of f(t), denoted by
L_{f(t)} = F(s), is a function of the complex variable s = σ + jω, where

Definition of Laplace transform
The decaying exponential term in the integrand in effect provides a built-in convergence factor if a σ 0. This means
that even if f(t) does not vanish as t → ∞, the integrand will vanish for sufficiently large values of σ if f does not
grow at a faster-than-exponential rate. The fact that the lower limit of integration is at 0– allows the use of an
impulse function at t = 0, as illustrated in Example 3.3; however, this distinction between t = 0– and t = 0 does not
usually come up in practice. We will therefore for the most part drop the minus superscript on t = 0; however, we
will return to using the notation t = 0– when an impulse at t = 0 is involved and the distinction is of practical
value.

If Eq. (3.24) is a one-sided transform, then by extension, Eq. (3.22) is a two-sided Laplace transform.4 We will use
the L symbol from here on to mean L_.

On the basis of the formal definition in Eq. (3.24), we can ascertain the properties of Laplace transforms and
compute the transforms of common time functions. The analysis of linear systems by means of Laplace transforms
usually involves using tables of common properties and time functions, so we have provided this information in
Appendix A. The tables of time functions and their Laplace transforms, together with the table of properties, permit
us to find transforms of complex signals from simpler ones. For a thorough study of Laplace transforms and extensive
tables, see Churchill (1972) and Campbell and Foster (1948). For more study of the two-sided transform, see Van der
Pol and Bremmer (1955). These authors show that the time function can be obtained from the Laplace transform by
the inverse relation

where σc is a selected value to the right of all the singularities of F(s) in the s-plane. In practice, this relation is
seldom used. Instead, complex Laplace transforms are broken down into simpler ones that are listed in the tables
along with their corresponding time responses.

Let us compute a few Laplace transforms of some typical time functions.

EXAMPLE 3.6 Step and Ramp Transforms
Find the Laplace transform of the step a1(t) and ramp bt1(t) functions.
Solution. For a step of size a, f(t) = a1(t), and from Eq. (3.24) we have



For the ramp signal f(t) = bt1(t), again from Eq. (3.24) we have

where we employed the technique of integration by parts,
∫ u dv = uv – ∫ v du,

with u = bt and dv = e–st dt. We can then extend the domain of the validity of F(s) to the entire s-plane except at
the pole location namely the origin (see Appendix A).

A more subtle example is that of the impulse function.

EXAMPLE 3.7 Impulse Function Transform
Find the Laplace transform of the unit-impulse function.
Solution. From Eq. (3.24) we get

It is the transform of the unit-impulse function that led us to choose the L_ transform rather than the L+ transform.

EXAM PLE 3.8 Sinusoid Transform
Find the Laplace transform of the sinusoid function.
Solution. Again, we use Eq. (3.24) to get

If we substitute the relation from Eq. (D.34) in Appendix WD,

into Eq. (3.27), we find that



We can then extend the domain of the validity of computed Laplace transform to the entire s-plane except at the
pole locations s = ±jω (see Appendix A).

Table A.2 in Appendix A lists Laplace transforms for elementary time functions. Each entry in the table follows
from direct application of the transform definition of Eq. (3.24), as demonstrated by Examples 3.6 to 3.8.

3.1.4 Properties of Laplace Transforms
In this section we will address each of the significant properties of the Laplace transform listed in Table A.l. For the
proofs of these properties and related examples as well as the Initial Value Theorem, the reader is referred to
Appendix A.

1. Superposition
One of the more important properties of the Laplace transform is that it is linear:

The amplitude scaling property is a special case of this; that is,

2. Time Delay
Suppose a function f(t) is delayed by A. λ > 0 units of time. Its Laplace transform is

From this result we see that a time delay of λ corresponds to multiplication of the transform by e–sλ.

3. Time Scaling
It is sometimes useful to time-scale equations of motion. For example, in the control system of a disk drive, it is
meaningful to measure time in milliseconds (see also Chapter 10). If the time t is scaled by a factor a, then the
Laplace transform of the time-scaled signal is



4. Shift in Frequency
Multiplication (modulation) of f(t) by an exponential expression in the time domain corresponds to a shift in
frequency:

5. Differentiation
The transform of the derivative of a signal is related to its Laplace transform and its initial condition as follows:

Another application of Eq. (3.33) leads to

Repeated application of Eq. (3.33) leads to

where fm (t)} denotes the mth derivative of f(t) with respect to time.

6. Integration
Let us assume that we wish to determine the Laplace transform of the integral of a time function f(t); that is,

which means that we simply multiply the function’s Laplace transform by .

7. Convolution
We have seen previously that the response of a system is determined by convolving the input with the impulse
response of the system, or by forming the product of the transfer function and the Laplace transform of the input.
The discussion that follows extends this concept to various time functions.

Convolution in the time domain corresponds to multiplication in the frequency domain. Assume that L{f1(t)} =
F1(s) and L{f2(t)} = F2(s). Then



This implies that

A similar, or dual, of this result is discussed next.

8. Time Product
Multiplication in the time domain corresponds to convolution in the frequency domain:

9. Multiplication by Time
Multiplication by time corresponds to differentiation in the frequency domain:

3.1.5 Inverse Laplace Transform by Partial-Fraction Expansion
The easiest way to find f(t) from its Laplace transform F(s), if F(s) is rational, is to expand F(s) as a sum of simpler
terms that can be found in the tables. The basic tool for performing this operation is called partial-fraction
expansion. Consider the general form for the rational function F(s) consisting of the ratio of two polynomials:

By factoring the polynomials, this same function could also be expressed in terms of the product of factors as

We will discuss the simple case of distinct poles here. For a transform F(s) representing the response of any
physical system, m ≤ n. When s = Zi s is referred to as a zero of the function, and when s = p i is referred to as a
pole of the function. Assuming for now that the poles {p i} are real or complex but distinct, we rewrite F(s) as the
partial fraction

Zeros and poles

Next, we determine the set of constants {Ci}. We multiply both sides of Eq. (3.43) by the factor s – p1 to get



If we let s = p1 on both sides of Eq. (3.44), then all the ci terms will equal zero except for the first one. For this
term,

The other coefficients can be expressed in a similar form:
Ci = (s – p i)F(s)|s=pi.

The cover-up method of determining coefficients
This process is called the cover-up method because, in the factored form of F(s) [Eq. (3.42)], we can cover up the
individual denominator terms, evaluate the rest of the expression with s = pu and determine the coefficients Ci.
Once this has been completed, the time function becomes

because, as entry 7 in Table A.2 shows, if

then

f(t) = epit1(t).
For the cases of quadratic factors or repeated roots in the denominator, see Appendix A.

EXAM PLE 3.9 Partial-Fraction Expansion: Distinct Real Roots
Suppose you have computed Y(s) and found that

Findy y(t).
Solution. We may write Y(s) in terms of its partial-fraction expansion:

Using the cover-up method, we get



In a similar fashion,

and

We can check the correctness of the result by adding the components again to verify that the original function has
been recovered. With the partial fraction the solution can be looked up in the tables at once to be

The partial fraction expansion may be computed using the residue function in MATLAB:

which yields the result
r = [–0.1667 –1.5000 2.6667]’ p = [–3 –1 0]’; k = [ ];
and agrees with the hand calculations. Note that the conv function in MATLAB is used to multiply two polynomials.
(The arguments of the function are the polynomial coefficients.)

3.1.6 The Final Value Theorem
An especially useful property of the Laplace transform in control known as the Final Value Theorem allows us to
compute the constant steady-state value of a time function given its Laplace transform. The theorem follows from the
development of partial-fraction expansion. Suppose we have a transform Y(s) of a signal y(t) and wish to know the
final value y(t) from Y(s). There are three possibilities for the limit. It can be constant, undefined, or unbounded. If
Y(s) has any poles (i.e., denominator roots, as described in Section 3.1.5) in the right half of the s-plane—that is, if
the real part of any p i < 0—then y(t) will grow and the limit will be unbounded. If Y(s) has a pair of poles on the
imaginary axis of the s-plane (i.e.,p i = ±jω), then y(t) will contain a sinusoid that persists forever and the final
value will not be defined. Only one case can provide a nonzero constant final value: If all poles of Y(s) are in the left
half of the s-plane, except for one at s = 0, then all terms of y(t) will decay to zero except the term corresponding to
the pole at s = 0, and that term corresponds to a constant in time. Thus, the final value is given by the coefficient
associated with the pole at s = 0. Therefore, the Final Value Theorem is as follows:

The Final Value Theorem

If all poles of sY(s) are in the left half of the s-plane, then



This relationship is proved in Appendix A.

EXAMPLE 3.10 Final Value Theorem
Find the final value of the system corresponding to

Solution. Applying the Final Value Theorem, we obtain

Thus, after the transients have decayed to zero, y(t) will settle to a constant value of 0.6.

Use the Final Value Theorem on stable systems only

Care must be taken to apply the Final Value Theorem only to stable systems (see Section 3.6). While one could use
Eq. (3.46) on any Y(s), doing so could result in erroneous results, as shown in the next example.

EXAMPLE 3.11 Incorrect Use of the Final Value Theorem
Find the final value of the signal corresponding to

Solution. If we blindly apply Eq. (3.46), we obtain

However,

and Eq. (3.46) yields the constant term only. Of course, the true final value is unbounded.

Calculating DC gain by the Final Value Theorem
The theorem can also be used to find the DC gain of a system. The DC gain is the ratio of the output of a system to

its input (presumed constant) after all transients have decayed. To find the DC gain, we assume that there is a unit-
step input [U(s) = 1/s and we use the Final Value Theorem to compute the steady-state value of the output.



Therefore, for a system transfer function G(s),

EXAMPLE 3.12 DC Gain
Find the DC gain of the system whose transfer function is

Solution. Applying Eq. (3.47), we get

3.1.7 Using Laplace Transforms to Solve Problems
Laplace transforms can be used to solve differential equations using the properties described in Appendix A. First,
we find the Laplace transform of the differential equation using the differentiation properties in Eqs. (A.12) and
(A.13) in Appendix A. Then we find the Laplace transform of the output; using partial-fraction expansion and Table
A.2, this can be converted to a time response function. We will illustrate this with three examples.

EXAMPLE 3.13 Homogeneous Differential Equation Solution
Find the solution to the differential equation

(t) + y(t) = 0, where y(0) = α, (0) = β
Solution. Using Eq. (3.34), the Laplace transform of the differential equation is

After looking up in the transform tables (Table A.2, Appendix A) the two terms on the right side of the preceding
equation, we get

y(t) = [α cos t + β sin t]1(t),
where 1 (t) denotes a unit step function. We can verify that this solution is correct by substituting it back into the
differential equation.

Another example will illustrate the solution when the equations are not homogeneous—that is, when the system is
forced.



EXAMPLE 3.14 Forced Differential Equation Solution
Find the solution to the differential equation (t) + 5 (t) + 4y(t) = 3, where y(0) = α (0) = β.
Solution. Taking the Laplace transform of both sides using Eqs. (3.33) and (3.34), we get

Solving for Y(s) yields

The partial-fraction expansion using the cover-up method is

Therefore, the time function is given by

By differentiating this solution twice and substituting the result in the original differential equation, we can verify
that this solution satisfies the differential equation.

The solution is especially simple if the initial conditions are all zero.

EXAMPLE 3.15 Forced Equation Solution with Zero Initial Conditions
Find the solution to (t) + 5 (t) + 4y(t) = u(t), y(0) = 0, (0) = 0, u(t) = 2e–2t1(t)
1. using partial-fraction expansion and
2. using MATLAB.
Solution
1. Taking the Laplace transform of both sides, we get

Solving for Y(s) yields

The partial-fraction expansion using the cover-up method is



Therefore, the time function is given by

2. The partial-fraction expansion may also be computed using the MATLAB residue function,

which results in the desired answer
r = [0.3333 –1 0.6667]’; p = [–4 –2 –1]’; k = [ ];
and agrees with the hand calculations.

Poles indicate response character
The primary value of using the Laplace transform method of solving differential equations is that it provides

information concerning the qualitative characteristic behavior of the response. Once we know the values of the poles
of Y(s), we know what kind of characteristic terms will appear in the response. In the last example the pole at s = –
1 produced a decaying y = Ce–t term in the response. The pole at s = –4 produced a y = Ce–4t term in the
response, which decays faster. If there had been a pole at s = +1, there would have been a growing y = Ce+t term
in the response. Using the pole locations to understand in essence how the system will respond is a powerful tool
and will be developed further in Section 3.3. Control systems designers often manipulate design parameters so that
the poles have values that would give acceptable responses, and they skip the steps associated with converting those
poles to actual time responses until the final stages of the design. They use trial-and-error design methods (as
described in Chapter 5) that graphically present how changes in design parameters affect the pole locations. Once a
design has been obtained, with pole locations predicted to give acceptable responses, the control designer determines
a time response to verify that the design is satisfactory. This is typically done by computer, which solves the
differential equations directly by using numerical computer methods.

3.1.8 Poles and Zeros
A rational transfer function can be described either as a ratio of two polynomials in s,

or as a ratio in factored zero pole form



K is called the transfer function gain. The roots of the numerator Z1, Z2,..., zm are called the finite zeros of the system.
The zeros are locations in the s-plane where the transfer function is zero. If s = Zi then

Zeros
|H(s)|s = zi = 0.

The zeros also correspond to the signal transmission-blocking properties of the system and are also called the
transmission zeros of the system. The system has the inherent capability to block frequencies coinciding with its zero
locations. If we excite the system with the nonzero input, u = U0esot, where S0 is not a pole of the system, then the
output is identically zero,5 y ≡ 0, for frequencies where S0 = Zi;. The zeros also have a significant effect on the
transient properties of the system (see Section 3.5).

Poles
The roots of the denominator, p1, p2, . . ., pn are called the poles6 of the system. The poles are locations in the s-

plane where the magnitude of the transfer function becomes infinite. If s = pi then
|H(s)|s = pi = ∞.

The poles of the system determine its stability properties, as we shall see in Section 3.6. The poles of the system
also determine the natural or unforced behavior of the system, referred to as the modes of the system. The zeros and
poles may be complex quantities, and we may display their locations in a complex plane, which we refer to as the s-
plane. The locations of the poles and zeros lie at the heart of feedback control design and have significant practical
implications for control system design. The system is said to have n—m zeros at infinity if m < n because the
transfer function approaches zero as s approaches infinity. If the zeros at infinity are also counted, the system will
have the same number of poles and zeros. No physical system can have n < m; otherwise, it would have an infinite
response at ω = ∞. If zi; = p j, then there are cancellations in the transfer function, which may lead to undesirable
system properties as discussed in Chapter 7.

3.1.9 Linear System Analysis Using MATLAB
The first step in analyzing a system is to write down (or generate) the set of time-domain differential equations
representing the dynamic behavior of the physical system. These equations are generated from the physical laws
governing the system behavior—for example, rigid body dynamics, thermo-fluid mechanics, and elec-tromechanics, as
described in Chapter 2. The next step in system analysis is to determine and designate inputs and outputs of the
system and then to compute the transfer function characterizing the input-output behavior of the dynamic system.
Earlier in this chapter we saw that a linear dynamic system may also be represented by the Laplace transform of its
differential equation—that is, its transfer function. The transfer function may be expressed as a ratio of two
polynomials as in Eq. (3.48) or in factored zero-pole form as in Eq. (3.49). By analyzing the transfer function, we can
determine the dynamic properties of the system, both in a qualitative and quantitative manner. One way of
extracting useful system information is simply to determine the pole-zero locations and deduce the essential
characteristics of the dynamic properties of the system. Another way is to determine the time-domain properties of
the system by determining the response of the system to typical excitation signals such as impulses, steps, ramps, and
sinusoids. Yet another way is to determine the time response analytically by computing the inverse Laplace transform



using partial-fraction expansions and Tables A.l and A.2. Of course, itis also possible to determine the system
response to an arbitrary input.

We will now illustrate this type of analysis by carrying out the preceding calculations for some of the physical
systems addressed in the examples in Chapter 2 in order of increasing degree of difficulty. We will go back and forth
between the different representations of the system, transfer function, and pole-zero, etc., using MATLAB as our
computational engine. MATLAB typically accepts the specification of a system in several forms, including transfer
function and zero-pole, and refers to these two descriptions as tf and zp, respectively. Furthermore, it can transform
the system description from any one form to another.

EXAMPLE 3.16 Cruise Control Transfer Function Using MATLAB
Find the transfer function between the input u and the position of the car x in the cruise control system in Example
2.1.
Solution. From Example 2.1 we find that the transfer function of the system is

In MATLAB, the coefficients of the numerator polynomial are displayed as the row vector num and the
denominator coefficients are displayed as den. The results for this example are

MATLAB printsys
They can be returned by MATLAB in this form using the printsys(num,den) command. The pole-zero description is
computed using the MATLAB command

[z, p, k] = tf2zp(num, den)
and would result in the transfer function in factored form, where z = [ ], p = [0 –0.05]’, and k = 0.001.

EXAMPLE 3.17 DC Motor Transfer Function Using MATLAB
In Example 2.13, assume that Jm = 0.01 kg.m2, b = 0.001 N-m-sec, Kt = Ke = 1, Ra = 10 Ω, and La = 1 H. Find
the transfer function between the input va and
1. the output θm,
2. the output ω = θm.
Solution
1. Substituting the preceding parameters into Example 2.13, we find that the transfer function of the system is

In MATLAB we display the coefficients of the numerator polynomial as the row vector numa and the denominator as
dena. The results for this example are



numa = [ 0 0 0 100 ] and dena = [ 1 10.1 101 0 ].
The pole-zero description is computed using the MATLAB command

[z, p, k] = tf2zp(numa, dena)
which results in
z = [ ], p = [ 0 –5.0500 +8.6889j –5.0500 –8.6889j ]’, k = 100, and yields the transfer function in factored form:

2. If we consider the velocity θm as the output, then we find numb=[0 0 100], denb=[1 10.1 101], which tells us
that the transfer function is

This is as expected, because θm is simply the derivative of θm; thus L{θm} = sL{θm}. For a unit step command in va,
we can compute the step response in MATLAB (recall Example 2.1):

The system yields a steady-state constant angular velocity as shown in Fig. 3.5. Note that there is a slight offset, since
the system does not have unity DC gain.

When a dynamic system is represented by a single differential equation of any order, finding the polynomial form
of the transfer function from that differential equation is usually easy. Therefore, you will find it best in these cases to
specify a system directly in terms of its transfer function.



Figure 3.5 Transient response for DC motor

EXAMPLE 3.18 Transformations Using MATLAB
Find the transfer function of the system whose differential equation is

Solution. Using the differentiation rules given by Eqs. (3.33) and (3.34), we see by inspection that

The MATLAB statements are

If the transfer function was desired in factored form, it could be obtained by transforming the tf description.
Therefore, the MATLAB statement
% convert from numerator-denominator polynomials to pole–zero form [z,p,k] = tf2zp(numG,denG)
would result in z = –3, p = [–3 + 4j – 3 – 4j]’, k = 3. This means that the transfer function could also be written
as

We may also convert from zero-pole representation to the transfer function representation using the MATLAB zp2tf
command

% convert from pole–zero form to numerator-denominator polynomials [numG,denG]=zp2tf(z,p,k)
For this example, z=[–3], p=[–3+i*4;–3–i*4], k=[3] will yield the numerator and denominator polynomials.

EXAMPLE 3.19 Satellite Transfer Function Using MATLAB
1. Find the transfer function between the input Fc and the satellite attitude θ in Example 2.3 and
2. Determine the response of the system to a 25-N pulse of 0.1 sec duration, starting at t = 5 sec. Let d = 1 m and I

= 5000 kg-m2.

Solution

1. From Example 2.3,  and this means that the transfer function of the system

which can also be determined by inspection for this particular case. We may display the coefficients of the
numerator polynomial as the row vector num and the denominator as the row vector den. The results for this
example are



numG = [0 0 0.0002] and denG = [1 0 0].
2. The following MATLAB statements compute the response of the system to a 25-N, 0.1-sec duration thrust pulse

input:

The system is excited with a short pulse (an impulsive input) that has the effect of imparting a nonzero angle θ0 at
time t = 5 sec on the system. Because the system is undamped, in the absence of any control it drifts with constant
angular velocity with a value imparted by the impulse at t = 5 sec. The time response of the input is shown in Fig.
3.6(a) along with the drift in angle θ in Fig. 3.6(b).

We now excite the system with the same positive-magnitude thrust pulse at time t = 5 sec but follow that with a
negative pulse with the same magnitude and duration at time t = 6.1 sec. [See Figure 3.7(a) for the input thrust.]
Then the attitude response of the system is as shown in Figure 3.7(b). This is actually how the satellite attitude angle
is controlled in practice. The additional relevant MATLAB statements are

Figure 3.6 Transient response for satellite: (a) thrust input; (b) satellite attitude



3.2 System Modeling Diagrams
3.2.1 The Block Diagram
To obtain the transfer function, we need to find the Laplace transform of the equations of motion and solve the
resulting algebraic equations for the relationship between the input and the output. In many control systems the
system equations can be written so that their components do not interact except by having the input of one part be
the output of another part. In these cases, it is easy to draw a block diagram that represents the mathematical
relationships in a manner similar to that used for the component block diagram in Fig. 1.2, Chapter 1. The transfer
function of each component is placed in a box, and the input-output relationships between components are indicated
by lines and arrows. We can then solve the equations by graphical simplification, which is often easier and more
informative than algebraic manipulation, even though the methods are in every way equivalent. Drawings of three
elementary block diagrams are seen in Fig. 3.8. It is convenient to think of each block as representing an electronic
amplifier with the transfer function printed inside. The interconnections of blocks include summing points, where
any number of signals may be added together. These are represented by a circle with the symbol Σ inside. In Fig.
3.8(a) the block with transfer function G1(s) is in series with the block with transfer function G2G1 and the overall
transfer function is given by the product G2G1. In Fig. 3.8(b) two systems are in parallel with their outputs added,



and the overall transfer function is given by the sum G1 + G2. These diagrams derive simply from the equations that
describe them.
Figure 3.7 Transient response for satellite (double-pulse): (a) thrust input; (b) satellite attitude

Figure 3.8 Three examples of elementary block diagrams

Figure 3.8(c) shows a more complicated case. Here the two blocks are connected in a feedback arrangement so
that each feeds into the other. When the feedback Y2(s) is subtracted, as shown in the figure, we call it negative
feedback. As you will see, negative feedback is usually required for system stability. For now we will simply solve
the equations and then relate them back to the diagram. The equations are



and their solution is

Negative feedback
We can express the solution by the following rule:

The gain of a single-loop negative feedback system is given by the forward gain divided by the sum of 1 plus the
loop gain.

Positive feedback
When the feedback is added instead of subtracted, we call it positive feedback. In this case, the gain is given by the
forward gain divided by the sum of 1 minus the loop gain.

Unity feedback system
The three elementary cases given in Fig. 3.8 can be used in combination to solve, by repeated reduction, any

transfer function defined by a block diagram. However, the manipulations can be tedious and subject to error when
the topology of the diagram is complicated. Figure 3.9 shows examples of block-diagram algebra that complement
those shown in Fig. 3.8. Figures 3.9(a) and (b) show how the interconnections of a block diagram can be
manipulated without affecting the mathematical relationships. Figure 3.9(c) shows how the manipulations can be
used to convert a general system (on the left) to a system without a component in the feedback path, usually referred
to as a unity feedback system.

In all cases the basic principle is to simplify the topology while maintaining exactly the same relationships among
the remaining variables of the block diagram. In relation to the algebra of the underlying linear equations, block-
diagram reduction is a pictorial way to solve equations by eliminating variables.

Figure 3.9 Examples of block-diagram algebra



Figure 3.10 Block diagram of a second-order system

EXAMPLE 3.20 Transfer Function from a Simple Block Diagram
Find the transfer function of the system shown in Fig. 3.10(a).
Solution. First we simplify the block diagram by reducing the parallel combination of the controller path. This
results in the diagram of Fig. 3.10(b), and we use the feedback rule to obtain the closed-loop transfer function:

EXAMPLE 3.21 Transfer Function from the Block Diagram
Find the transfer function of the system shown in Fig. 3.11(a).
Solution. First we simplify the block diagram. Using the principles of Eq. (3.50), we replace the feedback loop



involving G1 and G3 by its equivalent transfer function, noting that it is a positive feedback loop. The result is Fig.
3.11(b). The next step is to move the pick-off point preceding G2 to its output [see Fig. 3.11(a)], as shown in Fig.
3.11(c). The negative feedback loop on the left is in series with the subsystem on the right, which is composed of the
two parallel blocks G5 and G6/G2. The overall transfer function can be written using all three rules for reduction
given by Fig. 3.8:

Figure 3.11 Example for block-diagram simplification

As we have seen, a system of algebraic equations may be represented by a block diagram that represents individual
transfer functions by blocks and has interconnections that correspond to the system equations. A block diagram is a
convenient tool to visualize the system as a collection of interrelated subsystems that emphasize the relationships
among the system variables.



3.2.2 Block Diagram Reduction Using MATLAB
If the individual transfer functions are available for components in a control system, it is possible to use MATLAB
commands to compute the transfer functions of interconnected systems. The three commands series, parallel, and
feedback can be used for this purpose. They compute the transfer functions of two component block transfer
functions in series, parallel, and feedback configurations, respectively. The next simple example illustrates their use.

EXAMPLE 3.22 Transfer Function of a Simple System Using MATLAB
Repeat the computation of the transfer function for the block diagram in Fig. 3.10(a) using MATLAB.
Solution. We label the transfer function of the separate blocks shown in Fig. 3.10(a) as illustrated in Fig. 3.12. Then
we combine the two parallel blocks G1 and G2 by

then we combine the result G3, with the G4 in series by

and complete the reduction of the feedback system by

Figure 3.12 Example for block-diagram simplification

The MATLAB results are sysCL of the form

and this is the same result as the one obtained by block diagram reduction.



3.3 Effect of Pole Locations
Once the transfer function has been determined by any of the available methods, we can start to analyze the response
of the system it represents. When the system equations are simultaneous ordinary differential equations (ODEs), the
transfer function that results will be a ratio of polynomials; that is,

H(s) = b(s)/a(s).

Poles Zeros

The impulse response is the natural response.
If we assume that b and a have no common factors (as is usually the case), then values of s such that a(s) = 0 will
represent points where H(s) is infinity. As we saw in Section 3.1.5, these s-values are called poles of H(s). Values of s
such that b(s) = 0 are points where H(s) = 0 and the corresponding s-locations are called zeros. The effect of zeros
on the transient response will be discussed in Section 3.5. These poles and zeros completely describe H(s) except for
a constant multiplier. Because the impulse response is given by the time function corresponding to the transfer
function, we call the impulse response the natural response of the system. We can use the poles and zeros to
compute the corresponding time response and thus identify time histories with pole locations in the s-plane. For
example, the poles identify the classes of signals contained in the impulse response, as may be seen by a partial-
fraction expansion of H(s). For a first-order pole,

First-order system impulse response

Stability

Time constant τ
Table A.2, entry 7, indicates that the impulse response will be an exponential function; that is,

When σ > 0, the pole is located at s < 0, the exponential expression decays, and we say the impulse response is
stable. If σ < 0, the pole is to the right of the origin. Because the exponential expression here grows with time, the
impulse response is referred to as unstable(Section 3.6). Figure 3.13(a) shows a typical stable response and defines
the time constant

as the time when the response is 1/e times the initial value. Hence, it is a measure of the rate of decay. The straight
line is tangent to the exponential curve at t = 0 and terminates at t = τ. This characteristic of an exponential
expression is useful in sketching a time plot or checking computer results.



Figure 3.13(b) shows the impulse and step response for a first-order system computed using MATLAB.

Figure 3.13 First-order system response: (a) impulse response; (b) impulse response and step response using
MATLAB®

EXAMPLE 3.23 Response versus Pole Locations, Real Roots
Compare the time response with the pole locations for the system with a transfer function between input and output
given by

Solution. The numerator is

and the denominator is

a(s) = s2 + 3s + 2 = (s + 1)(s + 2).



The poles of H(s) are therefore at s = –1 and s = –2 and the one (finite) zero is at s = – . A complete
description of this transfer function is shown by the plot of the locations of the poles and the zeros in the s-plane
using the MATLAB pzmap(num,den) function with

Figure 3.14

Sketch of s-plane showing poles as crosses and zeros as circles

num=[2 1];
den=[1 3 2];

(see Fig. 3.14). A partial-fraction expansion of H(s) results in

From Table A.2 we can look up the inverse of each term in H(s), which will give us the time function h(t) that
would result if the system input were an impulse. In this case,

“Fast poles” and “slow poles” refer to relative rate of signal decay.

Impulse response using MATLAB
We see that the shape of the component parts of h(t), which are e–t and e–2t, are determined by the poles at s = –1
and –2. This is true of more complicated cases as well: In general, the shapes of the components of the natural
response are determined by the locations of the poles of the transfer function.

A sketch of these pole locations and corresponding natural responses is given in Fig. 3.15, along with other pole
locations including complex ones, which will be discussed shortly.

The role of the numerator in the process of partial-fraction expansion is to influence the size of the coefficient that
multiplies each component. Because e–2t decays faster than e–t, the signal corresponding to the pole at –2 decays
faster than the signal corresponding to the pole at –1. For brevity we simply say that the pole at –2 is faster than the
pole at –1. In general, poles farther to the left in the s-plane are associated with natural signals that decay faster than
those associated with poles closer to the imaginary axis. If the poles had been located with positive values of s (in



the right half of the s-plane), the response would have been a growing exponential function and thus unstable. Figure
3.16 shows that the fast 3e–2t term dominates the early part of the time history and that the –e–t term is the primary
contributor later on.

The purpose of this example is to illustrate the relationship between the poles and the character of the response,
which can be done exactly only by finding the inverse Laplace transform and examining each term as before.
However, if we simply wanted to plot the impulse response for this example, the expedient way would be to use the
MATLAB sequence

Figure 3.15 Time functions associated with points in the s-plane (LHP, left half-plane; RHP, right half-plane)

Figure 3.16 Impulse response of Example 3.23 [Eq. (3.52)]

The result is shown in Fig. 3.16.



Complex poles can be defined in terms of their real and imaginary parts, traditionally referred to as

This means that a pole has a negative real part if σ is positive. Since complex poles always come in complex
conjugate pairs, the denominator corresponding to a complex pair will be

When finding the transfer function from differential equations, we typically write the result in the polynomial form

By multiplying out the form given by Eq. (3.54) and comparing it with the coefficients of the denominator of H(s) in
Eq. (3.55), we find the correspondence between the parameters to be

Damping ratio; damped and undamped natural frequency
where the parameter ζ is the damping ratio7 and ωn is the undamped natural frequency. The poles of this transfer
function are located at a radius ωn in the s-plane and at an angle θ = sin–1 ζ, as shown in Fig. 3.17. Therefore, the
damping ratio reflects the level of damping as a fraction of the critical damping value where the poles become real.
In rectangular coordinates the poles are at s = – σ ±jωd. When ζ = 0, we have no damping, θ = 0, and the
damped natural frequency ωd = ωn, the undamped natural frequency.

For purposes of finding the time response from Table A.2 corresponding to a complex transfer function, it is
easiest to manipulate the H(s) so that the complex poles fit the form of Eq. (3.54), because then the time response
can be found directly from the table. Equation (3.55) can be rewritten as

Standard second-order system impulse response
Therefore, from entry number 20 in Table A.2 and the definitions in Eq. (3.56), we see that the impulse response is



Figure 3.17 s-plane plot for a pair of complex poles

Figure 3.18 Responses of second-order systems versus ζ: (a) impulse responses; (b) step responses

Figure 3.18(a) plots h(t) for several values of ζ such that time has been normalized to the undamped natural
frequency ωn. Note that the actual frequency ωd decreases slightly as the damping ratio increases. Note also that for
very low damping the response is oscillatory, while for large damping (ζ near 1) the response shows no oscillation.



A few of these responses are sketched in Fig. 3.15 to show qualitatively how changing pole locations in the s-plane
affect impulse responses. You will find it useful as a control designer to commit the image of Fig. 3.15 to memory so
that you can understand instantly how changes in pole locations influence the time response.

Stability depends on whether natural response grows or decays.

Step response
Three pole locations are shown in Fig. 3.19 for comparison with the corresponding impulse responses in Fig.

3.18(a). The negative real part of the pole, σ, determines the decay rate of an exponential envelope that multiplies
the sinusoid, as shown in Fig. 3.20. Note that if σ < 0 (and the pole is in the RHP), then the natural response will
grow with time, so, as defined earlier, the system is said to be unstable. If σ = 0, the natural response neither grows
nor decays, so stability is open to debate. If σ > 0, the natural response decays, so the system is stable.

It is also interesting to examine the step response of H(s)—that is, the response of the system H(s) to a unit step
input u = 1(t), where U(s) = 1/s. The step-response transform is given by Y(s) = H(s)U(s), which is found in Table
A.2, entry 21. Figure 3.18(b), which plots y(t) for several values of ζ, shows that the basic transient response
characteristics from the impulse response carry over quite well to the step response; the difference between the two
responses is that the step response’s final value is the commanded unit step.

Figure 3.19 Pole locations corresponding to three values of ζ



Figure 3.20 Second-order system response with an exponential envelope

EXAMPLE 3.24 Oscillatory Time Response
Discuss the correlation between the poles of

and the impulse response of the system and find the exact impulse response. Solution. From the form of H(s) given
by Eq. (3.55), we see that

and

This indicates that we should expect a frequency of around 2 rad/sec with very little oscillatory motion. In order to
obtain the exact response, we manipulate H(s) until the denominator is in the form of Eq. (3.54):

From this equation we see that the poles of the transfer function are complex, with real part –1 and imaginary parts
±2j. Table A.2 has two entries, numbers 19 and 20, that match the denominator. The right side of the preceding
equation needs to be broken into two parts so that they match the numerators of the entries in the table:



Impulse response by MATLAB
Thus, the impulse response is

Figure 3.21 is a plot of the response and shows how the envelope attenuates the sinusoid, the domination of the 2
cos 2t term, and the small phase shift caused by the –  sin 2t term.

As in the previous example, the expedient way of determining the impulse response would be to use the MATLAB
sequence

as shown in Fig. 3.21.

Figure 3.21 System response for Example 3.24

3.4 Time-Domain Specifications

Definitions of rise time, settling time, overshoot, and peak time
Specifications for a control system design often involve certain requirements associated with the time response of the
system. The requirements for a step response are expressed in terms of the standard quantities illustrated in Fig. 3.22:
1. The rise time tr is the time it takes the system to reach the vicinity of its new set point.
2. The settling time ts is the time it takes the system transients to decay.



3. The overshoot Mp is the maximum amount the system overshoots its final value divided by its final value (and is
often expressed as a percentage).

4. The peak time tp is the time it takes the system to reach the maximum overshoot point.

Rise time tr

3.4.1 Rise Time
For a second-order system, the time responses shown in Fig. 3.18(b) yield information about the specifications that is
too complex to be remembered unless converted to a simpler form. By examining these curves in light of the
definitions given in Fig. 3.22, we can relate the curves to the pole-location parameters ζ and ωn. For example, all the
curves rise in roughly the same time. If we consider the curve for ζ = 0.5 to be an average, the rise time from y =
0.1 to y = 0.9 is approximately ωntr = 1.8. Thus we can say that

Although this relationship could be embellishedbyincluding the effectof the damping ratio, it is important to keep in
mind how Eq. (3.60) is typically used. It is accurate only for a second-order system with no zeros; for all other
systems it is a rough approximation to the relationship between tr and ωn. Most systems being analyzed for control
systems design are more complicated than the pure second-order system, so designers use Eq. (3.60) with the
knowledge that it is a rough approximation only.

Figure 3.22 Definition of rise time tr, settling time ts, and overshoot Mp

3.4.2 Overshoot and Peak Time
For the overshoot Mp we can be more analytical. This value occurs when the derivative is zero, which can be found
from calculus. The time history of the curves in Fig. 3.18(b), found from the inverse Laplace transform of H(s)/s, is



where  and σ = ζn. We may rewrite the preceding equation using the trigonometric identity

A sin(α) + B cos(α) = C cos(α – β)
or

Standard second-order system step response

with , B = 1, and α = ωd t, in a more compact form as

When y(t) reaches its maximum value, its derivative will be zero:

This occurs when sin ωd t = 0, so

and thus

Peak time tp
Substituting Eq. (3.63) into the expression for y(t), we compute

Overshoot Mp

Settling time ts



Thus we have the formula

which is plotted in Fig. 3.23. Two frequently used values from this curve are Mp = 0.16 for ζ, = 0.5 and Mp = 0.05
for ζ, = 0.7.

3.4.3 Settling Time
The final parameter of interest from the transient response is the settling time ts. This is the time required for the
transient to decay to a small value so that y(t) is almost in the steady state. Various measures of smallness are
possible. For illustration we will use 1% as a reasonable measure; in other cases 2% or 5% are used. As an analytic
computation, we notice that the deviation of y from 1 is the product of the decaying exponential e–σt and the circular
functions sine and cosine. The duration of this error is essentially decided by the transient exponential, so we can
define the settling time as that value of ts when the decaying exponential reaches 1%:

Therefore,

or

Figure 3.23 Overshoot Mp versus damping ratio ζ for the second-order system

where σ is the negative real part of the pole, as may be seen from Fig. 3.17.



Design synthesis
Equations (3.60), (3.64), and (3.65) characterize the transient response of a system having no finite zeros and two

complex poles and with undamped natural frequency ωn, damping ratio ζ, and negative real part σ. In analysis and
design, they are used to estimate rise time, overshoot, and settling time, respectively, for just about any system. In
design synthesis we wish to specify tr, Mp, and ts and to ask where the poles need to be so that the actual responses
are less than or equal to these specifications. For specified values of tr, Mp, and ts, the synthesis form of the equation
is then

First-order system step response
These equations, which can be graphed in the s-plane as shown in Fig. 3.24(a–c), will be used in later chapters to
guide the selection of pole and zero locations to meet control system specifications for dynamic response.

It is important to keep in mind that Eqs. (3.66)–(3.68) are qualitative guides and not precise design formulas. They
are meant to provide only a starting point for the design iteration. After the control design is complete, the time
response should always be checked by an exact calculation, usually by numerical simulation, to verify whether the
time specifications have actually been met. If not, another iteration of the design is required.

For a first-order system,

and the transform of the step response is

We see from entry 11 in Table A.2 that Y(s) corresponds to



Figure 3.24 Graphs of regions in the s-plane delineated by certain transient requirements: (a) rise time; (b) overshoot;
(c) settling time; (d) composite of all three requirements

Comparison with the development for Eq. (3.65) shows that the value of ts for a first-order system is the same:

No overshoot is possible, so Mp = 0. The rise time from y = 0.1 to y = 0.9 can be seen from Fig. 3.13 to be

Time constant τ
However, it is more typical to describe a first-order system in terms of its time constant, which was defined in Fig.
3.13 to be τ = 1/σ.

EXAMPLE 3.25 Transformation of the Specifications to the s-plane
Find the allowable regions in the s-plane for the poles of a transfer function of a system if the system response
requirements are tr ≤ 0.6 sec, Mp ≤ 10%, and ts ≤ 3 sec.
Solution. Without knowing whether or not the system is second order with no zeros, it is impossible to find the
allowable region accurately. Regardless of the system, we can obtain a first approximation using the relationships for
a second-order system. Equation (3.66) indicates that

Eq. (3.67) and Fig. 3.23 indicate that
ζ ≥ 0.6,

and Eq. (3.68) indicates that

The allowable region is anywhere to the left of the solid line in Fig. 3.25. Note that any pole meeting the ζ and ωn
restrictions will automatically meet the σ restriction.

Effect of zeros

The effect of zeros near poles

3.5 Effects of Zeros and Additional Poles



Relationships such as those shown in Fig. 3.24 are correct for the simple second-order system; for more complicated
systems they can be used only as guidelines. If a certain design has an inadequate rise time (is too slow), we must
raise the natural frequency; if the transient has too much overshoot, then the damping needs to be increased; if the
transient persists too long, the poles need to be moved to the left in the s-plane.

Thus far only the poles of H(s) have entered into the discussion. There may also be zeros of H(s).8 At the level of
transient analysis, the zeros exert their influence by modifying the coefficients of the exponential terms whose shape
is decided by the poles, as seen in Example 3.23. To illustrate this further, consider the following two transfer
functions, which have the same poles but different zeros:

Figure 3.25 Allowable region in s-plane for Example 3.25

They are normalized to have the same DC gain (i.e., gain at s = 0). Notice that the coefficient of the (s + 1) term has
been modified from 2 in H1(s) to 0.18 in H2(s). This dramatic reduction is brought about by the zero at s = –1.1 in
H 2(s), which almost cancels the pole at s = – 1. If we put the zero exactly at s = – 1, this term will vanish
completely. In general, a zero near a pole reduces the amount of that term in the total response. From the equation
for the coefficients in a partial-fraction expansion, Eq. (3.43),



we can see that if F(s) has a zero near the pole at s = p1, the value of F(s) will be small because the value of s is
near the zero. Therefore, the coefficient C1, which reflects how much of that term appears in the response, will be
small.

In order to take into account how zeros affect the transient response when designing a control system, we consider
transfer functions with two complex poles and one zero. To expedite the plotting for a wide range of cases, we write
the transform in a form with normalized time and zero locations:

The zero is located at s = –αζωn = –ασ. If α is large, the zero will be far removed from the poles and the zero will
have little effect on the response. If α ≅ = 1, the value of the zero will be close to that of the real part of the poles
and can be expected to have a substantial influence on the response. The step-response curves for t, = 0.5 and for
several values of α are plotted in Fig. 3.26. We see that the major effect of the zero is to increase the overshoot Mp,
whereas it has very little influence on the settling time. A plot of Mp versus α is given in Fig. 3.27. The plot shows
that the zero has very little effect on Mp if α > 3, but as α decreases below 3, it has an increasing effect, especially
when α = 1 or less.

Figure 3.26 Plots of the step response of a second-order system with a zero (ζ = 0.5)



Figure 3.27 Plot of overshoot Mp as a function of normalized zero location α. At α = 1, the real part of the zero
equals the real part of the poles

Figure 3.28 Second-order step responses y(t) of the transfer functions H(s), H0(s), and Hd(s)

Figure 3.26 can be explained in terms of Laplace-transform analysis. First we replace s/ωn with s:

This has the effect of normalizing frequency in the transfer function and normalizing time in the corresponding step
responses; thus τ = ωnt. We then rewrite the transfer function as the sum of two terms:

The first term, which we shall call H0(s), is the original term (having no finite zero), and the second term Hd(s),
which is introduced by the zero, is a product of a constant (1/αζ) times s times the original term. The Laplace



transform of df/dt is sF(s), so Hd(s) corresponds to a product of a constant times the derivative of the original term,
i.e.,

RHP or nonminimum-phase zero
The step responses of H0(s) denoted by y0(t) and Hd(s) denoted by yd(t) are plotted in Fig. 3.28. Looking at these
curves, we can see why the zero increased the overshoot: The derivative has a large hump in the early part of the
curve, and adding this to the H0(s) response lifts up the total response of H(s) to produce the overshoot. This analysis
is also very informative for the case when α < 0 and the zero is in the RHP where s > 0. (This is typically called an
RHP zero and is sometimes referred to as a nonminimum-phase zero, a topic to be discussed in more detail in
Section 6.1.1.) In this case the derivative term is subtracted rather than added. A typical case is sketched in Fig. 3.29.

EXAMPLE 3.26 Effect of the Proximity of the Zero to the Pole Locations on the Transient Response
Consider the second-order system with a finite zero and unity DC gain,

Figure 3.29 Step responses y(t) of a second-order system with a zero in the RHP: a nonminimum-phase system

Determine the effect of the zero location (s = –Z) on the unit step response when Z = {1,2,3,4,5,6}.
Solution. The step response is the inverse Laplace transform of

and is the sum of the two parts,
y(t) = y1(t) + y2(t),



where

and

Itisseen that if Z = 4 or Z = 6, one of the modes of the systemisabsent from the output, and the response is first
order due to the pole–zero cancellations. The step responses of the system is shown in Fig. 3.30 (Z = 4, dashed, Z =
6 dot dashed). It is seen that the effect of the zero is most pronounced in terms of the additional overshoot for Z = 1
(zero location closest to the origin). The system also has overshoot for Z = 2, 3. For Z = 4 or Z = 6 the responses
are first order as expected. It is interesting that for Z = 5, where the zero is located between the two poles, there is
no overshoot.

Figure 3.30 Effect of zero on transient response

EXAMPLE 3.27 Effect of the Proximity of the Complex Zeros to the Lightly Damped Poles
Consider the third-order feedback system with a pair of lightly damped poles and a pair of complex zeros with the
transfer function,



Determine the effect of the complex zero locations (s = –α ± jβ) on the unit step response of the system for the
three different zero locations (α, β) = (0.1, 1.0), (α, β) = (0.25, 1.0), and (α, β) = (0.5, 1.0) as shown in Fig. 3.31.
Solution. We plot the three unit step responses using MATLAB as shown in Fig. 3.32. The effect of the lightly
damped modes are clearly seen as oscillations in the step responses for the cases where (α, β) = (0.25, 1.0) or (α, β)
= (0.5, 1.0), that is, when the complex zeros are not close to the locations of the lightly damped poles as shown in
Fig. 3.31. On the other hand, if the complex zeros cancel the lightly damped poles exactly as is the case for (α, β) =
(0.1, 1.0), the oscillations are completely eliminated in the step response. In practice, the locations of the lightly
damped poles are not known precisely and exact cancellation is not really possible. However, placing the complex
zeros near the locations of the lightly damped poles may provide sufficient improvement in step response
performance. We will come back to this technique later in Chapters 5, 7, and 10 in the context of dynamic
compensator design.

Figure 3.31 Locations of complex zeros

Figure 3.32 Effect of complex zeros on transient response



EXAMPLE 3.28 Aircraft Response Using MATLAB
The transfer function between the elevator and altitude of the Boeing 747 aircraft described in Section 10.3.2 can be
approximated as

1. Use MATLAB to plot the altitude time history for a 1? impulsive elevator input. Explain the response, noting the
physical reasons for the nonminimum-phase nature of the response.

2. Examine the accuracy of the approximations for tr, ts, and Mp [Eqs. (3.60) and (3.65) and Fig. 3.23].
Solution
1. The MATLAB statements to create the impulse response for this case are

The result is the plot shown in Fig. 3.33. Notice how the altitude drops initially and then rises to a new final
value. The final value is predicted by the Final Value Theorem:

Response of a nonminimum-phase system



The fact that the response has a finite final value for an impulsive input is due to the s-term in the denominator. This
represents a pure integration and the integral of an impulse function is a finite value. If the input had been a step,
the altitude would have continued to increase with time; in other words the integral of a step function is a ramp
function.

Figure 3.33 Response of an airplane’s altitude to an impulsive elevator input

The initial drop is predicted by the RHP zero in the transfer function. The negative elevator deflection is defined to
be upward by convention (see Fig. 10.30). The upward deflection of the elevators drives the tail down, which rotates
the craft nose up and produces the climb. The deflection at the initial instant causes a downward force before the
craft has rotated; therefore, the initial altitude response is down. After rotation, the increased lift resulting from the
increased angle of attack of the wings causes the airplane to climb.
2. The rise time from Eq. (3.60) is

We find the damping ratio ζ from the relation

From Fig. 3.23 we find the overshoot Mp to be 0.14. Because 2ζωn = 2σ = 4, [Eq. (3.65)] shows that

Detailed examination of the time history h(t) from MATLAB output shows that tr ≅ 0.43 sec, Mp ≅ 0.14, and ts ≅ 2.6
sec, which are reasonably close to the estimates. The only significant effect of the nonminimum-phase zero was to
cause the initial response to go in the “wrong direction” and make the response somewhat sluggish.



Effect of extra pole
In addition to studying the effects of zeros, it is useful to consider the effects of an extra pole on the standard

second-order step response. In this case, we take the transfer function to be

Plots of the step response for this case are shown in Fig. 3.34 for ζ = 0.5 and several values of α. In this case the
major effect is to increase the rise time. A plot of the rise time versus α is shown in Fig. 3.35 for several values of ζ.

From this discussion we can draw several conclusions about the dynamic response of a simple system as revealed
by its pole-zero patterns:

Effects of Pole-Zero Patterns on Dynamic Response
1. For a second-order system with no finite zeros, the transient response parameters are approximated as follows:

Figure 3.34 Step responses for several third-order systems with ζ = 0.5



Figure 3.35 Normalized rise time for several locations of an additional pole

2. A zero in the left half-plane (LHP) will increase the overshoot if the zero is within a factor of 4 of the real part of
the complex poles. A plot is given in Fig. 3.27.

3. A zero in the RHP will depress the overshoot (and may cause the step response to start out in the wrong
direction).

4. An additional pole in the LHP will increase the rise time significantly if the extra pole is within a factor of 4 of
the real part of the complex poles. A plot is given in Fig. 3.35.

3.6 Stability
For nonlinear and time-varying systems, the study of stability is a complex and often difficult subject. In this section,
we will consider only LTI systems for which we have the following condition for stability:

An LTI system is said to be stable if all the roots of the transfer function denominator polynomial have negative
real parts (i.e., they are all in the left hand s-plane) and is unstable otherwise.

Stable system
A system is stable if its initial conditions decay to zero and is unstable if they diverge. As just stated, an LTI

(constant parameter) system is stable if all the poles of the system are strictly inside the left half s-plane [i.e., all the
poles have negative real parts (s = – σ + jω, σ > 0)]. If any pole of the system is in the right half s-plane (i.e., has a
positive real part, s = – σ + jω, σ < 0), then the system is unstable, as shown in Fig. 3.15. With any simple pole on
the jω axis (σ = 0), small initial conditions will persist. For any other pole with σ = 0, oscillatory motion will
persist. Therefore, a system is stable if its transient response decays and unstable if it does not. Figure 3.15 shows the
time response of a system due to its pole locations.



In later chapters we will address more advanced notions of stability, such as Nyquist’s frequency-response stability
test (Chapter 6) and Lyapunov stability (Chapter 9).

3.6.1 Bounded Input-Bounded Output Stability
A system is said to have bounded input-bounded output (BIBO) stability if every bounded input results in a bounded
output (regardless of what goes on inside the system). A test for this property is readily available when the system
response is given by convolution. If the system has input u(t), output y(t), and impulse response h(t), then

If u(t) is bounded, then there is a constant M such that |u| ≤ M < ∞, and the output is bounded by

Thus the output will be bounded if  is bounded.
On the other hand, suppose the integral is not bounded and the bounded input u(t – τ) = +1 if h(τ) > 0 and u(t –

τ) = – 1 if h(τ) < 0. In this case,

and the output is not bounded. We conclude that

Figure 3.36 Capacitor driven by current source

Mathematical definition of BIBO stability

The system with impulse response h(t) is BIBO-stable if and only if the integral

EXAMPLE 3.29 BIBO Stability for a Capacitor



As an example, determine the capacitor driven by a current source sketched in Fig. 3.36. The capacitor voltage is the
output and the current is the input.
Solution. The impulse response of this setup is h(t) = 1 (t), the unit step. Now for this response, is not bounded. The
capacitor is not BIBO-stable. Notice that the transfer function of the system is 1/s and has a pole on the imaginary
axis. Physically we can see that constant input current will cause the voltage to grow, and thus the system response is
neither bounded nor stable. In general, if an LTI system has any pole on the imaginary axis or in the RHP, the
response will not be BIBO-stable; if every pole is inside the LHP, then the response will be BIBO-stable. Thus for
these systems, pole locations of the transfer function can be used to check for stability.

Determination of BIBO stability by pole location

An alternative to computing the integral of the impulse response or even to locating the roots of the characteristic
equation is given by Routh’s stability criterion, which we will discuss in Section 3.6.3.

3.6.2 Stability of LTI Systems
Consider the LTI system whose transfer function denominator polynomial leads to the characteristic equation

Assume that the roots {pi} of the characteristic equation are real or complex, but are distinct. Note that Eq. (3.78)
shows up as the denominator in the transfer function for the system as follows before any cancellation of poles by
zeros is made:

The solution to the differential equation whose characteristic equation is given by Eq. (3.78) may be written using
partial-fraction expansion as

where {pi} are the roots of Eq. (3.78) and {Ki} depend on the initial conditions and zero locations. If a zero were to
cancel a pole in the RHP for the transfer function, the corresponding Ki would equal zero in the output, but the
unstable transient would appear in some internal variable.

The system is stable if and only if (necessary and sufficient condition) every term in Eq. (3.80) goes to zero as t →
∞:



This will happen if all the poles of the system are strictly in the LHP, where

Internal stability occurs when all poles are strictly in the LHP
The jω axis is the stability boundary
If any poles are repeated, the response must be changed from that of Eq. (3.80) by including a polynomial in t in
place of Ki, but the conclusion is the same. This is called internal stability. Therefore, the stability of a system can be
determined by computing the location of the roots of the characteristic equation and determining whether they are
all in the LHP. If the system has any poles in the RHP, it is unstable. Hence the jω axis is the stability boundary
between asymptotically stable and unstable response. If the system has nonrepeated jω axis poles, then it is said to
be neutrally stable. For example, a pole at the origin (an integrator) results in a nondecaying transient. A pair of
complex jω axis poles results in an oscillating response (with constant amplitude). If the system has repeated poles
on the jω axis, then it is unstable [as it results in te±jωit terms in Eq. (3.80)]. For example, a pair of poles at the
origin (double integrator) results in an unbounded response. MATLAB software makes the computation of the poles,
and therefore determination of the stability of the system, relatively easy.

An alternative to locating the roots of the characteristic equation is given by Routh’s stability criterion, which we
will discuss next.

3.6.3 Routh’s Stability Criterion
There are several methods of obtaining information about the locations of the roots of a polynomial without actually
solving for the roots. These methods were developed in the 19th century and were especially useful before the
availability of MATLAB software. They are still useful for determining the ranges of coefficients of polynomials for
stability, especially when the coefficients are in symbolic (nonnumerical) form. Consider the characteristic equation
of an nth-order system:9

A necessary condition for Routh stability

It is possible to make certain statements about the stability of the system without actually solving for the roots of the
polynomial. This is a classical problem and several methods exist for the solution.
A necessary condition for stability of the system is that all of the roots of Eq. (3.82) have negative real parts, which in
turn requires that all the {ai} be positive.10

A necessary (but not sufficient) condition for stability is that all the coefficients of the characteristic polynomial be
positive.

A necessary and sufficient condition for stability



If any of the coefficients are missing (are zero) or are negative, then the system will have poles located outside the
LHP. This condition can be checked by inspection. Once the elementary necessary conditions have been satisfied, we
need a more powerful test. Equivalent tests were independently proposed by Routh in 1874 and Hurwitz in 1895;
we will discuss the former version. Routh’s formulation requires the computation of a triangular array that is a
function of the {ai}. He showed that a necessary and sufficient condition for stability is that all of the elements in the
first column of this array be positive.

A system is stable if and only if all the elements in the first column of the Routh array are positive.

Routh array
To determine the Routh array, we first arrange the coefficients of the characteristic polynomial in two rows,

beginning with the first and second coefficients and followed by the even-numbered and odd-numbered coefficients:

We then add subsequent rows to complete the Routh array:

We compute the elements from the (n – 2) th and (n – 3) th rows as follows:



Note that the elements of the (n – 2) th row and the rows beneath it are formed from the two previous rows using
determinants, with the two elements in the first column and other elements from successive columns. Normally there
are n + 1 elements in the first column when the array terminates. If these are all positive, then all the roots of the
characteristic polynomial are in the LHP. However, if the elements of the first column are not all positive, then the
number of roots in the RHP equals the number of sign changes in the column. A pattern of +, –, + is counted as two
sign changes: one change from + to – and another from – to +. For a simple proof of the Routh test, the reader is
referred to Ho et al. (1998).

EXAMPLE 3.30 Routh’s Test
The polynomial

a(s) = s6 + 4s5 + 3s4 + 2s3 + s2 + 4s + 4
satisfies the necessary condition for stability since all the {ai} are positive and nonzero. Determine whether any of the
roots of the polynomial are in the RHP.
Solution. The Routh array for this polynomial is



We conclude that the polynomial has RHP roots, since the elements of the first column are not all positive. In fact,
there are two poles in the RHP because there are two sign changes.11

Note that, in computing the Routh array, we can simplify the rest of the calculations by multiplying or dividing a
row by a positive constant. Also note that the last two rows each have one nonzero element.

Routh’s method is also useful in determining the range of parameters for which a feedback system remains stable.

EXAMPLE 3.31 Stability versus Parameter Range
Consider the system shown in Fig. 3.37. The stability properties of the system are a function of the proportional
feedback gain K. Determine the range of K over which the system is stable.
Solution. The characteristic equation for the system is given by

or

s3 + 5s2 + (K – 6)s + K = 0.

Figure 3.37 A feedback system for testing stability

The corresponding Routh array is



For the system to be stable, it is necessary that

or
K > 7.5 and K > 0.

Computing roots by MATLAB
Thus, Routh’s method provides an analytical answer to the stability question. Although any gain satisfying this
inequality stabilizes the system, the dynamic response could be quite different depending on the specific value of K.
Given a specific value of the gain, we may compute the closed-loop poles by finding the roots of the characteristic
polynomial. The characteristic polynomial has the coefficients represented by the row vector (in descending powers
of s)

denT= [1 5 K-6 K],
and we may compute the roots using the MATLAB function

roots(denT).
For K = 7.5 the roots are at – 5 and ±1.22j, and the system is neutrally stable. Note that Routh’s method predicts

the presence of poles on the jω axis for K = 7.5. If we set K =13, the closed-loop poles are at –4.06 and –0.47 ±
1.7j, and for K = 25, they are at –1.90 and –1.54 ± 3.27j. In both these cases, the system is stable as predicted by
Routh’s method. Figure 3.38 shows the transient responses for the three gain values. To obtain these transient
responses, we compute the closed-loop transfer function



Figure 3.38 Transient responses for the system in Fig. 3.37

Figure 3.39 System with proportional-integral (PI) control

so that the numerator polynomial is expressed as
numT = [K K];   % form numerator
and denT is as before. The MATLAB commands

produce a plot of the (unit) step response.

EXAMPLE 3.32 Stability Versus Two Parameter Ranges
Find the range of the controller gains (K, K1) so that the PI (proportional-integral; see Chapter 4) feedback system in
Fig. 3.39 is stable.
Solution. The characteristic equation of the closed-loop system is

which we may rewrite as

s3 + 3s2 + (2 + K)s + K1 = 0.

The corresponding Routh array is

For internal stability we must have

The allowable region can be plotted in MATLAB using the ensuing commands
fh=@(ki,k) 6+3*k-ki;
ezplot(fh)
hold on;
f=@(ki,k) ki;



ezplot(f);
and is the shaded area in the (K1, K) plane shown in Fig. 3.40, which represents an analytical solution to the stability
question. This example illustrates the real value of Routh’s approach and why it is superior to the numerical
approaches. It would

Figure 3.40 Allowable region for stability

Figure 3.41 Transient response for the system in Fig. 3.39

have been more difficult to arrive at these bounds on the gains using numerical search techniques. The closed-loop
transfer function is

MATLAB roots
As in Example 3.31, we may compute the closed-loop poles for different values of the dynamic compensator gains
by using the MATLAB function roots on the denominator polynomial

denT= [1 3 2+K KI].   %form denominator



Similarly, we may find the zero by finding the root of the numerator polynomial
numT=[KKI].   % form numerator
The closed-loop zero of the system is at –K1/K. Figure 3.41 shows the transient response for three sets of feedback

gains. For K = 1 and K1 = 0, the closed-loop poles are at 0 and –1.5 ± 0.86j, and there is a zero at the origin. For K
= K1 = 1, the poles and zeros are all at –1. For K = 10 and K1 = 5, the closed-loop poles are at –0.46 and –1.26
±3.3j and the zero is at –0.5. The step responses were again obtained using the MATLAB function

There is a large steady-state error in this case when K1 = 0. (See Chapter 4.)

Special case I
If the first term in one of the rows is zero or if an entire row is zero, then the standard Routh array cannot be

formed, so we have to use one of the special techniques described next.

Δ Special Cases
If only the first element in one of the rows is zero, then we can replace the zero with a small positive constant ε > 0
and proceed as before. We then apply the stability criterion by taking the limit as ε → 0.

EXAMPLE 3.33 Routh’s Test for Special Case I
Consider the polynomial

a(s) = s5 + 3s4+ 2s3 + 6s2 + 6s + 9.
Determine whether any of the roots are in the RHP.
Solution. The Routh array is

There are two sign changes in the first column of the array, which means there are two poles not in the LHP.12

Special case II
Another special case occurs when an entire row of the Routh array is zero. This indicates that there are complex

conjugate pairs of roots that are mirror images of each other with respect to the imaginary axis. If the ith row is zero,
we form an auxiliary equation from the previous (nonzero) row:



Here {βi} are the coefficients of the (i + 1)th row in the array. We then replace the ith row by the coefficients of the
derivative of the auxiliary polynomial and complete the array. However, the roots of the auxiliary polynomial in Eq.
(3.83) are also roots of the characteristic equation, and these must be tested separately.

EXAMPLE 3.34 Routh Test for Special Case II
For the polynomial

a(s) = s5 + s4 + 11s3 + 23s2 + 28s + 12,
determine whether there are any roots on the jω axis or in the RHP.
Solution. The Routh array is

There are no sign changes in the first column. Hence all the roots have negative real parts except for a pair on the
imaginary axis. We may deduce this as follows: When we replace the zero in the first column by ∈ > 0, there are no
sign changes. If we let ∈ < 0, then there are two sign changes. Thus, if ∈ = 0, there are two poles on the imaginary
axis, which are the roots of

a1(s) = s2 + 4 = 0,
or

s = ±j2.
This agrees with the fact that the actual roots are at –3, ±2j, –1, and –1, as computed using the roots command in
MATLAB.

The Routh–Hurwitz result assumes that the characteristic polynomial coefficients are known precisely. It is well–
known that the roots of a polynomial can be very sensitive to even slight perturbations in the polynomial
coefficients. If the range of variation on each one of the polynomial coefficients is known, then a remarkable result
called the Kharitonov Theorem (1978) allows one to test just four so-called Kharitonov polynomials, using the Routh
test, to see if the polynomial coefficient variations result in instability.

Δ 3.7 Obtaining Models from Experimental Data
There are several reasons for using experimental datato obtain a model of the dynamic system to be controlled. In
the first place, the best theoretical model built from equations of motion is still only an approximation of reality.
Sometimes, as in the case of a very rigid spacecraft, the theoretical model is extremely good. Other times, as with



many chemical processes such as papermaking or metalworking, the theoretical model is very approximate. In every
case, before the final control design is done, it is important and prudent to verify the theoretical model with
experimental data. Second, in situations for which the theoretical model is especially complicated or the physics of
the process is poorly understood, the only reliable information on which to base the control design is the
experimental data. Finally, the system is sometimes subject to online changes, which occur when the environment of
the system changes. Examples include when an aircraft changes altitude or speed, a paper machine is given a
different composition of fiber, or a nonlinear system moves to a new operating point. On these occasions we need to
“retune” the controller by changing the control parameters. This requires a model for the new conditions and
experimental data are often the most effective, if not the only, information available for the new model.

Four sources of experimental data

Transient response

Frequency response

Stochastic steady-state
There are four kinds of experimental data for generating a model:

1. transient response, such as comes from an impulse or a step;
2. frequency-response data, which result from exciting the system with sinusoidal inputs at many frequencies;
3. stochastic steady-state information, as might come from flying an aircraft through turbulent weather or from some

other natural source of randomness;
4. pseudorandom-noise data, as may be generated in a digital computer.
Each class of experimental data has its properties, advantages, and disadvantages.

Transient response data are quick and relatively easy to obtain. They are also often representative of the natural
signals to which the system is subjected. Thus a model derived from such data can be reliable for designing the
control system. On the other hand, in order for the signal-to-noise ratio to be sufficiently high, the transient response
must be highly noticeable. Consequently, the method is rarely suitable for normal operations, so the data must be
collected as part of special tests. A second disadvantage is that the data do not come in a form suitable for standard
control systems designs, and some parts of the model, such as poles and zeros, must be computed from the data.13

This computation can be simple in special cases or complex in the general case.
Frequency-response data (see Chapter 6) are simple to obtain but substantially more time consuming than

transient-response information. This is especially so if the time constants of the process are large, as often occurs in
chemical processing industries. As with the transient-response data, itis important to have agood signal-to-noise ratio,
so obtaining frequency-response data can be very expensive. On the other hand, as we will see in Chapter 6,
frequency-response data are exactly in the right form for frequency-response design methods; so once the data have
been obtained, the control design can proceed immediately.

Normal operating records from a natural stochastic environment at first appear to be an attractive basis for
modeling systems, since such records are by definition nondisruptive and inexpensive to obtain. Unfortunately, the



quality of such data is inconsistent, tending to be worst just when the control is best, because then the upsets are
minimal and the signals are smooth. At such times, some or even most of the system dynamics are hardly excited.
Because they contribute little to the system output, they will not be found in the model constructed to explain the
signals. The result is a model that represents only part of the system and is sometimes unsuitable for control. In some
instances, as occurs when trying to model the dynamics of the electroencephalogram (brain waves) of a sleeping or
anesthetized person to locate the frequency and intensity of alpha waves, normal records are the only possibility.
Usually they are the last choice for control purposes.

Pseudorandom noise (PRBS)
Finally, the pseudorandom signals that can be constructed using digital logic have much appeal. Especially
interesting for model making is the pseudorandom binary signal (PRBS). The PRBS takes on the value + α or – A
according to the output (1 or 0) of a feedback shift register. The feedback to the register is a binary sum of various
states of the register that have been selected to make the output period (which must repeat itself in finite time) as
long as possible. For example, with a register of 20 bits, 220 –1 (over a million) steps are produced before the
pattern repeats. Analysis beyond the scope of this text has revealed that the resulting signal is almost like a
broadband random signal. Yet this signal is entirely under the control of the engineer who can set the level (A) and
the length (bits in the register) of the signal. The data obtained from tests with a PRBS must be analyzed by computer
and both special-purpose hardware and programs for general-purpose computers have been developed to perform
this analysis.

3.7.1 Models from Transient-Response Data
To obtain a model from transient data we assume that a step response is available. If the transient is a simple
combination of elementary transients, then a reasonable low-order model can be estimated using hand calculations.
For example, consider the step response shown in Fig. 3.42. The response is monotonic and smooth. If we assume
that it is given by a sum of exponentials, we can write

Subtracting off the final value and assuming that –α is the slowest pole, we write

This is the equation of a line whose slope determines α and intercept determines A. If we fit a line to the plot of
log10[y–y∞)] (or log10[y(∣) – y] if A is negative), then we can estimate A and α. Once these are estimated, we plot y
– [y(∞) + Ae–αt], which as a curve approximates Be–t and on the log plot is equivalent to log10 B – 0.4345βt. We
repeat the process, each time removing the slowest remaining term, until the data stop being accurate. Then we plot
the final model step response and compare it with data so we can assess the quality of the computed model. It is
possible to get a good fit to the step response and yet be far off from the true time constants (poles) of the system.
However, the method gives a good approximation for control of processes whose step responses look like Fig. 3.42.



Figure 3.42

A step response characteristic of many chemical processes

TABLE 3.1

EXAMPLE 3.35 Determining the Model from Time-Response Data
Find the transfer function that generates the data given in Table 3.1 and which are plotted in Fig. 3.43.
Solution. Table 3.1 shows and Fig. 3.43 implies that the final value of the data is y(∞) = 1. We know that A is
negative because y(∞) is greater than y(t). Therefore, the first step in the process is to plot log10[y(∞) – y], which is
shown in Fig. 3.44. From the line (fitted by eye) the values are

Thus
A = –1.33,
α = 1.0.

If we now subtract 1 + Aeαt from the data and plot the log of the result, we find the plot of Fig. 3.45. Here we
estimate



Figure 3.43 Step response data in Table 3.1

Figure 3.44 log10[y(∞) – y] versus t

Combining these results, we arrive at the y estimate

Equation (3.86) is plotted as the colored line in Fig. 3.46 and shows a reasonable fit to the data, although some error



is noticeable near t = 0.
From (t) we compute

Figure 3.45 log10[y –(1 +Ae–αt)] versus t

Figure 3.46 Model fits to the experimental data

The resulting transfer function is



Notice that this method has given us a system with a zero in the RHP, even though the data showed no values of y
that were negative. Very small differences in the estimated value for A, all of which approximately fit the data, can
cause values of β to range from 4 to 6. This illustrates the sensitivity of pole locations to the quality of the data and
emphasizes the need for a good signal-to-noise ratio.

By using a computer to perform the plotting, we are better able to iterate the four parameters to achieve the best
overall fit. The data presentation in Figs. 3.44 and 3.45 can be obtained directly by using a semilog plot. This
eliminates having to calculate log10 and the exponential expression to find the values of the parameters. The
equations of the lines to be fit to the data are y(t) = Aeαt and y(t) = Beβt, which are straight lines on a semilog plot.
The parameters A and α, or B and β, are iteratively selected so that the straight line comes as close as possible to
passing through the data. This process produces the improved fit shown by the dashed black line in Fig. 3.46. The
revised parameters, A = –1.37, B = 0.37, and β = 4.3 result in the transfer function

The RHP zero is still present but it is now located at s ≅ + 20 and has no noticeable effect on the time response.
This set of data was fitted quite well by a second-order model. In many cases a higher-order model is required to

explain the data and the modes may not be as well separated.

If the transient response has oscillatory modes, then these can sometimes be estimated by comparing them with the
standard plots of Fig. 3.18. The period will give the frequency ωd and the decay from one period to the next will
afford an estimate of the damping ratio. If the response has a mixture of modes not well separated in frequency, then
more sophisticated methods need to be used. One such is least-squares system identification, in which a numerical
optimization routine selects the best combination of system parameters so as to minimize the fit error. The fit error is
defined to be a scalar cost function

Least-squares system identification
so that fit errors at all data points are taken into account in determining the best value for the system parameters.

3.7.2 Models from Other Data
As mentioned early in Section 3.1.2, we can also generate a model using frequency-response data, which are
obtained by exciting the system with a set of sinusoids and plotting H(jω). In Chapter 6 we will show how such plots
can be used directly for design. Alternatively, we can use the frequency response to estimate the poles and zeros of a
transfer function using straight-line asymptotes on a logarithmic plot.

The construction of dynamic models from normal stochastic operating records or from the response to a PRBS can
be based either on the concept of cross-correlation or on the least-squares fit of a discrete equivalent model, both
topics in the field of system identification. They require substantial presentation and background that are beyond the
scope of this text. An introduction to system identification can be found in Chapter 8 of Franklin et al. (1998), and a
comprehensive treatment is given in Ljüng (1999). Based largely on the work of Professor Ljüng, the MATLAB



Toolbox on Identification provides substantial software to perform system identification and to verify the quality of
the proposed models.

Δ 3.8 Amplitude and Time Scaling
The magnitude of the values of the variables in a problem is often very different, sometimes so much so that
numerical difficulties arise. This was a serious problem years ago when equations were solved using analog
computers and it was routine to scale the variables so that all had similar magnitudes. Today’s widespread use of
digital computers for solving differential equations has largely eliminated the need to scale a problem unless the
number of variables is very large, because computers are now capable of accurately handling numbers with wide
variations in magnitude. Nevertheless, it is wise to understand the principle of scaling for the few cases in which
extreme variations in magnitude exist and scaling is necessary or the computer word size is limited.

3.8.1 Amplitude Scaling
There are two types of scaling that are sometimes carried out: amplitude scaling and time scaling, as we have already
seen in Section 3.1.4. Amplitude scaling is usually performed unwittingly by simply picking units that make sense for
the problem at hand. For the ball levitator, expressing the motion in millimeters and the current in milliamps would
keep the numbers within a range that is easy to work with. Equations of motion are sometimes developed in the
standard SI units such as meters, kilograms, and amperes, but when computing the motion of a rocket going into
orbit, using kilometers makes more sense. The equations of motion are usually solved using computer-aided design
software, which is often capable of working in any units. For higher-order systems it becomes important to scale the
problem so that system variables have similar numerical variations. A method for accomplishing the best scaling for
a complex system is first to estimate the maximum values for each system variable and then to scale the system so
that each variable varies between –1 and 1.

In general, we can perform amplitude scaling by defining the scaled variables for each state element: If

then

We then pick Sx to result in the appropriate scale change, substitute Eqs. (3.87) and (3.88) into the equations of
motion, and recompute the coefficients.

EXAMPLE 3.36 Scaling for the Ball Levitator
The linearized equation of motion for the ball levitator (see Example 9.2, Chapter 9) is

where δx is in units of meters and δi is in units of amperes. Scale the variables for the ball levitator to result in units
of millimeters and milliamps instead of meters and amps.
Solution. Referring to Eq. (3.87), we define



δx’ = Sxδx and δi’ = Siδi

such that both Sx and Si have a value of 1000 in order to convert δx and δi in meters and amps to δx’ and δi’ in
millimeters and milliamps. Substituting these relations into Eq. (3.89) and taking note of Eq. (3.88) yields

In this case Sx = Si, so Eq. (3.89) remains unchanged. Had we scaled the two quantities by different amounts, there
would have been a change in the last coefficient in the equation.

3.8.2 Time Scaling
The unit of time when using SI units or English units is seconds. Computer-aided design software is usually able to
compute results accurately no matter how fast or slow the particular problem at hand. However, if a dynamic system
responds in a few microseconds, or if there are characteristic frequencies in the system on the order of several
megahertz, the problem may become ill conditioned, so that the numerical routines produce errors. This can be
particularly troublesome for high-order systems. The same holds true for an extremely slow system. It is therefore
useful to know how to change the units of time should you encounter an ill-conditioned problem.

We define the new scaled time to be

such that, if t is measured in seconds and ω0 = 1000, then τ will be measured in milliseconds. The effect of the time
scaling is to change the differentiation so that

and

EXAMPLE 3.37 Time Scaling an Oscillator
The equation for an oscillator was derived in Example 2.5. For a case with a very fast natural frequency ωn =
15,000 rad/sec (about 2 kHz), Eq. (2.23) can be rewritten as

Determine the time-scaled equation so that the unit of time is milliseconds.
Solution. The value of ωo in Eq. (3.90) is 1000. Equation (3.92) shows that



and the time-scaled equation becomes

In practice, we would then solve the equation

and label the plots in milliseconds instead of seconds.

3.9 Historical Perspective
Oliver Heaviside (1850–1925) was an eccentric English electrical engineer, mathematician, and physicist. He was
self-taught and left school at the age of 16 to become a telegraph operator. He worked mostly outside the scientific
community that was hos-tiletohim. Hereformulated Maxwell’s equationsinthe form thatisused today. Healso laid
down the foundations of telecommunication and hypothesized the existenceof the ionosphere. He developed the
symbolic procedure known as Heaviside’s operational calculus for solving differential equations. The Heaviside
calculus was widely popular among electrical engineers in the 1920s and 1930s. This was later shown to be
equivalent to the more rigorous Laplace transform named after the French mathematician Pierre-Simon Laplace
(1749–1827) who had worked on operational calculus earlier.

Laplace was also an astronomer and a mathematician who is sometimes referred to as the “The Newton of
France.” He studied the origin and dynamical stability of the solar system completing Newton’s work in his five
volume Méchanique céleste (Celestial Mechanics). Laplace invented the general concept of potential as in a
gravitational or electric field and described by Laplace’s equation. Laplace had a brief political career as Napoleon’s
Interior Minister. During a famous exchange with Napoleon who asked Laplace why he had not mentioned God in
Méchanique céleste, Laplace is said to have replied that “Sir, there was no need for that hypothesis.” He was an
opportunist and changed sides as the political winds shifted. Laplace’s operational property transforms a differential
equation into an algebraic operation that is much easier to manipulate in engineering applications. It is also
applicable to solutions of partial differential equations, the original problem that Laplace was concerned with while
developing the transform. Laplace formulated the Laplace’s equation with applications to electromagnetic theory,
fluid dynamics, and astronomy. Laplace also made fundamental contributions to probability theory.

Laplace and Fourier transforms are intimately related (see Appendix A). The Fourier series and the Fourier
transform, developed in that order, provide methods for representing signalsintermsof exponential functions. Fourier
series are used to represent a periodic signal with discrete spectra in terms of a series. Fourier transforms are used to
represent a non-periodic signal with continuous spectra in terms of an integral. The Fourier transform is named after
the French mathematician Jean Batiste Joseph Fourier (1768–1830) who used Fourier series to solve the heat
conduction equation expressed in terms of Fourier series. Laplace and Fourier were contemporaries and knew each
other very well. In fact, Laplace was one of Fourier’s teachers. Fourier accompanied Napoleon on his Egyptian
expedition in 1798 as a science advisor and is also credited with the discovery of the greenhouse effect.

Transform methods provide a unifying method in applications to solving many engineering problems. Linear
transforms such as the Laplace transform and Fourier transform are useful for studying linear systems. While Fourier



transforms are useful to study the steady-state behavior, Laplace transforms are used for studying the transient and
closed-loop behavior of dynamic systems. The book by Gardner and Barnes in 1942 was influential in popularizing
the Laplace transform in the United States.

SUMMARY
• The Laplace transform is the primary tool used to determine the behavior of linear systems. The Laplace transform

of a time function f(t) is given by

• This relationship leads to the key property of Laplace transforms, namely,

• This property allows us to find the transfer function of a linear ODE. Given the transfer function G(s) of a system
and the input u(t), with transform U(s), the system output transform is Y(s) = G(s)U(s).

• Normally, inverse transforms are found by referring to tables such as Table A.2 in Appendix A or by computer.
Properties of Laplace transforms and their inverses are summarized in Table A.1 in Appendix A.

• The Final Value Theorem is useful in finding steady-state errors for stable systems: If all the poles of s Y(s) are in
the LHP, then

• Block diagrams are a convenient way to show the relationships between the components of a system. They can
usually be simplified using the relations in Fig. 3.9 and Eq. (3.50); that is, the transfer function of the block
diagram

is equivalent to

• The locations of poles in the s-plane determine the character of the response, as shown in Fig. 3.15.
• The location of a pole in the s-plane is defined by the parameters shown in Fig. 3.22. These parameters are related

to the time-domain quantities of rise time tr, settling time ts, and overshoot Mp, which are defined in Fig. 3.22. The
correspondences between them, for a second-order system with no zeros, are given by



• When a zero in the LHP is present, the overshoot increases. This effect is summarized in Figs. 3.26 and 3.27.
• When an additional stable pole is present, the system response is more sluggish. This effect is summarized in Figs.

3.34 and 3.35.
• For a stable system, all the closed-loop poles must be in the LHP.
• A system is stable if and only if all the elements in the first column of the Routh array are positive. To determine

the Routh array, refer to the formulas in Section 3.6.3.
• Mason’s rule is a useful technique to determining transfer functions of complicated interconnected systems.
• Determining a model from experimental data, or verifying an analytically based model by experiment, is an

important step in system design.
• Amplitude and time scaling (Section 3.8) are methods by which certain complications of dealing with differential

equations can be minimized. Scaling of variables results in numerical values that fall within a sufficiently narrow
range of magnitude to minimize errors and allow for ease of computation.

REVIEW QUESTIONS
1 What is the definition of “transfer function”?
2 What are the properties of systems whose responses can be described by transfer functions?
3 What is the Laplace transform of f(t – λ)1(t – λ) if the transform of f (t) is F(s)?
4 State the Final Value Theorem.
5 What is the most common use of the Final Value Theorem in control?
6 Given a second-order transfer function with damping ratio ξ and natural frequency ωn, what is the estimate of the

step response rise time? What is the estimate of the percent overshoot in the step response? What is the estimate
of the settling time?

7 What is the major effect of a zero in the LHP on the second-order step response?
8 What is the most noticeable effect of a zero in the RHP on the step response of the second-order system?
9 What is the main effect of an extra real pole on the second-order step response?
10 Why is stability an important consideration in control system design?
11 What is the main use of Routh’s criterion?
12 Under what conditions might it be important to know how to estimate a transfer function from experimental

data?

PROBLEMS



Problems for Section 3.1: Review of Laplace Transforms
3.1 Show that, in a partial-fraction expansion, complex conjugate poles have coefficients that are also complex

conjugates. (The result of this relationship is that whenever complex conjugate pairs of poles are present, only
one of the coefficients needs to be computed.)

3.2 Find the Laplace transform of the following time functions:
(a) f (t) = 1 + 2t
(b) f (t) = 3 + 7t + t2 + δ(t)
(c) f (t) = e-t + 2e-2t + te-3t

(d) f (t) = (t + 1)2

(e) f (t) = sinh t
3.3 Find the Laplace transform of the following time functions:

(a) f (t) = 3 cos 6t
(b) f (t) = sin 2t + 2 cos 2t + e-t sin 2t
(c) f(t) = t2 + e-2t sin 3t

3.4 Find the Laplace transform of the following time functions:
(a) f(t) = t sin t
(b) f(t) = t cos 3t
(c) f(t) = te-t + 2t cos t
(d) f(t) = t sin 3t – 2t cos t
(e) f(t) = 1(t) + 2t cos 2t

3.5 Find the Laplace transform of the following time functions (* denotes convolution):

3.6 Given that the Laplace transform of f(t) is F(s), find the Laplace transform of the following:

3.7 Find the time function corresponding to each of the following Laplace transforms using partial-fraction
expansions:



3.8 Find the time function corresponding to each of the following Laplace transforms:

3.9 Solve the following ODEs using Laplace transforms:

3.10 Using the convolution integral, find the step response of the system whose impulse response is given below and
shown in Fig. 3.47:

Figure 3.47 Impulse response for Problem 3.10

3.11 Using the convolution integral, find the step response of the system whose impulse response is given below and
shown in Fig. 3.48:



Figure 3.48 Impulse response for Problem 3.11

3.12 Consider the standard second-order system

(a) Write the Laplace transform of the signal in Fig. 3.49.
(b) What is the transform of the output if this signal is applied to G(s)?
(c) Find the output of the system for the input shown in Fig. 3.49.

Figure 3.49 Plot of input for Problem 3.12

3.13 A rotating load is connected to a field-controlled DC motor with negligible field inductance. A test results in the
output load reaching a speed of 1 rad/sec within 1/2 sec when a constant input of 100 V is applied to the motor
terminals. The output steady-state speed from the same test is found to be 2 rad/sec. Determine the transfer

function  of the motor.
3.14 A simplified sketch of a computer tape drive is given in Fig. 3.50.

(a) Write the equations of motion in terms of the parameters listed below. K and B represent the spring constant
and the damping of tape stretch, respectively, and ω1 and ω2 are angular velocities. A positive current applied
to the DC motor will provide a torque on the capstan in the clockwise direction as shown by the arrow. Find
the value of current that just cancels the force, F, then eliminate the constant current and its balancing force, F;
from your equations. Assume positive angular velocities of the two wheels are in the directions shown by the
arrows.



Figure 3.50 Tape drive schematic

(b) Find the transfer function from the motor current to the tape position.
(c) Find the poles and zeros of the transfer function in part (b).
(d) Use MATLAB to find the response of x1 to a step input in ia.

3.15 For the system in Fig. 2.51, compute the transfer function from the motor voltage to position θ2.

3.16 Compute the transfer function for the two-tank system in Fig. 2.55 with holes at A and C.
3.17 For a second-order system with transfer function



Figure 3.51 Continuous rolling mill

determine the following:
(a) The DC gain;
(b) The final value to a step input.

3.18 Consider the continuous rolling mill depicted in Fig. 3.51. Suppose that the motion of the adjustable roller has a
damping coefficient b, and that the force exerted by the rolled material on the adjustable roller is proportional to
the material’s change in thickness: Fs = c(T – x). Suppose further that the DC motor has a torque constant Kt and
a back emf constant Ke, and that the rack-and-pinion has effective radius of R.
(a) What are the inputs to this system? The output?
(b) Without neglecting the effects of gravity on the adjustable roller, draw a block diagram of the system that

explicitly shows the following quantities: Vs(s), I0(s), F(s) (the force the motor exerts on the adjustable roller),
and X(s).

(c) Simplify your block diagram as much as possible while still identifying output and each input separately.

Problems for Section 3.2: System Modeling Diagrams
3.19 Consider the block diagram shown in Fig. 3.52. Note that ai and bi are constants. Compute the transfer function

for this system. This special structure is called the “control canonical form” and will be discussed further in
Chapter 7.



Figure 3.52 Block diagram for Problem 3.19

3.20 Find the transfer functions for the block diagrams in Fig. 3.53.

Figure 3.53 Block diagrams for Problem 3.20

3.21 Find the transfer functions for the block diagrams in Fig. 3.54, using the ideas of block diagram simplification.
The special structure in Fig. 3.54(b) is called the “observer canonical form” and will be discussed in Chapter 7.



Figure 3.54 Block diagrams for Problem 3.21

3.22 Use block-diagram algebra to determine the transfer function between R(s) and Y(s) in Fig. 3.55.

Figure 3.55 Block diagram for Problem 3.22

Problems for Section 3.3: Effect of Pole Locations
3.23 For the electric circuit shown in Fig. 3.56, find the following:

(a) The time-domain equation relating i(t) and v1(t);



(b) The time-domain equation relating i(t) and v2(t);

(c) Assuming all initial conditions are zero, the transfer function  and the damping ratio ξ and undamped
natural frequency ωn of the system;

(d) The values of R that will result in v2(t) having an overshoot of no more than 25%, assuming v1(t) is a unit
step, L = 10 mH, and C = 4 μF.

Figure 3.56 Circuit for Problem 3.23

3.24 For the unity feedback system shown in Fig. 3.57, specify the gain K of the proportional controller so that the
output y(t) has an overshoot of no more than 10% in response to a unit step.

Figure 3.57 Unity feedback system for Problem 3.24

3.25 For the unity feedback system shown in Fig. 3.58, specify the gain and pole location of the compensator so that
the overall closed-loop response to a unit-step input has an overshoot of no more than 25%, and a 1% settling
time of no more than 0.1 sec. Verify your design using MATLAB.

Figure 3.58 Unity feedback system for Problem 3.25

Problems for Section 3.4: Time-Domain Specification

3.26 Suppose you desire the peak time of a given second-order system to be less than  Draw the region in the s-
plane that corresponds to values of the poles that meet the specification 

3.27 A certain servomechanism system has dynamics dominated by a pair of complex poles and no finite zeros. The
time-domain specifications on the rise time (tr), percent overshoot (Mp), and settling time (ts) are given by

tr ≤ 0.6sec,
Mp ≤ 17%,
ts ≤ 9.2 sec.



(a) Sketch the region in the s-plane where the poles could be placed so that the system will meet all three
specifications.

(b) Indicate on your sketch the specific locations (denoted by ×) that will have the smallest rise-time and also
meet the settling time specification exactly.

3.28 Suppose you are to design a unity feedback controller for a first-order plant depicted in Fig. 3.59. (As you will
learn in Chapter 4, the configuration shown is referred to as a proportional-integral controller.) You are to design
the controller so that the closed-loop poles lie within the shaded regions shown in Fig. 3.60.
(a) What values of ωn and ξ correspond to the shaded regions in Fig. 3.59? (A simple estimate from the figure is

sufficient.)
(b) Let Kα = α = 2. Find values for K and KI so that the poles of the closed-loop system lie within the shaded

regions.

Figure 3.59 Unity feedback system for Problem 3.28

Figure 3.60 Desired closed-loop pole locations for Problem 3.28

(c) Prove that no matter what the values of Kα and α are, the controller provides enough flexibility to place the
poles anywhere in the complex (left-half) plane.

3.29 The open-loop transfer function of a unity feedback system is

The desired system response to a step input is specified as peak time tp = 1 sec and overshoot Mp = 5%.
(a) Determine whether both specifications can be met simultaneously by selecting the right value of K.
(b) Sketch the associated region in the s-plane where both specifications are met, and indicate what root locations

are possible for some likely values of K.
(c) Relax the specifications in part (a) by the same factor and pick a suitable value for K, and use MATLAB to



verify that the new specifications are satisfied.
3.30 The equations of motion for the DC motor shown in Fig. 2.32 were given in Eqs. (2.52-2.53) as

Assume that

Jm =0.01 kg.m2,
b = 0.001 N.m.sec,

Ke = 0.02 V.sec,
Kt = 0.02 N.m/A,

Ra = 10 Ω

(a) Find the transfer function between the applied voltage va and the motor speed m.
(b) What is the steady-state speed of the motor after a voltage va = 10 V has been applied?
(c) Find the transfer function between the applied voltage va and the shaft angle θm.
(d) Suppose feedback is added to the system in part (c) so that it becomes a position servo device such that the

applied voltage is given by
va = K(θr – θm),

where K is the feedback gain. Find the transfer function between θr and θm.
(e) What is the maximum value of K that can be used if an overshoot Mp < 20% is desired?
(f) What values of K will provide a rise time of less than 4 sec? (Ignore the Mp constraint.)
(g) Use MATLAB to plot the step response of the position servo system for values of the gain K = 0.5, 1, and 2.

Find the overshoot and rise time for each of the three step responses by examining your plots. Are the plots
consistent with your calculations in parts (e) and (f)?

3.31 You wish to control the elevation of the satellite-tracking antenna shown in Figs. 3.61 and 3.62. The antenna
and drive parts have a moment of inertia J and a damping B; these arise to some extent from bearing and
aerodynamic friction, but mostly from the back emf of the DC drive motor. The equations of motion are



Figure 3.61 Satellite-tracking antenna Source: Courtesy Space Systems/Loral

Figure 3.62 Schematic of antenna for Problem 3.31

J  + B  = Tc,

where Tc is the torque from the drive motor. Assume that

J =600,000 kg.m2 B = 20,000 N.m.sec.
(a) Find the transfer function between the applied torque Tc and the antenna angle θ.
(b) Suppose the applied torque is computed so that θ tracks a reference command θr according to the feedback

law
Tc = K(θr – θ),

where K is the feedback gain. Find the transfer function between θr and θ.
(c) What is the maximum value of K that can be used if you wish to have an overshoot Mp < 10%?
(d) What values of K will provide a rise time of less than 80 sec? (Ignore the Mp constraint.)
(e) Use MATLAB to plot the step response of the antenna system for K = 200, 400, 1000, and 2000. Find the

overshoot and rise time of the four step responses by examining your plots. Do the plots confirm your
calculations in parts (c) and (d)?

3.32 Show that the second-order system

has the response

Prove that, for the underdamped case (ξ < 1), the response oscillations decay at a predictable rate (see Fig. 3.63)
called the logarithmic decrement



where

is the damped natural period of vibration. The damping coefficient in terms of the logarithmic decrement is then

Figure 3.63 Definition of logarithmic decrement

Problems for Section 3.5: Effect of Zeros and Additional Poles
3.33 In aircraft control systems, an ideal pitch response (qo) versus a pitch command (qc) is described by the transfer

function

The actual aircraft response is more complicated than this ideal transfer function; nevertheless, the ideal model is
used as a guide for autopilot design. Assume that tr is the desired rise time and that



Show that this ideal response possesses a fast settling time and minimal overshoot by plotting the step response for tr
= 0.8, 1.0, 1.2, and 1.5 sec.
3.34 Consider the system shown in Fig. 3.64, where

Find K, z, and p so that the closed-loop system has a 10% overshoot to a step input and a settling time of 1.5 sec
(1% criterion).

Figure 3.64 Unity feedback system for Problem 3.34

3.35 Sketch the step response of a system with the transfer function

Justify your answer on the basis of the locations of the poles and zeros. (Do not find the inverse Laplace transform.)
Then compare your answer with the step response computed using MATLAB.
3.36 Consider the two nonminimum-phase systems,

(a) Sketch the unit step responses for G1(s) and G2(s), paying close attention to the transient part of the response.
(b) Explain the difference in the behavior of the two responses as it relates to the zero locations.
(c) Consider a stable, strictly proper system (that is, m zeros and n poles, where m < n). Let y(t) denote the step

response of the system. The step response is said to have an undershoot if it initially starts off in the “wrong”
direction. Prove that a stable, strictly proper system has an undershoot if and only if its transfer function has an
odd number of real RHP zeros.

3.37 Find the relationships for the impulse response and the step response corresponding to Equation (3.57) for the
cases where
(a) the roots are repeated.
(b) the roots are both real. Express your answers in terms of hyperbolic functions (sinh, cosh) to best show the

properties of the system response.
(c) the value of the damping coefficient, ζ, is negative.

3.38 Consider the following second-order system with an extra pole:



Show that the unit-step response is

where

(a) Which term dominates y(t) as p gets large?
(b) Give approximate values for A and B for small values of p.
(c) Which term dominates as p gets small? (Small with respect to what?)
(d) Using the preceding explicit expression for y(t) or the step command in MATLAB, and assuming that ωn = 1

and ξ = 0.7, plot the step response of the preceding system for several values of p ranging from very small to
very large. At what point does the extra pole cease to have much effect on the system response?

3.39 Consider the second-order unity DC gain system with an extra zero,

(a) Show that the unit-step response for the system is given by

where

(b) Derive an expression for the step response overshoot, Mp, of this system.
(c) For a given value of overshoot, Mp, how do we solve for ζ and ωn?

3.40 The block diagram of an autopilot designed to maintain the pitch attitude θ of an aircraft is shown in Fig. 3.65.
The transfer function relating the elevator angle δe and the pitch attitude θ is



where θ is the pitch attitude in degrees and δe is the elevator angle in degrees. The autopilot controller uses the pitch
attitude error e to adjust the elevator according to the transfer function

Using MATLAB, find a value of K that will provide an overshoot of less than 10% and a rise time faster than 0.5 sec
for a unit-step change in 9r. After examining the step response of the system for various values of K, comment on the
difficulty associated with making rise time and overshoot measurements for complicated systems.

Figure 3.65 Block diagram of autopilot

Problems for Section 3.6: Stability
3.41 A measure of the degree of instability in an unstable aircraft response is the amount of time it takes for the

amplitude of the time response to double (see Fig. 3.66), given some nonzero initial condition.
(a) For a first-order system, show that the time to double is

where p is the pole location in the RHP.
(a) For a second-order system (with two complex poles in the RHP), show that

Figure 3.66 Time to double

3.42 Suppose that unity feedback is to be applied around the listed open-loop systems. Use Routh’s stability criterion
to determine whether the resulting closed-loop systems will be stable.



3.43 Use Routh’s stability criterion to determine how many roots with positive real parts the following equations
have:

3.44 Find the range of K for which all the roots of the following polynomial are in the LHP:

s5 + 5s4 + 10s3 + 10s2 + 5s + K = 0.
Use MATLAB to verify your answer by plotting the roots of the polynomial in the s-plane for various values of K.
3.45 The transfer function of a typical tape-drive system is given by

where time is measured in milliseconds. Using Routh’s stability criterion, determine the range of K for which this
system is stable when the characteristic equation is 1 + G(s) = 0.
3.46 Consider the closed-loop magnetic levitation system shown in Fig. 3.67. Determine the conditions on the system

parameters (a, K, z, p, Ko) to guarantee closed-loop system stability.

Figure 3.67 Magnetic levitation system

3.47 Consider the system shown in Fig. 3.68.
(a) Compute the closed-loop characteristic equation.
(b) For what values of (T,A) is the system stable? Hint: An approximate answer may be found using

e-Ts ≅ 1 – Ts

Figure 3.68 Control system for Problem 3.47

or



for the pure delay. As an alternative, you could use the computer MATLAB (SIMULINK®) to simulate the
system or to find the roots of the system’s characteristic equation for various values of T and A.

3.48 Modify the Routh criterion so that it applies to the case in which all the poles are to be to the left of – α when α
> 0. Apply the modified test to the polynomial

s3 + (6 + K)s2 + (5 + 6K)s + 5K = 0,
finding those values of K for which all poles have a real part less than –1
3.49 Suppose the characteristic polynomial of a given closed-loop system is computed to be

Find constraints on the two gains K1 and K2 that guarantee a stable closed-loop system, and plot the allowable
region(s) in the (K1, K2) plane. You may wish to use the computer to help solve this problem.

3.50 Overhead electric power lines sometimes experience a low-frequency, high-amplitude vertical oscillation, or
gallop, during winter storms when the line conductors become covered with ice. In the presence of wind, this ice
can assume aerodynamic lift and drag forces that result in a gallop up to several meters in amplitude. Large-
amplitude gallop can cause clashing conductors and structural damage tothe line support structures caused by the
large dynamic loads. These effects in turn can lead to power outages. Assume that the line conductor is a rigid
rod, constrained to vertical motion only, and suspended by springs and dampers as shown in Fig. 3.69.A simple
model of this conductor galloping is

Figure 3.69 Electric power-line conductor

where



Assume that L(0) =0 and D(0) = D0 (a constant), and linearize the equation around the value y =  = 0. Use
Routh’s stability criterion to show that galloping can occur whenever



1 Notice that this input is exponential for all time and Eq. (3.14) represents the response for all time. If the system is causal, then h(t) = 0 for t < 0,

and the integral reduces to 
2 Note that % is used in MATLAB to denote comments.
3 The phase difference may also be determined by a Lissajous pattern.
4 The other possible one-sided transform is, of course, L+, in which the lower limit of the integral is 0+. It is sometimes used in other applications.
5 Identically zero means that the output and all of its derivatives are zero for t > 0.
6 The meaning of the pole can also be appreciated by visualizing a 3-D plot of the transfer function, where the real and imaginary parts of s are
plotted on the x and y axes, and the magnitude of the transfer function is plotted on the vertical z axis. For a single pole, the resulting 3-D plot will
look like a tent with the “tent-pole” being located at the pole of the transfer function!
7 In communications and filter engineering, the standard second-order transfer function is written as H = 1/[1 + Q(s/ωn + ωn/s)]. Here, ωn is
called the band center and Q is the quality factor. Comparison with Eq. (3.55) shows that Q = 1/2ζ.
8 We assume that b(s) and a(s) have no common factors. If this is not so, it is possible for b(s) and a(s) to be zero at the same location and for H(s) to
not equal zero there. The implications of this case will be discussed in Chapter 7, when we have a state-space description.
9 Without loss of generality, we can assume the polynomial to be monic (that is, the coefficient of the highest power of s is 1).
10 This is easy to see if we construct the polynomial as a product of first- and second-order factors.
11 The actual roots of the polynomial computed with the MATLAB roots command are –3.2644, 0.7488j, –0.6046 ± 0.9935j, and –0.8858, which, of
course, agree with our conclusion.
12 The actual roots computed with MATLAB are at –2.9043, 0.6567 ± 1.2881j, –0.7046 ± 0.9929j.
13 Ziegler and Nichols (1943), building on the earlier work of Callender et al. (1936), use the step response directly in designing the controls for
certain classes of processes. See Chapter 4 for details.



4 A First Analysis of Feedback

A Perspective on the Analysis of Feedback
In the next three chapters we will introduce three techniques for the design of controllers. Before doing so, it is useful
to develop the assumptions to be used and to derive the equations that are common to each of the design approaches
we describe. As a general observation, the dynamics of systems to which control is applied are nonlinear and very
complex. However, in this initial analysis, we assume that the plant to be controlled as well as the controller can be
represented as dynamic systems which are linear and time invariant (LTI). We also assume that they have only single
inputs and single outputs, for the most part, and may thus be represented by simple scalar transfer functions. As we
mentioned in Chapter 1, our basic concerns for control are stability, tracking, regulation, and sensitivity. The goal of
the analysis in this chapter is to revisit each of these requirements in a linear dynamic setting and to develop
equations that will expose constraints placed on the controller and identify elementary objectives to be suggested for
the controllers.

Open-loop and closed-loop control
The two fundamental structures for realizing controls are the open-loop structure as shown in Fig. 4.1, and the

closed-loop structure, also known as feedback control, as shown in Fig. 4.2. The definition of open-loop control is
that there is no closed signal path whereby the output influences the control effort. In the structure shown in Fig. 4.1,
the controller transfer function modifies the reference input signal before it is applied to the plant. This controller
might cancel the unwanted dynamics of the plant and replace them with the more desirable dynamics of the
controller. In other cases open-loop control actions are taken on the plant as the environment changes, actions that
are calibrated to give a good response but are not dependent on measuring the actual response. An example of this
would be an aircraft autopilot whose parameters are changed with altitude or speed but not by feedback of the
craft’s motion. Feedback control, on the other hand, uses a sensor to measure the output and by feedback indirectly
modifies the dynamics of the system. Although it is possible that feedback may cause an otherwise stable system to
become unstable (a vicious circle), feedback gives the designer more flexibility and a preferable response to each of
our objectives when compared to open-loop control.

Chapter Overview
The chapter begins with consideration of the basic equations of a simple open-loop structure and of an elementary
feedback structure. In Section 4.1 the equations for the two structures are presented in general form and compared in
turn with respect to stability, tracking, regulation, and sensitivity. In Section 4.2 the steady-state errors in response to



polynomial inputs are analyzed in more detail. As part of the language of steady-state performance, control systems
are assigned a type number according to the maximum degree of the input polynomial for which the steady-state
error is a finite constant. For each type an appropriate error constant is defined, which allows the designer to easily
compute the size of this error.

Although Maxwell and Routh developed a mathematical basis for assuring stability of a feedback system, design of
controllers from the earliest days was largely trial and error based on experience. From this tradition there emerged
an almost universal controller, the proportional–integral–derivative (PID) structure considered in Section 4.3. This
device has three elements: a Pro-portional term to close the feedback loop, an Integral term to assure zero error to
constant reference and disturbance inputs, and a Derivative term to improve (or realize!) stability and good dynamic
response. In this section these terms are considered and their respective effects illustrated. As part of the evolution of
the PID controller design, a major step was the development of a simple procedure for selecting the three
parameters, a process called “tuning the controller.” Ziegler and Nichols developed and published a set of
experiments to be run, characteristics to be measured, and tuning values to be recommended as a result. These
procedures are discussed in this section. Finally, in optional Section 4.4, a brief introduction to the increasingly
common digital implementation of controllers is given. Sensitivity of time response to parameter changes is discussed
in Appendix W4 on the web.

4.1 The Basic Equations of Control
We begin by collecting a set of equations and transfer functions that will be used throughout the rest of the text. For
the open-loop system of Fig. 4.1, if we take the disturbance to be at the input of the plant, the output is given by

Figure 4.1 Open-loop system showing reference, R, control, U, disturbance, W, and output Y

Figure 4.2 Closed-loop system showing the reference, R, control, U, disturbance, W, output, Y, and sensor noise, V

and the error, the difference between reference input and system output, is given by



The open-loop transfer function in this case is Tol(s) = G(s)Dol(s).
For feedback control, Fig. 4.2 gives the basic unity feedback structure of interest. There are three external inputs:

the reference, R, which the output is expected to track, the plant disturbance, W, which the control is expected to
counteract so it does not disturb the output, and the sensor noise, V, which the controller is supposed to ignore.

For the feedback block diagram of Fig. 4.2, the equations for the output and the control are given by the
superposition of the responses to the three inputs individually, as follows:

Perhaps more important than these is the equation for the error, Ecl = R – Ycl.

In this case, the closed-loop transfer function is 
With these equations we will explore the four basic objectives of stability, tracking, regulation, and sensitivity for

both the open-loop and the closed-loop cases.

4.1.1 Stability
As we saw in Chapter 3, the requirement for stability is simply stated: All poles of the transfer function must be in
the left half-plane (LHP). In the open-loop case described by Eq. (4.1), these are the poles of GDol. To see the
restrictions this requirement places on the controller, we define the polynomials a(s), b(s), c(s), and d(s) so that 

 and . Therefore . With these definitions, the stability requirement is that
neither a(s) nor d(s) may have roots in the right half-plane (RHP). A naive engineer might believe that if the plant is
unstable with a(s) having a root in the RHP, the system might be made stable by canceling this pole with a zero of
c(s). However, the unstable pole remains and the slightest noise or disturbance will cause the output to grow until
stopped by saturation or system failure. Likewise, if the plant shows poor response because of a zero of b (s) in the
RHP, an attempt to fix this by cancellation using a root of d(s) will similarly result in an unstable system. We
conclude that an open-loop structure cannot be used to make an unstable plant to be stable and therefore cannot be
used if the plant is already unstable.

For the feedback system, from Eq. (4.8), the system poles are the roots of 1 + GDcl = 0. Again using the
polynomials defined above, the system characteristic equation is



From this equation, it is clear that the feedback case grants considerably more freedom to the controller design
than does the open-loop case. However, one must still avoid unstable cancellations. For example, if the plant is
unstable and therefore a (s) has a root in the RHP, we might cancel this pole by putting a zero of c(s) at the same
place. However, Eq. (4.11) shows that as a result, the unstable pole remains a pole of the system and this method
will not work. However, unlike the open-loop case, having a pole of a(s) in the RHP does NOT prevent our
designing a feedback controller that will make the system stable. For example, in Chapter 2 we derived the transfer
function for the inverted pendulum, which, for simple values, might be  for which we have b(s) = 1

and a(s) = s2 – 1 = (s + 1)(s – 1). Suppose we try . The characteristic equation that results for the
system is

This is the problem that Maxwell faced in his study of governors, namely under what conditions on the parameters
will all the roots of this equation be in the LHP? The problem was solved by Routh. In our case, a simple solution is
to take y = 1 and the common (stable) factor cancels. The resulting second-order equation can be easily solved to
place the remaining two poles at any point desired.
Exercise. If we wish to force the characteristic equation to be s2 + 2ξωs + ω2 = 0, solve for K and δ in terms of ξ
and ω

4.1.2 Tracking
The tracking problem is to cause the output to follow the reference input as closely as possible. In the open-loop
case, if the plant is stable and has neither poles nor zeros in the RHP, then in principle the controller can be selected
to cancel the transfer function of the plant and substitute whatever desired transfer function the engineer wishes. This
apparent freedom, however, comes with three caveats. First, in order to physically build it, the controller transfer
function must be proper, meaning that it cannot be given more zeros than it has poles. Second, the engineer must not
get greedy and request an unrealistically fast design. This entire analysis has been based on the assumption that the
plant is linear and a demand for a fast response will demand large inputs to the plant, inputs that will be sure to
saturate the system if the demand is too great. Again, it is the responsibility of the engineer to know the limits of the
plant and to set the desired overall transfer function to a reasonable value with this knowledge. Third and finally,
although one can, in principle, stably cancel any pole in the LHP, the next section on sensitivity faces up to the fact
that the plant transfer function is subject to change and if one tries to cancel a pole that is barely inside the LHP
there is a good chance of disaster as that pole moves a bit and exposes the system response to unacceptable
transients.

Exercise. For a plant having the transfer function  it is proposed to use a controller in a unity feedback system

and having the transfer function . Solve for the parameters of this controller so that the closed-loop will
have the characteristic equation (s + 6)(s + 3)(s2 + 3s + 9) = 01.



{ans: c2 = 34, c1 = 36, c0 = 162, d1 = 11}
Exercise. Show that if the reference input to the system of the above exercise is a step of amplitude A, the steady-
state error will be zero.

4.1.3 Regulation
The problem of regulation is to keep the error small when the reference is at most a constant set point and
disturbances are present. A quick look at the open-loop block diagram reveals that the controller has no influence at
all on the system response to either of the disturbances, w, or v, so this structure is useless for regulation. We turn to
the feedback case. From Eq. (4.8) we find a conflict between w and v in the search for a good controller. For

example, the term giving the contribution of the plant disturbance to the system error is W. To select Dcl to
make this term small, we should make Dcl as large as possible and infinite if that is feasible. On the other hand, the

error term for the sensor noise is . In this case, unfortunately, if we select Dcl to be large, the transfer
function tends to unity and the sensor noise is not reduced at all! What are we to do? The resolution of the dilemma
is to observe that each of these terms is a function of frequency so one of them can be large for some frequencies and
small for others. With this in mind, we also note that the frequency content of most plant disturbances occurs at very
low frequencies and in fact, the most common case is a bias, which is all at zero frequency! On the other hand, a
good sensor will have no bias and can be constructed to have very little noise over the entire range of low
frequencies of interest. Thus, using this information, we design the controller transfer function to be large at the low
frequencies, where it will reduce the effect of w, and we make it small at the higher frequencies, where it will reduce
the effects of the high frequency sensor noise. The control engineer must determine in each case the best place on the
frequency scale to make the cross over from amplifying to attenuation.
Exercise. Show that if w is a constant bias and if Dcl has a pole at s = 0 then the error due to this bias will be zero.
However, show that if G has a pole at zero, it does not help with a disturbance bias.

4.1.4 Sensitivity
Suppose a plant is designed with gain G at a particular frequency but in operation it changes to be G + δG. This
represents a fractional or percent change of gain of δG/G. For the purposes of this analysis, we set the frequency at
zero and take the open-loop controller gain to be fixed at Dol(0). In the open-loop case the nominal overall gain is
thus Tol = GDol, and with the perturbed plant gain, the overall gain would be

Therefore, the gain change is δ Tol = DolδG. The sensitivity, , of a transfer function, Tol, to a plant gain, G, is

defined to be the ratio of the fractional change in Tol defined as  to the fractional change in G. In equation form



Substituting the values, we find that

This means that a 10% error in G would yield a 10% error in Tol. In the open-loop case, therefore, we have
computed that S =1.

From Eq. (4.5), the same change in G in the feedback case yields the new steady-state feedback gain as

where Tcl is the closed-loop gain. We can compute the sensitivity of this closed-loop gain directly using differential
calculus. The closed-loop steady-state gain is

The first-order variation is proportional to the derivative and is given by

The general expression for sensitivity from Eq. (4.13) is given by

so

Advantage of feedback
This result exhibits a major advantage of feedback:2



In feedback control, the error in the overall transfer function gain is less sensitive to variations in the plant gain by
a factor of  compared to errors in open-loop control gain.

If the gain is such that 1 + DG = 100, a 10% change in plant gain G will cause only a 0.1% change in the steady-
state gain. The open-loop controller is 100 times more sensitive to gain changes than the closed-loop system with
loop gain of 100. The example of the unity feedback case is so common that we will refer to the result of Eq. (4.17)
simply as the sensitivity, S, without subscripts or superscripts.

The results in this section so far have been computed under the assumption of the steady-state error in the
presence of constant inputs, either reference or disturbance. Very similar results can be obtained for the steady-state
behavior in the presence of a sinusoidal reference or disturbance signal. This is important because there are times
when such signals naturally occur as, for example, with a disturbance of 60 Hertz due to power-line interference in
an electronic system. The concept is also important because more complex signals can be described as containing
sinusoidal components over a band of frequencies and analyzed using superposition of one frequency at a time. For
example, it is well known that human hearing is restricted to signals in the frequency range of about 60 to 15,000
Hertz. A feedback amplifier and loudspeaker system designed for high-fidelity sound must accurately track any
sinusoidal (pure tone) signal in this range. If we take the controller in the feedback system shown in Fig. 4.2 to have
the transfer function D(s) and we take the process to have the transfer function G(s), then the steady-state open-loop
gain at the sinusoidal signal of frequency ωo will be |G(jωo)D(jωo)| and the error of the feedback system will be
Thus, to reduce errors to 1% of the input at the frequency ωo, we must make |1 +DG| ≥ 100 or, effectively,
|D(jωo)G(jωo)|  100 and a good audio amplifier must have this loop gain over the range 2π60 ≤ ω ≤ 2π 15000.
We will revisit this concept in Chapter 6 as part of the design based on frequency response techniques.

The Filtered Case
Thus far the analysis has been based on the simplest open- and closed-loop structures. A more general case includes a
dynamic filter on the input and also dynamics in the sensor. The filtered open-loop structure is shown in Fig. 4.3
having the transfer function Tol = GDolF. In this case, the open-loop controller transfer function has been simply
replaced by DF and the discussion given for the unfiltered open-loop case is easily applied to this change.

For the filtered feedback case shown in Fig. 4.4, the changes are more siginificant. In that case, the transform of the
system output is given by

As is evident from this equation, the sensor dynamics, H is part of the loop transfer function and enters into the
question of stability with DclH replacing the Dcl of the unity feedback case. In fact, if F = H then, with respect to
stability, tracking, and regulation, the filtered case is identical to the unity case with DclH replacing Dcl. On the other
hand, the filter transfer function F can play the role of the open-loop controller except that here the filter F would be

called on to modify the entire loop transfer function, , rather than simply GDol. Therefore the filtered closed-



loop structure can realize the best properties of both the open-loop and the unity feedback closed-loop cases. The
controller, Dcl, can be designed to effectively regulate the system for the disturbance W and the sensor noise, V, while
the filter F is designed to improve the tracking accuracy. If the sensor dynamics, H, are accessible to the designer, this
term can also be designed to improve the response to the sensor noise. The remaining issue is sensitivity.

Figure 4.3 Filtered open-loop system

Figure 4.4 Filtered closed-loop. R = reference, u = control, Y = output, and V = sensor noise

Using the formula given in Eq. (4.13), with changes in the parameter of interest, we can compute

Of these, the most interesting is the last. Notice that with respect to H, the sensitivity approaches unity as the loop
gain grows. Therefore it is particularly important that the transfer function of the sensor be not only low in noise but
also very stable in gain. Money spent on the sensor is money well spent.

4.2 Control of Steady-State Error to Polynomial Inputs: System Type
In studying the regulator problem, the reference input is taken to be a constant. It is also the case that the most
common plant disturbance is a constant bias. Even in the general tracking problem the reference input is often
constant for long periods of time or may be adequately approximated as if it were a polynomial in time, usually one
of low degree. For example, when an antenna is tracking the elevation angle to a satellite, the time history as the
satellite approaches overhead is an S-shaped curve as sketched in Fig. 4.5. This signal may be approximated by a
linear function of time (called a ramp function or velocity input) for a significant time relative to the speed of
response of the servomechanism. As another example, the position control of an elevator has a ramp function
reference input, which will direct the elevator to move with constant speed until it comes near the next floor. In rare
cases, the input can even be approximated over a substantial period as having a constant acceleration. Consideration
of these cases leads us to consider steady-state errors in stable systems with polynomial inputs.



As part of the study of steady-state errors to polynomial inputs, a terminology has been developed to express the
results. For example, we classify systems as to “type” according to the degree of the polynomial that they can
reasonably track. For example, a system that can track a polynomial of degree 1 with a constant error is called Type
1. Also, to quantify the tracking error, several “error constants” are defined. In all of the following analysis, it is
assumed that the systems are stable, else the analysis makes no sense at all.

Figure 4.5 Signal for satellite tracking

4.2.1 System Type for Tracking
In the unity feedback case shown in Fig. 4.2, the system error is given by Eq. (4.8). If we consider tracking the
reference input alone and set W = V = 0, then the equation for the error is simply

To consider polynomial inputs, we let r(t) = tk/k!1(t) for which the transform is . We take a mechanical
system as the basis for a generic reference nomenclature, calling step inputs for which k = 0 “position” inputs, ramp
inputs for which k = 1 are called “velocity” inputs and if k = 2, the inputs are called “acceleration” inputs,
regardless of the units of the actual signals. Application of the Final Value Theorem to the error formula gives the
result

We consider first a system for which GDcl has no pole at the origin and a step input for which R(s) = 1/s. Thus r(t) is
a polynomial of degree 0. In this case, Eq. (4.26) reduces to

We define this system to be Type 0 and we define the constant, GDcl(0)  Kp as the “position error constant.” Notice
that if the input should be a polynomial of degree higher than 1, the resulting error would grow without bound. A
polynomial of degree 0 is the highest degree a system of Type 0 can track at all. If GDcl(s) has one pole at the origin,



we could continue this line of argument and consider first-degree polynomial inputs but it is quite straightforward to
evaluate Eq. (4.26) in a general setting. For this case, it is necessary to describe the behavior of the controller and
plant as s approaches 0. For this purpose, we collect all the terms except the pole(s) at the origin into a function
GDclo(s), which is finite at s = 0 so that we can define the constant GDclo(0) =Kn and write the loop transfer
function as

For example, if GDcl has no integrator, then n = 0. If the system has one integrator, then n = 1, and so forth.
Substituting this expression into Eq. (4.26),

From this equation we can see at once that if n > k then e = 0 and if n > k then e → ∞. If n = k = 0, then 

 and if n = k ≠ 0, then ess = 1/kn. As we saw above, if n = k = 0, the input is a zero-degree
polynomial otherwise known as a step or position, the constant Ko is called the “position constant” written as Kp,
and the system is classified as “Type 0.” If n = k = 1, the input is a first-degree polynomial otherwise known as a
ramp or velocity input and the constant K1 is called the “velocity constant” written as Kv. This system is classified
“Type 1” (read “type one”). In a similar way, systems of Type 2 and higher types may be defined. A clear picture of
the situation is given by the plot in Fig. 4.6 for a system of Type 1 having a ramp reference input. The error between
input and output of size  is clearly marked.

Using Eq (4.29), these results can be summarized by the equations:

The type information can also be usefully gathered in a table of error values as a function of the degree of the
input polynomial and the type of the system as shown in Table 4.1.



Figure 4.6 Relationship between ramp response and Kv

TABLE 4.1 Errors as a Function of System Type

EXAMPLE 4.1 System Type for Speed Control
Determine the system type and the relevant error constant for speed control with proportional feedback given by
D(s) = kp. The plant transfer function is .

Solution. In this case,  and applying Eq. (4.32) we see that n = 0 in this case as there is no pole at s =
0. Thus the system is Type 0 and the error constant is a position constant given by Kp = kpA

EXAMPLE 4.2 System Type Using Integral Control
Determine the system type and the relevant error constant for the speed control example with proportional plus
integral control having controller given by Dc = kp + kI/s. The plant transfer function is .

Solution. In this case, the loop transfer function is  and, as a unity feedback system with a single
pole at s = 0, the system is immediately seen as Type 1. The velocity constant is given by Eq. (4.33) to be 

.

The definition of system type helps us to identify quickly the ability of a system to track polynomials. In the unity
feedback structure, if the process parameters change without removing the pole at the origin in a Type 1 system, the
velocity constant will change but the system will still have zero steady-state error in response to a constant input and



will still be Type 1. Similar statements can be made for systems of Type 2 or higher. Thus we can say that system
type is a robust property with respect to parameter changes in the unity feedback structure. Robustness is a major
reason for preferring unity feedback over other kinds of control structure.

Robustness of system type
Another form of the formula for the error constants can be developed directly in terms of the closed-loop transfer

function T(s). From Fig. 4.4 the transfer function including a sensor transfer function is

and the system error is
E(s) = R(s) – Y(s) = R(s) – T(s)R(s).

The reference-to-error transfer function is thus

and the system error transform is
E(s) = [1 – T(s)]R(s),

We assume that the conditions of the Final Value Theorem are satisfied, namely that all poles of sE(s) are in the LHP.
In that case the steady-state error is given by applying the Final Value Theorem to get

If the reference input is a polynomial of degree k, the error transform becomes

and the steady-state error is given again by the Final Value Theorem:

As before, the result of evaluating the limit in Eq. (4.37) can be zero, a nonzero constant, or infinite and if the
solution to Eq. (4.37) is a nonzero constant, the system is referred to as Type k. Notice that a system of Type 1 or
higher has a closed-loop DC gain of 1.0, which means that T(0) = 1 in these cases.

EXAMPLE 4.3 System Type for a Servo with Tachometer Feedback
Consider an electric motor position control problem including a non-unity feedback system caused by having a
tachometer fixed to the motor shaft and its voltage (which is proportional to shaft speed) is fed back as part of the
control. The parameters are



Determine the system type and relevant error constant with respect to reference inputs.
Solution. The system error is

The steady-state system error from Eq. (4.37) is

For a polynomial reference input, R(s) = 1/sk+1 and hence

therefore the system is Type 1 and the velocity constant is . Notice that if kt > 0, perhaps to improve
stability or dynamic response, the velocity constant is smaller than with simply the unity feedback value of kp. The
conclusion is that if tachometer feedback is used to improve dynamic response, the steady-state error is usually
increased.

4.2.2 System Type for Regulation and Disturbance Rejection
A system can also be classified with respect to its ability to reject polynomial disturbance inputs in a way analogous
to the classification scheme based on reference inputs. The transfer function from the disturbance input W(s) to the
error E(s) is

because, if the reference is equal to zero, the output is the error. In a similar way as for reference inputs, the system



is Type 0 if a step disturbance input results in a nonzero constant steady-state error and is Type 1 if a ramp
disturbance input results in a steady-state value of the error that is a non zero constant, etc. In general, following the
same approach used in developing Eq. (4.31), we assume that a constant n and a function To,w(s) can be defined with
the properties that To,w(0) = 1/Kn,w and that the disturbance-to-error transfer function can be written as

Then the steady-state error to a disturbance input, which is a polynomial of degree k, is

From Eq. (4.40), if n > k, then the error is zero and if n < k, the error is unbounded. If n = k, the system is type k
and the error is given by 1/Kn,w.

Figure 4.7 DC motor with unity feedback

EXAMPLE 4.4 System Type for a DC Motor Position Control
Consider the simplified model of a DC motor in unity feedback as shown in Fig. 4.7, where the disturbance torque is
labeled W(s). This case was considered in Example 2.11.

(a) Use the controller

and determine the system type and steady-state error properties with respect to disturbance inputs.
(b) Let the controller transfer function be given by

and determine the system type and the steady-state error properties for disturbance inputs.
Solution. (a) The closed-loop transfer function from W to E (where R = 0) is



Applying Eq. (4.40) we see that the system is Type 0 and the steady-state error to a unit step torque input is ess =
-B/Akp. From the earlier section, this system is seen to be Type 1 for reference inputs and illustrates that system type
can be different for different inputs to the same system.

(b) For this controller the disturbance error transfer function is

and therefore the system is Type 1 and the error to a unit ramp disturbance input will be

Truxal’s Formula for the Error Constants
Truxal (1955) derived a formula for the velocity constant of a Type 1 system in terms of the closed-loop poles and
zeros, a formula that connects the steady-state error to the system’s dynamic response. Since control design often
requires a trade-off between these two characteristics, Truxal’s formula can be useful to know. Its derivation is quite
direct. Suppose the closed-loop transfer function T (s) of a Type 1 system is

Since the steady-state error in response to a step input in a Type 1 system is zero, the DC gain is unity; thus

The system error is given by

The system error due to a unit ramp input is given by



Using the Final Value Theorem, we get

Using L’Hôpital’s rule we rewrite Eq. (4.51) as

or

Equation (4.53) implies that 1/Kv is related to the slope of the transfer function at the origin, a result that will also be
shown in Section 6.1.2. Using Eq. (4.48), we can rewrite Eq. (4.53) as

or

Substituting Eq. (4.47) into Eq. (4.55), we get

or

EXAMPLE 4.5 Truxal’s formula
We observe from Eq. (4.58) that Kv increases as the closed-loop poles move away from the origin. Similar

relationships exist for other error coefficients, and these are explored in the problems.



Truxal’s Formula
A third-order Type 1 system has closed-loop poles at – 2 ± 2j and –0.1. The system has only one closed-loop zero.
Where should the zero be if a Kv = 10 is desired?
Solution. From Truxal’s formula we have,

or

Therefore, the closed-loop zero should be at z = 1/-10.4 = –0.0962.

4.3 The Three-Term Controller: PID Control
In later chapters we will study three general analytic and graphical design techniques based on the root locus, the
frequency response, and the state space formulation of the equations. Here we describe a control method having an
older pedigree that was developed through long experience and by trial and error. Starting with simple proportional
feedback, engineers early discovered integral control action as a means of eliminating bias offset. Then, finding poor
dynamic response in many cases, an “anticipatory” term based on the derivative was added. The result is called the
three-term or PID controller and has the transfer function3

where kp is the proportional term, kI is the integral term, and kD is the derivative term. We’ll discuss them in turn.

4.3.1 Proportional Control (P)
When the feedback control signal is linearly proportional to the system error, we call the result proportional
feedback. This was the case for the feedback used in the controller of speed in Section 4.1 for which the controller
transfer function is

If the plant is second order, as, for example, for a motor with nonnegligible inductance, then the plant transfer
function can be written as



In this case, the characteristic equation with proportional control is

The designer can control the constant term in this equation, which determines the natural frequency, but cannot
control the damping of the equation. The system is Type 0 and if kp is made large to get adequately small steady-
state error, the damping may be much too low for satisfactory transient response with proportional control alone.

4.3.2 Proportional Plus Integral Control (PI)
Adding an integral term to the controller to get the automatic reset effect results in the proportional plus integral
control equation in the time domain:

Proportional plus integral control

for which the Dcl(s) in Fig. 4.2 becomes

Introduction of the integral term raises the type to Type 1 and the system can therefore reject completely constant
bias disturbances. For example, consider PI control in a speed control example, where the plant is described by

The transform equation for the controller is

and the system transform equation with this controller is

and, if we multiply by s and collect terms,

Because the PI controller includes dynamics, use of this controller will change the dynamic response. This we can
understand by considering the characteristic equation given by



The two roots of this equation may be complex and, if so, the natural frequency is  and the damping

ratio is . These parameters may both be determined by the controller gains. On the other hand, if the
plant is second order, described by

then the characteristic equation of the system is

In this case, the controller parameters can be used to set two of the coefficients but not the third. For this we need
derivative control.

4.3.3 PID Control
The final term in the classical controller is derivative control, D. An important effect of this term is that it gives a
sharp response to suddenly changing signals. Because of this, the “D” term is sometimes introduced into the feedback
path as shown in Fig. 4.8(a). This could be either a part of the standard controller or could describe a velocity sensor
such as a tachometer on the shaft of a motor. The closed-loop characteristic equation is the same as if the term were
in the forward path as given by Eq. (4.59) and drawn in Fig. 4.8(b). It is important to notice that the zeros from the
reference to the output are different in the two cases. With the derivative in the feedback path, the reference is not
differentiated, which is how the undesirable response to sudden changes is avoided.



Figure 4.8 Block diagram of the PID controller: (a) with the D-term in the feedback path; and (b) with the D-term in
the forward path

To illustrate the effect of a derivative term on PID control, consider speed control but with the second-order plant.
In that case, the characteristic equation is

Collecting terms results in

The point here is that this equation, whose three roots determine the nature of the dynamic response of the system,
has three free parameters in kp, kI, and kD and that by selection of these parameters, the roots can be uniquely and,
in theory, arbitrarily determined. Without the derivative term, there would be only two free parameters, but with
three roots, the choice of roots of the characteristic equation would be restricted. To illustrate the effect more
concretely, a numerical example is useful.

EXAMPLE 4.6 PID Control of Motor Speed
Consider the DC motor speed control with parameters4

These parameters were defined in Example 2.11 in Chapter 2. Use the controller parameters

Discuss the effects of P, PI, and PID control on the responses of this system to steps in the disturbance torque and
steps in the reference input. Let the unused controller parameters be zero.
Solution. Figure 4.9(a) illustrates the effects of P, PI, and PID feedback on the step disturbance response of the
system. Note that adding the integral term increases the oscillatory behavior but eliminates the steady-state error and
that adding the derivative term reduces the oscillation while maintaining zero steady-state error. Figure 4.9(b)
illustrates the effects of P, PI, and PID feedback on the step reference response with similar results. The step
responses can be computed by forming the numerator and denominator coefficient vectors (in descending powers of
s) and using the step function in MATLAB.®



Figure 4.9 Responses of P, PI, and PID control to (a) step disturbance input (b) step reference input

EXAMPLE 4.7 PI Control for a DC Motor Position Control
Consider the simplified model of a DC motor in unity feedback as shown in Fig. 4.7 where the disturbance torque is
labeled W(s). Let the sensor be –h rather than –1.

(a) Use the proportional controller

and determine the system type and steady-state error properties with respect to disturbance inputs.
(b) Let the control be PI as given by

and determine the system type and the steady-state error properties for disturbance inputs.
Solution. (a) The closed-loop transfer function from W to E (where R = 0) is

Applying Eq. (4.40) we see that the system is Type 0 and the steady-state error to a unit step torque input is ess = -
B/Akph. From the earlier section, this system is seen to be Type 1 for reference inputs and illustrates that system type
can be different for different inputs to the same system. However, in this case the system is Type 0 for reference
inputs.

(b) If the controller is PI, the disturbance error transfer function is



and therefore the system is Type 1 and the error to a unit ramp disturbance input in this case will be

EXAMPLE 4.8 Satellite Attitude Control
Consider the model of a satellite attitude control system shown in Fig. 4.10 (a) where

J = moment of inertia,
W = disturbance torque,

K = sensor and reference gain,
D(s) = the compensator.

With equal input filter and sensor scale factors, the system with PD control can be redrawn with unity feedback as in
Fig. 4.10(b) and with PID control drawn as in Fig. 4.10(c). Assume that the control results in a stable system and
determine the system types and error responses to disturbances of the control system for

(a) System Fig. 4.10(b) Proportional plus derivative control where D(s) = kP + kDs
(b) System Fig. 4.10(c) Proportional plus integral plus derivative control where D = kp + kI/s + kDs.5

Solution. (a) We see from inspection of Fig. 4.10(b) that with two poles at the origin in the plant, the system is Type
2 with respect to reference inputs. The transfer function from disturbance to error is

for which n = 0 and Ko,w = kp. The system is Type 0 and the error to a unit disturbance step is 1/kp.



Figure 4.10 Model of a satellite attitude control: (a) basic system; (b) PD control; (c) PID control

(b) With PID control, the forward gain has three poles at the origin, so this system is Type 3 for reference inputs
but the disturbance transfer function is

from which the system is Type 1 and the error constant is kI ; so the error to a disturbance ramp of unit slope will be
1/kI.

4.3.4 Ziegler–Nichols Tuning of the PID Controller
When the PID controller was being developed, selecting values for the several terms (known as “tuning” the
controller) was often a hit and miss affair. To bring order to the situation and make life easier for plant operators,
control engineers looked for ways to make the tuning more systematic. Callender et al. (1936) proposed a design for
PID controllers by specifying satisfactory values for the terms based on estimates of the plant parameters that an



operating engineer could make from experiments on the process itself. This approach was extended by J. G. Ziegler
and N. B. Nichols (1942, 1943) who recognized that the step responses of a large number of process control systems
exhibit a process reaction curve like that shown in Fig. 4.11, which can be generated from experimental step
response data. The S-shape of the curve is characteristic of many systems and can be approximated by the step
response of a plant with transfer function

Figure 4.11 Process reaction curve

Transfer function for a high-order system with a characteristic process reaction curve

which is a first-order system with a time delay or “transportation lag” of td sec. The constants in Eq. (4.89) can be
determined from the unit step response of the process. If a tangent is drawn at the inflection point of the reaction
curve, then the slope of the line is R = A/τ, the intersection of the tangent line with the time axis identifies the time
delay L = td and the final value gives the value of A.6

Tuning by decay ratio of 0.25
Ziegler and Nichols gave two methods for tuning the PID controller for such a model. In the first method the choice

of controller parameters is designed to result in a closed-loop step response transient with a decay ratio of
approximately 0.25. This means that the transient decays to a quarter of its value after one period of oscillation, as
shown in Fig. 4.12. A quarter decay corresponds to ζ = 0.21 and, while low for many applications, was seen as a
reasonable compromise between quick response and adequate stability margins for the process controls being
considered. The authors simulated the equations for the system on an analog computer and adjusted the controller
parameters until the transients showed the decay of 25% in one period. The regulator parameters suggested by
Ziegler and Nichols for the controller terms defined by

are given in Table 4.2.



Figure 4.12 Quarter decay ratio

TABLE 4.2 Ziegler–Nichols Tuning for the Regulator D(s) = K(1 + 1/TIs + TDs), for a Decay Ratio of 0.25

Figure 4.13 Determination of ultimate gain and period

Tuning by evaluation at limit of stability (ultimate sensitivity method)
In the ultimate sensitivity method the criteria for adjusting the parameters are based on evaluating the amplitude

and frequency of the oscillations of the system at the limit of stability rather than on taking a step response. To use
the method, the proportional gain is increased until the system becomes marginally stable and continuous
oscillations just begin with amplitude limited by the saturation of the actuator. The corresponding gain is defined as
Ku (called the ultimate gain) and the periodofoscillation is Pu (called the ultimate period). These are determined as
shown in Figs. 4.13 and 4.14. Pu should be measured when the amplitude of oscillation is as small as possible. Then
the tuning parameters are selected as shown in Table 4.3.

Experience has shown that the controller settings according to Ziegler–Nichols rules provide acceptable closed-loop
response for many systems. The process operator will often do final tuning of the controller iteratively on the actual
process to yield satisfactory control.



Figure 4.14 Neutrally stable system

TABLE 4.3 Ziegler-Nichols Tuning for the Regulator Dc(s) = kp(1 + 1/TIs + TDs), Based on the Ultimate Sensitivity
Method

Figure 4.15 A measured process reaction curve

EXAMPLE 4.9 Tuning of a Heat Exchanger: Quarter Decay Ratio
Consider the heat exchanger discussed in Chapter 2. The process reaction curve of this system is shown in Fig. 4.15.
Determine proportional and PI regulator gains for the system using the Zeigler—Nichols rules to achieve a quarter
decay ratio. Plot the corresponding step responses.



Figure 4.16 Closed-loop step responses

Solution. From the process reaction curve we measure the maximum slope to be  and the time delay to be L
≅ 13 sec. According to the Zeigler—Nichols rules of Table 4.2 the gains are

Figure 4.16(a) shows the step responses of the closed-loop system to these two regulators. Note that the proportional
regulator results in a steady-state offset, while the PI regulator tracks the step exactly in the steady state. Both
regulators are rather oscillatory and have considerable overshoot. If we arbitrarily reduce the gain kp by a factor of 2
in each case, the overshoot and oscillatory behaviors are substantially reduced, as shown in Fig. 4.16(b).

EXAMPLE 4.10 Tuning of a Heat Exchanger: Oscillatory Behavior
Proportional feedback was applied to the heat exchanger in the previous example until the system showed
nondecaying oscillations in response to a short pulse (impulse) input, as shown in Fig. 4.17. The ultimate gain is
measured to be Ku = 15.3, and the period was measured at Pu = 42 sec. Determine the proportional and PI
regulators according to the Zeigler—Nichols rules based on the ultimate sensitivity method. Plot the corresponding
step responses.



Figure 4.17 Ultimate period of heat exchanger

Figure 4.18 Closed-loop step response

Solution. The regulators from Table 4.3 are

The step responses of the closed-loop system are shown in Fig. 4.18(a). Note that the responses are similar to those
in Example 4.9. If we reduce kp by 50%, then the overshoot is substantially reduced, as shown in Fig. 4.18(b).

4.4 Introduction to Digital Control
As a result of the revolution in the cost-effectiveness of digital computers, there has been an increasing use of digital
logic in embedded applications such as controllers in feedback systems. A digital controller gives the designer much
more flexibility to make modifications to the control law after the hardware design is fixed because the formula for
calculating the control signal is in the software rather than the hardware. In many instances, this means that the
hardware and software designs can proceed almost independently, saving a great deal of time. Also, it is relatively



easy to include binary logic and nonlinear operations as part of the function of a digital controller as compared to an
analog controller. Special processors designed for real-time signal processing and known as digital signal processors
(DSPs) are particularly well suited for use as real-time controllers. Chapter 8 includes a more extensive introduction
to the math and concepts associated with the analysis and design of digital controllers and digital control systems.
However, in order to be able to compare the analog designs of the next three chapters with reasonable digital
equivalents, we give here a brief introduction to the most simple techniques for digital designs.

A digital controller differs from an analog controller in that the signals must be sampled and quantized.7 A signal
to be used in digital logic needs to be sampled first and then the samples need to be converted by an analog-to-
digital converter or A/D8 into a quantized digital number. Once the digital computer has calculated the proper next
control signal value, this value needs to be converted back into a voltage and held constant or otherwise extrapolated
by a digital-to-analog converter or D/A9 in order to be applied to the actuator of the process. The control signal is
not changed until the next sampling period. As a result of sampling, there are strict limits on the speed and
bandwidth of a digital controller. Discrete design methods that tend to minimize these limitations are described in
Chapter 8, which tend to minimize these limitations. A reasonable rule of thumb for selecting the sampling period is
that during the rise-time of the response to a step, the input to the discrete controller should be sampled
approximately six times. By adjusting the controller for the effects of sampling, the sample period can be as large as
two to three times per rise time. This corresponds to a sampling frequency that is 10 to 20 times the system’s closed-
loop bandwidth. The quantization of the controller signals introduces an equivalent extra noise into the system and
to keep this interference at an acceptable level, the A/D converter usually has an accuracy of 10 to 12 bits although
inexpensive systems have been designed with only 8 bits. For a first analysis, the effects of the quantization are
usually ignored, as they will be in this introduction. A simplified block diagram of a system with a digital controller
is shown in Fig. 4.19.

For this introduction to digital control, we will describe a simplified technique for finding a discrete (sampled but
not quantized) equivalent to a given continuous controller. The method depends on the sampling period, Ts, being
short enough that the reconstructed control signal is close to the signal that the original analog controller would have
produced. We also assume that the numbers used in the digital logic have enough accurate bits so that the
quantization implied in the A/D and D/A processes can be ignored. While there are good analysis tools to determine
how well these requirements are met, here we will test our results by simulation, following the well-known advice
that “The proof of the pudding is in the eating.”

Figure 4.19 Block diagram of a digital controller

Finding a discrete equivalent to a given analog controller is equivalent to finding a recurrence equation for the
samples of the control, which will approximate the differential equation of the controller. The assumption is that we
have the transfer function of an analog controller and wish to replace it with a discrete controller that will accept



samples of the controller input, e(kTs), from a sampler and, using past values of the control signal, u(kTs) and
present and past samples of the input, e(kTs) will compute the next control signal to be sent to the actuator. As an
example, consider a PID controller with the transfer function

which is equivalent to the three terms of the time-domain expression

Based on these terms and the fact that the system is linear, the next control sample can be computed term-by-term.
The proportional term is immediate:

The integral term can be computed by breaking the integral into two parts and approximating the second part,
which is the integral over one sample period, as follows.

In Eq. (4.98) the area in question has been approximated by that of the trapezoid formed by the base Ts and vertices
e(kTs + Ts) and e(kTs) as shown by the dashed line in Fig. 4.20.

Figure 4.20 Graphical interpretation of numerical integration

The area can also be approximated by the rectangle of amplitude e(kTs) and width Ts shown by the solid blue in
Fig. 4.20 to give uI(kTs + Ts) = uI(kTs) + kI Tse(kTs). These and other possibilities are considered in Chapter 8.



In the derivative term, the roles of u and e are reversed from integration and the consistent approximation
canbewrittendownatonce from Eq. (4.98) and Eq. (4.92) as

As with linear analog transfer functions, these relations are greatly simplified and generalized by the use of transform
ideas. At this time, the discrete transform will be introduced simply as a prediction operator z much as if we
described the Laplace transform variable, s, as a differential operator. Here we define the operator z as the forward
shift operator in the sense that if U(z) is the transform of u(kTs) then zU(z) will be the transform of u(kTs + Ts).
With this definition, the integral term can be written as

and from Eq. (4.99), the derivative term becomes the inverse as

The complete discrete PID controller is thus described by

Trapezoid rule
Comparing the two discrete equivalents of integration and differentiation with the corresponding analog terms, it is
seen that the effect of the discrete approximation in the z domain is as if everywhere in the analog transfer function,

the operator s has been replaced by the composite operator . This is the trapezoid rule10 of discrete
equivalents:

The discrete equivalent to Da(s) is

EXAMPLE 4.11 Discrete Equivalent
Find the discrete equivalent to the analog controller having transfer function



using the sample period Ts = 1.

Solution. The discrete operator is  and thus the discrete transfer function is

Clearing fractions, the discrete transfer function is

Converting the discrete transfer function to a discrete difference equation using the definition of z as the forward shift
operator is done as follows. First we cross-multiply in Eq. (4.108) to obtain

and, interpreting z as a shift operator, this is equivalent to the difference equation11

where we have replaced kTs + Ts, with k + 1 to simplify the notation. To compute the next control at time kTs +
Ts, therefore, we solve the difference equation

Now let’s apply these results to a control problem. Fortunately MATLAB® provides us with the SIMULINK®
capability to simulate both continuous and discrete systems allowing us to compare the responses of the systems with
continuous and discrete controllers.

EXAMPLE 4.12 Equivalent Discrete Controller for Speed Control
A motor speed control is found to have the plant transfer function

A PI controller designed for this system has the transfer function



The closed-loop system has a rise time of about 0.2 sec and an overshoot of about 20%. Design a discrete equivalent
to this controller and compare the step responses and control signals of the two systems. (a) Compare the responses
if the sample period is 0.07, which is about three samples per rise time. (b) Compare the responses with a sample
period of Ts = 0.035, which corresponds to about six samples per rise time.
Solution. (a) Using the substitution given by Eq. (4.104), the discrete equivalent for Ts = 0.07 is given by replacing s

by  in D(s) as follows:

Based on this expression, the equation for the control is (the sample period is suppressed)

(b) For Ts = 0.035, the discrete transfer function is

for which the difference equation is

A SIMULINK block diagram for simulating the two systems is given in Fig. 4.21 and plots of the step responses are
given in Fig. 4.22(a). The respective control signals are plotted in Fig. 4.22(b). Notice that the discrete controller for
Ts = 0.07 results in a substantial increase in the overshoot in the step response while with Ts = 0.035 the digital
controller matches the performance of the analog controller fairly well.

For controllers with many poles and zeros, making the continuous-to-discrete substitution called for in Eq. (4.104)
can be very tedious. Fortunately, MATLAB provides a command that does all the work. If one has a continuous
transfer function given by  represented in MATLAB as sysDa = tf(numD,denD), then the discrete
equivalent with sampling period Ts is given by

In this expression, of course, the polynomials are represented in MATLAB form. The last parameter in the c2d
function given by ‘t’ calls for the conversion to be done



Figure 4.21 SIMULINK® block diagram to compare continuous and discrete controllers.

Figure 4.22

Comparison plots of a speed control system with continuous and discrete controllers: (a) output responses. (b)
control signals
using the trapezoid method. The alternatives can be found by asking MATLAB for help c2d. For example, to
compute the polynomials for Ts = 0.07 for the example above, the commands would be

numDa = [1 6];
denDa = [1 – 0];
sysDa = tf(numD,denD)
sysDd = c2d(sysDa,0.07,’t’)

4.5 Historical Perspective
The field of control is characterized by two paths: theory and practice. Control theory is basically the application of
mathematics to solve control problems while control practice, as used here, is the practical application of feedback
in devices where it is found to be useful. Historically, practical applications have come first with control being
introduced by trial and error. Although the applicable mathematics is often known, the theory describing how the
control works and pointing the way to improvements has typically been applied later. For example, James Watt’s
company began manufacturing steam engines using the fly-ball governor in 1788 but it was not until 1840 that G. B.
Airy described instability in a similar device and not until 1868 than J. C. Maxwell published “On Governors” with a
theoretical description of the problem. Then it was not until 1877, almost 100 years after the steam engine control
was introduced, that E. J. Routh published a solution giving the requirements for stability. This situation has been



called the “Gap between Theory and Practice” and continues to this day as a source of creative tension that stimulates
both theory and practice.

Regulation is central to the process industries, from making beer to making gasoline. In these industries there are a
host of variables that need to be kept constant. Typical examples are temperature, pressure, volume, flow rates,
composition, and chemical properties such as pH level. However, before one can regulate by feedback, one must be
able to measure the variable of interest and before there was control there were sensors. In 1851, George Taylor and
David Kendall founded the company that later became the Taylor Instrument Company in Rochester, NY, to make
thermometers and barometers for weather forecasting. In 1855 they were making thermometers for several
industries, including the brewing industry where they were used for manual control. Other early entries into the
instrument field were the Bristol Company, founded in Naugatuck, CT, in 1889 by William Bristol, and the Foxboro
Company, founded in Foxboro, MA, in 1908 by William’s father and two of his brothers. For example, one of
Bristol’s instruments was used by Henry Ford to measure (and presumably control) steam pressure while he worked
at the Detroit Edison Company. The Bristol Company pioneered in telemetry that permitted instruments to be placed
at a distance from the process so a plant manager could monitor several variables at once. As the instruments became
more sophisticated, and devices such as motor-driven valves became available, they were used in feedback control
often using simple on–off methods as described in Chapter 1 for the home furnace. An important fact was that the
several instrument companies agreed upon standards for the variables used so a plant could mix and match
instruments and controllers from different suppliers. In 1920 Foxboro introduced a controller based on compressed
air that included reset or integral action. Eventually, each of these companies introduced instruments and controllers
that could implement full PID action. A major step was taken for tuning PID controllers in 1942 when Ziegler and
Nichols, working for Taylor Instruments, published their method for tuning based on experimental data.

The poster child for the tracking problem was that of the anti-aircraft gun, whether on land or at sea. The idea was
to use radar to track the target and to have a controller that would predict the path of the aircraft and aim the gun to
a position such that the projectile would hit the target when it got there. The Radiation Laboratory was set up at MIT
during World War II to develop such radars, one of which was the SCR-584. Interestingly, one of the major
contributors to the control methods developed for this project was none other than Nick Nichols who had earlier
worked on tuning PID controllers. When the record of the Rad Lab was written, Nichols was selected to be one of the
editors of volume 25 on control.

H. S. Black joined Bell Laboratories in 1921 and was assigned to find a design for an electronic amplifier suitable
for use as a repeater on the long lines of the telephone company. The basic problem was that the gain of the vacuum
tube components he had available drifted over time and he needed a design that, over the audio frequency range,
maintained a specific gain with great precision in the face of these drifts. Over the next few years he tried many
approaches, including a feed-forward technique designed to cancel the tube distortion. While this worked in the
laboratory, it was much too sensitive to be practical in the field. Finally, in August of 1927,12 while on the ferry boat
from Staten Island to Manhattan, he realized that negative feedback might work and he wrote the equations on the
only paper available, a page of the New York Times. He applied for a patent in 1928 but it was not issued until
December 1937.13 The theory of sensitivity and many other theories of feedback were worked out by H. W. Bode.

SUMMARY
• The most important measure of the performance of a control system is the system error to all inputs.
• Compared to open-loop control, feedback can be used to stabilize an otherwise unstable system, to reduce errors to



plant disturbances, to improve the tracking of reference inputs and to reduce the system’s transfer function
sensitivity to parameter variations.

• Sensor noise introduces a conflict between efforts to reduce the error caused by plant disturbances and efforts to
reduce the errors caused by the sensor noise.

• Classifying a system as Type k indicates the ability of the system to achieve zero steady-state error to polynomials
of degree less than but not equal to k. A stable unity feedback system is Type k with respect to reference inputs if
the loop gain G(s)D(s) has k poles at the origin in which case we can write

and the error constant is given by

• A table of steady-state errors for unity feedback systems of Types 0, 1, and 2 to reference inputs is given in Table
4.1.

• Systems can be classified as to type for rejecting disturbances by computing the system error to polynomial
disturbance inputs. The system is Type k to disturbances if the error is zero to all disturbance polynomials of
degree less than k but nonzero for a polynomial of degree k.

• Increasing the proportional feedback gain reduces steady-state errors but high gain almost always destabilizes the
system. Integral control provides robust reduction in steady-state errors, but also may make the system less stable.
Derivative control increases damping and improves stability. These three kinds of control combined form the
classical PID controller.

• The standard PID controller is described by the equations

This latter form is ubiquitous in the process-control industry and describes the basic controller in many control
systems.
• Useful guidelines for tuning PID controllers were presented in Tables 4.2 and 4.3.
• A difference equation describing a digital controller to be used to replace a given analog controller can be found

by replacing s with  in the transfer function and using z as a forward shift operator. Thus, if U(z)
corresponds to u(kTs) then zU(z) corresponds to u(kTs + Ts).

• MATLAB can compute a discrete equivalent with the command c2d.

REVIEW QUESTIONS
1. Give three advantages of feedback in control.



2. Give two disadvantages of feedback in control.
3. A temperature control system is found to have zero error to a constant tracking input and an error of 0.5°C to a

tracking input that is linear in time, rising at the rate of 40°C/sec. What is the system type of this control system
and what is the relevant error constant (Kp or Kv or etc.)?

4. What are the units of Kp, Kv, and Ka?
5. What is the definition of system type with respect to reference inputs?
6. What is the definition of system type with respect to disturbance inputs?
7. Why does system type depend on where the external signal enters the system?
8. What is the main objective of introducing integral control?
9. What is the major objective of adding derivative control?
10. Why might a designer wish to put the derivative term in the feedback rather than in the error path?
11. What is the advantage of having a “tuning rule” for PID controllers?
12. Give two reasons to use a digital controller rather than an analog controller.
13. Give two disadvantages to using a digital controller.
14. Give the substitution in the discrete operator z for the Laplace operator s if the approximation to the integral in

Eq. (4.98) is taken to be the rectangle of height e(kTs) and base Ts.

PROBLEMS

Problems for Section 4.1: The Basic Equations of Control
4.1 If S is the sensitivity of the unity feedback system to changes in the plant transfer function and T is the transfer

function from reference to output, show that S + T = 1.
4.2 We define the sensitivity of a transfer function G to one of its parameters k as the ratio of percent change in G to
percent change in k.

The purpose of this problem is to examine the effect of feedback on sensitivity. In particular, we would like to
compare the topologies shown in Fig. 4.23 for connecting three amplifier stages with a gain of – K into a single
amplifier with a gain of –10.

(a) For each topology in Fig. 4.23, compute βi so that if K= 10, Y= –10R.

(b) For each topology, compute  when G= Y/R. [Use the respective βi values found in part (a).] Which case is
the least sensitive?

(c) Compute the sensitivities of the systems in Fig. 4.23(b,c) to β2 and β3. Using your results, comment on the
relative need for precision in sensors and actuators.

Figure 4.23 Three-amplifier topologies for Problem 4.2



4.3 Compare the two structures shown in Fig. 4.24 with respect to sensitivity to changes in the overall gain due to
changes in the amplifier gain. Use the relation

as the measure. Select H1 and H2 so that the nominal system outputs satisfy F1 = F2, and assume KH1 > 0.

Figure 4.24 Block diagrams for Problem 4.3

4.4 A unity feedback control system has the open-loop transfer function

(a) Compute the sensitivity of the closed-loop transfer function to changes in the parameter A.
(b) Compute the sensitivity of the closed-loop transfer function to changes in the parameter a.
(c) If the unity gain in the feedback changes to a value of β ≠ 1, compute the sensitivity of the closed-loop

transfer function with respect to β.
4.5 Compute the equation for the system error for the filtered feedback system shown in Fig. 4.4.
4.6 If S is the sensitivity of the filtered feedback system to changes in the plant transfer function and T is the transfer

function from reference to output, compute the sum of S + T. Show that S + T = 1 if F = H.
(a) Compute the sensitivity of the filtered feedback system shown in Fig. 4.4 with respect to changes in the plant



transfer function, G.
(b) Compute the sensitivity of the filtered feedback system shown in Fig. 4.4 with respect to changes in the

controller transfer function, Dcl .
(c) Compute the sensitivity of the filtered feedback system shown in Fig. 4.4 with respect to changes in the filter

transfer function, F.
(d) Compute the sensitivity of the filtered feedback system shown in Fig. 4.4 with respect to changes in the sensor

transfer function, H.

Problems for Section 4.2: Control of Steady-State Error
4.7 Consider the DC-motor control system with rate (tachometer) feedback shown in Fig. 4.25(a).

(a) Find values for K′ and  so that the system of Fig. 4.25(b) has the same transfer function as the system of Fig.
4.25(a).

(b) Determine the system type with respect to tracking θr and compute the system Kv in terms of parameters K′
and .

(c) Does the addition of tachometer feedback with positive kt increase or decrease Kv?
4.8 Consider the system shown in Fig. 4.26, where

Figure 4.25 Control system for Problem 4.7

Figure 4.26 Control system for Problem 4.8

(a) Prove that if the system is stable, it is capable of tracking a sinusoidal reference input r = sin ωot with zero
steady-state error. (Look at the transfer function from R to E and consider the gain at ωo.)

(b) Use Routh’s criterion to find the range of K such that the closed-loop system remains stable if ωo = 1 and α =
0.25.

4.9 Consider the system shown in Fig. 4.27, which represents control of the angle of a pendulum that has no
damping.
(a) What condition must D (s) satisfy so that the system can track a ramp reference input with constant steady-state



error?
(b) For a transfer function D(s) that stabilizes the system and satisfies the condition in part (a), find the class of

disturbances w(t) that the system can reject with zero steady-state error.

Figure 4.27 Control system for Problem 4.9

4.10 A unity feedback system has the overall transfer function

Give the system type and corresponding error constant for tracking polynomial reference inputs in terms of ζ and ωn.

4.11 Consider the second-order system

We would like to add a transfer function of the form  in series with G(s) in a unity feedback
structure.

(a) Ignoring stability for the moment, what are the constraints on K, a, and b so that the system is Type 1?
(b) What are the constraints placed on K, a, and b so that the system is both stable and Type 1?
(c) What are the constraints on a and b so that the system is both Type 1 and remains stable for every positive

value for K?
4.12 Consider the system shown in Fig. 4.28(a).

(a) What is the system type? Compute the steady-state tracking error due to a ramp input r(t) = rot1 (t).
(b) For the modified system with a feed-forward path shown in Fig. 4.28(b), give the value of Hf so the system is

Type 2 for reference inputs and compute the Ka in this case.
(c) Is the resulting Type 2 property of this system robust with respect to changes in Hf? i.e., will the system

remain Type 2 if Hf changes slightly?

Figure 4.28 Control system for Problem 4.12



4.13 A controller for a satellite attitude control with transfer function G = 1/s2 has been designed with a unity
feedback structure and has the transfer function 
(a) Find the system type for reference tracking and the corresponding error constant for this system.
(b) If a disturbance torque adds to the control so that the input to the process is u + w, what is the system type

and corresponding error constant with respect to disturbance rejection?
4.14 A compensated motor position control system is shown in Fig. 4.29. Assume that the sensor dynamics are H(s)=

1.

Figure 4.29 Control system for Problem 4.14

(a) Can the system track a step reference input r with zero steady-state error? If yes, give the value of the velocity
constant.

(b) Can the system reject a step disturbance w with zero steady-state error? If yes, give the value of the velocity
constant.

(c) Compute the sensitivity of the closed-loop transfer function to changes in the plant pole at –2.

(d) In some instances there are dynamics in the sensor. Repeat parts (a) to (c) for  and compare the
corresponding velocity constants.

4.15 The general unity feedback system shown in Fig. 4.30 has disturbance inputs w1, w2, and w3 and is
asymptotically stable. Also,



(a) Show that the system is of Type 0, Type l1, and Type (l1 + l2) with respect to disturbance inputs w1, w2, and
w3 respectively.

Figure 4.30 Single input–single output unity feedback system with disturbance inputs

4.16 One possible representation of an automobile speed-control system with integral control is shown in Fig. 4.31.

Figure 4.31 System using integral control

(a) With a zero reference velocity input (vc = 0), find the transfer function relating the output speed v to the wind
disturbance w.

(b) What is the steady-state response of v if w is a unit ramp function?
(c) What type is this system in relation to reference inputs? What is the value of the corresponding error constant?
(d) What is the type and corresponding error constant of this system in relation to tracking the disturbance w?

4.17 For the feedback system shown in Fig. 4.32, find the value of α that will make the system Type 1 for K = 5.
Give the corresponding velocity constant. Show that the system is not robust by using this value of α and
computing the tracking error e = r – y to a step reference for K = 4 and K = 6.

Figure 4.32 Control system for Problem 4.17

4.18 Suppose you are given the system depicted in Fig. 4.33(a), where the plant parameter a is subject to variations.



Figure 4.33 Control system for Problem 4.18

(a) Find G(s) so that the system shown in Fig. 4.33(b) has the same transfer function from r to y as the system in
Fig. 4.33(a).

(b) Assume that a = 1 is the nominal value of the plant parameter. What is the system type and the error constant
in this case?

(c) Now assume that a = 1 + δa, where δa is some perturbation to the plant parameter. What is the system type
and the error constant for the perturbed system?

4.19 Two feedback systems are shown in Fig. 4.34.
(a) Determine values for K1, K2, and K3 so that

(i) both systems exhibit zero steady-state error to step inputs (that is, both are Type 1), and
(ii) their static velocity error constant Kv = 1 when K0 = 1.

Figure 4.34 Two feedback systems for Problem 4.19

(b) Suppose K0 undergoes a small perturbation: K0 → K0 + δK0. What effect does this have on the system type in
each case? Which system has a type which is robust? Which system do you think would be preferred?

4.20 You are given the system shown in Fig. 4.35, where the feedback gain β is subject to variations. You are to
design a controller for this system so that the output y(t) accurately tracks the reference input r(t).

Figure 4.35 Control system for Problem 4.20

(a) Let β = 1. You are given the following three options for the controller Di(s):



Choose the controller (including particular values for the controller constants) that will result in a Type 1 system
with a steady-state error to a unit reference ramp of less than .

(b) Next, suppose that there is some attenuation in the feedback path that is modeled by β = 0.9. Find the steady-
state error due to a ramp input for your choice of Di(s) in part (a).

(c) If β = 0.9, what is the system type for part (b)? What are the values of the appropriate error constant?
4.21 Consider the system shown in Fig. 4.36.

(a) Find the transfer function from the reference input to the tracking error.
(b) For this system to respond to inputs of the form r(t) = tn1(t) (where n < q) with zero steady-state error, what

constraint is placed on the open-loop poles p1, p2, . . . , pq?

Figure 4.36 Control system for Problem 4.21

4.22 A linear ODE model of the DC motor with negligible armature inductance (La = 0) and with a disturbance
torque w was given earlier in the chapter; it is restated here, in slightly different form, as

where θm is measured in radians. Dividing through by the coefficient of m, we obtain

where

With rotating potentiometers, it is possible to measure the positioning error between θ and the reference angle θr or
e = θref – θm. With a tachometer we can measure the motor speed m. Consider using feedback of the error e and the
motor speed m. in the form

where K and TD are controller gains to be determined.
(a) Draw a block diagram of the resulting feedback system showing both θm and m as variables in the diagram

representing the motor.



(b) Suppose the numbers work out so that a1 = 65, b0 = 200, and c0 = 10. If there is no load torque (w = 0),
what speed (in rpm) results from va = 100 V?

(c) Using the parameter values given in part (b), let the control be D = kp + kDs and find kp and kD so that, using
the results of Chapter 3, a step change in θref with zero load torque results in a transient that has an
approximately 17% overshoot and that settles to within 5% of steady-state in less than 0.05 sec.

(d) Derive an expression for the steady-state error to a reference angle input, and compute its value for your
design in part (c) assuming θref = 1 rad.

(e) Derive an expression for the steady-state error to a constant disturbance torque when θref = 0 and compute its
value for your design in part (c) assuming w = 1.0.

4.23 We wish to design an automatic speed control for an automobile. Assume that (1) the car has a mass m of 1000
kg, (2) the accelerator is the control U and supplies a force on the automobile of 10 N per degree of accelerator
motion, and (3) air drag provides a friction force proportional to velocity of 10 N · sec/m.
(a) Obtain the transfer function from control input U to the velocity of the automobile.
(b) Assume the velocity changes are given by

where V is given in meters per second, U is in degrees, and W is the percent grade of the road. Design a
proportional control law U = –kpV that will maintain a velocity error of less than 1 m/sec in the presence of a
constant 2% grade.

(c) Discuss what advantage (if any) integral control would have for this problem.
(d) Assuming that pure integral control (that is, no proportional term) is advantageous, select the feedback gain so

that the roots have critical damping (ζ = 1).
4.24 Consider the automobile speed control system depicted in Fig. 4.37.

Figure 4.37 Automobile speed-control system

(a) Find the transfer functions from W(s) and from R(s) to Y(s).
(b) Assume that the desired speed is a constant reference r, so that R(s) = ro/s. Assume that the road is level, so

w(t) = 0. Compute values of the gains K, Hr, and Hf to guarantee that



Include both the open-loop (assuming Hy = 0) and feedback cases (Hy ≠ 0) in your discussion.
(c) Repeat part (b) assuming that a constant grade disturbance W(s) = wo/s is present in addition to the reference

input. In particular, find the variation in speed due to the grade change for both the feed-forward and feedback
cases. Use your results to explain (1) why feedback control is necessary and (2) how the gain kp should be
chosen to reduce steady-state error.

(d) Assume that w(t) = 0 and that the gain A undergoes the perturbation A + δA. Determine the error in speed
due to the gain change for both the feed-forward and feedback cases. How should the gains be chosen in this
case to reduce the effects of δA?

4.25 Consider the multivariable system shown in Fig. 4.38. Assume that the system is stable. Find the transfer
functions from each disturbance input to each output and determine the steady-state values of y1 and y2 for
constant disturbances. We define a multivariable system to be type k with respect to polynomial inputs at wi if
the steady-state value of every output is zero for any combination of inputs of degree less than k and at least one
input is a non zero constant for an input of degree k. What is the system type with respect to disturbance
rejection at w1? At w2?

Figure 4.38 Multivariable system

Problems for Section 4.3: The Three-Term Controller. PID Control
4.26 The transfer functions of speed control for a magnetic tape-drive system are shown in Fig. 4.39. The speed

sensor is fast enough that its dynamics can be neglected and the diagram shows the equivalent unity feedback
system.
(a) Assuming the reference is zero, what is the steady-state error due to a step disturbance torque of 1 N · m? What

must the amplifier gain K be in order to make the steady-state error ess ≤ 0.01 rad/sec?
(b) Plot the roots of the closed-loop system in the complex plane, and accurately sketch the time response of the

output for a step reference input using the gain K computed in part (a).
(c) Plot the region in the complex plane of acceptable closed-loop poles corresponding to the specifications of a

1% settling time of ts ≤ 0.1 sec and an overshoot Mp ≤ 5%.
(d) Give values for kp and kD for a PD controller, which will meet the specifications.
(e) How would the disturbance-induced steady-state error change with the new control scheme in part (d)? How



could the steady-state error to a disturbance torque be eliminated entirely?

Figure 4.39 Speed-control system for a magnetic tape-drive

4.27 Consider the system shown in Fig. 4.40 with PI control.
(a) Determine the transfer function from R to Y.
(b) Determine the transfer function from W to Y.
(c) What is the system type and error constant with respect to reference tracking?
(d) What is the system type and error constant with respect to disturbance rejection?

Figure 4.40 Control system for Problem 4.27

4.28 Consider the second-order plant with transfer function

and in a unity feedback structure.
(a) Determine the system type and error constant with respect to tracking polynomial reference inputs of the

system for P [D = kp], PD [D = kp + kDs], and PID [D = kp + kI/s + kDs] controllers. Let kp = 19, kI =
0.5, and kD =4/ 19.

(b) Determine the system type and error constant of the system with respect to disturbance inputs for each of the
three regulators in part (a) with respect to rejecting polynomial disturbances w (t) at the input to the plant.

(c) Is this system better at tracking references or rejecting disturbances? Explain your response briefly.
(d) Verify your results for parts (a) and (b) using MATLAB by plotting unit step and ramp responses for both

tracking and disturbance rejection.
4.29 The DC-motor speed control shown in Fig. 4.41 is described by the differential equation

 + 60y = 600va – 1500w,

where y is the motor speed, va is the armature voltage, and w is the load torque. Assume the armature voltage is



computed using the PI control law

where e = r – y.
(a) Compute the transfer function from W to Y as a function of kp and kI.
(b) Compute values for kp and kI so that the characteristic equation of the closed-loop system will have roots at –

60 ± 60j.

Figure 4.41 DC Motor speed-control block diagram for Problems 4.29 and 4.30

4.30 For the system in Problem 4.29, compute the following steady-state errors:
(a) to a unit-step reference input;
(b) to a unit-ramp reference input;
(c) to a unit-step disturbance input;
(d) for a unit-ramp disturbance input.
(e) Verify your answers to (a) and (d) using MATLAB. Note that a ramp response can be generated as a step

response of a system modified by an added integrator at the reference input.
4.31 Consider the satellite-attitude control problem shown in Fig. 4.42 where the normalized parameters are

J = 10 spacecraft inertia, N·m·sec2/rad
θr = reference satellite attitude, rad.

Figure 4.42 Satellite attitude control

θ = actual satellite attitude, rad.
Hy = 1 sensor scale, factor V/rad.

Hr = 1 reference sensor scale factor, V/rad.



w = disturbance torque. Nθm

(a) Use proportional control, P, with D(s) = kp, and give the range of values for kp for which the system will be
stable.

(b) Use PD control and let D(s) = (kp +kDs) and determine the system type and error constant with respect to
reference inputs.

(c) Use PD control, let D(s) = (kp + kDs) and determine the system type and error constant with respect to
disturbance inputs.

(d) Use PI control, let D(s) = (kp + kI/s), and determine the system type and error constant with respect to
reference inputs.

(e) Use PI control, let D(s) = (kp + kI/s), and determine the system type and error constant with respect to
disturbance inputs.

(f) Use PID control, let D(s) = D(s) = (kp + kI/s + kDs) and determine the system type and error constant with
respect to reference inputs.

(g) Use PID control, let D(s) = D(s) = D(s) = (kp + kI/s + kDs) and determine the system type and error
constant with respect to disturbance inputs.

4.32 The unit-step response of a paper machine is shown in Fig. 4.43(a) where the input into the system is stock flow
onto the wire and the output is basis weight (thickness). The time delay and slope of the transient response may
be determined from the figure.
(a) Find the proportional, PI, and PID-controller parameters using the Zeigler–Nichols transient-response method.
(b) Using proportional feedback control, control designers have obtained a closed-loop system with the unit

impulse response shown in Fig. 4.43(b). When the gain Ku = 8.556, the system is on the verge of instability.
Determine the proportional-, PI-, and PID-controller parameters according to the Zeigler–Nichols ultimate
sensitivity method.

4.33 A paper machine has the transfer function

where the input is stock flow onto the wire and the output is basis weight or thickness.
(a) Find the PID-controller parameters using the Zeigler–Nichols tuning rules.
(b) The system becomes marginally stable for a proportional gain of Ku = 3.044 as shown by the unit impulse

response in Fig. 4.44. Find the optimal PID-controller parameters according to the Zeigler–Nichols tuning rules.



Figure 4.43 Paper-machine response data for Problem 4.32

Figure 4.44 Unit impulse response for the paper machine in Problem 4.33

Δ Problems for Section 4.4: Introduction to Digital Control
4.34 Compute the discrete equivalents for the following possible controllers using the trapezoid rule of Eq. (4.104).

Let Ts = 0.05 in each case.
(a) D1(s) = (s + 2)/2

4.35 Give the difference equations corresponding to the discrete controllers found in Problem 4.34 respectively.
(a) part 1
(b) part 2
(c) part 3
(d) part 4



1 This process is called “pole placement,” a technique to be discussed in Chapter 7.
2 Bode, who developed the theory of sensitivity as well as many other properties of feedback, defined sensitivity as S = 1 + GD, the inverse of our
choice.
3 The derivative term alone makes this transfer function nonproper and impractical. However adding a high-frequency pole to make the term proper
only slightly modifies the performance.
4 These values have been scaled to measure time in milliseconds by multiplying the true La and Jm by 1000 each.
5 Notice that these controller transfer functions have more zeros than poles and are therefore not practical. In practice, the derivative term would
have a high-frequency pole, which has been omitted for simplicity in these examples.
6 K. J. Astrom and others have pointed out that a time constant, τ, can also be estimated from the curve and claim that a more effective tuning can be
done by including that parameter.
7 A controller that operates on signals that are sampled but not quantized is called discrete while one that operates on signals that are both sampled
and quantized is called digital.
8 Pronounced “A to D.”
9 Often spelled DAC and pronounced as one word to rhyme with quack.
10 The formula is also called Tustin’s Method after the English engineer who used the technique to study the responses of nonlinear circuits.
11 The process is entirely similar to that used in Chapter 3 to find the ordinary differential equation to which a rational Laplace transform
corresponds.
12 Black was 29 years old at the time.
13 According to the story, many of Black’s colleagues at the Bell laboratories did not believe it was possible to feed back a signal 100 times as large as
was the input and still keep the system stable. As will be discussed in Chapter 6, this dilemma was solved by H. Nyquist, also at the Labs.



5 The Root-Locus Design Method

A Perspective on the Root-Locus Design Method
In Chapter 3 we related the features of a step response, such as rise time, overshoot, and settling time, to pole
locations in the s-plane of the transform of a second-order system characterized by the natural frequency ωn, the
damping ratio ζ, and the real part σ. This relationship is shown graphically in Fig. 3.15. We also examined the
changes in these transient-response features when a pole or a zero is added to the transfer function. In Chapter 4 we
saw how feedback can improve steady-state errors and can also influence dynamic response by changing the system’s
pole locations. In this chapter we present a specific technique that shows how changes in one of a system’s
parameters will modify the roots of the characteristic equation, which are the closed-loop poles, and thus change the
system’s dynamic response. The method was developed by W. R. Evans who gave rules for plotting the paths of the
roots, a plot he called the Root Locus. With the development of MATLAB® and similar software the rules are no
longer needed for detailed plotting, but we feel it is essential for a control designer to understand how proposed
dynamic controllers will influence a locus as a guide in the design process. We also feel that it is important to
understand the basics of how loci are generated in order to perform sanity checks on the computer results. For these
reasons, study of the Evans rules is important.

The root locus is most commonly used to study the effect of loop gain variations; however, the method is general
and can be used to plot the roots of any polynomial with respect to any one real parameter that enters the equation
linearly. For example, the root-locus method can be used to plot the roots of a characteristic equation as the gain of a
velocity sensor feedback changes, or the parameter can be a physical parameter such as motor inertia or armature
inductance. Finally, a root locus can be plotted for a characteristic equation that results from the analysis of digital
control systems using the z-transform, a topic we introduced in Chapter 4 and will discuss further in Chapter 8.

Chapter Overview
We open in Section 5.1 by illustrating the root locus for some simple feedback systems for which the equations can
be solved directly. In Section 5.2 we show how to put an equation into the proper form for developing the rules for
the root-locus behavior. In Section 5.3 this approach is applied to determine the locus for a number of typical
control problems, which illustrate the factors that influence the final shape. MATLAB is used for detailed plotting of
specific loci. When adjustment of the selected parameter alone cannot produce a satisfactory design, designs using
other parameters can be studied or dynamic elements such as lead, lag, or notch compensations can be introduced, as
described in Section 5.4. In Section 5.5 the uses of the root locus for design are summarized by a comprehensive
design for the attitude control of a small airplane. In Section 5.6, the root-locus method is extended to guide the



design of systems with a negative parameter, systems with more than one variable parameter, and systems with
simple time delay. Finally, Section 5.7 gives historical notes on the origin of root-locus design.

5.1 Root Locus of a Basic Feedback System
We begin with the basic feedback system shown in Fig. 5.1. For this system, the closed-loop transfer function is

and the characteristic equation, whose roots are the poles of this transfer function, is

Figure 5.1 Basic closed-loop block diagram

To put the equation in a form suitable for study of the roots as a parameter changes, we first put the equation in
polynomial form and select the parameter of interest, which we will call K. We assume that we can define
component polynomials a(s) and b(s) so that the characteristic polynomial is in the form a(s) + Kb(s). We then

define the transfer function  so that the characteristic equation can be written as1

Evans’s method
If, as is often the case, the parameter is the gain of the controller, then L(s) is simply proportional to D(s)G(s)H(s).
Evans suggested that we plot the locus of all possible roots of Eq. (5.3) as K varies from zero to infinity and then use
the resulting plot to aid us in selecting the best value of K. Furthermore, by studying the effects of additional poles
and zeros on this graph, we can determine the consequences of additional dynamics added to D(s) as compensation
in the loop. We thus have a tool not only for selecting the specific parameter value but for designing the dynamic
compensation as well. The graph of all possible roots of Eq. (5.3) relative to parameter K is called the root locus, and
the set of rules to construct this graph is called the root-locus method of Evans. We begin our discussion of the
method with the mechanics of constructing a root locus, using the equation in the form of Eq. (5.3) and K as the
variable parameter.

To set the notation for our study, we assume here that the transfer function L(s) is a rational function whose



numerator is a monic2 polynomial b(s) of degree m and whose denominator is a monic polynomial a(s) of degree n
such that3 n≥ m. We can factor these polynomials as

The roots of b(s) = 0 are the zeros of L(s) and are labeled zi, and the roots of a(s) = 0 are the poles of L(s) and
are labeled p i. The roots of the characteristic equation itself are ri from the factored form (n > m),

We may now state the root-locus problem expressed in Eq. (5.3) in several equivalent but useful ways. Each of the
following equations has the same roots:

Root-locus forms
Equations (5.6)–(5.9) are sometimes referred to as the root-locus form or Evans form of a characteristic equation. The
root locus is the set of values of s for which Eqs. (5.6)–(5.9) hold for some positive real value4 of K. Because the
solutions to Eqs. (5.6)–(5.9) are the roots of the closed-loop system characteristic equation and are thus closed-loop
poles of the system, the root-locus method can be thought of as a method for inferring dynamic properties of the
closed-loop system as the parameter K changes.

EXAMPLE 5.1 Root Locus of a Motor Position Control
In Chapter 2 we saw that a normalized transfer function of a DC motor voltage-to-position can be



Solve for the root locus of closed-loop poles of the system created by feeding back the output Θm as shown in Fig.
5.1 with respect to the parameter A if D(s) = H(s) = 1 and also c = 1.
Solution. In terms of our notation, the values are

From Eq. (5.6) the root locus is a graph of the roots of the quadratic equation

Using the quadratic formula, we can immediately express the roots of Eq. (5.11) as

A plot of the corresponding root locus is shown in Fig. 5.2. For 0 ≤ K ≤ 1/4, the roots are real between – 1 and 0.
At K = 1/4 there are two roots at –1/2, and for K > 1/4 the roots become complex with real parts constant at – 1/2
and imaginary parts that increase essentially in proportion to the square root of K. The dashed lines in Fig. 5.2
correspond to roots with a damping ratio ζ = 0.5. The poles of L(s) at s = 0 and

Figure 5.2 Root locus for 

s = – 1 are marked by the symbol ×, and the points where the locus crosses the lines where the damping ratio
equals 0.5 are marked with dots (•). We can compute K at the point where the locus crosses ζ = 0.5, because we
know that, if ζ = 0.5, then θ = 30° and the magnitude of the imaginary part of the root is  times the magnitude
of the real part. Since the size of the real part is , from Eq. (5.12) we have

and, therefore, K = 1.



Breakaway points are where roots move away from the real axis
We can observe several features of this simple locus by looking at Eqs. (5.11) and (5.12) and Fig. 5.2. First, there are
two roots and thus two branches of the root locus. At K = 0 these branches begin at the poles of L(s) (which are at 0
and –1), as they should, since for K = 0 the system is open loop and the characteristic equation is a(s) = 0. As K is
increased, the roots move toward each other, coming together at , and at that point they break away from the
real axis. After the breakaway point the roots move off to infinity with equal real parts, so the sum of the two roots
is always –1. From the viewpoint of design, we see that by altering the value of the parameter K, we can cause the
closed-loop poles to be at any point along the locus in Fig. 5.2. If some points along this locus correspond to a
satisfactory transient response, then we can complete the design by choosing the corresponding value of K; otherwise,
we are forced to consider a more complex controller. As we pointed out earlier, the root locus technique is not
limited to focusing on the system gain (K = A in Example 5.1); the same ideas are applicable for finding the locus
with respect to any parameter that enters linearly in the characteristic equation.

EXAMPLE 5.2 Root Locus with Respect to a Plant Open-Loop Pole
Consider the characteristic equation as in Example 5.1, except that now let D(s) = H(s) = 1 and also let A = 1.
Select c as the parameter of interest in the equation

Find the root locus of the characteristic equation with respect to c.
Solution. The corresponding closed-loop characteristic equation in polynomial form is

The alternatives of Eq. (5.6) with the associated definitions of poles and zeros will apply if we let

Thus, the root-locus form of the characteristic equation is

The solutions to Eq. (5.14) are easily computed as

The locus of solutions is shown in Fig. 5.3, with the poles [roots of a(s)] again indicated by ×’s and the zero [root of
b(s)] by the circle (O) symbol. Note that when c = 0, the roots are at the ×’s on the imaginary axis and the
corresponding response would be oscillatory. The damping ratio ζ grows as c increases from 0. At c = 2, there are
two roots at s =-1, and the two locus segments abruptly change direction and move in opposite directions along the



real axis; this point of multiple roots where two or more roots come into the real axis is called a break-in point.

Break-in point
Of course, computing the root locus for a quadratic equation is easy to do since we can solve the characteristic
equation for the roots, as was done in Eqs. (5.12) and (5.16), and directly plot these as a function of the parameter K.
To be useful, the method must be suitable for higher-order systems for which explicit solutions are difficult to obtain
and rules for the construction of a general root locus were developed by Evans. With the availability of MATLAB,
these rules are no longer necessary to plot a specific locus. The command rlocus(sys) will do that. However, in
control design we are interested not only in a specific locus but also in how to modify the dynamics in

Figure 5.3 Root locus vs. damping factor 

such a way as to propose a system that will meet the dynamic response specifications for good control performance.
For this purpose, it is very useful to be able to roughly sketch a locus so as to be able to evaluate the consequences of
possible compensation alternatives. It is also important to be able to quickly evaluate the correctness of a computer-
generated locus to verify that what is plotted by MATLAB is in fact what was meant to be plotted. It is easy to get a
constant wrong or to leave out a term and GIGO5 is the well-known first rule of computation.

5.2 Guidelines for Determining a Root Locus
We begin with a formal definition of a root locus. From the form of Eq. (5.6), we define the root locus this way:

Definition I. The root locus is the set of values of s for which 1 + KL(s) = 0 is satisfied as the real parameter K
varies from 0 to + ∞. Typically, 1+KL(s) = 0 is the characteristic equation of the system, and in this case the
roots on the locus are the closed-loop poles of that system.

Now suppose we look at Eq. (5.9). If K is to be real and positive, L(s) must be real and negative. In other words, if
we arrange L(s) in polar form as magnitude and phase, then the phase of L(s) must be 180° in order to satisfy Eq.
(5.9). We can thus define the root locus in terms of this phase condition as follows.

The basic root-locus rule; the phase of L(s) = 180°



Definition II. The root locus of L(s) is the set of points in the s-plane where the phase of L(s) is 180°. If we define
the angle to the test point from a zero as ψi and the angle to the test point from a pole as øi then Definition II is
expressed as those points in the s-plane where, for integer l,

The immense merit of Definition II is that, while it is very difficult to solve a high-order polynomial by hand,
computing the phase of a transfer function is relatively easy. The usual case is when K is real and positive, and we
call this case the positive or 180° locus. When K is real and negative, L(s) must be real and positive with a phase of
0°, and this case is called the negative or 0° locus.

From Definition II we can, in principle, determine a positive root locus for a complex transfer function by
measuring the phase and marking those places where we find 180°. This direct approach can be illustrated by
considering the example

In Fig. 5.4 the poles of this L(s) are marked × and the zero is marked O. Suppose we select the test point s0 = –1 +
2j. We would like to test whether or not s0 lies on

Figure 5.4 Measuring the phase of Eq. (5.18)

the root locus for some value of K. For this point to be on the locus, we must have ∠L(s0) = 180° + 360°(l – 1) for
some integer l, or equivalently, from Eq. (5.18),

The angle from the zero term s0 + 1 can be computed6 by drawing a line from the location of the zero at –1 to
the test point s0. In this case the line is vertical and has a phase angle marked ψ1 = 90° in Fig. 5.4. In a similar
fashion, the vector from the pole at s = 0 to the test point s0 is shown with angle ø1, and the angles of the two
vectors from the complex poles at –2 ± 2j to s0 are shown with angles ø2 and ø3. The phase of the vector s0 + 5 is
shown with angle ø4. From Eq. (5.19) we find the total phase of L(s) at s = s0 to be the sum of the phases of the



numerator term corresponding to the zero minus the phases of the denominator terms corresponding to the poles:

Since the phase of L(s) is not 180°, we conclude that s0 is not on the root locus, so we must select another point and
try again. Although measuring phase is not particularly hard, measuring phase at every point in the s-plane is hardly
practical. Therefore, to make the method practical, we need some general guidelines for determining where the root
locus is. Evans developed a set of rules for the purpose, which we will illustrate by applying them to the root locus
for

We begin by considering the positive locus, which is by far the most common case.7 The first three rules are
relatively simple to remember and are essential for any reasonable sketch. The last two are less useful but are used
occasionally. As usual, we assume that MATLAB or its equivalent is always available to make an accurate plot of a
promising locus.

5.2.1 Rules for Plotting a Positive (180°) Root Locus
RULE 1. The n branches of the locus start at the poles of L(s) and m of these branches end on the zeros of L(s).

From the equation a(s) + Kb(s) = 0, if K = 0, the equation reduces to a(s) = 0, whose roots are the poles. When
K approaches infinity, s must be such that either b(s) = 0 or s → ∞. Since there are m zeros where b(s) = 0, m
branches can end in these places. The case for s → ∞ is considered in Rule 3.
RULE 2. The loci are on the real axis to the left of an odd number of poles and zeros.

If we take a test point on the real axis, such as s0 in Fig. 5.5, we find that the angles ø1 and ø2 of the two complex
poles cancel each other, as would the angles from complex conjugate zeros. Angles from real poles or zeros are 0° if
the test point is to the right and 180° if the test point is to the left of a given pole or zero. Therefore, for the total
angle to add to 180° + 360° (l – 1), the test point must be to the left of an odd number of real-axis poles plus zeros
as shown in Fig. 5.5.

RULE 3. For large s and K, n – m of the loci are asymptotic to lines at angles øl radiating out from the point s = α
on the real axis, where

As K → ∞, the equation



can be satisfied only if L(s) = 0. This can occur in two apparently different ways. In the first instance, as discussed in
Rule 1, m roots will be found to approach the zeros of L(s). The second manner in which L(s) may go to zero is if s
→ ∞ since, by assumption, n is larger than m. The asymptotes describe how these n – m roots approach → ∞. For
large s, the equation

Figure 5.5 Rule 2. The real-axis parts of the locus are to the left of an odd number of poles and zeros

can be approximated8 by

This is the equation for a system in which there are n – m poles, all clustered at s = α. Another way to visualize this
same result is to consider the picture we would see if we could observe the locations of poles and zeros from a
vantage point of very large s: They would appear to cluster near the s-plane origin. Thus, m zeros would cancel the
effects of m of the poles, and the other n – m poles would appear to be in the same place. We say that the locus of
Eq. (5.22) is asymptotic to the locus of Eq. (5.23) for large values of K and s. We need to compute α and to find the
locus for the resulting asymptotic system. To find the locus, we choose our search point s 0such that s0 = Rejø for
some large fixed value of R and variable ø. Since all poles of this simple system are in the same place, the angle of
its transfer function is 180° if all n – m angles, each equal to øl, sum to 180°. Therefore, øl is given by

(n – m)øl = 180° + 360°(l – 1)

The angles of the asymptotes
for some integer l. Thus, the asymptotic root locus consists of radial lines at the n – m distinct angles given by

For the system described by Eq. (5.20), n – m = 3 and ø1,2,3 = 60°, 180°, and 300° or ±60°, 180°.



The lines of the asymptotic locus come from s0 = α on thereal axis. To determine α, we make use of a simple
property of polynomials. Suppose we consider the monic polynomial a(s) with coefficients ai and roots p i, as in Eq.
(5.4), and we equate the polynomial form with the factored form

sn + a1sn–1 + a2sn–2 + . . . + an = (s – p1)(s – p2) . . . (s – pn).

If we multiply out the factors on the right side of this equation, we see that the coefficient of sn–1 is – p1 – p2 – . . . –
pn. On the left side of the equation, we see that this term is a1. Thus a1 = – Σpi; in other words, the coefficient of the
second highest term in a monic polynomial is the negative sum of its roots–in this case, the poles of L(s). Applying
this result to the polynomial b(s), we find the negative sum of the zeros to be b1. These results can be written as

Finally, we apply this result to the closed-loop characteristic polynomial obtained from Eq. (5.22):

Note that the sum of the roots is the negative of the coefficient of sn-1 and is independent of K if m < n – 1.
Therefore, if L(s) has at least two more poles than zeros,
we have . We have thus shown that the center point of the roots does not change with K if m < n – 1
and that the open-loop and closed-loop sum is the same and is equal to –a1, which can be expressed as

For large values of K, we have seen that m of the roots ri approach the zeros zi and n – m of the roots approach the

branches of the a symptotic system  whose poles add up to (n – m)α. Combining these results we conclude
that the sum of all the roots equals the sum of those roots that go to infinity plus the sum of those roots that go to the
zeros of L(s):

The center of the asymptotes

Solving for α, we get

Notice that in the sums Σpi and Σ zi the imaginary parts always add to zero, since complex poles and zeros always
occur in complex conjugate pairs. Thus Eq. (5.28) requires information about the real parts only. For Eq. (5.20),



The asymptotes at ±60° are shown dashed in Fig. 5.6. Notice that they cross the imaginary axis at 
. The asymptote at 180° was already found on the real axis by Rule 2.

RULE 4. The angle(s) of departure of a branch of the locus from a pole of multiplicity q is given by

and the angle(s) of arrival of a branch at a zero of multiplicity q is given by

Figure 5.6 The asymptotes are n–m radial lines from α at equal angles

Figure 5.7 The departure and arrival angles are found by looking near a pole or zero

If a system has poles near the imaginary axis it can be important to know if the locus, which starts at such a pole,
starts off toward the stable left half-plane (LHP) or heads toward the unstable right half-plane (RHP). To compute the



angle by which a branch of the locus departs from one of the poles we take a test point so very near the pole in
question, define the angle from that pole to the test point as øl,dep and transpose all other terms of Eq.(5.17) to the
right-hand side. We can illustrate the process by taking the test point so to be near the pole at –4 + 4j of our
example and computing the angle of L(s0). The situation is sketched in Fig. 5.7, and the angle from – 4 + 4j to the
test point we define as ø1. We select the test point close enough to the pole that the angles ø2 and ø3j to the test
point can be considered the same as those angles to the pole. Thus, ø2 = 90°, ø3 = 135°, and ø1 can be calculated
from the angle condition as whatever it takes to make the total be 180°. The calculation is (l = 1)

Rule for departure angles
By the complex conjugate symmetry of the plots, the angle of departure of the locus near the pole at –4 –4j will be
+ 45°.

If there had been zeros in L(s), the angles from the pole to the zeros would have been added to the right side of
Eq. (5.31). For the general case, we can see from Eq. (5.31) that the angle of departure from a single pole is

where Σøi is the sum of the angles to the remaining poles and Σψi is the sum of the angles to all the zeros. For a
multiple pole of order q, we must count the angle from the pole q times. This alters Eq. (5.34) to

where l takes on q values because there are q branches of the locus that depart from such a multiple pole.

Rule for arrival angles
The process of calculating a departure angle for small values of K, as shown in Fig. 5.7, is also valid for computing
the angle by which a root locus arrives at a zero of L{s) for large values of K. The general formula that results is

where Σøi is the sum of the angles to all the poles, Σψi is the sum of the angles to the remaining zeros, and l is an
integer as before.
RULE 5. The locus can have multiple roots at points on the locus and the branches will approach a point of q roots
at angles separated by



and will depart at angles with the same separation. As with any polynomial, it is possible for a characteristic
polynomial of a degree greater than 1 to have multiple roots. For example, in the second-order locus of Fig. 5.2,
there are two roots at s = –1/2 when K = 1/4. Here the horizontal branches of the locus come together and the
vertical branches break away from the real axis, becoming complex for K > 1/4. The locus arrives at 0° and 180° and
departs at +90° and –90°.

Continuation locus
In order to compute the angles of arrival and departure from a point of multiple roots, it is useful to use a trick we

call the continuation locus. We can imagine plotting a root locus for an initial range of K, perhaps for 0 ≤ K ≤ K1. If
we let K = K1 + K2, we can then plot a new locus with parameter K2, a locus which is the continuation of the
original locus and whose starting poles are the roots of the original system at K = K1. To see how this works, we
return to the second-order root locus of Eq.(5.11) and let K1 be the value corresponding to the breakaway point K1
= 1/4. If we let K = 1/4 + K2, we have the locus equation s2 + s + 1/4 + K2 = 0, or

The steps for plotting this locus are, of course, the same as for any other, except that now the initial departure of the
locus of Eq. (5.38) corresponds to the breakaway point of the original locus of Eq. (5.11). Applying the rule for
departure angles [Eq. (5.35)] from the double pole at s = –1/ 2, we find that

In this case, the arrival angles at s = –1/2 are, from the original root locus, along the real axis and are clearly 0° and
180°.

The complete locus for our third-order example is drawn in Fig. 5.8. It combines all the results found so far–that is,
the real-axis segment, the center of the asymptotes and their angles, and the angles of departure from the poles. It is
usually sufficient to draw the locus by using only Rules 1 to 3, which should be memorized. Rule 4 is sometimes
useful to understand how locus segments will depart, especially if there is a pole near thejco axis. Rule 5 is
sometimes useful to help interpret plots that come

Figure 5.8 Root locus for 



from the computer and, as we shall see in the next section, to explain qualitative changes in some loci as a pole or
zero is moved. The actual locus in Fig. 5.8 was drawn using the MATLAB commands

numL = [1];
denL = [1 8 32 0];
sysL = tf(numL,denL);
rlocus(sysL)

We will next summarize the rules for drawing a root locus.

5.2.2 Summary of the Rules for Determining a Root Locus
RULE 1. The n branches of the locus start at the poles of L(s) and m branches end on the zeros of L(s).
RULE 2. The loci are on the real axis to the left of an odd number of poles and zeros.
RULE 3. For large s and K, n – m of the loci are asymptotic to lines at angles øl radiating out from the center point s
= α on the real axis, where

RULE 4. The angle(s) of departure of a branch of the locus from a pole of multiplicity q is given by

and the angle(s) of arrival of a branch at a zero of multiplicity q is given by

RULE 5. The locus can have multiple roots at points on the locus of multiplicity q. The branches will approach a
point of q roots at angles separated by



and will depart at angles with the same separation, forming an array of 2q rays equally spaced. If the point is on the
real axis, then the orientation of this array is given by the real-axis rule. If the point is in the complex plane, then the
angle of departure rule must be applied.

5.2.3 Selecting the Parameter Value
The positive root locus is a plot of all possible locations for roots to the equation 1 + KL(s) = 0 for some real
positive value of K. The purpose of design is to select a particular value of K that will meet the specifications for
static and dynamic response. We now turn to the issue of selecting K from a particular locus so that the roots are at
specific places. Although we shall show how the gain selection can be made by hand calculations from a plot of the
locus, this is almost never done by hand because the determination can be accomplished easily by MATLAB. It is
useful, however, to be able to perform a rough sanity check on the computer-based results by hand.

Using Definition II of the locus, we developed rules to sketch a root locus from the phase of L(s) alone. If the
equation is actually to have a root at a particular place when the phase of L(s) is 180°, then a magnitude condition
must also be satisfied. This condition is given by Eq. (5.9), rearranged as

For values of s on the root locus, the phase of L(s) is 180°, so we can write the magnitude condition as

Equation (5.47) has both an algebraic and a graphical interpretation. To see the latter, consider the locus of 1 +
KL(s), where

For this transfer function, the locus is plotted in Fig. 5.9. In Fig. 5.9, the lines corresponding to a damping ratio of ζ
= 0.5 are sketched and the points where the locus crosses these lines are marked with dots (•). Suppose we wish to
set the gain so that the roots are located at the dots. This corresponds to selecting the gain so that two of the closed-
loop system poles have a damping ratio of ζ = 0.5. (We will find the third pole shortly.) What is the value of K
when a root is at the dot? From Eq. (5.47), the value of K is given by 1 over the magnitude of L(s0), where s0 is the
coordinate of the dot. On the figure we have plotted three vectors marked s0 – s1,s2, and s0 – s3, which are the vectors
from the poles of L(s) to the point s0 (Since s1 = 0, the first vector equals s0.) Algebraically, we have

Using Eq. (5.47), this becomes



Figure 5.9 Root locus for  showing calculations of gain K

Graphical calculation of the desired gain
The graphical interpretation of Eq. (5.50) shows that its three magnitudes are the lengths of the corresponding

vectors drawn on Fig. 5.9 (see Appendix WD). Hence we can compute the gain to place the roots at the dot (s = s0)
by measuring the lengths of these vectors and multiplying the lengths together, provided that the scales of the
imaginary and real axes are identical. Using the scale of the figure, we estimate that

Thus the gain is estimated to be
K = 4.0(21)(7.7) ≅ 65.

We conclude that if K is set to the value 65, then a root of 1 + KL will be at s0, which has the desired damping ratio
of 0.5. Another root is at the conjugate of s0. Where is the third root? The third branch of the locus lies along the
negative real axis. If performing the calculations by hand, we would need to take a test point, compute a trial gain,
and repeat this process until we have found the point where K = 65. However, if performing a check on MATLAB’s
determination, it is sufficient to merely use the procedure above to verify the gain at the root location indicated by
the computer.

To use MATLAB, plot the locus using the command rlocus(sysL), for example, then the command [K,p] =
rlocfind(sysL) will produce a crosshair on the plot and, when spotted at the desired location of the root and selected
with a mouse click, the value of the gain K is returned as well as the roots corresponding to that K in the variable p.
The use of rltool makes this even easier, and will be discussed in more detail in Example 5.7.

Finally, with the gain selected, it is possible to compute the error constant of the control system. A process with



the transfer function given by Eq. (5.48) has one integrator and, in a unity feedback configuration, will be a Type 1
control system.
In this case the steady-state error in tracking a ramp input is given by the velocity constant:

With the gain set for complex roots at a damping ζ = 0.5, the root-locus gain is K = 65, so from Eq. (5.53) we get
Kv ≅ 2. If the closed-loop dynamic response, as determined by the root locations, is satisfactory and the steady-state
accuracy, as measured by Kv, is good enough, then the design can be completed by gain selection alone. However, if
no value of K satisfies all of the constraints, as is typically the case, then additional modifications are necessary to
meet the system specifications.

5.3 Selected Illustrative Root Loci
A number of important control problems are characterized by a process with the simple “double integrator” transfer
function

The control of attitude of a satellite is described by this equation. Also, the read/write head assembly of a computer
hard-disk drive is typically floating on an air bearing so that friction is negligible for all but the smallest motion. The
motor is typically driven by a current source so the back emf does not affect the torque. The result is a plant
described by Eq. (5.54). If we form a unity feedback system with this plant, and a proportional controller, the root
locus with respect to controller gain is

If we apply the rules to this (trivial) case, the results are as follows:
RULE 1. The locus has two branches that start at s = 0.
RULE 2. There are no parts of the locus on the real axis.
RULE 3. The two asymptotes have origin at s = 0 and are at the angles of ±90°.
RULE 4. The loci depart from s = 0 at the angles of ±90°.
Conclusion: The locus consists of the imaginary axis and the transient would be oscillatory for any value of kp. A
more useful design results with the use of proportional plus derivative control.

EXAMPLE 5.3Root Locus for Satellite Attitude Control with PD Control
The characteristic equation with PD control is



Figure 5.10 Root locus for 

To put the equation in root-locus form, we define K = kD, and for the moment arbitrarily select the gain ratio9 as
kp/kD = 1, which results in the root-locus form

Solution. Again we compute the results of the rules:

RULE 1. There are two branches that start at s = 0, one of which terminates on the zero at s = – 1 and the other of
which approaches infinity.
RULE 2. The real axis to the left of s = –1 is on the locus.
RULE 3. Since n – m = 1, there is one asymptote along the negative real axis.
RULE 4. The angles of departure from the double pole at s = 0 are ±90°.
RULE 5. From Rules 1-4, it should be clear that the locus will curl around the zero, rejoin the real axis to the left of
the zero, and terminate as indicated by Rule 1. It turns out that the locus segments rejoin the real axis at s =-2,
which creates a point of multiple roots. Evaluation of the angle of arrival at this point will show that the segments
arrive at ±90°, from which on the locus from Rule 2: it is a point of multiple roots, in this case a point of break in.
We conclude that two branches of the locus leave the origin going north and south and that they curve around10

without passing into the RHP and break into the real axis at s = –2, from which point one branch goes west toward
infinity and the other goes east to rendezvous with the zero at s = –1. The locus is plotted in Fig. 5.10 with the
commands

numS = [1 1];
denS = [1 0 0];
sysS = tf(numS,denS);
rlocus(sysS)



Comparing this case with that for the simple 1/s2, we see that

Effect of a Zero in the LHP

The addition of the zero has pulled the locus into the LHP, a point of general importance in constructing a
compensation.

In the previous case, we considered pure PD control. However, as we have mentioned earlier, the physical
operation of differentiation is not practical and in practice PD control is approximated by

which can be put in root-locus form by defining K = kp + pkD and z = pkp/K so that11

For reasons we will see when we consider design by frequency response, this controller transfer function is called a
“lead compensator” or, referring to the frequent implementation by electrical components, a “lead network.” The
characteristic equation for the 1/s2 plant with this controller is

EXAMPLE 5.4Root Locus of the Satellite Control with Modified PD or Lead Compensation
To evaluate the effect of the added pole, we will again set z = 1 and consider three different values for p. We begin
with a somewhat large value, p = 12, and consider the root locus for

Solution. Again, we apply the rules for plotting a root locus:
RULE 1. There are now three branches to the locus, two starting at s = 0 and one starting at s = –12.
RULE 2. The real axis segment – 12 ≤ s ≤ – 1 is part of the locus.

RULE 3. There are n – m = 3 –1 = 2 asymptotes centered at  and at the angles ±90°.
RULE 4. The angles of departure of the branches at s = 0 are again ±90°. The angle of departure from the pole at s
= –12 is at 0°.

There are several possibilities on how the locus segments behave while still adhering to the guidance above.
MATLAB is the expedient way to discover the paths. The MATLAB commands



Figure 5.11 Root locus for 

numL = [1 1];
denL = [1 12 0 0];
sysL = tf(numL,denL);
rlocus(sysL)
show that two branches of locus break vertically from the poles at s = 0, curve around to the left without passing

into the RHP, and break in at s = –2.3, where one branch goes right to meet the zero at s = –1 and the other goes
left, where it is met by the root that left the pole at s = –12. These two form a multiple root at s = –5.2 and break
away there and approach the vertical asymptotes located at s = –5.5. The locus is plotted in Fig. 5.11.

Considering this locus, we see that the effect of the added pole has been to distort the simple circle of the PD
control but, for points near the origin, the locus is quite similar to the earlier case. The situation changes when the
pole is brought closer in.

EXAMPLE 5.5 Root Locus of the Satellite Control with Lead Having a Relatively Small Value for the Pole
Now consider p = 4 and draw the root locus for

Solution. Again, by the rules, we have the following:
RULE 1. There are again three branches to the locus, two starting from s = 0 and one from s = – 4.
RULE 2. The segment of the real axis –4 ≤ s ≤ – 1 is part of the locus.
RULE 3. There are two asymptotes centered at α = – 3/2 and at the angles ±90°.
RULE 4. The branches again depart from the poles at s = 0 at ±90°.
RULE 5. The MATLAB commands
numL=[1 1];
denL=[14 0 0];



Figure 5.12 Root locus for 

sysL=tf(numL,denL)
rlocus(sysL)
show that two branches of this locus break away vertically from the poles at s = 0, curve slightly to the left and join
the asymptotes going north and south. The locus segment from the root at s = –4 goes east and terminates at the
zero. In this case, the locus differs from the case when p = –12 in that there are no break-in or breakaway points on
the real axis as part of the locus. The MATLAB plot is given in Fig. 5.12.

In these two cases we have similar systems, but in one case, p = –12, there were both a break-in and a breakaway
on the real axis, whereas for p = –4, these features have disappeared. A logical question might be to ask at what
point they went away. As a matter of fact, it happens at p = 9, and we’ll look at that locus next.

EXAMPLE 5.6 The Root Locus for the Satellite with a Transition Value for the Pole
Plot the root locus for

Solution
RULE 1. The locus has three branches, starting from s = 0 and s = –9.
RULE 2. The real axis segment – 9 ≤ s ≤ –1 is part of the locus.
RULE 3. The two asymptotes are centered at α = –8/2 = –4.
RULE 4. The departures are, as before, at ±90° from s = 0.
RULE 5. The MATLAB commands

numL=[1 1];
denL=[19 0 0]
sysL=tf(numL,denL);
rlocus(sysL)



produces the locus in Fig. 5.13. It shows the two branches of this locus break away vertically from the poles at s = 0
and curl around and join the real axis again at

Figure 5.13 Root locus for 

s = – 3 with an angle of arrival of ±60° while the branch from the pole at s = –9 heads east and joins the other
two poles ats =–3 with an angle of arrival of 0°. These three locus segments continue on by splitting out of s =–3 at
the departure angles of 0° and ±120°, with one heading into the zero and the other two heading away to the
northwest to join the asymptotes. Using Rule 5 would confirm these angles of arrival and departure.12

From Figs. 5.11 through 5.13, it is evident that when the third pole is near the zero (p near 1), there is only a
modest distortion of the locus that would result for , which consists of two straight-line locus
branches departing at ±90° from the two poles at s = 0. Then, as we increase p, the locus changes until at p = 9
the locus breaks in at –3 in a triple multiple root. As the pole p is moved to the left beyond –9, the locus exhibits
distinct break-in and breakaway points, approaching, as p gets very large, the circular locus of one zero and two
poles. Figure 5.13, when p = 9, is thus a transition locus between the two second-order extremes, which occur at p
= 1 (when the zero is canceled) and p → ∞ (where the extra pole has no effect).

EXAMPLE 5.7An Exercise to Repeat the Prior Examples Using RLTOOL
Repeat Examples 5.3 through 5.6 using MATLAB’s RLTOOL feature.
Solution. RLTOOL is an interactive root-locus design tool in MATLAB that provides a graphical user interface (GUI)
for performing root-locus analysis and design. RLTOOL provides an easy way to design feedback controllers because
it allows rapid iterations and quickly shows their effect on the resulting root locus. To illustrate the use of the tool,
the MATLAB commands

numL=[1 1];
denL=[1 0 0];
sysL=tf(numL,denL)
rltool(sysL)

Figure 5.14 RLTOOL graphical user interface



will initiate the GUI and produce the root locus shown in Fig. 5.10, which is similar to Examples 5.4 through 5.6,
but without the pole on the negative real axis that was moved around for illustration purposes in the three prior
examples. By clicking on “Compensator Editor” in the “Control and Estimation Tools Manager” window, right
clicking on the “Dynamics” dialog window and selecting “add pole/zero”, you can add a pole at the location s = –
12. This will produce the locus that is shown in Fig. 5.11 and Fig. 5.14. Now put your mouse on the pole at s = –12,
hold down the mouse button, and slide it from s = –12 to s = –4 slowly, so you can examine the locus shapes at all
intermediate points. Be especially careful (and slow) as you pass through s = –9 because the locus shape changes
very quickly with the pole in this region. Note that you can also put your mouse on one of the closed-loop poles
(squares) and slide that along the locus. It will show you the location of the other roots that correspond to that value
of the gain, K, and the frequency and damping of the closed-loop roots will be shown for when the roots are
complex pairs. More detail can be found in the RLTOOL Tutorial in Appendix WR.

A useful conclusion drawn from this example is the following:

An additional pole moving in from the far left tends to push the locus branches to the right as it approaches a
given locus.

The double integrator is the simplest model of the examples, assuming a rigid body with no friction. A more
realistic case would include the effects of flexibility in the satellite attitude control, where at least the solar panels



would be flexible. In the case of the disk drive read/write mechanism, the head and supporting arm assembly always
has flexibility and usually a very complex behavior with a number of lightly damped modes, which can often be
usefully approximated by a single dominant mode. In Section 2.1 it was shown that flexibility in the disk drive
added a set of complex poles to the 1/s2 model. Generally there are two possibilities, depending on whether the
sensor is on the same rigid body as the actuator, which is called the collocated case,13 or is on another body, in
which case we have the noncollocated case.14 We begin with consideration of the collocated case similar to that
given by Eq. (2.20). As we saw in Chapter 2, the transfer function in the collocated case has not only a pair of
complex poles but also a pair of nearby complex zeros located at a lower natural frequency than the poles. The
numbers in the examples that follow are chosen more to illustrate the root-locus properties than to represent
particular physical models.

EXAMPLE 5.8 Root Locus of the Satellite Control with a Collocated Flexibility
Plot the root locus of the characteristic equation 1 + G(s)D(s) = 0, where

is in a unity feedback structure with the controller transfer function

Solution. In this case

has both poles and zeros near the imaginary axis and we should expect to find the departure angles of particular
importance.
RULE 1. There are five branches to the locus, three of which approach finite zeros and two of which approach
asymptotes.
RULE 2. The real-axis segment –12 ≤ s≤ –1 is part of the locus.

Figure 5.15 Figure for computing a departure angle for 



RULE 3. The center of the two asymptotes is at

The angle of the asymptotes is ±90°.
RULE 4. We compute the departure angle from the pole at s = –0.1 + j6.6. The angle at this pole we will define to
be φ1. The other angles are marked on Fig. 5.15. The root-locus condition is

so the root leaves this pole up and to the left, into the stable region of the plane. An interesting exercise would be to
compute the arrival angle at the zero located at s = –0.1 + j 6.

Using MATLAB, the locus is plotted in Fig. 5.16. Note that all the attributes that were determined using the simple
rules were exhibited by the plot, thus verifying in part that the data were entered correctly.

The previous example showed that

In the collocated case, the presence of a single flexible mode introduces a lightly damped root to the characteristic
equation but does not cause the system to be unstable.

The departure angle calculation showed that the root departs from the pole introduced by the flexible mode
toward the LHP. Next, let’s consider the noncollocated

Figure 5.16 Root locus for 



case, for which we take the plant transfer function to be

compensated again by the lead

As these equations show, the noncollocated transfer function has the complex poles but does not have the associated
complex zeros as occurred in the previous example and that we also saw for the collated case of Chapter 2 in Eq.
(2.20). This will have a substantial effect, as illustrated by Example 5.9.

EXAMPLE 5.9 Root Locus for the Noncollocated Case
Apply the rules and draw the root locus for

paying special attention to the departure angles from the complex poles.
RULE 1. There are five branches to the root locus, of which one approaches the zero and four approach the
asymptotes.
RULE 2. The real-axis segment defined by –12 ≤ s ≤ –1 is part of the locus.
RULE 3. The center of the asymptotes is located at

and the angles for the four asymptotic branches are at ±45°, ±135°.
RULE 4. We again compute the departure angle from the pole at s = –0.1+j6.6. The angle at this pole we will
define to be φ1. The other angles are marked on Fig. 5.17.



Figure 5.17 Figure to compute a departure angle for 

Figure 5.18 Root locus for 

The root locus condition is

In this case, the root leaves the pole down and to the right, toward the unstable region. We would expect the system
to soon become unstable as gain is increased.
RULE 5. The locus is plotted in Fig. 5.18 with the commands

numG = 1;
denG = [1.0 0.20 43.57 0 0];
sysG = tf(numG,denG);



numD = [1 1];
denD = [1 12];
sysD = tf(numD,denD);
sysL = sysD*sysG;
rlocfind(sysL)

and is seen to agree with the calculations above. By using RLTOOL, we see that the locus from the complex poles
enter into the RHP almost immediately as the gain is increased. Furthermore, by selecting those roots so that they are
just to the left of the imaginary axis, it can be seen that the dominant slow roots down near the origin have
extremely low damping. Therefore, this system will have a very lightly damped response with very oscillatory
flexible modes. It would not be considered acceptable with the lead compensator as chosen for this example.

A Locus with Complex Multiple Roots
We have seen loci with break-in and breakaway points on the real axis. Of course, an equation of fourth or higher
order can have multiple roots that are complex. Although such a feature of a root locus is a rare event, it is an
interesting curiosity that is illustrated by the next example.

EXAMPLE 5.10 Root Locus Having Complex Multiple Roots
Sketch the root locus of 1 + KL(s) = 0, where

Solution
RULE 1. There are four branches of the locus, all of which approach asymptotes.
RULE 2. The real-axis segment –2 ≤ s ≤ 0 is on the locus.
RULE 3. The center of the asymptotes is at

and the angles are φl = 45°, 135°, –45°, –135°.
RULE 4. The departure angle φdep from the pole at = – 1 + 2j, based on Fig. 5.19, is

Figure 5.19 Figure to compute departure angle for 



Figure 5.20 Root locus for 

We can observe at once that, along the line s = –1 + jw, φ2 and φ1 are angles of an isosceles triangle and always
add to 180°. Hence, the entire line from one complex pole to the other is on the locus in this special case.
RULE 5. Using MATLAB, we see that there are multiple roots at s = –1 ± 1.22j, and branches of the locus come
together at –1 ± 1.22j. Using Rule 5, we can verify that the locus segments break away at 0° and 180° as shown by
MATLAB.

The locus in this example is a transition between two types of loci: one where the complex poles are to the left of
the example case and approach the asymptotes at ±135° and another where the complex poles are to the right of
their positions in the example and approach the asymptotes at ±45°.

5.4 Design Using Dynamic Compensation
Consideration of control design begins with the design of the process itself. The importance of early consideration of



potential control problems in the design of the process and selection of the actuator and sensor cannot be
overemphasized. It is not uncommon for a first study of the control to suggest that the process itself can be changed
by, for example, adding damping or stiffness to a structure to make a flexibility easier to control. Once these factors
have been taken into account, the design of the controller begins. If the process dynamics are of such a nature that a
satisfactory design cannot be obtained by adjustment of the proportional gain alone, then some modification or
compensation of the dynamics is indicated. While the variety of possible compensation schemes is great, three
categories have been found to be particularly simple and effective. These are lead, lag, and notch compensations.15

Lead compensation approximates the function of PD control and acts mainly to speed up a response by lowering rise
time and decreasing the transient overshoot. Lag compensation approximates the function of PI control and is usually
used to improve the steady-state accuracy of the system. Notch compensation will be used to achieve stability for
systems with lightly damped flexible modes, as we saw with the satellite attitude control having noncollocated
actuator and sensor. In this section we will examine techniques to select the parameters of these three schemes. Lead,
lag, and notch compensations have historically been implemented using analog electronics and hence were often
referred to as networks. Today, however, most new control system designs use digital computer technology, in which
the compensation is implemented in the software. In this case, one needs to compute discrete equivalents to the
analog transfer functions, as described in Chapter 4 and discussed further in Chapter 8 and in Franklin et al. (1998).

Lead and lag compensations
Compensation with a transfer function of the form

is called lead compensation if z < p and lag compensation if z > p. Compensation is typically placed in series with
the plant in the feed-forward path, as shown in Fig. 5.21. It can also be placed in the feedback path and in that
location has the same effect on the overall system poles but results in different transient responses from reference
inputs. The characteristic equation of the system in Fig. 5.21 is

where K and L(s) are selected to put the equation in root-locus form as before.

5.4.1 Design Using Lead Compensation
To explain the basic stabilizing effect of lead compensation on a system, we first consider proportional control for
which D(s) = K. If we apply this compensation to a second-order position control system with normalized transfer
function

Figure 5.21 Feedback system with compensation



Figure 5.22 Root loci for 1 + D(s)G(s) = 0,  with compensation D(s) = K (solid lines) and with D(s)
= K(s +2) (dashed lines)

the root locus with respect to K is shown as the solid-line portion of the locus in Fig. 5.22. Also shown in Fig. 5.22 is
the locus produced by proportional plus derivative control, where D(s) = K(s+2). The modified locus is the circle
sketched with dashed lines. As we saw in the examples, the effect of the zero is to move the locus to the left, toward
the more stable part of the s-plane. If, now, our speed-of-response specification calls for ωn = 2, then proportional
control alone (D = K) can produce only a very low value of damping ratio ζ when the roots are put at the required
value of ωn. Hence, at the required gain, the transient overshoot will be substantial. However, by adding the zero of
PD control we can move the locus to a position having closed-loop roots at ωn = 2 and damping ratio ζ > 0.5. We
have “compensated” the given dynamics by using D(s) = K(s + 2).

As we observed earlier, pure derivative control is not normally practical because of the amplification of sensor
noise implied by the differentiation and must be approximated. If the pole of the lead compensation is placed well
outside the range of the design ωn, then we would not expect it to upset the dynamic response of the design in a
serious way. For example, consider the lead compensation

Selection of the zero and pole of a lead
The root loci for two cases with p = 10 and p = 20 are shown in Fig. 5.23, along with the locus for PD control. The
important fact about these loci is that for small gains, before the real root departing from – p approaches –2, the loci
with lead compensation are almost identical to the locus for which D(s) = K(s + 2). Note that the effect of the pole



is to lower the damping, but for the early part of the locus, the effect of the pole is not great if p > 10.
Selecting exact values of z and p in Eq. (5.70) for particular cases is usually done by trial and error, which can be

minimized with experience. In general, the zero is placed in the neighborhood of the closed-loop ω n, as determined
by rise-time or settling-time requirements, and the pole is located at a distance 5 to 20 times the value of the zero
location. The choice of the exact pole location is a compromise between the conflicting effects of noise suppression,
for which one wants a small value for p, and compensation effectiveness for which one wants a large p. In general, if
the pole is too close to the zero, then, as seen in Fig. 5.23, the root locus moves back too far toward its
uncompensated shape and the zero is not successful in doing its job. On the other hand, for reasons that are perhaps
easier to understand from the frequency response, when the pole is too far to the left, the magnification of sensor
noise appearing at the output of D(s) is too great and the motor or other actuator of the process can be overheated
by noise energy in the control signal, u(t). With a large value of p, the lead compensation approaches pure PD
control. A simple example will illustrate the approach.

Figure 5.23 Root loci for three cases with 

 (c) D(s) = s + 2 (solid lines)

EXAMPLE 5.11 Design Using Lead Compensation
Find a compensation for G(s) = 1/[s(s + 1)] that will provide overshoot of no more than 20% and rise time of no
more than 0.3 sec.

Solution. From Chapter 3, we estimate that a damping ratio of ζ ≥ 0.5 and a natural frequency of 
should satisfy the requirements. To provide some margin, we will shoot for ζ ≥ 0.5 and ωn ≥ 7 rad/sec.
Considering the root loci plotted in Fig. 5.23, we will first try

Figure 5.24 shows that K = 70 will yield ζ = 0.56 and ωn = 7.7 rad/sec, which satisfies the goals based the initial



estimates. The third pole will be at s = –2.4 with K = 70. Because this third pole is so near the lead zero at –2, the
overshoot should not be increased very much from the second-order case. However, Fig. 5.25 shows the step
response of the system exceeds the overshoot specification a small amount. Typically, lead compensation in the feed-
forward path will increase the step-response overshoot because the zero of the compensation has a differentiating
effect, as discussed in Chapter 3. The rise-time specification has been met because the time for the amplitude to go
from 0.1 to 0.9 is less than 0.3 sec.

We want to tune the compensator to achieve better damping in order to reduce the overshoot in the transient
response. The expedient way to do this is to use RLTOOL,

Figure 5.24 Root locus for lead design

Figure 5.25 Step response for Example 5.11

sysG=tf(1,[1 1 0]);
sysD=tf([1 2],[1 10]);
rltool(sysG,sysD)
By moving the pole of the lead compensator more to the left in order to pull the locus in that direction, and



selecting K = 91, we obtain

which will provide more damping than the previous design iteration. Figure 5.26 shows the root locus with the s-
plane regions superimposed on the same plot from RLTOOL. The transient response from RLTOOL is shown in Fig.
5.27 and demonstrates that the overshoot specification is now met (in fact exceeded) with Mp = 17% and the rise
time has degraded some from the previous iteration, but still satisfies the 0.3-sec specification.

Figure 5.26 Illustration of the tuning of the dynamic lead compensator using RLTOOL



Figure 5.27 Step response for K =91 and 

As stated earlier, the name lead compensation is a reflection of the fact that to sinusoidal signals, these transfer
functions impart phase lead. For example, the phase of Eq. (5.70) at s = jω is given by

If Z < p, then ø is positive, which by definition indicates phase lead. The details of design using the phase angle of
the lead compensation will be treated in Chapter 6.

5.4.2 Design Using Lag Compensation
Once satisfactory dynamic response has been obtained, perhaps by using one or more lead compensations, we may
discover that the low-frequency gain—the value of the relevant steady-state error constant, such as Kv—is still too
low. As we saw in Chapter 4, the system type, which determines the degree of the polynomial the system is capable
of following, is determined by the order of the pole of the transfer function D(s)G(s) at s = 0. If the system is Type 1,
the velocity-error constant, which determines the magnitude of the error to a ramp input, is given by lims→0
sD(s)G(s). In order to increase this constant, it is necessary to do so in a way that does not upset the already
satisfactory dynamic response. Thus, we want an expression for D(s) that will yield a significant gain at s = 0 to raise
Kv (or some other steady-state error constant) but is nearly unity (no effect) at the higher frequency ωn, where
dynamic response is determined. The result is



An example of lag compensation
where the values of z and p are small compared with ωn, yet D(0) = Z/p = 3 to 10 (the value depending on the
extent to which the steady-state gain requires boosting). Because z > p, the phase ø given by Eq. (5.71) is negative,
corresponding to phase lag. Hence a device with this transfer function is called lag compensation.

The effects of lag compensation on dynamic response can be studied by looking at the corresponding root locus.

Again, we take , include the lead compensation  that produced the locus in Fig.
5.26. With the gain of K = 91 from the previous tuned example, we find that the velocity constant is

Suppose we require that Kv = 70. To obtain this, we require a lag compensation with Z/p = 5 in order to increase
the velocity constant by a factor of 5. This can be accomplished with a pole at p= –0.01 and a zero at Z = –0.05,
which keeps the values of both Z and p very small so that D2 (s) would have little effect on the portions of the locus
representing the dominant dynamics around ωn = 7. The result is a lag compensation with the transfer function of 

 The root locus with both lead and lag compensation is plotted in Fig. 5.28 and we see that, for the
large scale on the left, the locus is not noticeably different from that in Fig. 5.26. This was the result of selecting very
small values for the pole and zero. With K = 91, the dominant roots are at –5.8 ±j6.5. The effect of the lag
compensation can be seen by expanding the region of the locus around the origin as shown on the right side of Fig.
5.28. Here we can see the circular locus that is a result of the small pole and zero. A closed-loop root remains very
near the lag-compensation zero at –0.05 + 0j; therefore, the transient response corresponding to this root will be a
very slowly decaying term, which will have a small magnitude because the zero will almost cancel the pole in the
transfer function. Still, the decay is so slow that this term may seriously influence the settling time. Furthermore, the
zero will not be present in the step response to a disturbance torque and the slow transient will be much more
evident there. Because of this effect, it is important to place the lag pole-zero combination at as high a frequency as
possible without causing major shifts in the dominant root locations.



Figure 5.28 Root locus with both lead and lag compensations

5.4.3 Design Using Notch Compensation
Suppose the design has been completed with lead and lag compensation given by

but is found to have a substantial oscillation at about 50 rad/sec when tested, because there was an unsuspected
flexibility of the noncollocated type at a natural frequency of ωn = 50. On reexamination, the plant transfer
function, including the effect of the flexibility, is estimated to be

Gain and phase stabilization
A mechanical engineer claims that some of the “control energy” has spilled over into the lightly damped flexible
mode and caused it to be excited. In other words, as we saw from the similar system whose root locus is shown in
Fig. 5.18, the very lightly damped roots at 50 rad/sec have been made even less damped or perhaps unstable by the
feedback. The best method to fix this situation is to modify the structure so that there is a mechanical increase in
damping. Unfortunately, this is often not possible because it is found too late in the design cycle. If it isn’t possible,
how else can this oscillation be corrected? There are at least two possibilities. An additional lag compensation might
lower the loop gain far enough that there is greatly reduced spillover and the oscillation is eliminated. Reducing the
gain at the high frequency is called gain stabilization. If the response time resulting from gain stabilization is too
long, a second alternative is to add a zero near the resonance so as to shift the departure angles from the resonant
poles so as to cause the closed-loop root to move into the LHP, thus causing the associated transient to die out. This
approach is called phase stabilization, and its action is similar to that of flexibility in the collocated motion control
discussed earlier. Gain and phase stabilization are explained more precisely by their effect on the frequency response
(Chapter 6) where these methods of stabilization will be discussed further. For phase stabilization, the result is called
a notch compensation, and an example has a transfer function

A necessary design decision is whether to place the notch frequency above or below that of the natural resonance of
the flexibility in order to get the necessary phase. A check of the angle of departure shows that with the plant as
compensated by Eq. (5.73) and the notch as given, it is necessary to place the frequency of the notch above that of
the resonance to get the departure angle to point toward the LHP. Thus the compensation is added with the transfer
function



The gain of the notch at s = 0 has been kept at 1 so as not to change the Kv. The new root locus is shown in Fig.
5.29 and the step response is shown in Fig 5.30. Note from the step response that the oscillations are well damped,
the rise-time specification is still met, but the overshoot has degraded. To rectify the increased overshoot and strictly
meet all the specifications, further iteration should be carried out in order to provide more damping of the fast roots
in the vicinity of ωn = 7 rad/sec.

When considering notch or phase stabilization, it is important to understand that its success depends on
maintaining the correct phase at the frequencyofthe resonance. If that frequency is subject to significant change,
which is common in many cases, then the notch needs to be removed far enough from the nominal frequency in
order to work for all cases. The result may be interference of the notch with the rest of the dynamics and poor
performance. As a general rule, gain stabilization is substantially more robust to plant changes than is phase
stabilization.

Figure 5.29 Root locus with lead, lag, and notch compensations



Figure 5.30 Step response with lead, lag, and notch compensations

Lead compensation can be implemented using analog electronics, but digital computers are preferred.

5.4.4 Analog and Digital Implementations
Lead compensation can be physically realized in many ways. In analog electronics a common method is to use an
operational amplifier, an example of which is shown

Figure 5.31 Possible circuit of a lead compensation

in Fig. 5.31. The transfer function of the circuit in Fig. 5.31 is readily found by the methods of Chapter 2 to be

where

If a design for D(s) is complete and a digital implementation is desired, then the technique of Chapter 4 can be



used by first selecting a sampling period Ts and then making substitution of  for s. For example, consider the

lead compensation . Then, since the rise time is about 0.3, a sampling period of six samples per rise
time results in the selection of Ts = 0.05 sec. With the substitution of  for s into this transfer function, the
discrete transfer function is

Clearing fractions and using the fact that operating on the time functions zu(kTs) = u(kTs + Ts), we see that Eq.
(5.78) is equivalent to the formula for the controller given by

The MATLAB commands to generate the discrete equivalent controller are
sysC=tf([1 2],[1 13]);
sysD=c2D(sysC,0.05)
Fig. 5.32 shows the SIMULINK diagram for implementing the digital controller. The result of the simulation is

contained in Fig. 5.33, which shows the comparison of analog and digital control outputs, and Fig. 5.34, which
shows the analog and digital control outputs.

Figure 5.32 SIMULINK® diagram for comparison of analog and digital control



Figure 5.33 Comparison of analog and digital control output responses

As with lead compensation, lag or notch compensation can be implemented using a digital computer and
following the same procedure. However, they, too, can be implemented using analog electronics, and a circuit
diagram of a lag network is given in Fig. 5.35. The transfer function of this circuit can be shown to be

Figure 5.34 Comparison of analog and digital control time histories



Figure 5.35 Possible circuit of lag compensation

where

Usually Ri = R2, so the high-frequency gain is unity, or a = 1, and the low-frequency increase in gain to enhance Kv

or other error constant is set by .

5.5 A Design Example Using the Root Locus

EXAMPLE 5.12 Control of a Small Airplane
For the Piper Dakota shown in Fig. 5.36, the transfer function between the elevator input and the pitch attitude is



Figure 5.36 Autopilot design in the Piper Dakota, showing elevator and trim tab Source: Photo courtesy of Denise
Freeman

where

θ = pitch attitude, degrees (see Fig. 10.30),
δe = elevator angle, degrees.

(For a more detailed discussion of longitudinal aircraft motion, refer to Section 10.3.)
1. Design an autopilot so that the response to a step elevator input has a rise time of 1 sec or less and an overshoot

less than 10%.
2. When there is a constant disturbing moment acting on the aircraft so that the pilot must supply a constant force on

the controls for steady flight, it is said to be out of trim. The transfer function between the disturbing moment and
the attitude is the same as that due to the elevator; that is,



Figure 5.37 Block diagrams for autopilot design: (a) open loop; (b) feedback scheme excluding trim control

where Md is the moment acting on the aircraft. There is a separate aerodynamic surface for trimming, δt, that can be
actuated and will change the moment on the aircraft. It is shown in the close-up of the tail in Fig. 5.36. Its influence
is depicted in the block diagram shown in Fig. 5.37(a). For both manual and autopilot flight, it is desirable to adjust
the trim so that there is no steady-state control effort required from the elevator (that is, so δe = 0). In manual flight,
this means that no force is required by the pilot to keep the aircraft at a constant altitude, whereas in autopilot
control it means reducing the amount of electrical power required and saving wear and tear on the servomotor that
drives the elevator. Design an autopilot that will command the trim δt so as to drive the steady-state value of δe to
zero for an arbitrary constant moment Md as well as meet the specifications in part (a).

Solution
1. To satisfy the requirement that the rise time tr ≤ 1 sec, Eq. (3.60) indicates that, for the ideal second-order case,
ωn must be greater than 1.8 rad/sec. And to provide an overshoot of less than 10%, Fig. (3.23) indicates that ζ
should be greater than 0.6, again, for the ideal second-order case. In the design process, we can examine a root
locus for a candidate for feedback compensation and then look at the resulting time response when the roots
appear to satisfy the design guidelines. However, since this is a fourth-order system, the design guidelines might
not be sufficient, or they might be overly restrictive.
To initiate the design process, it is often instructive to look at the system characteristics with proportional

feedback, that is, where D(s) = 1 in Fig. 5.37(b). The statements in MATLAB to create a root locus with respect to K
and a time response for the proportional feedback case with K = 0.3 are as follows:
numG = 160*conv([1 2.5],[1 0.7]);
denG = conv([1 5 40],[1 0.03 0.06]);
sysG = tf(numG,denG);
rlocus(sysG)
K = 0.3
sysL = K*sysG
sysH =tf(1,1);
[sysT] = feedback (sysL,sysH)
step(sysT)

The resulting root locus and time response are shown with dashed lines in Figs. 5.38 and 5.39. Notice from Fig. 5.38
that the two faster roots will always have a damping ratio ζ that is less than 0.4; therefore, proportional feedback
will not be acceptable. Also, the slower roots have some effect on the time response shown in Fig. 5.39 (dashed



curve) with K = 0.3 in that they cause a long-term settling. However, the dominating characteristic of the response
that determines whether or not the compensation meets the specifications is the behavior in the first few seconds,
which is dictated by the fast roots. The low damping of the fast roots causes the time response to be oscillatory,
which leads to excess overshoot and a longer settling time than desired.

Figure 5.38 Root loci for autopilot design

Figure 5.39 Time–response plots for autopilot design

We saw in Section 5.4.1 that lead compensation causes the locus to shift to the left, a change needed here to
increase the damping. Some trial and error will be required to arrive at a suitable pole and zero location. Values of z
= 3 and p = 20 in Eq. (5.70) have a substantial effect in moving the fast branches of the locus to the left; thus

Trial and error is also required to arrive at a value of K that meets the specifications. The statements in MATLAB to
add this compensation are



Lead compensation via MATLAB

numD=[1 3];
denD = [1 20];
sysD = tf(numD,denD);
sysDG = sysD*sysG
rlocus(sysDG)
K = 1.5;
sysKDG = K*sysDG;
sysH =tf(1,1)
sysT = feedback(sysKDG,sysH)
step(sysT)

The root locus for this case and the corresponding time response are also shown in Figs. 5.38 and 5.39 by the solid
lines. Note that the damping of the fast roots that corresponds to K = 1.5 is ζ = 0.52, which is slightly lower than
we would like; also, the natural frequency is ωn = 15 rad/sec, much faster than we need. However, these values are
close enough to meeting the guidelines to suggest a look at the time response. In fact, the time response shows that tr
≅ 0.9 sec and Mp ≅ 8%, both within the specifications, although by a very slim margin.

In sum, the primary design path consisted of adjusting the compensation to influence the fast roots, examining
their effect on the time response, and continuing the design iteration until the time specifications were satisfied.
2. The purpose of the trim is to provide a moment that will eliminate a steady-state nonzero value of the elevator.

Therefore, if we integrate the elevator command δe and feed this integral to the trim device, the trim should
eventually provide the moment required to hold an arbitrary altitude, thus eliminating the need for a steady-state
δe. This idea is shown in Fig. 5.40(a). If the gain on the integral term KI is small enough, the destabilizing effect of
adding the integral should be small and the system should behave approximately as before, since that feedback
loop has been left intact. The block diagram in Fig. 5.40(a) can be reduced to that in However, it is important to
keep in mind that, physically, there will be two outputs from the compensation: δe (used by the elevator
servomotor) and δt (used by the trim servomotor).

Figure 5.40 Block diagram showing the trim-command loop

Fig. 5.40(b) for analysis purposes by defining the compensation to include the PI form



The characteristic equation of the system with the integral term is

To aid in the design process, it is desirable to find the locus of roots with respect to KI, but the characteristic equation
is not in any of the root-locus forms given by Eqs. (5.6)–(5.9). Therefore, dividing by 1 + KDG yields

To put this system in root locus form, we define

In MATLAB, with  already computed as sysT, we construct the integrator as sysIn = tf(1,[1 0]), the loop gain
of the system with respect to KI as sysL = sysIn*sysT, and the root locus with respect to KI is found with rltool(sysL).

It can be seen from the locus in Fig. 5.41 that the damping of the fast roots decreases as KI increases, as is typically
the case when integral control is added. This shows the necessity for keeping the value of KI as low as possible. After
some trial and error, we select KI = 0.15. This value has little effect on the roots—note the roots are virtually on top
of the previous roots obtained without the integral term—and little effect on the short-term behavior of the step
response, as shown in Fig. 5.42(a), so the specifications are still met. KI = 0.15 does cause the longer-term attitude
behavior to approach the commanded value with no error, as we would expect with integral control. It also causes
δe to approach zero [Fig. 5.42(b) shows it settling in approximately 30 sec], which is good because this is the reason
for choosing integral control in the first place. The time for the integral to reach the correct value is predicted by the
new, slow real root that is added by the integral term at s = –0.14. The time constant associated with this root is τ =
10.14 ≅ 7 sec. The settling time to 1% for a root with σ = 0.14 is shown by Eq. (3.65) to be ts = 33 sec, which
agrees with the behavior in Fig. 5.42(b).



Figure 5.41 Root locus versus KI : assumes an added integral term and lead compensation with a gain K = 1.5; roots
for KI = 0.15 marked with •

5.6 Extensions of the Root-Locus Method
As we have seen in this chapter, the root-locus technique is a graphical scheme to show locations of possible roots of
an algebraic equation as a single real parameter varies. The method can be extended to consider negative values of
the parameter, a sequential consideration of more than one parameter, and systems with time delay. In this section
we examine these possibilities. Another interesting extension to nonlinear systems is in Chapter 9.

5.6.1 Rules for Plotting a Negative (0°) Root Locus
We now consider modifying the root-locus procedure to permit analysis of negative values of the parameter. In a
number of important cases, the transfer function of the plant has a zero in the RHP and is said to be nonminimum
phase. The result is often a locus of the form 1 +A(Zi –s)G’(s) = 1 + (– A)(s – Zi)G’(s) = 0, and in the standard
form the parameter K = –A must be negative. Another important issue calling for understanding the negative locus
arises in building a control system. In any physical implementation of a control system there are inevitably a number
of amplifiers and components whose gain sign must be selected. By Murphy’s Law,16 when the loop is first closed,
the sign will be wrong and the behavior will be unexpected unless the engineer understands how the response will
go if the gain which should be positive is instead negative. So what are the rules for a negative locus (a root locus
relative to a negative parameter)? First of all, Eqs. (5.6)-(5.9) must be satisfied for negative values of K, which
implies that L(s) is real and positive. In other words, for the negative locus, the phase condition is



Figure 5.42 Step response for the case with an integral term and 5° command

Definition of a Negative Root Locus

The angle of L(s) is 0° + 360° (l – 1) for s on the negative locus.

The steps for plotting a negative locus are essentially the same as for the positive locus, except that we search for
places where the angle of L(s) is 0° + 360° (l – 1)
instead of 180° + 360° (l – 1). For this reason, a negative locus is also referred to as a 0 ° root locus. This time we
find that the locus is to the left of an even number of real poles plus zeros (the number zero being even).
Computation of the asymptotes for large values of s is, as before, given by

but we modify the angles to be

(shifted by  from the 180° locus). Following are the guidelines for plotting a 0° locus:



RULE 1. (As before) The n branches of the locus leave the poles and m approach the zeros and n – m approach
asymptotes to infinity.
RULE 2. The locus is on the real axis to the left of an even number of real poles plus zeros.
RULE 3. The asymptotes are described by

Notice that the angle condition here is measured from 0° rather than from 180° as it was in the positive locus.
RULE 4. Departure angles from poles and arrival angles to zeros are found by searching in the near neighborhood of
the pole or zero where the phase of L(s)is 0°, so that

where q is the order of the pole or zero and l takes on q integer values such that the angles are between ±180°.
RULE 5. The locus can have multiple roots at points on the locus and the branches will approach a point of q roots
at angle separated by

and will depart at angles with the same separation.
The result of extending the guidelines for constructing root loci to include negative parameters is that we can

visualize the root locus as a set of continuous curves showing the location of possible solutions to the equation 1 +
KL(s) = 0 for all real values of K, both positive and negative. One branch of the locus departs from every pole in one
direction for positive values of K, and another branch departs from the same pole in another direction for negative K.
Likewise, all zeros will have two branches arriving, one with positive and the other with negative values of K. For
the n – m excess poles, there will be 2(n – m) branches of the locus asymptotically approaching infinity as K
approaches positive and negative infinity, respectively. For a single pole or zero, the angles of departure or arrival
for the two locus branches will be 180° apart. For a double pole or zero, the two positive branches will be 180°
apart and the two negative branches will be at 90° to the positive branches.

The negative locus is often required when studying a nonminimum phase transfer function. A well-known example
is that of the control of liquid level in the boiler of a steam power plant. If the level is too low, the actuator valve
adds (relatively) cold water to the boiling water in the vessel. The initial effect of the addition is to slow down the
rate of boiling, which reduces the number and size of the bubbles and causes the level to fall momentarily before the
added volume and heat cause it to rise again to the new increased level. This initial underflow is typical of
nonminimum phase systems. Another typical nonminimum phase transfer function is that of the altitude control of
an airplane. To make the plane climb, the upward deflection of the elevators initially causes the plane to drop
before it rotates and climbs. A Boeing 747 in this mode can be described by the scaled and normalized transfer



function

To put 1 + KG(s) in root-locus form, we need to multiply by –1 to get

EXAMPLE 5.13 Negative Root Locus for an Airplane
Sketch the negative root locus for the equation

Solution
RULE 1. There are three branches and two asymptotes.
RULE 2. A real-axis segment is to the right of s = 6 and a segment is to the left of s = 0.

RULE 3. The angles of the asymptotes are , 180°, and the center of the asymptotes is at 
.

RULE 4. The branch departs the pole at s = – 2 + j3 at the angle

The locus is plotted in Fig. 5.43 by MATLAB, which is seen to be consistent with these values.

Figure 5.43 Negative root locus corresponding to L(s) = (s – 6)/s(s2 + 4s + 13)



Δ 5.6.2 Consideration of Two Parameters

Successive loop closure
An important technique for practical control is to consider a structure with two loops, an inner loop around an
actuator or part of the process dynamics and an outer loop around the entire plant-plus-inner-controller. The process
is called successive loop closure. A controller is selected for the inner loop to be robust and give good response
alone, and then the outer loop can be designed to be simpler and more effective than if the entire control was done
without the aid of the inner loop. The use of the root locus to study such a system with two parameters can be
illustrated by a simple example.

EXAMPLE 5.14 Root Locus Using Two Parameters in Succession
A block diagram of a relatively common servomechanism structure is shown in Fig. 5.44. Here a speed-measuring
device (a tachometer) is available and the problem is to use the root locus to guide the selection of the tachometer
gain KT as well as the amplifier gain KA. The characteristic equation of the system in Fig. 5.44 is

which is not in the standard 1 + KL(s) form. After clearing fractions, the characteristic equation becomes

which is a function of two parameters, whereas the root locus technique can consider only one parameter at a time.
In this case, we set the gain KA to a nominal value of 4

Figure 5.44 Block diagram of a servomechanism structure, including tachometer feedback

and consider first the locus with respect to KT. With KA = 4, Eq. (5.87) can be put into root-locus form for a root-

locus study with respect to KT with , or

For this root locus, the zero is at s = 0 and the poles are at the roots of s2 + s + 4 = 0, or . A sketch
of the locus using the rules as before is shown in Fig. 5.45.



From this locus, we can select KT so the complex roots have a specific damping ratio or take any other value of KT
that would result in satisfactory roots for the characteristic equation. Consider KT = 1. Having selected a trial value of
KT, we can now re-form the equation to consider the effects of changing from KA = 4 by taking the new parameter

to be K1 so that KA = 4 + K1. The locus with respect to K1 is governed by Eq. (5.50), now with , so
that the locus is for the equation

Figure 5.45 Root locus of closed-loop poles of the system in Fig. 5.44 versus KT

Figure 5.46 Root locus versus K1 = KA + 4 after choosing KT = 1

Note that the poles of the new locus corresponding to Eq. (5.89) are the roots of the previous locus, which was
drawn versus KT, and the roots were taken at KT = 1. The locus is sketched in Fig. 5.46, with the previous locus
versus KT left dashed. We could draw a locus with respect to K1 for a while, stop, resolve the equation, and continue
the locus with respect to KT, in a sort of see-saw between the parameters KA and KT, and thus use the root locus to
study the effects of two parameters on the roots of a characteristic equation. Notice, of course, that we can also plot
the root locus for negative values of K1 and thus consider values of KA less than 4.



Δ 5.6.3 Time Delay

Time delays always reduce the stability of a system.

An example of a root locus with time delay
Time delays often arise in control systems, both from delays in the process itself and from delays in the processing of
sensed signals. Chemical plants often have processes with a time delay representing the time material takes to be
transported via pipes or other conveyer. In measuring the attitude of a spacecraft en route to Mars, there is a
significant time delay for the sensed quantity to arrive back on Earth due to the speed of light. There is also a small
time delay in any digital control system due to the cycle time of the computer and the fact that data is processed at
discrete intervals. Time delay always reduces the stability of a system; therefore, it is important to be able to analyze
its effect. In this section we discuss how to use the root locus for such analysis. Although an exact method of
analyzing time delay is available in the frequency-response methods to be described in Chapter 6, knowing several
different ways to analyze a design provides the control designer with more flexibility and an ability to check the
candidate solutions.

Consider the problem of designing a control system for the temperature of the heat exchanger described in Chapter
2. The transfer function between the control As and the measured output temperature Tm is described by two first-
order terms plus a time delay Td of 5 sec. The time delay results because the temperature sensor is physically located
downstream from the exchanger, so that there is a delay in its reading. The transfer function is

where the e–5s term arises from the time delay.17

The corresponding root-locus equations with respect to proportional gain K are

How would we plot the root locus corresponding to Eq. (5.91)? Since it is not a polynomial, we cannot proceed with
the methods used in previous examples. So we reduce the given problem to one we have previously solved by
approximating the nonrational function e-5s with a rational function. Since we are concerned with control systems
and hence typically with low frequencies, we want an approximation that will be good for small s.18 The most
common means for finding such an approximationis attributed to H. Padé. It consists of matching the series
expansion of the transcendental function e–5s with the series expansion of a rational function whose numerator is a
polynomial of degree p and whose denominator is a polynomial of degree q. The result is called a (p, q) Padé
approximant19 to e–5s. We will initially compute the approximants to e–s, and in the final result we will substitute
Tds for s to allow for any desired delay.



Padé approximant
The resulting (1, 1) Padé approximant (p = q = 1) is (see Appendix W5 for details)

If we assume p = q = 2, we have five parameters and a better match is possible. In this case we have the (2, 2)
approximant, which has the transfer function

The comparison of these approximants can be seen from their pole–zero configurations as plotted in Fig. 5.47. The
locations of the poles are in the LHP and the zeros are in the RHP at the reflections of the poles.

In some cases a very crude approximation is acceptable. For small delays the (0, 1) approximant can be used,
which is simply a first-order lag given by

Contrasting methods of approximating delay
To illustrate the effect of a delay and the accuracy of the different approximations, root loci for the heat exchanger

are drawn in Fig. 5.48 for four cases. Notice that, for low gains and up to the point where the loci cross the
imaginary axis, the approximate curves are very close to the exact. However, the (2, 2) Padé curve follows the exact
curve much further than does the first-order lag, and its increased accuracy would be useful if the delay were larger.
All analyses of the delay show its destabilizing effect and how it limits the achievable response time of the system.

Figure 5.47 Poles and zeros of the Padé approximants to e–s, with superscripts identifying the corresponding
approximants; for example, x1 represents the (1, 1) approximant



Figure 5.48 Root loci for the heat exchanger with and without time delay

While the Padé approximation leads to a rational transfer function, in theory it is not necessary for plotting a root
locus. A direct application of the phase condition can be used to plot portions of an exact locus of a system with
time delay. The phase-angle condition does not change if the transfer function of the process is nonrational, so we
still must search for values of s for which the phase is 180° + 360°l. If we write the transfer function as

the phase of G(s) is the phase of (s) minus λω for s = σ + jω. Thus we can formulate a root-locus problem as
searching for locations where the phase of (s) is 180° + Tdω + 360° (l – 1). To plot such a locus, we would fix ω
and search along a horizontal line in the s-plane until we found a point on the locus, then raise the value of ω,
change the target angle, and repeat. Similarly, the departure angles are modified by Tdω, where ω is the imaginary
part of the pole from which the departure is being computed. MATLAB does not provide a program to plot the root
locus of systems with delay, so we must be satisfied here with Padé approximants. Since it is possible to plot the
frequency response (or Bode plot) of delay exactly and easily, if the designer feels that the Padé approximant is not
satisfactory, the expedient approach is to use the frequency-response design methods described in Chapter 6.

5.7 Historical Perspective
In Chapter 1 we gave an overview of the early development of feedback control analysis and design including
frequency response and root-locus design. Root-locus design was introduced in 1948 by Walter R. Evans, who was
working in the field of guidance and control of aircraft and missiles at the Autonetics Division of North American
Aviation (now a part of The Boeing Co.). Many of his problems involved unstable or neutrally stable dynamics,
which made the frequency methods difficult, so he suggested returning to the study of the characteristic equation that
had been the basis of the work of Maxwell and Routh nearly 70 years earlier. However, rather than treat the
algebraic problem, Evans posed it as a graphical problem in the complex s-plane. Evans was also interested in the
character of the dynamic response of the aerospace vehicles being controlled; therefore he wanted to solve for the
closed loop roots in order to understand the dynamic behavior. To facilitate this understanding, Evans developed
techniques and rules allowing one to follow graphically the paths of the roots of the characteristic equation as a
parameter was changed. His method is suitable for design as well as for stability analysis and remains an important
technique today. Originally, it enabled the solutions to be carried out by hand since computers were not available to



design engineers during the 1940s; however, they remain an important tool today for aiding the design process. As
we learned in this chapter, Evans method involves finding a locus of points where the angles to the other poles and
zeros add up to a certain value. To aid in this determination, Evans invented the “Spirule” that is shown in Fig. 5.49.
The device could be used to measure the angles and to perform the addition or subtraction very quickly. A skilled
controls engineer could evaluate whether the angle criterion was met for a fairly complex design problem in a few
seconds. In addition, the spiral curve on the rectangular portion of the device allowed the designer to multiply
distances in order to determine the gain at a selected spot on the locus in a manner analogous to a slide rule.

Figure 5.49 A Spirule: used to sketch a root locus before computers Source: Photo courtesy of David Powell

Evans was clearly motivated to aid the engineer who had no access to a computer in their design and analysis of
control systems. Computers were virtually nonexistent in the 1940s. Large mainframe computers started being used
somewhat for large-scale data processing by corporations in the 1950s, but there were no courses in engineering
programs that taught the use of computers for analysis and design until about 1960. Engineering usage became
commonplace through the 1960s, but the process involved submitting a job to a mainframe computer via a large
deck of punched cards and waiting for the results for hours or overnight, a situation that was not conducive to any
kind of design iteration. Mainframe computers in that era were just transitioning from vacuum tubes to transistors,
random access memory would be in the neighborhood of 32k!, and the long-term data storage was by a magnetic
tape drive. Random access drums and disks arrived during that decade, thus greatly speeding up the process of
retrieving data. A big step forward in computing for engineers occurred when the batch processing based on punched
cards was replaced by time share with many users at remote terminals during the late 1960s and early 1970s.
Mechanical calculators were also available through the 1940s, 1950s and 1960s that could add, subtract, multiply,
and divide and cost about $2000 in 1960. The very high-end devices could also do square roots. These machines
were the basis for the complex computations done at Los Alamos during World War II. They were the size of a
typewriter, had a large carriage that went back and forth during the calculations, and would occasionally ring a bell
at the end of the carriage stroke (see Fig. 5.50). They were accurate to eight or more decimal places and were often
used after the advent of computers to perform spot checks of the results, but a square root could take tens of seconds
to complete, the machines were noisy, and the process was tedious. Enterprising engineers learned which particular
calculations played certain tunes and it was not unusual to hear favorites, such as Jingle Bells.



Figure 5.50 The Frieden mechanical calculator Source: Courtesy of the Computer History Museum

The personal computer arrived in the late 1970s, although the ones at that time utilized an audio cassette tape for
data storage and had very limited random access memory, usually less than 16k. But as these desktop machines
matured over the ensuing decade, the age of the computer for engineering design came into its own. First came the
floppy disk for long-term data storage, followed by the hard drive toward the mid- and late-1980s. Initially, the
BASIC and APL languages was the primary methods of programming. MATLAB was introduced by Cleve Moler in the
1970s. Two things happened in 1984: Apple introduced the point and click MacIntosh and PC-MATLAB was
introduced by The Mathworks, which was specifically founded to commercialize MATLAB on personal computers.
Initially, The Mathworks’MAT-LAB was primarily written for control system analysis, but has branched out into many
fields since the initial introduction. At that point in the evolution, the engineer could truly perform design iterations
with little or no time between trials. Other similar programs were available for mainframe computers before that
time; two being CTRL-C and MATRIXx; however, those programs have not adapted to the personal computer
revolution and are fading from general use.

SUMMARY
• A root locus is a graph of the values of s that are solutions to the equation

1 + KL(s) = 0
with respect to a real parameter K.

1. When K > 0, s is on the locus if ∠L(s) = 180°, producing a 180° or positive K locus.
2. When K < 0, s is on the locus if ∠L(s) = 0°, producing a 0° or negative K locus.
• If KL(s)is the loop transfer function of a system with negative feedback, then the characteristic equation of the

closed-loop system is
1 + KL(s) = 0

and the root-locus method displays the effect of changing the gain K on the closed-loop system roots.
• A specific locus for a system sysL in MATLAB notation can be plotted by rlocus(sysL) and rltool(sysL)
• A working knowledge of how to determine a root locus is useful for verifying computer results and for suggesting

design alternatives.
• The key features for the aid in sketching a 180° locus are as follows:
1. The locus is on the real axis to the left of an odd number of poles plus zeros.
2. Of the n branches, m approach the zeros of L(s) and n – m branches approach asymptotes centered at α and

leaving at angles øl:



3. Branches of the locus depart from the poles of order q and arrive at the zeros of order q with angles

where

• The parameter K corresponding to a root at a particular point s0 on the locus can be found from

where |L(s0)| can be found graphically by measuring the distances from s0 to each of the poles and zeros.
• For a locus drawn with rlocus(sysL), the parameter and corresponding roots can be found with [K, p] =

rlocfind(sysL) or with rltool.
• Lead compensation, given by

approximates proportional–derivative (PD) control. For a fixed error coefficient, it generally moves the locus to
the left and improves the system damping.

• Lag compensation, given by

approximates proportional-integral (PI) control. It generally improves the steady-state error for fixed speed of
response by increasing the low-frequency gain and typically degrades stability.



Δ• The root locus can be used to analyze successive loop closures by studying two (or more) parameters in
succession.

Δ• The root locus can be used to approximate the effect of time delay.

REVIEW QUESTIONS
1. Give two definitions for the root locus.
2. Define the negative root locus.
3. Where are the sections of the (positive) root locus on the real axis?
4. What are the angles of departure from two coincident poles at s = –a on the real axis? There are no poles or

zeros to the right of –a.
5. What are the angles of departure from three coincident poles at s = –a on the real axis? There are no poles or

zeros to the right of –a.
6. What is the principal effect of a lead compensation on a root locus?
7. What is the principal effect of a lag compensation on a root locus in the vicinity of the dominant closed-loop

roots?
8. What is the principal effect of a lag compensation on the steady-state error to a polynomial reference input?
9. Why is the angle of departure from a pole near the imaginary axis especially important?
10. Define a conditionally stable system.
11. Show, with a root-locus argument, that a system having three poles at the origin MUST be conditionally stable.

PROBLEMS

Problems for Section 5.1: Root Locus of a Basic Feedback System
5.1 Set up the listed characteristic equations in the form suited to Evans’s root-locus method. Give L(s), a(s), and b(s)

and the parameter K in terms of the original parameters in each case. Be sure to select K so that a(s) and b(s) are
monic in each case and the degree of b(s) is not greater than that of a(s).
(a) s + (1/τ) = 0 versus parameter τ
(b) s2 + cs + c + 1 = 0 versus parameter c
(c) (s + c)3 + A(Ts + 1) = 0

(i) versus parameter A,
(ii) versus parameter T,
(iii) versus the parameter c, if possible. Say why you can or cannot. Can a plot of the roots be drawn versus c
for given constant values of A and T by any means at all?

(d) . Assume that , where c(s) and d(s) are monic polynomials with the
degree of d(s) greater than that of c(s).
(i) versus kp

(ii) versus kI

(iii) versus kD



(iv) versus τ

Problems for Section 5.2: Guidelines for Sketching a Root Locus
5.2 Roughly sketch the root loci for the pole–zero maps as shown in Fig. 5.51 without the aid of a computer. Show

your estimates of the center and angles of the asymptotes, a rough evaluation of arrival and departure angles for
complex poles and zeros, and the loci for positive values of the parameter K. Each pole–zero map is from a
characteristic equation of the form

where the roots of the numerator b(s) are shown as small circles o and the roots of the denominator a(s) are shown
as ×’s on the s-plane. Note that in Fig. 5.51(c) there are two poles at the origin.

Figure 5.51 Pole–zero maps

5.3 For the characteristic equation

(a) Draw the real-axis segments of the corresponding root locus.
(b) Sketch the asymptotes of the locus for K → ∞.
(c) Sketch the locus?
(d) Verify your sketch with a MATLAB plot.

5.4 Real poles and zeros. Sketch the root locus with respect to K for the equation 1 + KL(s) = 0 and the listed
choices for L(s). Be sure to give the asymptotes, and the arrival and departure angles at any complex zero or pole.



After completing each hand sketch, verify your results using MATLAB. Turn in your hand sketches and the
MATLAB results on the same scales.

5.5 Complex poles and zeros. Sketch the root locus with respect to K for the equation 1 + KL(s) = 0 and the listed
choices for L(s). Be sure to give the asymptotes and the arrival and departure angles at any complex zero or pole.
After completing each hand sketch, verify your results using MATLAB. Turn in your hand sketches and the
MATLAB results on the same scales.

5.6 Multiple poles at the origin. Sketch the root locus with respect to K for the equation 1 + KL(s) = 0 and the listed
choices for L(s). Be sure to give the asymptotes and the arrival and departure angles at any complex zero or pole.
After completing each hand sketch, verify your results using MATLAB. Turn in your hand sketches and the
MATLAB results on the same scales.

5.7 Mixed real and complex poles. Sketch the root locus with respect to K for the equation 1 + KL(s) = 0 and the
listed choices for L(s). Be sure to give the asymptotes and the arrival and departure angles at any complex zero or
pole. After completing each hand sketch, verify your results using MATLAB. Turn in your hand sketches and the
MATLAB results on the same scales.



5.8 RHP and zeros. Sketch the root locus with respect to K for the equation 1 + KL(s) = 0 and the listed choices for
L(s). Be sure to give the asymptotes and the arrival and departure angles at any complex zero or pole. After
completing each hand sketch, verify your results using MATLAB. Turn in your hand sketches and the MATLAB
results on the same scales.

 the model for a case of magnetic levitation with lead compensation.

; the magnetic levitation system with integral control and lead compensation.

 What is the largest value that can be obtained for the damping ratio of the stable
complex roots on this locus?

5.9 Put the characteristic equation of the system shown in Fig. 5.52 in root-locus form with respect to the parameter
α, and identify the corresponding L(s), a(s), and b(s). Sketch

Figure 5.52 Control system for Problem 5.9

the root locus with respect to the parameter α, estimate the closed-loop pole locations, and sketch the corresponding
step responses when α = 0, 0.5, and 2. Use MATLAB to check the accuracy of your approximate step responses.
5.10 Use the MATLAB function rltool to study the behavior of the root locus of 1 + KL(s) for

as the parameter a is varied from 0 to 10, paying particular attention to the region between 2.5 and 3.5. Verify that a
multiple root occurs at a complex value of s for some value of a in this range.



5.11 Use Routh’s criterion to find the range of the gain K for which the systems in Fig. 5.53 are stable, and use the
root locus to confirm your calculations.

Figure 5.53 Feedback systems for Problem 5.11

5.12 Sketch the root locus for the characteristic equation of the system for which

and determine the value of the root-locus gain for which the complex conjugate poles have a damping ratio of
0.5.

5.13 For the system in Fig. 5.54,
(a) Find the locus of closed-loop roots with respect to K.
(b) Is there a value of K that will cause all roots to have a damping ratio greater than 0.5?
(c) Find the values of K that yield closed-loop poles with the damping ratio ζ = 0.707.
(d) Use MATLAB to plot the response of the resulting design to a reference step.

Figure 5.54 Feedback system for Problem 5.13

Figure 5.55 Feedback system for Problem 5.14

5.14 For the feedback system shown in Fig. 5.55, find the value of the gain K that results in dominant closed-loop
poles with a damping ratio ζ = 0.5.

Problems for Section 5.3: Selected Illustrative Root Loci
5.15 A simplified model of the longitudinal motion of a certain helicopter near hover has the transfer function



and the characteristic equation 1 + D(s)G(s) =0. Let D(s) = kp at first.
(a) Compute the departure and arrival angles at the complex poles and zeros.
(b) Sketch the root locus for this system for parameter K = 9.8 kp. Use axes –4 ≤ x ≤ 4; – 3 ≤ y ≤ 3.
(c) Verify your answer using MATLAB. Use the command axis([–4 4 –3 3]) to get the right scales.
(d) Suggest a practical (at least as many poles as zeros) alternative compensation D(s) that will at least result in a

stable system.
5.16 (a) For the system given in Fig. 5.56, plot the root locus of the characteristic equation as the parameter K1 is

varied from 0 to ∞ with λ = 2. Give the corresponding L(s), a(s), and b(s).
(b) Repeat part (a) with λ = 5. Is there anything special about this value?
(c) Repeat part (a) for fixed K1 = 2, with the parameter K = λ varying from 0 to ∞.

Figure 5.56 Control system for Problem 5.16

5.17 For the system shown in Fig. 5.57, determine the characteristic equation and sketch the root locus of it with
respect to positive values of the parameter c. Give L(s), a(s), and b(s), and be sure to show with arrows the
direction in which c increases on the locus.

Figure 5.57 Control system for Problem 5.17

5.18 Suppose you are given a system with the transfer function

where Z and p are real and Z > p. Show that the root locus for 1 + KL(s) = 0 with respect to K is a circle
centered at Z with radius given by

r = (z – p).

Hint: Assume s + Z = rejø and show that L(s) is real and negative for real ø under this assumption.
5.19 The loop transmission of a system has two poles at s = – 1 and a zero at s = –2. There is a third real-axis pole



p located somewhere to the left of the zero. Several different root loci are possible, depending on the exact
location of the third pole. The extreme cases occur when the pole is located at infinity or when it is located at s
= –2. Give values for p and sketch the three distinct types of loci.

5.20 For the feedback configuration of Fig. 5.58, use asymptotes, center of asymptotes, angles of departure and
arrival, and the Routh array to sketch root loci for the characteristic equations of the listed feedback control
systems versus the parameter K. Use MATLAB to verify your results.

Figure 5.58 Feedback system for Problem 5.20

5.21 Consider the system in Fig. 5.59.
(a) Using Routh’s stability criterion, determine all values of K for which the system is stable.
(b) Use MATLAB to draw the root locus versus K and find the values of K at the imaginary-axis crossings.

Figure 5.59 Feedback system for Problem 5.21

Problems for Section 5.4: Design Using Dynamic Compensation
5.55 Let

Using root-locus techniques, find values for the parameters a, b, and K of the compensation D(s) that will
produce closed-loop poles at s = –1 ± j for the system shown in Fig. 5.60.



Figure 5.60 Unity feedback system for Problems 5.22 to 5.28 and 5.33

5.23 Suppose that in Fig. 5.60

Sketch the root locus with respect to K of the characteristic equation for the closed-loop system, paying
particular attention to points that generate multiple roots if KL(s) = D(s)G(s).

5.24 Suppose the unity feedback system of Fig. 5.60 has an open-loop plant given by G(s) = 1/s2. Design a lead
compensation  to be added in series with the plant so that the dominant poles of the closed-loop
system are located at s = – 2 ± 2j.

5.25 Assume that the unity feedback system of Fig. 5.60 has the open-loop plant

Design a lag compensation to meet the following specifications:
• The step response settling time is to be less than 5 sec.
• The step response overshoot is to be less than 17%.
• The steady-state error to a unit-ramp input must not exceed 10%.

5.26 A numerically controlled machine tool positioning servomechanism has a normalized and scaled transfer
function given by

Performance specifications of the system in the unity feedback configuration of Fig. 5.60 are satisfied if the
closed-loop poles are located at .

(a) Show that this specification cannot be achieved by choosing proportional control alone, D(s) = kp.

Figure 5.61 Elementary magnetic suspension

(b) Design a lead compensator  that will meet the specification.



5.27 A servomechanism position control has the plant transfer function

You are to design a series compensation transfer function D(s) in the unity feedback configuration to meet the
following closed-loop specifications:
• The response to a reference step input is to have no more than 16% overshoot.
• The response to a reference step input is to have a rise time of no more than 0.4 sec.
• The steady-state error to a unit ramp at the reference input must be less than 0.02.

(a) Design a lead compensation that will cause the systemtomeet the dynamic response specifications.
(b) If D(s)is proportional control, D(s) = kp, what is the velocity constant Kv?
(c) Design a lag compensation to be used in series with the lead you have designed to cause the system to meet

the steady-state error specification.
(d) Give the MATLAB plot of the root locus of your final design.
(e) Give the MATLAB response of your final design to a reference step.

5.28 Assume that the closed-loop system of Fig. 5.60 has a feed-forward transfer function

Design a lag compensation so that the dominant poles of the closed-loop system are located at s = –1 ± j and
the steady-state error to a unit-ramp input is less than 0.2.

5.29 An elementary magnetic suspension scheme is depicted in Fig. 5.61. For small motions near the reference
position, the voltage e on the photo detector is related to the ball displacement x (in meters) by e = 100x. The
upward force (in newtons) on the ball caused by the current i (in amperes) may be approximated by f = 0.5i +
20x. The mass of the ball is 20 g and the gravitational force is 9.8 N/kg. The power amplifier is a voltage-to-
current device with an output (in amperes) of i = u + V0.

(a) Write the equations of motion for this set-up.
(b) Give the value of the bias V0 that results in the ball being in equilibrium at x = 0.
(c) What is the transfer function from u to e?
(d) Suppose that the control input u is given by u = –Ke. Sketch the root locus of the closed-loop system as a

function of K.

Figure 5.62 Block diagram for rocket-positioning control system



(e) Assume that a lead compensation is available in the form . Give values of K, Z, and p that
yield improved performance over the one proposed in part (d).

5.30 A certain plant with the nonminimum phase transfer function

is in a unity positive feedback system with the controller transfer function D(s).
(a) Use MATLAB to determine a (negative) value for D(s) = K so that the closed-loop system with negative

feedback has a damping ratio ζ = 0.707.
(b) Use MATLAB to plot the system’s response to a reference step.

5.31 Consider the rocket-positioning system shown in Fig. 5.62.
(a) Show that if the sensor that measures x has a unity transfer function, the lead compensator

   stabilizes the system.
(b) Assume that the sensor transfer function is modeled by a single pole with a 0.1 sec time constant and unity DC

gain. Using the root-locus procedure, find a value for the gain K that will provide the maximum damping ratio.

Figure 5.63 Control system for Problem 5.32

5.32 For the system in Fig. 5.63,
(a) Find the locus of closed-loop roots with respect to K.
(b) Find the maximum value of K for which the system is stable. Assume K = 2 for the remaining parts of this

problem.
(c) What is the steady-state error (e = r – y) for a step change in r?
(d) What is the steady-state error in y for a constant disturbance w1?
(e) What is the steady-state error in y for a constant disturbance w2?
(f) If you wished to have more damping, what changes would you make to the system?

5.33 Consider the plant transfer function



to be put in the unity feedback loop of Fig. 5.60. This is the transfer function relating the input force u(t) and
the position y(t) of mass M in the noncollocated sensor and actuator problem. In this problem we will use root-
locus techniques to design a controller D(s) so that the closed-loop step response has a rise time of less than 0.1
sec and an overshoot of less than 10%. You may use MATLAB for any of the following questions:

(a) Approximate G(s) by assuming that m ≅ 0, and let M = 1, K = 1, b = 0.1, and D(s) = K. Can K be chosen to
satisfy the performance specifications? Why or why not?

(b) Repeat part (a) assuming that D (s) = K(s + Z), and show that K and Z can be chosen to meet the
specifications.

(c) Repeat part (b), but with a practical controller given by the transfer function

Pick p so that the values for K and Z computed in part (b) remain more or less valid.
(d) Now suppose that the small mass m is not negligible, but is given by m = M/10. Check to see if the controller

you designed in part (c) still meets the given specifications. If not, adjust the controller parameters so that the
specifications are met.

5.34 Consider the Type 1 system drawn in Fig. 5.64. We would like to design the compensation D(s) to meet the
following requirements: (1) The steady-state value of y due to a constant unit disturbance w should be less than 

, and (2) the damping ratio ζ = 0.7. Using root-locus techniques,
(a) Show that proportional control alone is not adequate.
(b) Show that proportional-derivative control will work.
(c) Find values of the gains kp and kD for D (s) = kp + kDs that meet the design specifications.

Figure 5.64 Control system for Problem 5.34



Figure 5.65 Positioning servomechanism Source: Reprinted from Clark, 1962, with permission

Problems for Section 5.5: A Design Example Using the Root Locus
5.35 Consider the positioning servomechanism system shown in Fig. 5.65, where

(a) What is the range of the amplifier gain KA for which the system is stable? Estimate the upper limit graphically
using a root-locus plot.

(b) Choose a gain KA that gives roots at ζ = 0.7. Where are all three closed-loop root locations for this value of
KA?

5.36 We wish to design a velocity control for a tape-drive servomechanism. The transfer function from current I(s) to
tape velocity Ω (s) (in millimeters per millisecond per ampere) is

We wish to design a Type 1 feedback system so that the response to a reference step satisfies
tr ≤ 4 msec, ts ≤ 15 msec, Mp ≤ 0.05.



(a) Use the integral compensator kI/s to achieve Type 1 behavior, and sketch the root locus with respect to kI.
Show on the same plot the region of acceptable pole locations corresponding to the specifications.

(b) Assume a proportional-integral compensator of the form kp (s + α)/s, and select the best possible values of kp
and α you can find. Sketch the root-locus plot of your design, giving values for kp and α, and the velocity
constant Kv your design achieves. On your plot, indicate the closed-loop poles with a dot (•) and include the
boundary of the region of acceptable root locations.

5.37 The normalized, scaled equations of a cart as drawn in Fig. 5.66 of mass mc holding an inverted uniform
pendulum of mass mp and length l with no friction are

where  is a mass ratio bounded by 0 < β < 0.75. Time is measured in terms of τ = ωot where 

. The cart motion y is measured in units of pendulum length as  and the input is force
normalized by the system weight . These equations can be used to compute the transfer functions

In this problem you are to design a control for the system by first closing a loop around the pendulum, Eq. (5.96),
and then, with this loop closed, closing a second loop around the cart plus pendulum, Eq. (5.97). For this problem,
let the mass ratio be mc = 5mp.

(a) Draw a block diagram for the system with V input and both Y and Θ as outputs.

(b) Design a lead compensation  for the Θ loop to cancel the pole at s = – 1 and place the two
remaining poles at –4 ± j4. The new control is U(s), where the force is V (s) = U(s) + D(s)Θ(s). Draw the
root locus of the angle loop.

(c) Compute the transfer function of the new plant from U to Y with D(s) in place.
(d) Design a controller Dc(s) for the cart position with the pendulum loop closed. Draw the root locus with

respect to the gain of Dc(s).
(e) Use MATLAB to plot the control, cart position, and pendulum position for a unit step change in cart position.



Figure 5.66 Figure of cart pendulum for Problem 5.37

5.38 Consider the 270-ft U.S. Coast Guard cutter Tampa (902) shown in Fig. 5.67. Parameter identification based on
sea-trials data (Trankle, 1987) was used to estimate the hydro-dynamic coefficients in the equations of motion.
The result is that the response of the heading angle of the ship ψ to rudder angle δ and wind changes w can be
described by the second-order transfer functions

where
ψ = heading angle, rad,
r = reference heading angle, rad,
r = yaw rate, rad/sec,
δ = rudder angle, rad,
w = wind speed, m/sec.
(a) Determine the open-loop settling time of r for a step change in δ.
(b) In order to regulate the heading angle ψ, design a compensator that uses ψ and the measurement provided by

a yaw-rate gyroscope (that is, by ψ = r). The settling time of ψ to a step change in ψr is specified to be less
than 50 sec, and for a 5° change in heading, the maximum allowable rudder angle deflection is specified to be
less than 10°.

(c) Check the response of the closed-loop system you designed in part (b) to a wind gust disturbance of 10 m/sec.
(Model the disturbance as a step input.) If the steady-state value of the heading due to this wind gust is more
than 0.5°, modify your design so that it meets this specification as well.



Figure 5.67 USCG cutter Tampa (902) for Problem 5.38

5.39 Golden Nugget Airlines has opened a free bar in the tail of their airplanes in an attempt to lure customers. In
order to automatically adjust for the sudden weight shift due to passengers rushing to the bar when it first opens,
the airline is mechanizing a pitch-attitude autopilot. Figure 5.68 shows the block diagram of the proposed
arrangement. We will model the passenger moment as a step disturbance Mp(s) = M0/s, with a maximum
expected value for M0 of 0.6.

(a) What value of K is required to keep the steady-state error in θ to less than 0.02 rad (≅ 1°)? (Assume the system
is stable.)

(b) Draw a root locus with respect to K.
(c) Based on your root locus, what is the value of K when the system becomes unstable?
(d) Suppose the value of K required for acceptable steady-state behavior is 600. Show that this value yields an

unstable system with roots at
s = –2.9,–13.5,+1.2 ± 6.6j.

(e) You are given a black box with rate gyro written on the side and told that, when installed, it provides a perfect
measure of , with output KT . Assume that K = 600 as in part (d) and draw a block diagram indicating how
you would incorporate the rate gyro into the autopilot. (Include transfer functions in boxes.)

(f) For the rate gyro in part (e), sketch a root locus with respect to KT.
(g) What is the maximum damping factor of the complex roots obtainable with the configuration in part (e)?
(h) What is the value of KT for part (g)?
(i) Suppose you are not satisfied with the steady-state errors and damping ratio of the system with a rate gyro in

parts (e) through (h). Discuss the advantages and disadvantages of adding an integral term and extra lead
networks in the control law. Support your comments using MATLAB or with rough root-locus sketches.



Figure 5.68 Golden Nugget Airlines autopilot

5.40 Consider the instrument servomechanism with the parameters given in Fig. 5.69. For each of the following
cases, draw a root locus with respect to the parameter K, and indicate the location of the roots corresponding to
your final design:

(a) Lead network: Let

Figure 5.69 Control system for Problem 5.40

Select z and K so that the roots nearest the origin (the dominant roots) yield

(b) Output-velocity (tachometer) feedback: Let
H(s) = 1 + KTs and D(s) = K.

Select KT and K so that the dominant roots are in the same location as those of part (a). Compute Kv. If you can,
give a physical reason explaining the reduction in Kv when output derivative feedback is used.

(c) Lag network: Let

Using proportional control, it is possible to obtain a Kv = 12 at ζ = 0.4. Select K and p so that the dominant



roots correspond to the proportional-control case but with Kv = 100 rather than Kv = 12.

Problems for Section 5.6: Extensions of the Root Locus Method
5.41 Plot the loci for the 0° locus or negative K for each of the following:

(a) The examples given in Problem 5.3
(b) The examples given in Problem 5.4
(c) The examples given in Problem 5.5
(d) The examples given in Problem 5.6
(e) The examples given in Problem 5.7
(f) The examples given in Problem 5.8

5.42 Suppose you are given the plant

where α is a system parameter that is subject to variations. Use both positive and negative root-locus methods to
determine what variations in α can be tolerated before instability occurs.

5.43 Consider the system in Fig. 5.70.
(a) Use Routh’s criterion to determine the regions in the (K1, K2) plane for which the system is stable.
(b) Use RLTOOL to verify your answer to part (a).

Figure 5.70 Feedback system for Problem 5.43

5.44 The block diagram of a positioning servomechanism is shown in Fig. 5.71.
(a) Sketch the root locus with respect to K when no tachometer feedback is present (KT = 0).
(b) Indicate the root locations corresponding to K = 16 on the locus of part (a). For these locations, estimate the

transient-response parameters tr, Mp, and ts. Compare your estimates to measurements obtained using the step
command in MATLAB.

(c) For K = 16, draw the root locus with respect to KT.
(d) For K = 16 and with KT set so that Mp = 0.05 (ζ = 0.707), estimate tr and ts. Compare your estimates to the

actual values of tr and ts obtained using MATLAB.
(e) For the values of K and KT in part (d), what is the velocity constant Kv of this system?



Figure 5.71 Control system for Problem 5.44

5.45 Consider the mechanical system shown in Fig. 5.72, where g and a0 are gains. The feedback path containing gs
controls the amount of rate feedback. For a fixed value of a0, adjusting g corresponds to varying the location of a
zero in the s-plane.

(a) With g = 0 and τ = 1, find a value for a0 such that the poles are complex.
(b) Fix a0 at this value, and construct a root locus that demonstrates the effect of varying g.

Figure 5.72 Control system for Problem 5.45

5.46 Sketch the root locus with respect to K for the system in Fig. 5.73 using the Padé(1,1) approximation and the
first-order lag approximation. For both approximations, what is the range of values of K for which the system is
unstable?

Figure 5.73 Control system for Problem 5.46

Δ 5.47 Prove that the plant G(s) = 1/s3 cannot be made unconditionally stable if pole cancellation is forbidden.
Δ 5.48 For the equation 1 + KG(s), where

use MATLAB to examine the root locus as a function of K for p in the range from p = 1 to p = 10, making sure
to include the point p = 2.



1 In the most common case, L(s) is the loop transfer function of the feedback system and K is the gain of the controller-plant combination. However,
the root locus is a general method suitable for the study of any polynomial and any parameter that can be put in the form of Eq. (5.3).
2 Monic means that the coefficient of the highest power of s is 1.
3 If L(s) is the transfer function of a physical system, it is necessary that n ≥ m or else the system would have an infinite response to a finite input. If
the parameter should be chosen so that n < m, then we can consider the equivalent equation 1 + K–1 L(s)– = 0.
4 If K is positive, the locus is called the “positive” locus. We will consider later the simple changes if K < 0, resulting in a “negative” locus.
5 Garbage in, Garbage out.
6 The graphical evaluation of the magnitude and phase of a complex number is reviewed in Appendix WD, Section 3.
7 The negative locus will be considered in Section 5.6.
8 This approximation can be obtained by dividing a(s) by b(s) and matching the dominant two terms (highest powers in s) to the expansion of (– α)n-
m.
9 Given a specific physical system, this number would be selected with consideration of the specified rise time of the design or the maximum control
signal (control authority) of the actuator.
10 You can prove that the path is a circle by assuming that s + 1 = eiθ and showing that the equation has a solution for a range of positive K and
real θ under this assumption. (See Problem 5.18.)
11 The use of z here for zero is not to be confused with the use of the operator z used in defining the discrete transfer function needed to describe
digital controllers.
12 The shape of this special root locus is a trisectrix of Maclaurin, a plane curve that can be used to trisect an angle.
13 Typical of the satellite attitude control, where the flexibility arises from solar panels and both actuator and sensor act on the main body of the
satellite.
14 Typical of the satellite, where the flexibility arises from a scientific package whose attitude is to be controlled from a command body coupled to
the package by a flexible strut. This case is also typical of computer hard-disk read/write head control, where the motor is on one end of the arm and
the head is on the other.
15 The names of these compensation schemes derive from their frequency (sinusoidal) responses, wherein the output leads the input in one case (a
positive phase shift) and lags the input in another (a negative phase shift). The frequency response of the third looks as if a notch had been cut in an
otherwise flat frequency response. See Chapter 6.
16 Anything that can go wrong, will go wrong.
17 Time delay is often referred to as “transportation lag” in the process industries.
18 The nonrational function e–s is analytic for all finite values of s and so may be approximated by a rational function. If nonanalytic functions such
as  were involved, great caution would be needed in selecting an approximation valid near s = 0.
19 The (p,p) Padé approximant for a delay of T seconds is most commonly used and is computed by the MATLAB command [num,den] = pade(T, P).



6 The Frequency-Response Design Method

A Perspective on the Frequency-Response Design Method
The design of feedback control systems in industry is probably accomplished using frequency-response methods more
often than any other. Frequency-response design is popular primarily because it provides good designs in the face of
uncertainty in the plant model. For example, for systems with poorly known or changing high-frequency resonances,
we can temper the feedback compensation to alleviate the effects of those uncertainties. Currently, this tempering is
carried out more easily using frequency-response design than with any other method.

Another advantage of using frequency response is the ease with which experimentalinformationcanbeusedfor
design purposes. Rawmeasurements of the output amplitude and phase of a plant undergoing a sinusoidal input
excitation are sufficient to design a suitable feedback control. No intermediate processing of the data (such as finding
poles and zeros or determining system matrices) is required to arrive at the system model. The wide availability of
computers has rendered this advantage less important now than it was years ago; however, for relatively simple
systems, frequency response is often still the most cost-effective design method. The method is most effective for
systems that are stable in open loop.

Yet another advantage is that it is the easiest method to use for designing compensation. A simple rule can be used
to provide reasonable designs with a minimum of trial and error.

Although the underlying theory is somewhat challenging and requires a rather broad knowledge of complex
variables, the methodology of frequency-response design is easy, and the insights gained by learning the theory are
well worth the struggle.

Chapter Overview
The chapter opens with a discussion of how to obtain the frequency response of a system by analyzing its poles and
zeros. An important extension of this discussion is how to use Bode plots to graphically display the frequency
response. In Sections 6.2 and 6.3 we discuss stability briefly and then in more depth the use of the Nyquist stability
criterion. In Sections 6.4 through 6.6 we introduce the notion of stability margins, discuss Bode’s gain–phase
relationship, and study the closed-loop frequency response of dynamic systems. The gain–phase relationship suggests
a very simple rule for compensation design: Shape the frequency-response magnitude so that it crosses magnitude 1
with a slope of –1. As with our treatment of the root-locus method, we describe how adding dynamic compensation
can adjust the frequency response (Section 6.7) and improve system stability and/or error characteristics. We also
show how to implement compensation digitally in an example.

In optional Sections 6.7.7 and 6.7.8 we discuss issues of sensitivity that relate to the frequency response, including
material on sensitivity functions and stability robustness. The next two sections on analyzing time delays in the
system and Nichols chartsrepresents additional, somewhat advanced material that may also be considered optional.



The final Section 6.10 is a short history of the Frequency Response design method.

6.1 Frequency Response
The basic concepts of frequency response were discussed in Section 3.1.2. In this section we will review those ideas
and extend the concepts for use in control system design.

A linear system’s response to sinusoidal inputs—called the system’s frequency response—can be obtained from
knowledge of its pole and zero locations.

To review the ideas, we consider a system described by

where the input u(t) is a sine wave with an amplitude A:
u(t) = A sin(ωot)(t)

This sine wave has a Laplace transform

Frequency Response
With zero initial conditions, the Laplace transform of the output is

Partial-fraction expansion
A partial-fraction expansion of Eq. (6.1) [assuming that the poles of G(s) are distinct] will result in an equation of
the form

where p1, p2, . . . , pn are the poles of G(s), αo would be found by performing the partial-fraction expansion, and 
is the complex conjugate of αo. The time response that corresponds to Y(s) is

where



If all the poles of the system represent stable behavior (the real parts of p1, p2, . . . , pn < 0), the natural unforced
response will die out eventually, and therefore the steady-state response of the system will be due solely to the
sinusoidal term in Eq. (6.3), which is caused by the sinusoidal excitation. Example 3.5 determined the response of

the system  to the input u = sin 10t and showed that response in Fig. 3.4, which is repeated here as
Fig. 6.1. It shows that e–t, the natural part of the response associated with G(s), disappears after several time
constants, and the pure sinusoidal response is essentially all that remains. Example 3.5 showed that the remaining
sinusoidal term in Eq. (6.3) can be expressed as

where

Figure 6.1 Response of  to sin 10t

Frequency-response plot

Magnitude and phase
In polar form,

Equation (6.4) shows that a stable system with transfer function G(s) excited by a sinusoid with unit amplitude and
frequency ωo will, after the response has reached steady state, exhibit a sinusoidal output with a magnitude M(ωo)



and a phase ø(ωo) at the frequency ωo. The facts that the output y is a sinusoid with the same frequency as the input
u and that the magnitude ratio M and phase ø of the output are independent of the amplitude A of the input are a
consequence of G(s) being a linear constant system. If the system being excited were a nonlinear or time-varying
system, the output might contain frequencies other than the input frequency, and the output-input ratio might be
dependent on the input magnitude.

More generally, the magnitude M is given by |G(jω)|, and the phase ø is given by ∠[G(jω)]; that is, the magnitude
and angle of the complex quantity G(s) are evaluated with s taking on values along the imaginary axis (s = jω). The
frequency response of a system consists of these functions of frequency that tell us how a system will respond to a
sinusoidal input of any frequency. We are interested in analyzing the frequency response not only because it will
help us understand how a system responds to a sinusoidal input, but also because evaluating G(s) with s taking on
values along the jω axis will prove to be very useful in determining the stability of a closed-loop system. As we saw
in Chapter 3, the jω axis is the boundary between stability and instability; we will see in Section 6.4 that evaluating
G(jω) provides information that allows us to determine closed-loop stability from the open-loop G(s).

EXAMPLE 6.1 Frequency-Response Characteristics of a Capacitor
Consider the capacitor described by the equation

where v is the input and i is the output. Determine the sinusoidal steady-state response of the capacitor.
Solution. The transfer function of this circuit is

so
G(jω) = Cjω

Computing the magnitude and phase, we find that

For a unit-amplitude sinusoidal input v, the output i will be a sinusoid with magnitude Cω, and the phase of the
output will lead the input by 90°. Note that for this example the magnitude is proportional to the input frequency
while the phase is independent of frequency.

EXAMPLE 6.2 Frequency-Response Characteristics of a Lead Compensator
Recall from Chapter 5 [Eq. (5.70)] the transfer function of the lead compensation, which is equivalent to



1. Analytically determine its frequency-response characteristics and discuss what you would expect from the result.
2. Use MATLAB® to plot D(jω) with K = 1, T = 1, and α = 0.1 for 0.1 ≤ ω ≤ 100, and verify the features

predicted from the analysis in 1, above.

Solution
1. Analytical evaluation: Substituting s = jω into Eq. (6.8), we get

From Eqs. (6.5) and (6.6) the amplitude is

and the phase is given by

At very low frequencies the amplitude is just |K|, and at very high frequencies it is |K/α|. Therefore, the amplitude is
higher at very high frequency. The phase is zero at very low frequencies and goes back to zero at very high
frequencies. At intermediate frequencies, evaluation of the tan–1(.) functions would reveal that ø becomes positive.
These are the general characteristics of lead compensation.
2. Computer evaluation: A MATLAB script for frequency-response evaluation was shown for Example 3.5. A similar

script for the lead compensation:

produces the frequency-response magnitude and phase plots shown in Fig 6.2.



Figure 6.2 (a) Magnitude; (b) phase for the lead compensation in Example 6.2

The analysis indicated that the low-frequency magnitude should be K (= 1) and the high-frequency magnitude
should be K/α (= 10), which are both verified by the magnitude plot. The phase plot also verifies that the value
approaches zero at high and low frequencies and that the intermediate values are positive.

In the cases for which we do not have a good model of the system and wish to determine the frequency-response
magnitude and phase experimentally, we can excite the system with a sinusoid varying in frequency. The magnitude
M (ω) is obtained by measuring the ratio of the output sinusoid to input sinusoid in the steady state at each
frequency. The phase ø(ω) is the measured difference in phase between input and output signals.1

A great deal can be learned about the dynamic response of a system from knowledge of the magnitude M (ω) and
the phase ø(ω) of its transfer function. In the obvious case, if the signal is a sinusoid, then M and ø completely
describe the response. Furthermore, if the input is periodic, then a Fourier series can be constructed to decompose
the input into a sum of sinusoids, and again M (ω) and ø(ω) can be used with each component to construct the total
response. For transient inputs, our best path to understanding the meaning of M and ø is to relate the frequency
response G(jω) to the transient responses calculated by the Laplace transform. For example, in Fig.3.18(b) we
plotted the step response of a system having the transfer function

for various values of ζ. These transient curves were normalized with respect to time as ωnt. In Fig. 6.3 we plot M(ω)
and ø(ω) for these same values of ζ to help us see what features of the frequency response correspond to the
transient-response characteristics. Specifically, Figs. 3.18(b) and 6.3 indicate the effect of damping on system time
response and the corresponding effect on the frequency response. They show that the damping of the system can be
determined from the transient response overshoot or from the peak in the magnitude of the frequency response
[(Fig. 6.3 (a)]. Furthermore, from the frequency response, we see that ωn is approximately equal to the bandwidth—



the frequency where the magnitude starts to fall off from its low-frequency value. (We will define bandwidth more
formally in the next paragraph.) Therefore, the rise time can be estimated from the bandwidth. We also see that the
peak overshoot in frequency is approximately 1/2ζ for ζ < 0.5, so the peak overshoot in the step response can be
estimated from the peak overshoot in the frequency response. Thus, we see that essentially the same information is
contained in the frequency-response curve as is found in the transient-response curve.

A natural specification for system performance in terms of frequency response is the bandwidth, defined to be the
maximum frequency at which the output of a system will track an input sinusoid in a satisfactory manner. By
convention, for the system shown in Fig. 6.4 with a sinusoidal input r, the bandwidth is the frequency of r at which
the output y is attenuated to a factor of 0.707 times the input.2 Figure 6.5 depicts the idea graphically for the
frequency response of the closed-loop transfer function

Bandwidth

The plot is typical of most closed-loop systems in that (1) the output follows the input (|T|≅ 1) at the lower
excitation frequencies, and (2) the output ceases to follow the input (|T| <1) at the higher excitation frequencies.
The maximum value of the frequency-response magnitude is referred to as the resonant peak Mr.

Bandwidth is a measure of speed of response and is therefore similar to time-domain measures such as rise time
and peak time or the s-plane measure of dominant-root(s) natural frequency. In fact, if the KG(s) in Fig. 6.4 is such
that the closed-loop response is given by Fig. 6.3, we can see that the bandwidth will equal the natural frequency of
the closed-loop root (that is, ωBW = ωn for a closed-loop damping ratio of ζ = 0.7). For other damping ratios, the
bandwidth is approximately equal to the natural frequency of the closed-loop roots, with an error typically less than
a factor of 2.

The definition of the bandwidth stated here is meaningful for systems that have a low-pass filter behavior, as is the
case for any physical control system. In other applications the bandwidth may be defined differently. Also, if the
ideal model of the system does not have a high-frequency roll-off (e.g., if it has an equal number of poles and zeros),
the bandwidth is infinite; however, this does not occur in nature as nothing responds well at infinite frequencies.

In many cases, the designer’s primary concern is the error in the system due to disturbances rather than the ability
to track an input. For error analysis, we are more interested in one of the sensitivity functions defined in Section 4.1,
S(s), rather than T(s). For most open-loop systems with high gain at low frequencies, S(s) for a disturbance input will
have very low values at low frequencies and grows as the frequency of the input or disturbance approaches the
bandwidth. For analysis of either T(s) or S(s), it is typical to plot their response versus the frequency of the input.
Either frequency response for control systems design can be evaluated using the computer, or can be quickly sketched
for simple systems using the efficient methods described in the following Section 6.1.1. The methods described next
are also useful to expedite the design process as well as to perform sanity checks on the computer output.



Figure 6.3 (a) Magnitude; (b) phase of Eq. (6.9)

Figure 6.4 Simplified system definition



Figure 6.5 Definitions of bandwidth and resonant peak

6.1.1 Bode Plot Techniques
Display of frequency response is a problem that has been studied for a long time. Before computers, this was
accomplished by hand; therefore, it was useful to be able to accomplish this quickly. The most useful technique for
hand plotting was developed by H. W. Bode at Bell Laboratories between 1932 and 1942. This technique allows
plotting that is quick and yet sufficiently accurate for control systems design. Most control systems designers now
have access to computer programs that diminish the need for hand plotting; however, it is still important to develop
good intuition so that you can quickly identify erroneous computer results, and for this you need the ability to
perform a sanity check and in some cases to determine approximate results by hand.

The idea in Bode’s method is to plot magnitude curves using a logarithmic scale and phase curves using a linear
scale. This strategy allows us to plot a high-order G(jω) by simply adding the separate terms graphically, as discussed
in Appendix B. This addition is possible because a complex expression with zero and pole factors can be written in
polar (or phasor) form as

Composite plot from individual terms
(The overhead arrow indicates a phasor.) Note from Eq. (6.10) that the phases of the individual terms are added
directly to obtain the phase of the composite expression, G(jω). Furthermore, because

it follows that

Bode plot
We see that addition of the logarithms of the individual terms provides the logarithm of the magnitude of the
composite expression. The frequency response is typically presented as two curves; the logarithm of magnitude
versus log ω and the phase versus log ω. Together these two curves constitute a Bode plot of the system. Because

Decibel
we see that the Bode plot shows the real and imaginary parts of the logarithm of G(jω). In communications it is
standard to measure the power gain in decibels (db):3



Here P1 and P2 are the input and output powers. Because power is proportional to the square of the voltage, the
power gain is also given by

Hence we can present a Bode plot as the magnitude in decibels versus log ω and the phase in degrees versus log ω.4
In this book we give Bode plots in the form log |G| versus log ω; also, we mark an axis in decibels on the right-hand
side of the magnitude plot to give you the choice of working with the representation you prefer. However, for
frequency-response plots, we are not actually plotting power, and use of Eq. (6.14) can be somewhat misleading. If
the magnitude data are derived in terms of log |G|, it is conventional to plot them on a log scale but identify the
scale in terms of |G| only (without “log”). If the magnitude data are given in decibels, the vertical scale is linear such
that each decade of |G| represents 20 db.

Advantages of Working with Frequency Response in Terms of Bode Plots

Advantages of Bode plots
1. Dynamic compensator design can be based entirely on Bode plots.
2. Bode plots can be determined experimentally.
3. Bode plots of systems in series (or tandem) simply add, which is quite convenient.
4. The use of a log scale permits a much wider range of frequencies to be displayed on a single plot than is possible

with linear scales.

It is important for the control systems engineer to understand the Bode plot techniques for several reasons: This
knowledge allows the engineer not only to deal with simple problems, but also to perform a sanity check on
computer results for more complicated cases. Often approximations can be used to quickly sketch the frequency
response and deduce stability, as wellastodetermine the formofthe needed dynamic compensations. Finally, an
understanding of the plotting method is useful in interpreting frequency-response data that have been generated
experimentally.

In Chapter 5 we wrote the open-loop transfer function in the form

Bode form of the transfer function
because it was the most convenient form for determining the degree of stability from the root locus with respect to
the gain K. In working with frequency response, it is more convenient to replace s with jω and to write the transfer
functions in the Bode form



because the gain Ko in this form is directly related to the transfer-function magnitude at very low frequencies. In fact,
for Type 0 systems, Ko is the gain at ω= 0 in Eq. (6.16) and is also equal to the DC gain of the system. Although a
straightforward calculation will convert a transfer function in the form of Eq. (6.15) to an equivalent transfer function
in the form of Eq. (6.16), note that K and Ko will not usually have the same value in the two expressions.

Transfer functions can also be rewritten according to Eqs. (6.10) and (6.11). As an example, suppose that

Then

and

In decibels, Eq. (6.19) becomes

Classes of terms of transfer functions
All transfer functions for the kinds of systems we have talked about so far are composed of three classes of terms:

First we will discuss the plotting of each individual term and how the terms affect the composite plot including all
the terms; then we will discuss how to draw the composite curve.



Figure 6.6 Magnitude of (jω)n

Class 1: singularities at the origin
1. Ko (jω)n Because

log Ko|(jω)n| = log Ko + n log |jω|,

the magnitude plot of this term is a straight line with a slope n × (20 db per decade). Examples for different values
of n are shown in Fig. 6.6. Ko(jω)n is the only class of term that affects the slope at the lowest frequencies, because
all other terms are constant in that region. The easiest way to draw the curve is to locate ω = 1 and plot log Ko at
that frequency. Then draw the line with slope n through that point.5 The phase of (jω)n is ø = n × 90°; it is
independent of frequency and is thus a horizontal line: –90° for n = –1, –180° for n = –2, +90° for n = +1, and so
forth.

Class 2: first-order term
2. jωτ + 1 The magnitude of this term approaches one asymptote at very low frequencies and another asymptote at

very high frequencies:
(a) For ωτ  1,jωτ + 1 ≅ 1.
(b) For ωτ  1, jωτ + 1 ≅jωτ.

Break point
If we call ω = 1/τ the break point, then we see that below the break point the magnitude curve is approximately
constant (= 1), while above the break point the magnitude curve behaves approximately like the class 1 term Ko
(jω). The example plotted in Fig. 6.7, G(s) = 10s+1, shows how the two asymptotes cross at the break point and
how the actual magnitude curve lies above that point by a factor of 1.4 (or +3 db). (If the term were in the
denominator, it would be below the break point by a factor of 0.707 or –3 db.) Note that this term will have only a



small effect on the composite magnitude curve below the break point, because its value is equal to 1 (= 0 db) in this
region. The slope at high frequencies is +1 (or +20 db per decade). The phase curve can also be easily drawn by
using the following low-and high-frequency asymptotes:

Figure 6.7 Magnitude plot for jωτ + 1; τ = 10

Figure 6.8 Phase plot for jωτ + 1; τ = 10

For ωτ ≅ 1, the ∠(jω + 1) curve is tangent to an asymptote going from 0° at ωτ = 0.2 to 90° at ωτ = 5, as shown in
Fig. 6.8. The figure also illustrates the three asymptotes (dashed lines) used for the phase plot and how the actual
curve deviates from the asymptotes by 11° at their intersections. Both the composite phase and magnitude curves are
unaffected by this class of term at frequencies below the break point by more than a factor of 10 because the term’s
magnitude is 1 (or 0 db) and its phase is less than 5°.

Class 3: second-order term
3. [(jω/ωn)2 + 2ζ(jω/ωn) + 1]±1 This term behaves in a manner similar to the class 2 term, with differences in

detail: The break point is now ω = ωn. The magnitude changes slope by a factor of +2 (or +40 db per decade)
at the break point (and –2, or –40 db per decade, when the term is in the denominator). The phase changes by



±180°, and the transition through the break-point region varies with the damping ratio ζ. Figure 6.3 shows the
magnitude and phase for several different damping ratios when the term is in the denominator. Note that the
magnitude asymptote for frequencies above the break point has a slope of –2 (or –40 db per decade), and that the
transition through the break-point region has a large dependence on the damping ratio. A rough determination of
this transition can be made by noting that

Peak amplitude

for this class of second-order term in the denominator. If the term was in the numerator, the magnitude would be the
reciprocal of the curve plotted in Fig. 6.3(a).

No such handy rule as Eq. (6.21) exists for sketching in the transition for the phase curve; therefore, we would
have to resort to Fig. 6.3(b) for an accurate plot of the phase. However, a very rough idea of the transition can be
gained by noting that it is a step function for ζ= 0, while it obeys the rule for two first-order (class 2) terms when
ζ= 1 with simultaneous break-point frequencies. All intermediate values of ζ fall between these two extremes. The
phase of a second-order term is always ±90° at ωn.

Composite curve
When the system has several poles and several zeros, plotting the frequency response requires that the components

be combined into a composite curve. To plot the composite magnitude curve, it is useful to note that the slope of the
asymptotes is equal to the sum of the slopes of the individual curves. Therefore, the composite asymptote curve has
integer slope changes at each break-point frequency: +1 for a first-order term in the numerator, – 1 for a first-order
term in the denominator, and ±2 for second-order terms. Furthermore, the lowest-frequency portion of the
asymptote has a slope determined by the value of n in the (jω)n term and is located by plotting the point Koωn at ω
= 1. Therefore, the complete procedure consists of plotting the lowest-frequency portion of the asymptote, then
sequentially changing the asymptote’s slope at each break point in order of ascending frequency, and finally drawing
the actual curve by using the transition rules discussed earlier for classes 2 and 3.

The composite phase curve is the sum of the individual curves. Addition of the individual phase curves graphically
is made possible by locating the curves so that the composite phase approaches the individual curve as closely as
possible. A quick but crude sketch of the composite phase can be found by starting the phase curve below the lowest
break point and setting it equal to n × 90°. The phase is then stepped at each break point in order of ascending
frequency. The amount of the phase step is ±90° for a first-order term and ±180° for a second-order term. Break
points in the numerator indicate a positive step in phase, while break points in the denominator indicate a negative
phase step.6 The plotting rules so far have only considered poles and zeros in the left half-plane (LHP). Changes for
singularities in the right half-plane (RHP) will be discussed at the end of the section.

Summary of Bode Plot Rules
1. Manipulate the transfer function into the Bode form given by Eq. (6.16).



2. Determine the value of n for the Ko(jω)n term (class 1). Plot the low-frequency magnitude asymptote through the
point Ko at ω = 1 with a slope of n (or n × 20 db per decade).

3. Complete the composite magnitude asymptotes: Extend the low-frequency asymptote until the first frequency
break point. Then step the slope by ± 1 or ±2, depending on whether the break point is from a first-or second-
order term in the numerator or denominator. Continue through all break points in ascending order.

4. The approximate magnitude curve is increased from the asymptote value by a factor of 1.4 (+3 db) at first-order
numerator break points, and decreased by a factor of 0.707 (-3 db) at first-order denominator break points. At
second-order break points, the resonant peak (or valley) occurs according to Fig. 6.3(a), using the relation |G(jω)|
= 1/2ζ at denominator, (or|G(jω)| = 2ζ at numerator) breakpoints.

5. Plot the low-frequency asymptote of the phase curve, ø = n× 90°.
6. As a guide, the approximate phase curve changes by ±90° or ±180° at each break point in ascending order. For

first-order terms in the numerator, the change of phase is +90°; for those in the denominator the change is –90°.
For second-order terms, the change is ±180°.

7. Locate the asymptotes for each individual phase curve so that their phase change corresponds to the steps in the
phase toward or away from the approximate curve indicated by Step 6. Each individual phase curve occurs as
indicated by Fig. 6.8 or Fig. 6.3(b).

8. Graphically add each phase curve. Use grids if an accuracy of about ±5? is desired. If less accuracy is acceptable,
the composite curve can be done by eye. Keep in mind that the curve will start at the lowest-frequency asymptote
and end on the highest-frequency asymptote and will approach the intermediate asymptotes to an extent that is
determined by how close the break points are to each other.

EXAMPLE 6.3 Bode Plot for Real Poles and Zeros
Plot the Bode magnitude and phase for the system with the transfer function

Solution
1. We convert the function to the Bode form of Eq. (6.16):

2. We note that the term in jω is first order and in the denominator, so n= –1. Therefore, the low-frequency
asymptote is defined by the first term:

This asymptote is valid for ω <0.1, because the lowest break point is at ω = 0.5. The magnitude plot of this term
has the slope of – 1 (or –20 db per decade). We locate the magnitude by passing through the value 2 at ω = 1 even
though the composite curve will not go through this point because of the break point at ω = 0.5. This is shown in



Fig. 6.9(a).
3. We obtain the remainder of the asymptotes, also shown in Fig. 6.9(a): The first break point is at ω = 0.5 and is a

first-order term in the numerator, which thus calls for a change in slope of +1. We therefore draw a line with 0
slope that intersects the original – 1 slope. Then we draw a – 1 slope line that intersects the previous one at ω =
10. Finally, we draw a –2 slope line that intersects the previous –1 slope at ω = 50.

4. The actual curve is approximately tangent to the asymptotes when far away from the break points, a factor of 1.4
(+3 db) above the asymptote at the ω = 0.5 break point, and a factor of 0.7 (–3 db) below the asymptote at the
ω = 10 and ω = 50 break points.

5. Because the phase of 2/jω is –90°, the phase curve in Fig. 6.9(b) starts at –90 ° at the lowest frequencies.
6. The result is shown in Fig. 6.9(c).
7. The individual phase curves, shown dashed in Fig. 6.9(b), have the correct phase change for each term and are

aligned vertically so that their phase change corresponds to the steps in the phase from the approximate curve in
Fig. 6.9(c). Note that the composite curve approaches each individual term.

8. The graphical addition of each dashed curve results in the solid composite curve in Fig. 6.9(b). As can be seen
from the figure, the vertical placement of each individual phase curve makes the required graphical addition
particularly easy because the composite curve approaches each individual phase curve in turn.

EXAMPLE 6.4 Bode Plot with Complex Poles
As a second example, draw the frequency response for the system

Solution. A system like this is more difficult to plot than the one in the previous example because the transition
between asymptotes is dependent on the damping ratio; however, the same basic ideas illustrated in Example 6.3
apply.

This system contains a second-order term in the denominator. Proceeding through the steps, we convert Eq. (6.22)
to the Bode form of Eq. (6.16):

Starting with the low-frequency asymptote, we have n = – 1 and |G(jω)| ≅ 2.5/ω. The magnitude plot of this term
has a slope of –1 (–20 db per decade) and passes through the value of 2.5 at ω = 1 as shown in Fig. 6.10(a). For the
second-order pole, note that ωn = 2 and ζ = 0.1. At the break-point frequency of the poles, ω = 2, the slope shifts
to –3 (–60 db per decade). At the pole break point the magnitude ratio above the asymptote is 1/2ζ = 1/0.2 = 5.
The phase curve for this case starts at ø = – 90°, corresponding to the 1/s term, falls to ø – 180° at ω = 2 due to the
pole as shown in Fig. 6.10(b), and then approaches ø = –270° for higher frequencies. Because the damping is small,
the stepwise approximation is a very good one. The true composite phase curve is shown in Fig. 6.10(b).



Figure 6.9 Composite plots: (a) magnitude; (b) phase; (c) approximate phase



Figure 6.10 Bode plot for a transfer function with complex poles: (a) magnitude; (b) phase

EXAMPLE 6.5 Bode Plot for Complex Poles and Zeros: Satellite with Flexible Appendages
As a third example, draw the Bode plots for a system with second-order terms. The transfer function represents a
mechanical system with two equal masses coupled with a lightly damped spring. The applied force and position
measurement are collocated on the same mass. For the transfer function, the time scale has been chosen so that the
resonant frequency of the complex zeros is equal to 1. The transfer function is

Solution. Proceeding through the steps, we start with the low-frequency asymptote, 0.01/ω2. It has a slope of –2 (-40
db per decade) and passes through magnitude = 0.01 at ω= 1, as shown in Fig. 6.11(a). At the break-point
frequency of the zero, ω= 1, the slope shifts to zero until the break point of the pole, which is located at ω = 2,
when the slope returns to a slope of –2. To interpolate the true curve, we plot the point at the zero break point, ω
= 1, with a magnitude ratio below the asymptote of 2 ζ = 0.01. At the pole break point, the magnitude ratio above
the asymptote is 1/2ζ = 1/0.02 = 50. The magnitude curve is a “doublet” of a negative pulse followed by a positive
pulse. Figure 6.11(b) shows that the phase curve for this system starts at –180° (corresponding to the 1/s2 term),
jumps 180° to ø = 0 at ω = 1, due to the zeros, and then falls 180° back to ø = –180° at ω = 2, due to the pole.



With such small damping ratios the stepwise approximation is quite good. (We haven’t drawn this on Fig. 6.11(b),
because it would not be easily distinguishable from the true phase curve.) Thus, the true composite phase curve is a
nearly square pulse between ω = 1 and ω = 2.

Figure 6.11 Bode plot for a transfer function with complex poles and zeros: (a) magnitude; (b) phase

In actual designs, Bode plots are made with a computer. However, acquiring the ability to determine how Bode plots
should behave is a useful skill, because it gives the designer insight into how changes in the compensation
parameters will affect the frequency response. This allows the designer to iterate to the best designs more quickly.

EXAMPLE 6.6 Computer-Aided Bode Plot for Complex Poles and Zeros
Repeat Example 6.5 using MATLAB.
Solution. Toobtain Bode plots using MATLAB, we call the function bode as follows:

numG = 0.01*[1 0.01 1];
denG = [0.25 0.01 1 0 0];
sysG = tf(numG,denG);
[mag, phase, w] = bode(sysG);



loglog(w,squeeze(mag))
semilogx(w,squeeze(phase))

These commands will result in a Bode plot that matches that in Fig. 6.11 very closely. To obtain the magnitude
plot in decibels, the last three lines can be replaced with

bode(sysG)

Nonminimum-Phase Systems
A system with a zero in the RHP undergoes a net change in phase when evaluated for frequency inputs between zero
and infinity, which, for an associated magnitude plot, is greater than if all poles and zeros were in the LHP. Such a
system is called nonminimum phase. As can be seen from the construction in Fig. WD.3 in Appendix WD, if the zero
is in the RHP, then the phase decreases at the zero break point instead of exhibiting the usual phase increase that
occurs for an LHP zero. Consider the transfer functions

Both transfer functions have the same magnitude for all frequencies; that is,
|G1(jω)| = |G2(jω)|

as shown in Fig. 6.12(a). But the phases of the two transfer functions are drastically different [Fig. 6.12(b)]. A
minimum-phase system (all zeros in the LHP) with a given magnitude curve will produce the smallest net change in
the associated phase, as shown in G1, compared with what the nonminimum-phase system will produce, as shown by
the phase of G2. Hence, G2 is nonminimum phase. The discrepancy between G1 and G2 with regard to the phase
change would be greater if two or more zeros of the plant were in the RHP.

6.1.2 Steady-State Errors
We saw in Section 4.2 that the steady-state error of a feedback system decreases as the gain of the open-loop transfer
function increases. In plotting a composite magnitude curve, we saw in Section 6.1.1 that the open-loop transfer
function, at very low frequencies, is approximated by



Figure 6.12 Bode plot minimum-and nonminimum-phase systems: for (a) magnitude; (b) phase

Position error constant
Therefore, we can conclude that the larger the value of the magnitude on the low-frequency asymptote, the lower the
steady-state errors will be for the closed-loop system. This relationship is very useful in the design of compensation:
Often we want to evaluate several alternate ways to improve stability and to do so we want to be able to see quickly
how changes in the compensation will affect the steady-state errors.

For a system of the form given by Eq. (6.16)—that is, where n= 0 in Eq. (6.23) (a Type 0 system)—the low-
frequency asymptote is a constant and the gain Ko of the open-loop system is equal to the position-error constant Kp.
For a unity feedback system with a unit-step input, the Final Value Theorem (Section 3.1.6) was used in Section
4.2.1 to show that the steady-state error is given by

Velocity error coefficient
For a unity-feedback system in which n= –1 in Eq. (6.23), defined to be a Type 1 system in Section 4.2.1, the low-



frequency asymptote has a slope of –1. The magnitude of the low-frequency asymptote is related to the gain
according to Eq. (6.23); therefore, we can again read the gain, Ko/ω, directly from the Bode magnitude plot.
Equation (4.33) tells us that the velocity-error constant

Figure 6.13 Determination of Kv from the Bode plot for the system 

Kv = Ko

where, for a unity-feedback system with a unit-ramp input, the steady-state error is

The easiest way of determining the value of Kv in a type 1 system is to read the magnitude of the low-frequency
asymptote at ω = 1 rad/sec, because this asymptote is A (ω) = Kν/ω. In some cases the lowest-frequency break
point will be below ω = 1 rad/sec; therefore, the asymptote needs to extend to ω = 1 rad/sec in order to read Kv
directly. Alternately, we could read the magnitude at any frequency on the low-frequency asymptote and compute it
from Kv = ωA(ω).

EXAMPLE 6.7 Computation of Kv

As an example of the determination of steady-state errors, a Bode magnitude plot of an open-loop system is shown
in Fig. 6.13. Assuming that there is unity feedback as in Fig. 6.4, find the velocity-error constant, Kv.
Solution. Because the slope at the low frequencies is –1, we know that the system is Type 1. The extension of the
low-frequency asymptote crosses ω = 1 rad/sec at a magnitude of 10. Therefore, Kv = 10 and the steady-state error
to a unit ramp for a unity-feedback system would be 0.1. Alternatively, at ω = 0.01 we have |A(ω)| = 1000;
therefore, from Eq. (6.23) we have

Ko = Kv ≅ ω|A(ω)| = 0.01(1000) = 10.



6.2 Neutral Stability
In the early daysofelectronic communications, most instruments were judged interms of their frequency response. It is
therefore natural that when the feedback amplifier was introduced, techniques to determine stability in the presence
of feedback were based on this response.

Suppose the closed-loop transfer function of a system is known. We can determine the stability of a system by
simply inspecting the denominator in factored form (because the factors give the system roots directly) to observe
whether the real parts are positive or negative. However, the closed-loop transfer function is usually not known; in
fact, the whole purpose behind understanding the root-locus technique is to be able to find the factors of the
denominator in the closed-loop transfer function, given only the open-loop transfer function. Another way to
determine closed-loop stability is to evaluate the frequency response of the open-loop transfer function KG(jω) and
then perform a test on that response. Note that this method also does not require factoring the denominator of the
closed-loop transfer function. In this section we will explain the principles of this method.

Suppose we have a system defined by Fig. 6.14(a) and whose root locus behaves as shown in Fig. 6.14(b); that is,
instability results if K is larger than 2. The neutrally stable points lie on the imaginary axis—that is, where K = 2 and
s = j1.0. Furthermore, we saw in Section 5.1 that all points on the locus have the property that

|KG(s)| = 1 and ∠G(s) = 180°.
At the point of neutral stability we see that these root-locus conditions hold for s= jω, so

Thus a Bode plot of a system that is neutrally stable (that is, with K defined such that a closed-loop root falls on the
imaginary axis) will satisfy the conditions of Eq. (6.24). Figure 6.15 shows the frequency response for the system
whose root locus is plotted in Fig. 6.14 for various values of K. The magnitude response corresponding to K = 2
passes through 1 at the same frequency (ω = 1 rad/sec) at which the phase passes through 180°, as predicted by Eq.
(6.24).

Having determined the point of neutral stability, we turn to a key question: Does increasing the gain increase or
decrease the system’s stability? We can see from the root locus in Fig. 6.14(b) that any value of K less than the value
at the neutrally stable point will result in a stable system. At the frequency ω where the phase ∠G(jω) = –180° (ω
= 1 rad/sec), the magnitude |KG(jω)| < 1.0 for stable

Figure 6.14 Stability example: (a) system definition; (b) root locus



Figure 6.15 Frequency-response magnitude and phase for the system in Fig. 6.14

Stability condition
values of K and > 1 for unstable values of K. Therefore, we have the following trial stability condition, based on the
character of the open-loop frequency response:

This stability criterion holds for all systems for which increasing gain leads to instability and |KG(j ω)| crosses the
magnitude (=1) once, the most common situation. However, there are systems for which an increasing gain can lead
from instability to stability; in this case, the stability condition is

There are also cases when |KG(j ω)| crosses magnitude (=1) more than once. One way to resolve the ambiguity that
is usually sufficient is to perform a rough sketch of the root locus. Another, more rigorous, way to resolve the
ambiguity is to use the Nyquist stability criterion, the subject of the next section. However, because the Nyquist
criterion is fairly complex, it is important while studying it to bear in mind the theme of this section, namely, that for
most systems a simple relationship exists between closed-loop stability and the open-loop frequency response.

6.3 The Nyquist Stability Criterion



For most systems, as we saw in the previous section, an increasing gain eventually causes instability. In the very early
days of feedback control design, this relationship between gain and stability margins was assumed to be universal.
However, designers found occasionally that in the laboratory the relationship reversed itself; that is, the amplifier
would become unstable when the gain was decreased. The confusion caused by these conflicting observations
motivated Harry Nyquist of the Bell Telephone Laboratories to study the problem in 1932. His study explained the
occasional reversals and resulted in a more sophisticated analysis with no loopholes. Not surprisingly, his test has
come to be called the Nyquist stability criterion. It is based on a result from complex variable theory known as the
argument principle,7 as we briefly explain in this section and in more detail in Appendix WD.

The Nyquist stability criterion relates the open-loop frequency response to the number of closed-loop poles of the
system in the RHP. Study of the Nyquist criterion will allow you to determine stability from the frequency response
of a complex system, perhaps with one or more resonances, where the magnitude curve crosses 1 several times
and/or the phase crosses 180° several times. It is also very useful in dealing with open-loop, unstable systems,
nonminimum-phase systems, and systems with pure delays (transportation lags).

6.3.1 The Argument Principle
Consider the transfer function H1(s) whose poles and zeros are indicated in the s-plane in Fig. 6.16(a). We wish to
evaluate H1 for values of s on the clockwise contour C1.(Hence this is called a contour evaluation.) We choose the
test point so for evaluation. The resulting complex quantity has the form . The value of the
argument of H1(so) is

α = θ1 + θ2 – (ø1 + ø2).

As s traverses C1 in the clockwise direction starting at so, the angle α of H1(s) in Fig. 6.16(b) will change (decrease or
increase), but it will not undergo a net change of 360° as long as there are no poles or zeros within C1. This is
because none of the angles that make up α go through a net revolution. The angles θ1, θ2, ø1 and ø2 increase or
decrease as s traverses around C1, but they return to their original values as s returns to so without rotating through
360°. This means that the plot of H1(s) [Fig. 6.16(b)] will not encircle the origin. This conclusion follows from the
fact that α is the sum of the angles indicated in Fig. 6.16(a), so the only way that α can be changed by 360° after s
executes one full traverse of C1 is for C1 to contain a pole or zero.

Now consider the function H2(s), whose pole-zero pattern is shown in Fig. 6.16(c). Note that it has a singularity
(pole) within C1. Again, we start at the test point so. As s traverses in the clockwise direction around C1, the
contributions from the angles θ1, θ2, and ø1 change, but they return to their original values as soon as s returns to so.
In contrast, ø2, the angle from the pole within C1, undergoes a net change of –360° after one full traverse of C1.
Therefore, the argument of H2(s) undergoes the same change, causing H2 to encircle the origin in the
counterclockwise direction, as shown in Fig. 6.16(d). The behavior would be similar if the contour C1 had enclosed a
zero instead of a pole. The mapping of C1 would again enclose the origin once in the H2(s)-plane, except it would
do so in the clockwise direction.



Figure 6.16 Contour evaluations: (a) s-plane plot of poles and zeros of H1 (s) and the contour C1; (b) H1 (s) for s on
C1; (c) s-plane plot of poles and zeros of H2 (s) and the contour C1; (d) H2 (s) for s on C1

Argument principle
Thus we have the essence of the argument principle:

A contour map of a complex function will encircle the origin Z – P times, where Z is the number of zeros and P is
the number of poles of the function inside the contour.

For example, if the number of poles and zeros within C1 is the same, the net angles cancel and there will be no net
encirclement of the origin.

6.3.2 Application to Control Design
To apply the principle to control design, we let the C1 contour in the s-plane encircle the entire RHP, the region in
the s-plane where a pole would cause an unstable system (Fig. 6.17). The resulting evaluation of H(s) will encircle
the origin only if H(s) has an RHP pole or zero.

As stated earlier, what makes all this contour behavior useful is that a contour evaluation of an open-loop KG(s)
can be used to determine stability of the closed-loop system. Specifically, for the system in Fig. 6.18, the closed-loop
transfer function is



Figure 6.17 An s-plane plot of a contour C1 that encircles the entire RHP

Figure 6.18 Block diagram for Y (s)/R(s)= KG(s)/[1 + KG(s)]

Figure 6.19 Evaluations of KG(s) and 1 + KG(s): Nyquist plots

Therefore, the closed-loop roots are the solutions of
1 + KG(s) = 0,

and we apply the principle of the argument to the function 1+KG(s). If the evaluation contour of this function of s
enclosing the entire RHP contains a zero or pole of 1 + KG(s), then the evaluated contour of 1 + KG(s) will encircle
the origin. Notice that 1 + KG(s) is simply KG(s) shifted to the right 1 unit, as shown in Fig. 6.19. Therefore, if the
plot of 1+ KG(s) encircles the origin, the plot of KG(s) will encircle – 1 on the real axis. Therefore, we can plot the
contour evaluation of the open-loop KG(s), examine its encirclements of –1, and draw conclusions about the origin
encirclements of the closed-loop function 1 + KG(s). Presentation of the evaluation of KG(s) in this manner is often
referred to as a Nyquist plot, or polar plot, because we plot the magnitude of KG(s) versus the angle of KG(s).



Nyquist plot; polar plot
To determine whether an encirclement is due to a pole or zero, we write 1 +KG(s) in terms of poles and zeros of

KG(s):

Equation (6.27) shows that the poles of 1 + KG(s) are also the poles of G(s). Because it is safe to assume that the
poles of G(s)[or factors of a(s)] are known, the (rare) existence of any of these poles in the RHP can be accounted
for. Assuming for now that there are no poles of G(s) in the RHP, an encirclement of – 1 by KG(s) indicates a zero of
1 + KG(s) in the RHP, and thus an unstable root of the closed-loop system.

We can generalize this basic idea by noting that a clockwise contour C1 enclosing a zero of 1 +KG(s)—that is, a
closed-loop system root—will result in KG(s) encircling the – 1 point in a clockwise direction. Likewise, if C1
encloses a pole of 1 + KG(s)—that is, if there is an unstable open-loop pole—there will be a counterclockwise KG(s)
encirclement of – 1. Furthermore, if two poles or two zeros are in the RHP, KG(s) will encircle – 1 twice, and so on.
The net number of clockwise encirclements, N, equals the number of zeros (closed-loop system roots) in the RHP, Z,
minus the number of open-loop poles in the RHP, P:

N = Z – P
This is the key concept of the Nyquist stability criterion.

A simplification in the plotting of KG(s) results from the fact that any KG(s) that represents a physical system will
have zero response at infinite frequency (i.e., has more poles than zeros). This means that the big arc of C1
corresponding to s at infinity (Fig. 6.17) results in KG(s) being a point of infinitesimally small value near the origin
for that portion of C1. Therefore, we accomplish a complete evaluation of a physical system KG(s) by letting s
traverse the imaginary axis from –j∞ to +j∞ (actually, from –jωh to +jωh, where ωh is large enough that |KG(jω)|
is much less than 1 for all ω > ωh). The evaluation of KG(s) from s = 0 to s = j∞ has already been discussed in
Section 6.1 under the context of finding the frequency response of KG(s). Because G(–jω) is the complex conjugate of
G(jω), we can easily obtain the entire plot of KG(s) by reflecting the 0 ≤ s ≤ +j∞ portion about the real axis, to
get the (–j∞ ≤ s < 0) portion. Hence we see that closed-loop stability can be determined in all cases by
examination of the frequency response of the open-loop transfer function on a polar plot. In some applications,
models of physical systems are simplified so as to eliminate some high-frequency dynamics. The resulting reduced-
order transfer function might have an equal number of poles and zeros. In that case the big arc of C1 at infinity needs
to be considered.

In practice, many systems behave like those discussed in Section 6.2, so you need not carry out a complete
evaluation of KG(s) with subsequent inspection of the – 1 encirclements; a simple look at the frequency response
may suffice to determine stability. However, in the case of a complex system for which the simplistic rules given in
Section 6.2 become ambiguous, you will want to perform the complete analysis, summarized as follows:

Procedure for Determining Nyquist Stability

1. Plot KG(s) for –j∞ ≤ s ≤ +j∞. Do this by first evaluating KG(jω) for ω = 0 to ωh, where ωh is so large that



the magnitude of KG(jω) is negligibly small for ω > ωh, then reflecting the image about the real axis and
adding it to the preceding image. The magnitude of KG(jω) will be small at high frequencies for any physical
system. The Nyquist plot will always be symmetric with respect to the real axis. The plot is normally created by
the NYQUIST MATLAB m-file.

2. Evaluate the number of clockwise encirclements of – 1, and call that number N. Do this by drawing a straight
line in any direction from – 1 to 00. Then count the net number of left-to-right crossings of the straight line by
KG(s). If encirclements are in the counterclockwise direction, N is negative.

3. Determine the number of unstable (RHP) poles of G(s), and call that number P.
4. Calculate the number of unstable closed-loop roots Z:

For stability we wish to have Z= 0; that is, no characteristic equation roots in the RHP.
Let us now examine a rigorous application of the procedure for determining stability using Nyquist plots for some

examples.

EXAMPLE 6.8 Nyquist Plot for a Second-Order System
Determine the stability properties of the system defined in Fig. 6.20. Solution. The root locus of the system in Fig.
6.20 is shown in Fig. 6.21. It shows that the system is stable for all values of K. The magnitude of the frequency
response of KG(s) is plotted in Fig. 6.22(a) for K = 1, and the phase is plotted in Fig. 6.22(b); this is the typical Bode
method of presenting frequency response and represents the evaluation of G(s) over the interesting range of
frequencies. The same information is replotted in Fig. 6.238 in the Nyquist (polar) plot form. Note how the points A,
B, C,

Figure 6.20 Control system for Example 6.8

Figure 6.21 Root locus of  with respect to K



D, and E are mapped from the Bode plot to the Nyquist plot in Fig. 6.23. The arc from G(s) = + 1 (ω = 0) to G(s)
= 0 (ω = ∞) that lies below the real axis is derived from Fig. 6.22. The portion of the C1 arc at infinity from Fig.
6.17 transforms into G(s) = 0 in Fig. 6.23; therefore, a continuous evaluation of G(s) with s traversing

Figure 6.22 Open-loop Bode plot for 

Figure 6.23 Nyquist plot of the evaluation of KG(s) for s = C1 and K = 1



C1 is completed by simply reflecting the lower arc about the real axis. This creates the portion of the contour above
the real axis and completes the Nyquist (polar) plot. Because the plot does not encircle –1, N= 0. Also, there are no
poles of G(s) in the RHP, so P= 0. From Eq. (6.28), we conclude that Z= 0, which indicates there are no unstable
roots of the closed-loop system for K= 1. Furthermore, different values of K would simply change the magnitude of
the polar plot, but no positive value of K would cause the plot to encircle –1, because the polar plot will always
cross the negative real axis when KG(s)= 0. Thus the Nyquist stability criterion confirms what the root locus
indicated: the closed-loop system is stable for all K > 0.

The MATLAB statements that will produce this Nyquist plot are

numG = 1;
denG = [1 2 1];
sysG = tf(numG,denG);
w=logspace(-2,2);
nyquist(sysG,w);

Often the control systems engineer is more interested in determining a range of gains K for which the system is
stable than in testing for stability at a specific value of K. To accommodate this requirement, but to avoid drawing
multiple Nyquist plots for various values of the gain, the test can be slightly modified. To do so, we scale KG(s) by K
and examine G(s) to determine stability for a range of gains K. This is possible because an encirclement of –1 by
KG(s) is equivalent to an encirclement of -1/K by G(s). Therefore, instead of having to deal with KG(s), we need only
consider G(s), and count the number of the encirclements of the -1/K point.

Applying this idea to Example 6.8, we see that the Nyquist plot cannot encircle the -1/K point. For positive K, the -
1/K point will move along the negative real axis, so there will not be an encirclement of G(s) for any value of K > 0.

(There are also values of K < 0 for which the Nyquist plot shows the system to be stable; specifically, –1 < K <
0. This result may be verified by drawing the 0° locus.)

EXAMPLE 6.9 Nyquist Plot for a Third-Order System
As a second example, consider the system G(s) = 1/s(s + 1)2 for which the closed-loop system isdefined in Fig.
6.24. Determine its stability properties using the Nyquist criterion.

Figure 6.24 Control system for Example 6.9

Solution. This is the same system discussed in Section 6.2. The root locus in Fig. 6.14(b) shows that this system is
stable for small values of K but unstable for large values of K. The magnitude and phase of G(s) in Fig. 6.25 are
transformed into the Nyquist plot shown in Fig. 6.26. Note how the points A, B, C, D, and E on the Bode plot of Fig.
6.25 map into those on the Nyquist plot of Fig. 6.26. Also note the large arc at infinity that arises from the open-loop
pole at s = 0. This pole creates an infinite magnitude of G(s) at ω = 0; in fact, a pole anywhere on the imaginary



axis will create an arc at infinity. To correctly determine the number of –1/K point encirclements, we must draw this
arc in the proper half-plane: Should it cross the positive real axis, as shown in Fig. 6.26, or the negative one? It is
also necessary to assess whether the arc should sweep out 180° (as in Fig. 6.26), 360°, or 540°.

A simple artifice suffices to answer these questions. We modify the C1 contour to take a small detour around the
pole either to the right (Fig. 6.27) or to the left. It makes no difference to the final stability question which way, but
it is more convenient to go to the right because then no poles are introduced within the C1 contour, keeping the
value of P equal to 0. Because the phase of G(s) is the negative of the sum of the angles from all of the poles, we see
that the evaluation results in a Nyquist plot moving from +90° for s just below the pole at s = 0, across the positive
real axis to –90° for s just above the pole. Had there been two poles at s = 0, the Nyquist plot at infinity would have
executed a full 360° arc, and so on for three or more poles. Furthermore, for a pole elsewhere on the imaginary axis,
a 180° clockwise arc would also result but would be oriented differently than the example shown in Fig. 6.26.

Figure 6.25 Bode plot for G(s) = 1/s(s + 1)2



Figure 6.26 Nyquist plot9 for

The Nyquist plot crosses the real axis at ω = 1 with |G| = 0.5, as indicated by the Bode plot. For K > 0, there are
two possibilities for the location of –1/K: inside the two loops of the Nyquist plot, or outside the Nyquist contour
completely. For large values of K (Kl in Fig. 6.26), –0.5 <-1/Kl < 0 will lie inside the two loops; hence N = 2, and
therefore, Z = 2, indicating that there are two unstable roots. This happens for K > 2. For small values of K (Ks in
Fig. 6.26), -1/K lies outside the loops; thus N = 0, and all roots are stable. All this information is in agreement with
the root locus in Fig. 6.14(b). (When K < 0, -1/K lies on the positive real axis, then N = 1, which means Z= 1 and
the system has one unstable root. The 0° root locus will verify this result.)



Figure 6.27 C1 contour enclosing the RHP for the system in Example 6.9

For this and many similar systems, we can see that the encirclement criterion reduces to a very simple test for
stability based on the open-loop frequency response: The system is stable if |KG(jω)| < 1 when the phase of G(jω)
is 180°. Note that this relation is identical to the stability criterion given in Eq. (6.25); however, by using the Nyquist
criterion, we don’t require the root locus to determine whether |KG(jω)| < 1 or |KG(jω)| > 1.

We draw the Nyquist plot using MATLAB, with

numG = 1;
denG = [1 2 1 0];
sysG = tf(numG,denG);
nyquist(sysG)
axis([–3 3 –3 3]);

The axis command scaled the plot so that only points between +3 and – 3 on the real and imaginary axes were
included. Without manual scaling, the plot would be scaled based on the maximum values computed by MATLAB
and the essential features in the vicinity of the – 1 region would be lost.

For systems that are open-loop unstable, care must be taken because now P ≠ 0 in Eq. (6.28). We shall see that the
simple rules from Section 6.2 will need to be revised in this case.

EXAMPLE 6.10 Nyquist Plot for an Open-Loop Unstable System



The third example is defined in Fig. 6.28. Determine its stability properties using the Nyquist criterion.

Figure 6.28 Control system for Example 6.10

Solution. The root locus for this system is sketched in Fig. 6.29. The open-loop system is unstable because it has a
pole in the RHP. The open-loop Bode plot is shown in Fig. 6.30. Note in the Bode that |KG(jω)| behaves exactly the
same as if the pole had been in the LHP. However, ∠G(jω) increases by 90° instead of the usual decrease at a pole.
Any system with a pole in the RHP is unstable; hence it would be impossible to determine its frequency response
experimentally because the system would never reach a steady-state sinusoidal response for a sinusoidal input. It is,
however, possible to compute the magnitude and phase of the transfer function according to the rules in Section 6.1.
The pole in the RHP affects the Nyquist encirclement criterion, because the value of P in Eq. (6.28) is +1.

We convert the frequency-response information of Fig. 6.30 into the Nyquist plot (Fig. 6.31) as in the previous
examples. As before, the C1 detour around the pole at s = 0 in Fig. 6.32 creates a large arc at infinity in Fig. 6.31.
This arc crosses the negative real-axis because of the 180° phase contribution of the pole in the RHP.

The real-axis crossing occurs at |G(s)| = 1 because in the Bode plot |G(s)| = 1 when ∠G(s) = 180°, which
happens to be at ω ≅ 3 rad/sec.

The contour shows two different behaviors, depending on the values of K (> 0). For large values of K (K1 in Fig.
6.31), there is one counterclockwise encirclement; hence N = – 1. However, because P = 1 from the RHP pole, Z =
N + P = 0, so there are no unstable system roots and the system is stable for K > 1. For small values of K (Ks in Fig.
6.31), N = +1 because of the clockwise encirclement and Z = 2, indicating two unstable roots. This happens if K <
1. These results can be verified qualitatively by the root locus in Fig. 6.29. (If K < 0, -1/k is on the positive real-axis
so that N = 0 and Z = 1, indicating the system will have one unstable closed-loop pole, which can be verified by a
O° root locus.)

Figure 6.29 Root locus for 



Figure 6.30 Bode plot for 

Figure 6.31 Nyquist plot10 for 



Figure 6.32 C1 contour for Example 6.10

As with all systems, the stability boundary occurs at |KG(jω)| = 1 for the phase of ∠G(jω) = 180°. However, in
this case, |KG(jω)| must be greater than 1 to yield the correct number of – 1 point encirclements to achieve stability.

To draw the Nyquist plot using MATLAB, use the following commands:

numG = [1 1];
denG = [0.1 –1 0];
sysG = tf(numG,denG);
nyquist(sysG)
axis([–3 3 –3 3])

The existence of the RHP pole in Example 6.10 affected the Bode plotting rules of the phase curve and affected the
relationship between encirclements and unstable closed-loop roots because P= 1 in Eq. (6.28). But we apply the
Nyquist stability criterion without any modifications. The same is true for systems with a RHP zero; that is, a
nonminimum-phase zero has no effect on the Nyquist stability criterion, but the Bode plotting rules are affected.

EXAMPLE 6.11 Nyquist Plot Characteristics
Find the Nyquist plot for the third-order system

and reconcile the plot with the characteristics of G(s). If the G(s) is to be included in a feedback system as shown in
Fig. 6.18, then determine whether the system is stable for all positive values of K.
Solution. To draw the Nyquist plot using MATLAB, use the following commands:



Figure 6.33 Nyquist plot for Example 6.11

The result is shown in Fig. 6.33.11 Note that there are no arcs at infinity for this case due to the lack of any poles at
the origin or on the jω axis. Also note that the Nyquist curve associated with the Bode plot (s = +jω) starts at (3,0),
ends at (1,0), and, therefore, starts and ends with a phase angle of 0°. This is as it should be since the numerator and
denominator of G(s) are equal order and there are no singularities at the origin. So the Bode plot should start and
end with a zero phase. Also note that the Nyquist plot goes through (0,0) as s goes through  as it should
since the magnitude equals zero when s is at a zero. Furthermore, note that the phase goes from – 120° as s
approaches (0,0) to +60° as s departs from (0,0). This behavior follows since a Bode plot phase will jump by +180°
instantaneously as s passes through a zero on the jω axis. The phase initially decreases as the plot leaves the starting
point at (3,0) because the lowest frequency singularity is the pole at s = –1.

Changing the gain, K, will increase or decrease the magnitude of the Nyquist plot but it can never cross the
negative real axis. Therefore, the closed-loop system will always be stable for positive K. Exercise: Verify this result
by making a rough root locus sketch by hand.

6.4 Stability Margins
A large fraction of control system designs behave in a pattern roughly similar to that of the system in Section 6.2 and
Example 6.9 in Section 6.3; that is, the system is stable for all small gain values and becomes unstable if the gain
increases past a certain critical point. Two commonly used quantities that measure the stability margin for such



systems are directly related to the stability criterion of Eq. (6.25): gain margin and phase margin. In this section we
will define and use these two concepts to study system design. Another measure of stability, originally defined by O.
J. M. Smith (1958), combines these two margins into one and gives a better indication of stability for complicated
cases.

Gain margin
The gain margin (GM) is the factor by which the gain can be raised before instability results. For the typical case, it

can be read directly from the Bode plot (for example, see Fig. 6.15) by measuring the vertical distance between the
|KG(jω)| curve and the |KG(jω)| = 1 line at the frequency where ∠G(jω) = 180°. We see from the figure that when
K = 0.1, the system is stable and GM = 20 (or 26 db). When K = 2, the system is neutrally stable with GM = 1 (0
db), while K = 10 results in an unstable system with GM = 0.2 (–14 db). Note that GM is the factor by which the
gain K can be raised before instability results; therefore, |GM| <1 (or |GM| <0 db) indicates an unstable system. The
GM can also be determined from a root locus with respect to K by noting two values of K:(1) at the point where the
locus crosses the jω-axis, and (2) at the nominal closed-loop poles. The GM is the ratio of these two values.

Phase margin
Another measure that is used to indicate the stability margin in a system is the phase margin (PM). It is the amount

by which the phase of G(jω) exceeds –180° when |KG(jω)| = 1, which is an alternative way of measuring the degree
to which the stability conditions of Eq. (6.25) are met. For the case in Fig. 6.15, we see that PM ≅ 80° for K = 0.1,
PM = 0° for K = 2, and PM = –35° for K = 10. Apositive PM is required for stability.

Note that the two stability measures, PM and GM, together determine how far the complex quantity G(jω) passes
from the –1 point, which is another way of stating the neutral-stability point specified by Eq. (6.24).

The stability margins may also be defined in terms of the Nyquist plot. Figure 6.34 shows that GM and PM are
measures of how close the Nyquist plot comes to encircling the –1 point. Again we can see that the GM indicates
how much the gain can be raised before instability results in a system like the one in Example 6.9. The PM is the
difference between the phase of G(jω) and 180° when KG(jω) crosses the circle |KG(s)| = 1; the positive value of
PM is assigned to the stable case (i.e., with no Nyquist encirclements).

Figure 6.34 Nyquist plot for defining GM and PM

Crossover frequency



It is easier to determine these margins directly from the Bode plot than from the Nyquist plot. The term crossover
frequency, ωc, is often used to refer to the frequency at which the gain is unity, or 0 db. Figure 6.35 shows the same
data plotted in Fig. 6.25, but for the case with K = 1. The same values of PM (= 22°) and GM (= 2) may be
obtained from the Nyquist plot shown in Fig. 6.26. The real-axis crossing at –0.5 corresponds to a GM of 1/0.5 or 2
and the PM could be computed graphically by measuring the angle of G(jω) as it crosses |G(jω)| circle.

One of the useful aspects of frequency-response design is the ease with which we can evaluate the effects of gain
changes. In fact, we can determine the PM from Fig. 6.35 for any value of K without redrawing the magnitude or
phase information. We need only indicate on the figure where |KG(jω)| = 1 for selected trial values of K, as has
been done with dashed lines in Fig. 6.36. Now we can see that K = 5 yields an unstable PM of –22°, while a gain of
K = 0.5 yields a PM of +45°. Furthermore, if we wish a certain PM (say 70°), we simply read the value of |G(jω)|
corresponding to the frequency that would create the desired PM (here ω = 0.2 rad/sec yields 70°, where |G(jω)| =
5), and note that the magnitude at this frequency is -1/K. Therefore, a PM of 70° will be achieved with K = 0.2.

Figure 6.35 GM and PM from the magnitude and phase plots



Figure 6.36 PM versus K from the frequency-response data

The PM is more commonly used to specify control system performance because it is most closely related to the
damping ratio of the system. This can be seen for the open-loop second-order system

which, with unity feedback, produces the closed-loop system

It can be shown that the relationship between the PM and ζ in this system is

and this function is plotted in Fig. 6.37. Note that the function is approximately a straight line up to about PM =



60°. The dashed line shows a straight-line approximation to the function, where

It is clear that the approximation holds only for PM below about 70°. Furthermore, Eq. (6.31) is only accurate for the
second-order system of Eq. (6.30). In spite of these limitations, Eq. (6.32) is often used as a rule of thumb for relating
the closed-loop damping ratio to PM. It is useful as a starting point; however, it is important always to check the
actual damping of a design, as well as other aspects of the performance, before calling the design complete.

The gain margin for the second-order system [given by Eq. (6.29)] is infinite (GM = ∞), because the phase curve
does not cross –180° as the frequency increases. This would also be true for any first-or second-order system.

Additional data to aid in evaluating a control system based on its PM can be derived from the relationship between
the resonant peak Mr and ζ seen in Fig. 6.3. Note that this figure was derived for the same system [Eq. (6.9)] as Eq.
(6.30). We can convert the information in Fig. 6.37 into a form relating Mr to the PM. This is depicted in Fig. 6.38,
along with the step-response overshoot Mp. Therefore, we see that, given the PM, one can infer information about
what the overshoot of the closed-loop step response would be.

Figure 6.37 Damping ratio versus PM

Figure 6.38 Transient-response overshoot (Mp) and frequency-response resonant peak (Mr) versus PM for 



Many engineers think directly in terms of the PM when judging whether a control system is adequately stabilized. In
these terms, a PM = 30° is often judged to be the lowest adequate value. In addition to testing the stability of a
system design using the PM, a designer would typically also be concerned with meeting a speed-of-response
specification such as bandwidth, as discussed in Section 6.1. In terms of the frequency-response parameters discussed
so far, the crossover frequency would best describe a system’s speed of response. This idea will be discussed further
in Sections 6.6 and 6.7.

In some cases the PM and GM are not helpful indicators of stability. For first-and second-order systems, the phase
never crosses the 180° line; hence, the GM is always ∞ and not a useful design parameter. For higher-order systems it
is possible to have more than one frequency where |KG(jω)| = 1 or where ∠KG(jω) = 180°, and the margins as
previously defined need clarification. An example of this can be seen in Fig. 10.12, where the magnitude crosses 1
three times. A decision was made to define PM by the first crossing, because the PM at this crossing was the smallest
of the three values and thus the most conservative assessment of stability. A Nyquist plot based on the data in Fig.
10.12 would show that the portion of the Nyquist curve closest to the – 1 point was the critical indicator of stability,
and therefore use of the crossover frequency yielding the minimum value of PM was the logical choice. At best, a
designer needs to be judicious when applying the margin definitions described in Fig. 6.34. In fact, the actual
stability margin of a system can be rigorously assessed only by examining the Nyquist plot to determine its closest
approach to the – 1 point.

Vector margin
To aid in this analysis, O. J. M. Smith (1958) introduced the vector margin, which he defined to be the distance to

the –1 point from the closest approach of the Nyquist plot.12 Figure 6.39 illustrates the idea graphically. Because the
vector margin is a single margin parameter, it removes all the ambiguities in assessing stability that come with using
GM and PM in combination. In the past it has not been used extensively due to difficulties in computing it. However,
with the widespread availability of computer aids, the idea of using the vector margin to describe the degree of
stability is much more feasible.

Conditionally stable systems
There are certain practical examples in which an increase in the gain can make the system stable. As we saw in

Chapter 5, these systems are called conditionally stable. A representative root-locus plot for such systems is shown in
Fig. 6.40. For a point on the root locus, such as A, an increase in the gain would make the system stable by bringing
the unstable roots into the LHP. For point B, either a gain increase or decrease could make the system become
unstable. Therefore, several gain margins exist that correspond to either gain reduction or gain increase, and the
definition of the GM in Fig. 6.34 is not valid.



Figure 6.39 Definition of the vector margin on the Nyquist plot

Figure 6.40 Root locus for a conditionally stable system

EXAMPLE 6.12 Stability Properties for a Conditionally Stable System
Determine the stability properties as a function of the gain K for the system with the open-loop transfer function

Solution. This is a system for which increasing gain causes a transition from instability to stability. The root locus in
Fig. 6.41(a)13 shows that the system is unstable for K < 5 and stable for K > 5. The Nyquist plot in Fig. 6.41(b) was
drawn for the stable value K = 7. Determination of the margins according to Fig. 6.34 yields PM = +10° (stable)
and GM = 0.7 (unstable). According to the rules for stability discussed earlier, these two margins yield conflicting
signals on the system’s stability.



Figure 6.41 System in which increasing gain leads from instability to stability: (a) root locus; (b) Nyquist plot

We resolve the conflict by counting the Nyquist encirclements in Fig. 6.41(b). There is one clockwise encirclement
and one counterclockwise encirclement of the – 1 point. Hence there are no net encirclements, which confirms that
the system is stable for K = 7. For systems like this it is best to resort to the root locus and/or Nyquist plot (rather
than the Bode plot) to determine stability.

EXAMPLE 6.13 Nyquist Plot for a System with Multiple Crossover Frequencies
Draw the Nyquist plot for the system

and determine the stability margins.
Solution. The Nyquist plot (Fig. 6.42) shows that there are three crossover frequencies (ω = 0.75, 9.0, and 10.1
rad/sec) with three corresponding PM values of 37°, 80°, and 40°, respectively. However, the key indicator of stability
is the proximity of the Nyquist plot as it approaches the –1 point while crossing the real-axis. In this case, only the
GM indicates the poor stability margins of this system. The Bode plot for this system (Fig. 6.43) shows the same three
crossings of magnitude = 1 at 0.75, 9.0, and 10.1 rad/sec. The GM value of 1.26 from the Bode plot corresponding
to ω = 10.4 rad/sec qualitatively agrees with the GM from the Nyquist plot and would be the most useful and
unambiguous margin for this example.

In summary, many systems behave roughly like Example 6.9, and for them, the GM and PM are well defined and
useful. There are also frequent instances of more complicated systems with multiple magnitude 1 crossovers or
unstable open-loop systems for which the stability criteria defined by Fig. 6.34 are ambiguous or incorrect; therefore,
we need to verify the GM and PM as previously defined, and/or modify them by reverting back to the Nyquist
stability criterion.



Figure 6.42 Nyquist plot of the complex system in Example 6.13

Figure 6.43 Bode plot of the system in Example 6.13

Bode’s theorem

6.5 Bode’s Gain-Phase Relationship
One of Bode’s important contributions is the following theorem:



For any stable minimum-phase system (i.e., one with no RHP zeros or poles), the phase of G(jω) is uniquely
related to the magnitude of G(jω).

When the slope of | G(jω) | versus ωon a log-log scale persists at a constant value for approximately a decade of
frequency, the relationship is particularly simple and is given by

where n is the slope of |G(jω)| in units of decade of amplitude per decade of frequency. For example, in considering
the magnitude curve alone in Fig. 6.44, we see that Eq. (6.33) can be applied to the two frequencies ω1 =0.1 (where
n = –2) and ω2 = 10 (where n = – 1), which are a decade removed from the change in slope, to yield the
approximate values of phase, –180° and –90°. The exact phase curve shown in the figure verifies that indeed the
approximation is quite good. It also shows that the approximation will degrade if the evaluation is performed at
frequencies closer to the change in slope.

Figure 6.44 An approximate gain–phase relationship demonstration

An exact statement of the Bode gain-phase theorem is

where



Figure 6.45 is a plot of the weighting function W(u) and shows how the phase is most dependent on the slope at
ωo; it is also dependent, though to a lesser degree, on slopes at neighboring frequencies. The figure also suggests that
the weighting could be approximated by an impulse function centered at ωo. We may approximate the weighting
function as

which is precisely the approximation made to arrive at Eq. (6.33) using the “sifting” property of the impulse function
(and conversion from radians to degrees).

Figure 6.45 Weighting function in Bode’s gain–phase theorem

In practice, Eq. (6.34) is never used, but Eq. (6.33) is used as a guide to infer stability from |G(ω)| alone. When
|KG(jω)| = 1,

Crossover frequency
For stability we want ∠G(jω) > –180° for PM > 0. Therefore, we adjust the |KG(jω)| curve so that it has a slope of
–1 at the “crossover” frequency, ωc, (i.e., where |KG(jω) | = 1). If the slope is – 1 for a decade above and below the
crossover frequency, then PM ≅ 90°; however, to ensure a reasonable PM, it is usually necessary only to insist that a –
1 slope (–20 db per decade) persist for a decade in frequency that is centered at the crossover frequency. We
therefore see that there is a very simple design criterion:



Crossover at –1 slope

Adjust the slope of the magnitude curve |KG(jω)| so that it crosses over magnitude 1 with a slope of – 1 for a
decade around ωc.

This criterion will usually be sufficient to provide an acceptable PM, and hence provide adequate system damping.
To achieve the desired speed of response, the system gain is adjusted so that the crossover point is at a frequency that
will yield the desired bandwidth or speed of response as determined by Eq. (3.60). Recall that the natural frequency
ωn bandwidth, and crossover frequency are all approximately equal, as will be discussed further in Section 6.6.

EXAMPLE 6.14 Use of Simple Design Criterion for Spacecraft Attitude Control
For the spacecraft attitude-control problem defined in Fig. 6.46, find a suitable expression for KD(s) that will provide
good damping and a bandwidth of approximately 0.2 rad/sec. Also determine the value of the sensitivity function, S,
at ω = 0.05 rad/sec in order to evaluate the magnitude of the tracking error for a reference input at that frequency.

Figure 6.46 Spacecraft attitude-control system

Figure 6.47 Magnitude of the spacecraft’s frequency response

Solution. The magnitude of the frequency response of the spacecraft (Fig. 6.47) clearly requires some reshaping,
because it has a slope of –2 (or –40 db per decade) everywhere. The simplest compensation to do the job consists of
using proportional and derivative terms (a PD compensator), which produces the relation

We will adjust the gain K to produce the desired bandwidth, and adjust break point ω1 = 1/TD to provide the –1
slope at the crossover frequency. The actual design process to achieve the desired specifications is now very simple:
We pick a value of K to provide a crossover at 0.2 rad/sec and choose a value of ω1 that is about four times lower
than the crossover frequency, so that the slope will be – 1 in the vicinity of the crossover. Figure 6.48 shows the steps



we take to arrive at the final compensation:
1. Plot |G(jω)|.
2. Modify the plot to include |G(jω)|, with ω1 = 0.05 rad/sec (TD = 20), so that the slope will be ≅ – 1 at ω = 0.2

rad/sec.
3. Determine that |DG| = 100, where the |DG| curve crosses the line ω = 0.2 rad/sec, which is where we want

magnitude 1 crossover to be.
4. In order for crossover to be at ω = 0.2 rad/sec, compute

Therefore,
KD(s) = 0.01(20s + 1)

will meet the specifications, thus completing the design.
If we were to draw the phase curve of KDG, we would find that PM = 75°, which is certainly quite adequate. A plot
of the closed-loop frequency-response magnitude (Fig. 6.49) shows that, indeed, the crossover frequency and the
bandwidth are almost identical in this case. The sensitivity function was defined by Eq. (4.17) and for this problem is

Figure 6.48 Compensated open-loop transfer function



Figure 6.49 Closed-loop frequency response of T(s) and S(s)

It is shown on the graph along with T(s), the output response versus input command. The frequency response of T
confirms that the design achieved the desired bandwidth of 0.2 rad/sec, and it can also be seen that S has the value of
0.2 at ω = 0.05 rad/sec. The step response of the closed-loop system is shown in Fig. 6.50 and its 14% overshoot
confirms the adequate damping.

Figure 6.50 Step response for PD compensation

6.6 Closed-Loop Frequency Response
The closed-loop bandwidth was defined in Section 6.1 and in Fig. 6.5. Figure 6.3 showed that the natural frequency
is always within a factor of two of the bandwidth for a second-order system. In Example 6.14, we designed the
compensation so that the crossover frequency was at the desired bandwidth and verified by computation that the



bandwidth was identical to the crossover frequency. Generally, the match between the crossover frequency and the
bandwidth is not as good as in Example 6.14. We can help establish a more exact correspondence by making a few
observations. Consider a system in which |G(jω)| shows the typical behavior

where ωc is the crossover frequency. The closed-loop frequency-response magnitude is approximated by

In the vicinity of crossover, where |G(jω)| = 1, |T(jω)| depends heavily on the PM. A PM of 90° means that
∠G(jωc) = –90°, and therefore |T(jωc)| =0.707. On the other hand, PM = 45° yields |T(jωc)| = 1.31.

The exact evaluation of Eq. (6.36) was used to generate the curves of |T(jω)| in Fig. 6.51. It shows that the
bandwidth for smaller values of PM is typically somewhat greater than ωc, though usually it is less than 2ωc; thus

ωc ≤ ωBW ≤ 2ωc.

Another specification related to the closed-loop frequency response is the resonant-peak magnitude Mr, defined in
Fig. 6.5. Figures 6.3 and 6.38 show that, for linear systems, Mr is generally related to the damping of the system. In
practice, Mr is rarely used; most designers prefer to use the PM to specify the damping of a system, because the
imperfections that make systems nonlinear or cause delays usually erode the phase more significantly than the
magnitude.

As demonstrated in the last example, it is also important in the design to achieve certain error characteristics and
these are often evaluated as a function of the input or disturbance frequency. In some cases, the primary function of
the control system is to regulate the output to a certain constant input in the presence of disturbances. For these
situations, the key item of interest for the design would be the closed-loop frequency response of the error with
respect to disturbance inputs.

Figure 6.51 Closed-loop bandwidth with respect to PM



6.7 Compensation
As we discussed in Chapters 4 and 5, dynamic elements (or compensation) are typically added to feedback
controllers to improve the system’s stability and error characteristics because the process itself cannot be made to
have acceptable characteristics with proportional feedback alone.

Section 4.3 discussed the basic types of feedback: proportional, derivative, and integral. Section 5.4 discussed three
kinds of dynamic compensation: lead compensation, which approximates proportional-derivative (PD) feedback, lag
compensation, which approximates proportional-integral (PI) control, and notch compensation, which has special
characteristics for dealing with resonances. In this section we discuss these and other kinds of compensation in terms
of their frequency-response characteristics. In most cases, the compensation will be implemented in a
microprocessor. Techniques for converting the continuous compensation D(s) into a form that can be coded in the
computer was briefly discussed in Section 4.4. It will be illustrated further in this section and will be discussed in
more detail in Chapter 8.

The frequency-response stability analysis to this point has usually considered the closed-loop system to have the
characteristic equation 1 + KG(s) = 0. With the introduction of compensation, the closed-loop characteristic
equation becomes 1 + KD(s)G(s) = 0, and all the previous discussion in this chapter pertaining to the frequency
response of KG(s) applies directly to the compensated case if we apply it to the frequency response of KD(s)G(s). We
call this quantity L(s), the “loop gain,” or open-loop transfer function of the system, where L(s)= KD(s)G(s).

Figure 6.52 Frequency response of PD control



PD compensation

6.7.1 PD Compensation
We will start the discussion of compensation design by using the frequency response with PD control. The
compensator transfer function, given by

was shown in Fig. 5.22 to have a stabilizing effect on the root locus of a second-order system. The frequency-response
characteristics of Eq. (6.37) are shown in Fig. 6.52. A stabilizing influence is apparent by the increase in phase and
the corresponding +1 slope at frequencies above the break point 1/TD. We use this compensation by locating 1/TD
so that the increased phase occurs in the vicinity of crossover (that is, where |KD(s)G(s)| = 1), thus increasing the
PM.

Note that the magnitude of the compensation continues to grow with increasing frequency. This feature is
undesirable because it amplifies the high-frequency noise that is typically present in any real system and, as a
continuous transfer function, cannot be realized with physical elements. It is also the reason we stated in Section 5.4
that pure derivative compensation gives trouble.

6.7.2 Lead Compensation
In order to alleviate the high-frequency amplification of the PD compensation, a first-order pole is added in the
denominator at frequencies substantially higher than the break point of the PD compensator. Thus the phase increase
(or lead) still occurs, but the amplification at high frequencies is limited. The resulting lead compensation has a
transfer function of

Lead compensation

where 1/α is the ratio between the pole/zero break-point frequencies. Figure 6.53 shows the frequency response of
this lead compensation. Note that a significant amount of phase lead is still provided, but with much less
amplification at high frequencies. A lead compensator is generally used whenever a substantial improvement in
damping of the system is required.

The phase contributed by the lead compensation in Eq. (6.38) is given by

ø = tan-1(Tω) – tan-1(αTω).
It can be shown (see Problem 6.44) that the frequency at which the phase is maximum is given by

The maximum phase contribution—that is, the peak of the ∠D(s) curve in Fig. 6.53—corresponds to



or

Figure 6.53 Lead-compensation frequency response with 1/α = 10

Another way to look at this is the following: The maximum phase occurs at a frequency that lies midway between
the two break-point frequencies (sometimes called corner frequencies) on a logarithmic scale,

as shown in Fig. 6.53. Alternatively, we may state these results in terms of the pole–zero locations. Rewriting D(s) in
the form used for root-locus analysis, we have



Problem 6.44 shows that

and

These results agree with the previous ones if we let z = -1/T and p = -1/αT in Eqs. (6.39) and (6.41).
For example, a lead compensator with a zero at s = –2(T = 0.5) and a pole at s = – 10 (αT = 0.1) (and thus 

 would yield the maximum phase lead at

The amount of phase lead at the midpoint depends only on α in Eq. (6.40) and is plotted in Fig. 6.54. For α = 1/5,
Fig. 6.54 shows that ømax = 40°. Note from the figure that we could increase the phase lead up to 90° using higher
values of the lead ratio, 1/α; however, Fig. 6.53 shows that increasing values of 1/α also produces higher
amplifications at higher frequencies. Thus our task is to select a value of 1/α that is a good compromise between an
acceptable PM and an acceptable noise sensitivity at high frequencies. Usually the compromise suggests that a lead
compensation should contribute a maximum of 70° to the phase. If a greater phase lead is needed, then a double-
lead compensation would be suggested, where

Figure 6.54 Maximum phase increase for lead compensation

Even if a system had negligible amounts of noise present and the pure derivative compensation of Eq. (6.37) were
acceptable, a continuous compensation would look more like Eq. (6.38) than Eq. (6.37) because of the impossibility
of building a pure differentiator. No physical system—mechanical or electrical—responds with infinite amplitude at
infinite frequencies, so there will be a limit in the frequency range (or bandwidth) for which derivative information



(or phase lead) can be provided. This is also true with a digital implementation. Here, the sample rate limits the
high-frequency amplification and essentially places a pole in the compensation transfer function.

EXAMPLE 6.15 Lead Compensation for a DC Motor
As an example of designing a lead compensator, let us repeat the design of compensation for the DC motor with the
transfer function

that was carried out in Section 5.4.1. This also represents the model of a satellite tracking antenna (see Fig. 3.61).
This time we wish to obtain a steady-state error of less than 0.1 for a unit-ramp input. Furthermore, we desire an
overshoot Mp < 25%
1. Determine the lead compensation satisfying the specifications.
2. Determine the digital version of the compensation with Ts = 0.05 sec.
3. Compare the step and ramp responses of both implementations.

Solution
1. The steady-state error is given by

where R(s) = 1/s2 for a unit ramp, so Eq. (6.45) reduces to

Therefore, we find that KD(0), the steady-state gain of the compensation, cannot be less than 10 (Kv ≥ 10)if it is to
meet the error criterion, so we pick K = 10. To relate the overshoot requirement to PM, Fig. 6.38 shows that a PM of
45° should suffice. The frequency response of KG(s)in Fig. 6.55 shows that the PM = 20° if no phase lead is added by
compensation. If it were possible to simply add phase without affecting the magnitude, we would need an additional
phase of only 25° at the KG(s)crossover frequency of ω = 3 rad/sec. However, maintaining the same low-frequency
gain and adding a compensator zero would increase the crossover frequency; hence more than a 25° phase
contribution will be required from the lead compensation. To be safe, we will design the lead compensator so that it
supplies a maximum phase lead of 40°. Fig. 6.54 shows that 1/α = 5 will accomplish that goal. We will derive the
greatest benefit from the compensation if the maximum phase lead from the compensator occurs at the crossover
frequency. With some trial and error, we determine that placing the zero at ω = 2 rad/sec and the pole at ω = 10
rad/sec causes the maximum phase lead to be at the crossover frequency. The compensation, therefore, is



Figure 6.55 Frequency response for lead-compensation design

The frequency-response characteristics of L(s) = KD(s)G(s) in Fig. 6.55 can be seen to yield a PM of 53°, which
satisfies the design goals.

The root locus for this design, originally given as Fig. 5.24, is repeated here as Fig. 6.56, with the root locations
marked for K = 10. The locus is not needed for the frequency-response design procedure; it is presented here only
for comparison with the root locus design method presented in Chapter 5. The entire process can be expedited by
the use of MATLAB’s SISOTOOL routine, which simultaneously provides the root locus and the Bode plot through an
interactive GUI interface. For this example, the MATLAB statements



Figure 6.56 Root locus for lead compensation design

G=tf(1,[1 1 0]);
D=tf(10*[1/2 1],[1/10 1]);
sisotool(G,D)

will provide the plots as shown in Fig. 6.57. It can also be used to generate the Nyquist and time-response plots if
desired.
2. To find the discrete equivalent of D(s), we use the trapezoidal rule given by Eq. (4.104). That is,

which, with Ts = 0.05 sec, reduces to

This same result can be obtained by the MATLAB statement

sysD = tf([0.5 1],[0.1 1]);
sysDd = c2d(sysD, 0.05, ‘tustin’).

Because

the discrete control equation that results is

3. The SIMULINK® block diagram of the continuous and discrete versions of D(s) controlling the DC motor is shown



in Fig. 6.58. The step responses of the two controllers are plotted together in Fig. 6.59(a) and are reasonably close
to one another; however, the discrete controller does exhibit slightly increased overshoot, as is often the case. Both
overshoots are less than 25%, and thus meet the specifications. The ramp responses of the two controllers, shown
in Fig. 6.59(b), are essentially identical, and both meet the 0.1 specified error.

Figure 6.57 SISOTOOL graphical user interface for Example 6.15

Figure 6.58 SIMULINK® block diagram for transient response of lead-compensation design



Figure 6.59 Lead-compensation design: (a) step response; (b) ramp response

The design procedure used in Example 6.15 can be summarized as follows:
1. Determine the low-frequency gain so that the steady-state errors are within specification.
2. Select the combination of lead ratio 1/α and zero values (1/T) that achieves an acceptable PM at crossover.
3. The pole location is then at (1/αT).

This design procedure will apply to many cases; however, keep in mind that the specific procedure followed in
any particular design may need to be tailored to its particular set of specifications.

In Example 6.15 there were two specifications: peak overshoot and steady-state error. We transformed the
overshoot specification into a PM, but the steady-state error specification we used directly. No speed-of-response type
of specification was given; however, it would have impacted the design in the same way that the steady-state error
specification did. The speed of response or bandwidth of a system is directly related to the crossover frequency, as
we pointed out earlier in Section 6.6. Figure 6.55 shows that the crossover frequency was ∼ 5 rad/sec. We could
have increased it by raising the gain K and increasing the frequency of the lead compensator pole and zero in order
to keep the slope of –1 at the crossover frequency. Raising the gain would also have decreased the steady-state error
to be better than the specified limit. The gain margin was never introduced into the problem because the stability
was adequately specified by the PM alone. Furthermore, the gain margin would not have been useful for this system
because the phase never crossed the 180° line and the GM was always infinite.

Design parameters for lead networks
In lead-compensation designs there are three primary design parameters:

1. The crossover frequency ωc, which determines bandwidth ωBW, rise time tr, and settling time ts;
2. The PM, which determines the damping coefficient ζ and the overshoot Mp;
3. The low-frequency gain, which determines the steady-state error characteristics.



The design problem is to find the best values for the parameters, given the requirements. In essence, lead
compensation increases the value of ωc/L(0) (=ωc/Kv for a Type 1 system). That means that, if the low-frequency
gain is kept the same, the crossover frequency will increase. Or if the crossover frequency is kept the same, the low-
frequency gain will decrease. Keeping this interaction in mind, the designer can assume a fixed value of one of these
three design parameters and then adjust the other two iteratively until the specifications are met. One approach is to
set the low-frequency gain to meet the error specifications and add a lead compensator to increase PM at the
crossover frequency. An alternative is to pick the crossover frequency to meet a time response specification, then
adjust the gain and lead characteristics so that the PM specification is met. A step-by-step procedure is outlined next
for these two cases. They apply to a sizable class of problems for which a single lead is sufficient. As with all such
design procedures, it provides only a starting point; the designer will typically find it necessary to go through several
design iterations in order to meet all the specifications.

Design Procedure for Lead Compensation

1. Determine open-loop gain K to satisfy error or bandwidth requirements:
(a) to meet error requirement, pick K to satisfy error constants (Kp, Kv, or Ka) so that ess error specification is

met, or alternatively,
(b) to meet bandwidth requirement, pick K so that the open-loop crossover frequency is a factor of two below

the desired closed-loop bandwidth.
2. Evaluate the PM of the uncompensated system using the value of K obtained from Step 1.
3. Allow for extra margin (about 10°), and determine the needed phase lead ømax.
4. Determine α from Eq. (6.40) or Fig. 6.54.
5. Pick ωmax to be at the crossover frequency; thus the zero is at  and the pole is at 

.
6. Draw the compensated frequency response and check the PM.
7. Iterate on the design. Adjust compensator parameters (poles, zeros, and gain) until all specifications are met.

Add an additional lead compensator (that is, a double-lead compensation) if necessary.

While these guidelines will not apply to all the systems you will encounter in practice, they do suggest a systematic
trial-and-error process to search for a satisfactory compensator that will usually be successful.

EXAMPLE 6.16 Lead Compensator for a Temperature Control System
The third-order system

is representative of a typical temperature control system. Design a lead compensator such that Kp = 9 and the PM is
at least 25°.
Solution. Let us follow the design procedure:



1. Given the specification for Kp, we solve for K:

2. The Bode plot of the uncompensated system, KG(s), with K = 9 can be created by the MATLAB statements below
and is shown in Fig. 6.60 along with the two compensated cases.

numG = 9;
den2 = conv([2 1],[11]);
denG = conv(den2,[0.5 1]);
sysG = tf(numG,denG);
w=logspace(−1,1);
[mag,phase] = bode(sysG,w);
loglog(w,squeeze(mag)),grid;
semilogx(w,squeeze(phase)),grid;

It is difficult to read the PM and crossover frequencies accurately from the Bode plots; therefore, the MATLAB
command

[GM,PM,Wcg,Wcp] = margin(mag,phas,w)

can be invoked. The quantity PM is the phase margin and Wcp is the frequency at which the gain crosses magnitude
1. (GM and Wcg are the open-loop gain margin and the frequency at which the phase crosses 180.) For this example,
the output is

GM =1.25, PM = 7.12, Wcg = 1.87, Wcp = 1.68,

which says that the PM of the uncompensated system is 7° and that this occurs at a crossover frequency of 1.7 rad/sec.
3. Allowing for 10° of extra margin, we want the lead compensator to contribute 25° + 10° – 7° = 28° at the

crossover frequency. The extra margin is typically required because the lead will increase the crossover frequency
from the open-loop case, at which point more phase increase will be required.



Figure 6.60 Bode plot for the lead-compensation design in Example 6.16

4. From Fig. 6.54 we see that α = 1/3 will produce approximately 30° phase increase midway between the zero
and pole.

5. As a first cut, let’s place the zero at 1 rad/sec (T = 1) and the pole at 3 rad/sec (αT = 1/3), thus bracketing the
open-loop crossover frequency and preserving the factor of 3 between pole and zero, as indicated by α = 1/3. The
lead compensator is

6. The Bode plot of the system with D1(s) (Fig. 6.60, middle curve) has a PM of 16°. We did not achieve the desired
PM of 30°, because the lead shifted the crossover frequency from 1.7 rad/sec to 2.3 rad/sec, thus increasing the
required phase increase from the lead. The step response of the system with D1(s)(Fig. 6.61) shows a very
oscillatory response, as we might expect from the low PM of 16°.

7. We repeat the design with extra phase increase and move the zero location slightly to the right so that the
crossover frequency won’t be shifted so much. We choose α = 1/10 with the zero at s = –1.5, so

This compensation produces a PM = 38°, and the crossover frequency lowered slightly to 2.2 rad/sec. Figure 6.60
(upper curve) shows the frequency response of the revised design. Figure 6.61 shows a substantial reduction in the
oscillations, which you should expect from the higher PM value.



Figure 6.61 Step response for lead-compensation design

EXAMPLE 6.17 Lead-Compensator Design for a Type 1 Servomechanism System
Consider the third-order system

This type of system would result for a DC motor with a lag in the shaft position sensor. Design a lead compensator so
that the PM = 45° and Kv = 10.
Solution. Again, we follow the design procedure given earlier:
1. As given, KG(s) will yield Kv = 10 if K = 1. Therefore, the Kv requirement is met by K = 1 and the low-

frequency gain of the compensation should be 1.
2. The Bode plot of the system is shown in Fig. 6.62. The PM of the uncompensated system (lower curve) is

approximately –4°, and the crossover frequency is at ωc ≅ 4 rad/sec.
3. Allowing for 5° of extra PM, we need PM = 45° + 5° – (–4°) = 54° to be contributed by the lead compensator.
4. From Fig. 6.54 we find that α must be 0.1 to achieve a maximum phase lead of 54°.
5. The new gain crossover frequency will be higher than the open-loop value of ωc = 4 rad/sec, so let’s select the

pole and zero of the lead compensation to be at 20 and 2 rad/sec, respectively. So the candidate compensator is

6. The Bode plot of the compensated system (Fig. 6.62, middle curve) shows a PM of 23°. Further iteration will
show that a single-lead compensator cannot meet the specification because of the high-frequency slope of –3.

7. We need a double-lead compensator in this system. If we try a compensator of the form

we obtain PM = 46°. The Bode plot for this case is shown as the upper curve in Fig. 6.62.



Figure 6.62 Bode plot for the lead-compensation design in Example 6.17

Both Examples 6.16 and 6.17 are third order. Example 6.17 was more difficult to design compensation for, because
the error requirement, Kv, forced the crossover frequency, ωc, to be so high that a single lead could not provide
enough PM.



Figure 6.63 Frequency response of PI control

PI compensation

6.7.3 PI Compensation
In many problems it is important to keep the bandwidth low and also to reduce the steady-state error. For this
purpose, a proportional-integral (PI) or lag compensator is useful. From Eq. (4.65), we see that PI control has the
transfer function

which results in the frequency-response characteristics shown in Fig. 6.63. The desirable aspect of this compensation
is the infinite gain at zero frequency, which reduces the steady-state errors. This is accomplished, however, at the cost
of a phase decrease at frequencies lower than the break point at ω = 1/TI. Therefore, 1/TI is usually located at a
frequency substantially less than the crossover frequency so that the system’s PM is not affected significantly.

Lag compensation

6.7.4 Lag Compensation
As we discussed in Section 5.4, lag compensation approximates PI control. Its transfer function was given by Eq.
(5.72) for root-locus design, but for frequency-response design, it is more convenient to write the transfer function of
the lag compensation alone in the Bode form



Figure 6.64 Frequency response of lag compensation with α = 10

where α is the ratio between the zero/pole break-point frequencies. The complete controller will almost always
include an overall gain K and perhaps other dynamics in addition to the lag compensation. Although Eq. (6.51) looks
very similar to the lead compensation in Eq. (6.38), the fact is that α > 1 causes the pole to have a lower break-
point frequency than the zero. This relationship produces the low-frequency increase in amplitude and phase
decrease (lag) apparent in the frequency-response plot in Fig. 6.64 and gives the compensation the essential feature
of integral control—an increased low-frequency gain. The typical objective of lag-compensation design is to provide
additional gain of α in the low-frequency range and to leave the system sufficient PM. Of course, phase lag is not a
useful effect, and the pole and zero of the lag compensator are selected to be at much lower frequencies than the
uncompensated system crossover frequency in order to keep the effect on the PM to a minimum. Thus, the lag
compensator increases the open-loop DC gain, thereby improving the steady-state response characteristics, without
changing the transient response characteristics significantly. If the pole and zero are relatively close together and near
the origin (that is, if the value of T is large), wecan increase the low-frequency gain (and thus Kp, Kv, or Ka) by a
factor α without moving the closed-loop poles appreciably. Hence, the transient response remains approximately the
same while the steady-state response is improved.

We now summarize a step-by-step procedure for lag-compensator design.

Design Procedure for Lag Compensation

1. Determine the open-loop gain K that will meet the PM requirement without compensation.
2. Draw the Bode plot of the uncompensated system with crossover frequency from Step 1, and evaluate the low-



frequency gain.
3. Determine α to meet the low-frequency gain error requirement.
4. Choose the corner frequency ω = 1/T (the zero of the lag compensator) to be one octave to one decade below

the new crossover frequency ωc.
5. The other corner frequency (the pole location of the lag compensator) is then ω = 1/αT.
6. Iterate on the design. Adjust compensator parameters (poles, zeros, and gain) to meet all the specifications.

EXAMPLE 6.18 Lag-Compensator Design for Temperature Control System
Again consider the third-order system of Example 6.16:

Design a lag compensator so the PM is at least 40° and Kp = 9.
Solution. We follow the design procedure previously enumerated.
1. From the open-loop plot of KG(s), shown for K = 9 in Fig. 6.60, it can be seen that a PM > 40° will be achieved

if the crossover frequency ωc  1 rad/sec. This will be the case if K = 3. So we pick K = 3 in order to meet the
PM specification.

2. The Bode plot of KG(s) in Fig. 6.65 with K = 3 shows that the PM is ≈ 50° and the low-frequency gain is now 3.
Exact calculation of the PM using MATLAB’s margin shows that PM = 53°.

Figure 6.65 Frequency response of lag-compensation design in Example 6.18



Figure 6.66 Step response of lag-compensation design in Example 6.18

3. The low frequency gain should be raised by a factor of 3, which means the lag compensation needs to have α =
3.

4. We choose the corner frequency for the zero to be approximately a factor of 5 slower than the expected crossover
frequency—that is, at 0.2 rad/sec. So, 1/T = 0.2, or T = 5.

5. We then have the value for the other corner frequency: . The compensator is
thus

The compensated frequency response is also shown in Fig. 6.65. The low-frequency gain of KD(0)G(0) = 3K = 9,
thus Kp = 9 and the PM lowers slightly to 44°, which satisfies the specifications. The step response of the system,
shown in Fig. 6.66, illustrates the reasonable damping that we would expect from PM = 44°.
6. No iteration is required in this case.

Note that Examples 6.16 and 6.18 are both for the same plant, and both had the same steady-state error
requirement. One was compensated with lead and one was compensated with lag. The result is that the bandwidth
of the lead-compensated design is higher than that for the lag-compensated design by approximately a factor of 3.
This result can be seen by comparing the crossover frequencies of the two designs.

A beneficial effect of lag compensation, an increase in the low-frequency gain for better error characteristics, was
just demonstrated in Example 6.18. However, in essence, lag compensation reduces the value of ωc/L(0) (=ωc/Kv
for a Type 1 system). That means that, if the crossover frequency is kept the same, the low-frequency gain will
increase. Likewise, if the low-frequency gain is kept the same, the crossover frequency will decrease. Therefore, lag
compensation could also be interpreted to reduce the crossover frequency and thus obtain a better PM. The
procedure for design in this case is partially modified. First, pick the low-frequency gain to meet error requirements,
then locate the lag compensation pole and zero in order to provide a crossover frequency with adequate PM. The
next example illustrates this design procedure. The end result of the design will be the same no matter what
procedure is followed.

EXAMPLE 6.19 Lag Compensation of the DC Motor
Repeat the design of the DC motor control in Example 6.15, this time using lag compensation. Fix the low-frequency
gain in order to meet the error requirement of Kv = 10; then use the lag compensation to meet the PM requirement
of 45°.



Figure 6.67 Frequency response of lag-compensation design in Example 6.19

Solution. The frequency response of the system KG(s), with the required gain of K = 10, is shown in Fig. 6.67. The
uncompensated system has a crossover frequency at approximately 3 rad/sec where the PM = 20°. The designer’s
task is to select the lag compensation break points so that the crossover frequency is lowered and more favorable PM
results. To prevent detrimental effects from the compensation phase lag, the pole and zero position values of the
compensation need to be substantially lower than the new crossover frequency. One possible choice is shown in Fig.
6.67: The lag zero is at 0.1 rad/sec, and the lag pole is at 0.01 rad/sec. This selection of parameters produces a PM of
50°, thus satisfying the specifications. Here the stabilization is achieved by keeping the crossover frequency to a
region where G(s) has favorable phase characteristics. The criterion for selecting the pole and zero locations 1/T is to
make them low enough to minimize the effects of the phase lag from the compensation at the crossover frequency.
Generally, however, the pole and zero are located no lower than necessary, because the additional system root
(compare with the root locus of a similar system design in Fig. 5.28) introduced by the lag will be in the same
frequency range as the compensation zero and will have some effect on the output response, especially the response
to disturbance inputs.

The response of the system to a step reference input is shown in Fig. 6.68. It shows no steady-state error to a step
input, because this is a Type 1 system. However, the introduction of the slow root from the lag compensation has
caused the response to require about 25 sec to settle down to the zero steady-state value. The overshoot Mp is
somewhat larger than you would expect from the guidelines, based on a second-order system shown in Fig. 6.38 for



a PM = 50°; however, the performance is adequate.

Figure 6.68 Step response of lag-compensation design in Example 6.19

As we saw previously for a similar situation, Examples 6.15 and 6.19 meet an identical set of specifications for the
same plant in very different ways. In the first case the specifications are met with a lead compensation, and a
crossover frequency ωc = 5 rad/sec (ωBW ≅ 6 rad/sec) results. In the second case the same specifications are met
with a lag compensation, and ωc ≅ 0.8 rad/sec (ωBW ≅ 1 rad/sec) results. Clearly, had there been specifications for
rise time or bandwidth, they would have influenced the choice of compensation (lead or lag). Likewise, if the slow
settling to the steady-state value was a problem, it might have suggested the use of lead compensation instead of lag.

In more realistic systems, dynamic elements usually represent the actuator and sensor as well as the process itself,
so it is typically impossible to raise the crossover frequency much beyond the value representing the speed of
response of the components being used. Although linear analysis seems to suggest that almost any system can be
compensated, in fact, if we attempt to drive a set of components much faster than their natural frequencies, the
system will saturate, the linearity assumptions will no longer be valid, and the linear design will represent little
more than wishful thinking. With this behavior in mind, we see that simply increasing the gain of a system and
adding lead compensators to achieve an adequate PM may not always be possible. It may be preferable to satisfy
error requirements by adding a lag network so that the closed-loop bandwidth is kept at a more reasonable
frequency.

6.7.5 PID Compensation
For problems that need PM improvement at ωc and low-frequency gain improvement, it is effective to use both
derivative and integral control. By combining Eqs. (6.37) and (6.50), we obtain PID control. Its transfer function is

PID compensation

and its frequency-response characteristics are shown in Fig. 6.69. This form is slightly different from that given by Eq.
(4.59); however, the effect of the difference is inconsequential. This compensation is roughly equivalent to combining
lead and lag compensators in the same design, and so is sometimes referred to as a lead–lag compensator. Hence, it
can provide simultaneous improvement in transient and steady-state responses.



Figure 6.69 Frequency response of PID compensation with TI/TD = 20

EXAMPLE 6.20 PID Compensation Design for Spacecraft Attitude Control
A simplified design for spacecraft attitude control was presented in Section 6.5; however, here we have a more
realistic situation that includes a sensor lag and a disturbing torque. Figure 6.70 defines the system. Design a PID
controller to have zero steady-state error to a constant-disturbance torque, a PM of 65°, and as high a bandwidth as is
reasonably possible. Also evaluate the pointing errors versus frequency and compare them to the errors that would
result if the system is open loop. For a torque disturbance from solar pressure that acts as a sinusoid at the orbital
rate (ω = 0.001 rad/sec or ≈ 100-minute period), determine the fractional improvement by the feedback system.

Solution. First, let us take care of the steady-state error. For the spacecraft to be at a steady final value, the total input
torque, Td + Tc, must equal zero. Therefore, if Td ≠ 0, then Tc = –Td. The only way this can be true with no error
(e = 0) is for (s) to contain an integral term. Hence, including integral control in the compensation will meet the
steady-state requirement. This could also be verified mathematically by use of the Final Value Theorem (see Problem
6.47).



Figure 6.70 Block diagram of spacecraft control using PID design, Example 6.20

The frequency response of the spacecraft and sensor,

is shown in Fig. 6.71. The slopes of –2 (that is, –40 db per decade) and –3 (–60 db per decade) show that the system
would be unstable for any value of K if no derivative feedback were used. This is clear because of Bode’s gain-phase
relationship, which shows that the phase would be –180° for the –2 slope and –270° for the –3 slope and which
would correspond to a PM of 0 ° or –90°. Therefore, derivative control is required to bring the slope to –1 at the
crossover frequency that was shown in Section 6.5 to be a requirement for stability. The problem now is to pick
values for the three parameters in Eq. (6.52)–K, TD, and TI—that will satisfy the specifications.

The easiest approach is to work first on the phase so that PM = 65° is achieved at a reasonably high frequency.
This can be accomplished primarily by adjusting TD, noting that TI has a minor effect if sufficiently larger than TD.
Once the phase is adjusted, we establish the crossover frequency; then we can easily determine the gain K.

We examine the phase of the PID controller in Fig. 6.69 to determine what would happen to the compensated
spacecraft system, D(s)G(s), as TD is varied. If 1/TD ≥ 2 rad/sec, the phase lead from the PID control would simply
cancel the sensor phase lag, and the composite phase would never exceed –180°, an unacceptable situation. If 1/TD
≤ 0.01, the composite phase would approach –90 ° for some range of frequencies and would exceed –115° for an
even wider range of frequencies; the latter threshold would provide a PM of 65°. In the compensated phase curve
shown in Fig. 6.71, 1/TD = 0.1, which is the largest value of 1/TD that could provide the required PM of 65°. The
phase would never cross the –115° (65° PM) line for any 1/TD > 0.1. For 1/TD = 0.1, the crossover frequency ωc
that produces the 65° PM is 0.5 rad/sec. For a value of 1/TD  0.05, the phase essentially follows the dotted curve in
Fig. 6.71, which indicates that the maximum possible ωc is approximately 1 rad/sec and is provided by 1/TD =
0.05. Therefore, 0.05 < 1/TD < 0.1 is the only sensible range for 1/TD; anything less than 0.05 would provide no
significant increase in bandwidth, while anything more than 0.1 could not meet the PM specification. Although the
final choice is somewhat arbitrary, we have chosen 1/TD = 0.1 for our final design.

Our choice for 1/TI is a factor of 20 lower than 1/TD; that is, 1/TI = 0.005. A factor less than 20 would negatively
impact the phase at crossover, thus lowering the PM.



Figure 6.71 Compensation for PID design in Example 6.20

Furthermore, it is generally desirable to keep the compensated magnitude as large as possible at frequencies below
ωc in order to have a faster transient response and smaller errors; maintaining 1/TD and 1/TI at the highest possible
frequencies will bring this about.

The only remaining task is to determine the proportional part of the PID controller, or K. Unlike the system in
Example 6.18, where we selected K in order to meet a steady-state error specification, here we select a value of K
that will yield a crossover frequency at the point corresponding to the required PM of 65°. The basic procedure for
finding K, discussed in Section 6.6, consists of plotting the compensated system amplitude with K = 1, finding the
amplitude value at crossover, then setting 1/K equal to that value. Figure 6.71 shows that when K = 1, |D(s)G(s)| =
20 at the desired crossover frequency ωc = 0.5 rad/sec. Therefore,

The compensation equation that satisfies all of the specifications is now complete:



It is interesting to note that this system would become unstable if the gain were lowered so that ωc ≤ 0.02
rad/sec, the region in Fig. 6.71 where the phase of the compensated system is less than –180°. As mentioned in
Section 6.4, this situation is referred to as a conditionally stable system. A root locus with respect to K for this and
any conditionally stable system would show the portion of the locus corresponding to very low gains in the RHP. The
response of the system for a unit step θcom is shown in Fig. 6.72(a) and exhibits well damped behavior, as should be
expected with a 65° PM.

The response of the system for a step disturbance torque Td = 0.1 N is shown in Fig. 6.72(b). Note that the
integral control term does eventually drive the error to zero; however, it is slow due to the presence of a closed-loop
pole in the vicinity of the zero at s = –0.005. Recall from the design process that this zero was located in order that
the integral term not impact the PM unduly. So if the slow disturbance response is not acceptable, speeding up this
pole will decrease the PM and damping of the system. Compromise is often a necessity in control system design!

The frequency response of the error characteristics is shown in Fig. 6.73. The top curve is the open-loop error
characteristics and the bottom curve is the closed-loop response. The error is attenuated by almost a factor of 106 by
the feedback for a disturbance at the orbital rate; there is decreasing error attenuation as the disturbance frequency
increases, and there is almost no error attenuation at the system bandwidth of ≈ 0.5 rad/sec, as you would expect.
Note from the design process that the bandwidth was limited by the response characteristics of the sensor, which had
a bandwidth of 2 rad/sec. Therefore, the only way to improve the error characteristics would be to increase the
bandwidth of the sensor. On the other hand, increasing the bandwidth of the sensor may introduce jitter from the
high-frequency sensor noise. Thus we see the classic trade-off dilemma: the designer has to make a judgment as to
which feature (low errors due to disturbances or low errors due to sensor noise) is the more important to the overall
system performance.

Figure 6.72 Transient response for PID example: (a) step response; (b) step-disturbance response



Figure 6.73 Frequency response of the error due to a disturbance input, open-loop and closed-loop

Summary of Compensation Characteristics

1. PD control adds phase lead at all frequencies above the break point. If there is no change in gain on the low-
frequency asymptote, PD compensation will increase the crossover frequency and the speed of response. The
increase in magnitude of the frequency response at the higher frequencies will increase the system’s sensitivity to
noise.

2. Lead compensation adds phase lead at a frequency band between the two break points, which are usually
selected to bracket the crossover frequency. If there is no change in gain on the low-frequency asymptote, lead
compensation will increase both the crossover frequency and the speed of response over the uncompensated
system.

3. PI control increases the frequency-response magnitude at frequencies below the break point, thereby decreasing
steady-state errors. It also contributes phase lag below the break point, which must be kept at a low enough
frequency to avoid degrading the stability excessively.

4. Lag compensation increases the frequency-response magnitude at frequencies below the two break points,
thereby decreasing steady-state errors. Alternatively, with suitable adjustments in K, lag compensation can be
used to decrease the frequency-response magnitude at frequencies above the two break points, so that ωc yields
an acceptable PM. Lag compensation also contributes phase lag between the two break points, which must be
kept at frequencies low enough to keep the phase decrease from degrading the PM excessively. This
compensation will typically provide a slower response than using lead compensation.

6.7.6 Design Considerations
We have seen in the preceding designs that characteristics of the open-loop Bode plot of the loop gain, L(s) (=
KDG), determine performance with respect to steady-state errors, low-frequency errors, and dynamic response. Other



properties of feedback, developed in Chapter 4, include reducing the effects of sensor noise and parameter changes
on the performance of the system.

The consideration of steady-state errors or low-frequency errors due to command inputs and disturbances has been
an important design component in the different design methods presented. Design for acceptable errors due to
command inputs and disturbances can be thought of as placing a lower bound on the low-frequency gain of the open
loop system. Another aspect of the sensitivity issue concerns the high-frequency portion of the system. So far, Chapter
4 and Sections 5.4 and 6.7 have briefly discussed the idea that, to alleviate the effects of sensor noise, the gain of the
system at high frequencies must be kept low. In fact, in the development of lead compensation, we added a pole to
pure derivative control specifically to reduce the effects of sensor noise at the higher frequencies. It is not unusual for
designers to place an extra pole in the compensation, that is, to use the relation

in order to introduce even more attenuation for noise reduction.

Gain stabilization
A second consideration affecting high-frequency gains is that many systems have high-frequency dynamic

phenomena, such as mechanical resonances, that could have an impact on the stability of a system. In very-high-
performance designs, these high-frequency dynamics are included in the plant model, and a compensator is designed
with a specific knowledge of those dynamics. A standard approach to designing for unknown high-frequency
dynamics is to keep the high-frequency gain low, just as we did for sensor-noise reduction. The reason for this can be
seen from the gain–frequency relationship of a typical system, shown in Fig. 6.74. The only way instability can result
from high-frequency dynamics is if an unknown high-frequency resonance causes the magnitude to rise above 1.
Conversely, if all unknown high-frequency phenomena are guaranteed to remain below a magnitude of 1, stability
can be guaranteed. The likelihood of an unknown resonance in the plant G rising above 1 can be reduced if the
nominal high-frequency loop gain (L) is lowered by the addition of extra poles in D(s). When the stability of a
system with resonances is assured by tailoring the high-frequency magnitude never to exceed 1, we refer to this
process as amplitude or gain stabilization. Of course, if the resonance characteristics are known exactly, a specially
tailored compensation, such as one with a notch at the resonant frequency, can be used to change the phase at a
specific frequency to avoid encirclements of –1, thus stabilizing the system even though the amplitude does exceed
magnitude 1. This method of stabilization is referred to as phase stabilization. A drawback to phase stabilization is
that the resonance information is often not available with adequate precision or varies with time; therefore, the
method is more susceptible to errors in the plant model used in the design. Thus, we see that sensitivity to plant
uncertainty and sensor noise are both reduced by sufficiently low loop gain at high-frequency.

Phase stabilization



Figure 6.74 Effect of high-frequency plant uncertainty

These two aspects of sensitivity—high-and low-frequency behavior—can be depicted graphically, as shown in Fig.
6.75. There is a minimum low-frequency gain allowable for acceptable steady-state and low-frequency error
performance and a maximum high-frequency gain allowable for acceptable noise performance and for low
probability of instabilities caused by plant-modeling errors. We define the low-frequency lower bound on the
frequency response as W1 and the upper bound as W2- 1, as shown in the figure. Between these two bounds the
control engineer must achieve a gain crossover near the required bandwidth; as we have seen, the crossover must
occur at a slope of –1 or slightly steeper for good PM and hence damping.

For example, if a control system was required to follow a sinusoidal reference input with frequencies from 0 to ω1
with errors no greater than 1%, the function W1 would be 100 from ω = 0 to ω1. Similar ideas enter into defining

possible values for the  function which would constrain the open-loop gain to be below  for frequencies
above ω2. These ideas will be discussed further in the following subsections.

Figure 6.75 Design criteria for low sensitivity

Δ 6.7.7 Specifications in Terms of the Sensitivity Function
We have seen how the gain and phase margins give useful information about the relative stability of nominal systems
and can be used to guide the design of lead and lag compensations. However, the GM and PM are only two numbers
and have limitations as guides to the design of realistic control problems. We can express more complete design



specifications in the frequency domain if we first give frequency descriptions for the external signals, such as the
reference and disturbance, and consider the sensitivity function defined in Section 4.1. For example, we have so far
described dynamic performance by the transient response to simple steps and ramps. A more realistic description of
the actual complex input signals is to represent them as random processes with corresponding frequency power
density spectra. A less sophisticated description, which is adequate for our purposes, is to assume that the signals can
be represented as a sum of sinusoids with frequencies in a specified range. For example, we can usually describe the
frequency content of the reference input as a sum of sinusoids with relative amplitudes given by a magnitude
function |R| such as that plotted in Fig. 6.76, which represents a signal with sinusoidal components having about the
same amplitudes up to some value ω1 and very small amplitudes for frequencies above that. With this assumption,
the response tracking specification can be expressed by a statement such as “the magnitude of the system error is to
be less than the bound eb(a value such as 0.01) for any sinusoid of frequency ωo in the range 0 ≤ ωo ≤ ω1 and of
amplitude given by |R(jωo)|.” To express such a performance requirement in terms that can be used in design, we
consider again the unity-feedback system drawn in Fig. 6.77. For this system, the error is given by

Sensitivity function
where we have used the sensitivity function

Figure 6.76 Plot of typical reference spectrum



Figure 6.77 Closed-loop block diagram

In addition to being the factor multiplying the system error, the sensitivity function is also the reciprocal of the
distance of the Nyquist curve, DG, from the critical point –1. A large value for S indicates a Nyquist plot that comes
close to the point of instability. The frequency-based error specification based on Eq. (6.54) can be expressed as |E|
= |S||R| ≤ eb. In order to normalize the problem without needing to define both the spectrum R and the error
bound each time, we define the real function of frequency W1 (ω) = |R| /eb and the requirement can be written as

EXAMPLE 6.21 Performance Bound Function
A unity-feedback system is to have an error less than 0.005 for all unity amplitude sinusoids below frequency 100
Hertz. Draw the performance frequency function W1 (ω) for this design.
Solution. The spectrum, from the problem description, is unity for 0 ≤ ω ≤ 200 π rad/sec. Because eb = 0.005, the
required function is given by a rectangle of amplitude 1/0.005 = 200 over the given range. The function is plotted in
Fig. 6.78.

The expression in Eq. (6.56) can be translated to the more familiar Bode plot coordinates and given as a
requirement on loop gain by observing that over the frequency range when errors are small the loop gain is large. In
that case |S| ≈ 1/|DG|, and the requirement is approximately

This requirement can be seen as an extension of the steady-state error requirement from just ω = 0 to the range 0 ≤
ωo ≤ ω1.

In addition to the requirement on dynamic performance, the designer is usually required to design for stability
robustness. By this we mean that, while the design is done for a nominal plant transfer function, the actual system is
expected to be stable for an entire class of transfer functions that represents the range of changes that are expected to
be faced as temperature, age, and other operational and environmental factors vary the plant dynamics from the



nominal case. A realistic way to express this uncertainty is to describe the plant transfer function as having a
multiplicative uncertainty:

Figure 6.78 Plot of example performance function, W1

In Eq. (6.58), the real function W2 is a magnitude function that expresses the size of changes as a function of
frequency that the transfer function is expected to experience. In terms of G and Go, the expression is

The shape of W2 is almost always very small for low frequencies (we know the model very well there) and increases
substantially as we go to higher frequencies, where parasitic parameters come into play and unmodeled structural
flexibility is common. A typical shape is sketched in Fig. 6.79. The complex function, Δ(jω), represents the
uncertainty in phase and is restricted only by the constraint

We assume that the nominal design has been done and is stable, so that the Nyquist plot of DGo satisfies the Nyquist
stability criterion. In this case, the nominal characteristic equation 1+DGo = 0 is never satisfied for any real
frequency. If the system is to have stability robustness, the characteristic equation using the uncertain plant as
described by Eq. (6.58) must not go to zero for any real frequency for any value of Δ. The requirement can be written
as



Figure 6.79 Plot of typical plant uncertainty, W2

where we have defined the complementary sensitivity function as

Because the nominal system is stable, the first term in Eq. (6.61), (1 +DGo), is never zero. Thus, if Eq. (6.61) is not to
be zero for any frequency and any Δ, then it is necessary and sufficient that

|TW2Δ| < 1,

which reduces to

making use of Eq. (6.60). As with the performance specification, for single-input–single-output unity-feedback
systems this requirement can be approximatedby a more convenient form. Over the range of high frequencies where
W2 is non-negligible because there is significant model uncertainty, DGo is small. Therefore we can approximate T ≈
DGo, and the constraint reduces to



The robustness issue is important to design and can affect the high-frequency open-loop frequency response, as
discussed above. However, as discussed earlier, it is also important to limit the high-frequency magnitude in order to
attenuate noise effects.

Figure 6.80 Plot of constraint on |

EXAMPLE 6.22 Typical Plant Uncertainty
The uncertainty in a plant model is described by a function W2 that is zero until ω = 3000, increases linearly from
there to a value of 100 at ω = 10,000, and remains at 100 for higher frequencies. Plot the constraint on DGo to meet
this requirement.
Solution. Where W2 = 0, there is no constraint on the magnitude of loop gain; above ω = 3000, 1/W2 = DGo is a
hyperbola from ∞ to 0.01 at ω = 10,000 and remains at 0.01 for ω > 10,000. The bound is sketched in Fig. 6.80.

In practice, the magnitude of the loop gain is plotted on log-log (Bode) coordinates, and the constraints of Eqs.
(6.57) and (6.64) are included on the same plot. A typical sketch is drawn in Fig. 6.75. The designer is expected to
construct a loop gain that will stay above W1 for frequencies below ω1, cross over the magnitude-1 line (|DG| =
0)in the range ω1 ≤ ω ≤ ω2, and stay below 1/W2 for frequencies above ω2.

Δ 6.7.8 Limitations on Design in Terms of the Sensitivity Function
One of the major contributions of Bode was to derive important limitations on transfer functions that set limits on
achievable design specifications. For example, one would like to have the system error kept small for the widest
possible range of frequencies and yet have a system that is robustly stable for a very uncertain plant. In terms of the
plot in Fig. 6.81, we want W1 and W2 to be very large in their respective frequency ranges and for ω1 to be pushed
up close to ω2. Thus the loop gain is expected to plunge with a large negative slope from being greater than W1 to
being less than 1/W2 in a very short span, while maintaining a good PM to assure stability and good dynamic



performance. The Bode gain–phase formula given earlier shows that this is impossible with a linear controller, by
showing that the minimum possible phase is determined by an integral depending on the slope of the magnitude
curve. If the slope is constant for a substantial range around ωo, then Eq. (6.34) can be approximated by

Figure 6.81 Tracking and stability robustness constraints on the Bode plot; an example of impossible constraints

where M is the log magnitude and u = log ω/ωo. If, for example, the phase is to be kept above –150° to maintain a
30° PM, then the magnitude slope near ω o is estimated to be

If we try to make the average slope steeper (more negative) than this, we will lose the PM. From this condition,
there developed the design rule that the asymptotes of the Bode plot magnitude, which are restricted to be integral
values for rational functions, should be made to cross over the zero-db line at a slope of –1 over a frequency range of
about one decade around the crossover frequency, as already discussed in Section 6.5. Modifications to this rule need
to be made in particular cases, of course, but the limitation implied by Eq. (6.65) is a hard limit that cannot be
avoided. Thus, it is clear that it would be impossible to stabilize the system of Fig. 6.81.

EXAMPLE 6.23 Robustness Constraints
If W1 = W2 = 100, and we want PM = 30°, what is the minimum ratio of ω2/ω1?
Solution. The slope is



Thus, the log of the ratio is log ω1/ω2 = –2.40 and ω2 = 251ω1.

An alternative to the standard Bode plot as a design guide can be based on a plot of the sensitivity function as a

function of frequency. In this format, Eq. (6.56) requires that  over the range 0 ≤ ω ≤ ω1 for performance,
and Eq. (6.64) requires that |S| ≈ 1 over the range ω2 ≤ ω for stability robustness. It should come as no surprise
that Bode found a limitation on the possibilities in this case, too. The constraint, extended by Freudenberg and
Looze, shows that an integral of the sensitivity function is determined by the presence of poles in the RHP. Suppose
the loop gain DGo has np poles, p i, in the RHP and “rolls off” at high frequencies at a slope faster than –1. For
rational functions, this means that there is an excess of at least two more finite poles than zeros. Then it can be
shown that

If there are no RHP poles, then the integral is zero. This means that if we make the log of the sensitivity function very
negative over some frequency band to reduce errors in that band, then, of necessity, ln |S| will be positive over
another part of the band, and errors will be amplified there. If there are unstable poles, the situation is worse,
because the positive area where sensitivity magnifies the error must exceed the negative area where the error is
reduced by the feedback. If the system is minimum phase, then it is, in principle, possible to keep the magnitude of
the sensitivity small by spreading the sensitivity increase over all positive frequencies to infinity, but such a design
requires an excessive bandwidth and is rarely practical. If a specific bandwidth is imposed, then the sensitivity
function is constrained to take on a finite, possibly large, positive value at some point below the bandwidth. As
implied by the definition of the vector margin (VM) in Section 6.4 (Fig. 6.39), a large Smax corresponds to a Nyquist
plot that comes close to the −1 critical point and a system having a small vector margin, because

Vector margin

If the system is not minimum-phase, the situation is worse. An alternative to Eq. (6.66) is true if there is a
nonminimum-phase zero of DGo, a zero in the RHP. Suppose that the zero is located at zo = σo + jωo, where σo >
0. Again, we assume there are np RHP poles at locations p i with conjugate values . Now the condition can be
expressed as a two-sided weighted integral



Figure 6.82 Sensitivity function for Example 6.24

In this case, we do not have the “roll-off” restriction, and there is no possibility of spreading the positive area over
high frequencies, because the weighting function goes to zero with frequency. The important point about this integral
is that if the nonminimum-phase zero is close to a RHP pole, the right side of the integral can be very large, and the
excess of positive area is required to be correspondingly large. Based on this result, one expects especially great
difficulty meeting both tracking and robustness specifications on sensitivity with a system having RHP poles and zeros
close together.

EXAMPLE 6.24 Sensitivity Function for Antenna
Compute and plot the sensitivity function for the design of the antenna for which G(s) = 1/s(s + 1)and D(s) =
10(0.5s + 1)/(0.1s + 1).
Solution. The sensitivity function for this case is

and the plot shown in Fig. 6.82 is given by the MATLAB commands

numS = [1 11 10 0];
denS = [1 11 60 100];
sysS = tf(numS,denS);
[mag,ph,w] = bode(sysS);
loglog(w,squeeze(mag)),grid

The largest value of S is given by M = max(mag) and is 1.366, from which the vector margin is VM = 3.73.

Δ 6.8 Time Delay



The Laplace transform of a pure time delay is GD(s) = e-sTd and was approximated by a rational function (Padé
approximate) in our earlier discussion of root-locus analysis in Chapter 5. Although this same approximation could
be used with frequency-response methods, an exact analysis of the delay is possible with the Nyquist criterion and
Bode plots.

Time-delay magnitude
The frequency response of the delay is given by the magnitude and phase of e-sTd|s =jω. The magnitude is

This result is expected, because a time delay merely shifts the signal in time and has no effect on its magnitude. The
phase is

Time-delay phase

in radians, and it grows increasingly negative in proportion to the frequency. This, too, is expected, because a fixed
time delay Td becomes a larger fraction or multiple of a sine wave as the period drops, due to increasing frequency.
A plot of ∠GD(Jω) is drawn in Fig. 6.83. Note that the phase lag is greater than 270° for values of ωTd greater than
about 5 rad. This trend implies that it would be virtually impossible to stabilize a system (or to achieve a positive
PM) with a crossover frequency greater than ω = 5/Td, and it would be difficult for frequencies greater than ω ≅
3/Td. These characteristics essentially place a constraint on the achievable bandwidth of any system with a time
delay. (See Problem 6.69 for an illustration of this constraint.)

The frequency domain concepts such as the Nyquist criterion apply directly to systems with pure time delay. This
means that no approximations (Padé type or otherwise) are needed and the exact effect of time delay can be applied
to a Bode plot, as shown in the following example.

EXAMPLE 6.25 Effect of Sampling on Stability
Determine the additional phase lag due to the digital sampling in Example 6.15 and reconcile that difference with
the observed performance of the continuous and digital implementations shown in the example. How slowly could
you sample if it was necessary to limit the decrease in the PM to less than 20°?



Figure 6.83 Phase lag due to pure time delay

Solution. The sample rate in Example 6.15 was selected to be Ts = 0.05 sec. We can see from Fig. 4.22 that the
effect of the sampling is to hold the application of the control over one sample period, thus the actual delay varies
between zero and one full sample period. Therefore, on the average, the effect of the sampling is to inject a time
delay of Ts/2 = 0.05/2 = 0.025 = Td sec. From Eq. (6.71), we see that the phase lag due to this sampling at the
crossover frequency of 5 rad/sec, where we measure the PM, is ∠GD = –ωTd = –(5)(0.025) = –0.125 rad = –7°.
Therefore, the PM will decrease from 45° for the continuous implementation to 38° for the digital implementation.
Fig. 6.59(a) shows that the overshoot, Mp, degraded from 1.2 for the continuous case to ≈1.27 for the digital case,
which is predicted by Eq. (6.32) and Fig. 6.38.

In order to limit the phase lag to 20° at ω = 5 rad/sec, we see from Eq.(6.71) that the maximum tolerable Td =
20/(5 * 57.3) = 0.07 sec, so that the slowest sampling acceptable would be Ts = 0.14 sec. Note, however, that this
large decrease in the PM would result in the overshoot increasing from ≈20% to ≈40%.

The example illustrates that a time delay, whether introduced by digital sampling or by any other source, has a
very severe effect on the achievable bandwidth. Evaluation of the effect using Eq. (6.71) or Fig. 6.83 is simple and
straightforward, thus giving a quick analysis of the limitations imposed by any delay in the system. One can also
evaluate the effect of a delay using a Nyquist Diagram, and this is shown in Appendix W6.

Δ 6.9 Alternative Presentation of Data
Before computers were widely available, other ways to present frequency-response data were developed to aid both
in understanding design and in easing the designer’s work load. The widespread availability of computers has
virtually eliminated the need for these methods. One technique used was the Nichols chart, which we examine in this
section because of its place in history. For those interested, we also present the inverse Nyquist method in Appendix
W6.

6.9.1 Nichols Chart
A rectangular plot of log |G(jω)| versus ∠G(jω) can be drawn by simply transferring the information directly from
the separate magnitude and phase portions in a Bode plot; one point on the new curve thus results from a given
value of the frequency ω. This means that the new curve is parameterized as a function of frequency. As with the



Bode plots, the magnitude information is plotted on a logarithmic scale, while the phase information is plotted on a
linear scale. This template was suggested by N. Nichols and is usually referred to as a Nichols chart. The idea of
plotting the magnitude of G(jω) versus its phase is similar to the concept of plotting the real and imaginary parts of
G(jω), which formed the basis for the Nyquist plots shown in Sections 6.3 and 6.4. However, it is difficult to capture
all the pertinent characteristics of G(jω) on the linear scale of the Nyquist plot. The log scale for magnitude in the
Nichols chart alleviates this difficulty, allowing this kind of presentation to be useful for design.

For any value of the complex transfer function G(jω), Section 6.6 showed that there is a unique mapping to the
unity-feedback closed-loop transfer function

or in polar form,

where M (ω) is the magnitude of the closed-loop transfer function and α(ω) is the phase of the closed-loop transfer
function. Specifically,

M and N circles
It can be proven that the contours of constant closed-loop magnitude and phase are circles when G(jω) is

presented in the linear Nyquist plot. These circles are referred to as the M and N circles, respectively.
The Nichols chart also contains contours of constant closed-loop magnitude and phase based on these

relationships, as shown in Fig. 6.84; however, they are no longer circles, because the Nichols charts are semilog plots
of magnitude versus linear phase. A designer can therefore graphically determine the bandwidth of a closed-loop
system from the plot of the open-loop data on a Nichols chart by noting where the open-loop curve crosses the 0.70
contour of the closed-loop magnitude and determining the frequency of the corresponding data point. Likewise, a
designer can determine the resonant peak amplitude Mr by noting the value of the magnitude of the highest closed-
loop contour tangent to the curve. The frequency associated with the magnitude and phase at the point of tangency is
sometimes referred to as the resonant frequency ωr. Similarly, a designer can determine the GM by observing the
value of the gain where the Nichols plot crosses the –180° line, and the PM by observing the phase where the plot
crosses the amplitude 1 line.14 MATLAB provides for easy drawing of a Nichols chart via the nichols m-file.

Resonant frequency

EXAMPLE 6.26 Nichols Chart for PID Example



Determine the bandwidth and resonant peak magnitude of the compensated system whose frequency response is
shown in Fig. 6.71.
Solution. The magnitude and phase information of the compensated design example seen in Fig. 6.71 is shown on a
Nichols chart in Fig. 6.85. When comparing the two figures, it is important to divide the magnitudes in Fig. 6.71 by a
factor of 20 in order to obtain |D(s)G(s)| rather than the normalized values used in Fig. 6.71. Because the curve
crosses the closed-loop magnitude 0.70 contour at ω = 0.8 rad/sec, we see that the bandwidth of this system is 0.8
rad/sec. Because the largest-magnitude contour touched by the curve is 1.20, we also see that Mr = 1.2.

Figure 6.84 Nichols chart

This presentation of data was particularly valuable when a designer had to generate plots and perform calculations
by hand. A change in gain, for example, could be evaluated by sliding the curve vertically on transparent paper over
a standard Nichols chart as shown in Fig. 6.84. The GM, PM, and bandwidth were then easy to read off the chart, thus
allowing evaluations of several values of gain with a minimal amount of effort. With access to computer-aided
methods, however, we can now calculate the bandwidth and perform many repetitive evaluations of the gain or any
other parameter with a few key strokes. Today the Nichols chart is used primarily as an alternative way to present
the information in a Nyquist plot. For complex systems for which the –1 encirclements need to be evaluated, the
magnitude log scale of the Nichols chart enables us to examine a wider range of frequencies than a Nyquist plot
does, as well as allowing us to read the gain and phase margins directly. Although MATLAB will directly compute
PM and GM, the algorithm may lead to suspicious results for very complex cases and the analyst may want to verify
the result using the MATLAB nichols m-file so the actual encirclements can be examined and the bases for the PM
and GM better understood. An example of the use of a Nichols chart for a complex case is shown in Appendix W6.



Figure 6.85 Example plot on the Nichols chart for determining bandwidth and Mr

Another presentation of data is the Inverse Nyquist Diagram, which simplifies the determination of the GM. This is
described in more detail in Appendix W6 as well.

6.10 Historical Perspective
As discussed in Chapter 5, engineers before 1960s did not have access to computers to help in their analyses.
Therefore, any method that allowed the determination of stability or response characteristics that did not require
factoring the characteristic equation was highly useful. The invention of the electronic feedback amplifier by H. S.
Black in 1927 at Bell Telephone Laboratories provided extra incentive to develop methods and the development of
the frequency response method was the first that enabled design iteration for feedback control design.

The development of the feedback amplifier is briefly described in an interesting article based on a talk by Hendrik
W. Bode (1960) reproduced in Bellman and Kalaba (1964). With the introduction of electronic amplifiers, long-
distance telephoning became possible in the decades following World War I. However, as distances increased, so did
the loss of electrical energy; in spite of using larger-diameter wire, increasing numbers of amplifiers were needed to
replace the lost energy. Unfortunately, large numbers of amplifiers resulted in much distortion since the small
nonlinearity of the vacuum tubes then used in electronic amplifiers was multiplied many times. To solve the
problem of reducing distortion, Black proposed the feedback amplifier. As discussed earlier in Chapter 4, the more
we wish to reduce errors (or distortion), the higher the feedback needs to be. The loop gain from actuator to plant to
sensor to actuator must be made very large. But the designers found that too high a gain produced a squeal and the
feedback loop became unstable. In this technology the dynamics were so complex (with differential equations of
order 50 being common) that Routh’s criterion, the only way of solving for stability at the time, was not very helpful.
So the communications engineers at Bell Telephone Laboratories, familiar with the concept of frequency response



and the mathematics of complex variables, turned to complex analysis. In 1932 H. Nyquist published a paper
describing how to determine stability from a graphical plot of the open-loop frequency response. Bode then
developed his plotting methods in 1938 that made them easy to create without extensive calculations or help from a
computer. From the plotting methods and Nyquist’s stability theory there developed an extensive methodology of
feedback amplifier design described by Bode (1945) and extensively used still in the design of feedback controls. The
reasons for using the method today are primarily to allow for a good design no matter what the unmodeled
dynamics are and to expedite the design process, even when carried out with a computer that is fully capable of
solving the characteristic equation. After developing the frequency-response design methods prior to World War II,
Bode went on to help in electronic fire control devices during the war. The methods that he had developed for
feedback amplifiers proved highly applicable to servomechanisms for the effort. Bode characterized this crossover of
control system design methods as being a “sort of shotgun marriage.”

SUMMARY
• The frequency-response Bode plot is a graph of the transfer function magnitude in logarithmic scale and the phase

in linear scale versus frequency in logarithmic scale. For a transfer function G(s),

• For a transfer function in Bode form,

the Bode frequency response can be easily plotted by hand using the rules described in Section 6.1.1.
• Bode plots can be obtained using computer algorithms (bode in MATLAB), but hand-plotting skills are still

extremely helpful.
• For a second-order system, the peak magnitude of the Bode plot is related to the damping by

• A method of determining the stability of a closed-loop system based on the frequency response of the system’s
open-loop transfer function is the Nyquist stability criterion. Rules for plotting the Nyquist plot are described in
Section 6.3. The number of RHP closed-loop roots is given by

Z = N + P,
where

     N = number of clockwise encirclements of the –1 point,
     P = number of open-loop poles in the RHP.

• The Nyquist plot may be obtained using computer algorithms (nyquist in MATLAB).



• The gain margin(GM) and phase margin(PM) can be determined directly by inspecting the open-loop Bode plot or
the Nyquist plot. Also, use of MATLAB’s margin function determines the values directly.

• For a standard second-order system, the PM is related to the closed-loop damping by Eq. (6.32),

• The bandwidth of the system is a measure of speed of response. For control systems, it is defined as the frequency
corresponding to 0.707 (-3 db) in the closed-loop magnitude Bode plot and is approximately given by the
crossover frequency ωc, which is the frequency at which the open-loop gain curve crosses magnitude 1.

• The vector margin is a single-parameter stability margin based on the closest point of the Nyquist plot to the
critical point -1/K.

• For a stable minimum-phase system, Bode’s gain–phase relationship uniquely relates the phase to the gain of the
system and is approximated by Eq. (6.33),

∠G(jω) ≅ n × 90°,

Figure 6.86 Typical system

where n is the slope of |G(jω)| in units of decade of amplitude per decade of frequency. The relationship shows that,
in most cases, stability is ensured if the gain plot crosses the magnitude 1 line with a slope of –1.
• Experimental frequency-response data of the open-loop system can be used directly for analysis and design of a

closed-loop control system with no analytical model.
• For the system shown in Fig. 6.86, the open-loop Bode plot is the frequency response of GD, and the closed-loop

frequency response is obtained from T(s) = GD/(1 + GD).
• The frequency-response characteristics of several types of compensation have been described, and examples of

design using these characteristics have been discussed. Design procedures were given for lead and lag compensators
in Section 6.7. The examples in that section show the ease of selecting specific values of design variables, a result
of using frequency-response methods. A summary was provided at the end of Section 6.7.5.

• Lead compensation, given by Eq. (6.38),

is a high-pass filter and approximates PD control. It is used whenever substantial improvement in damping of the
system is required. It tends to increase the speed of response of a system for a fixed low-frequency gain.
• Lag compensation, given by Eq. (6.51),



is a low-pass filter and approximates PI control. It is usually used to increase the low-frequency gain of the system so
as to improve steady-state response for fixed bandwidth. For a fixed low-frequency gain, it will decrease the speed of
response of a system.
• Tracking-error reduction and disturbance rejection can be specified in terms of the low-frequency gain of the Bode

plot. Sensor-noise rejection can be specified in terms of high-frequency attenuation of the Bode plot (see Fig. 6.75).
Δ• The Nichols plot is an alternate representation of the frequency response as a plot of gain versus phase and is

parameterized as a function of frequency.
Δ• Time delay can be analyzed exactly in a Bode plot or a Nyquist plot.

REVIEW QUESTIONS
1. Why did Bode suggest plotting the magnitude of a frequency response on log-log coordinates?
2. Define a decibel.
3. What is the transfer function magnitude if the gain is listed as 14 db?
4. Define gain crossover.
5. Define phase crossover.
6. Define phase margin, PM.
7. Define gain margin, GM.
8. What Bode plot characteristic is the best indicator of the closed-loop step response overshoot?
9. What Bode plot characteristic is the best indicator of the closed-loop step response rise time?
10. What is the principal effect of a lead compensation on Bode plot performance measures?
11. What is the principal effect of a lag compensation on Bode plot performance measures?
12. How do you find the Kv of a Type 1 system from its Bode plot?
13. Why do we need to know beforehand the number of open-loop unstable poles in order to tell stability from the

Nyquist plot?
14. What is the main advantage in control design of counting the encirclements of –1/K of D(jω)G(jω) rather than

encirclements of –1 of KD(jω)G(jω)?
15. Define a conditionally stable feedback system. How can you identify one on a Bode plot?
Δ16. A certain control system is required to follow sinusoids, which may be any frequency in the range 0 ≤ ωl ≤

450 rad/sec and have amplitudes up to 5 units, with (sinusoidal) steady-state error to be never more than 0.01.
Sketch (or describe) the corresponding performance function W1(ω).

PROBLEMS

Problems for Section 6.1: Frequency Response
6.1 (a) Show that α0 in Eq. (6.2), with A = Uo and ωo = ω, is



and

(b) By assuming the output can be written as

derive Eqs. (6.4)–(6.6).
6.2 (a) Calculate the magnitude and phase of

by hand for ω = 1, 2, 5, 10, 20, 50, and 100 rad/sec.
(b) Sketch the asymptotes for G(s) according to the Bode plot rules, and compare these with your computed

results from part (a).
6.3 Sketch the asymptotes of the Bode plot magnitude and phase for each of the following open-loop transfer

functions. After completing the hand sketches, verify your result using MATLAB. Turn in your hand sketches and
the MATLAB results on the same scales.

6.4 Real poles and zeros. Sketch the asymptotes of the Bode plot magnitude and phase for each of the listed open-
loop transfer functions. After completing the hand sketches, verify your result using MATLAB. Turn in your hand
sketches and the MATLAB results on the same scales.



6.5 Complex poles and zeros. Sketch the asymptotes of the Bode plot magnitude and phase for each of the listed
open-loop transfer functions, and approximate the transition at the second-order break point, based on the value
of the damping ratio. After completing the hand sketches, verify your result using MATLAB. Turn in your hand
sketches and the MATLAB results on the same scales.

6.6 Multiple poles at the origin. Sketch the asymptotes of the Bode plot magnitude and phase for each of the listed
open-loop transfer functions. After completing the hand sketches, verify your result with MATLAB. Turn in your
hand sketches and the MATLAB results on the same scales.

6.7 Mixed real and complex poles. Sketch the asymptotes of the Bode plot magnitude and phase for each of the listed
open-loop transfer functions. Embellish the asymptote plots with a rough estimate of the transitions for each
break point. After completing the hand sketches, verify your result with MATLAB. Turn in your hand sketches and
the MATLAB results on the same scales.



6.8 Right half-plane poles and zeros. Sketch the asymptotes of the Bode plot magnitude and phase for each of the
listed open-loop transfer functions. Make sure that the phase asymptotes properly take the RHP singularity into
account by sketching the complex plane to see how the ∠L(s) changes as s goes from 0 to +j∞. After completing
the hand sketches, verify your result with MATLAB. Turn in your hand sketches and the MATLAB results on the
same scales.

 (the model for a case of magnetic levitation with lead compensation)

 (The magnetic levitation system with integral control and lead compensation)

6.9 A certain system is represented by the asymptotic Bode diagram shown in Fig. 6.87. Find and sketch the response
of this system to a unit-step input (assuming zero initial conditions).

Figure 6.87 Magnitude portion of Bode plot for Problem 6.9

6.10 Prove that a magnitude slope of –1 in a Bode plot corresponds to –20 db per decade or –6 db per octave.
6.11 A normalized second-order system with a damping ratio ζ = 0.5 and an additional zero is given by

Use MATLAB to compare the Mp from the step response of the system for a = 0.01, 0.1, 1, 10, and 100 with the Mr
from the frequency response of each case. Is there a correlation between Mr and Mp?

6.12 A normalized second-order system with ζ = 0.5 and an additional pole is given by

Draw Bode plots with p = 0.01, 0.1, 1, 10, and 100. What conclusions can you draw about the effect of an extra
pole on the bandwidth compared with the bandwidth for the second-order system with no extra pole?
6.13 For the closed-loop transfer function



derive the following expression for the bandwidth ωBW of T(s) in terms of ωn and ζ:

Assuming that ωn = 1, plot ωBW for 0 ≤ ζ≤ 1.

6.14 Consider the system whose transfer function is

This is a model of a tuned circuit with quality factor Q.
(a) Compute the magnitude and phase of the transfer function analytically, and plot them for Q = 0.5, 1, 2, and 5

as a function of the normalized frequency ω/ω0.
(b) Define the bandwidth as the distance between the frequencies on either side of ω0 where the magnitude drops

to 3 db below its value at ω0, and show that the bandwidth is given by

(c) What is the relation between Q and ζ?
6.15 A DC voltmeter schematic is shown in Fig. 6.88. The pointer is damped so that its maximum overshoot to a step

input is 10%.
(a) What is the undamped natural frequency of the system?
(b) What is the damped natural frequency of the system?
(c) Plot the frequency response using MATLAB to determine what input frequency will produce the largest

magnitude output?
(d) Suppose this meter is now used to measure a 1-V AC input with a frequency of 2 rad/sec. What amplitude

will the meter indicate after initial transients have died out? What is the phase lag of the output with respect to
the input? Use a Bode plot analysis to answer these questions. Use the lsim command in MATLAB to verify
your answer in part (d).



Figure 6.88 Voltmeter schematic

Problems for Section 6.2: Neutral Stability
6.16 Determine the range of K for which the closed-loop systems (see Fig. 6.18) are stable for each of the cases below

by making a Bode plot for K = 1 and imagining the magnitude plot sliding up or down until instability results.
Verify your answers by using a very rough sketch of a root-locus plot.

6.17 Determine the range of K for which each of the listed systems is stable by making a Bode plot for K = 1 and
imagining the magnitude plot sliding up or down until instability results. Verify your answers by using a very
rough sketch of a root-locus plot.

Problems for Section 6.3: The Nyquist Stability Criterion

6.18 (a) Sketch the Nyquist plot for an open-loop system with transfer function 1/s2; that is, sketch

where C1 is a contour enclosing the entire RHP, as shown in Fig. 6.17. (Hint: Assume C1 takes a small detour
around the poles at s = 0, as shown in Fig. 6.27.)

(b) Repeat part (a) for an open-loop system whose transfer function is .



6.19 Sketch the Nyquist plot based on the Bode plots for each of the following systems, and then compare your result
with that obtained by using the MATLAB command nyquist:

(d) Using your plots, estimate the range of K for which each system is stable, and qualitatively verify your result
by using a rough sketch of a root-locus plot.

6.20 Draw a Nyquist plot for

choosing the contour to be to the right of the singularity on the jω-axis. Next, using the Nyquist criterion, determine
the range of K for which the system is stable. Then redo the Nyquist plot, this time choosing the contour to be to the
left of the singularity on the imaginary axis. Again, using the Nyquist criterion, check the range of K for which the
system is stable. Are the answers the same? Should they be?
6.21 Draw the Nyquist plot for the system in Fig. 6.89. Using the Nyquist stability criterion, determine the range of K

for which the system is stable. Consider both positive and negative values of K.

Figure 6.89 Control system for Problem 6.21

6.22 (a) For ω = 0.1 to 100 rad/sec, sketch the phase of the minimum-phase system

and the nonminimum-phase system

noting that ∠(jω) decreases with ω rather than increasing.
(b) Does an RHP zero affect the relationship between the – 1 encirclements on a polar plot and the number of

unstable closed-loop roots in Eq. (6.28)?
(c) Sketch the phase of the following unstable system for ω = 0.1 to 100 rad/sec:



(d) Check the stability of the systems in (a) and (c) using the Nyquist criterion on KG(s). Determine the range of K
for which the closed-loop system is stable, and check your results qualitatively by using a rough root-locus
sketch.

6.23 Nyquist plots and the classical plane curves: Determine the Nyquist plot, using MAT-LAB, for the systems given
below, with K = 1, and verify that the beginning point and end point for the jω > 0 portion have the correct
magnitude and phase:
(a) The classical curve called Cayley’s Sextic, discovered by Maclaurin in 1718:

(b) The classical curve called the Cissoid, meaning ivy-shaped:

(c) The classical curve called the Folium of Kepler, studied by Kepler in 1609:

(d) The classical curve called the Folium (not Kepler’s):

(e) The classical curve called the Nephroid, meaning kidney-shaped:

(f) The classical curve called Nephroid of Freeth, named after the English mathematician T. J. Freeth:

(g) A shifted Nephroid of Freeth:

Problems for Section 6.4: Stability Margins
6.24 The Nyquist plot for some actual control systems resembles the one shown in Fig. 6.90. What are the gain and

phase margin(s) for the system of Fig. 6.90, given that α = 0.4, β = 1.3, and ø = 40°. Describe what happens to



the stability of the system as the gain goes from zero to a very large value. Sketch what the corresponding root
locus must look like for such a system. Also, sketch what the corresponding Bode plots would look like for the
system.

Figure 6.90 Nyquist plot for Problem 6.24

6.25 The Bode plot for

is shown in Fig. 6.91.
(a) Why does the phase start at –270° at the low frequencies?
(b) Sketch the Nyquist plot for G(s).
(c) Is the closed-loop system shown in Fig. 6.91 stable?
(d) Will the system be stable if the gain is lowered by a factor of 100° Make a rough sketch of a root locus for the

system, and qualitatively confirm your answer.



Figure 6.91 Bode plot for Problem 6.25

6.26 Suppose that in Fig. 6.92,

Use MATLAB’s margin to calculate the PM and GM for G(s) and, on the basis of the Bode plots, conclude which
margin would provide more useful information to the control designer for this system.

Figure 6.92 Control system for Problem 6.26

6.27 Consider the system given in Fig. 6.93.
(a) Use MATLAB to obtain Bode plots for K = 1, and use the plots to estimate the range of K for which the

system will be stable.
(b) Verify the stable range of K by using margin to determine PM for selected values of K.
(c) Use rlocus to determine the values of K at the stability boundaries.
(d) Sketch the Nyquist plot of the system, and use it to verify the number of unstable roots for the unstable ranges



of K.
(e) Using Routh’s criterion, determine the ranges of K for closed-loop stability of this system.

Figure 6.93 Control system for Problem 6.27

6.28 Suppose that in Fig. 6.92,

Use MATLAB’s margin to calculate the PM and GM for G(s), and comment on whether you think this system will
have well-damped closed-loop roots.
6.29 For a given system, show that the ultimate period Pu and the corresponding ultimate gain Ku for the Zeigler–

Nichols method can be found by using the following:
(a) Nyquist diagram
(b) Bode plot
(c) Root locus

6.30 If a system has the open-loop transfer function

with unity feedback, then the closed-loop transfer function is given by

Verify the values of the PM shown in Fig. 6.37 for ζ = 0.1, 0.4, and 0.7.
6.31 Consider the unity-feedback system with the open-loop transfer function

(a) Use MATLAB to draw the Bode plots for G(jω), assuming that K = 1.
(b) What gain K is required for a PM of 45°? What is the GM for this value of K?
(c) What is Kv when the gain K is set for PM = 45°?
(d) Create a root locus with respect to K, and indicate the roots for a PM of 45°.

6.32 For the system depicted in Fig. 6.94(a), the transfer-function blocks are defined by



(a) Using rlocus and rlocfind, determine the value of K at the stability boundary.
(b) Using rlocus and rlocfind, determine the value of K that will produce roots with damping corresponding to ζ

= 0.707.
(c) What is the gain margin of the system if the gain is set to the value determined in part (b)? Answer this

question without using any frequency-response methods.
(d) Create the Bode plots for the system, and determine the gain margin that results for PM = 65°. What damping

ratio would you expect for this PM?
(e) Sketch a root locus for the system shown in Fig. 6.94(b). How does it differ from the one in part (a)?
(f) For the systems in Figs. 6.94(a) and (b), how does the transfer function Y2(s)/R(s) differ from Y1(s)/R(s)?

Would you expect the step response to r(t) to be different for the two cases?

Figure 6.94 Block diagram for Problem 6.32: (a) unity feedback; (b) H(s) in feedback

6.33 For the system shown in Fig. 6.95, use Bode and root-locus plots to determine the gain and frequency at which
instability occurs. What gain (or gains) gives a PM of 20°? What is the gain margin when PM = 20°?

Figure 6.95 Control system for Problem 6.33

6.34 A magnetic tape-drive speed-control system is shown in Fig. 6.96. The speed sensor is slow enough that its
dynamics must be included. The speed-measurement time constant is τm = 0.5 sec; the reel time constant is τr =
J/b = 4 sec, where b = the output shaft damping constant = 1 N•m•sec; and the motor time constant is τ1 = 1
sec.
(a) Determine the gain K required to keep the steady-state speed error to less than 7% of the reference-speed

setting.
(b) Determine the gain and phase margins of the system. Is this a good system design?

6.35 For the system in Fig. 6.97, determine the Nyquist plot and apply the Nyquist criterion
(a) to determine the range of values of K (positive and negative) for which the system will be stable, and



Figure 6.96 Magnetic tape-drive speed control

Figure 6.97 Control system for Problems 6.35, 6.62, and 6.63

(b) to determine the number of roots in the RHP for those values of K for which the system is unstable. Check
your answer by using a rough root-locus sketch.

6.36 For the system shown in Fig. 6.98, determine the Nyquist plot and apply the Nyquist criterion
(a) to determine the range of values of K (positive and negative) for which the system will be stable, and
(b) to determine the number of roots in the RHP for those values of K for which the system is unstable. Check

your answer by using a rough root-locus sketch.

Figure 6.98 Control system for Problem 6.36

6.37 For the system shown in Fig. 6.99, determine the Nyquist plot and apply the Nyquist criterion
(a) to determine the range of values of K (positive and negative) for which the system will be stable, and
(b) to determine the number of roots in the RHP for those values of K for which the system is unstable. Check

your answer by using a rough root-locus sketch.



Figure 6.99 Control system for Problem 6.37

6.38 The Nyquist diagrams for two stable, open-loop systems are sketched in Fig. 6.100. The proposed operating
gain is indicated as K0, and arrows indicate increasing frequency. In each case give a rough estimate of the
following quantities for the closed-loop (unity feedback) system:

(a) Phase margin
(b) Damping ratio
(c) Range of gain for stability (if any)
(d) System type (0, 1, or 2)

Figure 6.100 Nyquist plots for Problem 6.38

6.39 The steering dynamics of a ship are represented by the transfer function

where V is the ship’s lateral velocity in meters per second, and δr is the rudder angle in radians.
(a) Use the MATLAB command bode to plot the log magnitude and phase of G(jω) for K = 0.2.
(b) On your plot, indicate the crossover frequency, PM, and GM.
(c) Is the ship steering system stable with K = 0.2?
(d) What value of K would yield a PM of 30°, and what would the crossover frequency be?

6.40 For the open-loop system

determine the value for K at the stability boundary and the values of K at the points where PM = 30°.

Problems for Section 6.5: Bode’s Gain–Phase Relationship
6.41 The frequency response of a plant in a unity feedback configuration is sketched in Fig. 6.101. Assume that the

plant is open-loop stable and minimum-phase.



(a) What is the velocity constant Kv for the system as drawn?
(b) What is the damping ratio of the complex poles at ω = 100?

Figure 6.101 Magnitude frequency response for Problem 6.41

(c) Approximately what is the system error in tracking (following) a sinusoidal input of ω = 3 rad/sec?
(d) What is the PM of the system as drawn? (Estimate to within ±10°.)

6.42 For the system

where b = 10a, find the approximate value of a that will yield the best PM by sketching only candidate values
of the frequency-response magnitude.

Problem for Section 6.6: Closed-Loop Frequency Response
6.43 For the open-loop system

determine the value for K that will yield PM ≥ 30° and the maximum possible closed-loop bandwidth. Use
MATLAB to find the bandwidth.

Problems for Section 6.7: Compensation Design
6.44 For the lead compensator



where α < 1,
(a) Show that the phase of the lead compensator is given by

ø = tan–1 (T ω) – tan–1 (αTω).
(b) Show that the frequency where the phase is maximum is given by

and that the maximum phase corresponds to

(c) Rewrite your expression for ωmax to show that the maximum-phase frequency occurs at the geometric mean of
the two corner frequencies on a logarithmic scale:

(d) To derive the same results in terms of the pole-zero locations, rewrite D(s) as

and then show that the phase is given by

such that

Hence the frequency at which the phase is maximum is the square root of the product of the pole and zero
locations.

6.45 For the third-order servo system

use Bode plot sketches to design a lead compensator so that PM ≥ 50° and ωBW ≥ 20 rad/sec. Then verify and
refine your design by using MATLAB.

6.46 For the system shown in Fig. 6.102, suppose that



Use Bode plot sketches to design a lead compensation D(s) with unity DC gain so that PM ≥ 40°. Then verify
and refine your design by using MATLAB. What is the approximate bandwidth of the system?

Figure 6.102 Control system for Problem 6.46

6.47 Derive the transfer function from Td to θ for the system in Fig. 6.70. Then apply the Final Value Theorem
(assuming Td = constant) to determine whether θ(∞) is nonzero for the following two cases:

(a) When D(s) has no integral term: lims→0 D(s) = constant;
(b) When D(s) has an integral term:

In this case, lims→0 D’(s) = constant.
6.48 The inverted pendulum has a transfer function given by Eq. (2.31), which is similar to

(a) Use Bode plot sketches to design a lead compensator to achieve a PM of 30°. Then verify and refine your
design by using MATLAB.

(b) Sketch a root locus and correlate it with the Bode plot of the system.
(c) Could you obtain the frequency response of this system experimentally?

6.49 The open-loop transfer function of a unity feedback system is

(a) Use Bode plot sketches to design a lag compensator for G(s) so that the closed-loop system satisfies the
following specifications:
(i) The steady-state error to a unit-ramp reference input is less than 0.01.
(ii) PM ≥ 40°.

(b) Verify and refine your design by using MATLAB.
6.50 The open-loop transfer function of a unity-feedback system is

(a) Use Bode plot sketches to design a lead compensator for G(s) so that the closed-loop system satisfies the
following specifications:



(i) The steady-state error to a unit-ramp reference input is less than 0.01.
(ii) For the dominant closed-loop poles, the damping ratio ζ ≥ 0.4.

(b) Verify and refine your design using MATLAB, including a direct computation of the damping of the dominant
closed-loop poles.

6.51 A DC motor with negligible armature inductance is to be used in a position control system. Its open-loop
transfer function is given by

(a) Use Bode plot sketches to design a compensator for the motor so that the closed-loop system satisfies the
following specifications:
(i) The steady-state error to a unit-ramp input is less than 1/200.
(ii) The unit-step response has an overshoot of less than 20%.
(iii) The bandwidth of the compensated system is no less than that of the uncompensated system.

(b) Verify and/or refine your design using MATLAB, including a direct computation of the step-response
overshoot.

6.52 The open-loop transfer function of a unity-feedback system is

(a) Sketch the system block diagram, including input reference commands and sensor noise.
(b) Use Bode plot sketches to design a compensator for G(s)so that the closed-loop system satisfies the following

specifications:
(i) The steady-state error to a unit-ramp input is less than 0.01.
(ii) PM ≥ 45°.
(iii) The steady-state error for sinusoidal inputs with ω < 0.2 rad/sec is less than 1/250.
(iv) Noise components introduced with the sensor signal at frequencies greater than 200 rad/sec are to be
attenuated at the output by at least a factor of 100.

(c) Verify and/or refine your design using MATLAB, including a computation of the closed-loop frequency
response to verify (iv).

6.53 Consider a Type 1 unity-feedback system with

Use Bode plot sketches to design a lead compensator so that Kv = 20 sec-1 and PM > 40°. Use MATLAB to
verify and/or refine your design so that it meets the specifications.

6.54 Consider a satellite attitude-control system with the transfer function



Amplitude-stabilize the system using lead compensation so that GM ≥ 2 (6db), and PM ≥ 45°, keeping the
bandwidth as high as possible with a single lead.

6.55 In one mode of operation, the autopilot of a jet transport is used to control altitude. For the purpose of
designing the altitude portion of the autopilot loop, only the long-period airplane dynamics are important. The
linearized relationship between altitude and elevator angle for the long-period dynamics is

The autopilot receives from the altimeter an electrical signal proportional to altitude. This signal is compared with a
command signal (proportional to the altitude selected by the pilot), and the difference provides an error signal. The
error signal is processed through compensation, and the result is used to command the elevator actuators. A block
diagram of this system is shown in Fig. 6.103. You have been given the task of designing the compensation. Begin by
considering a proportional control law D(s) = K.

(a) Use MATLAB to draw a Bode plot of the open-loop system for D(s) = K = 1.
(b) What value of K would provide a crossover frequency (i.e., where |G| = 1) of 0.16 rad/sec?
(c) For this value of K, would the system be stable if the loop were closed?
(d) What is the PM for this value of K?

Figure 6.103 Control system for Problem 6.55

(e) Sketch the Nyquist plot of the system, and locate carefully any points where the phase angle is 180° or the
magnitude is unity.

(f) Use MATLAB to plot the root locus with respect to K, and locate the roots for your value of K from part (b).
(g) What steady-state error would result if the command was a step change in altitude of 1000 ft?

For parts (h) and (i), assume a compensator of the form

(h) Choose the parameters K, T, and α so that the crossover frequency is 0.16 rad/sec and the PM is greater than
50°. Verify your design by superimposing a Bode plot of D(s)G(s)/K on top of the Bode plot you obtained for
part (a), and measure the PM directly.

(i) Use MATLAB to plot the root locus with respect to K for the system, including the compensator you designed
in part (h). Locate the roots for your value of K from part (h).

(j) Altitude autopilots also have a mode in which the rate of climb is sensed directly and commanded by the pilot.
(i) Sketch the block diagram for this mode.
(ii) Define the pertinent G(s).



(iii) Design D(s) so that the system has the same crossover frequency as the altitude hold mode and the PM is
greater than 50°.

6.56 For a system with open-loop transfer function

design a lag compensator with unity DC gain so that PM ≥ 40°. What is the approximate bandwidth of this
system?

6.57 For the ship-steering system in Problem 6.39,
(a) Design a compensator that meets the following specifications:

(i) Velocity constant Kv = 2,
(ii) PM ≥ 50°,
(iii) Unconditional stability (PM > 0 for all ω ≤ ωc, the crossover frequency).

(b) For your final design, draw a root locus with respect to K, and indicate the location of the closed-loop poles.
6.58 Consider a unity-feedback system with

(a) A lead compensator is introduced with α = 1/5 and a zero at 1/T = 20. How must the gain be changed to
obtain crossover at ωc = 31.6 rad/sec, and what is the resulting value of Kv?

(b) With the lead compensator in place, what is the required value of K for a lag compensator that will readjust
the gain to a Kv value of 100?

(c) Place the pole of the lag compensator at 3.16 rad/sec, and determine the zero location that will maintain the
crossover frequency at ωc = 31.6 rad/sec. Plot the compensated frequency response on the same graph.

(d) Determine the PM of the compensated design.
6.59 Golden Nugget Airlines had great success with their free bar near the tail of the airplane. (See Problem 5.39.)

However, when they purchased a much larger airplane to handle the passenger demand, they discovered that
there was some flexibility in the fuselage that caused a lot of unpleasant yawing motion at the rear of the
airplane when in turbulence, which caused the revelers to spill their drinks. The approximate transfer function
for the Dutch roll mode (Section 10.3.1) is

where r is the airplane’s yaw rate and δr is the rudder angle. In performing a finite element analysis (FEA) of the
fuselage structure and adding those dynamics to the Dutch roll motion they found that the transfer function needed
additional terms which reflected the fuselage lateral bending that occurred due to excitation from the rudder and
turbulence. The revised transfer function is



where ωb is the frequency of the bending mode (= 10 rad/sec) and ζ is the bending mode damping ratio (=0.02).
Most swept-wing airplanes have a “yaw damper,” which essentially feeds back yaw rate measured by a rate gyro to
the rudder with a simple proportional control law. For the new Golden Nugget airplane, the proportional feedback
gain K = 1, where

(a) Make a Bode plot of the open-loop system, determine the PM and GM for the nominal design, and plot the
step response and Bode magnitude of the closed-loop system. What is the frequency of the lightly damped
mode that is causing the difficulty?

(b) Investigate remedies to quiet down the oscillations, but maintain the same low-frequency gain in order not to
affect the quality of the Dutch roll damping provided by the yaw rate feedback. Specifically, investigate each of
the following, one at a time:
(i) Increasing the damping of the bending mode from ζ = 0.02 to ζ = 0.04 (would require adding energy-
absorbing material in the fuselage structure).
(ii) Increasing the frequency of the bending mode from ωb = 10 rad/sec to ωb = 20 rad/sec (would require
stronger and heavier structural elements).
(iii) Adding a low-pass filter in the feedback—that is, replacing K in Eq. (6.79) with KD(s), where

Pick τp so that the objectionable features of the bending mode are reduced while maintaining the PM ≥ 60°.
(iv) Adding a notch filter as described in Section 5.4.3. Pick the frequency of the notch zero to be at ωb, with a
damping of ζ = 0.04, and pick the denominator poles to be (s/100 + 1)2, keeping the DC gain of the filter =
1.

(c) Investigate the sensitivity of the preceding two compensated designs (iii and iv) by determining the effect of a
reduction in the bending mode frequency of –10%. Specifically, reexamine the two designs by tabulating the
GM, PM, closed-loop bending mode damping ratio, and resonant-peak amplitude, and qualitatively describe
the differences in the step response.

(d) What do you recommend to Golden Nugget to help their customers quit spilling their drinks? (Telling them to
get back in their seats is not an acceptable answer for this problem! Make the recommendation in terms of
improvements to the yaw damper.)

Δ6.60 Consider a system with the open-loop transfer function (loop gain)

(a) Create the Bode plot for the system, and find GM and PM.
(b) Compute the sensitivity function and plot its magnitude frequency response.



(c) Compute the vector margin (VM).
Δ6.61 Prove that the sensitivity function (s) has magnitude greater than 1 inside a circle with a radius of 1 centered at

the – 1 point. What does this imply about the shape of the Nyquist plot if closed-loop control is to outperform
open-loop control at all frequencies?

Δ6.62 Consider the system in Fig. 6.102 with the plant transfer function

(a) We wish to design a compensator D(s) that satisfies the following design specifications:
(i) Kv = 100
(ii) PM ≥ 45°
(iii) Sinusoidal inputs of up to 1 rad/sec to be reproduced with ≤ 2% error
(iv) Sinusoidal inputs with a frequency of greater than 100 rad/sec to be attenuated at the output to ≤ 5% of
their input value

(b) Create the Bode plot of G(s), choosing the open-loop gain so that Kv = 100.
(c) Show that a sufficient condition for meeting the specification on sinusoidal inputs is that the magnitude plot

lies outside the shaded regions in Fig. 6.104. Recall that

Figure 6.104 Control system constraints for Problem 6.62

(d) Explain why introducing a lead network alone cannot meet the design specifications.
(e) Explain why a lag network alone cannot meet the design specifications.
(f) Develop a full design using a lead-lag compensator that meets all the design specifications without altering the

previously chosen low-frequency open-loop gain.

Δ Problems for Section 6.8: Time Delay
6.63 Assume that the system



has a 0.2-sec time delay (Td = 0.2 sec). While maintaining a phase margin ≥ 40°, find the maximum possible
bandwidth by using the following:

(a) One lead-compensator section

where b/a = 100;
(b) Two lead-compensator sections

where b/a= 10.
(c) Comment on the statement in the text about the limitations on the bandwidth imposed by a delay.

6.64 Determine the range of K for which the following systems are stable:

6.65 In Chapter 5, we used various approximations for the time delay, one of which is the first order Padé:

Using frequency response methods, the exact time delay

H2 (s) = e–Tds

can be obtained. Plot the phase of H1 (s) and H2 (s), and discuss the implications.
6.66 Consider the heat exchanger of Example 2.15 with the open-loop transfer function

(a) Design a lead compensator that yields PM ≥ 45° and the maximum possible closed-loop bandwidth.
(b) Design a PI compensator that yields PM ≥ 45° and the maximum possible closed-loop bandwidth.

Δ Problems for Section 6.9: Alternative Presentations of Data
6.67 A feedback control system is shown in Fig. 6.105. The closed-loop system is specified to have an overshoot of

less than 30% to a step input.

(a) Determine the corresponding PM specification in the frequency domain and the corresponding closed-loop
resonant-peak value Mr. (See Fig. 6.38.)



(b) From Bode plots of the system, determine the maximum value of K that satisfies the PM specification.
(c) Plot the data from the Bode plots [adjusted by the K obtained in part (b)] on a copy of the Nichols chart in

Fig. 6.84, and determine the resonant peak magnitude Mr. Compare that with the approximate value obtained
in part (a).

(d) Use the Nichols chart to determine the resonant-peak frequency ωr and the closed-loop bandwidth.

Figure 6.105 Control system for Problem 6.67

6.68 The Nichols plots of an uncompensated and a compensated system are shown in Fig. 6.106.

(a) What are the resonance peaks of each system?
(b) What are the PM and GM of each system?
(c) What are the bandwidths of each system?
(d) What type of compensation is used?

6.69 Consider the system shown in Fig. 6.97.

(a) Construct an inverse Nyquist plot of [Y(jω)/E(jω)]–1. (See Appendix W6.)
(b) Show how the value of K for neutral stability can be read directly from the inverse Nyquist plot.
(c) For K = 4, 2, and 1, determine the gain and phase margins.
(d) Construct a root-locus plot for the system, and identify corresponding points in the two plots. To what

damping ratios ζ do the GM and PM of part (c) correspond?
6.70 An unstable plant has the transfer function

A simple control loop is to be closed around it, in the same manner as in the block diagram in Fig 6 97

(a) Construct an inverse Nyquist plot of Y/F. (See Appendix W6)



Figure 6.106 Nichols plots for Problem 6.68

(b) Choose a value of K to provide a PM of 45°. What is the corresponding GM?
(c) What can you infer from your plot about the stability of the system when K < 0?
(d) Construct a root-locus plot for the system, and identify corresponding points in the two plots. In this case, to

what value of ζ does PM = 45° correspond?
6.71 Consider the system shown in Fig. 6.107(a).

(a) Construct a Bode plot for the system.
(b) Use your Bode plot to sketch an inverse Nyquist plot. (See Appendix W6.)
(c) Consider closing a control loop around G(s), as shown in Fig. 6.107(b). Using the inverse Nyquist plot as a

guide, read from your Bode plot the values of GM and PM when K = 0.7, 1.0, 1.4, and 2. What value of K
yields PM = 30°?

(d) Construct a root-locus plot, and label the same values of K on the locus. To what value of ζ does each pair of
PM/GM values correspond? Compare ζ versus PM with the rough approximation in Fig. 6.59.

Figure 6.107 Control system for Problem 6.71



1 Agilent Technologies produces instruments called spectral analyzers that automate this experimental procedure and greatly speed up the process.
2 If the output is a voltage across a 1-Ω resistor, the power is v2 and when |v| = 0.707, the power is reduced by a factor of 2. By convention, this is
called the half-power point.
3 Researchers at Bell Laboratoriesfirst defined the unit of power gain as a bel (named for Alexander Graham Bell, the founder of the company).
However, this unit proved to be too large, and hence a decibel or db (1/10 of a bel) was selected as a more useful unit. The abbreviation dB is also
sometimes used; however, Bode used db and we choose to follow his lead.
4 Henceforth we will drop the base of the logarithm; it is understood to be 10.
5 In decibels the slopes are n × 20 db per decade or n × 6 db per octave (an octave is a change in frequency by a factor of 2).
6 This approximate method was pointed out to us by our Parisian colleagues.
7 Sometimes referred to as “Cauchy’s Principle of the Argument.”
8 The shape of this Nyquist plot is a cardioid, meaning “heart-shaped,” plane curve. The name was first used by de Castillon in the Philosophical
Transactions of the Royal Society in 1741. The cardioid is also used in optics.
9 The shape of this Nyquist plot is a translated strophoid plane curve, meaning “a belt with a twist.” The curve was first studied by Barrow in 1670.
10 The shape of this Nyquist plot is a strophoid.
11 The shape of this Nyquist plot is a limaçon, a fact pointed out by the third author’s 17-year-old son, who had recently learned about them in his
10th grade trigonometry class. Limaçon means “snail” in French from the Latin “limax,” and was first investigated by Dürer in 1525.
12 This value is closely related to the use of the sensitivity function for design and the concept of stability robustness, to be discussed in optional
Section 6.7.7.
13 The shape of this root locus is the plane curve limaçon.
14 James, H. M., N. B. Nichols, and R. S. Phillips (1947).



7 State-Space Design

A Perspective on State-Space Design
In addition to the transform techniques of root locus and frequency response, thereis a third major method of
designing feedback controlsystems: the state-space method. We will introduce the state-variable method of describing
differential equations. In state-space design, the control engineer designs a dynamic compensation by working
directly with the state-variable description of the system. Like the transform techniques, the aim of the state-space
method is to find a compensation D(s), such as that shown in Fig. 7.1, that satisfies the design specifications. Because
the state-space method of describing the plant and computing the compensation is so different from the transform
techniques, it may seem at first to be solving an entirely different problem. We selected the examples and analysis
given toward the end of this chapter to help convince you that, indeed, state-space design results in a compensator
with a transfer function D(s) that is equivalent to those D(s) compensators obtained with the other two methods.

Because it is particularly well suited to the use of computer techniques, state-space design is increasingly studied
and used today by control engineers.

Chapter Overview
This chapter begins by considering the purposes and advantages of using state-space design. We discuss selection of
state-variables and state-space models for various dynamic systems through several examples in Section 7.2.

Figure 7.1 A control system design definition

Models in state-variable form enhance our ability to apply the computational efficiency of computer-aided design
tools such as MATLAB®. In Section 7.3 we show that it is beneficial to look at the state-variable form in terms of an
analog computer simulation model. In Section 7.4 we review the development of state-variable equations from block
diagrams. We then solve for the dynamic response, using state equations for both hand and computer analysis.
Having covered these preliminary fundamentals, we next proceed to the major task of control system design via
state-space. The steps of the design method are as follows:
1. Select closed-loop pole (root as referred to in previous chapters) locations and develop the control law for the

closed-loop system that corresponds to satisfactory dynamic response (Sections 7.5 and 7.6).
2. Design an estimator (Section 7.7).



3. Combine the control law and the estimator (Section 7.8).
4. Introduce the reference input (Sections 7.5.2 and 7.9).

After working through the central design steps, we briefly explore the use of integral control in state-space (Section
7.10). The next three sections of this chapter consider briefly some additional concepts pertaining to the state-space
method; because they are relatively advanced, they may be considered optional to some courses or readers. Finally
Section 7.14 provides some historical perspective for the material in this chapter.

7.1 Advantages of State-Space
The idea of state-space comes from the state-variable method of describing differential equations. In this method the
differential equations describing a dynamic system are organized as a set of first-order differential equations in the
vector-valued state of the system, and the solution is visualized as a trajectory of this state vector in space. State-space
control design is the technique in which the control engineer designs a dynamic compensation by working directly
with the state-variable description of the system. Thus far, we have seen that the ordinary differential equations
(ODEs) of physical dynamic systems can be manipulated into state-variable form. In the field of Normal form
mathematics, where ODEs are studied, the state-variable form is called the normal form for the equations. There are
several good reasons for studying equations in this form, three of which are listed here:

Normal form
• To study more general models: The ODEs do not have to be linear or stationary. Thus, by studying the equations

themselves, we can develop methods that are very general. Having them in state-variable form gives us a compact,
standard form for study. Furthermore, the techniques of state-space analysis and design easily extend to systems
with multiple inputs and/or multiple outputs. Of course, in this text we study mainly linear time-invariant models
with single input and output (for the reasons given earlier).

• To introduce the ideas of geometry into differential equations: In physics the Phase plane plane of position versus
velocity of a particle or rigid body is called the phase plane, and the trajectory of the motion can be plotted as a
curve in this plane. The state is a generalization of that idea to include more than two dimensions. While we
cannot plot more than three dimensions, the concepts of distance, of orthogonal and parallel lines, and other
concepts from geometry can be useful in visualizing the solution of an ODE as a path in state-space.

• To connect internal and external descriptions: The state of a dynamic system often directly describes the
distribution of internal energy in the system. For example, it is common to select the following as state-variables:
position (potential energy), velocity (kinetic energy), capacitor voltage (electric energy), and inductor current
(magnetic energy). The internal energy can always be computed from the state-variables. By a system of analysis to
be described shortly, we can relate the state to the system inputs and outputs and thus connect the internal
variables to the external inputs and to the sensed outputs. In contrast, the transfer function relates only the input to
the output and does not show the internal behavior. The state form keeps the latter information, which is
sometimes important.

Use of the state-space approach has often been referred to as modern control design, and use of transfer-function-
based methods, such as root locus and frequency response, referred to as classical control design. However, because
the state-space method of description for ODEs has been in use for over 100 years and was introduced to control



design in the late 1950s, it seems somewhat misleading to refer to it as modern. We prefer to refer to the two
approaches to design as state-space methods and transform methods.

Advantages of state-space design are especially apparent when the system to be controlled has more than one
control input or more than one sensed output. However, in this book we shall examine the ideas of state-space
design using the simpler single-input-single output (SISO) systems. The design approach used for systems described
in state form is “divide and conquer.” First, we design the control as if all of the state were measured and available
for use in the control law. This provides the possibility of assigning arbitrary dynamics for the system. Having a
satisfactory control law based on full-state feedback, we introduce the concept of an observer and construct estimates
of the state based on the sensed output. We then show that these estimates can be used in place of the actual state-
variables. Finally, we introduce the external reference-command inputs, and the structure is complete. Only at this
point can we recognize that the resulting compensation has the same essential structure as that developed with
transform methods.

Phase plane
Before we can begin the design using state descriptions, it is necessary to develop some analytical results and tools

from matrix linear algebra for use throughout the chapter. We assume that you are familiar with such elementary
matrix concepts as the identity matrix, triangular and diagonal matrices, and the transpose of a matrix. We also
assume that you have some familiarity with the mechanics of matrix algebra, including adding, multiplying, and
inverting matrices. More advanced results will be developed in Section 7.4 in the context of the dynamic response of
a linear system. All of the linear algebra results used in this chapter are repeated in Appendix WE for your reference
and review.

7.2 System Description in State-Space
The motion of any finite dynamic system can be expressed as a set of first-order ODEs. This is often referred to as the
state-variable representation. For example, the use of Newton’s law and the free-body diagram in Section 2.1
typically lead to second-order differential equations—that is, equations that contain the second derivative, such as 
in Eq. (2.3) or  in Eq. (2.15). The latter equation can be expressed as

where

Standard form of linear differential equations
The output of this system is θ, the satellite attitude.



These same equations can be represented in the state-variable form as the vector equation

where the input is u and the output is

The column vector x is called the state of the system and contains n elements for an nth-order system. For mechanical
systems, the state vector elements usually consist of the positions and velocities of the separate bodies, as is the case
for the example in Eqs. (7.1) and (7.2). The quantity F is an n × n system matrix, G is an n × 1 input matrix, H is a
1 × n row matrix referred to as the output matrix, and J is a scalar called the direct transmission term.1 To save
space, we will sometimes refer to a state vector by its transpose,

x = [ x1 x2 ... ]T

which is equivalent to

The differential equation models of more complex systems, such as those developed in Chapter 2 on mechanical,
electrical, and electromecheanical systems, can be described by state-variables through selection of positions,
velocities, capacitor voltages, and inductor currents as suitable state-variables.

In this chapter we will consider control systems design using the state-variable form. For the case in which the
relationships are nonlinear [such as the case in Eqs. (2.22), (2.75), and (2.79)], the linear form cannot be used
directly. One must linearize the equations as we did in Chapter 2 to fit the form (see also Chapter 9).

The state-variable method of specifying differential equations is used by computer-aided control systems design
software packages (e.g., MATLAB). Therefore, in order to specify linear differential equations to the computer, you
need to know the values of the matrices F, G, H, and the constant J.

EXAMPLE 7.1 Satellite Attitude Control Model in State-Variable Form
Determine the F, G, H, J matrices in the state-variable form for the satellite attitude control model in Example 2.3
with MD = 0.
Solution. Define the attitude and the angular velocity of the satellite as the state-variables so that x =  [θ Δ]T.2 The
single second-order equation (2.15) can then be written in an equivalent way as two first-order equations:

These equations are expressed, using Eq. (7.3),  = Fx + Gu, as



The output of the system is the satellite attitude, y = θ. Using Eq. (7.4), y = Hx + Ju, this relation is expressed as

Therefore, the matrices for the state-variable form are

and the input u  Fc.
For this very simple example, the state-variable form is a more cumbersome way of writing the differential

equation than the second-order version in Eq. (2.15). However, the method is not more cumbersome for most
systems, and the advantages of having a standard form for use in computer-aided design have led to widespread use
of the state-variable form.

The next example has more complexity and shows how to use MATLAB to find the solution of linear differential
equations.

EXAMPLE 7.2 Cruise Control Step Response
(a) Rewrite the equation of motion from Example 2.1 in state-variable form, where the output is the car position

x.
(b) Use MATLAB to find the response of the velocity of the car for the case in which the input jumps from being

u = 0 at time t = 0 to a constant u = 500 N thereafter. Assume that the car mass m is 1000 kg and b = 50
N.sec/m.

Solution
(a) Equations of motion: First we need to express the differential equation describing the plant, Eq. (2.3), as a set

of simultaneous first-order equations. To do so, we define the position and the velocity of the car as the state-
variables x and v, so that x = [x v]T. The single second-order equation, Eq. (2.3), can then be rewritten as a set
of two first-order equations:

Next, we use the standard form of Eq. (7.3),  = Fx + Gu, to express these equations:



The output of the system is the car position y = x1 = x, which is expressed in matrix form as

or
y = Hx.

So the state-variable-form matrices defining this example are

(b) Time response: The equations of motion are those given in part (a), except that now the output is v = x2.
Therefore, the output matrix is

H = [ 0 1 ].
The coefficients required are b/m = 0.05 and 1/m = 0.001. The numerical values of the matrices defining the
system are thus

The step function in MATLAB calculates the time response of a linear system to a unit-step input. Because the
system is linear, the output for this case can be multiplied by the magnitude of the input step to derive a step
response of any amplitude. Equivalently, the G matrix can be multiplied by the magnitude of the input step.

Figure 7.2 Response of the car velocity to a step in u

Step response with MATLAB
The statements
F=[0 1;0 –0.05];



G=[0;0.001]; H=[0 1];
J = 0;
sys = ss(F, 500*G,H,J); % step gives unit step response, so 500*G gives u = 500 N.
step(sys); % plots the step response

calculate and plot the time response for an input step with a 500-N magnitude. The step response is shown in Fig.
7.2.

EXAMPLE 7.3 Bridged Tee Circuit in State-Variable Form
Determine the state-space equations for the circuit shown in Fig. 2.25.
Solution. In order to write the equations in the state-variable form (i.e., a set of simultaneous first-order differential
equations), we select the capacitor voltages v1 and v2 as the state elements (i.e., x= [v1 v2 ]T) and vi as the input
(i.e., u = vi). Here v1 = v2, v2 = v1 – v3, and still v1 = vi. Thus v1 = vi, v2 = v1, and v3 = vi – v2. In terms of v1
and v2, Eq. (2.34) is

Rearranging this equation into standard form, we get

In terms of v1 and v2, Eq. (2.35) is

In standard form, the equation is

Equations (2.34)–(2.35) are entirely equivalent to the state-variable form, Eqs. (7.6) and (7.7), in describing the
circuit. The standard matrix definitions are



EXAMPLE 7.4 Loudspeaker with Circuit in State-Variable Form
For the loudspeaker in Fig. 2.29 and the circuit driving it in Fig. 2.30 find the state-space equations relating the input
voltage va to the output cone displacement x. Assume that the effective circuit resistance is R and the inductance is L.
Solution. Recall the two coupled equations, (2.44) and (2.48), that constitute the dynamic model for the loudspeaker:

A logical state vector for this third-order system would be x  [x  i]T, which leads to the standard matrices

where now the input u  va.

EXAMPLE 7.5 Modeling a DC Motor in State-Variable Form
Find the state-space equations for the DC motor with the equivalent electric circuit shown in Fig. 2.32(a).
Solution. Recall the equations of motion [Eqs. (2.52) and (2.53)] from Chapter 2:

A state vector for this third-order system is x  [θm m ia]T, which leads to the standard matrices

where the input u  = va.

The state-variable form can be applied to a system of any order. Example 7.6 illustrates the method for a fourth-
order system.

EXAMPLE 7.6 Flexible Disk Drive in State-Variable Form
Find the state-variable form of the differential equations for Example 2.4, where the output is θ2.
Solution. Define the state vector to be

x = [θ1 1 θ2 2 ]T



Then solve Eqs. (2.17) and (2.18) for 1 and 2 so that the state-variable form is more apparent. The resulting
matrices are

Difficulty arises if the differential equation contains derivatives of the input u. Techniques to handle this situation
will be discussed in Section 7.4.

7.3 Block Diagrams and State-Space
Perhaps the most effective way of understanding the state-variable equations is via an analog computer block-
diagram representation. The structure of the representation uses integrators as the central element, which are quite
suitable for first-order, state-variable representation of equations of motion for a system. Even though the analog
computers are almost extinct, analog computer implementation is still a useful concept for state-variable design, and
in the circuit design of analog compensation.3

The analog computer was a device composed of electric components designed to simulate ODEs. The basic
dynamic component of the analog computer is an integrator, constructed from an operational amplifier with a
capacitor feedback and a resistor feed-forward as shown in Fig. 2.28. Because an integrator is a device whose input is
the derivative of its output, as shown in Fig. 7.3, if, in an analog-computer simulation, we identify the outputs of the
integrators as the state, we will then automatically have the equations in state-variable form. Conversely, if a system
is described by state-variables, we can construct an analog-computer simulation of that system by taking one
integrator for each state-variable and connecting its input according to the given equation for that state-variable as
expressed in the state-variable equations. The analog-computer diagram is a picture of the state equations.

Figure 7.3 An integrator



Figure 7.4 Components of an analog computer

The components of a typical analog computer used to accomplish these functions are shown in Fig. 7.4. Notice
that the operational amplifier has a sign change that gives it a negative gain.

EXAMPLE 7.7 Analog-Computer Implementation
Find a state-variable description and the transfer function of the third-order system shown in Fig. 7.5 whose
differential equation is

Solution. We solve for the highest derivative term in the ODE to obtain

Now we assume that we have this highest derivative and note that the lower order terms can be obtained by
integration as shown in Fig. 7.6(a). Finally, we apply Eq. (7.8) to complete the realization shown in Fig. 7.6(b). To
obtain the state description, we simply define the state-variables as the output of the integrators x1 = ÿ, x2 = ÿ, x3
= y, to obtain

Figure 7.5 Third-order system



Figure 7.6 Block diagram of a system to solve  using only integrators as dynamic elements: (a)
intermediate diagram; (b) final diagram

which provides the state-variable description

The MATLAB statement
[num,den] =ss2tf(F,G,H,J);
will yield the transfer function

If the transfer function were desired in factored form, it could be obtained by transforming either the ss or tf
description Therefore, either of the MATLAB statements

% convert state-variable realization to pole-zero form
[z,p,k] =ss2zp(F,G,H,J)
and
% convert numerator-denominator to pole-zero form
[z,p,k] =tf2zp(num,den)
would result in

z = [], p =[ –3 –2 –1 ]’, k = 6.
This means that the transfer function could also be written in factored form as



7.3.1 Time and Amplitude Scaling in State-Space
We have already discussed time and amplitude scaling in Chapter 3 We now extend the ideas to the state-variable
form. Time scaling with τ = ωot replaces Eq. (7.3) with

Amplitude scaling of the state corresponds to replacing x with  where Dx is a diagonal matrix of scale
factors. Input scaling corresponds to replacing u with  With these substitutions,

Then

Equation (7.11) compactly expresses the time- and amplitude-scaling operations. Regrettably, it does not relieve the
engineer of the responsibility of actually thinking of good scale factors so that scaled equations are in good shape.

EXAMPLE 7.8 Time Scaling an Oscillator
The equation for an oscillator was derived in Example 2.5. For a case with a very fast natural frequency ωn =
15,000 rad/sec (about 2 kHz), Eq. (2.23) can be rewritten as

Determine the time-scaled equation so that the unit of time is milliseconds.
Solution. In state-variable form with a state vector x = [θ ]T, the unscaled matrices are

Applying Eq. (7.9) results in

which yields state-variable equations that are scaled.

7.4 Analysis of the State Equations
In the previous section we introduced and illustrated the process of selecting a state and organizing the equations in



state form. In this section we review that process and describe how to analyze the dynamic response using the state
description. In Section 7.4.1 we begin by relating the state description to block diagrams and the Laplace transform
description and to consider the fact that for a given system the choice of state is not unique. We show how to use this
nonuniqueness to select among several canonical forms for the one that will help solve the particular problem at
hand; a control canonical form makes feedback gains of the state easy to design. After studying the structure of state
equations in Section 7.4.2, we consider the dynamic response and show how transfer-function poles and zeros are
related to the matrices of the state descriptions. To illustrate the results with hand calculations, we offer a simple
example that represents the model of a thermal system. For more realistic examples, a computer-aided control
systems design software package such as MATLAB is especially helpful; relevant MATLAB commands will be
described from time to time.

7.4.1 Block Diagrams and Canonical Forms
We begin with a thermal system that has a simple transfer function

The roots of the numerator polynomial b(s) are the zeros of the transfer function, and the roots of the denominator
polynomial a(s) are the poles. Notice that we have represented the transfer function in two forms, as a ratio of
polynomials and as the result of a partial-fraction expansion. In order to develop a state description of this system
(and this is a generally useful technique), we construct a block diagram that corresponds to the transfer function (and
the differential equations) using only isolated integrators as the dynamic elements. One such block diagram,
structured in control canonical form, is drawn in Fig. 7.7. The central feature of this structure is that each state-
variable is connected by the feedback to the control input.

Figure 7.7 A block diagram representing Eq. (7.12) in control form

Once we have drawn the block diagram in this form, we can identify the state description matrices simply by
inspection; this is possible because when the output of an integrator is a state-variable, the input of that integrator is
the derivative of that variable. For example, in Fig. 7.7, the equation for the first state-variable is

Continuing in this fashion, we get



These three equations can then be rewritten in the matrix form

where

and where the subscript c refers to control canonical form.
Two significant facts about this form are that the coefficients 1 and 2 of the numerator polynomial b(s) appear in

the Cc matrix, and (except for the leading term) the coefficients 7 and 12 of the denominator polynomial a(s) appear
(with opposite signs) as the first row of the Ac matrix. Armed with this knowledge, we can thus write down by
inspection the state matrices in control canonical form for any system whose transfer function is known as a ratio of
numerator and denominator polynomials. If  then the
MATLAB steps are

num = b = [b1 b2 ... bn ]
den = a = [1 a2 ... an]
[Ac, Bc, Cc, Dc] =tf2ss(num,den).
We read tf2ss as “transfer function to state-space.” The result will be

The block diagram of Fig. 7.7 and the corresponding matrices of Eq. (7.15) are not the only way to represent the
transfer function G(s). A block diagram corresponding to the partial-fraction expansion of G(s) is given in Fig. 7.8.
Using the same technique as before, with the state-variables marked as shown in the figure, we can determine the
matrices directly from the block diagram as being



MATLAB tf2ss

Control canonical form

Figure 7.8 Block diagram for Eq. (7.12) in modal canonical form

where

Modal form
and the subscript m refers to modal canonical form. The name for this form derives from the fact that the poles of
the system transfer function are sometimes called the normal modes of the system. The important fact about the
matrices in this form is that the system poles (here –4 and –3) appear as the elements along the diagonal of the Am
matrix, and the residues, the numerator terms in the partial-fraction expansion (here 2 and –1), appear in the Cm
matrix.

Expressing a system in modal canonical form can be complicated by two factors: (1) the elements of the matrices
will be complex when the poles of the system are complex, and (2) the system matrix cannot be diagonal when the
partial-fraction expansion has repeated poles. To solve the first problem, we express the complex poles of the
partial-fraction expansion as conjugate pairs in second-order terms so that all the elements remain real. The
corresponding Am matrix will then have 2 × 2 blocks along the main diagonal representing the local coupling
between the variables of the complex-pole set. To handle the second difficulty, we also couple the corresponding
state-variables, so that the poles appear along the diagonal with off-diagonal terms indicating the coupling. A simple
example of this latter case is the satellite system from Example 7.1, whose transfer function is G(s) = 1/s2. The
system matrices for this transfer function in a modal form are

EXAMPLE 7.9 State Equations in Modal Canonical Form



A “quarter car model” [see Eq. (2.12)] with one resonant mode has a transfer function given by

Find state matrices in modal form describing this system.

Figure 7.9 Block diagram for a fourth-order system in modal canonical form with shading indicating portion in
control canonical form

Solution. The transfer function has been given in real partial-fraction form. To get state-description matrices, we
draw a corresponding block diagram with integrators only, assign the state, and write down the corresponding
matrices. This process is not unique, so there are several acceptable solutions to the problem as stated, but they will
differ in only trivial ways. A block diagram with a satisfactory assignment of variables is given in Fig. 7.9.
Notice that the second-order term to represent the complex poles has been realized in control canonical form. There
are a number of other possibilities that can be used as alternatives for this part. This particular form allows us to
write down the system matrices by inspection:

Thus far, we have seen that we can obtain the state description from a transfer function in either control or modal
form. Because these matrices represent the same dynamic system, we might ask as to, what is the relationship
between the matrices in the two forms (and their corresponding state-variables)? More generally, suppose we have a
set of state equations that describe some physical system in no particular form, and we are given a problem for
which the control canonical form would be helpful. (We will see such a problem in Section 7.5.) Is it possible to
calculate the desired canonical form without obtaining the transfer function first? To answer these questions requires
a look at the topic of state transformations.

Consider a system described by the state equations



State description and output equation
As we have seen, this is not a unique description of the dynamic system. We consider a change of state from x to a
new state z that is a linear transformation of x. For a nonsingular matrix T, we let

Transformation of state
By substituting Eq. (7.22) into Eq. (7.21a), we have the equations of motion in terms of the new state z:

In Eq. (7.23c),

Then we substitute Eq. (7.22) into Eq. (7.21b) to get the output in terms of the new state z:
y = HTz + Ju
= Cz + Du.

Here

Given the general matrices F, G, and H and scalar J, we would like to find the transformation matrix T such that A,
B, C, and D are in a particular form, for example, control canonical form. To find such a T, we assume that A, B, C,
and D are already in the required form, further assume that the transformation T has a general form, and match
terms. Here we will work out the third-order case; how to extend the analysis to the general case should be clear
from the development. It goes like this.

First we rewrite Eq. (7.24a) as

AT-1 = T-1F.

If A is in control canonical form, and we describe T-1 as a matrix with rows t1, t2, and t3, then



Working out the third and second rows gives the matrix equations

From Eq. (7.24b), assuming that B is also in control canonical form, we have the relation

T–1G = B,
or

Combining Eqs. (7.27) and (7.28), we get
t3G = 0,
t2G = t3FG = 0,
t1G = t3F2G = 1.

These equations can in turn be written in matrix form as

t3[ G FG F2G ] = [ 0 0 1 ]

Controllability matrix transformation to control canonical form
or

where the controllability matrix C = [ G FG F2G ]. Having t3, we can now go back to Eq. (7.27) and construct all the
rows of T-1.

To sum up, the recipe for converting a general state description of dimension n to control canonical form is as
follows:
• From F and G, form the controllability matrix

• Compute the last row of the inverse of the transformation matrix as

• Construct the entire transformation matrix as



• Compute the new matrices from T–1, using Eqs. (7.24a), (7.24b), and (7.25).

Controllable systems
When the controllability matrix C is nonsingular, the corresponding F and G matrices are said to be controllable.

This is a technical property that usually holds for physical systems and will be important when we consider feedback
of the state in Section 7.5. We will also consider a few physical illustrations of loss of controllability at that time.

Because computing the transformation given by Eq. (7.32) is numerically difficult to do accurately, it is almost
never done. The reason for developing this transformation in some detail is to show how such changes of state could
be done in theory and to make the following important observation:

One can always transform a given state description to control canonical form if (and only if) the controllability
matrix C is nonsingular.

If we need to test for controllability in a real case with numbers, we use a numerically stable method that depends
on converting the system matrices to “staircase” form rather than on trying to compute the controllability matrix.
Problem 7.29 at the end of the chapter calls for consideration of this method.

An important question regarding controllability follows directly from our discussion so far: What is the effect of a
state transformation on controllability? We can show the result by using Eqs. (7.30), (7.24a), and (7.24b). The
controllability matrix of the system (F, G) is

After the state transformation, the new description matrices are given by Eqs. (7.24a) and (7.24b), and the
controllability matrix changes to

Thus we see that Cz is nonsingular if and only if Cx is nonsingular, yielding the following observation:

Observer canonical form

A change of state by a nonsingular linear transformation does not change controllability.

We return once again to the transfer function of Eq. (7.12), this time to represent it with the block diagram having



the structure known as observer canonical form (Fig. 7.10). The corresponding matrices for this form are

The significant fact about this canonical form is that all the feedback is from the output to the state-variables.
Let us now consider what happens to the controllability of this system as the zero at –2 is varied. For this purpose,

we replace the second element 2 of Bo with the variable zero location –Zo and form the controllability matrix:

The determinant of this matrix is a function of Zo:

This polynomial is zero for Zo = –3 or –4, implying that controllability is lost for these values. What does this mean?
In terms of the parameter Zo, the transfer function is

Figure 7.10 Observer canonical form

If Zo = –3 or –4, there is a pole-zero cancellation and the transfer function reduces from a second-order system to a
first-order one. When Zo = –3, for example, the mode at –3 is decoupled from the input and control of this mode is
lost.

Notice that we have taken the transfer function given by Eq. (7.12) and given it two realizations, one in control
canonical form and one in observer canonical form. The control form is always controllable for any value of the zero,
while the observer form loses controllability if the zero cancels either of the poles. Thus, these two forms may



represent the same transfer function, but it may not be possible to transform the state of one to the state of the other
(in this case, from observer to control canonical form). While a transformation of state cannot affect controllability,
the particular state selected from a transfer function can:

Controllability is a function of the state of the system and cannot be decided from a transfer function.

To discuss controllability more at this point would take us too far afield. The closely related property of
observability and the observer canonical form will be taken up in Section 7.7.1. A more detailed discussion of these
properties of dynamic systems is given in the Appendix WF, for those who would like to learn more.

We return now to the modal form for the equations, given by Eqs. (7.17a) and (7.17b) for the example transfer
function. As mentioned before, it is not always possible to find a modal form for transfer functions that have
repeated poles, so we assume our system has only distinct poles. Furthermore, we assume that the general state
equations given by Eqs. (7.21a) and (7.21b) apply. We want to find a transformation matrix T defined by Eq. (7.22)
such that the transformed Eqs. (7.24a) and (7.25) will be in modal form. In this case, we assume that the A matrix is
diagonal and that T is composed of the columns t1, t2, and t3. With this assumption, the state transformation Eq.
(7.24a) becomes

Transformation to modal form

Eigenvectors

Eigenvalues
Equation (7.37) is equivalent to the three vector-matrix equations

In matrix algebra Eq. (7.38) is a famous equation, whose solution is known as the eigenvector/eigenvalue problem.
Recall that ti, is a vector, F is a matrix, and p i is a scalar. The vector ti is called an eigenvector of F, and Pi is called
the corresponding eigenvalue. Because we saw earlier that the modal form is equivalent to a partial-fraction-
expansion representation with the system poles along the diagonal of the state matrix, it should be clear that these
“eigenvalues” are precisely the poles of our system. The transformation matrix that will convert the state description
matrices to modal form has as its columns the eigenvectors of F, as shown in Eq. (7.37) for the third-order case. As it
happens, there are robust, reliable computer algorithms to compute eigenvalues and the eigenvectors of quite large
systems using the QR algorithm.4 In MATLAB, the command p = eig(F) is the way to compute the poles if the
system equations are in state form.



MATLAB eig
Notice also that Eq. (7.38) is homogeneous in that, if ti is an eigenvector, so is αti, for any scalar α. In most cases

the scale factor is selected so that the length (square root of the sum of squares of the magnitudes of the elements) is
unity. MATLAB will perform this operation. Another option is to select the scale factors so that the input matrix B is
composed of all 1’s. The latter choice is suggested by a partial-fraction expansion with each part realized in control
canonical form. If the system is real, then each element of F is real, and if p = σ + jω is a pole, so is the conjugate,
p* = σ – jω. For these eigenvalues, the eigenvectors are also complex and conjugate. It is possible to compose the
transformation matrix using the real and complex parts of the eigenvectors separately, so the modal form is real but
has 2 × 2 blocks for each pair of complex poles. Later, we will see the result of the MATLAB function that does this,
but first let us look at the simple real-poles case.

EXAMPLE 7.10 Transformation of Thermal System from Control to Modal Form
Find the matrix to transform the control form matrices in Eq. (7.15) into the modal form of Eq. (7.17).
Solution. According to Eqs. (7.37) and (7.38), we need first to find the eigenvectors and eigenvalues of the Ac matrix.
We take the eigenvectors to be

The equations using the eigenvector on the left are

Substituting Eq. (7.39c) into Eq. (7.39b) results in

We have found (again!) that the eigenvalues (poles) are –3 and –4; furthermore, Eq. (7.39c) tells us that the two
eigenvectors are



where t21 and t22 are arbitrary nonzero scale factors. We want to select the two scale factors such that both elements
of Bm in Eq. (7.17a) are unity. The equation for Bm in terms of Bc is TBm = Bc, and its solution is t21 = –1 and t22 =
1. Therefore, the transformation matrix and its inverse5 are

Elementary matrix multiplication shows that, using T as defined by Eq. (7.41), the matrices of Eqs. (7.15) and (7.17)
are related as follows:

These computations can be carried out by using the following MATLAB statements

T=[4-3; –11];
Am = inv(T)*Ac*T;
Bm = inv(T)*Bc;
Cm = Cc*T;
Dm = Dc;

The next example has five state-variables and, in state-variable form, is too complicated for hand calculations.
However, it is a good example for illustrating the use of computer software designed for the purpose. The model we
will use is based on a physical state after amplitude and time scaling have been done.

EXAMPLE 7.11 Using MATLAB to Find Poles and Zeros of Tape-Drive System
Find the eigenvalues of the system matrix described below for the tape-drive control (see Fig. 3.50). Also, compute
the transformation of the equations of the tape drive in their given form to modal canonical form. The system
matrices are

The state vector is defined as



The matrix H3 corresponds to making x3 (the position of the tape over the read/write head) the output, and the
matrix HT corresponds to making tension the output.
Solution. To compute the eigenvalues by using MATLAB, we write

P=eig(F),
which results in

MATLAB canon
Notice that the system has all poles in the left half-plane (LHP) except for one pole at the origin. This means that a
step input will result in a ramp output, so we conclude the system has Type 1 behavior.

To transform to modal form, we use the MATLAB function canon:

sysG = ss(F,G,H3,J)
[sysGm, TI] =canon(sysG, ‘modal’)
[Am,Bm,Cm,Dm]=ssdata(sysGm)

The result of this calculation is

Notice that the complex poles appear in the 2 × 2 block in the upper left corner of Am, and the real poles fall on
the main diagonal of this matrix. The rest of the calculations from canon are



Cm = Cm = [ 1.2569 –1.0817 –2.8284 1.8233 0.4903 ],
Dm = Dm = 0,

MATLAB inv
It happens that canon was written to compute the inverse of the transformation we are working with (as you can see
from TI in the previous equation), so we need to invert our MATLAB results. The inverse is calculated from

T = inv(T I)
and results in

The eigenvectors computed with [V,P]=eig(F) are V = V

Notice that the first two columns of the real transformation T are composed of the real and the imaginary parts of
the first eigenvector in the first column of V. It is this step that causes the complex roots to appear in the 2 × 2
block in the upper left of the Am matrix. The vectors in V are normalized to unit length, which results in
nonnormalized values in Bm and Cm. If we found it desirable to do so, we could readily find further transformations
to make each element of Bm equal 1 or to interchange the order in which the poles appear.

7.4.2 Dynamic Response from the State Equations
Having considered the structure of the state-variable equations, we now turn to finding the dynamic response from
the state description and to the relationships between the state description and our earlier discussion in Chapter 6 of
the frequency response and poles and zeros. Let us begin with the general equations of state given by Eqs. (7.21a)
and (7.21b), and consider the problem in the frequency domain. Taking the Laplace transform of



we obtain

which is now an algebraic equation. If we collect the terms involving X(s) on the left side of Eq. (7.45), keeping in
mind that in matrix multiplication order is very important, we find that6

(sI – F)X(s) = GU(s) + x(0).
If we premultiply both sides by the inverse of (sI – F), then

The output of the system is

Transfer function from state equations
This equation expresses the output response to both an initial condition and an external forcing input. The
coefficient of the external input is the transfer function of the system, which in this case is given by

EXAMPLE 7.12 Thermal System Transfer Function from the State Description
Use Eq. (7.48) to find the transfer function of the thermal system described by Eqs. (7.15a) and (7.15b).
Solution. The state-variable description matrices of the system are

To compute the transfer function according to Eq. (7.48), we form

and compute



We then substitute Eq. (7.49) into Eq. (7.48) to get

The results can also be found using the MATLAB statements,
[num,den] = ss2tf(F,G,H,J)
and yield num = [0 1 2] and den = [17 12], which agrees with hand calculations.

Because Eq. (7.48) expresses the transfer function in terms of the general state-space descriptor matrices F, G, H,
and J, we are able to express poles and zeros in terms of these matrices. We saw earlier that by transforming the
state matrices to diagonal form, the poles appear as the eigenvalues on the main diagonal of the F matrix. We now
take a systems theory point of view to look at the poles and zeros as they are involved in the transient response of a
system.

As we saw in Chapter 3, a pole of the transfer function G(s) is a value of generalized frequency s such that, if s =
p i, then the system can respond to an initial condition as  with no forcing function. In this context, p i is called a
natural frequency or natural mode of the system. If we take the state-space equations (7.21a and 7.21b) and set the
forcing function u to zero, we have

If we assume some (as yet unknown) initial condition

and that the entire state motion behaves according to the same natural frequency, then the state can be written as x(t)
= epitx0. It follows from Eq. (7.53) that

or

We can rewrite Eq. (7.56) as



Equations (7.56) and (7.57) constitute the eigenvector/eigenvalue problem we saw in Eq. (7.38) with eigenvalues p i
and, in this case, eigenvectors x0 of the matrix F. If we are just interested in the eigenvalues, we can use the fact that
for a nonzero x0, Eq. (7.57) has a solution if and only if

Transfer function poles from state equations
These equations show again that the poles of the transfer function are the eigenvalues of the system matrix F. The
determinant equation (7.58) is a polynomial in the eigenvalues p i known as the characteristic equation. In Example
7.10 we computed the eigenvalues and eigenvectors of a particular matrix in control canonical form. As an
alternative computation for the poles of that system, we could solve the characteristic equation (7.58). For the system
described by Eqs. (7.15a) and (7.15b), we can find the poles from Eq. (7.58) by solving

This confirms again that the poles of the system are the eigenvalues of F.
We can also determine the zeros of a system from the state-variable description matrices F, G, H, and J using a

systems theory point of view. From this perspective, a zero is a value of generalized frequency s such that the system
can have a nonzero input and state and yet have an output of zero. If the input is exponential at the zero frequency
Zi, given by

then the output is identically zero:

The state-space description of Eqs. (7.60) and (7.61) would be

Thus

or

and



Combining Eqs. (7.64) and (7.65), we get

Transfer function zeros from state equations
From Eq. (7.66) we can conclude that a zero of the state-space system is a value of Zi where Eq. (7.66) has a
nontrivial solution. With one input and one output, the matrix is square, and a solution to Eq. (7.66) is equivalent to
a solution to

EXAMPLE 7.13 Zeros for the Thermal System from a State Description
Compute the zero(s) of the thermal system described by Eq. (7.15).
Solution. We use Eq. (7.67) to compute the zeros:

Note that this result agrees with the zero of the transfer function given by Eq. (7.12). The result can also be found
using the following MATLAB statements:

sysG =ss(Ac,Bc,Cc,Dc);
z = tzero(sysG)

and yields z = –2.0.

Equation (7.58) for the characteristic equation and Eq. (7.67) for the zeros polynomial can be combined to express
the transfer function in a compact form from state-description matrices as

(See Appendix WE for more details.) While Eq. (7.68) is a compact formula for theoretical studies, it is very sensitive
to numerical errors. A numerically stable algorithm for computing the transfer function is described in Emami-Naeini
and Van Dooren (1982). Given the transfer function, we can compute the frequency response as G(jω), and as
discussed earlier, we can use Eqs. (7.57) and (7.66) to find the poles and zeros, upon which the transient response



depends, as we saw in Chapter 3.

EXAMPLE 7.14 Analysis of the State Equations of a Tape Drive
Compute the poles, zeros, and transfer function for the equations of the tape-drive servomechanism given in Example
7.11.
Solution. There are two different ways to compute the answer to this problem. The most direct is to use the MATLAB
function ss2tf (state-space to transfer function), which will give the numerator and denominator polynomials directly.
This function permits multiple inputs and outputs; the fifth argument of the function tells which input is to be used.
We have only one input here but must still provide the argument. The computation of the transfer function from
motor-current input to the servomotor position output is

[N2,D2] = ss2tf(F,G,H2,J,1)

MATLAB ss2tf

which results in
N2 = [ 0 0 0.0000 0 0.6000 1.2000 ],
D2 = [ 1.0000 2.7500 3.2225 1.8815 0.4180 –0.0000 ].

MATLAB roots
Similarly, for he posi ion a he read/write head, the transfer function polynomials are computed by

[N3, D3]=ss2tf(F,G, H3,J,1),

which resul s in
N3 = [ 0 –0.0000 –0.0000 0.7500 1.3500 1.2000 ],
D3 =[ 1.0000 2.7500 3.2225 1.8815 0.4180 –0.0000 ].

Finally, he ransfer func ion o ension is
[NT, DT] = ss2tf(F, G, HT, J, 1)
producing

NT =[ 0 –0.0000 –0.1500 –0.4500 –0.3000 0.0000 ],
DT =[ 1.0000 2.7500 3.2225 1.8815 0.4180 –0.0000 ].

I is in eres ing o check o see whe her he poles and zeros de ermined his way agree wi h hose found by o her means.
For a polynomial, we use he funcion roots:



Checking with Example 7.11, we confirm that they agree.
How about the zeros? We can find these by finding the roots of the numerator polynomial. We compute the roots

of the polynomial N3:

Here we notice that roots are given with a magnitude of 107, which seems inconsistent with the values given for the
polynomial. The problem is that MATLAB has used the very small leading terms in the polynomial as real values
and thereby introduced extraneous roots that are for all practical purposes at infinity. The true zeros are found by
truncating the polynomial to the significant values using the statement

N3R = N3(4 : 6)
to get

The other approach is to compute the poles and zeros separately and, if desired, combine these into a transfer
function. The poles were computed with eig in Example 7.11 and are

MATLAB tzero

The zeros can be computed by the equivalent of Eq. (7.66) with the function tzero (transmission zeros). The zeros
depend on which output is being used, of course, and are respectively given below. For the position of the tape at
the servomotor as the output, the statement

sysG2 = ss(F, G, H2, J)
ZER2 = tzero(sysG2)

yields
ZER2 = –2.0000.

For the position of the tape over the read/write head as the output, we use the statement
sysG3 = ss(F, G, H3, J)
ZER3 = tzero(sysG3)



We note that these results agree with the values previously computed from the numerator polynomial N3. Finally,
for the tension as output, we use

sysGT = ss(F, G, HT, J)
ZERT = tzero(sysGT)

to get

From these results we can write down, for example, the transfer function to position x3 as

7.5 Control-Law Design for Full-State Feedback
One of the attractive features of the state-space design method is that it consists of a sequence of independent steps,
as mentioned in the chapter overview. The first step, discussed in Section 7.5.1, is to determine the control. The
purpose of the control law is to allow us to assign a set of pole locations for the closed-loop system that will
correspond to satisfactory dynamic response in terms of rise time and other measures of transient response. In Section
7.5.2 we will show how to introduce the reference input with full-state feedback, and in Section 7.6 we will describe
the process of finding the poles for good design.

Estimator/observer
The second step—necessary if the full state is not available—is to design an estimator (sometimes called an

observer), which computes an estimate of the entire state vector when provided with the measurements of the system
indicated by Eq. (7.21b). We will examine estimator design in Section 7.7.

The control law and the estimator together form the compensation
The third step consists of combining the control law and the estimator. Figure 7.11 shows how the control law and

the estimator fit together and how the combination takes the place of what we have been previously referring to as
compensation. At this stage, the control-law calculations are based on the estimated state rather than the actual state.
In Section 7.8 we will show that this substitution is reasonable, and also that using the combined control law and



estimator results in closed-loop pole locations that are the same as those determined when designing the control and
estimator separately.

The fourth and final step of state-space design is to introduce the reference input in such a way that the plant
output will track external commands with acceptable rise-time, overshoot, and settling-time values. At this point in
the design, all the closed-loop poles have been selected, and the designer is concerned with the zeros of the overall
transfer function. Figure 7.11 shows the command input r introduced in the same relative position as was done with
the transform design methods; however, in Section 7.9 we will show how to introduce the reference at another
location, resulting in different zeros and (usually) superior control.

7.5.1 Finding the Control Law
The first step in the state-space design method, as mentioned earlier, is to find the control law as feedback of a linear
combination of the state-variables—that is,

Control law

Figure 7.11 Schematic diagram of state-space design elements

We assume for feedback purposes that all the elements of the state vector are at our disposal. In practice, of course,
this would usually be a ridiculous assumption; moreover, a well-trained control designer knows that other design
methods do not require so many sensors. The assumption that all state-variables are available merely allows us to
proceed with this first step.

Equation (7.70) tells us that the system has a constant matrix in the state-vector feedbackpath, as shown in Fig.
7.12. For an nth-order system, there will be n feedback gains, K1,..., Kn, and because there are n roots of the system, it
is possible that there are enough degrees of freedom to select arbitrarily any desired root location by choosing the
proper values of Ki. This freedom contrasts sharply with root-locus design, in which we have only one parameter and
the closed-loop poles are restricted to the locus.



Substituting the feedback law given by Eq. (7.70) into the system described by Eq. (7.21a) yields

The characteristic equation of this closed-loop system is

Control characteristic equation
When evaluated, this yields an nth-order polynomial in s containing the gains K1,..., Kn. The control-law design then
consists of picking the gains K so that the roots of Eq. (7.72) are in desirable locations. Selecting desirable root
locations is an inexact science that may require some iteration by the designer. Issues in their selection are considered
in Examples 7.15 to 7.17 as well as in Section 7.6. For now, we assume that the desired locations are known, say,

s = s1, s2,...,sn

Then the corresponding desired (control) characteristic equation is

Hence the required elements of K are obtained by matching coefficients in Eqs. (7.72) and (7.73). This forces the
system’s characteristic equation to be identical to the desired characteristic equation and the closed-loop poles to be
placed at the desired locations.

Figure 7.12 Assumed system for control-law design

EXAMPLE 7.15 Control Law for a Pendulum
Suppose you have a pendulum with frequency ω0 and a state-space description given by

Find the control law that places the closed-loop poles of the system so that they are both at –2ω0. In other words,
you wish to double the natural frequency and increase the damping ratio ζ from 0 to 1.
Solution. From Eq. (7.73) we find that



Equation (7.72) tells us that

or

Equating the coefficients with like powers of s in Eqs. (7.75b) and (7.76) yields the system of equations

and therefore,

More concisely, the control law is

Figure 7.13 shows the response of the closed-loop system to the initial conditions x1 = 1.0, x2 = 0.0, and ω0 = 1. It
shows a very well damped response, as would be expected from having two roots at s = –2. The MATLAB command
impulse was used to generate the plot.

Calculating the gains by using the technique illustrated in Example 7.15 becomes rather tedious when the order of
the system is higher than 3. There are, however, special “canonical” forms of the state-variable equations for which
the algebra for finding the gains is especially simple. One such canonical form that is useful in control law design is
the control canonical form. Consider the third-order system7



Figure 7.13 Impulse response of the undamped oscillator with full-state feedback (ω0 = 1)

which corresponds to the transfer function

Suppose we introduce an auxiliary variable (referred to as the partial state) ξ, which relates a(s) and b(s) as shown in
Fig. 7.14(a). The transfer function from U to ξ is

or

It is easy to draw a block diagram corresponding to Eq. (7.80) if we rearrange the equation as follows:

The summation is indicated in Fig. 7.14(b), where each ξ on the right-hand side is obtained by sequential integration
of . To form the output, we go back to Fig. 7.14(a) and note that

which means that

We again pick off the outputs of the integrators, multiply them by {bi}’s, and form the right-hand side of Eq. (7.77)
by using a summer to yield the output as shown in Fig. 7.14(c). In this case, all the feedback loops return to the



point of the application of the input, or “control” variable, and hence the form is referred to as the control canonical
form. Reduction of the structure by Mason’s rule or by elementary block diagram operations verifies that this
structure has the transfer function given by G(s).

Taking the state as the outputs of the three integrators numbered, by convention, from the left, namely

Figure 7.14 Derivation of control canonical form

we obtain

We may now write the matrices describing the control canonical form in general:



Companion form matrix
The special structure of this system matrix is referred to as the upper companionform because the characteristic
equation is a(s) = sn + a1sn–1 + a2sn–2 + an and the coefficients of this monic “companion” polynomial are the
elements in the first row of Fc. If we now form the closed-loop system matrix Fc – GcKc, we find that

By visually comparing Eqs. (7.86a) and (7.87), we see that the closed-loop characteristic equation is

Therefore, if the desired pole locations result in the characteristic equation given by

then the necessary feedback gains can be found by equating the coefficients in Eqs. (7.88) and (7.89):

Ackermann’s formula for pole placement
We now have the basis for a design procedure. Given a system of order n described by an arbitrary (F, G) and

given a desired nth-order monic characteristic polynomial αc(s), we (1) transform (F, G) to control canonical form
(Fc, Gc) by changing the state x = Tz, and we (2) solve for the control gains by inspection using Eq. (7.90) to give the
control law u = –Kcz. Because this gain is for the state in the control form, we must (3) transform the gain back to
the original state to get K = KcT–1.

An alternative to this transformation method is given by Ackermann’s formula (1972), which organizes the three-
step process of converting to (Fc,Gc), solving for the gains, and converting back again into the very compact form

such that



where C is the controllability matrix we saw in Section 7.4, n gives the order of the system and the number of state-
variables, and αc (F) is a matrix defined as

where the αi are the coefficients of the desired characteristic polynomial Eq. (7.89). Note that Eq. (7.93) is a matrix
equation. Refer to Appendix WG for the derivation of Ackermann’s formula.

EXAMPLE 7.16 Ackermann’s Formula for Undamped Oscillator
(a) Use Ackermann’s formula to solve for the gains for the undamped oscillator of Example 7.15. (b) Verify the
calculations with MATLAB for ω0 = 1.
Solution

(a) The desired characteristic equation is αc(s) = (s + 2ω0)2. Therefore, the desired characteristic polynomial
coefficients,

are substituted into Eq. (7.93) and the result is

The controllability matrix is

which yields

Finally, we substitute Eqs. (7.95) and (7.94a) into Eq. (7.91) to get

Therefore



which is the same result we obtained previously.
(b) The MATLAB statements

wo = 1;
F=[0 1;–wo*wo 0];
G=[0;1];
pc=[–2*wo;–2*wo];
K = acker(F,G,pc)

yield K =[3 4], which agrees with hand calculations.

As was mentioned earlier, computation of the controllability matrix has very poor numerical accuracy, and this
carries over to Ackermann’s formula. Equation (7.91), implemented in MATLAB with the function acker, can be used
for the design of single-input-single-output (SISO) systems with a small (≤10) number of state-variables. For more
complex cases a more reliable formula is available, implemented in MATLAB with place. A modest limitation on
place is that, because it is based on assigning closed-loop eigenvectors, none of the desired closed-loop poles may be
repeated; that is, the poles must be distinct,8 a requirement that does not apply to acker.

MATLAB acker, place

An example ofweak controllability
The fact that we can shift the poles of a system by state feedback to any desired location is a rather remarkable

result. The development in this section reveals that this shift is possible if we can transform (F, G) to the control form
(Fc,Gc), which in turn is possible if the system is controllable. In rare instances the system may be uncontrollable, in
which case no possible control will yield arbitrary pole locations. Uncontrollable systems have certain modes, or
subsystems, that are unaffected by the control. This usually means that parts of the system are physically disconnected
from the input. For example, in modal canonical form for a system with distinct poles, one of the modal state-
variables is not connected to the input if there is a zero entry in the Bm matrix. A good physical understanding of the
system being controlled would prevent any attempt to design a controller for an uncontrollable system. As we saw
earlier, there are algebraic tests for controllability; however, no mathematical test can replace the control engineer’s
understanding of the physical system. Often the physical situation is such that every mode is controllable to some
degree, and, while the mathematical tests indicate the system is controllable, certain modes are so weakly
controllable that designs to control them are virtually useless.

Airplane control is a good example of weak controllability of certain modes. Pitch plane motion xp is primarily
affected by the elevator δe and weakly affected by rolling motion xr. Rolling motion is essentially affected only by the
ailerons δa. The state-space description of these relationships is



where the matrix of small numbers ε represents the weak coupling from rolling motion to pitching motion. A
mathematical test of controllability for this system would conclude that pitch plane motion (and therefore altitude) is
controllable by the ailerons as well as by the elevator! However, it is impractical to attempt to control an airplane’s
altitude by rolling the aircraft with the ailerons.

Another example will illustrate some of the properties of pole placement by state feedback and the effects of loss
of controllability on the process.

EXAMPLE 7.17 How Zero Location Can Affect the Control Law
A specific thermal system is described by Eq. (7.35a) in observer canonical form with a zero at s = Z0. (a) Find the
state feedback gains necessary for placing the poles of this system at the roots of 

 (b) Repeat the computation with MATLAB, using the parameter
values Z0 = 2, ζ = 0.5, and ωn = 2 rad/sec.
Solution

(a) The state description matrices are

First we substitute these matrices into Eq. (7.72) to get the closed-loop characteristic equation in terms of the
unknown gains and the zero position:

s2 + (7 + K1 – Z0K2)s + 12 – K2(7z0 + 12) – K1Z0 = 0.

Next we equate this equation to the desired characteristic equation to get the equations

The solutions to these equations are

(b) The following MATLAB statements can be used to find the solution:
Ao = [–7 1;–12 0];
zo = 2;
Bo = [1;–zo];
pc = roots([1 2 4]);
K = place(Ao,Bo,pc)



These statements yield K=[–3.80 0.60], which agrees with the hand calculations. If the zero were close to one
of the open-loop poles, say Z0 = –2.99, then we find K=[2052.5 –688.1].

Two important observations should be made from this example. The first is that the gains grow as the zero Z0
approaches either –3 or –4, the values where this system loses controllability. In other words, as controllability is
almost lost, the control gains become very large.

The system has to work harder and harder to achieve control as controllability slips away.

The second important observation illustrated by the example is that both K1 and K2 grow as the desired closed-
loop bandwidth given by ωn is increased. From this, we conclude that

To move the poles a long way requires large gains.

These observations lead us to a discussion of how we might go about selecting desired pole locations in general.
Before we begin that topic, we will complete the design with full-state feedback by showing how the reference input
might be applied to such a system and what the resulting response characteristics are.

7.5.2 Introducing the Reference Input with Full-State Feedback
Thus far, the control has been given by Eq. (7.70), or u = –Kx. In order to study the transient response of the pole-
placement designs to input commands, it is necessary to introduce the reference input into the system. An obvious
way to do this is to change the control to u = –Kx + r. However, the system will now almost surely have a nonzero
steady-state error to a step input. The way to correct this problem is to compute the steady-state values of the state
and the control input that will result in zero output error and then force them to take these values. If the desired
final values of the state and the control input are Xss and uss respectively, then the new control formula should be

so that when x = xss (no error),u = uss. To pick the correct final values, we must solve the equations so that the
system will have zero steady-state error to any constant input. The system differential equations are the standard
ones:

In the constant steady state, Eqs. (7.98a) and (7.98b) reduce to the pair

Gain calculation for reference input



We want to solve for the values for which yss = rss for any value of rss. To do this, we make xss = Nxrss and uss =
Nurss. With these substitutions we can write Eqs. (7.99) as a matrix equation; the common factor of rss cancels out to
give the equation for the gains:

Control equation with reference input
This equation can be solved for Nx and Nu to get

With these values, we finally have the basis for introducing the reference input so as to get zero steady-state error to a
step input:

The coefficient of r in parentheses is a constant that can be computed beforehand. We give it the symbol , so

The block diagram of the system is shown in Fig. 7.15.

EXAMPLE 7.18 Introducing the Reference Input
Compute the necessary gains for zero steady-state error to a step command at x1, and plot the resulting unit step
response for the oscillator in Example 7.15 with ω0 = 1. Solution. We substitute the matrices of Eq. (7.74) (with ω0
= 1 and H = [ 1 0 ] because y = X1) into Eq. (7.100) to get

Figure 7.15 Block diagram for introducing the reference input with full-state feedback: (a) with state and control
gains; (b) with a single composite gain



Figure 7.16 Step response of oscillator to a reference input

The solution is (x=a\b in MATLAB where a and b are the left-and right-hand side matrices respectively),

and, for the given control law, 

The corresponding step response (using the MATLAB step command) is plotted in Fig. 7.16.

Note that there are two equations for the control—Eqs. (7.101b) and (7.102). While these expressions are equivalent
in theory, they differ in practical implementation in that Eq. (7.101b) is usually more robust to parameter errors than
Eq. (7.102), particularly when the plant includes a pole at the origin and Type 1 behavior is possible. The difference
is most clearly illustrated by the next example.

EXAMPLE 7.19 Reference Input to a Type 1 System: DC Motor
Compute the input gains necessary to introduce a reference input with zero steady-state error to a step for the DC



motor of Example 5.1, which in state-variable form is described by the matrices:

DC Motor Eq. (2.52)

Assume that the state feedback gain is [ K1 K2 ].
Solution. If we substitute the system matrices of this example into the equation for the input gains, Eq. (7.100), we
find that the solution is

With these values, the expression for the control using Nx and Nu [Eq. (7.101b)] reduces to

u = –K1(x1 – r) – K2x2,

while the one using  [Eq. (7.102)] becomes
u = –K1x2 – + K1r.

The block diagrams for the systems using each of the control equations are given in Fig. 7.17. When using Eq.
(7.102), as shown in Fig. 7.17(b), it is necessary to multiply the input by a gain K1 (= ) exactly equal to that used
in the feedback. If these two gains do not match exactly, there will be a steady-state error. On the other hand, if we
use Eq. (7.101b), as shown in Fig. 7.17(a), there is only one gain to be used on the difference between the reference
input and the first state, and zero steady-state error will result even if this gain is slightly in error. The system of Fig.
7.17(a) is more robust than the system of Fig. 7.17(b).

With the reference input in place, the closed-loop system has input r and output y. From the state description we
know that the system poles are at the eigenvalues of the closed-loop system matrix, F – GK. In order to compute the
closed-loop transient response, it is necessary to know where the closed-loop zeros of the transfer function from r to
y are. They are to be found by applying Eq. (7.67) to the closed-loop description, which we assume has no direct
path from input u to output y, so that J = 0. The zeros are values of s such that

We can use two elementary facts about determinants to simplify Eq. (7.105). In the first place, if we divide the last
column by N, which is a scalar, then the point where the determinant is zero remains unchanged. The determinant is
also not changed if we



Figure 7.17 Alternative structures for introducing the reference input: (a) Eq. (7.101b); (b) Eq. (7.102)

multiply the last column by K and add it to the first (block) column, with the result that the GK term is cancelled out.
Thus the matrix equation for the zeros reduces to

Equation (7.106) is the same as Eq. (7.67) for the zeros of the plant before the feedback was applied. The important
conclusion is that

When full-state feedback is used as in Eq. (7.101b) or (7.102), the zeros remain unchanged by the feedback.

7.6 Selection of Pole Locations for Good Design
The first step in the pole-placement design approach is to decide on the closed-loop pole locations. When selecting
pole locations, it is always useful to keep in mind that the control effort required is related to how far the open-loop
poles are moved by the feedback. Furthermore, when a zero is near a pole, the system may be nearly uncontrollable,
and as we saw in Section 7.5, moving such poles requires large control gains and thus a large control effort; however,
the designer is able to temper the choices to take control effort into account. Therefore, a pole-placement philosophy
that aims to fix only the undesirable aspects of the open-loop response and avoids either large increases in
bandwidth or efforts to move poles that are near zeros will typically allow smaller gains, and thus smaller control
actuators, than a philosophy that arbitrarily picks all the poles without regard to the original open-loop pole and
zero locations.

Two methods of pole selection
In this section we discuss two techniques to aid in the pole-selection process. The first approach—dominant



second-order poles—deals with pole selection without explicit regard for their effect on control effort; however, the
designer is able to temper the choices to take control effort into account. The second method (called optimal control,
or symmetric root locus) does specifically address the issue of achieving a balance between good system response and
control effort.

7.6.1 Dominant Second-Order Poles
The step response corresponding to the second-order transfer function with complex poles at radius ωn and damping
ratio ζ was discussed in Chapter 3. The rise time, overshoot, and settling time can be deduced directly from the pole
locations. We can choose the closed-loop poles for a higher-order system as a desired pair of dominant second-order
poles, and select the rest of the poles to have real parts corresponding to sufficiently damped modes, so that the
system will mimic a second-order response with reasonable control effort. We also must make sure that the zeros are
far enough into the LHP to avoid having any appreciable effect on the second-order behavior. A system with several
lightly damped high-frequency vibration modes plus two rigid-body low-frequency modes lends itself to this
philosophy. Here we can pick the low-frequency modes to achieve desired values of ωn and ζ and select the rest of
the poles to increase the damping of the high-frequency modes, while holding their frequency constant in order to
minimize control effort. To illustrate this design method, we obviously need a system of higher than second-order;
we will use the tape drive servomotor described in Example 7.11.

EXAMPLE 7.20 Pole Placement as a Dominant Second-Order System
Design the tape servomotor by the dominant second-order poles method to have no more than 5% overshoot and a
rise time of no more than 4 sec. Keep the peak tension as low as possible.
Solution. From the plots of the second-order transients in Fig. 3.18, a damping ratio ζ = 0.7 will meet the overshoot
requirement and, for this damping ratio, a rise time of 4 sec suggests a natural frequency of about 1/1.5. There are
five poles in all, so the other three need to be placed far to the left of the dominant pair. For our purposes, “far”
means the transients due to the fast poles should be over well before the transients due to the dominant poles, and
we assume a factor of 4 in the respective undamped natural frequencies to be adequate. From these considerations,
the desired poles are given by

With these desired poles, we can use the function acker with F and G from Example 7.11, Eq. (7.70), to find the
control gains

MATLAB acker

These are found with the following MATLAB statements:
F = [0200 0;–.1 –.35 .1.1.75;0 002 0;.4 .4 –.4 –1.4 0;0 –.03 00-1];
G =[0;0;0;0;1];
pc = [–.707+.707*j;–.707–.707*j;–4;–4;–4]/1.5;



K2 = acker(F,G,pc)
The step response and the corresponding tension plots for this and another design (to be discussed in Section

7.6.2) are given in Fig. 7.18 and Fig. 7.19. Notice that the rise time is approximately 4 sec and the overshoot is about
5%, as specified.

Figure 7.18 Step responses of the tape servomotor designs

Figure 7.19 Tension plots for tape servomotor step responses

Because the design process is iterative, the poles we selected should be seen as only a first step, to be followed by
further modifications to meet the specifications as accurately as necessary.

For this example we happened to select adequate pole locations on the first try.

LQR design



7.6.2 Symmetric Root Locus (SRL)
A most effective and widely used technique of linear control systems design is the optimal linear quadratic regulator
(LQR). The simplified version of the LQR problem is to find the control such that the performance index

is minimized for the system

where ρ in Eq. (7.109) is a weighting factor of the designer’s choice. A remarkable fact is that the control law that
minimizes J is given by linear-state feedback

Symmetric root locus
Here the optimal value of K is that which places the closed-loop poles at the stable roots (those in the LHP) of the
symmetric root-locus (SRL) equation (Kailath, 1980)

where G0 is the open-loop transfer function from u to Z:

Note that this is a root-locus problem as discussed in Chapter 5 with respect to the parameter ρ, which weights the
relative cost of (tracking error) Z2 with respect to the control effort u2 in the performance index Eq. (7.109). Note
also that s and – s affect Eq. (7.112) in an identical manner; therefore, for any root s0 of Eq. (7.112), there will also
be a root at –s0. We call the resulting root locus a SRL, since the locus in the LHP will have a mirror image in the
right half-plane (RHP); that is, there is symmetry with respect to the imaginary axis. We may thus choose the optimal
closed-loop poles by first selecting the matrix H1, which defines the tracking error and which the designer wishes to
keep small, and then choosing ρ, which balances the importance of this tracking error against the control effort.
Notice that the output we select as tracking error does not need to be the plant sensor output. That is why we call
the output in Eq. (7.110) Z rather than y.

SRL equation
Selecting a set of stable poles from the solution of Eq. (7.112) results in desired closed-loop poles, which we can

then use in a pole-placement calculation such as Ackermann’s formula (Eq. 7.91) to obtain K. As with all root loci for
real transfer functions G0, the locus is also symmetric with respect to the real axis; thus there is symmetry with
respect to both the real and imaginary axes. We can write the SRL equation in the standard root-locus form



obtain the locus poles and zeros by reflecting the open-loop poles and zeros of the transfer function from U to Z
across the imaginary axis (which doubles the number of poles and zeros), and then sketch the locus. Note that the
locus could be either a 0° or 180° locus, depending on the sign of G0(–s)G0(s) in Eq. (7.112). A quick way to
determine which type of locus to use (0° or 180°) is to pick the one that has no part on the imaginary axis. The real-
axis rule of root locus plotting will reveal this right away. For the controllability assumptions we have made here,
plus the assumption that all the system modes are present in the chosen output Z, the optimal closed-loop system is
guaranteed to be stable; thus no part of the locus can be on the imaginary axis.

Figure 7.20 SRL for a first-order system

EXAMPLE 7.21 SRL for Servo Speed Control
Plot the SRL for the following servo speed control system with z = y:

Solution. The SRL equation [Eq. (7.112)] for this example is

The SRL, shown in Fig. 7.20, is a 0° locus. The optimal (stable) pole can be determined explicitly in this case as

Thus, the closed-loop root location that minimizes the performance index of Eq. (7.109) lies on the real axis at the
distance given by Eq. (7.117) and is always to the left of the open-loop root.

EXAMPLE 7.22 SRL Design for Satellite Attitude Control
Draw the SRL for the satellite system with z = y.
Solution. The equations of motion are



We then calculate from Eqs. (7.118) and (7.119) so that

The symmetric 180° loci are shown in Fig. 7.21. The MATLAB statements to generate the SRL are

numGG = [1];
denGG = conv([1 0 0],[1 0 0]);
sysGG = tf(numGG,denGG);
rlocus(sysGG);

Figure 7.21 SRL for the satellite

It is interesting to note that the (stable) closed-loop poles have damping of ζ = 0.707. We would choose two
stable roots for a given value of ρ, for example s = –1 ± j1 for ρ = 4.07, on the SRL and use them for pole-
placement and control-law design.

Choosing different values of ρ can provide us with pole locations that achieve varying balances between a fast
response (small values of ∫ Z2 dt) and a low control effort (small values of ∫ u2 dt). Figure 7.22 shows the design
trade-off curve for the satellite (double-integrator) plant [Eq. (7.18)] for various values of ρ ranging from 0.01 to
100. The curve has two asymptotes (dashed lines) corresponding to low (large ρ) and high (small ρ) penalty on the
control usage. In practice, usually a value of ρ corresponding to a point close to the knee of the trade-off curve is
chosen. This is because it provides a reasonable compromise between the use of control and the speed of response.
For the satellite plant, the value of ρ = 1 corresponds to the knee of the curve. In this case the closed-loop poles
have a damping ratio of ζ = 0.707! Figure 7.23 shows the associated Nyquist plot, which has a phase margin PM =



65° and infinite gain margin. These excellent stability properties are a general feature of LQR designs.
It is also possible to locate optimal pole locations for the design of an open-loop unstable system using the SRL

and LQR method.

EXAMPLE 7.23 SRL Design for an Inverted Pendulum
Draw the SRL for the linearized equations of the simple inverted pendulum with ω0 = 1. Take the output, Z, to be
the sum of twice the position plus the velocity (so as to weight or penalize both position and velocity).
Solution. The equations of motion are

Figure 7.22 Design trade-off curve for satellite plant

Figure 7.23 Nyquist plot for LQR design

For the specified output of 2 × position + velocity, we let the tracking error be



We then calculate from Eqs. (7.121) and (7.122) so that

The symmetric 0° loci are shown in Fig. 7.24. The MATLAB statements to generate the SRL are (for ω0 = 1),

numGG=conv(-[1 2],-[-1 2]);
denGG=conv([1 0 –1],[1 0 –1]);
sysGG=tf(numGG,denGG);
rlocus(sysGG);

Figure 7.24 SRL for the inverted pendulum

Figure 7.25 Step response for the inverted pendulum



For ρ = 1, we find that the closed-loop poles are at –1.36 ± j0.606, corresponding to K = [ –2.23 –2.73 ]. If we
substitute the system matrices of this example into the equation for the input gains, Eq. (7.100), we find that the
solution is

With these values, the expression for the control using Nx and Nu (Eq. 7.101b) the controller reduces to

u = –Kx + r.
The corresponding step response for position is shown in Fig. 7.25.

As a final example in this section, we consider again the tape servomotor and introduce LQR design using the
computer directly to solve for the optimal control law. From Eqs. (7.109) and (7.111), we know that the information
needed to find the optimal control is given by the system matrices F and G and the output matrix H1. Most
computer-aided software packages, including MATLAB, use a more general form of Eq. (7.109):

MATLAB lqr

Equation (7.124) reduces to the simpler form of Eq. (7.109) if we take and  R = 1. The direct
solution for the optimal control gain is the MATLAB statement

Bryson’s rule
One reasonable method to start the LQR design iteration is suggested by Bryson’s rule (Bryson and Ho, 1969). In

practice, an appropriate choice to obtain acceptable values of x and u is to initially choose diagonal matrices Q and
R such that

The weighting matrices are then modified during subsequent iterations to achieve an acceptable trade-off between
performance and control effort.

EXAMPLE 7.24 LQR Design for a Tape Drive
(a) Find the optimal control for the tape drive of Example 7.11, using the position x3 as the output for the



performance index. Let ρ = 1. Compare the results with that of dominant second order obtained before.
(b) Compare the LQR designs for ρ = 0.1,1,10.

Solution

(a) All we need to do here is to substitute the matrices into Eq. (7.125), form the feedback system, and plot the
response. The performance index matrix is the scalar R = 1; the most difficult part of the problem is finding
the state-cost matrix Q. With the output-cost variable z = x3, the output matrix from Example 7.11 is

H3 = [ 0.5 0 0.5 0 0 ],

and with ρ = 1, the required matrix is

The gain is given by MATLAB, using the following statements:

F=[0 2 0 0 0; –.1 –.35 .1 .1.75;0 0 0 2 0;.4 .4 –.4 –1.4;0 –.03 0 0 –1];
G=[0; 0; 0; 0; 1];
H3=[.5 0 .5 0 0];
R=1;
rho=1;
Q=rho*H3’*H3;
K=lqr(F,G,Q,R)

        The MATLAB calculated gain is

The results of a position step and the corresponding tension are plotted in Figs. 7.18 and 7.19 (using step) with
the earlier responses for comparison. Obviously, there is a vast range of choice for the elements of Q and R, so
substantial experience is needed in order to use the LQR method effectively.

(b) The LQR designs may be repeated as in part (a) with the same Q and R, but with ρ = 0.1, 10. Figure 7.26
shows a comparison of position step and the corresponding tension for the three designs. As seen from the
results, the smaller values of ρ correspond to higher cost on the control and slower response, whereas the larger
values of ρ correspond to lower cost on the control and relatively fast response.

Limiting Behavior of LQR Regulator Poles

It is interesting to consider the limiting behavior of the optimal closed-loop poles as a function of the root-locus



parameter (i.e., p) although, in practice, neither case would be used.
“Expensive control” case (ρ → 0): Equation (7.109) primarily penalizes the use of control energy. If the control is

expensive, then the optimal control does not move any of the open-loop poles except for those that are in the RHP.
The poles in the RHP are simply moved to their mirror images in the LHP. The optimal control does this to stabilize
the system using minimum control effort and makes no attempt to move any of the poles of the system in the LHP.
The closed-loop pole locations are simply the starting points on the SRL in the LHP. The optimal control does not
speed up the response of the system in this case. For the satellite plant, the vertical dashed line in Fig. 7.22
corresponds to the “expensive control” case and illustrates that the very low control usage results in a very large error
in z.

“Cheap control” case (ρ → ∞): In this case control energy is no object and arbitrary control effort may be used by
the optimal control law. The control law then moves some of the closed-loop pole locations right on top of the zeros
in the LHP. The rest are moved to infinity along the SRL asymptotes. If the system is nonminimum phase, some of
the closed-loop poles are moved to mirror images of these zeros in the LHP, as shown in Example 7.23. The rest of
the poles go to infinity and do so along a Butterworth filter pole pattern, as shown in Example 7.22. The optimal
control law provides the fastest possible response time consistent with the LQR cost function. The feedback gain
matrix K becomes unbounded in this case. For the double-integrator plant, the horizontal dashed line in Fig. 7.22
corresponds to the “cheap control” case.

Figure 7.26 (a) Step response of the tape servomotor for LQR designs; (b) corresponding tension for tape servomotor
step responses



Robustness Properties of LQR Regulators

It has been proved (Anderson and Moore, 1990) that the Nyquist plot for LQR design avoids a circle of unity radius
centered at the – 1 point as shown in Fig. 7.23. This leads to extraordinary phase and gain margin properties. It can
be shown (Problem 7.32) that the return difference must satisfy

Let us rewrite the loop gain as the sum of its real and imaginary parts:

Equation (7.127) implies that

LQR gain and phase margins

which means that the Nyquist plot must indeed avoid a circle centered at – 1 with unit radius. This implies that  <



GM < ∞, which means that the “upward” gain margin is GM = ∞ and the “downward” gain margin is GM =  (see
also Problem 6.24 of Chapter 6). Hence the LQR gain matrix, K, can be multiplied by a large scalar or reduced by
half with guaranteed closed-loop system stability. The phase margin, PM, is at least ±60°. These margins are
remarkable, and it is not realistic to assume that they can be achieved in practice, because of the presence of
modeling errors and lack of sensors!

7.6.3 Comments on the Methods
The two methods of pole selection described in Sections 7.6.1 and 7.6.2 are alternatives the designer can use for an
initial design by pole placement. Note that the first method (dominant second order) suggests selecting closed-loop
poles without regard to the effect on the control effort required to achieve that response. In some cases, therefore, the
resulting control effort may be ridiculously high. The second method (SRL), on the other hand, selects poles that
result in some balance between system errors and control effort. The designer can easily examine the relationship
between shifts in that balance (by changing ρ) and systemroot locations, time response, and feedback gains. Whatever
initial pole-selection method we use, some modification is almost always necessary to achieve the desired balance of
bandwidth, overshoot, sensitivity, control effort, and other practical design requirements. Further insight into pole
selection will be gained from the examples that illustrate compensation in Section 7.8 and from the case studies in
Chapter 10.

7.7 Estimator Design
The control law designed in Section 7.5 assumed that all the state-variables are available for feedback. In most cases,
not all the state-variables are measured. The cost of the required sensors may be prohibitive, or it may be physically
impossible to measure all of the state-variables, as in, for example, a nuclear power plant. In this section we
demonstrate how to reconstruct all of the state-variables of a system from a few measurements. If the estimate of the
state is denoted by , it would be convenient if we could replace the true state in the control law given by Eq.
(7.102) with the estimates, so that the control becomes u = – K  + r. This is indeed possible, as we shall see in
Section 7.8, so construction of a state estimate is a key part of state-space control design.

7.7.1 Full-Order Estimators
One method of estimating the state is to construct a full-order model of the plant dynamics,

where  is the estimate of the actual state x. We know F, G, and u(t). Hence this estimator will be satisfactory if we
can obtain the correct initial condition x (0) and set (0) equal to it. Figure 7.27 depicts this open-loop estimator.
However, it is precisely the lack of information about x (0) that requires the construction of an estimator. Otherwise,
the estimated state would track the true state exactly. Thus, if we made a poor estimate for the initial condition, the
estimated state would have a continually growing error or an error that goes to zero too slowly to be of use.
Furthermore, small errors in our knowledge of the system (F, G) would also cause the estimate to diverge from the
true state.

Figure 7.27 Open-loop estimator



To study the dynamics of this estimator, we define the error in the estimate to be

Then the dynamics of this error system are given by

The error converges to zero for a stable system (F stable), but we have no ability to influence the rate at which the
state estimate converges to the true state. Furthermore, the error is converging to zero at the same rate as the natural
dynamics of F. If this convergence rate were satisfactory, no control or estimation would be required.

Feed back the output error to correct the state estimate equation.
We now invoke the golden rule: When in trouble, use feedback. Consider feeding back the difference between the

measured and estimated outputs and correcting the model continuously with this error signal. The equation for this
scheme, shown in Fig. 7.28, is

Here L is a proportional gain defined as

and is chosen to achieve satisfactory error characteristics. The dynamics of the error can be obtained by subtracting
the estimate [Eq. (7.133)] from the state [Eq. (7.44)], to get the error equation

Estimate-error characteristic equation
The characteristic equation of the error is now given by

If we can choose L so that F – LH has stable and reasonably fast eigenvalues, then  will decay to zero and remain
there—independent of the known forcing function u(t) and its effect on the state x(t) and irrespective of the initial
condition (0). This means that (t) will converge to xx (t), regardless of the value of  (0); furthermore, we can
choose the dynamics of the error to be stable as well as much faster than the open-loop dynamics determined by F.

Note that in obtaining Eq. (7.135), we have assumed that F, G, and H are identical in the physical plant and in the
computer implementation of the estimator. If we do not have an accurate model of the plant (F, G, H), the dynamics



of the error are no longer governed by Eq. (7.135). However, we can typically choose L so that the error system is
still at least stable and the error remains acceptably small, even with (small) modeling errors and disturbing inputs. It
is important to emphasize that the nature of the plant and the estimator are quite different. The plant is a physical
system such as a chemical process or servomechanism, whereas the estimator is usually a digital processor computing
the estimated state according to Eq. (7.133).

Figure 7.28 Closed-loop estimator

The selection of L can be approached in exactly the same fashion as K is selected in the control-law design. If we
specify the desired location of the estimator error poles as

si = β1, β2,..., βn,

then the desired estimator characteristic equation is

We can then solve for L by comparing coefficients in Eqs. (7.136) and (7.137).

EXAMPLE 7.25 An Estimator Design for a Simple Pendulum
Design an estimator for the simple pendulum. Compute the estimator gain matrix that will place both the estimator
error poles at –10a0 (five times as fast as the controller poles selected in Example 7.15). Verify the result using
MATLAB for a0 = 1. Evaluate the performance of the estimator. Solution. The equations of motion are

We are asked to place the two estimator error poles at – 10ωa0. The corresponding characteristic equation is

From Eq. (7.136), we get

Comparing the coefficients in Eqs. (7.139) and (7.140), we find that



The result can also be found from MATLAB for ω0 = 1, using the following MATLAB statements:
wo=1;
F=[01;-wo*wo 0];
H=[1 0];
pe=[-10*wo;-10*wo];
Lt=acker(F’,H’,pe);
L=Lt’
This yields L = [20 99]T and agrees with the preceding hand calculations.

Performance of the estimator can be tested by adding the actual state feedback to the plant and plotting the
estimate errors. Note that this is not the way the system will ultimately be built, but this approach provides a means
of validating the estimator performance. Combining Eq. (7.71) of the plant with state feedback with Eq. (7.133) of
the estimator with output feedback results in the following overall system equations:

A block diagram of the setup is drawn in Fig. 7.29.

MATLAB impulse, initial
The response of this closed-loop system with ω0 = 1 to an initial condition x0 = [1.0,0.0]T and 0 = [0,0]T is

shown in Fig. 7.30, where K is obtained from Example 7.15 and L comes from Eq. (7.141). The response may be
obtained using impulse or initial in MATLAB. Note that the state estimates converge to the actual state-variables after
an initial transient even though the initial value of  had a large error. Also note that the estimate error decays
approximately five times faster than the decay of the state itself, as we designed it to do.

Observer Canonical Form

As was the case for control-law design, there is a canonical form for which the estimator gain design equations are
particularly simple and the existence of a solution is obvious. We introduced this form in Section 7.4.1. The
equations are in the observer A block diagram for the third-order case is shown in Fig. 7.31. In observer canonical
form, all the feedback loops come from the output, or observed signal. Like control canonical form, observer
canonical form is a “direct” form because the values of the significant elements in the matrices are obtained directly
from the coefficients of the numerator and denominator polynomials of the corresponding transfer function G(s). The



matrix Fo is called a left companion matrix to the characteristic equation because the coefficients of the equation
appear on the left side of the matrix.

Figure 7.29 Estimator connected to the plant

Figure 7.30 Initial-condition response of oscillator showing x and 

Figure 7.31 Block diagram for observer canonical form of a third-order system

canonical form and have the structure:



where

Observer canonicalform
One of the advantages of the observer canonical form is that the estimator gains can be obtained from it by

inspection. The estimator error closed-loop matrix for the third-order case is

which has the characteristic equation

and the estimator gain can be found by comparing the coefficients of Eq. (7.147) with αe(s) from Eq. (7.137).

Observability

Observability matrix
In a development exactly parallel with the control-law case, we can find a transformation to take a given system to

observer canonical form if and only if the system has a structural property that in this case we call observability.
Roughly speaking, observability refers to our ability to deduce information about all the modes of the system by
monitoring only the sensed outputs. Unobservability results when some mode or subsystem is disconnected
physically from the output and therefore no longer appears in the measurements. For example, if only derivatives of
certain state-variables are measured, and these state-variables do not affect the dynamics, a constant of integration is
obscured. This situation occurs with a plant having the transfer function 1s2 if only velocity is measured, for then it is
impossible to deduce the initial value of the position. On the other hand, for an oscillator, a velocity measurement is
sufficient to estimate position because the acceleration, and consequently the velocity observed, are affected by
position. The mathematical test for determining observability is that the observability matrix

must have independent columns. In the one output case we will study, O is square, so the requirement is that O be



nonsingular or have a nonzero determinant. In general, we can find a transformation to observer canonical form if
and only if the observability matrix is nonsingular. Note that this is analogous to our earlier conclusions for
transforming system matrices to control canonical form.

As with control-law design, we could find the transformation to observer form, compute the gains from the
equivalent of Eq. (7.147), and transform back. An alternative method of computing L is to use Ackermann’s formula
in estimator form, which is

Ackermann’s estimator formula

where O is the observability matrix given in Eq. (7.148).

TABLE 7.1

Duality
You may already have noticed from this discussion the considerable resemblance between estimation and control
problems. In fact, the two problems are mathe-Duality of estimation and matically equivalent. This property is called
duality. Table 7.1 shows the duality relationships between the estimation and control problems. For example,
Ackermann’s control formula [Eq. (7.91)] becomes the estimator formula Eq. (7.149) if we make the substitutions
given in Table 7.1. We can demonstrate this directly using matrix algebra. The control problem is to select the row
matrix K for satisfactory placement of the poles of the system matrix F – GK; the estimator problem is to select the
column matrix L for satisfactory placement of the poles of F – LH. However, the poles of F – LH equal those of (F –
LH)T = FT – HTLT, and in this form, the algebra of the design for LT is identical to that for K. Therefore, where we
used Ackermann’s formula or the place algorithm in the forms

Duality of estimation and control

MATLAB acker, place

K=acker(F, G, pc),
K=place(F, G, pc),



for the control problem, we use

Lt=acker(F’, H’, pe),
Lt=place(F’, H’, pe),
 L=Lt’,

where pe is a vector containing the desired estimator error poles for the estimator problem.
Thus duality allows us to use the same design tools for estimator problems as for control problems with proper

substitutions. The two canonical forms are also dual, as we can see by comparing the triples (Fc, Gc, Hc) and (F°, G°,
H°).

7.7.2 Reduced-Order Estimators
The estimator design method described in Section 7.7.1 reconstructs the entire state vector using measurements of
some of the state-variables. If the sensors have no noise, then a full-order estimator contains redundancies, and it
seems reasonable to question the necessity for estimating state-variables that are measured directly. Can we reduce
the complexity of the estimator by using the state-variables that are measured directly and exactly? Yes. However, it
is better to implement a full-order estimator if there is significant noise on the measurements because, in addition to
estimating unmeasured state-variables, the estimator filters the measurements.

The reduced-order estimator reduces the order of the estimator by the number (1 in this text) of sensed outputs. To
derive this estimator, we start with the assumption that the output equals the first state as, for example,y = xa. If this
is not so, a preliminary step is required. Transforming to observer form is possible but overkill; any nonsingular
transformation with H as the first row will do. We now partition the state vector into two parts: xa, which is directly
measured, and xb, which represents the remaining state-variables that need to be estimated. If we partition the
system matrices accordingly, the complete description of the system is given by

The dynamics of the unmeasured state-variables are given by

where the right-most two terms are known and can be considered as an input into the xb dynamics. Because xa = y,
the measured dynamics are given by the scalar equation

If we collect the known terms of Eq. (7.152) on one side, yielding



we obtain a relationship between known quantities on the left side, which we consider measurements, and unknown
state-variables on the right. Therefore, Eqs. (7.152) and (7.153) have the same relationship to the state xb that the
original equation [Eq. (7.150b)] had to the entire state x. Following this line of reasoning, we can establish the
following substitutions in the original estimator equations to obtain a (reduced-order) estimator of xb:

Therefore, the reduced-order estimator equations are obtained by substituting Eqs. (7.154) into the full-order
estimator [Eq. (7.133)]:

If we define the estimator error to be

Figure 7.32 Reduced-order estimator structure

then the dynamics of the error are given by subtracting Eq. (7.151) from Eq. (7.155) to get

and its characteristic equation is given by

We design the dynamics of this estimator by selecting L so that Eq. (7.158) matches a reduced order αe(s). Now Eq.



(7.155) can be rewritten as

The fact that we must form the derivative of the measurements in Eq. (7.159) appears to present a practical
difficulty. It is known that differentiation amplifies noise, so if y is noisy, the use of  is unacceptable. To get around
this difficulty, we define the new controller state to be

In terms of this new state, the implementation of the reduced-order estimator is given by

and  no longer appears directly. A block-diagram representation of the reduced-order estimator is shown in Fig.
7.32.

EXAMPLE 7.26 A Reduced-Order Estimator Design for Pendulum

Reduced-order estimator
Design a reduced-order estimator for the pendulum that has the error pole at – 10ω0. Solution. We are given the
system equations

The partitioned matrices are

From Eq. (7.158), we find the characteristic equation in terms of L:
s – (0 – L) = 0.

We compare it with the desired equation,
αe(s) = s + 10ω0 = 0,

which yields
L = 10ω0.

The estimator equation, from Eq. (7.161), is



and the state estimate, from Eq. (7.160), is

We use the control law given in the earlier examples. The response of the estimator to a plant initial condition x0 =
[1.0,0.0]T and an estimator initial condition xc0 = 0 is shown in Fig. 7.33 for ω0 = 1. The response may be
obtained using impulse or MATLAB impulse, initial initial in MATLAB. Note the similarity of the initial-condition
response to that of the full-order estimator plotted in Fig. 7.30.

MATLAB impulse, initial

The reduced-order estimator gain can also be found from MATLAB by using

The conditions for the existence of the reduced-order estimator are the same as for the full-order estimator—
namely, observability of (F, H).

Figure 7.33 Initial-condition response of the reduced-order estimator



7.7.3 Estimator Pole Selection

Design rules of thumb for selecting estimator poles
We can base our selection of estimator pole locations on the techniques discussed in Section 7.6 for the case of
controller poles. As a rule of thumb, the estimator poles can be chosen to be faster than the controller poles by a
factor of 2 to 6. This ensures a faster decay of the estimator errors compared with the desired dynamics, thus causing
the controller poles to dominate the total response. If sensor noise is large enough to be a major concern, we may
choose the estimator poles to be slower than two times the controller poles, which would yield a system with lower
bandwidth and more noise smoothing. However, we would expect the total system response in this case to be
strongly influenced by the location of the estimator poles. If the estimator poles are slower than the controller poles,
we would expect the system response to disturbances to be dominated by the dynamic characteristics of the estimator
rather than by those selected by the control law.

In comparison with the selection of controller poles, estimator pole selection requires us to be concerned with a
much different relationship than with control effort. As in the controller, there is a feedback term in the estimator
that grows in magnitude as the requested speed of response increases. However, this feedback is in the form of an
electronic signal or a digital word in a computer, so its growth causes no special difficulty. In the controller,
increasing the speed of response increases the control effort; this implies the use of a larger actuator, which in turn
increases size, weight, and cost. The important consequence of increasing the speed of response of an estimator is
that the bandwidth of the estimator becomes higher, thus causing more sensor noise to pass on to the control
actuator. Of course, if (F, H) are not observable, then no amount of estimator gain can produce a reasonable state
estimate. Thus, as with controller design, the best estimator design is a balance between good transient response and
low-enough bandwidth that sensor noise does not significantly impair actuator activity. Both dominant second-order
and prototype characteristic equation ideas can be used to meet the requirements.

There is also a result for estimator gain design based on the SRL. In optimal estimation theory, the best choice for
estimator gain is dependent on the ratio of sensor noise intensity v to process (disturbance) noise intensity [w in Eq.
(7.163)]. This is best understood by reexamining the estimator equation

Process noise
to see how it interacts with the system when process noise w is present. The plant with process noise is described by

Sensor noise
and the measurement equation with sensor noise v is described by

The estimator error equation with these additional inputs is found directly by subtracting Eq. (7.162) from Eq.
(7.163) and substituting Eq. (7.164) for y:



In Eq. (7.165) the sensor noise is multiplied by L and the process noise is not. If L is very small, then the effect of
sensor noise is removed, but the estimator’s dynamic response will be “slow,” so the error will not reject effects of w
very well. The state of a low-gain estimator will not track uncertain plant inputs very well. These results can, with
some success, also be applied to model errors in, for example, F or G. Such model errors will add terms to Eq.
(7.165) and act like additional process noise. On the other hand, if L is large, then the estimator response will be fast
and the disturbance or process noise will be rejected, but the sensor noise, multiplied by L, results in large errors.
Clearly, a balance between these two effects is required. It turns out that the optimal solution to this balance can be
found under very reasonable assumptions by solving an SRL equation for the estimator that is very similar to the one
for the optimal control formulation [Eq. (7.112)]. The estimator SRL equation is

where q is the ratio of input disturbance noise intensity to sensor noise intensity and Ge is the transfer function from
the process noise to the sensor output and is given by

Estimator SRL equation
Note from Eqs. (7.112) and (7.166) that Ge(s) is similar to G0(s). However, a comparison of Eqs. (7.113) and (7.167)
shows that Ge(s) has the input matrix G1 instead of G, and that G0 is the transfer function from the control input u to
cost output z and has output matrix H1 instead of H.

The use of the estimator SRL [Eq. (7.166)] is identical to the use of the controller SRL. A root locus with respect to
q is generated, thus yielding sets of optimal estimator poles corresponding more or less to the ratio of process noise
intensity to sensor noise intensity. The designer then picks the set of (stable) poles that seems best, considering all
aspects of the problem. An important advantage of using the SRL technique is that after the process noise input
matrix G1 has been selected, the arbitrariness is reduced to one degree of freedom, the selection q, instead of the
many degrees of freedom required to select the poles directly in a higher-order system.

A final comment concerns the reduced-order estimator. Because of the presence of a direct transmission term from
y through L to xb (see Fig. 7.32), the reduced-order estimator has a much higher bandwidth from sensor to control
when compared with the full-order estimator. Therefore, if sensor noise is a significant factor, the reduced-order
estimator is less attractive because the potential saving in complexity is more than offset by the increased sensitivity
to noise.

EXAMPLE 7.27 SRL Estimator Design for a Simple Pendulum
Draw the estimator SRL for the linearized equations of the simple inverted pendulum with ωo = 1. Take the output
to be a noisy measurement of position with noise intensity ratio q.
Solution. We are given the system equations



Figure 7.34 Symmetric root locus for the inverted pendulum estimator design

We then calculate from Eq. (7.167) that

The symmetric 180° loci are shown in Fig. 7.34. The MATLAB statements to generate the SRL are (for ωo = 1)
numGG=1;
denGG=conv([1 0 1],[1 0 1]);
sysGG=tf(numGG,denGG);
rlocus(sysGG);
We would choose two stable roots for a given value of q, forexample s = –3±j3.18 for q = 365, and use them for
estimator pole placement.

7.8 Compensator Design: Combined Control Law and Estimator
If we take the control-law design described in Section 7.5, combine it with the estimator design described in Section
7.7, and implement the control law by using the estimated state-variables, the design is complete for a regulator that
is able to reject disturbances but has no reference input to be tracked. However, because the control law was
designed for feedback of the actual (not the estimated) state, you may wonder what effect using  in place of x has
on the system dynamics. In this section we compute this effect. In doing so we will compute the closed-loop
characteristic equation and the open-loop compensator transfer function. We will use these results to compare the
state-space designs with root-locus and frequency-response designs.



Regulator
The plant equation with feedback is now

which can be rewritten in terms of the state error  as

The overall system dynamics in state form are obtained by combining Eq. (7.169) with the estimator error (Eq.
7.135) to get

The characteristic equation of this closed-loop system is

Because the matrix is block triangular (see Appendix WE), we can rewrite Eq. (7.171) as

In other words, the set of poles of the combined system consists of the union of the control poles and the estimator
poles. This means that the designs of the control law and the estimator can be carried out independently, yet when
they are used together in this way, the poles remain unchanged.9

Poles of the combined control law and estimator
To compare the state-variable method of design with the transform methods discussed in Chapters 5 and 6, we

note from Fig. 7.35 that the blue shaded portion corresponds to a compensator. The state equation for this
compensator is obtained by including the feedback law u = –K  (because it is part of the compensator) in the
estimator Eq. (7.133) to get the characteristic equation of the compensator is found by comparing Eqs. (7.173a) and
(7.174) and substituting the equivalent matrices into Eq. (7.175) to get

Note that Eq. (7.173a) has the same structure as Eq. (7.21a), which we repeat here:

Because the characteristic equation of Eq. (7.21a) is



Figure 7.35 Estimator and controller mechanization

Compensator transfer function

Note that we never specified the roots of Eq. (7.176) nor used them in our discussion of the state-space design
technique. (Note also that the compensator is not guaranteed to be stable; the roots of Eq. (7.176) can be in the
RHP.) The transfer function from y to u representing the dynamic compensator is obtained by inspecting Eq. (7.48)
and substituting in the corresponding matrices from Eq. (7.173):

The same development can be carried out for the reduced-order estimator. Here the control law is

Substituting Eq. (7.178) into Eq. (7.174) and using Eq. (7.161) and some algebra, we obtain

Reduced-order compensator transfer function
where



The dynamic compensator now has the transfer function

When we compute Dc(s) or Dcr(s) for a specific case, we will find that they are very similar to the classical
compensators given in Chapters 5 and 6, in spite of the fact that they are arrived at by entirely different means.

EXAMPLE 7.28 Full-Order Compensator Design for Satellite Attitude Control
Design a compensator using pole placement for the satellite plant with transfer function 1/s2. Place the control poles
at s = –0.707 ± 0.707j(ωn = 1 rad/sec, ζ = 0.707) and place the estimator poles at ωn = 5 rad/sec, ζ = 0.5.
Solution. A state-variable description for the given transfer function G(s) = 1/s2

If we place the control roots at s = –0.707 ± 0.707j (ωn = 1 rad/sec, ζ = 0.7), then

From K = place(F,G,pc), the state feedback gain is found to be

If the estimator error roots are at ωn = 5 rad/sec and ζ = 0.5, then the desired estimator characteristic polynomial is

and, from Lt = place(F’,H’,pe), the estimator feedback-gain matrix is found to be

The compensator transfer function given by Eq. (7.177) is

which looks very much like a lead compensator in that it has a zero on the real axis to the right of its poles;
however, rather than one real pole, Eq. (7.184) has two complex poles. The zero provides the derivative feedback
with phase lead, and the two poles provide some smoothing of sensor noise.

The effect of the compensation on this system’s closed-loop poles can be evaluated in exactly the same way we
evaluated compensation in Chapters 5 and 6 using root-locus or frequency-response tools. The gain of 40.4 in Eq.
(7.184) is a result of the pole selection inherent in Eqs. (7.182) and (7.183). If we replace this specific value of



compensator gain with a variable gain K, then the characteristic equation for the closed-loop system of plant plus
compensator becomes

Identical results of state-space and frequency response design methods
The root-locus technique allows us to evaluate the roots of this equation with respect to K, as drawn in Fig. 7.36.
Note that the locus goes through the roots selected for Eqs. (7.182) and (7.183), and, when K = 40.4, the four roots
of the closed-loop system are equal to those specified.

The frequency-response plots given in Fig. 7.37 show that the compensation designed using state-space
accomplishes the same results that one would strive for using frequency-response design. Specifically, the
uncompensated phase margin of 0° increases to 53° in the compensated case, and the gain K = 40.4 produces a
crossover frequency ωc = 1.35 rad/sec. Both these values are roughly consistent with the controller closed-loop
roots, with ωn = 1 rad/sec and ζ = 0.7, as we would expect, because these slow controller poles are dominant in
the system response over the fast estimator poles.

Figure 7.36 Root locus for the combined control and estimator, with process gain as the parameter

Figure 7.37 Frequency response for G(s) = 1/s2



Now we consider a reduced-order estimator for the same system.

EXAMPLE 7.29 Reduced-Order Compensator Design for a Satellite Attitude Control
Repeat the design for the 1/s2 satellite plant, but use a reduced-order estimator. Place the one estimator pole at –5
rad/sec.
Solution. From Eq. (7.158) we know that the estimator gain is

L = 5,
Figure 7.38 Simplified block diagram of a reduced-order controller that is a lead network

Figure 7.39 Root locus of a reduced-order controller and 1/s2 process, root locations at K = 8.07 shown by the dots



and from Eqs. (7.179a, b) the scalar compensator equations are

The compensator has the transfer function calculated from Eq. (7.181) to be

and is shown in Fig. 7.38.
The reduced-order compensator here is precisely a lead network. This is a pleasant discovery, as it shows that

transform and state-variable techniques can result in exactly the same type of compensation. The root locus of Fig.
7.39 shows that the closed-loop poles occur at the assigned locations. The frequency response of the compensated
system seen in Fig. 7.40 shows a phase margin of about 55°. As with the full-order estimator, analysis by other
methods confirms the selected root locations.

More subtle properties of the pole-placement method can be illustrated by a third-order system.

EXAMPLE 7.30 Full-Order Compensator Design for DC Servo
Use the state-space pole-placement method to design a compensator for the DC servo system with the transfer
function



Figure 7.40 Frequency response for G(s) = 1/s2 with a reduced-order estimator

Using a state description in observer canonical form, place the control poles at pc = [–1.42; –1.04 ± 2.14j]
locations and the full-order estimator poles at pe = [–4.25; –3.13 ± 6.41j].
Solution. A block diagram of this system in observer canonical form is shown in Fig. 7.41. The corresponding state-
space matrices are

The desired poles are
pc = [–1.42; –1.04 + 2.14 *j; –1.04 – 2.14 *j].

We compute the state feedback gain to be K=(F,G,pc),
K = [ –46.4 5.76 –0.65 ].

The estimator error poles are at
pe = [–4.25; –3.13 + 6.41 * j; –3.13 – 6.41 * j];

We compute the estimator gain to be Lt=place(F’,H’,pe), L=Lt’,

Figure 7.41 DC servo in observer canonical form



Figure 7.42 Root locus for DC servo pole assignment

The compensator transfer function, as given by substituting into Eq. (7.177), is

Figure 7.42 shows the root locus ofthe system of compensator and plant in series, plotted with the compensator
gain as the parameter. It verifies that the roots are in the desired locations specified when the gain K = 190 in spite
of the peculiar (unstable) compensation that has resulted. Even though this compensator has an unstable root at s =
+1.88, all system closed-loop poles (controller and estimator) are stable.

An unstable compensator is typically not acceptable because of the difficulty in testing either the compensator by
itself or the system in open loop during a bench checkout. In some cases, however, better control can be achieved
with an unstable compensator; then its inconvenience in checkout may be worthwhile.10

Conditionally stable compensator
Figure 7.33 shows that a direct consequence of the unstable compensator is that the system becomes unstable as

the gain is reduced from its nominal value. Such a system is called conditionally stable and should be avoided if
possible. As we shall see in Chapter 9, actuator saturation in response to large signals has the effect of lowering the
effective gain, and in a conditionally stable system, instability can result. Also, if the electronics are such that the
control amplifier gain rises continuously from zero to the nominal value during startup, such a system would be



initially unstable. These considerations lead us to consider alternative designs for this system.

EXAMPLE 7.31 Redesign of the DC Servo System with a Reduced-Order Estimator
Design a compensator for the DC servo system of Example 7.30 by using the same control poles but with a reduced-
order estimator. Place the estimator poles at –4.24 ± 4.24j positions with ωn = 6 and ζ = 0.707.
Solution. The reduced-order estimator corresponds to

pe = [–4.24 + 4.24 * j; –4.24 –4.24 * j]
After partitioning we have

Solving for the estimator error characteristic polynomial,
det(sI – Fbb + LFab) = αe(s),

we find (using place) that

A nonminimum-phase compensator
The compensator transfer function, given by Eq. (7.181), is computed to be

Figure 7.43 Root locus for DC servo reduced-order controller



The associated root locus for this system is shown in Fig. 7.43. Note that this time we have a stable but
nonminimum-phase compensator and a zero-degree root locus. The RHP portion of the locus will not cause
difficulties because the gain has to be selected to keep all closed-loop poles in LHP.

As a next pass at the design for this system, we attempt a design with the SRL.

EXAMPLE 7.32 Redesign of the DC Servo Compensator Using the SRL
Design a compensator for the DC servo system of Example 7.30 using pole placement based on the SRL. For the
control law, let the cost output z be the same as the plant output; for the estimator design, assume that the process
noise enters at the same place as the system control signal. Select roots for a control bandwidth of about 2.5 rad/sec,
and choose the estimator roots for a bandwidth of about 2.5 times faster than the control bandwidth (6.3 rad/sec).
Derive an equivalent discrete controller with a sampling period of Ts = 0.1 sec (10 times the fastest pole), and
compare the continuous and digital control outputs and control efforts.
Solution. Because the problem has specified that G1 = G and H1 = H, then the SRL is the same for the control as for
the estimator, so we need to generate only one locus based on the plant transfer function. The SRL for the system is
shown in Fig. 7.44. From the locus, we select –2 ± 1.56j and –8.04 as the desired control poles (pc=[–2+1.56*j;–
2–1.56*j;–8.04]) and –4±4.9j and –9.169 (pe=[–4+4.9*j;–4–4.9*j;–9.169]) as the desired estimatorpoles. The state
feedback gain is K=(F,G,pc), or

K = [ –0.285 0.219 0.204 ],
and the estimator gain is Lt=place(F’,H’,pe), L=Lt’, or

Notice that the feedback gains are much smaller than before. The resulting compensator transfer function is
computed from Eq. (7.177) to be

Figure 7.44 Symmetric root locus



Figure 7.45 Root locus for pole assignment from the SRL

We now take this compensator, put it in series with the plant, and use the compensator gain as the parameter. The
resulting ordinary root locus of the closed-loop system is shown in Fig. 7.45. When the root-locus gain equals the
nominal gain of 94.5, the roots are at the closed-loop locations selected from the SRL, as they should be.

Note that the compensator is now stable and minimum phase. This improved design comes about in large part
because the plant pole at s = –8 is virtually unchanged by either controller or estimator. It does not need to be
changed for good performance; in fact, the only feature in need of repair in the original G(s) is the pole at s = 0.
Using the SRL technique, we essentially discovered that the best use of control effort is to shift the two low-frequency
poles at s = 0 and –2 and to leave the pole at s =-8 virtually unchanged. As a result, the control gains are much
lower and the compensator design is less radical. This example illustrates why LQR design is typically preferable
over pole placement.

The discrete equivalent for the controller is obtained from MATLAB with the c2d command, as in the following
code:
nc=94.5*conv([1 7.98],[1 2.52]);% form controller numerator
dc=conv([1 8.56 59.5348],[110.6]);% form controller denominator



sysDc=tf(nc,dc); % form controller system description
ts=0.1;% sampling time of 0.1 sec
sysDd=c2d(sysDc,ts,’zoh’); % convert controller to discrete time

Discrete controller
The resulting controller has the discrete transfer function

The equation for the control law (with the sample period suppressed for clarity) is
u(k + 1) = 1.3905u(k) – 0.7866u(k – 1) + 0.1472u(k – 2)

+e(k) – 7.2445e(k – 2) + 2.0782e(k – 2).

Figure 7.46 SIMULINK® block diagram to compare continuous and discrete controllers

SIMULINK simulation
A SIMULINK® diagram for simulating both the continuous and discrete systems is shown in Fig. 7.46. A comparison
of the continuous and discrete step responses and control signals is shown in Fig. 7.47. Better agreement between the
two responses can be obtained if the sampling period is reduced.

Armed with the knowledge gained from Example 7.32, let us go back, with a better selection of poles, to investigate
the use of pole placement for this example. Initially we used the third-order locations, which produced three poles
with a natural frequency of about 2 rad/sec. This design moved the pole at s = –8 to s = –1.4, thus violating the
principle that open-loop poles should not be moved unless they are a problem. Now let us try it again, this time
using dominant second-order locations to shift the slow poles, and leaving the fast pole alone at s = –8.

EXAMPLE 7.33 DC Servo System Redesign with Modified Dominant Second-Order Pole Locations
Design a compensator for the DC servo system of Example 7.30 by using pole placement with control poles given by

pc =[–1.41 ± 1.41 j; –8]
and the estimator poles given by



pe =[–4.24 ± 4.24j; –8]

Solution. With these pole locations, we find that the required feedback gain is (using K=place(F,G,pc))
K = [ –0.469 0.234 0.0828 ],

which has a smaller magnitude than the case where the pole at s =–8 was moved.

Figure 7.47 Comparison of step responses and control signals for continuous and discrete controllers: (a) step
responses; (b) control signals

We find the estimator gain to be (using Lt= place(F’,H’,pe), L=Lt’)

The compensator transfer function is



which is stable and minimum phase. This example illustrates the value of judicious pole selection and of the SRL
technique.

The poor pole selection inherent in the initial use of the poles results in higher control effort and produces an
unstable compensator. Both of these undesirable features are eliminated by using the SRL (or LQR), or by improved
pole selection. But we really need to use SRL to guide the proper selection of poles. The bottom line is that SRL (or
LQR) is the method of choice!

As seen from some of the preceding examples, we have shown the use of optimal design via the SRL. However, it
is more common in practice to skip that step and use LQR directly.

7.9 Introduction of the Reference Input with the Estimator
The controller obtained by combining the control law studied in Section 7.5 with the estimator discussed in Section
7.8 is essentially a regulator design. This means that the characteristic equations of the control and the estimator are
chosen for good disturbance rejection—that is, to give satisfactory transients to disturbances such as w(t). However,
this design approach does not consider a reference input, nor does it provide for command following, which is
evidenced by a good transient response of the combined system to command changes. In general, good disturbance
rejection and good command following both need to be taken into account in designing a control system. Good
command following is done by properly introducing the reference input into the system equations.

Let us repeat the plant and controller equations for the full-order estimator; the reduced-order case is the same in
concept, differing only in detail:

Figure 7.48 shows two possibilities for introducing the command input r into the system. This figure illustrates the
general issue of whether the compensation should be put in the feedback or feed-forward path. The response of the
system to command inputs is different, depending on the configuration, because the zeros of the transfer functions are
different. The closed-loop poles are identical, however, as can be easily verified by letting r = 0 and noting that the
systems are then identical.

The difference in the responses of the two configurations can be seen quite easily. Consider the effect of a step
input in r. In Fig. 7.48(a) the step will excite the estimator in precisely the same way that it excites the plant; thus
the estimator error will remain zero during and after the step. This means that the estimator dynamics are not excited
by the command input, so the transfer function from r to y must have zeros at the estimator pole locations that cancel
those poles. As a result, a step command will excite system behavior that is consistent with the control poles alone—
that is, with the roots of det(sI – F + GK) = 0.

In Fig. 7.48(b), a step command in r enters directly only into the estimator, thus causing an estimation error that
decays with the estimator dynamic characteristics in addition to the response corresponding to the control poles.



Therefore, a step command will excite system behavior consistent with both control roots and estimator For this
reason, the configuration shown in Fig. 7.48(a) is typically the superior way to command the system, where  is
found using Eqs. (7.100)-(7.102).

Figure 7.48 Possible locations for introducing the command input: (a) compensation in the feedback path; (b)
compensation in the feed-forward path

roots—that is, the roots of
det(sI – F + GK). det(sI – F + LH) = 0.

In Section 7.9.1, we will show a general structure for introducing the reference input with three choices of
parameters that implement either the feed-forward or the feedback case. We will analyze the three choices from the
point of view of the system zeros and the implications the zeros have for the system transient response. Finally, in
Section 7.9.2 we will show how to select the remaining parameter to eliminate constant errors.

7.9.1 A General Structure for the Reference Input

Controller equations
Given a reference input r(t), the most general linear way to introduce r into the system equations is to add terms

proportional to it in the controller equations. We can do this by adding r to Eq. (7.187b) and Mr to Eq. (7.187a).
Note that in this case,  is a scalar and M is an n × 1 vector. With these additions, the controller equations become

Controller equations



The block diagram is shown in Fig. 7.49(a). The alternatives shown in Fig. 7.48 correspond to different choices of M
and . Because r(t) is an external signal, it is clear that neither M nor  affects the characteristic equation of the
combined controller–estimator system. In transfer-function terms, the selection of M and  will affect only the zeros
of transmission from r to y and, as a consequence, can significantly affect the transient response but not the stability.
How can we choose M and  to obtain satisfactory transient response? We should point out that we assigned the
poles of the system by feedback gains K and L, and we are now going to assign zeros by feed-forward gains M and .

Three methods for selecting M and N

Figure 7.49 Alternative ways to introduce the reference input: (a) general case—zero assignment; (b) standard case—
estimator not excited, zeros = αe(s); (c) error-control case—classical compensation

There are three strategies for choosing M and :
1. Autonomous estimator: Select M and  so that the state estimator error equation is independent of r [Fig.

7.49(b)].
2. Tracking-error estimator: Select M and  so that only the tracking error, e = (r – y), is used in the control [Fig.

7.49(c)].
3. Zero-assignment estimator: Select M and  so that n of the zeros of the overall transfer function are assigned at

places of the designer’s choice [Fig. 7.49(a)].

CASE 1. From the viewpoint of estimator performance, the first method is quite attractive and the most widely
used of the alternatives. If  is to generate a good estimate of x, then surely  should be as free of external excitation
as possible; that is,  should be uncontrollable from r. The computation of M and  to bring this about is quite easy.
The estimator error equation is found by subtracting Eq. (7.188a) from Eq. (7.186a), with the plant output [Eq.
(7.186b)] substituted into the estimator [Eq. (7.187a)] and the control [Eq. (7.187b)] substituted into the plant [Eq.
(7.186a)]:



If r is not to appear in Eq. (7.189a), then we should choose

Because  is a scalar, M is fixed to within a constant factor. Note that with this choice of M, we can write the
controller equations as

which matches the configuration in Fig. 7.49(b). The net effect of this choice is that the control is computed from the
feedback gain and the reference input before it is applied, and then the same control is input to both the plant and
the estimator. In this form, if the plant control is subject to saturation (as shown by the inclusion of the saturation
nonlinearity in Fig. 7.49(b), and discussed in Chapter 9), the same control limits can be applied in Eq. (7.191) to the
control entering the equation for the estimate , and the nonlinearity cancels out of the  equation. This behavior is
essential for proper estimator performance. The block diagram corresponding to this technique is shown in Fig.
7.49(b). We will return to the selection of the gain factor on the reference input, , in Section 7.9.2 after discussing
the other two methods of selecting M.

CASE 2. The second approach suggested earlier is to use the tracking error. This solution is sometimes forced on
the control designer when the sensor measures only the output error. For example, in many thermostats the output is
the difference between the temperature to be controlled and the setpoint temperature, and there is no absolute
indication of the reference temperature available to the controller. Also, some radar tracking systems have a reading
that is proportional to the pointing error, and this error signal alone must be used for feedback control. In these
situations, we must select M and  so that Eqs. (7.188) are driven by the error only. This requirement is satisfied if
we select

Then the estimator equation is

The compensator in this case, for low-order designs, is a standard lead compensator in the forward path. As we have
seen in earlier chapters, this design can have a considerable amount of overshoot because of the zero of the
compensator. This design corresponds exactly to the compensators designed by the transform methods given in
Chapters 5 and 6.

CASE 3. The third method of selecting M and  is to choose the values so as to assign the system’s zeros to
arbitrary locations of the designer’s choice. This method provides the designer with the maximum flexibility in
satisfying transient-response and steady-state gain constraints. The other two methods are special cases of this third



method. All three methods depend on the zeros. As we saw in Section 7.5.2, when there is no estimator and the
reference input is added to the control, the closed-loop system zeros remain fixed as the zeros of the open-loop
plant. We now examine what happens to the zeros when an estimator is present. To do so, we reconsider the
controller of Eqs. (7.188). If there is a zero of transmission from r to u, then there is necessarily a zero of transmission
from r to y, unless there is a pole at the same location as the zero. It is therefore sufficient to treat the controller
alone to determine what effect the choices of M and  will have on the system zeros. The equations for a zero from r
to u from Eqs. (7.188) are given by

(We let y = 0 because we care only about the effect of r.) If we divide the last column by the (nonzero) scalar  and
then add to the rest the product of K times the last column, we find that the feed-forward zeros are at the values of s
such that

or

Now Eq. (7.195) is exactly in the form of Eq. (7.136) for selecting L to yield desired locations for the estimator poles.
Here we have to select M/  for a desired zero polynomial γ (s) in the transfer function from the reference input to
the control. Thus the selection of M provides a substantial amount of freedom to influence the transient response. We
can add an arbitrary nth-order polynomial to the transfer function from r to u and hence from r to y; that is, we can
assign n zeros in addition to all the poles that we assigned previously. If the roots of γ(s) are not canceled by the
poles of the system, then they will be included in zeros of transmission from r to y.

Two considerations can guide us in the choice of M/ —that is, in the location of the zeros. The first is dynamic
response. We have seen in Chapter 3 that the zeros influence the transient response significantly, and the heuristic
guidelines given there may suggest useful locations for the available zeros. The second consideration, which will
connect state-space design to another result from transform techniques, is steady-state error or velocity-constant
control. In Chapter 4 we derived the relationship between the steady-state accuracy of a Type 1 system and the
closed-loop poles and zeros. If the system is Type 1, then the steady-state error to a step input will be zero and to a
unit-ramp input will be

where Kv is the velocity constant. Furthermore, it was shown that if the closed-loop poles are at {p i} and the
closed-loop zeros are at {zi}, then (for a Type 1 system) Truxal’s formula gives

Truxal’s formula



Equation (7.197) forms the basis for a partial selection of γ(s), and hence of M and . The choice is based on two
observations:
1. If |zi, – p i| << 1, then the effect of this pole-zero pair on the dynamic response will be small, because the pole is

almost canceled by the zero, and in any transient the residue of the pole at p i will be very small.
2. Even though Zi – Pi is small, it is possible for 1/Zi – 1/p i to be substantial and thus to have a significant influence

on Kv according to Eq. (7.197). Application of these two guidelines to the selection of γ(s), and hence of M and ,
results in a lag-network design. We illustrate this with an example.

EXAMPLE 7.34 Servomechanism: Increasing the Velocity Constant through Zero Assignment

Lag compensation by a state-space method
Consider the second-order servomechanism system described by

and with state description

Design a controller using pole placement so that both poles are at s = –2 and the system has a velocity constant Kv
= 10. Derive an equivalent discrete controller with a sampling period of Ts = 0.1 sec (20 ×ωn = 20 × 0.05 = 0.1
sec), and compare the continuous and digital control outputs, as well as the control efforts.
Solution. For this problem, the state feedback gain

K = [8 3]
results in the desired control poles. However, with this gain, Kv = 2, and we need Kv = 10. What effect will using
estimators designed according to the three methods for M and  selection have on our design? Using the first strategy
(the autonomous estimator), we find that the value of Kv does not change. If we use the second method (error
control), we introduce a zero at a location unknown beforehand, and the effect on Kv will not be under direct design
control. However, if we use the third option (zero placement) along with Truxal’s formula [Eq. (7.197)], we can
satisfy both the dynamic response and the steady-state requirements.

First we must select the estimator pole p3 and the zero Z3 to satisfy Eq. (7.197) for Kv = 10. We want to keep Z3 –
p3 small, so that there is little effect on the dynamic response, and yet have 1/Z3 – 1/p3 be large enough to increase
the value of Kv. To do this, we arbitrarily set p3 small compared with the control dynamics. For example, we let

p3 = –0.1.



Notice that this approach is opposite to the usual philosophy of estimation design, where fast response is the
requirement. Now, using Eq. (7.197) to get

where p1 = –2 + 2j, p2 = –2 – 2j, and p3 = –0.1, we solve for z3 such that Kv = 10 we obtain

or

We thus design a reduced-order estimator to have a pole at –0.1 and choose M/  such that γ(S) has a zero at –0.096.
A block diagram of the resulting system is shown in Fig. 7.50(a). You can readily verify that this system has the
overall transfer function

for which Kv = 10, as specified.
The compensation shown in Fig. 7.50(a) is nonclassical in the sense that it has two inputs (e and y) and one

output. If we resolve the equations to provide pure error compensation by finding the transfer function from e and u,
which would give Eq. (7.198), we obtain the system shown in Fig. 7.50(b). This can be seen as follows: The relevant
controller equations are

where xc is the controller state. Taking the Laplace transform of these equations, eliminating Xc(s), and substituting
for the output [Y(s) = G(s)U (s)], we find that the compensator is described by

This compensation is a classical lag-lead network. The root locus of the system in Fig. 7.50(b) is shown in Fig. 7.51.
Note the pole–zero pattern near the origin that is characteristic of a lag network. The Bode plot in Fig. 7.52 shows
the phase lag at low frequencies and the phase lead at high frequencies. The step response of the system is shown in
Fig. 7.53 and shows the presence of a “tail” on the response due to the slow pole at –0.1. Of course, the system is
Type 1 and the system will have zero tracking error eventually.

Figure 7.50 Servomechanism with assigned zeros (a lag network): (a) the two-input compensator; (b) equivalent
unity-feedback system



Figure 7.51 Root locus of lag-lead compensation

Figure 7.52 Frequency response of lag-lead compensation



Figure 7.53 Step response of the system with lag compensation

The discrete equivalent for the controller is obtained from MATLAB by using the c2d command, as in the
following code:

MATLAB c2d
nc=conv([1 1],[8.32 0.8]); % controller numerator
dc=conv([1 4.08],[1 0.0196]); % controller denominator
sysDc=tf(nc,dc); % form controller system description
ts=0.1; % sampling time of 0.1 sec



sysDd=c2d(sysDc,ts,’zoh’); % convert to discrete time controller
The discrete controller has the discrete transfer function

The equation for the control law (with sample period suppressed for clarity) is

SIMULINK simulation
A SIMULINK diagram for simulating both the continuous and discrete systems is shown in Fig. 7.54. A comparison of
the continuous and discrete step responses and control signals is shown in Fig. 7.55. Better agreement between the
two responses can be achieved if the sampling period is reduced.

We now reconsider the first two methods for choosing M and , this time to examine their implications in terms of
zeros. Under the first rule (for the autonomous estimator), we let M = G . Substituting this into Eq. (7.195) yields,
for the controller feed-forward zeros,

This is exactly the equation from which L was selected to make the characteristic polynomial of the estimator
equation equal to αe(s). Thus we have created n zeros in exactly the same locations as the n poles of the estimator.
Because of this pole-zero cancellation (which causes “uncontrollability” of the estimator modes), the overall transfer
function poles consist only of the state feedback controller poles.

Figure 7.54 SIMULINK® block diag ram to compare continuous and discrete controllers

The second rule (for a tracking-error estimator) selects M = -L and  = 0. If these are substituted into Eq. (7.194),
then the feed-forward zeros are given by



If we postmultiply the last column by H and subtract the result from the first n columns, and then premultiply the
last row by G and add it to the first n rows, Eq. (7.200) then reduces to

If we compare Eq. (7.201) with the equations for the zeros of a system in a state description, Eq. (7.66), we see that
the added zeros are those obtained by replacing the input matrix with L and the output with K. Thus, if we wish to
use error control, we have to accept the presence of these compensator zeros that depend on the choice of K and L
and over which we have no direct control. For low-order cases this results, as we said before, in a lead compensator
as part of a unity feedback topology.

Let us now summarize our findings on the effect of introducing the reference input. When the reference input
signal is included in the controller, the overall transfer function of the closed-loop system is

Transfer function for the closed-loop system when reference input is included in controller
where Ks is the total system gain and γY(S) and b(s) are monic polynomials. The polynomial αc(s) results in a control
gain K such that det [sI – F + GK] = αc(s). The polynomial αe(s) results in estimator gains L such that det[sI – F +
LH] = αe(s). Because, as designers, we get to choose αc(s) and αe(s), we have complete freedom in assigning the
poles of the closed-loop system. There are three ways to handle the polynomial γ(S): We can select it so that γ(S) =
αe(s) by using the implementation of Fig. 7.49(b), in which case M/ is given by Eq. (7.190); we may accept γ (S) as
given by Eq. (7.201), so that error control is used; or we may give γ (S) arbitrary coefficients by selecting M/  from
Eq. (7.195). It is important to point out that the plant zeros represented by b(s) are not moved by this technique and
remain as part of the closed-loop transfer function unless αc or αe are selected to cancel some of these zeros.

Figure 7.55 Comparison of step responses and control signals for continuous and discrete controllers: (a) step
responses; (b) control signals



7.9.2 Selecting the Gain
We now turn to the process of determining the gain  for the three methods of selecting M. If we choose method 1,
the control is given by Eq. (7.191a) and ss = xss. Therefore, we can use either  = Nu + KNx, as in Eq. (7.102), or
u = Nur – K( –Nxr). This is the most common choice. If we use the second method, the result is trivial; recall that 
= 0 for error control. If we use the third method, we pick  such that the overall closed-loop DC gain is unity.11

The overall system equations then are

where  is the outcome of selecting zero locations with either Eq. (7.195) or Eq. (7.190). The closed-loop system has
unity DC gain if



If we solve Eq. (7.204) for , we get12

The techniques in this section can be readily extended to reduced-order estimators.

7.10 Integral Control and Robust Tracking
The choices of  gain in Section 7.9 will result in zero steady-state error to a step command, but the result is not
robust because any change in the plant parameters will cause the error to be nonzero. We need to use integral
control to obtain robust tracking.

In the state-space design methods discussed so far, no mention has been made of integral control, and no design
examples have produced a compensation containing an integral term. In Section 7.10.1 we show how integral
control can be introduced by a direct method of adding the integral of the system error to the equations of motion.
Integral control is a special case of tracking a signal that does not go to zero in the steady-state. We introduce (in
Section 7.10.2) a general method for robust tracking that will present the internal model principle, which solves an
entire class of tracking problems and disturbance-rejection controls. Finally, in Section 7.10.3, we show that if the
system has an estimator and also needs to reject a disturbance of known structure, we can include a model of the
disturbance in the estimator equations and use the computer estimate of the disturbance to cancel the effects of the
real plant disturbance on the output.

7.10.1 Integral Control
We start with an ad hoc solution to integral control by augmenting the state vector with the desired dynamics. For
the system

we can feed back the integral of the error,13 e = y – r, as well as the state of the plant, x, by augmenting the plant
state with the extra (integral) state Xi, which obeys the differential equation

Thus

Augmented state equations with integral control



Feedback law with integral control

The augmented state equations become

and the feedback law is

or simply

With this revised definition of the system, we can apply the design techniques from Section 7.5 in a similar fashion;
they will result in the control structure shown in Fig. 7.56.

EXAMPLE 7.35 integral Control of a Motor Speed System

Consider the motor speed system described by

that is, F = –3, G = 1, and H = 1. Design the system to have integral control and two poles at s = –5. Design an
estimator with pole at s = –10. The disturbance enters at the same place as the control. Evaluate the tracking and
disturbance rejection responses.

Figure 7.56 Integral control structure

Solution. The pole-placement requirement is equivalent to
pc = [–5; –5].

The augmented system description, including the disturbance w, is



Therefore, we can find K from

or

s2 + (3 +K0)s + K1 = s2 + 10s + 25.

Consequently,
K =[ K1 K0 ] = [ 25 7 ].

We may verify this result by using acker. The system is shown with feedbacks in Fig. 7.57, along with a disturbance
input w.

The estimator gain L = 7 is obtained from
αe(s) = s + 10 = s + 3 + L.

The estimator equation is of the form

and

The step response y1 due to a step reference input r and the output disturbance response y2 due to a step
disturbance input w are shown in Fig. 7.58(a) and the associated control efforts (u1 and u2) are shown in Fig.
7.58(b). As expected, the system is Type 1 and tracks the step reference input and rejects the step disturbance
asymptotically.

Figure 7.57 Integral control example



Figure 7.58 Transient response for motor speed system: (a) step responses; (b) control efforts

Δ 7.10.2 Robust Tracking Control: The Error-Space Approach
In Section 7.10.1 we introduced integral control in a direct way and selected the structure of the implementation so
as to achieve integral action with respect to reference and disturbance inputs. We now present a more analytical
approach to giving a control system the ability to track (with zero steady-state error) a nondecaying input and to
reject (with zero steady-state error) a nondecaying disturbance such as a step, ramp, or sinusoidal input. The method
is based on including the equations satisfied by these external signals as part of the problem formulation and solving
the problem of control in an error space, so we are assured that the error approaches zero even if the output is
following a nondecaying, or even a growing, command (such as a ramp signal) and even if some parameters change
(the robustness property). The method is illustrated in detail for signals that satisfy differential equations of order 2,
but the extension to more complex signals is not difficult.
Suppose we have the system state equations

and a reference signal that is known to satisfy a specific differential equation. The initial conditions on the equation



generating the input are unknown. For example, the input could be a ramp whose slope and initial value are
unknown. Plant disturbances of the same class may also be present. We wish to design a controller for this system so
that the closed-loop system will have specified poles, and can also track input command signals, and reject
disturbances of the type described without steady-state error. We will develop the results only for second-order
differential equations. We define the reference input to satisfy the relation

and the disturbance to satisfy exactly the same equation:

The (tracking) error is defined as

The problem of tracking r and rejecting w can be seen as an exercise in designing a control law to provide regulation
of the error, which is to say that the error e tends to zero as time gets large. The control must also be structurally
stable or robust, in the sense that regulation of e to zero in the steady-state occurs even in the presence of “small”
perturbations of the original system parameters. Note that, in practice, we never have a perfect model of the plant,
and the values of parameters are virtually always subject to some change, so robustness is always very important.

The meaning of robust control
We know that the command input satisfies Eq. (7.209), and we would like to eliminate the reference from the

equations in favor of the error. We begin by replacing r in Eq. (7.209) with the error of Eq. (7.211). When we do
this, the reference cancels because of Eq. (7.209), and we have the formula for the error in terms of the state:

We now replace the plant state vector with the error-space state, defined by

Robust control equations in the error space

Similarly, we replace the control with the control in error space, defined as

With these definitions, we can replace Eq. (7.212b) with

The state equation for ξ is given by14



Notice that the disturbance, as well as the reference, cancels from Eq. (7.216). Equations (7.215) and (7.216) now
describe the overall system in an error space. In standard state-variable form, the equations are

where z =[e  ξT ]T and

The error system (A, B) can be given arbitrary dynamics by state feedback if it is controllable. If the plant (F, G) is
controllable and does not have a zero at any of the roots of the reference-signal characteristic equation

αr(s) = s2 + α1s + α2,

then the error system (A, B) is controllable.15 We assume these conditions hold; therefore, there exists a control law
of the form

such that the error system has arbitrary dynamics by pole placement. We now need to express this control law in
terms of the actual process state x and the actual control. We combine Eqs. (7.219), (7.213), and (7.214) to get the

control law in terms of u and x (we write u(2) to mean ):

The structure for implementing Eq. (7.220) is very simple for tracking constant inputs. In that case the equation for
the reference input is r = 0. In terms of u and x, the control law [Eq. (7.220)] reduces to

Here we need only to integrate to reveal the control law and the action of integral control:

A block diagram of the system, shown in Fig. 7.59, clearly shows the presence of a pure integrator in the controller.
In this case the only difference between the internal model method of Fig. 7.59 and the ad hoc method of Fig. 7.57 is
the relative location of the integrator and the gain.

A more complex problem that clearly shows the power of the error-space approach to robust tracking is posed by
requiring that a sinusoid be tracked with zero steady-state error. The problem arises, for instance, in the control of a



mass-storage disk-head assembly.

Figure 7.59 Integral control using the internal model approach

EXAMPLE 7.36 Disk-Drive Servomechanism: Robust Control to Follow a Sinusoid

A simple normalized model of a computer disk-drive servomechanism is given by the equations

Because the data on the disk are not exactly on a centered circle, the servo must follow a sinusoid of radian
frequency ω0 determined by the spindle speed.

(a) Give the structure of a controller for this system that will follow the given reference input with zero steady-
state error.

(b) Assume ω0 = 1 and that the desired closed-loop poles are at  and 
(c) Demonstrate the tracking and disturbance rejection properties of the system using MATLAB or SIMULINK.

Solution

(a) The reference input satisfies the differential equation  so that α1 = 0 and . With these
values, the error-state matrices, according to Eq. (7.218), are

The characteristic equation of A – BK is

Internal model principle

from which the gain may be selected by pole assignment. The compensator implementation from Eq. (7.220) has the



structure shown in Fig. 7.60, which clearly shows the presence of the oscillator with frequency w0 (known as the
internal model of the input generator) in the controller.16

Figure 7.60 Structure of the compensator for the servomechanism to track exactly the sinusoid of frequency ξ0

(b) Now assume that ξ0 = 1 rad/sec and the desired closed-loop poles are as given:

Then the feedback gain is
K = [K2 K1 : K0] = [2.0718 16.3923 : 13.9282 4.4641],

which results in the controller

with

The relevant MATLAB statements are

% plant matrices
F=[01; 0 –1];
G=[0;1];
H=[10];
J=[0];
% form error space matrices
omega=1;



A=[0 1 0 0;–omega*omega 010;0001;000 –1];
B=[0;0;G]; % desired closed-loop poles
pc=[–1+sqrt(3)*j;–1–sqrt(3)*j;–sqrt(3)+j;–sqrt(3)–j];
K=place(A,B,pc);
% form controller matrices
K1=K(:,1:2);
Ko=K(:,3:4);
Ac=[0 1;–omega*omega 0];
Bc= –[K(2);K(1)];;
Cc=[1 0];
Dc=[0];

The controller frequency response is shown in Fig. 7.61 and shows a gain of infinity at the rotation frequency of
ω0 = 1 rad/sec. The frequency response from r to e[i.e., the sensitivity function S(s)], is shown in Fig. 7.62 and
reveals a sharp notch at the rotation frequency ω0 = 1 rad/sec. The same notch is also present in the frequency
response of the transfer function from w to y.

(c) Figure 7.63 shows the SIMULINK simulation diagram for the system. Although the simulations can also be
done in MATLAB, it is more instructive to use the interactive graphical environment of SIMULINK. SIMULINK
also provides the capability to add nonlinearities (see Chapter 9) and carry out robustness studies efficiently.17

The tracking properties of the system are shown in Fig. 7.64(a), showing the asymptotic tracking property of
the system. The associated control effort and the tracking error signal are shown in Fig. 7.64(b) and (c)
respectively. The disturbance rejection properties of the system are illustrated in Fig. 7.65(a), displaying
asymptotic disturbance rejection of sinusoidal disturbance input. The associated control effort is shown in Fig.
7.65(b). The closed-loop frequency

Figure 7.61 Controller frequency response



Figure 7.62 Sensitivity function frequency response

Figure 7.63 SIMULINK® block diagram for robust servomechanism



Figure 7.64 (a) Tracking properties for robust servomechanism; (b) control effort; (c) tracking error signal

response [i.e., the complementary transfer function T (s)] for the robust servomechanism is shown in Fig. 7.66. As
seen from the figure, the frequency response from r to y is unity at ω0 = 1 rad/sec as expected.

SIMULINK simulation

The zeros of the system from r to e are located at ±j, –2.7321 ± j2.5425. The robust tracking properties are due
to the presence of the blocking zeros at ±j. The zeros from w to y, both blocking zeros, are located at ±j. The robust
Blocking zeros disturbance rejection properties are due to the presence of these blocking zeros.



Figure 7.65 (a) Disturbance rejection properties for robust servomechanism; (b) control effort

Figure 7.66 Closed-loop frequency response for robust servomechanism



Blocking zeros

From the nature of the pole-placement problem, the state z in Eq. (7.217) will tend toward zero for all
perturbations in the system parameters as long as A – BK remains stable. Notice that the signals that are rejected are
those that satisfy the equations with the values of α, actually implemented in the model of the external signals. The
method assumes that these are known and implemented exactly. If the implemented values are in error, then a
steady-state error will result.

Now let us repeat the example of Section 7.10.1 for integral control.

EXAMPLE 7.37 Integral Control Using the Error-Space Design

For the system

with the state-variable description
F = –3, G = 1, H = 1,

construct a controller with poles at s = –5 to track an input that satisfies  = 0.
Solution. The error system is

If we take the desired characteristic equation to be

αc (s) = s2 + 10s + 25,
then the pole-placement equation for K is

In detail, Eq. (7.223) is

s2 + (3 +K0)s + K1 = s2 + 10s + 25,

which gives
K =[ 25 7 ] = [ K1 K0 ],

and the system is implemented as shown in Fig. 7.67. The transfer function from r to e for this system, the sensitivity
function

shows a blocking zero at s = 0, which prevents the constant input from affecting the error. The closed-loop transfer
function—that is, the complementary sensitivity function—is



Figure 7.67 Example of internal model with feed-forward

Figure 7.68 Internal model as integral control with feed-forward

The structure of Fig. 7.68 permits us to add a feed-forward of the reference input, which provides one extra degree
of freedom in zero assignment. If we add a term proportional to r in Eq. (7.222), then

This relationship has the effect of creating a zero at –K1/N. The location of this zero can be chosen to improve the
transient response of the system. For actual implementation, we can rewrite Eq. (7.224) in terms of e to get

The block diagram for the system is shown in Fig. 7.68. For our example, the overall transfer function now becomes

Notice that the DC gain is unity for any value of N and that, through our choice of N, we can place the zero at any
real value to improve the dynamic response. A natural strategy for locating the zero is to have it cancel one of the
system poles, in this case at s = –5. The step response of the system is shown in Fig. 7.69 for N = 5, as well as for N
= 0 and 8. With the understanding that one pole can be cancelled in integral control designs, we make sure to
choose one of the desired control poles such that it is both real and able to be cancelled through the proper choice of



N.

Figure 7.69 Step responses with integral control and feed-forward

Δ 7.10.3 The Extended Estimator
Our discussion of robust control so far has used a control based on full-state feedback. If the state is not available,
then as in the regular case, the full-state feedback, Kx, can be replaced by the estimates, K , where the estimator is
built as before. As a final look at ways to design control with external inputs, in this section we develop a method
for tracking a reference input and rejecting disturbances. The method is based on augmenting the estimator to
include estimates from external signals in a way that permits us to cancel out their effects on the system error.

Suppose the plant is described by the equations

Furthermore, assume that both the reference r and the disturbance w are known to satisfy the equations18

where

αp(s) = s2 + α1s + α2,

corresponding to polynomials αw(s) and αr(s) in Fig. 7.70(a). In general, we would select the equivalent disturbance
polynomial αp(s) in Fig. 7.70(b) to be the least common multiple of αw(s) and αr(s). The first step is to recognize
that, as far as the steady-state response of the output is concerned, there is an input-equivalent signal p that satisfies
the same equation as r and w and enters the system at the same place as the control signal, as shown in Fig. 7.70(b).



As before, we must assume that the plant does not have a zero at any of the roots of Eq. (7.227). For our purposes
here, we can replace Eqs. (7.226) with

Figure 7.70 Block diagram of a system for tracking and disturbance rejection with extended estimator: (a) equivalent
disturbance; (b) block diagram for design; (c) block diagram for implementation

If we can estimate this equivalent input, we can add to the control a term –  that will cancel out the effects of the
real disturbance and reference and cause the output to track r in the steady-state. To do this, we combine Eqs. (7.226)
and (7.227) into a state description to get

where z = [p  xT]T. The matrices are

The system given by Eqs. (7.231) is not controllable since we cannot influence p from u. However, if F and H are
observable and if the system (F, G, H) does not have a zero that is also a root of Eq. (7.227), then the system of Eq.
(7.231) will be observable, and we can construct an observer that will compute estimates of both the state of the
plant and of p. The estimator equations are standard, but the control is not:

In terms of the original variables, the estimator equations are



The overall block diagram of the system for design is shown in Fig. 7.70(b). If we write out the last equation for  in
Eq. (7.233) and substitute Eq. (7.232b), a simplification of sorts results because a term in  cancels out:

With the estimator of Eq. (7.233) and the control of Eq. (7.232b), the state equation is

In terms of the estimate errors, Eq. (7.234) can be rewritten as

Because we designed the estimator to be stable, the values of  and  go to zero in the steady state, and the final
value of the state is not affected by the external input. The block diagram of the system for implementation is drawn
in Fig. 7.70(c). A very simple example will illustrate the steps in this process.

EXAMPLE 7.38 Steady-State Tracking and Disturbance Rejection of Motor Speed by Extended Estimator

Construct an estimator to control the state and cancel a constant bias at the output and track a constant reference in
the motor speed system described by

Place the control pole at s = –5 and the two extended estimator poles at s = –15. Solution. To begin, we design the
control law by ignoring the equivalent disturbance. Rather, we notice by inspection that a gain of –2 will move the
single pole from –3 to the desired –5, Therefore, K = 2. The system augmented with equivalent external input p,
which replaces the actual disturbance w and the reference r, is given by

 = 0,
 = –3x + u + p,

e = x.

The extended estimator equations are



The estimator error gain is found to be L = [ 225 27 ]T from the characteristic equation

Figure 7.71 Motor speed system with extended estimator: (a) block diagram; (b) command step response and
disturbance step response

A block diagram of the system is given in Fig. 7.71(a), and the step responses to input at the command r (applied at
t = 0 sec) and at the disturbance w (applied at t = 0.5 sec) are shown in Fig. 7.71(b).

Δ 7.11 Loop Transfer Recovery (LTR)
The introduction of an estimator in a state feedback controller loop may adversely affect the stability robustness
properties of the system [i.e., the phase margin (PM) and gain margin (GM) properties may become arbitrarily poor,
as shown by Doyle’s famous example (Doyle, 1978)]. However, it is possible to modify the estimator design so as to
try to “recover” the LQR stability robustness properties to some extent. This process, called loop transfer recovery
(LTR), is especially effective for minimum-phase systems. To achieve the recovery, some of the estimator poles are
placed at (or near) the zeros of the plant and the remaining poles are moved (sufficiently far) into the LHP. The idea
behind LTR is to redesign the estimator in such a way as to shape the loop gain properties to approximate those of
LQR.

LTR

The use of LTR means that feedback controllers can be designed to achieve desired sensitivity [S(s)] and
complementary sensitivity functions [T (s)] at critical (loop-breaking) points in the feedback system (e.g., at either
the input or output of the plant). Of course, there is a price to be paid for this improvement in stability robustness!
The newly designed control system may have worse sensor noise sensitivity properties. Intuitively, one can think of
making (some of) the estimator poles arbitrarily fast so that the loop gain is approximately that of LQR.



Alternatively, one can think of essentially “inverting” the plant transfer function so that all the LHP poles of the plant
are cancelled by the dynamic compensator to achieve the desired loop shape. There are obvious trade-offs, and the
designer needs to be careful to make the correct choice for the given problem, depending on the control system
specifications.

LTR is a well-known technique now, and specific practical design procedures have been identified (Athans, 1986;
Stein and Athans, 1987; Saberi et al., 1993). The same procedures may also be applied to nonminimum phase
systems, but there is no guarantee on the extent of possible recovery. The LTR technique may be viewed as a
systematic procedure to study design trade-offs for linear quadratic-based compensator design (Doyle and Stein,
1981). We will now formulate the LTR problem.

Consider the linear system

where w and v are uncorrelated zero-mean white Gaussian process and sensor noise with covariance matrices Rw ≥
0 and Rv ≥ 0. The estimator design yields

resulting in the usual dynamic compensator

We will now treat the noise parameters, Rw and Rv, as design “knobs” in the dynamic compensator design. Without
loss of generality, let us choose Rw = ΓΓT and Rv = 1. For LTR, assume that Γ = qG, where q is a scalar design
parameter. The estimator design is then based on the specific design parameters Rw and Rv. It can be shown that, for
a minimum-phase system, as q becomes large (Doyle and Stein, 1979),

the convergence is pointwise in s and the degree of recovery can be arbitrarily good. This design procedure in effect
“inverts” the plant transfer function in the limit as q → ∞:

Plant inversion

This is precisely the reason that full-loop transfer recovery is not possible for a nonminimum-phase system. This
limiting behavior may be explained using the symmetric root loci. As q → ∞, some of the estimator poles approach
the zeros of



LTR for nonminimum-phase systems

and the rest tend to infinity19 [see Eqs. (7.166) and (7.167)]. In practice, the LTR design procedure can still be
applied to a nonminimum-phase plant. The degree of recovery will depend on the specific locations of the
nonminimum-phase zeros. Sufficient recovery should be possible at many frequencies if the RHP zeros are located
outside the specified closed-loop bandwidth. Limits on achievable performance of feedback systems due to RHP
zeros are discussed in Freudenberg and Looze (1985). We will next illustrate the LTR procedure by a simple
example.

EXAMPLE 7.39 LTR Design for Satellite Attitude Control

Consider the satellite system with state-space description

(a) Design an LQR controller with Q = ρHTH and R = 1, ρ = 1, and determine the loop gain.
(b) Then design a compensator that recovers the LQR loop gain of part (a) using the LTR technique for q = 1, 10,

100.
(c) Compare the different candidate designs in part (b) with respect to the actuator activity due to additive white

Gaussian sensor noise.

Solution. Using lqr, the selected LQR weights result in the feedback gain K = [1 1.414]. The loop transfer function is

A magnitude frequency response plot of this LQR loop gain is shown in Fig. 7.72. For the estimator design using lqe,
let Γ = qG, Rw = ΓΓT, Rv = 1, and choose q = 10, resulting in the estimator gain

The compensator transfer function is

and the loop transfer function is



Figure 7.72 shows the frequency response of the loop transfer function for several values of q (q = 1, 10,100), along
with the ideal LQR loop transfer function frequency response. As seen from this figure, the loop gain tends to
approach that of LQR as the value of q increases. As seen in Fig. 7.72, for q = 10, the “recovered” gain margin is GM
= 11.1 = 20.9 db and the PM = 55.06°. Sample MATLAB statements to carry out the preceding LTR design
procedure are as follows:

F=[0 1; 0 0];
G=[0;1];
H=[1 0];
J=[0];
sys0=ss(F,G,H,J);
H1=[1 0];
sys=ss(F,G,H1,J);

Figure 7.72 Frequency response plots for LTR design

w=logspace(–1,3,1000);
rho=1.0;
Q=rho*H1’*H1;
r=1;
[K]=lqr(F,G,Q,r)
sys1=ss(F,G,K,0);
[maggk1,phasgk1,w]=bode(sys1,w);



MATLAB lqe

q=10;
gam=q*G;
Q1=gam’*gam;
rv=1;
[L]=lqe(F,gam,H,Q1,rv)

MATLAB bode MATLAB margin

aa=F–G*K–L*H;
bb=L;
cc=K;
dd=0;
sysk=ss(aa,bb,cc,dd);
sysgk=series(sys0,sysk);
[maggk,phsgk,w]=bode(sysgk,w);
[gm,phm,wcg,wcp]=margin(maggk,phsgk,w)
loglog(w,[maggk1(:) maggk(:)]);
semilogx(w,[phasgk1(:) phsgk(:)]);

To determine the effect of sensor noise, v, on the actuator activity, we determine the transfer function from v to u
as shown in Fig. 7.73. For the selected value of LTR design parameter, q = 10, we have

Figure 7.73 Closed-loop system for LTR



Figure 7.74 SIMULINK block diagram for LTR

One reasonable measure of the effect of the sensor noise on the actuator activity is the root-mean-square (RMS)
value of the control, u, due to the additive noise, v.

RMS value

The RMS value of the control may be computed as

where T0 is the signal duration. Assuming white Gaussian noise v, the RMS value of the control can also be
determined analytically (Boyd and Barratt, 1991). The closed-loop SIMULINK diagram with band-limited white
sensor noise excitation is shown in Fig. 7.74. The values of the RMS control were computed for different values of
the LTR design parameter q, using the SIMULINK simulations, and are tabulated in Table 7.2. The results suggest
increased vulnerability due to actuator wear as q is increased. Refer to MATLAB commands ltry and ltru for the LTR
computations.

SIMULINK simulation

TABLE 7.2



Δ 7.12 Direct Design with Rational Transfer Functions
An alternative to the state-space methods discussed so far is to postulate a general-structure dynamic controller with
two inputs (r and y) and one output (u) and to solve for the transfer function of the controller to give a specified
overall r-to -y transfer function. A block diagram of the situation is shown in Fig. 7.75. We model the plant as the
transfer function

rather than by state equations. The controller is also modeled by its transfer function, in this case a transfer function
with two inputs and one output:

General controller in polynomialform

Here d(s), cy(s), and cr(s) are polynomials. In order for the controller of Fig. 7.75 and Eq. (7.245) to be implemented,
the orders of the numerator polynomials cy(s) and cr(s) must not be higher than the order of the denominator
polynomial d(s).

To carry out the design, we require that the closed-loop transfer function defined by Eqs. (7.244) and (7.245) be
matched to the desired transfer function

Equation (7.246) tells us that the zeros of the plant must be zeros of the overall system. The only way to change this
is to have factors of b(s) appear in either αc or αe. We combine Eqs. (7.244) and (7.245) to get

which can be rewritten as



Comparing Eq. (7.246) with Eq. (7.247) we immediately see that the design can be accomplished if we can solve
the Diophantine equation

Diophantine equation

for given arbitrary a, b, αc, and αe. Because each transfer function is a ratio of polynomials, we can assume that a(s)
and d(s) are monic polynomials; that is, the coefficient of the highest power of s in each polynomial is unity. The
question is, How many equations and how many unknowns are there if we match coefficients of equal powers of s in
Eq. (7.249)? If a(s) is of degree n (given) and d(s) is of degree m (to be selected), then a direct count yields 2m + 1
unknowns in d(s) and cy(s) and n+m equations from the coefficients of powers of s. Thus the requirement is that

Figure 7.75 Direct transfer-function formulation

2m + 1 ≥ n +m,
or

m ≥ n – 1.

Dimension of the controller

One possibility for a solution is to choose d(s) of degree n and cy(s) of degree n – 1. In that case, which corresponds
to the state-space design for a full-order estimator, there are 2n equations and 2n unknowns with αcαe of degree 2n.
The resulting equations will then have a solution for arbitrary αi if and only if α(s) and b(s) have no common
factors.20

EXAMPLE 7.40 Pole Placement for Polynomial Transfer Functions

Using the polynomial method, design a controller of order n for the third-order plant in Example 7.30. Note that if
the polynomials αc(s) and αe(s) from Example 7.30 are multiplied, the result is the desired closed-loop characteristic
equation:

Solution. Using Eq. (7.249) with b(s) = 10, we find that



We have expanded the polynomial d(s) with coefficients di and the polynomial cy(s) with coefficients ci.
Now we equate the coefficients of the like powers of s in Eq. (7.251) to find that the parameters must satisfy21

The solution to Eq. (7.252) is

MATLAB a\b

[The solution can be found using x = a\b command in MATLAB, where a is the Sylvester matrix and b is the right-
hand side in Eq. (7.252).] Hence the controller transfer function is

Note that the coefficients of Eq. (7.253) are the same as those of the controller Dc(s)(which we obtained using the
state-variable techniques), once the factors in Dc(s) are multiplied out.

The reduced-order compensator can also be derived using a polynomial solution.

EXAMPLE 7.41 Reduced-Order Design for a Polynomial Transfer Function Model

Design a reduced-order controller for the third-order system in Example 7.30. The desired characteristic equation is

αc(s)αe(s) = s5 + 12s4 + 74s3 + 207s2 + 378s + 288.

Solution. The equations needed to solve this problem are the same as those used to obtain Eq. (7.251), except that
we take both d(s) and cy(s) to be of degree n – 1. We need to solve

Equating coefficients of like powers of s in Eq. (7.254), we obtain



MATLAB a\b

The solution is (again using the x = a\b command in MATLAB)

and the resulting controller is

Again, Eq. (7.256) is exactly the same as Dcr(s) derived using the state-variable techniques in Example 7.31, once the
polynomials of Dcr(s) are multiplied out and minor numerical differences are considered.

Notice that the reference input polynomial cr(s) does not enter into the analysis of Examples 7.40 and 7.41. We
can select cr(s) so that it will assign zeros in the transfer function from R(s) to Y(s). This is the same role played by y
(s) in Section 7.9. One choice is to select cr(s) to cancel αe(s) so that the overall transfer function is

This corresponds to the first and most common choice of M and  for introducing the reference input described in
Section 7.9.

Adding integral control to the polynomial solution

It is also possible to introduce integral control and, indeed, internal-model-based robust tracking control into the
polynomial design method. What is required is that we have error control and that the controller have poles at the
internal model locations. To get error control with the structure of Fig. 7.75, we need only let cr = cy. To get desired
poles into the controller, we need to require that a specific factor be part of d(s). For integral control—the most
common case—this is almost trivial. The polynomial d (s) will have a root at zero if we set the last term, dm, to zero.
The resulting equations can be solved if m = n. For a more general internal model, we define d (s) to be the product
of a reduced-degree polynomial and a specified polynomial such as Eq. (7.227), and match coefficients in the
Diophantine equation as before. The process is straightforward but tedious. Again we caution that, while the



polynomial design method can be effective, the numerical problems of this method are often much worse than those
associated with methods based on state equations. For higher-order systems, the state-space methods are preferable.

Δ 7.13 Design for Systems with Pure Time Delay
In any linear system consisting of lumped elements, the response of the system appears immediately after an
excitation of the system. In some feedback systems—for example, process control systems, whether controlled by a
human operator in the loop or by computer—there is a pure time delay (also called transportation lag) in the for a
time-delayed system system. As a result of the distributed nature of these systems, the response remains identically
zero until after a delay of λ seconds. A typical step response is shown in Fig. 7.76(a). The transfer function of a pure
transportation lag is e-λs. We can represent an overall transfer function of a single-input-single-output (SISO) system
with time delay as

Overall transfer function for a time-delayed system

where G(s) has no pure time delay. Because GI(s) does not have a finite state description, standard use of state-
variable methods is impossible. However, Smith (1958) showed how to construct a feedback structure that effectively
takes the delay outside the loop and allows a feedback design based on G(s) alone, which can be done with standard
methods. The result of this method is a design having closed-loop transfer function with delay λ but otherwise
showing the same response as the closed-loop design based on no delay. To see how the method works, let us
consider the feedback structure shown in Fig. 7.76(b). The overall transfer function is

Figure 7.76 A Smith regulator for systems with time delay

Smith suggested that we solve for D’(s) by setting up a dummy overall transfer function in which the controller



transfer function D(s) is in a loop with G(s) with no loop delay but with an overall delay of λ:

The Smith compensator

We then equate Eqs. (7.258) and (7.259) to solve for D’(s):

If the plant transfer function and the delay are known, D’(s) can be realized with real components by means of the
block diagram shown in Fig. 7.76(c). With this knowledge, we can design the compensator D(s) in the usual way,
based on Eq. (7.259), as if there were no delay, and then implement it as shown in Fig. 7.76(c). The resulting closed-
loop system would exhibit the behavior of a finite closed-loop system except for the time delay λ. This design
approach is particularly suitable when the pure delay, λ, is significant as compared to the process time constant, for
example, in pulp and paper process applications.

Notice that, conceptually, the Smith compensator is feeding back a simulated plant output to cancel the true plant
output and then adding in a simulated plant output without the delay. It can be demonstrated that D’(s) in Fig.
7.76(c) is equivalent to an ordinary regulator in line with a compensator that provides significant phase lead. To
implement such compensators in analog systems, it is usually necessary to approximate the delay required in D’(s) by
a Padé approximant; with digital compensators the delay can be implemented exactly (see Chapter 8). It is also a
fact that the compensator D’(s) is a strong function of G(s), and a small error in the model of the plant used in the
controller could lead to large errors in the closed loop, perhaps even to instability. This design is very sensitive. If
D(s) is implemented as a PI controller, then one could detune (i.e., reduce the gain) to try to ensure stability and
reasonable performance. For automatic tuning of the Smith regulator and a recent application to Stanford’s quiet
hydraulic precision lathe fluid temperature control, the reader is referred to Huang and DeBra (2000).

EXAMPLE 7.42 Heat Exchanger: Design with Pure Time Delay
Figure 7.77 shows the heat exchanger from Example 2.15. The temperature of the product is controlled by
controlling the flow rate of steam in the exchanger jacket. The temperature sensor is several meters downstream
from the steam control valve, which introduces a transportation lag into the model. A suitable model is given by



Figure 7.77 A heat exchanger

Design a controller for the heat exchanger using the Smith compensator and pole placement. The control poles are to
be at

pc = –0.05 ± 0.087j,

and the estimator poles are to be at three times the control poles’ natural frequency:
pe = –0.15 ± 0.26j.

Simulate the response of the system with SIMULINK.
Solution. A suitable set of state-space equations is

For the specified control pole locations and for the moment ignoring the time delay, we find that the state feedback
gain is

K = [5.2 – 0.17].
For the given estimator poles, the estimator gain matrix for a full-order estimator is

The resulting controller transfer function is



If we choose to adjust for unity closed-loop DC gain, then
 = 1.2055.

SIMULINK simulation

The SIMULINK diagram for the system is shown in Fig. 7.78. The open-loop and closed-loop step responses of the
system and the control effort are shown in Figs. 7.79 and 7.80, and the root locus of the system (without the delay) is
shown in Fig. 7.81. Note that the time delay of 5 sec in Figs. 7.79 and 7.80 is quite small compared with the
response of the system, and is barely noticeable in this case.

7.14 Historical Perspective
The state-variable approach to solving differential equations in engineering problems was advocated by R. E. Kalman
while attending MIT. This was revolutionary and ruffled some feathers as it was going against the grain. The well-
established academics, Kalman’s teachers, were well-versed in the frequency domain techniques and staunch
supporters of it. Beginning in the late 1950s and early 1960s Kalman wrote a series of seminal papers introducing
the ideas of state-variables, controllability, observability, the Linear Quadratic (LQ), and the Kalman Filter (LQF).
Gunkel and Franklin (1963) and Joseph and Tou (1961) independently showed the separation theorem, which made
possible the Linear Quadratic Gaussian (LQG) problem nowdays referred to as the H2 formulation. The separation
theorem is a special case of the certainty-equivalence theorem of Simon (1956). The solutions to both LQ and LQG
problems can be expressed in an elegant fashion in terms of the solutions to Riccati equations. D. G. Luenberger, who
was taking a course with Kalman at Stanford University, derived the observer and reduced-order observer over a
weekend after hearing Kalman suggesting the problem in a lecture. Kalman, Bryson, Athans, and others contributed
to the field of optimal control theory that was widely employed in aerospace problems including the Apollo
program. The book by Zadeh and Desoer published in 1962 was also influential in promoting the state-space
method. In the 1970s the robustness of LQ and LQG methods were studied resulting in the celebrated and influential
paper of Doyle and Stein in 1981. One of the most significant contributions of Doyle and Safonov was to extend the
idea of frequency domain gain to multi-input multi-output systems using the singular value decomposition (SVD).
Others contributing to this research included G. Zames who introduced the H∞ methods that were found to be
extensions to the H2 methods. The resulting design techniques are known as H∞ and μ-synthesis procedures. During
the 1980s reliable numerical methods were developed for dealing with state-variable designs and computer-aided
software for control design were developed. The invention of MATLAB by Cleve Moler and its wide distribution by
The Mathworks has had a huge impact not only in the control design field but on all interactive scientific
computations.



Figure 7.78 Closed-loop SIMULINK® diag ram fora heat exchanger

Figure 7.79 Step response for a heat exchanger

Figure 7.80 Control effort for a heat exchanger



Figure 7.81 Root locus for a heat exchanger

While the state-variable methods were gaining momentum particularly in the US, research groups in Europe
especially in England led by Rosenbrock, MacFarlane, Munro, and others extended the classical techniques to multi-
input multi-output systems. Hence root locus and frequency domain methods such as the (inverse) Nyquist techniques
could be used for multi-input multi-output systems. Eventually in the 1980s there was a realization that the power of
both frequency domain and state-variable methods should be combined for an eclectic control design method
employing the best of both approaches.

We saw in this Chapter 7 that in contrast to frequency response methods of Bode and Nyquist, the state-variable
method not only deals with the input and output variables of the system but also with the internal physical variables.
The state-variable methods can be used to study linear and nonlinear, as well as time varying systems. Furthermore,
the state-variable method handles the multi-input multi-output problems and high-order systems with equal ease.
From a computational perspective, the state-variable methods are far superior to the frequency domain techniques
that require polynomial manipulations.

SUMMARY
• To every transfer function that has no more zeros than poles, there corresponds a differential equation in state-

space form.
• State-space descriptions can be in several canonical forms. Among these are control, observer, and modal canonical

forms.
• Open-loop poles and zeros can be computed from the state description matrices (F, G, H,J):

• For any controllable system of order n, there exists a state feedback control law that will place the closed-loop
poles at the roots of an arbitrary control characteristic equation of order n.



• The reference input can be introduced so as to result in zero steady-state error to a step command. This property is
not expected to be robust to parameter changes.

• Good closed-loop pole locations depend on the desired transient response, the robustness to parameter changes,
and a balance between dynamic performance and control effort.

• Closed-loop pole locations can be selected to result in a dominant second-order response, to match a prototype
dynamic response, or to minimize a quadratic performance measure.

• For any observable system of order n, an estimator (or observer) can be constructed with only sensor inputs and a
state that estimates the plant state. The n poles of the estimator error system can be placed arbitrarily.

• Every transfer function can be represented by a minimal realization, i.e., a statespace model that is both
controllable and observable.

• A single-input single-output system is completely controllable if and only if the input excites all the natural
frequencies of the system, i.e., there is no cancellation of the poles in the transfer function.

• The control law and the estimator can be combined into a controller such that the poles of the closed-loop system
are the sum of the control-law-only poles and the estimator-only poles.

• With the estimator-based controller, the reference input can be introduced in such a way as to permit n arbitrary
zeros to be assigned. The most common choice is to assign the zeros to cancel the estimator poles, thus not exciting
an estimator error.

• Integral control can be introduced to obtain robust steady-state tracking of a step by augmenting the plant state.
The design is also robust with respect to rejecting constant disturbances.

• General robust control can be realized by combining the equations of the plant and the reference model into an
error space and designing a control law for the extended system. Implementation of the robust design demonstrates
the internal model principle. An estimator of the plant state can be added while retaining the robustness
properties.

• The estimator can be extended to include estimates of the equivalent control disturbance and so result in robust
tracking and disturbance rejection.

• Pole-placement designs, including integral control, can be computed using the polynomials of the plant transfer
function in place of the state descriptions. Designs using polynomials frequently have problems with numerical
accuracy.

• Controllers for plants that include a pure time delay can be designed as if there were no delay, and then a
controller can be implemented for the plant with the delay. The design can be expected to be sensitive to
parameter changes.

• Table 7.3 gives the important equations discussed in this chapter. The triangles indicate equations taken from
optional sections in the text.

• Determining a model from experimental data, or verifying an analytically based model by experiment, is an
important step in system design by state-space analysis, a step that is not necessarily needed for compensator
design via frequency-response methods.

REVIEW QUESTIONS
The following questions are based on a system in state-variable form with matrices F, G, H, J, input u, output y, and
state x.



1. Why is it convenient to write equations of motion in state-variable form?
2. Give an expression for the transfer function of this system.
3. Give two expressions for the poles of the transfer function of the system.
4. Give an expression for the zeros of the system transfer function.
5. Under what condition will the state of the system be controllable?
6. Under what conditions will the system be observable from the output y?
7. Give an expression for the closed-loop poles if state feedback of the form u = –Kx is used.
8. Under what conditions can the feedback matrix K be selected so that the roots of αc(s) are arbitrary?
9. What is the advantage of using the LQR or SRL in designing the feedback matrix K?

TABLE 7.3 Important Equations in Chapter 7



10. What is the main reason for using an estimator in feedback control?
11. If the estimator gain L is used, give an expression for the closed-loop poles due to the estimator.
12. Under what conditions can the estimator gain L be selected so that the roots of αe(s) = 0 are arbitrary?
13. If the reference input is arranged so that the input to the estimator is identical to the input to the process, what



will the overall closed-loop transfer function be?
14. If the reference input is introduced in such a way as to permit the zeros to be assigned as the roots of λ(s), what

will the overall closed-loop transfer function be?
15. What are the three standard techniques for introducing integral control in the state feedback design method?

PROBLEMS

Problems for Section 7.3: Block Diagrams and State-Space
7.1 Write the dynamic equations describing the circuit in Fig. 7.82. Write the equations as a second-order differential

equation in y(t). Assuming a zero input, solve the differential equation for y(t) using Laplace transform methods
for the parameter values and initial conditions shown in the figure. Verify your answer using the initial command
in MATLAB.

Figure 7.82 Circuit for Problem 7.1

7.2 A schematic for the satellite and scientific probe for the Gravity Probe-B (GP-B) experiment that was launched on
April 30, 2004 is sketched in Fig. 7.83. Assume that the mass of the spacecraft plus helium tank, m1, is 2000 kg
and the mass of the probe, m2, is 1000 kg. A rotor will float inside the probe and will be forced to follow the
probe with a capacitive forcing mechanism. The spring constant of the coupling k is 3.2 × 106. The viscous
damping b is 4.6 × 103.
(a) Write the equations of motion for the system consisting of masses m 1 and m 2 using the inertial position

variables, y1 and y2.
(b) The actual disturbance u is a micrometeorite, and the resulting motion is very small. Therefore, rewrite your

equations with the scaled variables Z1 = 106y1, Z2 = 106y2, and v = 1000u.
(c) Put the equations in state-variable form using the state x = [Z1 1 Z2 2]T, the output y = Z2, and the input an

impulse, u = 10-3 δ(t) N-sec on mass m1.
(d) Using the numerical values, enter the equations of motion into MATLAB in the form

and define the MATLAB system: sysGPB = ss(F,G,H,J). Plot the response of y caused by the impulse with the
MATLAB command impulse(sysGPB). This is the signal the rotor must follow.

(e) Use the MATLAB commands p = eig(F) to find the poles (or roots) of the system and z = tzero(F,G,H, J) to



find the zeros of the system.

Figure 7.83 Schematic diagram of the GP-B satellite and probe

Problems for Section 7.4: Analysis of the State Equations
7.3 Give the state description matrices in control-canonical form for the following transfer functions:

7.4 Use the MATLAB function tf2ss to obtain the state matrices called for in Problem 7.3.
7.5 Give the state description matrices in normal-mode form for the transfer functions of Problem 7.3. Make sure that

all entries in the state matrices are real valued by keeping any pairs of complex conjugate poles together, and
realize them as a separate subblock in control canonical form.

7.6 A certain system with state x is described by the state matrices

Find the transformation T so that if x = Tz, the state matrices describing the dynamics of z are in control canonical
form. Compute the new matrices A, B, C, and D.
7.7 Show that the transfer function is not changed by a linear transformation of state.
7.8 Use block-diagram reduction or Mason’s rule to find the transfer function for the system in observer canonical

form depicted by Fig. 7.31.
7.9 Suppose we are given a system with state matrices F, G, H (J = 0 in this case). Find the transformation T so that,



under Eqs. (7.24) and (7.25), the new state description matrices will be in observer canonical form.
7.10 Use the transformation matrix in Eq. (7.41) to explicitly multiply out the equations at the end of Example 7.10.
7.11 Find the state transformation that takes the observer canonical form of Eq. (7.35) to the modal canonical form.
7.12 (a) Find the transformation T that will keep the description of the tape-drive system of Example 7.11 in modal

canonical form but will convert each element of the input matrix Bm to unity.
(b) Use MATLAB to verify that your transformation does the job.

7.13 (a) Find the state transformation that will keep the description of the tape-drive system of Example 7.11 in
modal canonical form but will cause the poles to be displayed in Am in order of increasing magnitude.
(b) Use MATLAB to verify your result in part (a), and give the complete new set of state matrices as A, B, C, and

D.
7.14 Find the characteristic equation for the modal-form matrix Am of Eq. (7.17a) using Eq. (7.58).

7.15 Given the system

with zero initial conditions, find the steady-state value of x for a step input u.
7.16 Consider the system shown in Fig. 7.84:

(a) Find the transfer function from U to Y .
(b) Write state equations for the system using the state-variables indicated.

Figure 7.84 A block diagram for Problem 7.16

7.17 Using the indicated state-variables, write the state equations for each of the systems shown in Fig. 7.85. Find the
transfer function for each system using both block-diagram manipulation and matrix algebra [as in Eq. (7.48)].



Figure 7.85 Block diagrams for Problem 7.17

7.18 For each of the listed transfer functions, write the state equations in both control and observer canonical form. In
each case, draw a block diagram and give the appropriate expressions for F, G, and H.

 (control of an inverted pendulum by a force on the cart).

7.19 Consider the transfer function

(a) By rewriting Eq. (7.263) in the form

find a series realization of G(s) as a cascade of two first-order systems.
(b) Using a partial-fraction expansion of G(s), find a parallel realization of G(s).
(c) Realize G(s) in control canonical form.

Problems for Section 7.5: Control Law Design for Full-State Feedback
7.20 Consider the plant described by

(a) Draw a block diagram for the plant with one integrator for each state-variable.
(b) Find the transfer function using matrix algebra.
(c) Find the closed-loop characteristic equation if the feedback is



(i) u = – [K1 K2 ]x;
(ii) u = – Ky.

7.21 For the system

design a state feedback controller that satisfies the following specifications:
(a) Closed-loop poles have a damping coefficient ζ = 0.707.
(b) Step-response peak time is under 3.14 sec.

Verify your design with MATLAB.
7.22 (a) Design a state feedback controller for the following system so that the closed-loop step response has an

overshoot of less than 25% and a 1% settling time under 0.115 sec:

(b) Use the step command in MATLAB to verify that your design meets the specifications. If it does not, modify
your feedback gains accordingly.

7.23 Consider the system

(a) Design a state feedback controller for the system so that the closed-loop step response has an overshoot of less
than 5% and a 1% settling time under 4.6 sec.

(b) Use the step command in MATLAB to verify that your design meets the specifications. If it does not, modify
your feedback gains accordingly.

7.24 Consider the system in Fig. 7.86.
(a) Write a set of equations that describes this system in the standard canonical control form as  = Fx + Gu and

y = Hx.
(b) Design a control law of the form

that will place the closed-loop poles at s = –2 ± 2j.

Figure 7.86 System for Problem 7.24



7.25 Output Controllability. In many situations a control engineer may be interested in controlling the output y rather
than the state x. A system is said to be output controllable if at any time you are able to transfer the output from
zero to any desired output y* in a finite time using an appropriate control signal u*. Derive necessary and
sufficient conditions for a continuous system (F, G, H) to be output controllable. Are output and state
controllability related? If so, how?

7.26 Consider the system

(a) Find the eigenvalues of this system.(Hint: Note the block-triangular structure.)
(b) Find the controllable and uncontrollable modes of this system.
(c) For each of the uncontrollable modes, find a vector v such that

vT G = 0, vT F = λVT.
(d) Show that there are an infinite number of feedback gains K that will relocate the modes of the system to –5, –

3, –2, and –2.
(e) Find the unique matrix K that achieves these pole locations and prevents initial conditions on the

uncontrollable part of the system from ever affecting the controllable part.
7.27 Two pendulums, coupled by a spring, are to be controlled by two equal and opposite forces u, which are

applied to the pendulum bobs as shown in Fig. 7.87. The equations of motion are

(a) Show that the system is uncontrollable. Can you associate a physical meaning with the controllable and
uncontrollable modes?

(b) Is there any way that the system can be made controllable?

Figure 7.87 Coupled pendulums for Problem 7.27



7.28 The state-space model for a certain application has been given to us with the following state description
matrices:

(a) Draw a block diagram of the realization with an integrator for each state-variable.
(b) A student has computed det C = 2.3 × 10-7 and claims that the system is uncontrollable. Is the student right

or wrong? Why?
(c) Is the realization observable?

7.29 Staircase Algorithm (Van Dooren et al., 1978): Any realization (F, G, H) can be transformed by an orthogonal
similarity transformation to  where  is an upper Hessenberg matrix (having one nonzero diagonal
above the main diagonal) given by

where g1 ≠ 0, and

Orthogonal transformations correspond to a rotation of the vectors (represented by the matrix columns) being
transformed with no change in length.

(a) Prove that if αi = 0 and αi+ 1,..., αn-1 ≠ 0 for some i, then the controllable and uncontrollable modes of the
system can be identified after this transformation has been done.

(b) How would you use this technique to identify the observable and unobservable modes of (F, G, H)?
(c) What advantage does this approach for determining the controllable and uncontrollable modes have over

transforming the system to any other form?
(d) How can we use this approach to determine a basis for the controllable and uncontrollable subspaces, as in

Problem 7.14?

This algorithm can also be used to design a numerically stable algorithm for pole placement [see Minimis and Paige
(1982)]. The name of the algorithm comes from the multi-input version in which the αi are the blocks that make 
resemble a staircase. Refer to ctrbf, obsvf commands in MATLAB.

Problems for Section 7.6: Selection of Pole Locations for Good Design
7.30 The normalized equations of motion for an inverted pendulum at angle θ on a cart are



where x is the cart position, and the control input u is a force acting on the cart.
(a) With the state defined as x = [θ  x  ]T, find the feedback gain K that places the closed-loop poles at s = –1,

–1, –1 ± 1j. For parts (b) through (d), assume that β = 0.5.
(b) Use the SRL to select poles with a bandwidth as close as possible to those of part (a), and find the control law

that will place the closed-loop poles at the points you selected.
(c) Compare the responses of the closed-loop systems in parts (a) and (b) to an initial condition of θ = 10°. You

may wish to use the initial command in MATLAB.
(d) Compute Nx and Nu for zero steady-state error to a constant command input on the cart position, and compare

the step responses of each of the two closed-loop systems.
7.31 Consider the feedback system in Fig. 7.88. Find the relationship between K, T, and ξ such that the closed-loop

transfer function minimizes the integral of the time multiplied by the absolute value of the error (ITAE) criterion,

for a step input.

Figure 7.88 Control system for Problem 7.31

7.32 Prove that the Nyquist plot for LQR design avoids a circle of radius one centered at the –1 point, as shown in
Fig. 7.89. Show that this implies that ½ < GM < ∞, the “upward” gain margin is GM= ∞, and there is a
“downward” GM = ½, and the phase margin is at least PM = ±60°. Hence the LQR gain matrix, K, can be
multiplied by a large scalar or reduced by half with guaranteed closed-loop system stability.

Figure 7.89 Nyquist plot for an optimal regulator

Problems for Section 7.7: Estimator Design



7.33 Consider the system

and assume that you are using feedback of the form u = –Kx + r, where r is a reference input signal.
(a) Show that (F, H) is observable.
(b) Show that there exists a K such that (F –GK, H) is unobservable.
(c) Compute a K of the form K = [1, K2] that will make the system unobservable as in part (b); that is, find K2 so

that the closed-loop system is not observable.
(d) Compare the open-loop transfer function with the transfer function of the closed-loop system of part (c). What

is the unobservability due to?
7.34 Consider a system with the transfer function

(a) Find (Fo, Go, Ho) for this system in observer canonical form.
(b) Is (Fo, Go) controllable?
(c) Compute K so that the closed-loop poles are assigned to s = –3 ± 3j.
(d) Is the closed-loop system of part (c) observable?
(e) Design a full-order estimator with estimator error poles at s = –12 ± 12j.
(f) Suppose the system is modified to have a zero:

Prove that if u = –Kx + r, there is a feedback gain K that makes the closed-loop system unobservable. [Again
assume an observer canonical realization for G1(s).]

7.35 Explain how the controllability, observability, and stability properties of a linear system are related.
7.36 Consider the electric circuit shown in Fig. 7.90.

(a) Write the internal (state) equations for the circuit. The input u(t) is a current, and the output y is a voltage. Let
X1 = iL and X2 = vc.

(b) What condition(s) on R, L, and C will guarantee that the system is controllable?
(c) What condition(s) on R, L, and C will guarantee that the system is observable?



Figure 7.90 Electric circuit for Problem 7.36

7.37 The block diagram of a feedback system is shown in Fig. 7.91. The system state is

Figure 7.91 Block diagram for Problem 7.37

and the dimensions of the matrices are as follows:

(a) Write state equations for the system.
(b) Let x = Tz, where

Show that the system is not controllable.
(c) Find the transfer function of the system from r to y.

7.38 This problem is intended to give you more insight into controllability and observability. Consider the circuit in
Fig. 7.92, with an input voltage source u(t) and an output current y(t).
(a) Using the capacitor voltage and inductor current as state-variables, write state and output equations for the

system.
(b) Find the conditions relating R 1, R 2, C, and L that render the system uncontrollable. Find a similar set of

conditions that result in an unobservable system.
(c) Interpret the conditions found in part (b) physically in terms of the time constants of the system.
(d) Find the transfer function of the system. Show that there is a pole-zero cancellation for the conditions derived

in part (b) (that is, when the system is uncontrollable or unobservable).



Figure 7.92 Electric circuit for Problem 7.38

7.39 The linearized equations of motion for a satellite are
 = Fx + Gu,

y = Hx,
where

The inputs u1 and u2 are the radial and tangential thrusts, the state-variables X1 and X3 are the radial and angular
deviations from the reference (circular) orbit, and the outputs y1 and y2 are the radial and angular measurements,
respectively.

(a) Show that the system is controllable using both control inputs.
(b) Show that the system is controllable using only a single input. Which one is it?
(c) Show that the system is observable using both measurements.
(d) Show that the system is observable using only one measurement. Which one is it?

7.40 Consider the system in Fig. 7.93.
(a) Write the state-variable equations for the system, using [θ1 θ2 1 2]T as the state vector and F as the single

input.
(b) Show that all the state-variables are observable using measurements of θ1 alone.
(c) Show that the characteristic polynomial for the system is the product of the polynomials for two oscillators. Do

so by first writing a new set of system equations involving the state-variables



Figure 7.93 Coupled pendulums for Problem 7.40

Hint: If A and D are invertible matrices, then

(d) Deduce the fact that the spring mode is controllable with F but the pendulum mode is not.
7.41 A certain fifth-order system is found to have a characteristic equation with roots at 0, – 1, –2, and –1 ± 1j. A

decomposition into controllable and uncontrollable parts discloses that the controllable part has a characteristic
equation with roots 0, and – 1 ± 1j. A decomposition into observable and nonobservable parts discloses that the
observable modes are at0, – 1, and –2.
(a) Where are the zeros of b(s) = Hadj(sI – F)G for this system?
(b) What are the poles of the reduced-order transfer function that includes only controllable and observable

modes?
7.42 Consider the systems shown in Fig. 7.94, employing series, parallel, and feedback configurations.

(a) Suppose we have controllable-observable realizations for each subsystem:

i = Fi xi + Gi ui,
yi = Hixi, where i = 1, 2.

Give a set of state equations for the combined systems in Fig. 7.93.
(b) For each case, determine what condition(s) on the roots of the polynomials Ni and Di is necessary for each

system to be controllable and observable. Give a brief reason for your answer in terms of pole-zero
cancellations.



Figure 7.94 Block diagrams for Problem 7.14: (a) series; (b) parallel; (c) feedback

7.43 Consider the system ÿ + 3  + 2y =  + u.
(a) Find the state matrices Fc, Gc, and Hc in control canonical form that correspond to the given differential

equation.
(b) Sketch the eigenvectors of Fc in the (x1, X2) plane, and draw vectors that correspond to the completely

observable (x0) and the completely unobservable (x ) state-variables.
(c) Express x0 and x  in terms of the observability matrix O.
(d) Give the state matrices in observer canonical form and repeat parts (b) and (c) in terms of controllability

instead of observability.
7.44 The equations of motion for a station-keeping satellite (such as a weather satellite) are

where
X = radial perturbation,

y = longitudinal position perturbation,
u = engine thrust in the y-direction,

as depicted in Fig. 7.95. If the orbit is synchronous with the earth’s rotation, then ω = 2π/(3600 × 24) rad/sec.
(a) Is the state x = [x  y ]T observable?
(b) Choose x = [ x  y  ]T as the state vector and y as the measurement, and design a full-order observer with

poles placed at s = –2ω, –3ω, and –3ω ± 3ωj.



Figure 7.95 Diagram of a station-keeping satellite in orbit for Problem 7.44

7.45 The linearized equations of motion of the simple pendulum in Fig. 7.96 are

 + ω2θ = u.
(a) Write the equations of motion in state-space form.
(b) Design an estimator (observer) that reconstructs the state of the pendulum given measurements of . Assume ω

= 5 rad/sec, and pick the estimator roots to be at s = –10 ± 10j.

Figure 7.96 Pendulum diagram for Problem 7.45

(c) Write the transfer function of the estimator between the measured value of  and the estimated value of θ.
(d) Design a controller (that is, determine the state feedback gain K so that the roots of the closed-loop

characteristic equation are at s = –4 ± 4j.
7.46 An error analysis of an inertial navigator leads to the set of normalized state equations

where
X1 = east—velocity error,

X2 = platform tilt about the north axis,



X3 = north—gyro drift,
u = gyro drift rate of change.

Design a reduced-order estimator with y = X1 as the measurement, and place the observer-error poles at –0.1 and –
0.1. Be sure to provide all the relevant estimator equations.

Problems for Section 7.8: Compensator Design: Combined Control Law and Estimator

7.47 A certain process has the transfer function .
(a) Find F, G, and H for this system in observer canonical form.
(b) If u = –Kx, compute K so that the closed-loop control poles are located at s = –2 ± 2j.
(c) Compute L so that the estimator error poles are located at s = – 10 ± 10j.
(d) Give the transfer function of the resulting controller [for example, using Eq. (7.177)].
(e) What are the gain and phase margins of the controller and the given open-loop system?

7.48 The linearized longitudinal motion of a helicopter near hover (see Fig. 7.97) can be modeled by the normalized
third-order system

Figure 7.97 Helicopter for Problem 7.48

Suppose our sensor measures the horizontal velocity u as the output; that is, y = u.
(a) Find the open-loop pole locations.
(b) Is the system controllable?



(c) Find the feedback gain that places the poles of the system at s = –1 ± 1j and s = –2.
(d) Design a full-order estimator for the system, and place the estimator poles at –8 and .
(e) Design a reduced-order estimator with both poles at –4. What are the advantages and disadvantages of the

reduced-order estimator compared with the full-order case?
(f) Compute the compensator transfer function using the control gain and the full-order estimator designed in part

(d), and plot its frequency response using MATLAB. Draw a Bode plot for the closed-loop design, and indicate
the corresponding gain and phase margins.

(g) Repeat part (f) with the reduced-order estimator.
(h) Draw the SRL and select roots for a control law that will give a control bandwidth matching the design of part

(c), and select roots for a full-order estimator that will result in an estimator error bandwidth comparable to the
design of part (d). Draw the corresponding Bode plot and compare the pole placement and SRL designs with
respect to bandwidth, stability margins, step response, and control effort for a unit-step rotor-angle input. Use
MATLAB for the computations.

7.49 Suppose a DC drive motor with motor current u is connected to the wheels of a cart in order to control the
movement of an inverted pendulum mounted on the cart. The linearized and normalized equations of motion
corresponding to this system can be put in the form

where
θ = angle of the pendulum,
ν = velocity of the cart.

(a) We wish to control by feedback to θ of the form

Find the feedback gains so that the resulting closed-loop poles are located at 
(b) Assume that θ and v are measured. Construct an estimator for μ and  of the form

where x = [θ θ]T and y = θ Treat both v and u as known. Select L so that the estimator poles are at –2 and –2.
(c) Give the transfer function of the controller, and draw the Bode plot of the closed-loop system, indicating the

corresponding gain and phase margins.
(d) Using MATLAB, plot the response of the system to an initial condition on, and give a physical explanation for

the initial motion of the cart.
7.50 Consider the control of

(a) Let y = x1 and  = x2, and write state equations for the system.
(b) Find K1 and K2 so that u = –K1x1 – K2X2 yields closed-loop oples with a natural frequency ωn = 3 and a



damping ratio ζ = 0.5.
(c) Design a state estimator for the system that yields estimator error poles with ωn1 = 15 and ζ1 = 0.5.
(d) What is the transfer function of the controller obtained by combining parts (a) through (c)?
(e) Sketch the root locus of the resulting closed-loop system as plant gain (nominally 10) is varied.

7.51 Unstable equations of motion of the form

arise in situations where the motion of an upside-down pendulum (such as a rocket) must be controlled.
(a) Let u = –Kx (position feedback alone), and sketch the root locus with respect to the scalar gain K.
(b) Consider a lead compensator of the form

Select a and K so that the system will display a rise time of about 2 sec and no more than 25% overshoot.
Sketch the root locus with respect to K.

(c) Sketch the Bode plot (both magnitude and phase) of the uncompensated plant.
(d) Sketch the Bode plot of the compensated design, and estimate the phase margin.
(e) Design state feedback so that the closed-loop poles are at the same locations as those of the design in part (b).
(f) Design an estimator for x and  using the measurement of x = y, and select the observer gain L so that the

equation for x has characteristic roots with a damping ratio ζ = 0.5 and a natural frequency ω = 8.
(g) Draw a block diagram of your combined estimator and control law, and indicate where  and  appear. Draw

a Bode plot for the closed-loop system, and compare the resulting bandwidth and stability margins with those
obtained using the design of part (b).

7.52 A simplified model for the control of a flexible robotic arm is shown in Fig. 7.98, where
k/M = 900 rad/sec2,
y = output, the mass position,
u = input, the position of the end of the spring.

(a) Write the equations of motion in state-space form.
(b) Design an estimator with roots as s = –100 ± 100 j.
(c) Could both state-variables of the system be estimated if only a measurement of  was available?
(d) Design a full-state feedback controller with roots at s = –20 ± 20j.
(e) Would it be reasonable to design a control law for the system with roots at s = –200 ± 200j? State your

reasons.
(f) Write equations for the compensator, including a command input for y. Draw a Bode plot for the closed-loop

system and give the gain and phase margins for the design.



Figure 7.98 Simple robotic arm for Problem 7.52

7.53 The linearized differential equations governing the fluid-flow dynamics for the two cascaded tanks in Fig. 7.99
are

where
δh1 = deviation of depth in tank 1 from the nominal level,
δh2 = deviation of depth in tank 2 from the nominal level,

δh = deviation in fluid inflow rate to tank 1 (control).
(a)Level Controller for Two Cascaded Tanks: Using state feedback of the form

δu = –K1δh1 – K2δh2,

Figure 7.99 Coupled tanks for Problem 7.53

choose values of K1 and K2 that will place the closed-loop eigenvalues at

s = –2ω(1±j).
(b) Level Estimator for Two Cascaded Tanks: Suppose that only the deviation in the level of tank 2 is measured

(that is, y = δh2). Using this measurement, design an estimator that will give continuous, smooth estimates of
the deviation in levels of tank 1 and tank 2, with estimator error poles at –8ω(1 ± j).

(c) Estimator/Controller for Two Cascaded Tanks: Sketch a block diagram (showing individual integrators) of the
closed-loop system obtained by combining the estimator of part (b) with the controller of part (a).

(d) Using MATLAB, compute and plot the response at y to an initial offset in Sh1. Assume σ = 1 for the plot.



7.54 The lateral motions of a ship that is 100 m long, moving at a constant velocity of 10 m/sec, are described by

where
β = sideslip angle (deg),
ψ heading angle (deg),

δ = rudder angle (deg),
r = yaw rate (see Fig. 7.99).

(a) Determine the transfer function from δ to ψ and the characteristic roots of the uncontrolled ship.
(b) Using complete state feedback of the form

δ = –K1β – K2r – K3 (ψ – ψd),

where ψd is the desired heading, determine values of K1, K2, and K3 that will place the closed-loop roots at s =
–0.2, –0.2 ± 0.2j.

(c) Design a state estimator based on the measurement of ψ (obtained from a gyrocompass, for example). Place
the roots of the estimator error equation at s = –0.8 and –0.8 ± 0.8j.

(d) Give the state equations and transfer function for the compensator Dc(s) in Fig. 7.100, and plot its frequency
response.

(e) Draw the Bode plot for the closed-loop system, and compute the corresponding gain and phase margins.
(f) Compute the feed-forward gains for a reference input, and plot the step response of the system to a change in

heading of 5°.

Figure 7.100 View of ship from above for Problem 7.54



Figure 7.101 Ship control block diagram for Problem 7.54

Problems for Section 7.9: Introduction of the Reference Input with the Estimator
7.55 As mentioned in footnote 11 in Section 7.9.2, a reasonable approach for selecting the feed-forward gain in Eq.

(7.205) is to choose  such that when r and  are both unchanging, the DC gain from r to u is the negative of the
DC gain from y to u. Derive a formula for  based on this selection rule. Show that if the plant is Type 1, this
choice is the same as that given by Eq. (7.205).

Problems for Section 7.10: Integral Control and Robust Tracking
7.56 Assume that the linearized and time-scaled equation of motion for the ball-bearing levitation device is x – x = u

+ w. Here w is a constant bias due to the power amplifier. Introduce integral error control, and select three
control gains K = [K1 K2 K3 ] so that the closed-loop poles are at –1 and –1 ± j and the steady-state error to w
and to a (step) position command will be zero. Let y = x and the reference input  be a constant. Draw a
block diagram of your design showing the locations of the feedback gains Ki. Assume that both X and x can be
measured. Plot the response of the closed-loop system to a step command input and the response to a step
change in the bias input. Verify that the system is Type 1. Use MATLAB (SIMULINK) software to simulate the
system responses.

7.57 Consider a system with state matrices



(a) Use feedback of the form u(t) = –Kx(t) + r(t), where  is a nonzero scalar, to move the poles to – 3 ± 3j.
(b) Choose  so that if r is a constant, the system has zero steady-state error; that is y(∞) = r.
(c) Show that if F changes to F + δF, where δF is an arbitrary 2 × 2 matrix, then your choice of  in part (b)

will no longer make y(∞) = r. Therefore, the system is not robust under changes to the system parameters in
F.

(d) The system steady-state error performance can be made robust by augmenting the system with an integrator
and using unity feedback—that is, by setting I = r – y, where xI is the state of the integrator. To see this, first
use state feedback of the form u = –Kx – K1x1 so that the poles of the augmented system are at 

(e) Show that the resulting system will yield y(∞) = r no matter how the matrices F and G are changed, as long
as the closed-loop system remains stable.

(f) For part (d), use MATLAB (SIMULINK) software to plot the time response of the system to a constant input.
Draw Bode plots of the controller, as well as the sensitivity function (S) and the complementary sensitivity
function (T).

Δ 7.58 Consider a servomechanism for following the data track on a computer-disk memory system. Because of
various unavoidable mechanical imperfections, the data track is not exactly a centered circle, and thus the radial
servo must follow a sinusoidal input of radian frequency ω0 (the spin rate of the disk). The state matrices for a
linearized model of such a system are

The sinusoidal reference input satisfies r = –ω20r.
(a) Let ω0 = 1, and place the poles of the error system for an internal model design at

αc(s) = (s + 2 ± j2)(s + 1 ±1 j)
and the pole of the reduced-order estimator at

αe(s) = (s + 6).
(b) Draw a block diagram of the system, and clearly show the presence of the oscillator with frequency ω0 (the

internal model) in the controller. Also verify the presence of the blocking zeros at ±jω0.
(c) Use MATLAB (SIMULINK) software to plot the time response of the system to a sinusoidal input at frequency
ω0= 1.

(d) Draw a Bode plot to show how this system will respond to sinusoidal inputs at frequencies different from but
near ω0.

Δ 7.59 Compute the controller transfer function [from y (s) to u(s)] in Example 7.38. What is the prominent feature
of the controller that allows tracking and disturbance rejection?

Δ 7.60 Consider the pendulum problem with control torque Tc and disturbance torque Td:



(Here g/l = 4.) Assume that there is a potentiometer at the pin that measures the output angle θ but with a
constant unknown bias b Thus the measurement equation is y = θ + b.

(a) Take the “augmented” state vector to be

where w is the input-equivalent bias. Write the system equations in state-space form. Give values for the
matrices F, G, and H.

(b) Using state-variable methods, show that the characteristic equation of the model is s(s2 + 4) = 0.
(c) Show that w is observable if we assume that y = θ, and write the estimator equations for

Pick estimator gains [ l1 l2 l3]T to place all the roots of the estimator error characteristic equation at –10.
(d) Using full-state feedback of the estimated (controllable) state-variables, derive a control law to place the

closed-loop poles at –2 ± 2 j.
(e) Draw a block diagram of the complete closed-loop system (estimator, plant, and controller) using integrator

blocks.
(f) Introduce the estimated bias into the control so as to yield zero steady-state error to the output bias b.

Demonstrate the performance of your design by plotting the response of the system to a step change in b; that
is,b changes from 0 to some constant value.

Problems for Section 7.13: Design for Systems with Pure Time Delay

Δ 7.61 Consider the system with the transfer function e–TsG(s), where

The Smith compensator for this system is given by,

Plot the frequency response of the compensator for T = 5 and Dc = 1, and draw a Bode plot that shows the gain
and phase margins of the system.22



1 It is also common to use the notation A, B, C, and D in place of F, G, H, and J. We will typically use F, G to represent plant dynamics and A, B to
represent a general linear system.
2The symbol  means “is to be defined.”
3As well as due to its historical significance.
4This algorithm is part of MATLAB and all other well-known computer-aided design packages. It is carefully documented in the software package
LAPACK (Anderson et al., 1999). See also Strang (1988).
5To find the inverse of a 2 × 2 matrix, you need only interchange the elements subscripted “11” and “22,” change the signs of the “12” and the “21”
elements, and divide by the determinant [= 1 in Eq. (7.41)].
6The identity matrix I is a matrix of ones on the main diagonal and zeros everywhere else; therefore, Ix = x.
7This development is exactly the same for higher-order systems.
8One may get around this restriction by moving the repeated poles by very small amounts to make them distinct.
9 This is a special case of the separation principle (Gunckel and Franklin, 1963), which holds in much more general contexts and allows us to obtain
an overall optimal design by combining the separate designs of control law and estimator in certain stochastic cases.
10 There are even systems that cannot be stabilized with a stable compensator.
11 A reasonable alternative is to select  such that, when r and y are both unchanging, the DC gain from r to u is the negative of the DC gain from y
to u. The consequences of this choice are that our controller can be structured as a combination of error control and generalized derivative control,
and if the system is capable of Type 1 behavior, that capability will be realized. 12 We have used the fact that
12 We have used the fact that
13 Watch out for the sign here; we are using the negative of the usual convention.
14 Notice that this concept can be extended to more complex equations in r and to multivariable systems.
15 For example, it is not possible to add integral control to a plant that has a zero at the origin.
16 This is a particular case of the internal model principle, which requires that a model of the external or exogenous signal be in the controller for
robust tracking and disturbance rejection.
17 In general, the design can be done in MATLAB and (nonlinear) simulations can be carried out in SIMULINK.
18 Again we develop the results for a second-order equation in the external signals; the discussion can be extended to higher-order equations.
19 In a Butterworth configuration.
20 If they do have a common factor, it will show up on the left side of Eq. (7.249); for there to be a solution, the same factor must be on the right side
of Eq. (7.249), and thus a factor of either αc or αe.
21 The matrix on the left side of Eq. (7.252) is called a Sylvester matrix and is nonsingular if and only if a(s) and b(s) have no common factor.



8 Digital Control

A Perspective on Digital Control
Most of the controllers we have studied so far were described by the Laplace transform or differential equations,
which, strictly speaking, are assumed to be built using analog electronics, such as those in Figs. 5.31 and 5.35.
However, as discussed in Section 4.4, most control systems today use digital computers (usually microprocessors) to
implement the controllers. The intent of this chapter is to expand on the design of control systems that will be
implemented in a digital computer. The implementation leads to an average delay of half the sample period and to
a phenomenon called aliasing, which need to be addressed in the controller design.

Analog electronics can integrate and differentiate signals. In order for a digital computer to accomplish these tasks,
the differential equations describing compensation must be approximated by reducing them to algebraic equations
involving addition, division, and multiplication, as developed in Section 4.4. This chapter expands on various ways
to make these approximations. The resulting design can then be tuned up, if needed, using direct digital analysis and
design.

You should be able to design, analyze, and implement a digital control system from the material in this chapter.
However, our treatment here is a limited version of a complex subject covered in more detail in Digital Control of
Dynamic Systems by Franklin et al. (1998 3rd ed.).

Chapter Overview
In Section 8.1 we describe the basic structure of digital control systems and introduce the issues that arise due to the
sampling. The digital implementation described in Section 4.4 is sufficient for implementing a feedback control law
in a digital control system, which you can then evaluate via SIMULINK® to determine the degradation with respect
to the continuous case. However, to fully understand the effect of sampling, it is useful to learn about discrete linear
analysis tools. This requires an understanding of the z-transform, which we discuss in Section 8.2. Section 8.3 builds
on this understanding to provide a better foundation for design using discrete equivalents that was briefly discussed
in Section 4.4. Hardware characteristics and sample rate issues are discussed in Sections 8.4 and 8.5, both of which
need to be addressed in order to implement a digital controller.

In contrast to discrete equivalent design, which is an approximate method, optional Section 8.6 explores direct
digital design (also called discrete design), which provides an exact method that is independent of whether the
sample rate is fast or not.



8.1 Digitization
Figure 8.1(a) shows the topology of the typical continuous system that we have been considering in previous
chapters. The computation of the error signal e and the dynamic compensation D(s) can all be accomplished in a
digital computer as shown in Fig. 8.1(b). The fundamental differences between the two implementations are that the
digital system operates on samples of the sensed plant output rather than on the continuous signal and that the
control provided by D(s) must be generated by algebraic recursive equations.

Sample period
We consider first the action of the analog-to-digital (A/D) converter on a signal. This device samples a physical

variable, most commonly an electrical voltage, and converts it into a binary number that usually consists of 10 to 16
bits. Conversion from the analog signal y(t) to the samples,y(kT), occurs repeatedly at instants of time T seconds
apart.T is the sample period, and 1/T is the sample rate in Hertz.
The sampled signal is y(kT), where k can take on any integer value. It is often written simply as y(k). We call this
type of variable a discrete signal to distinguish it from a continuous signal such as y(t), which changes continuously in
time. A system having both discrete and continuous signals is called a sampled data system.

We make the assumption that the sample period is fixed. In practice, digital control systems sometimes have
varying sample periods and/or different periods in different feedback paths. Usually, the computer logic includes a
clock that supplies a pulse, or interrupt, every T seconds, and the A/D converter sends a number to the computer
each time the interrupt arrives. An alternative implementation, often referred to as free running, is to access the A/D
converter after each cycle of code execution has been completed. In the former case the sample period is precisely
fixed; in the latter case the sample period is fixed essentially by the length of the code, provided that no logic
branches are present, which could vary the amount of code executed.

Figure 8.1 Block diagrams for a basic control system:



Zero-order hold (ZOH)
There also may be a sampler and an A/D converter for the input command r(t), which produces the discrete r(kT),

from which the sensed output y(kT) will be subtracted to arrive at the discrete error signal e(kT). As we saw in
Sections 4.4 and 5.4.4, and Example 6.15, the continuous compensation is approximated by difference equations,
which are the discrete version of differential equations and can be made to duplicate the dynamic behavior of D(s) if
the sample period is short enough. The result of the difference equations is a discrete u(kT) at each sample instant.
This signal is converted to a continuous u(t) by the digital-to-analog (D/A) converter and the hold: the D/A converter
changes the binary number to an analog voltage, and a zero-order hold maintains that same voltage throughout the
sample period. The resulting u(t) is then applied to the actuator in precisely the same manner as the continuous
implementation. There are two basic techniques for finding the difference equations for the digital controller. One
technique, called discrete equivalent, consists of designing a continuous compensation D(s) using methods described
in the previous chapters, then approximating that D(s) using the method of Section 4.4 (Tustin’s Method), or one of
the other methods described in Section 8.3. The other technique is discrete design, described in Section 8.6. Here the
difference equations are found directly without designing D(s) first.

Discrete equivalents

Sample rate selection
The sample rate required depends on the closed-loop bandwidth of the system. Generally, sample rates should be

about 20 times the bandwidth or faster in order to assure that the digital controller will match the performance of
the continuous
The delay due to the hold operation controller. Slower sample rates can be used if some adjustments are made in the



digital controller or some performance degradation is acceptable. Use of the discrete design method described in
Section 8.6 allows for a much slower sample rate if that is desirable to minimize hardware costs; however, best
performance of a digital controller is obtained when the sample rate is greater than 25 times the bandwidth.

Figure 8.2 The delay due to the hold operation

It is worth noting that the single most important impact of implementing a control system digitally is the delay
associated with the hold. Because each value of u(kT) in Fig. 8.1(b) is held constant until the next value is available
from the computer, the continuous value of u(t) consists of steps (see Fig. 8.2) that, on average, are delayed from
u(kT) by T/2 as shown in the figure. If we simply incorporate this T/2 delay into a continuous analysis of the system,
an excellent prediction of the effects of sampling results for sample rates much slower than 20 times bandwidth. We
will discuss this further in Section 8.3.3.

8.2 Dynamic Analysis of Discrete Systems
The z-transform is the mathematical tool for the analysis of linear discrete systems. It plays the same role for discrete
systems that the Laplace transform does for continuous systems. This section will give a short description of the z-
transform, describe its use in analyzing discrete systems, and show how it relates to the Laplace transform.

8.2.1 z-transform
In the analysis of continuous systems, we use the Laplace transform, which is defined by

which leads directly to the important property that (with zero initial conditions)

Relation (8.1) enables us easily to find the transfer function of a linear continuous system, given the differential
equation of that system.

Figure 8.3 A continuous, sampled version of signal f



z-transform
For discrete systems a similar procedure is available. The z-transform is defined by

where f (k) is the sampled version of f (t), as shown in Fig. 8.3, and k = 0,1,2,3,... refers to discrete sample times t0,
t1, t2, t3,.... This leads directly to a property analogous to Eq. (8.1), specifically, that

This relation allows us to easily find the transfer function of a discrete system, given the difference equations of that
system. For example, the general second-order difference equation

can be converted from this form to the z-transform of the variables y(k), u(k),... by invoking Eq. (8.3) once or twice
to arrive at

Discrete transfer function
Equation (8.4) then results in the discrete transfer function

8.2.2 z-transform Inversion
Table 8.1 relates simple discrete-time functions to their z-transforms and gives the Laplace transforms for the same
time functions.

Given a general z-transform, we could expand it into a sum of elementary terms using partial-fraction expansion
(see Appendix A) and find the resulting time series from the table. These procedures are exactly the same as those
used for continuous systems; as with the continuous case, most designers would use a numerical evaluation of the
discrete equations to obtain a time history rather than inverting the z-transform.

A z-transform inversion technique that has no continuous counterpart is called long division. Given the z-transform



we simply divide the denominator into the numerator using long division. The result is a series (perhaps with an
infinite number of terms) in z-1, from which the time series can be found by using Eq. (8.2).

TABLE 8.1

z-transform inversion: long division
For example, a first-order system described by the difference equation

y(k) = ay(k – 1) + u(k)
yields the discrete transfer function

For a unit-pulse input defined by
u(0) = 1,

u(k) = 0 k ≠ 0,
the z-transform is then



so

Therefore, to find the time series, we divide the numerator of Eq. (8.7) by its denominator using long division:

This yields the infinite series

From Eqs. (8.8) and (8.2) we see that the sampled time history of y is

8.2.3 Relationship between s and z
For continuous systems, we saw in Chapter 3 that certain behaviors result from different pole locations in the s-
plane: oscillatory behavior for poles near the imaginary axis, exponential decay for poles on the negative real axis,
and unstable behavior for poles with a positive real part. A similar kind of association would also be useful to know
when designing discrete systems. Consider the continuous signal

f (t) =e–at, t > 0,
which has the Laplace transform



and corresponds to a pole at s = –a. The z-transform of f (kT) is

From Table 8.1 we can see that Eq. (8.9) is equivalent to

which corresponds to a pole at z = e–aT. This means that a pole at s = –a in the s-plane corresponds to a pole at z
= e–aT in the discrete domain. This is true in general:

Relationship between z-plane and s-plane characteristics

The equivalent characteristics in the z-plane are related to those in the s-plane by the expression

where T is the sample period.

Table 8.1 also includes the Laplace transforms, which demonstrates the z = esT relationship for the roots of the
denominators of the table entries for F(s) and F(z).

Figure 8.4 shows the mapping of lines of constant damping ζ and natural frequency ωn from the s-plane to the
upper half of the z-plane, using Eq. (8.10). The mapping has several important features (see Problem 8.4):
1. The stability boundary is the unit circle |z| = 1.
2. The small vicinity around z = +1 in the z-plane is essentially identical to the vicinity around s = 0 in the s-

plane.
3. The z-plane locations give response information normalized to the sample rate, rather than to time as in the s-

plane.
4. The negative real z-axis always represents a frequency of ωs/2, whereωs = 2π/T = sample rate in radians per

second.
5. Vertical lines in the left half of the s-plane (the constant real part or time constant) map into circles within the

unit circle of the z-plane.
6. Horizontal lines in the s-plane (the constant imaginary part of the frequency) map into radial lines in the z-plane.



Figure 8.4

Natural frequency (solid color) and damping loci (light color) in the z-plane; the portion below the Re(z)-axis (not
shown) is the mirror-image of the upper half shown

Nyquist frequency = ωs/2
7. Frequencies greater than ωs/2, called the Nyquist frequency, appear in the z-plane on top of corresponding lower

frequencies because of the circular character of the trigonometric functions imbedded in Eq. (8.10). This overlap is
called aliasing or folding. As a result it is necessary to sample at least twice as fast as a signal’s highest frequency
component in order to represent that signal with the samples. (We will discuss aliasing in greater detail in Section
8.4.3.)
To provide insight into the correspondence between z-plane locations and the resulting time sequence, Fig. 8.5

sketches time responses that would result from poles at the indicated locations. This figure is the discrete companion
of Fig. 3.15.

8.2.4 Final Value Theorem
The Final Value Theorem for continuous systems, which we discussed in Section 3.1.6, states that

as long as all the poles of sX(s) are in the left half-plane (LHP). It is often used to find steady-state system errors
and/or steady-state gains of portions of a control system. We can obtain a similar relationship for discrete systems by
noting that a constant continuous steady-state response is denoted by X(s) = A/s and leads to the multiplication by s
in Eq. (8.11). Therefore, because the constant steady-state response for discrete systems is



Figure 8.5 Time sequences associated with points in the z-plane

Final Value Theorem for discrete systems
the discrete Final Value Theorem is

if all the poles of (1 – z–1)X(z) are inside the unit circle.
For example, to find the DC gain of the transfer function

we let u(k) = 1 for k ≥ 0, so that

and



Applying the Final Value Theorem yields

DC gain
so the DC gain of G(z) is unity. To find the DC gain of any stable transfer function, we simply substitute z = 1 and
compute the resulting gain. Because the DC gain of a system should not change whether represented continuously or
discretely, this calculation is an excellent aid to check that an equivalent discrete controller matches a continuous
controller. It is also a good check on the calculations associated with determining the discrete model of a system.

8.3 Design Using Discrete Equivalents

Stagesin design using
Design by discrete equivalent, sometimes called emulation, is partially described discrete equivalents in Section 4.4
and proceeds through the following stages:
1. Design a continuous compensation as described in Chapters 1 through 7.
2. Digitize the continuous compensation.
3. Use discrete analysis, simulation, or experimentation to verify the design
In Section 4.4 we discussed Tustin’s method for performing the digitization. Armed with an understanding of the z-
transform from Section 8.2, we now develop more digitization procedures and analyze the performance of the
digitally controlled system.

In Section 4.4 we discussed Tustin’s method for performing the digitization. Armed with an understanding of the z-
transform from Section 8.2, we now develop more digitization procedures and analyze the performance of the
digitally controlled system.

Assume that we are given a continuous compensation D(s) as shownin Fig. 8.1(a). We wish to find a set of
difference equations or D(z) for the digital implementation of that compensation in Fig. 8.1(b). First we rephrase the
problem as one of finding the best D(z) in the digital implementation shown in Fig. 8.6(a) to match the continuous
system represented by D(s) in Fig. 8.6(b). In this section we examine and compare three methods for solving this
problem.

It is important to remember, as stated earlier, that these methods are approximations; there is no exact solution for
all possible inputs because D(s) responds to the complete time history of e(t), whereas D(z) has access to only the
samples e(kT). In a sense, the various digitization techniques simply make different assumptions about what happens
to e(t) between the sample points.

Figure 8.6 Comparison of (a) digital and; (b) continuous implementation



Tustin’s method
As discussed in Section 4.4, one digitization technique is to approach the problem as one of numerical integration.
Suppose

which is integration. Therefore,

which can be rewritten as

where T is the sample period.
For Tustin’s method, the task at each step is to use trapezoidal integration, that is, to approximate e(t) by a straight

line between the two samples (Fig. 8.7). Writing u(kT) as u(k) and u(kT – T) as u(k – 1) for short, we convert Eq.
(8.14) to

or, taking the z-transform,

For D(s) =a/(s +a), applying the same integration approximation yields

In fact, substituting

Tustin’s method or the bilinear approximation.
for every occurrence of s in any D(s) yields a D(z) based on the trapezoidal integration Tustin’s method or bilinear

formula. This is called Tustin’s method or the bilinear approximation. Finding approwmation Tustin’s
approximation by hand for even a simple transfer function requires fairly extensive algebraic manipulations. The c2d
function of MATLAB® expedites the process, as shown in the next example.



Figure 8.7 Trapezoidal integration

EXAMPLE 8.1Digital Controller for Example 6.15 Using Tustin’s Approximation
Determine the difference equations to implement the compensation from Example 6.15,

at a sample rate of 25 times bandwidth using Tustin’s approximation. Compare the performance against the
continuous system and the discrete implementation done in Example 6.15 at a slower sample rate.
Solution. The bandwidth (ωBW) for Example 6.15 is approximately 10 rad/sec, as can be deduced by observing that
the crossover frequency (ωC) is approximately 5 rad/sec and noting the relationship between ωc and ωBW in Fig.
6.51. Therefore, the sample frequency should be

ωs = 25 × ωBW = (25)(10) = 250 rad/sec.

Normally, when a frequency is indicated with the units of cycles per second, or Hz, it is given the symbol f, so with
this convention, we have

and the sample period is then
T = 1/fs = 1/40 = 0.025 sec.

The discrete compensation is computed by the MATLAB statement
sysDs = tf(10*[0.5 1],[0.11]);
sysDd = c2d(sysDs,0.025,’tustin’);

which produces

We can then write the difference equation by inspecting Eq. (8.18) to get
u(k) = 0.7778 u(k – 1) + 45.56e(k) – 43.33e(k – 1),

or, indexing all time variables by 1, the equivalent is



Equation (8.19) computes the new value of the control,u(k + 1), given the past value of the control,u(k), and the
new and past values of the error signal,e(k + 1) and e(k).

In principle, the difference equation is evaluated initially with k = 0, then k = 1,2,3,... However, there is usually
no requirement that values for all times be saved in memory. Therefore, the computer need only have variables
defined for the current and past values. The instructions to the computer to implement the feedback loop in Fig.
8.1(b) with the difference equation from Eq. (8.19) would call for a continual looping through the following code:
READ y, r

e =r –y
u = 0.7778up + 45.56 [e – 0.9510ep]

Figure 8.8 Comparison between the digital and the continuous controller step response with a sample rate 25 times
bandwidth: (a) position; (b) control go back to READ when T sec have elapsed since last READ

OUTPUT u
up = u (where up will be the past value for the next loop through)
ep = e

go back to READ when T sec have elapsed since last READ
Use of SIMULINK to compare the two implementations, in a manner similar to that used for Example 6.15, yields

the step responses shown in Fig. 8.8. Note that sampling at 25 times bandwidth causes the digital implementation to
match the continuous one quite well. Also note that the same case with half the sampling rate whose step response is
shown in Fig. 6.59 contains a noticeable degradation in the overshoot (and damping) compared to the continuous
case. Generally speaking, if you want to match a continuous system with a digital approximation of the continuous
compensation, it is wise to sample at approximately 25 times bandwidth or faster.



8.3.1 Matched Pole-Zero (MPZ) Method
Another digitization method, called the matched pole-zero method, is found by extrapolating from the relationship
between the s-and z-planes stated in Eq. (8.10). If we take the z-transform of a sampled function x(k), then the poles
of X (z) are related to the poles of X (s) according to the relation z = esT. The MPZ technique applies the relation z
= esT to the poles and zeros of a transfer function, even though, strictly speaking, this relation applies neither to
transfer functions nor even to the zeros of a time sequence. Like all transfer-function digitization methods, the MPZ
method is an approximation; here the approximation is motivated partly by the fact that z = esT is the correct s to z
transformation for the poles of the transform of a time sequence and partly by the minimal amount of algebra
required to determine the digitized transfer function by hand, so as to facilitate checking the computer calculations.

Because physical systems often have more poles than zeros, it is useful to arbitrarily add zeros at z = –1, resulting
in a 1 + z –1 term in D(z). This causes an averaging of the current and past input values, as in Tustin’s method. We
select the low-frequency gain of D(z) so that it equals that of D(s).

MPZ Method Summary
1. Map poles and zeros according to the relation z = esT.
2. If the numerator is of lower order than the denominator, add powers of (z + 1) to the numerator until numerator

and denominator are of equal order.
3. Set the DC or low-frequency gain of D(z) equal to that of D(s).

The MPZ approximation of

is

where Kd is found by causing the DC gain of D(z) to equal the DC gain of D(s) using the continuous and discrete
versions of the Final Value Theorem. The result is

or

For a D(s) with a higher-order denominator, Step 2 in the method calls for adding the (z + 1) term. For example,



where, after dropping the poles at s = 0 and z = 1,

In the digitization methods described so far, the same power of z appears in the numerator and denominator of
D(z). This implies that the difference equation output at time k will require a sample of the input at time k. For
example, the D(z) in Eq. (8.21) can be written

where α = e–aT and β = e–bT. By inspection we can see that Eq. (8.25) results in the difference equation

EXAMPLE 8.2 Design of a Space Station Attitude Digital Controller Using Discrete Equivalents
A very simplified model of the space station attitude control dynamics has the plant transfer function

Design a digital controller to have a closed-loop natural frequency  rad/sec and a damping ratio ζ = 0.7.

Figure 8.9 Continuous-design definition for Example 8.2

Solution. The first step is to find the proper D(s) for the system defined in Fig. 8.9. After some trial and error, we
find that the specifications can be met by the lead compensation

The root locus in Fig. 8.10 verifies the appropriateness of using Eq. (8.27).
To digitize this D(s), we first need to select a sample rate. For a system with ωn = 0.3 rad/sec, the bandwidth will

also be about 0.3 rad/sec, and an acceptable sample rate would be about 20 times ωn. Thus

ωs = 0.3 × 20 = 6 rad/sec.

A sample rate of 6 rad/sec is about 1 Hertz; therefore, the sample period should be T = 1 sec. The MPZ digitization
of Eq. (8.27), given by Eqs. (8.21) and (8.22), yields



Inspection of Eq. (8.28) gives us the difference equation

Figure 8.10 s-plane locus with respect to K

Figure 8.11 A digital control system that is equivalent to Fig. 8.9

where
e(k) = r(k) – y(k),

and this completes the digital algorithm design. The complete digital system is shown in Fig. 8.11.
The last step in the design process is to verify the design by implementing it on the computer. Figure 8.12

compares the step response of the digital system using T = 1 sec with the step response of the continuous
compensation. Note that there is greater overshoot and a longer settling time in the digital system, which suggests a
decrease in the damping. The average  delay shown in Fig. 8.2 is the cause of the reduced damping. For a better
match to the continuous system, it may be prudent to increase the sample rate. Figure 8.12 also shows the response
with sampling that is twice as fast and it can be seen that it comes much closer to the continuous system. Note that
the discrete compensation needs to be recalculated for this faster sample rate according to Eqs. (8.21) and (8.22).

It is impossible to sample e(k), compute u(k), and then output u(k) all in zero elapsed time; therefore, Eqs. (8.26)
and (8.29) are impossible to implement precisely. However, if the equation is simple enough and/or the computer is



fast enough, a slight computational delay between the e(k) sample and the u(k) output will have a

Figure 8.12 Step responses of the continuous and digital implementations

negligible effect on the actual response of the system compared with that expected from the original design. A rule of
thumb would be to keep the computational delay on the order of  of T. The real-time code and hardware can be
structured so that this delay is minimized by making sure that computations between read A/D and write D/A are
minimized and that u(k) is sent to the ZOH immediately after its calculation.

8.3.2 Modified Matched Pole-Zero (MMPZ) Method
The D(z) in Eq. (8.23) would also result in u(k) being dependent on e(k), the input at the same time point. If the
structure of the computer hardware prohibits this relation or if the computations are particularly lengthy, it maybe
desirable to derive a D(z) that has one less power of z in the numerator than in the denominator; hence, the
computer output u(k) would require only input from the previous time, that is, e(k – 1). To do this, we simply
modify Step 2 in the matched pole-zero procedure so that the numerator is of lower order than the denominator by
1. For example, if

we skip Step 2 to get

To find the difference equation, we multiply the top and bottom of Eq. (8.30) by z–2 to obtain



By inspecting Eq. (8.31) we can see that the difference equation is

In this equation an entire sample period is available to perform the calculation and to output u(k), because it
depends only on e(k – 1). A discrete analysis of this controller would therefore more accurately explain the behavior
of the actual system. However, because this controller is using data that are one cycle old, it will typically not
perform as well as the MPZ controller in terms of the deviations of the desired system output in the presence of
random disturbances.

8.3.3 Comparison of Digital Approximation Methods
A numerical comparison of the magnitude of the frequency response for a firstorder lag,

is made in Fig. 8.13 for the three approximation techniques at two different sample rates. The results of the D(z)
computations used in Fig. 8.13 are shown in Table 8.2.

Figure 8.13 A comparison of the frequency response of three discrete approximations

Figure 8.13 shows that all the approximations are quite good at frequencies below about ¼ the sample rate, or 
. If  is sufficiently larger than the filter break-point frequency—that is, if the sampling is fast enough—the break-
point characteristics of the lag will be accurately reproduced. Tustin’s technique and the MPZ method show a notch
at  because of their zero at z = –1 from the z + 1 term. Other than the large difference at , which is typically
outside the range of interest, the three methods have similar accuracies.

8.3.4 Applicability Limits of the Discrete Equivalent Design Method
If we performed an exact discrete analysis or a simulation of a system and determined the digitization for a wide
range of sample rates, the system would often be unstable for rates slower than approximately 5ωn, and the damping
would be degraded significantly for rates slower than about 10ωn. At sample rates  20ωn (or  20 times the
bandwidth for more complex systems), design by discrete equivalents yields reasonable results, and at sample rates of
30 times the bandwidth or higher, discrete equivalents can be used with confidence.

ZOH transfer function



As shown by Fig. 8.2, the errors come about because the technique ignores the lagging effect of the ZOH which, on
the average, is . A method to account for this is to approximate the  delay with Eq. (5.94) by including a
transfer function approximation for the ZOH:1

TABLE 8.2 Comparing Digital Approximations of D(z) for D(s) = 5/(s + 5)

Once an initial design is carried out and the sampling rate has been selected, we could improve on our discrete
design by inserting Eq. (8.32) into the original plant model and adjusting the D(s) so that a satisfactory response in
the presence of the sampling delay is achieved. Therefore, we see that use of Eq. (8.32) partially alleviates the
approximate nature of using discrete equivalents.

For sample rates slower than about 10ωn it is advisable to analyze the entire system using an exact discrete
analysis. If a discrete analysis shows an unacceptable degradation of performance due to the sampling, the design can
then be refined using exact discrete methods. We cover this approach in Section 8.6.

8.4 Hardware Characteristics
A digital control system includes several unique components not found in continuous control systems: an analog-to-
digital converter is a device to sample the continuous signal voltage from the sensor and to convert that signal to a
digital word; a digital-to-analog converter is a device to convert the digital word from the computer to an analog
voltage, an anti-alias prefilter is an analog device designed to reduce the effects of aliasing, and the computer is the
device where the compensation D(z) is programmed and the calculations are carried out. This section provides a
brief description of each of these.

8.4.1 Analog-to-Digital (A/D) Converters
As discussed in Section 8.1, A/D converters are devices that convert a voltage level from a sensor to a digital word
usable by the computer. At the most basic level, all digital words are binary numbers consisting of many bits that are
set to either 1 or 0. Therefore, the task of the A/D converter at each sample time is to convert a voltage level to the
correct bit pattern and often to hold that pattern until the next sample time.

Of the many A/D conversion techniques that exist, the most common are based on counting schemes or a
successive-approximation technique. In counting methods the input voltage may be converted to a train of pulses
whose frequency is proportional to the voltage level. The pulses are then counted over a fixed period using a binary



counter, thus resulting in a binary representation of the voltage level. A variation on this scheme is to start the count
simultaneously with a voltage that is linear in time and to stop the count when the voltage reaches the magnitude of
the input voltage to be converted.

The successive-approximation technique tends to be much faster than the counting methods. It is based on
successively comparing the input voltage to reference levels representing the various bits in the digital word. The
input voltage is first compared with a reference value that is half the maximum. If the input voltage is greater, the
most significant bit is set, and the signal is then compared with a reference level that is ¾ the maximum to
determine the next bit, and so on. One clock cycle is required to set each bit, so an n-bit converter would require n
cycles. At the same clock rate a counter-based converter might require as many as 2n cycles, which would usually be
much slower.

With either technique, the greater the number of bits, the longer it will take to perform the conversion. The price
of A/D converters generally goes up with both speed and bit size. In 2009, a 14-bit (resolution of 0.006%) converter
with a high performance capability of a 10-n sec conversion time (100 million samples per sec) sold for
approximately $25 while a 12-bit (0.025%) converter with a good performance capability of a 1 μ sec conversion
time (1 million samples per sec) sold for approximately $4. An 8-bit (0.4% resolution) with a 1 μ sec conversion
time sold for approximately $1. The performance has been improving considerably every year.

If more than one channel of data needs to be sampled and converted to digital words, it is usually accomplished by
use of a multiplexer rather than by multiple A/D converters. The multiplexer sequentially connects the converter into
the channel being sampled.

8.4.2 Digital-to-Analog (D/A) Converters
D/A converters, as mentioned in Section 8.1, are used to convert the digital words from the computer to a voltage
level and are sometimes referred to as Sample and Hold devices. They provide analog outputs from a computer for
driving actuators or perhaps a recording device such as an oscilloscope or strip-chart recorder. The basic idea behind
their operation is that the binary bits cause switches (electronic gates) to open or close, thus routing the electric
current through an appropriate network of resistors to generate the correct voltage level. Because no counting or
iteration is required for such converters, they tend to be much faster than A/D converters. In fact, A/D converters that
use the successive-approximation method of conversion include D/A converters as components.

8.4.3 Anti-Alias Prefilters
An analog anti-alias prefilter is often placed between the sensor and the A/D converter. Its function is to reduce the
higher-frequency noise components in the analog signal in order to prevent aliasing, that is, having the noise be
modulated to a lower frequency by the sampling process.

Analog prefilters reduce aliasing
An example of aliasing is shown in Fig. 8.14, where a 60 Hertz oscillatory signal is being sampled at 50 Hertz. The

figure shows the result from the samples as a 10 Hertz signal and also shows the mechanism by which the frequency
of the signal is aliased from 60 to 10 Hertz. Aliasing will occur any time the sample rate is not at least twice as fast
as any of the frequencies in the signal being sampled. Therefore, to prevent aliasing of a 60 Hertz signal, the sample
rate would have to be faster than 120 Hertz, clearly much higher than the 50 Hertz rate in the figure.



Nyquist-Shannon sampling theorem
Aliasing is one of the consequences of the sampling theorem of Nyquist and Shannon. Their theorem basically

states that, for the signal to be accurately reconstructed from the samples, it must have no frequency component
greater than half the sample rate ( ). Another consequence of their theorem is that the highest frequency that can
be unambiguously represented by discrete samples is the Nyquist rate of , an idea we discussed in Section 8.2.3.

Figure 8.14 An example of aliasing

The consequence of aliasing on a digital control system can be substantial. In a continuous system, noise
components with a frequency much higher than the control-system bandwidth normally have a small effect because
the system will not respond at the high frequency. However, in a digital system, the frequency of the noise can be
aliased down to the vicinity of the system bandwidth so that the closed-loop system would respond to the noise.
Thus, the noise in a poorly designed digitally controlled system could have a substantially greater effect than if the
control had been implemented using analog electronics.

The solution is to place an analog prefilter before the sampler. In many cases a simple first-order low-pass filter
will do—that is,

where the break point a is selected to be lower than  so that any noise present with frequencies greater than  is
attenuated by the prefilter. The lower the breakpoint frequency selected, the more the noise above  is attenuated.
However, too low a break point may force the designer to reduce the control system’s bandwidth. The prefilter does
not completely eliminate the aliasing; however, through judicious choice of the prefilter break point and the sample
rate, the designer has the ability to reduce the magnitude of the aliased noise to some acceptable level.

8.4.4 The Computer
The computer is the unit that does all the computations. Most digital controllers used today are built around a
microcontroller that contains both a microprocessor and most of the other functions needed, including the A/D and
D/A conversion. For development purposes in a laboratory, a digital controller could be a desktop-sized workstation
or a PC. The relatively low cost of microprocessor technology has accounted for the large increase in the use of
digital control systems, which started in the 1980s and continues into the 2000s.

The computer consists of a central processor unit (CPU), which does the computations and provides the system



logic; a clock to synchronize the system; memory modules for data and instruction storage; and a power supply to
provide the various required voltages. The memory modules come in three basic varieties:
1. Read-only memory (ROM) is the least expensive, but after its manufacture its contents cannot be changed. Most of

the memory in products manufactured in quantity is ROM. It retains its stored values when power is removed.
2. Random-access memory (RAM) is the most expensive, but its values can be changed by the CPU. It is required

only to store the values that will be changed during the control process and typically represents only a small
fraction of the total memory of a developed product. It loses the values in memory when power is removed.

3. Programmable read-only memory (EPROM) is a ROM whose values can be changed by a technician using a special
device. It is typically used during product development to enable the designer to try different algorithms and
parameter values. It retains its stored values when power is removed. In some products, it is useful to have a few
of the stored quantities in EPROMs so that individual calibrations can be carried out for each unit.

Microprocessors for control applications generally come with a digital word size of 8, 16, or 32 bits, although
some have been available with 12 bits. Larger word sizes give better accuracy, but at an increase in cost. The most
economical solution is often to use an 8-bit microprocessor, but to use two digital words to store one value (double
precision) in the areas of the controller that are critical to the system accuracy. Many digital control systems use
computers originally designed for digital signal-processing applications, so-called DSP chips.

8.5 Sample-Rate Selection
The selection of the best sample rate for a digital control system is the result of a compromise of many factors.
Sampling too fast can cause a loss of accuracy while the basic motivation for lowering the sample rate ωs is cost. A
decrease in sample rate means more time is available for the control calculations; hence slower computers can be
used for a given control function or more control capability can be achieved from a given computer. Either way, the
cost per function is lowered. For systems with A/D converters, less demand on conversion speed will also lower cost.
These economic arguments indicate that the best engineering choice is the slowest possible sample rate that still
meets all performance specifications.

There are several factors that could provide a lower limit on the acceptable sample rate:
1. tracking effectiveness as measured by closed-loop bandwidth or by time-response requirements, such as rise time

and settling time;
2. regulation effectiveness as measured by the error response to random plant disturbances;
3. error due to measurement noise and the associated prefilter design methods.

A fictitious limit occurs when using discrete equivalents. The inherent approximation in the method may give rise
to decreased performance or even system instabilities as the sample rate is lowered. This can lead the designer to
conclude that a faster sample rate is required. However, there are two solutions:
1. sample faster, and
2. recognize that the approximations are invalid and refine the design with a direct digital-design method described

in the subsequent sections.
The ease of designing digital control systems with fast sample rates and the low cost of very capable computers

often drives the designer to select a sample rate that is 40 × ωBW or higher. For computers with fixed-point



arithmetic, very fast sample rates can lead to multiplication errors that have the potential to produce significant
offsets or limit cycles in the control (see Franklin et al., 1998).

8.5.1 Tracking Effectiveness
An absolute lower bound on the sample rate is set by a specification to track a command input with a certain
frequency (the system bandwidth). The sampling theorem (see Section 8.4.3 and Franklin et al., 1998) states that in
order to reconstruct an unknown, band-limited, continuous signal from samples of that signal, we must sample at
least twice as fast as the highest frequency contained in the signal. Therefore, in order for a closed-loop system to
track an input at a certain frequency, it must have a sample rate twice as fast; that is, ωs must be at least twice the
system bandwidth (ωs ⇒ 2 × ωBW). We also saw from the results of mapping the s-plane into the z-plane (z = esT)
that the highest frequency that can be represented by a discrete system is , which supports the conclusion of the
theorem.

It is important to note the distinction between the closed-loop bandwidth M bwand the highest frequency in the
open-loop plant dynamics, because the two frequencies can be quite different. For example, closed-loop bandwidths
can be an order of magnitude less than open-loop modes of resonances for some control problems. Information
concerning the state of the plant resonances for purposes of control can be extracted from sampling the output
without satisfying the sampling theorem because some a priori knowledge concerning these dynamics (albeit
imprecise) is available, and the system is not required to track these frequencies. Thus a priori knowledge of the
dynamic model of the plant can be included in the compensation in the form of a notch filter.

The closed-loop-bandwidth limitation provides the fundamental lower bound on the sample rate. In practice,
however, the theoretical lower bound of sampling at twice the bandwidth of the reference input signal would not be
judged sufficient in terms of the quality of the desired time responses. For a system with a rise time on the order of 1
sec (thus yielding a closed-loop bandwidth on the order of 0.5 Hertz), it is reasonable to insist on a sampling rate of
10 to 20 Hertz, which is a factor of 20 to 40 times ωBW. The purposes of choosing a sample rate much greater than
the bandwidth are to reduce the delay between a command and the system response to the command and also to
smooth the system output to the control steps coming out of the ZOH.

8.5.2 Disturbance Rejection
Disturbance rejection is an important—if not the most important—aspect of any control system. Disturbances enter a
system with various frequency characteristics ranging from steps to white noise. For the purpose of sample-rate
selection, the higher-frequency random disturbances are the most influential.

The ability of the control system to reject disturbances with a good continuous controller represents the lower
bound on the error response that we can hope for when implementing the controller digitally. In fact, some
degradation relative to the continuous design must occur because the sampled values are slightly out of date at all
times except precisely at the sampling instants. However, if the sample rate is very fast compared with the
frequencies contained in the noisy disturbance, we should expect no appreciable loss from the digital system as
compared with the continuous controller. At the other extreme, if the sample rate is very slow compared with the
characteristic frequencies of the noise, the response of the system because of noise is essentially the same as the
response we would get if the system had no control at all. The selection of a sample rate will place the response
somewhere in between these two extremes. Thus, the impact of the sample rate on the ability of the system to reject
disturbances may be very important to consider when choosing the sample rate.



Although the best choice of sample rate in terms of the ωBW multiple is dependent on the frequency characteristics
of the noise and the degree to which random disturbance rejection is important to the quality of the controller,
sample rates on the order of 25 times ωBW or higher are typical.

8.5.3 Effect of Anti-Alias Prefilter
Digital control systems with analog sensors typically include an analog anti-alias prefilter between the sensor and the
sampler as described in Section 8.4.3. The prefilters are low-pass, and the simplest transfer function is

so that the noise above the prefilter break point a is attenuated. The goal is to provide enough attenuation at half the
sample rate ( ) that the noise above , when aliased into lower frequencies by the sampler, will not be
detrimental to control system performance.

A conservative design procedure is to select ωs and the break point to be sufficiently higher than the system
bandwidth that the phase lag from the prefilter does not significantly alter the system stability. This would allow the
prefilter to be ignored in the basic control system design. Furthermore, for a good reduction in the high-frequency
noise at , we choose a sample rate that is about 5 or 10 times higher than the prefilter break point. The
implication of this prefilter design procedure is that sample rates need to be on the order of 30 to 100 times faster
than the system bandwidth. Using this conservative design procedure, the prefilter influence will likely provide the
lower bound on the selection of the sample rate.

An alternative design procedure is to allow significant phase lag from the prefilter at the system bandwidth. This
requires us to include the analog prefilter characteristics in the plant model when carrying out the control design. It
allows the use of lower sample rates, but at the possible expense of increased complexity in the compensation
because additional phase lead must be provided to counteract the prefilter’s phase lag. If this procedure is used and
low prefilter break points are allowed, the effect of sample rate on sensor noise is small, and the prefilter essentially
has no effect on the sample rate.

It may seem counterintuitive that placing a lag (the analog prefilter) in one portion of the controller and a
counteracting lead [extra lead in D(z)] in another portion of the controller provides a net positive effect on the
overall system. The net gain is a result of the fact that the lag is in the analog part of the system where high
frequencies can exist. The counteracting lead is in the digital part of the system where frequencies above the Nyquist
rate do not exist. The result is a reduction in the high frequencies before the sampling which are not reamplified by
the counteracting digital lead, thus producing net reduction in high frequencies. Furthermore, these high frequencies
are particularly insidious with a digital controller because of the aliasing that would result from the sampling.

8.5.4 Asynchronous Sampling
As noted in the previous paragraphs, divorcing the prefilter design from the control-law design may require using a
faster sample rate than otherwise. This same result may show up in other types of architecture. For example, a smart
sensor with its own computer running asynchronously relative to the primary control computer will not be amenable
to direct digital design because the overall system transfer function depends on the phasing between the smart sensor
and the primary digital controller. This situation is similar to that of the digitization errors discussed in Section 8.6.
Therefore, if asynchronous digital subsystems are present, sample rates on the order of 20 × ωBW or slower in any



module should be used with caution and the system performance checked through simulation or experiment.

Δ 8.6 Discrete Design
It is possible to obtain an exact discrete model that relates the samples of the continuous plant y(k) to the input
control sequence u(k). This plant model can be used as part of a discrete model of the feedback system including the
compensation D(z). Analysis and design using this discrete model is called discrete design or, alternatively, direct
digital design. The following subsections will describe how to find the discrete plant model (Section 8.6.1), what the
feedback compensation looks like when designing with a discrete model (Sections 8.6.2 and 8.6.3), and how the
design process is carried out (Section 8.6.4).

8.6.1 Analysis Tools

The exact discrete
The first step in performing a discrete analysis of a system with some discrete elements is to find the discrete transfer
function of the continuous portion. For a system similar to that shown in Fig. 8.1(b), we wish to find the transfer
function between u(kT) and y(kT). Unlike the cases discussed in the previous sections, there is an exact discrete
equivalent for this system, because the ZOH precisely describes what happens between samples of u(kT) and the
output y(kT) is dependent only on the input at the sample times u(kT).

Figure 8.15 Comparison of (a) a mixed control system; and (b) its pure discrete equivalent

For a plant described by G(s) and preceded by a ZOH, the discrete transfer function is

where  is the z-transform of the sampled time series whose Laplace transform is the expression for F(s), given
on the same line in Table 8.1. Equation (8.33) has the term G(S)/s because the control comes in as a step input from
the ZOH during each sample period. The term 1 – z–1 reflects the fact that a one-sample duration step can be thought
of as an infinite duration step followed by a negative step one cycle delayed. For a more complete derivation, see
Franklin et al. (1998). Equation (8.33) allows us to replace the mixed (continuous and discrete) system shown in Fig.
8.15(a) with the equivalent pure discrete system shown in Fig. 8.15(b).

The analysis and design of discrete systems is very similar to the analysis and design of continuous systems; in fact,
all the same rules apply. The closed-loop transfer function of Fig. 8.15(b) is obtained using the same rules of block-
diagram reduction—that is,



To find the characteristic behavior of the closed-loop system, we need to find the factors in the denominator of Eq.
(8.34)—that is, the roots of the discrete characteristic equation

1 +D(z)G(z) = 0.
The root-locus techniques used in continuous systems to find roots of a polynomial in s apply equally well and
without modification to the polynomial in z; however, the interpretation of the results is quite different, as we saw in
Fig. 8.4. A major difference is that the stability boundary is now the unit circle instead of the imaginary axis.

EXAMPLE 8.3 Discrete Root Locus
For the case in which G(s) in Fig. 8.15(a) is

and D(z) = K, draw the root locus with respect to K, and compare your results with a root locus of a continuous
version of the system. Discuss the implications of your loci.

Figure 8.16 Root locifor (a) the z-plane; and (b) the s-plane

Solution. It follows from Eq. (8.33) that

where

To analyze the performance of the closed-loop system, standard root-locus rules apply. The result is shown in Fig.
8.16(a) for the discrete case and in Fig. 8.16(b) for the continuous case. In contrast to the continuous case, in which
the system remains stable for all values of K, in the discrete case the system becomes oscillatory with decreasing



damping ratio as z goes from 0 to – 1 and eventually becomes unstable. This instability is due to the lagging effect of
the ZOH, which is properly accounted for in the discrete analysis.

8.6.2 Feedback Properties
In continuous systems we typically start the design process by using the following basic design elements:
proportional, derivative, or integral control laws, or some combination of these, sometimes with a lag included. The
same ideas can be used in discrete design. Alternatively, the D(z) resulting from the digitization of a continuously
designed D(s) will produce these basic design elements, which will then be used as a starting point in a discrete
design. The discrete control laws are as follows:

Discrete control laws
Proportional

Derivative

for which the transfer function is

Integral

for which the transfer function is

Lead Compensation
The examples in Section 8.3 showed that a continuous lead compensation leads to difference equations of the form

for which the transfer function is

8.6.3 Discrete Design Example



Digital control design consists of using the basic feedback elements of Eqs. (8.35) to (8.41) and iterating on the design
parameters until all specifications are met.

EXAMPLE 8.4 Direct Discrete Design of the Space Station Digital Controller
Design a digital controller to meet the same specifications as in Example 8.2 using discrete design.

Solution. The discrete model of the  plant, preceded by a ZOH, is found through Eq. (8.33) to be

which, with T = 1 sec, becomes

Proportional feedback in the continuous case yields pure oscillatory motion, so in the discrete case we should expect
even worse results. The root locus in Fig. 8.17 verifies this. For very low values of K (where the locus represents roots
at very low frequencies compared to the sample rate), the locus is tangent to the unit circle (  indicating pure
oscillatory motion), thus matching the proportional continuous design.

For higher values of K, Fig. 8.17 shows that the locus diverges into the unstable region because of the effect of the
ZOH and sampling. To compensate for this, we will add a derivative term to the proportional term so that the
control law is

Figure 8.17 z-plane root locus for a  plant with proportional feedback

which yields compensation of the form

where the new K and a replace the K and T D in Eq. (8.42). Now the task is to find the values of a and K that yield



good performance. The specifications for the design are that ωn = 0.3 rad/sec and ζ = 0.7. Figure 8.4 indicates that
this s-plane root location maps into a desired z-plane location of

z = 0.78 ± 0.18;.
Figure 8.18 is the locus with respect to α for a = 0.85. The location of the zero (at z = 0.85) was determined by
trial and error until the locus passed through the desired z-plane location. The value of the gain when the locus
passes through z = 0.78±0.18j is K = 0.374. Equation (8.43) now becomes

Normally, it is not particularly advantageous to match specific z-plane root locations; rather it is necessary only to
pick K and a (or TD) to obtain acceptable z-plane roots, a much easier task. In this example, we want to match a
specific location only so that we can compare the result with the design in Example 8.2.

The control law that results is

or

which is similar to the control equation (8.29) obtained previously.

The controller in Eq. (8.45) basically differs from the continuously designed controller [Eq. (8.29)] only in the
absence of the u(k – 1) term. The u(k – 1) term in Eq. (8.29) results from the lag term (s + b) in the compensation
[Eq. (8.27)]. The lag term is typically included in analog controllers both because it supplies noise attenuation and
because pure analog differentiators are difficult to build. Some equivalent lag in discrete design naturally appears as
a pole at z = 0 (see Fig. 8.18) and represents the one-sample delay in computing the derivative by a first difference.
For more noise attenuation, we could move the pole to the right of z = 0, thus resulting in less derivative action and
more smoothing, the same trade-off that exists in continuous control design.



Figure 8.18 z-plane locus for the  plant with D(z) = K (z – 0.85)/z

8.6.4 Discrete Analysis of Designs
Any digital controller, whether designed by discrete equivalents or directly in the z-plane, can be analyzed using
discrete analysis, which consists of the following steps:
1. Find the discrete model of the plant and ZOH using Eq. (8.33).
2. Form the feedback system including D(z).
3. Analyze the resulting discrete system.

We can determine the roots of the system using a root locus, as described in Section 8.6.3, or we can determine the
time history (at the sample instants) of the discrete system.

EXAMPLE 8.5 Damping and Step Response in Digital versus Continuous Design
Use discrete analysis to determine the equivalent s-plane damping and the step responses of the digital designs in
Examples 8.2 and 8.4, and compare your results with the damping and step response of the continuous case in
Example 8.2.
Solution. The MATLAB statements to evaluate the damping and step response of the continuous case in Example 8.2
are

To analyze the digital control cases, the model of the plant preceded by the ZOH is found using the statements
T=1;



Analysis of the digital control designed using the discrete equivalent [Eq. (8.29)] in Example 8.2 is performed by
the statements

Likewise, the discrete design of D(z) from Eq. (8.44) can be analyzed by the same sequence.
The resulting step responses are shown in Fig. 8.19. The calculated damping ζ and complex root natural

frequencies of the closed-loop systems are

The figure shows increased overshoot for the discrete equivalent method that occurred because of the decreased
damping of that case. Very little increased overshoot occurred in the discrete design, because that compensation was
adjusted specifically so that the equivalent s-plane damping of the discrete system was approximately at the desired
damping value of ζ = 0.7.

Figure 8.19 Step response of the continuous and digital systems in Examples 8.2 and 8.4

Although the analysis showed some differences between the performance of the digital controllers designed by the
two methods, neither the performance nor the control equations [Eqs. (8.29) and (8.45)] are very different. This
similarity results because the sample rate is fairly fast compared with ωn—that is, . If we were to
decrease the sample rate, the numerical values in the compensations would become increasingly different and the
performance would degrade considerably for the discrete equivalent case.



As a general rule, discrete design should be used if the sampling frequency is slower than 10 × ωn. At the very
least, a discrete equivalent design with slow sampling (ωn 10 × ωn) should be verified by a discrete analysis or by
simulation, as described in Section 4.4, and the compensation adjusted if needed. A simulation of a digital control
system is a good idea in any case. If it properly accounts for all delays and possibly asynchronous behavior of
different modules, it may expose instabilities that are impossible to detect using continuous or discrete linear
analysis. A more complete discussion regarding the effects of sample rate on the design is contained in Section 8.5.

8.7 Historical Perspective
One of the earliest examples of actual control of systems based on sampled data came with the use of search RADAR
in WWII. In that case, the position of the target was available only once each revolution of the antenna. The theory of
sampled data systems was developed by the mathematician W. Hurewicz2 and published as a chapter in H. M.
James, N. B. Nichols, and R. S. Phillips, Theory of Servomechanisms, vol. 25, Rad Lab Series, New York, McGraw
Hill, 1947. The historical perspective for Chapter 5 discussed the introduction of computers for engineers performing
design activities. The possibility of using computers for direct digital control motivated the continuation of work on
sampled data systems during the 1950s, especially at Columbia University under Professor J. R. Ragazzini. That work
was published in J. R. Ragazzini and G. F. Franklin,Sampled-Data Control Systems, New York, McGraw Hill, 1958.
Early applications were in the process control industry where the relatively large and expensive computers available
at the time could be justified. Professor Karl Astrom introduced direct digital control of a paper mill in Sweden in
the early 1960s.

In 1961, when President Kennedy announced the goal of sending a man to the moon, there were no digital
autopilots for aerospace vehicles. In fact, small digital computers suitable for implementing control systems were
virtually nonexistent. The team at the MIT Draper Labs (called the Instrumentation Lab at that time) in charge of
designing and building the Apollo control systems initially designed the control systems for the lunar and command
modules with conventional analog electronics. However, they discovered that those systems would be too heavy and
complex for the mission. So the decision was made to design and build the first aerospace digital control system. Bill
Widnall, Dick Battin, and Don Fraser were all key players in the successful design and execution of that system for
the Apollo flights in late 1960s. The group went on to demonstrate a digital autopilot for NASA’s F-8 in the 1970s,
and digital autopilots went on to become dominant over the 1980s and beyond. In fact, with the introduction of
inexpensive digital signal processors, most control systems of any kind became digital by the turn of the century and,
today, very few control systems are being implemented with analog electronics. This evolution has had an effect on
the training for controls engineers. In the past, the ability to design and build the specialized circuitry for analog
electronic controls caused many controls engineers to have an Electrical Engineering background. Now, with easily
programmable digital computers being readily available, the background of controls engineers tends more toward
the specialties that are most familiar with the systems being controlled.

SUMMARY
• The simplest and most expedient design technique is to transform a continuous controller design to its discrete

form—that is, to use its discrete equivalent.
• Design using discrete equivalents entails (a) finding the continuous compensation D(s) using the ideas in Chapters 1

to 7, and (b) approximating D(s) with difference equations using Tustin’s method or the matched-pole–zero



method.
• In order to analyze a discrete controller design, or any discrete system, the z-transform is used to determine the

system’s behavior. The z-transform of a time sequence f (k) is given by

and has the key property that

This property allows us to find the discrete transfer function of a difference equation, which is the digital equivalent
of a differential equation for continuous systems. Analysis using z-transforms closely parallels that using Laplace
transforms.
• Normally z-transforms are found using the computer (MATLAB) or looking up in Table 8.1.
• The discrete Final Value Theorem is

provided that all poles of (1 – Z–1)X(Z) are inside the unit circle.
• For a continuous signal f(t) whose samples aref (k), the poles of F(s) are related to the poles of F(z) by

z = esT.
• The following are the most common discrete equivalents:

1. Tustin’s approximation:

2. the matched pole–zero approximation:
• Map poles and zeros by z = esT.
• Add powers of z + 1 to the numerator until numerator and denominator are of equal order or the numerator

is one order less than the denominator.
• Set the low-frequency gain of D(z) equal to that of D(s).

• If designing by discrete equivalents, a minimum sample rate of 20 times the bandwidth is recommended.
Typically, even faster sampling is useful for best performance.

• Analog prefilters are commonly placed before the sampler in order to attenuate the effects of high-frequency
measurement noise. A sampler aliases all frequencies in the signal that are greater than half the sample frequency
to lower frequencies; therefore, prefilter break points should be selected so that no significant frequency content
remains above half the sample rate.

• The discrete model of the continuous plant G(s) preceded by a ZOH is



The discrete plant model plus the discrete controller can be analyzed using the z-transform or simulated using
SIMULINK.

• Discrete design is an exact design method and avoids the approximations inherent with discrete equivalents. The
design procedure entails (a) finding the discrete model of the plant G(s), and (b) using the discrete model to design
the compensation directly in its discrete form. The design process is more cumbersome than discrete equivalent
design and requires that a sample rate be selected before commencing the design. A practical approach is to
commence the design using discrete equivalents, then tune up the result using discrete design.

• Discrete design using G(z) closely parallels continuous design, but the stability boundary and interpretation of z-
plane root locations are different. Figure 8.5 summarizes the response characteristics.

• If using discrete design, system stability can theoretically be assured when sampling at a rate as slow as twice the
bandwidth. However, for good transient performance and random disturbance rejection, best results are obtained
by sampling at 10 times the closed-loop bandwidth or faster. In some cases with troublesome vibratory modes, it is
sometimes useful to sample more than twice as fast as the vibratory mode.

REVIEW QUESTIONS
1. What is the Nyquist rate? What are its characteristics?
2. Describe the discrete equivalent design process.
3. Describe how to arrive at a D(z) if the sample rate is 30 × BW.
4. For a system with a 1 rad/sec bandwidth, describe the consequences of various sample rates.
5. Give two advantages for selecting a digital processor rather than analog circuitry to implement a controller.
6. Give two disadvantages for selecting a digital processor rather than analog circuitry to implement a controller.
Δ7. Describe how to arrive at a D(z) if the sample rate is 5 × ωBW.

PROBLEMS
Problems for Section 8.2: Dynamic Analysis of Discrete Systems
8.1 The z-transform of a discrete-time filter h(k) at a 1 Hertz sample rate is

(a) Let u(k) and y(k) be the discrete input and output of this filter. Find a difference equation relating u(k) and
y(k).

(b) Find the natural frequency and damping coefficient of the filter’s poles.
(c) Is the filter stable?

8.2 Use the z-transform to solve the difference equation

y(k) – 3 y(k – 1) + 2 y(k – 2) = 2 u(k) – 1) – 2 u(k) – 2),



where

8.3 The one-sided z-transform is defined as

(a) Show that the one-sided transform of .
(b) Use the one-sided transform to solve for the transforms of the Fibonacci numbers generated by the difference

equation u(k) + 2) = u(k) + 1) + u(k) . Let u( 0) = u(1) = 1. [Hint: You will need to find a general
expression for the transform of f(k + 2) in terms of the transform of f(k).]

(c) Compute the pole locations of the transform of the Fibonacci numbers.
(d) Compute the inverse transform of the Fibonacci numbers.

(e) Show that, if u(k) represents the k th Fibonacci number, then the ratio u(k) + 1)/u(k) will approach .
This is the golden ratio valued so highly by the Greeks.

8.4 Prove the seven properties of the s-plane-to-z-plane mapping listed in Section 8.2.3.
Problems for Section 8.3: Design Using Discrete Equivalents
8.5 A unity feedback system has an open-loop transfer function given by

The following lag compensator added in series with the plant yields a phase margin of 50°:

Using the matched pole–zero approximation, determine an equivalent digital realization of this compensator.
8.6 The following transfer function is a lead network designed to add about 60° of phase at ω1 = 3 rad/sec:

(a) Assume a sampling period of T = 0.25 sec, and compute and plot in the z-plane the pole and zero locations
of the digital implementations of H(s) obtained using (1) Tustin’s method and (2) pole–zero mapping. For each
case, compute the amount of phase lead provided by the network at Z1 = ejw1T.

(b) Using a log–log scale for the frequency range ω = 0.1 to ω = 100 rad/sec, plot the magnitude Bode plots for
each of the equivalent digital systems you found in part (a), and compare with H(s). (Hint: Magnitude Bode
plots are given by 

8.7 The following transfer function is a lag network designed to introduce a gain attenuation of 10(–20 db) at = 3



rad/sec:

(a) Assume a sampling period of T = 0.25 sec, and compute and plot in the z-plane the pole and zero locations
of the digital implementations of H(s) obtained using (1) Tustin’s method and (2) pole–zero mapping. For each
case, compute the amount of gain attenuation provided by the network at Z1 = ejω1T

(b) For each of the equivalent digital systems in part (a), plot the Bode magnitude curves over the frequency range
ω = 0.01 to 10 rad/sec.

Problem for Section 8.5: Sample Rate Selection
8.8 For the system shown in Fig. 8.20, find values for K, TD, and TI so that the closed-loop poles satisfy ζ > 0.5 and
ωn > 1 rad/sec. Discretize the PID controller using
(a) Tustin’s method
(b) the matched pole–zero method

Use MATLAB to simulate the step response of each of these digital implementations for sample times of T = 1,
0.1, and 0.01 sec.

Figure 8.20 Control system for Problem 8.8

Problems for Section 8.6: Discrete Design
8.9 Consider the system configuration shown in Fig. 8.21, where

(a) Find the transfer function G(z) for T = 1 assuming the system is preceded by a ZOH.
(b) Use MATLAB to draw the root locus of the system with respect to K.
(c) What is the range of K for which the closed-loop system is stable?
(d) Compare your results of part (c) with the case in which an analog controller is used (that is, where the

sampling switch is always closed). Which system has a larger allowable value of K?
(e) Use MATLAB to compute the step response of both the continuous and discrete systems with K chosen to yield

a damping factor of = 0.5 for the continuous case.

Figure 8.21 Control system for Problem 8.9



8.10 Single-Axis Satellite Attitude Control: Satellites often require attitude control for proper orientation of antennas
and sensors with respect to Earth. Figure 2.7 shows a communication satellite with a three-axis attitude-control
system. To gain insight into the three-axis problem, we often consider one axis at a time. Figure 8.22 depicts this
case, where motion is allowed only about an axis perpendicular to the page. The equations of motion of the
system are given by

 = MC + MD

where
   I = moment of inertia of the satellite about its mass center,
MC = control torque applied by the thrusters,
MD = disturbance torques,

Figure 8.22 Satellite control schematic for Problem 8.10

θ = angle of the satellite axis with respect to an inertial reference with no angular acceleration.
We normalize the equations of motion by defining

and obtain
 = u + wd

Taking the Laplace transform yields

which, with no disturbance, becomes



In the discrete case in which u is applied through a ZOH, we can use the methods described in this chapter to obtain
the discrete transfer function

(a) Sketch the root locus of this system by hand, assuming proportional control.
(b) Draw the root locus using MATLAB to verify the hand sketch.
(c) Add discrete velocity feedback to your controller so that the dominant poles correspond to ζ = 0.5 and ωn =

3π/(10T).
(d) What is the feedback gain if T = 1 sec? If T = 2 sec?
(e) Plot the closed-loop step response and the associated control time history for T = 1 sec.

8.11 It is possible to suspend a mass of magnetic material by means of an electromagnet whose current is controlled
by the position of the mass (Woodson and Melcher, 1968). The schematic of a possible setup is shown in Fig.
8.23, and a photo of a working system at Stanford University is shown in Fig. 9.2. The equations of motion are

m  = –mg + f(x,I),
where the force on the ball due to the electromagnet is given by f (x, I). At equilibrium the magnet force balances the
gravity force. Suppose we let I0 represent the current at equilibrium. If we write I = I0 + i, expand f about x = 0
and I = I0, and neglect higher-order terms, we obtain the linearized equation

Reasonable values for the constants in Eq. (8.46) are m = 0.02 kg, k1 = 20 N/m, and k2 = 0.4 N/A.
(a) Compute the transfer function from I to x, and draw the (continuous) root locus for the simple feedback i =

–Kx.

Figure 8.23 Schematic of magnetic levitation device for Problems 8.11

(b) Assume that the input is passed through a ZOH, and let the sampling period be 0.02 sec. Compute the transfer
function of the equivalent discrete-time plant.



(c) Design a digital control for the magnetic levitation device so that the closed-loop system meets the following
specifications: tr ≤ 0.1 sec, ts ≤0.4 sec, and overshoot ≤ 20%.

(d) Plot a root locus with respect to k1 for your design, and discuss the possibility of using your closed-loop
system to balance balls of various masses.

(e) Plot the step response of your design to an initial disturbance displacement on the ball, and show both x and
the control current i. If the sensor can measure x only over a range of ±1/4 cm and the amplifier can provide a
current of only 1 A, what is the maximum displacement possible for control, neglecting the nonlinear terms in
f(x, I)?

8.12 Repeat Problem 5.27 in Chapter 5 by constructing discrete root loci and performing the designs directly in the z-
plane. Assume that the output y is sampled, the input u is passed through a ZOH as it enters the plant, and the
sample rate is 15 Hz.

8.13 Design a digital controller for the antenna servo system shown in Figs. 3.61 and 3.62 and described in Problem
3.31. The design should provide a step response with an overshoot of less than 10% and a rise time of less than
80 sec.

(a) What should the sample rate be?
(b) Use discrete equivalent design with the matched pole–zero method. (c) Use discrete design and the z-plane

root locus.
8.14 The system

is to be controlled with a digital controller having a sampling period of T = 0.1 sec. Using a z-plane root locus,
design compensation that will respond to a step with a rise time tr ≤ 1 sec and an overshoot Mp ≤ 5%. What can be
done to reduce the steady-state error?
8.15 The transfer function for pure derivative control is

where the pole at z = 0 adds some destabilizing phase lag. Can this phase lag be removed by using derivative
control of the form

Support your answer with the difference equation that would be required and discuss the requirements to implement
it.



1 Or other Padé approximate as discussed in Section 5.6.3
2 Hurewicz died in 1956 falling off a ziggurat (a Mexican pyramid) on a conference outing at the International Symposium on algebraic topology in
Mexico. It is suggested that he was: ‘... a paragon of absentmindedness, a failing that probably led to his death.’



9 Nonlinear Systems

Perspective on Nonlinear Systems
All systems are nonlinear, especially if large signals are considered. On the other hand, almost all physical systems
can be well approximated by linear models if the signals are small. For example, if θ is small, then sin(θ) ≅ θ and
cos(θ) ≅ 1. Similarly, in analog electronic devices such as amplifiers, the operation will be nearly linear if the signals
are small with respect to the supply voltage. Finally, as we will consider later in this chapter in an optional section,
Lyapunov showed that if the linear approximation of a system is stable near an equilibrium point, then the truly
nonlinear system will be stable for some neighborhood of the equilibrium point. For all these reasons, the analysis
and design methods presented thus far in this book have considered only the enormously powerful techniques
available for linear models. However, if the signals cause a device to saturate or if the system includes nonlinearities
that are active for small signals, such as some kinds of friction, then the nonlinear effects must be taken into account
to explain the behavior of the system. In this chapter, a few of the tools available for this purpose will be described.

Chapter Overview
Because every nonlinear system is in many ways unique, a vast number of approaches are used in nonlinear control
design. The approaches to analysis and design of nonlinear systems that we will describe may be classified under
four categories. In Section 9.2 methods of reducing the problem to a linear model are discussed. In most cases,
considering the small signal approximation is adequate. In some cases there are nonlinearities for which an inverse
can be found, and placing the inverse before the physical nonlinearity results in an overall system that responds
linearly. In yet other cases, some nonlinear models can be reduced to an exact linear form by the clever use of
feedback, in a technique called “computed torque” in the field of robotics.

The second category is a heuristic approach based on considering the nonlinearity to be a varying gain. In Section
9.3 cases are considered for which the nonlinearity has no memory as, for example, with an amplifier whose output
saturates when the signal gets large. The idea is to consider the amplifier as if its gain begins to be reduced as the
signal gets large. Because the root locus is based on evaluating the system characteristic roots as gain changes, this
point of view leads to a heuristic use of the root locus to predict how such a system will respond to changing input
signal sizes. Section 9.4 treats cases in which the nonlinearity has dynamics or memory; then the root locus is not
useful. For these cases a technique introduced by Kochenburger in 1950 known as the describing function can be
used. To apply this method, a sinusoid is applied to the nonlinear part of the system and the first harmonic of the
periodic response is computed. The ratio of the input to the output is taken as if it were a linear but variable
frequency response. Thus the Nyquist plot is the natural domain in which to consider the system behavior.



While the heuristic approaches may give very useful insight into the system’s behavior, they cannot be used to
decide if the system is guaranteed to be stable. For this, one must turn to the analysis of stability as studied in control
theory. The most famous of these theories is that of internal stability developed by Lyapunov. As an introduction to
the idea of a system response as a trajectory in space, Section 9.5 describes analysis in the phase plane and then
presents the stability theory. Examples are given of using the stability theorem to guide design of a controller so the
system is guaranteed to be stable if the initial assumptions about the system hold. With these methods, the control
engineer is given a start on the path to the effective understanding and design of real control problems. Finally
Section 9.6 provides a historical perspective for the material in this chapter.

9.1 Introduction and Motivation: Why Study Nonlinear Systems?
It is intuitively clear that at some level of signal strength any physical system will be nonlinear and that some systems
are nonlinear at any and all signal levels. On the other hand, we began our study by developing linear approximate
models, and all our design methods thus far have been based on the assumption that the plant can be represented by
a linear transfer function. In this chapter we shall give some of the reasons for believing that all the time spent
studying linear techniques was not a waste of time, but we shall also try to explain why it is very important to
understand how to take nonlinear effects into account in control system design.

We begin by showing that we can combine the root-locus technique, which plots roots of the characteristic
equation as a function of various gain values, with the observation that many nonlinear elements can be viewed as a
gain that changes as signal level changes. While the method is, at this point, entirely heuristic, the simulation results
are very promising. Many properties of systems containing such zero-memory nonlinear elements can be predicted
by plotting a root locus versus gain at the point of the nonlinearity. However, the method, as presented, is not on a
firm foundation, and the designer is left to wonder if there is some unexplored region of the real state space or the
signal spaces where catastrophe awaits. After all, the model is an approximation, and no matter how extensive the
simulation, it is not possible to cover every situation.

Following the use of the root locus, we turn to methods based on the frequency response. One of the great
advantages of the frequency response is that in many cases one can obtain the transfer function experimentally on the
real system. In the most basic approach, a sinusoidal signal is applied to the system and the amplitude and phase of
the output sinusoid are measured. However, noise and inevitable nonlinear effects cause the output to be more
complicated than a simple sinusoid, so the designer extracts the fundamental component and treats it as if it is the
whole story. One gets the same result if a spectrum analyzer is used to compute a transfer function. What has been
done is to compute what Kochenburger called the describing function. From this point of view, a describing function
can be defined for nonlinear elements, including those with memory. Again, simulations are promising and many
useful designs are done with this technique but, as with the use of root locus to design nonlinear systems, this method
is also on shaky ground.1

So what is to be made of this situation? The only possibility is to face up to the facts and take on nonlinear
behavior directly. Fortunately, a firm foundation in mathematics was established when A. M. Lyapunov published his
work on the stability of motion in 1892. This work was translated into French in 1907 and recovered in a control
context by Kalman and Bertram in 1960. Lyapunov gave two methods for the study of stability. For his first method,
he considered stability based on the linear approximation, the very thing required to justify our concentration on that
approach in this book. He proved the remarkable result that if the linear approximation is strictly stable, having all



roots in the left half-plane (LHP), then the nonlinear system will have a region of stability around the equilibrium
point where the linear approximation applies. Furthermore, he proved that if the linear approximation has at least
one root in the right half-plane (RHP), then the nonlinear system cannot have any region of stability in the
neighborhood of the equilibrium. The size of the stable region in the state space is not given by the linear terms but
is included in the construction used for the proof. That construction constituted his second method. Lyapunov’s
second method is based on the mathematical equivalent of finding a scalar function that describes the internal energy
stored in the system. He proved that if such a function is constructed, and if the derivative of the function is negative
on trajectories of the equations of motion, then the function and the state on which it depends will eventually drain
away and the state will come to rest at the equilibrium point. A function having these properties is called a
Lyapunov function. Of course, this simple description omits a great deal of complexity; for example, there are dozens
of definitions of stability. However, the concept remains that if a Lyapunov function can be found, then the system on
which it is based will be stable. As described, the theory gives a sufficient condition for stability. If a Lyapunov
function is not found, the designer does not know if one does not exist or if the search has just been inadequate. A
great deal of research has been directed toward finding Lyapunov functions for particular classes of nonlinear
systems.

Lyapunov’s methods are based on differential equations in normal or state form and are thus concerned with
internal stability. Frequency-response methods, on the other hand, are external measures, and there has been interest
in developing stability results based on the external response of the system. One such method is the circle criterion,
which we will describe in this chapter also. The method can be described as considering the energy seen at the
terminal of the system and noting if it is always flowing into the terminals. If so, it is reasonable to assume that
eventually all energy will be gone and the system will be stable. For a formal proof of the method, researchers have
turned to Lyapunov’s second method, but the result is expressed in terms of external properties, such as the Nyquist
plot of the linear portion of the system that faces the nonlinear elements. Again, this tool gives a basis for setting a
firm foundation under a method of design for a particular class of nonlinear systems.

As should be clear at this point, the theory of nonlinear control is a vast and sophisticated topic, and in this book
we can give only a brief introduction to a small part of it. However, the foundation of control design rests on this
theory, and the more the designer understands of the theory, the better he or she understands both the limits and the
opportunities of problems. It is our hope that by considering this material, students will be stimulated to further their
profitable study of this fascinating topic.

9.2 Analysis by Linearization
Three methods of reducing some nonlinear systems to a suitable linear model are presented in this section. The
differential equations of motion for almost all processes selected for control are nonlinear. On the other hand, both
analysis and control design methods we have discussed so far are much easier for linear than for nonlinear models.
Linearization is the process of finding a linear model that approximates a nonlinear one. Fortunately, as Lyapunov
proved over 100 years ago, if a small-signal linear model is valid near an equilibrium and is stable, then there is a
region (which may be small, of course) containing the equilibrium within which the nonlinear system is stable. So
we can safely make a linear model and design a linear control for it such that, at least in the neighborhood of the
equilibrium, our design will be stable. Since a very important role of feedback control is to maintain the process
variables near equilibrium, such small-signal linear models are a frequent starting point for control design.



An alternative approach to obtain a linear model for use as the basis of control system design is to use part of the
control effort to cancel the nonlinear terms and to design the remainder of the control based on linear theory. This
approach—linearization by feedback—is popular in the field of robotics, where it is called the method of computed
torque. It is also a research topic for control of aircraft. Section 9.2.2 takes a brief look at this method. Finally, some
nonlinear functions are such that an inverse nonlinearity can be found to be placed in series with the nonlinearity so
that the combination is linear. This method is often used to correct mild nonlinear characteristics of sensors or
actuators that have small variations in use, as discussed in Section 9.2.3.

9.2.1 Linearization by Small-Signal Analysis
For a system with smooth nonlinearities and a continuous derivative, one can compute a linear model that is valid
for small signals. In many cases these models can be used for design. A nonlinear differential equation is an equation
for which the derivatives of the state have a nonlinear relationship to the state itself and/or the control. In other
words, the differential equations cannot be written in the form2

= Fx + Gu,
but must be left in the form

For small-signal linearization we first determine equilibrium values of xo, uo, such that o = 0 = f(xo, uo), and we
let x = xo + δx and u = uo + δu. We then expand the nonlinear equation in terms of the perturbations from these
equilibrium values, which yields

where F and G are the best linear fits to the nonlinear function f (x, u) at xo and uo, computed as

Subtracting out the equilibrium solution, this reduces to

which is a linear differential equation approximating the dynamics of the motion about the equilibrium point.
Normally, the δ notation is dropped and it is understood that x and u refer to the deviation from the equilibrium.

In developing the models discussed so far in this book, we have encountered nonlinear equations on several
occasions: the pendulum in Example 2.5, the hanging crane in Example 2.7, the AC induction motor in Section 2.3,
the tank flow in Example 2.16, and the hydraulic actuator in Example 2.17. In each case, we assumed either that the
motion was small or that motion from some operating point was small, so that nonlinear functions were
approximated by linear functions. The steps followed in those examples essentially involved finding F and G in order
to linearize the differential equations to the form of Eq. (9.3), as illustrated in the next several examples. The
linearization functions in MATLAB® include linmod and linmod2.



EXAMPLE 9.1 Linearization of Nonlinear Pendulum
Consider the nonlinear equations of motion of the simple pendulum in Example 2.5. Derive the equilibrium points
for the system and determine the corresponding small-signal linear models.
Solution. The equation of motion is

We can rewrite the equation of motion in state-variable form, with x [ x1 X2 ]T = [ θ  ]T, as

where  and  To determine the equilibrium state, suppose that the (normalized) input torque has a
nominal value of uo = 0. Then

so that the equilibrium conditions correspond to θo = 0, π (i.e., the downward and the inverted pendulum at rest
configurations, respectively). The equilibrium state and the input are xo = [ θo 0 ]T, uo = 0, and the state-space
matrices are given by

The linear system has eigenvalues of ±jωo and ±ωo corresponding to θo = 0 and π, respectively, with the latter
inverted case being unstable as expected.

EXAMPLE 9.2 Linearization of Motion in a Ball Levitator
Figure 9.1 shows a magnetic bearing used in large turbo machinery. The magnetics are energized using feedback
control methods so that the axle is always in the center and never touches the magnets, thus keeping friction to an
almost nonexistent level. A simplified version of a magnetic bearing that can be built in a laboratory is shown in Fig.
9.2, where one electromagnet is used to levitate a metal ball. The physical arrangement of the levitator is depicted in



Fig. 9.3. The equation of motion of the ball, derived from Newton’s law, Eq. (2.1), is

Figure 9.1 A magnetic bearing Source: Photo courtesy of Magnetic Bearings, Inc.

Figure 9.2 Magnetic ball levitator used in the laboratory Source: Photo courtesy of Gene Franklin

where the force fm (x, i) is caused by the field of the electromagnet. Theoretically, the force from an electromagnet
falls off with an inverse square relationship to the distance from the magnet, but the exact relationship for the
laboratory levitator is difficult to derive from physical principles because its magnetic field is so complex. However,
the forces can be measured with a scale. Figure 9.4 shows the experimental curves for a ball with a 1-cm diameter
and a mass of 8.4 × 10-3 kg. At the value for the current of i2 = 600 mA and the displacement x1 shown in the
figure, the magnetic force fm just cancels the gravity force, mg = 82 × 10-3 N. (The mass of the ball is 8.4 × 10-3 kg,
and the acceleration of gravity is 9.8 m/sec2.) Therefore the point (x1, i2) represents an equilibrium. Using the data,
find the linearized equations of motion about the equilibrium point.
Solution. First we write, in expanded form, the force in terms of deviations from the equilibrium values x1 and i2:



Figure 9.3 Model for ball levitation

Figure 9.4 Experimentally determined force curves

The linear gains are found as follows: Kx is the slope of the force versus x along the curve i = i2, as shown in Fig.
9.4, and is found to be about 14 N/m. Ki is the change of force with current for the value of fixed x = x1. We find
that for i = i1 = 700 mA at x = x1, the force is about 122 × 10-3 N, and at i = i3 = 500 mA at x = x1, it is about
42 × 10–3 N. Thus

Substituting these values into Eq. (9.6) leads to the following linear approximation for the force in the neighborhood
of equilibrium:



Substituting this expression into Eq. (9.5) and using the numerical values for mass and gravity force, we get for the
linearized model

Because x = x1 + δx, then  = δ . The equation in terms of δx is thus

which is the desired linearized equation of motion about the equilibrium point. A logical state vector is x = [δx δ
]T, which leads to the standard matrices

and the control u = δi

EXAMPLE 9.3 Linearization of the Water Tank Revisited
Repeat the linearization of Example 2.16 using the concepts presented in this section.
Solution. Equation (2.75) may be written as

where x  h, u  win, and  The linearized
equations are of the form

where

and

However, note that some flow is required to maintain the system in equilibrium so that Eq. (9.9) is valid; specifically,
we see from Eq. (2.75) that



and the δu in Eq. (9.9) is δwin, where win = wino + δwin. Therefore, Eq. (9.9) becomes

and matches Eq. (2.78) precisely.

9.2.2 Linearization by Nonlinear Feedback

Nonlinear feedback
Linearization by feedback is accomplished by subtracting the nonlinear terms out of the equations of motion and
adding them to the control. The result is a linear system, provided that the computer implementing the control has
enough capability to compute the nonlinear terms fast enough and the resulting control does not cause the actuator
to saturate. A more detailed understanding of the method is best achieved through example.

EXAMPLE 9.4 Linearization of the Nonlinear Pendulum
Consider the equation of a simple pendulum developed in Example 2.5 [Eq. (2.21)]. Linearize the system by using
nonlinear feedback.
Solution. The equation of motion is

If we compute the torque to be

then the motion is described by

Eq. (9.17) is a linear equation no matter how large the angle θ becomes. We use it as the model for purposes of
control design because it enables us to use linear analysis techniques. The resulting linear control will provide the
value of θ based on measurements of ; however, the value of the torque actually sent to the equipment would derive
from Eq. (9.16). For robots with two or three rigid links, this computed-torque approach has led to effective control.
It is also being researched for the control of aircraft, where the linear models change considerably in character with
the flight regime.

9.2.3 Linearization by Inverse Nonlinearity
The simplest case of the introduction of nonlinearities into a control design is that of inverse nonlinearities. It is
sometimes possible to reverse the effect of some nonlinearities. For example, suppose we have a system whose
output is the square of the signal of interest:



Inverse nonlinearity
One clever and rather obvious technique is to undo the nonlinearity by preceding the physical nonlinearity with a
square root nonlinearity,

as shown in the next example. The overall cascaded system would then be linear.

Figure 9.5 Linearization through inverse nonlinearity

EXAMPLE 9.5 Linearization of the Rapid Thermal Processing (RTP) System
Consider the RTP system that uses a nonlinear lamp as an actuator, as shown in Fig. 9.5. Suppose the input to the
lamp is voltage V and the output is power P and they are related by

P = V2

Design an inverse nonlinearity to linearize the system.
Solution. We simply precede the lamp input nonlinearity with a square root nonlinearity

The overall open-loop cascaded system is now linear for any value of the voltage:

Y = G(s)P = G(s)V2 = G(s)V’.
Thus we can use linear control design techniques for the dynamic compensator, D(s). Note that a nonlinear element
has been inserted in front of the square root element to ensure that the input to this block remains nonnegative at all
times. The controller is then implemented as shown in Fig. 9.5. For a detailed application of this method for control
design, we refer the reader to the RTP case study in Section 10.6.

9.3 Equivalent Gain Analysis Using the Root Locus
As we have tried to make clear, every real control system is nonlinear, and the linear analysis and design methods we
have described so far use linear approximations to the real models. There is one important category of nonlinear
systems for which linearization is not appropriate and for which some significant analysis (and design) can be done.
This category comprises the systems in which the nonlinearity has no dynamics and is well approximated as a gain
that varies as the size of its input signal varies. Sketches of a few such nonlinear system elements and their common



names are shown in Fig. 9.6.

Memoryless nonlinearity
The stability of systems with memoryless nonlinearities can be studied heuristically using the root locus. The

technique is to replace the memoryless nonlinearity by an equivalent gain K, and a root locus is plotted versus this
gain. For a range of input signal amplitudes, the equivalent gain will take on a range of values, and the closed-loop
roots of the system are examined in this range as if the gain were fixed. This is illustrated by the next several
examples.

Figure 9.6 Nonlinear elements with no dynamics: (a) saturation; (b) relay; (c) relay with dead zone; (d) gain with
dead zone; (e) preloaded spring, or coulomb plus viscous friction; (f) quantization

Figure 9.7 Dynamic system with saturation

EXAMPLE 9.6 Changing Overshoot and Saturation Nonlinearity
Consider the system with saturation shown in Fig. 9.7. Determine the stability properties of the system using the root
locus technique.
Solution. The root locus of this system versus K with the saturation removed is given by Fig. 9.8. At K = 1 the



damping ratio is ζ = 0.5. As the gain is reduced, the locus shows that the roots move toward the origin of the s-plane
with less and less damping. Plots of the step responses of this system were obtained using the SIMULINK® program.
A series of step inputs r with magnitudes r0 = 2, 4, 6, 8, 10, and 12 was introduced to the system, and the results are
shown in Fig. 9.9. As long as the signal entering the saturation remains less than 0.4, the system will be linear and
should behave according to the roots at ζ = 0.5. However, notice that as the input gets larger, the response has more
and more overshoot and slower and slower recovery. This can be explained by noting that larger and larger input
signals correspond to smaller and smaller effective gain K, as seen in Fig. 9.10. From the root-locus plot of Fig. 9.8,
we see that as K decreases, the closed-loop poles move closer to the origin and have a smaller damping ζ. This
results in the longer rise and settling times, increased overshoot, and greater oscillatory response.

Figure 9.8 Root locus of (s+1)/s2, the systemin Fig. 9.7 with the saturation removed

Figure 9.9 Step responses of system in Fig. 9.7 for various input step sizes

Figure 9.10 General shape of the effective gain of saturation



EXAMPLE 9.7 Stability of Conditionally Stable System Using the Root Locus

A nonlinear example: stability depends on input magnitude
As a second example of a nonlinear response described by signal-dependent gain, consider the system with a
saturation nonlinearity as shown in Fig. 9.11. Determine whether the system is stable.

Figure 9.11 Blockdiagram ofa conditionally stable system

Figure 9.12 Root locus for G(s) = (s + 1)2/s3 from system in Fig. 9.11

Figure 9.13 Step responses of system in Fig. 9.11

Solution. The root locus for the system, excluding the saturation, is plotted in Fig. 9.12. From this locus we can
readily calculate that the imaginary axis crossing occurs at ω0 = 1 and K = . Systems such as this, which are stable



for (relatively) Conditional stability large gains but unstable for smaller gains, are called conditionally stable systems.
If K = 2, which corresponds to ζ = 0.5 on the locus, the system would be expected to show responses consistent
with ζ = 0.5 for small reference input signals. However, as the reference input size gets larger, the equivalent gain
would get smaller due to the saturation, and the system would be expected to become less well damped. Finally, the
system would be expected to become unstable at some point for large inputs. Step responses from nonlinear
simulation of the system with K = 2 for input steps of size r0 = 1.0, 2.0, 3.0, and 3.4 are shown in Fig. 9.9. These
responses confirm our predictions. Furthermore, the marginally stable case shows oscillations near 1 rad/sec, which
is predicted by the frequency at the point at which the root locus crosses into the RHP.

EXAMPLE 9.8 Analysis and Design of System with Limit Cycle Using the Root Locus

A nonlinear example: an oscillatory system with saturation

Limit cycle
The final illustration of the use of the root locus to give a qualitative description of the response of a nonlinear
system is based on the block diagram in Fig. 9.14. Determine whether the system is stable and find the amplitude
and the frequency of the limit-cycle. Modify the controller design to minimize the effect of limit-cycle oscillations.
Solution. This system is typical of electromechanical control problems in which the designer perhaps at first is not
aware of the resonant mode corresponding to the denominator term s2 + 0.2s + 1, (ω = 1, ζ = 0.1). The root locus
for this system versus K, excluding the saturation, is sketched in Fig. 9.15. The imaginary-axis crossing can be verified
to be at ω0 = 1, K = 0.2; thus a gain of K = 0.5 is enough to force the roots of the resonant mode into the RHP, as
shown by the dots. If the system gain is set at K = 0.5, our analysis predicts a system that is initially unstable but
becomes stable as the gain decreases. Thus we would expect the response of the system with the saturation to build
up due to the instability until the magnitude is sufficiently large that the effective gain is lowered to K = 0.2 and
then stop growing!

Plots of the step responses with K = 0.5 for three steps of size r0 = 1, 4, and 8 are shown in Fig. 9.16, and again
our heuristic analysis is exactly correct: The error builds up to a fixed amplitude and then starts to oscillate at a fixed
amplitude. The oscillations have a frequency of ≅1 rad/sec and hold constant amplitude regardless of the step sizes
of the input. In this case, the response always approaches a periodic solution of fixed amplitude known as a limit
cycle, so-called because the response is cyclic and is approached in the limit as time grows large.

We can return to Fig. 9.13 and be easily convinced that the first transient to a step of size 3 is nearly a sinusoid. We
can predict that the system is just on the border of stability for an equivalent gain corresponding to a root locus gain
of 1/2 when the locus crosses into the RHP. In order to prevent the limit cycle, the locus has to be modified by
compensation so that no branches cross into the RHP. One common method of doing this for a lightly damped
oscillatory mode is to place compensation zeros near the poles at a frequency such that the angle of departure of the
root-locus branch from these poles is toward the LHP, a procedure called phase stabilization earlier. Example 5.8 for
collocated mechanical motion demonstrated that a pole-zero



Figure 9.14 Block diagram of a system with an oscillatory mode

Figure 9.15 Root locus for the system in Fig. 9.14

Figure 9.16 Step responses of system in Fig. 9.14



Figure 9.17 Root locus including compensation

pair located in this manner will often cause a locus branch to go from the pole to the zero, looping to the left, and
thus staying away from the RHP. Figure 9.17 shows the root locus for the system, 1/[s(s2 + 0.2s + 1.0)], including a
notch compensation with zeros located as just discussed. In addition, the compensation also includes two poles to
make the compensation physically realizable. In this case, both poles were

Figure 9.18 Block diagram of the system with a notch filter

Figure 9.19 Step responses of the system in Fig. 9.18

placed at s = –10, fast enough to not cause stability problems with the system, yet slow enough that high-frequency
noise would not be amplified too much. Thus the compensation used for the root locus is



where the gain of 123 has been selected to make the compensation’s DC gain equal to unity. This notch filter
compensation attenuates inputs in the vicinity of  = 0.81 or ωn = 0.9 rad/sec, so that any input from the plant
resonance is attenuated and is thus prevented from detracting from the stability of the system. Figure 9.18 shows the
system, including the notch filter, and Fig. 9.19 shows the time response for two step inputs. Both inputs, r0 = 2 and
4, are sufficiently large that the nonlinearity is saturated initially; however, because the system is unconditionally
stable, the saturation results only in lowering the gain, so the response is slower than predicted by linear analysis but
still stable, as also predicted by our piecewise linear analysis. In both cases the nonlinearity eventually becomes
unsaturated, and the system stabilizes to its new commanded value of r.

9.3.1 Integrator Antiwindup
In any control system the output of the actuator can saturate because the dynamic range of all real actuators is
limited. For example, a valve saturates when it is fully open or closed, the control surfaces on an aircraft cannot be
deflected beyond certain angles from their nominal positions, electronic amplifiers can produce only finite voltage
outputs, etc. Whenever actuator saturation happens, the control signal to the process stops changing and the feedback
path is effectively opened. If the error signal continues to be applied to the integrator input under these conditions,
the integrator output will grow (windup) until the sign of the error changes and the integration turns around. The
result can be a very large overshoot, as the output must grow to produce the necessary unwinding error, and poor
transient response is the result. In effect, the integrator is an unstable element in open loop and must be stabilized
when saturation occurs.3

Figure 9.20 Feedback system with actuator saturation

Consider the feedback system shown in Fig. 9.20. Suppose a given reference step is more than large enough to
cause the actuator to saturate at umax. The integrator continues integrating the error e, and the signal uc keeps
growing. However, the input to the plant is stuck at its maximum value, namely u = umax, so the error remains large
until the plant output exceeds the reference and the error changes sign. The increase in uc is not helpful since the
input to the plant is not changing, but uc may become quite large if saturation lasts a long time. It will then take a
considerable negative error e and the resulting poor transient response to bring the integrator output back to within
the linear band where the control is not saturated.

The solution to this problem is an integrator antiwindup circuit, which “turns off” the integral action when the
actuator saturates. (This can be done quite easily with logic, if the controller is implemented digitally, by including a
statement such as “if |u| = umax, k1 = 0;” see Chapter 8.) Two equivalent antiwindup schemes are shown in Fig.
9.21(a, b) for a PI controller. The method in Fig. 9.21(a) is somewhat easier to understand, whereas the one in Fig.
9.21(b) is easier to implement, as it does not require a separate nonlinearity but uses the saturation itself.4 In these



schemes, as soon as the actuator saturates, the feedback loop around the integrator becomes active and acts to keep
the input to the integrator at e1 small. During this time the integrator essentially becomes a fast first-order lag. To see
this, note that we can redraw the portion of the block diagram in Fig. 9.21(a) from e to uc as shown in Fig. 9.21(c).
The integrator part then becomes the first-order lag shown in Fig. 9.21(d). The antiwindup gain, Ka, should be
chosen to be large enough that the antiwindup circuit keeps the input to the integrator small under all error
conditions.

Figure 9.21 Integrator antiwindup techniques

The effect of the antiwindup is to reduce both the overshoot and the control effort in the feedback system.
Implementation of such antiwindup schemes is a necessity in any practical application of integral control, and
omission of this technique may lead to serious deterioration of the response. From the point of view of stability, the
effect of the saturation is to open the feedback loop and leave the open loop plant with a constant input and the
controller as an open-loop system with the system error as input.



Figure 9.22 SIMULINK® diagram for the antiwindup example

Purpose of antiwindup

The purpose of the antiwindup is to provide local feedback to make the controller stable alone when the main
loop is opened by signal saturation, and any circuit that does this will perform as antiwindup.5

EXAMPLE 9.9 Antiwindup Compensation for a PI Controller
Consider a plant with the transfer function for small signals,

and a PI controller,

in the unity feedback configuration. The input to the plant is limited to ±1.0. Study the effect of antiwindup on the
response of the system.
Solution. Suppose we use an antiwindup circuit with a feedback gain of Ka = 10, as shown in the SIMULINK® block
diagram of Fig. 9.22. Figure 9.23(a) shows the step response of the system with and without the antiwindup element.
Figure 9.23(b) shows the corresponding control effort. Note that the system with antiwindup has substantially less
overshoot and less control effort.



Figure 9.23 Integrator antiwindup: (a) step response; (b) control effort

9.4 Equivalent Gain Analysis Using Frequency Response: Describing Functions
The behavior of systems containing any one of the nonlinearities shown in Fig. 9.6 can be qualitatively described by
considering the nonlinear element as a varying signal-dependent gain. For example, with the saturation element (Fig.
9.6a), it is clear that for input signals with magnitudes of less than h, the nonlinearity is linear with the gain N/h.
However, for signals larger than h, the output size is bounded by N, while the input size can get much larger than h,
so once the input exceeds h, the ratio of output to input goes down. Thus, saturation has the gain characteristics
shown in Fig. 9.10. All actuators saturate at some level. If they did not, their output would increase to infinity, which
is physically impossible. An important aspect of control system design is sizing the actuator, which means picking the
size, weight, power required, cost, and saturation level of the device. Generally, higher saturation levels require
bigger, heavier, and more costly actuators. From the control point of view, the key factor that enters into the sizing is
the effect of the saturation on the control system’s performance.

A nonlinear analysis method known as describing functions, based on the assumption that the input to the
nonlinearity is sinusoidal, can be used to predict the behavior of a class of nonlinear systems. A nonlinear element
does not have a transfer function. However, for a certain class of nonlinearities, it is possible to replace the
nonlinearity by a frequency-dependent equivalent gain for analysis purposes. We can then study the properties of the
loop, such as its stability. The describing function method is mostly a heuristic method, and its aim is to try to find
something akin to a “transfer function” for a nonlinear element. The idea is that in response to a sinusoidal
excitation, most nonlinearities will produce a periodic signal (not necessarily sinusoidal) with frequencies being the
harmonics of the input frequency. Hence one may view the describing function as an extension of the frequency
response to nonlinear-ities. We can assume that in many cases we may approximate the output by the first harmonic
alone, and the rest can be neglected. This basic assumption means that the plant behaves approximately as a low-
pass filter, and this is luckily a good assumption in most practical situations. The other assumptions behind the
describing function are that the nonlinearity is time invariant and that there is a single nonlinear element in the
system. Indeed, the describing function is a special case of the more sophisticated harmonic balance analysis. Its roots
go back to the early studies in the Soviet Union and elsewhere. The method was introduced by Kochenburger in
1950 in the United States. He proposed that the Fourier series be used to define an equivalent gain, Keq (Truxal,
1955, p. 566). This idea has proved to be very useful in practice. The method is heuristic, but there are attempts at
establishing a theoretical justification for the technique (Bergen and Franks, 1973; Khalil, 2002; Sastry, 1999). In fact
the method works much better than is warranted by the existing theory!

Consider the nonlinear element f(u) shown in Fig. 9.24. If the input signal u(t) is sinusoidal of amplitude a, or

then the output y(t) will be periodic with a fundamental period equal to that of the input and consequently with a
Fourier series described by



where

Describing function
Kochenburger suggested that the nonlinear element could be described by the first fundamental component of this
series as if it were a linear system with a gain of Y1 and phase of θ1. If the amplitude is varied, the Fourier
coefficients and the corresponding phases will vary as a function of the input signal amplitude, due to the nonlinear
nature of the element. He called this approximation a describing function (DF). The describing function is defined as
the (complex) quantity that is a ratio of the amplitude of the fundamental component of the output of the nonlinear
element to the amplitude of the sinusoidal input signal and is essentially an “equivalent frequency response”
function:

Figure 9.24 Nonlinear element

Hence the describing function is defined only on the jω axis. In the case of memoryless nonlinearities that are also an
odd function [i.e., f (–a) = –f(a)], then the coefficients of the Fourier series cosine terms are all zeros, and the
describing function is simply

and is independent of the frequency ω. This is the usual case in control, and saturation, relay, and dead-zone



nonlinearities all result in such describing functions. Computation of the describing function for the nonlinear
characteristics of Fig. 9.6 is generally straightforward, but tedious. It can be done either analytically or numerically
and may also be determined by an experiment. We will now focus on computation of several describing functions for
some very common nonlinearities.

EXAMPLE 9.10 Describing Function for a Saturation Nonlinearity
A saturation nonlinearity is shown in Fig. 9.25(a) and is the most common nonlinearity in control systems. The
saturation function (sat) is defined as

If the slope of the linear region is k and the final saturated values are ±N, then the function is

Find the describing function for this nonlinearity.
Solution. Consider the input and output signals of the saturation element shown in Fig. 9.25. For an input sinusoid of
u = a sin ω with amplitude , the output is such that the DF is just a gain of unity. With , we need to
compute the amplitude and phase of the fundamental component of the output. Since saturation is an odd function,
all the cosine terms in Eq. (9.21) are zeros and a1 = 0. According to Eq. (9.27),

Figure 9.25 (a) Saturation nonlinearity; (b) input and output signals

so that

since the integral for the coefficient b1 over the interval ωt = [0, π] is simply twice that of the interval ωt = [0,
π/2]. Then



We can nowdivide the integral into two parts corresponding to the linear and saturation parts. Let us define the
saturation time ts as the time when

Then

But using Eq. (9.28), we have

We finally obtain

Figure 9.26 shows a plot of Keq (a) indicating that it is a real function independent of frequency and results in no
phase shifts. It is seen that the describing function is initially a constant and then decays essentially as a function of
the reciprocal of the input signal amplitude, a.



Figure 9.26 Describing function for saturation nonlinearity with k = N = 1

EXAMPLE 9.11 Describing Function for a Relay Nonlinearity
Find the describing function for the relay or sgn function shown in Fig. 9.6(b) and defined as

sgn (x) = 0, x = 0,
= sign of x, otherwise.

Solution. The output is a square wave of amplitude N for every size input; thus  and . The
solution can also be obtained from Eq. (9.29) if we let k → ∞. For small angles,

and thus, from Eq. (9.27), we have

The preceding two nonlinearities were memoryless Next we consider a nonlinearity with memory. Nonlinearities
with memory occur in many applications, including magnetic recording devices, backlash in mechanical systems, and
in electronic circuits. Consider the bistable electronic circuit shown in Fig. 9.27 that is called a Schmitt trigger (Sedra
and Smith, 1991). This circuit has memory. Referring to Fig. 9.28, if the circuit is in the state where vout = +N, then
positive values of vin do not change the state. To “trigger” the circuit into the state vout = –N, we must make vin

negative enough to make v negative. The threshold value is . The Schmitt trigger is employed commonly in
spacecraft control (Bryson, 1994). We next find the describing function for a hysteresis nonlinearity.

EXAMPLE 9.12 Describing Function for a Relay with Hysteresis Nonlinearity
Consider the relay function with hysteresis shown in Fig. 9.29(a). Find the describing function for this nonlinearity.
Solution. A system with hysteresis tends to stay in its current state. Until the input to the signum function is past the
value h, it is not possible to determine the output



Figure 9.27 Schmitt trigger circuit

Figure 9.28 Hysteresis nonlinearity for Schmitt trigger circuit

Figure 9.29 (a) Hysteresis nonlinearity; (b) input and output to the nonlinearity

uniquely without knowing its past history. That implies that we have a nonlinearity with memory. The output is a
square wave with amplitude as long as the input amplitude a is greater than the hysteresis level h. From Fig. 9.29(b),
it is seen that the square wave lags the input in time. The lag time can be computed as the time when

Because the phase angle is known for all frequencies,



Figure 9.30 Describing function for the hysteresis nonlinearity for h = 0.1 and N = 1: (a) magnitude; (b) phase

The describing function is then given by

The describing function is plotted in Fig. 9.30. The magnitude is proportional to the reciprocal of the input signal
amplitude, and the phase varies between –90° and 0°.

9.4.1 Stability Analysis Using Describing Functions
The Nyquist theorem can be extended to deal with nonlinear systems whose non-linearities have been approximated
by describing functions. In the standard linear system analysis the characteristic equation is 1 + KL = 0, where the
loop gain is L = DG and

As described in Section 6.3, we look at the encirclements of the –1/K point to determine stability. With a
nonlinearity represented by the describing function, Keq (a), the characteristic equation is of the form 1 + Keq (a)L =
0, and it follows that



Now we have to look at the intersection of L with a plot of –1/Keq(a). If the curve L intersects –1/Keq (a), then the
system will oscillate at the crossing amplitude, al, and the corresponding frequency, ωl, keeping in mind the
approximate nature of the describing function. We then look for encirclements to decide whether the system would
be stable for that particular value of the gain, as if it were a linear system. If so, we deduce that the nonlinear system
is stable. Otherwise, we infer that the nonlinear system is unstable.

Figure 9.31 Closed-loop system with a nonlinearity

Figure 9.31 shows an example of an otherwise linear system, except for a single nonlinearity. The nonlinear
elements may indeed have a beneficial effect and may limit the amplitude of oscillations. The describing function
analysis can be used to determine the amplitude and frequency of the limit cycle. Strictly speaking, a limit cycling
system can be considered to be unstable. In reality, the trajectory of the limit cycling is confined to a finite region of
the state space. If this region is within allowable performance, then the response is tolerable. In some cases, the limit
cycling is the beneficial effect (see case study in Section 10.4). The system does not possess asymptotic stability, since
the system does not come to a rest at the origin of the state space. The describing function can be beneficial in
determining the conditions under which instability results and can even suggest remedies in eliminating instability, as
illustrated in the next example, in which the Nyquist plot of the linear loop gain, L, as well as the negative
reciprocal of the describing function, –1/Keq (a), are superimposed. The point at which they cross corresponds to the
limit cycle. To determine the amplitude and frequency of the limit cycle, we can rewrite Eq. (9.36) as follows:

Re{L(jω)}Im{Keq(a)} + Im{L(jω)}Re{Keq(a)} = 0.

We can then solve these two equations for the possible two unknown values of the limit-cycle frequency, ωt, and
the corresponding amplitude, al, as illustrated in the ensuing examples.

EXAMPLE 9.13 Conditionally Stable System
Consider the feedback system in Fig. 9.14. Determine the amplitude and the frequency of the limit cycle using the
Nyquist plot.
Solution. The Nyquist plot of the system is superimposed on –1/Keq (a) as shown in Fig. 9.32. Note that the negative
of the reciprocal of the describing function, using Eq. (9.29), is



which is a straight line that is coincident with the negative real axis and is parameterized as a function of the input
signal amplitude, a. The point of the intersection of the two curves at –0.5 corresponds to the limit-cycle frequency of
ωl = 1. A plot of the describing function for k = 1 and N = 0.1 is shown in Fig. 9.33, and a magnitude of Keq =
0.2 corresponds to an input amplitude of al = 0.63.

Figure 9.32 Nyquist plot and describing function to determine limit cycle

Figure 9.33 Describing function for saturation nonlinearity with N = 0.1 and k = 1

Alternatively, from the root locus of our example shown in Fig. 9.15, the gain at the imaginary-axis crossover is
0.2; then, from Eq. (9.29), we have



If we approximate the arcsine function by its argument as

then

which leads to the polynomial equation

π2a4 – 2πa3 + (0.1)2 = 0
and we find the relevant solution to be a = 0.63. By measurement on the time history of Fig. 9.16, the amplitude of
the oscillation is 0.62, which is in good agreement with our prediction.

For systems with nonlinearities that have memory, we can also use the Nyquist technique, as illustrated in the next
example.

EXAMPLE 9.14 Determination of Stability with a Hysteresis Nonlinearity
Consider the system with a hysteresis nonlinearity shown in Fig. 9.34. Determine whether the system is stable and
find the amplitude and the frequency of the limit cycle.
Solution. The Nyquist plot for the system is shown in Fig. 9.35. The negative reciprocal of the describing function for
the hysteresis nonlinearity is

In this case N = 1 and h = 0.1, and we have

This is a straight line parallel to the real axis that is parameterized as a function of the input signal amplitude a
and is also plotted in Fig. 9.35. The intersection of this curve with the Nyquist plot yields the frequency and the
corresponding amplitude of the stable limit cycle. We can also determine the limit-cycle information analytically:

Clearing the denominator in the preceding equation, we have



Setting the real and imaginary parts equal to zero yields two equations and two unknowns. The relevant solution is
ωl = 2.2 rad/sec and al = 0.24. A SIMULINK implementation of the closed-loop system is shown in Fig. 9.36. The
step response of the system is shown in Fig. 9.37, and the limit cycle has an amplitude of al = 0.24 and a frequency
of ωl = 2.2 rad/sec and is well predicted by our analysis.

Figure 9.34 Feedback system with hysteresis nonlinearity

Figure 9.35 Nyquist plot and DF to determine limit-cycle properties

Figure 9.36 SIMULINK® diagram for system with hysteresis



Figure 9.37 Step response displaying limit-cycle oscillations

Δ 9.5 Analysis and Design Based on Stability
The central requirement of any control system is stability, and the design methods we have studied are based on this
fact. The root locus is a plot of closed-loop poles in the s-plane, and the designer is always aware of the fact that if a
root strays into the right half of the plane, the system will be unstable. Designs based on the state representation
include pole placement, where the desired locations of the poles are, of course, selected to be well within the stable
region. In a similar fashion, Nyquist proved conditions for stability based on the frequency response, and designers
are aware of the encirclement requirements of their plots or, equivalently, of the gain and phase margins of stability
margins in the Bode plots. Prior to either of these methods, mathematicians studied the stability of ordinary
differential equations (ODE), and these and other sophisticated techniques are needed to face the problems of
nonlinear systems. We begin with a graphical representation of ODE solutions known as the phase plane and
introduce the methods of Lyapunov and others as an introduction to this area of control design.

9.5.1 The Phase Plane
Whereas the root locus and the frequency-response methods consider the system response indirectly via either the
poles and zeros of the transfer function or the gain and phase of the frequency response, the phase plane considers
the time response directly by plotting the trajectory of the state variables. Although direct visualization restricts the
method to second-order systems having only two state variables, the ability of the method to consider nonlinearities,
as well as to give new insight into linear systems, makes a quick look at the technique well worthwhile.

To illustrate the ideas of the phase plane, consider a fictional motor system shown in Fig. 9.38 with the open-loop
transfer function

If we assume that T = 1/6 and the amplifier is (for the moment) not subject to saturation and has gain K where K
= 5T, the state equations for the closed-loop system can be written as



Because these equations are time invariant, the time can be eliminated by dividing Eq. (9.38) into Eq. (9.39), with
the result that

The solution to this equation gives a plot of x2 versus x1 or, in other words, a trajectory in the phase plane of
coordinates (x1, x2).6 Before plotting Eq. (9.41), it is useful to consider the system equations first in matrix form as 
= Fx for which

Figure 9.38 An elementary position feedback system with a nonlinear actuator

If in this equation we assume that X = xoest, where both s and xo are constants, then  = xosest, and the equation
can be reduced as follows:

Here it should be recognized that Eq. (9.45) is the eigenvector equation for the matrix F, which, in component form,
is

As described in Appendix WE, Eq. (9.46) has a solution only if the determinant of the coefficient matrix is zero, for
which



The two values of s for which the equation has a solution are the eigenvalues s = –1 and s = –5. Ifwesubstitute s =
–1 into Eq. (9.46), we obtain

from which the solution for the initial state vector is x02 = –x01. This line in the state space is the eigenvector
corresponding to the eigenvalue s = –1. If we repeat this process with s = –5, the result is

and in this case the solution for the eigenvector is x02 = –5x01.
Consider what all this means. We started with the assumption that the time solution for the state is a constant

times an exponential. We found that this is possible only if the exponential is either e–t or e–5t. In the first case, the
state must lie along the vector x02 = –x01, and in the second, the state must lie along the vector x02 = –5x01. With
this knowledge, we compute the solutions to Eq. (9.38) and Eq. (9.39) for different initial conditions and plot x1(t)
vs. x2(t) in Fig. 9.39. In the figure, the two eigenvectors are identified. When we look at these curves, it is clear that
all the paths start parallel to the (fast!) eigenvector corresponding to s = –5 and quickly move to the (slow!) one
corresponding to s = –1. All trajectories approach the equilibrium point at the origin of the state space.

The plot will be substantially changed if the amplifier saturates. For example, if the amplifier saturates at a value
of u = 0.5, then the velocity, x2, will rapidly approach this value and will be stuck there until the position reaches a
value that brings the amplifier out of saturation. The new plot is shown in Fig. 9.40.

Notice that in the linear region the motion is almost entirely along the slow eigenvector. Finally we note that the
phase-plane portrait changes again when the poles are complex. In that case, the motion of the state variable is
composed of damped sinusoids and the plot of x1 versus x2 is along a spiral. A collection of trajectories for various
initial conditions is shown in Fig 9.41.



Figure 9.39 Phase-plane plot of a node with poles at s = –1 and s = –5

Figure 9.40 Phase-plane plot with saturation

These few examples just scratch the surface of phase-plane analysis but give some idea of the use of this format in
helping a designer to visualize dynamic responses.

Bang-Bang Control
One example of design for a nonlinear system based on the phase plane is that of optimal minimum time control in
the face of control saturation. For our purposes here, the simplest version of this widely used technique is introduced:
that of the 1/s2

Figure 9.41 Phase-plane plot for a system with complex poles



plant. The equations are

where y(0) =  (0) = 0, yf is a constant, and the control is constrained to be |u| ≤ 1. The problem is to drive the
error to be identically zero in minimum time. If we define state variables as x1 = e and x2 =  = , the equations
reduce to

and the problem is to minimize tf. Intuitively, this is the problem of the eager driver who wishes to speed from one
stop to the next in minimum time. She would put the pedal to the metal for a time and then switch to stand on the
brakes as the car skids to a stop at just the right place. A basic result of the theory of optimal control confirms this
intuitive idea that the solution to this problem is, if yf > 0, to apply full positive control for a time and then to
switch to full negative control at just the right time to cause the error to reach the origin and stop there. To study the
case, a plot of the trajectories of the plant in the phase plane for the two cases of u = 1 and u = –1 is given in Fig.
9.43. For u = +1, the trajectories start in the fourth quadrant and move up to the first. For u = –1, they start in the
second quadrant and move down to the third.

Two segments of this family are of particular interest: those that pass through the origin. Once the path reaches
one of these, a constant control will bring the state to the desired final resting place. Therefore, for any initial
condition, once the trajectory reaches one of the two curves going through the origin, the correct action is to switch
the control (u = + 1 to –1, or u = –1 to + 1) so that the trajectory will follow that curve to the origin. The
“switching curve” is plotted in Fig. 9.44.



Figure 9.42 Phase-plane of the  plant for ±1 controls

Figure 9.43 Switching curve for the  plant

For a second-order plant, the switching curve can be found by reversing the time in the equations of motion,
setting the initial state to zero and applying the maximum control. The process can be repeated with minimum
control to sweep out the other branch of the curve.

For any initial condition above the curve, u = –1 is applied and for any initial condition below the curve, u = +
1 is used. As described, the result will be a minimum-time response. Notice that the curve has vertical slope at the
origin; as a result, the implementation is extremely sensitive in this neighborhood. A modified version known as the
proximate time-optimal system (PTOS) used in the computer disk drive industry was studied by Workman (1987).
The modification consists of shifting the curves a bit and replacing the infinite slope at the origin with a finite-slope,
linear control region. The result has been widely used for hard-disk drives and similar systems.



Figure 9.44 Response ofa time-optimal system

Figure 9.45 Response ofa PTOS system

Typical responses for a time-optimal system and for a PTOS system generated with SIMULINK are given in Figs.
9.45 and 9.46. Notice that the response times are almost exactly the same, but while the time optimal system control
has a violent chatter at the end where the switching curve has infinite slope, the output of the PTOS system slips into
its final value smoothly. For a more exact study, we need to turn to the nonlinear equations.



Figure 9.46 SIMULINK° diagram for position feedback system

9.5.2 Lyapunov Stability Analysis
The stability of motion as studied by Lyapunov involves sophisticated mathematics beyond the scope of this text.
Here we will present heuristic arguments giving the flavor of the theory and state a few of the most basic results.
Lyapunov presented two methods for the study of stability of motion described by systems of ODEs. His indirect or
first method is based on linearization of the equations and drawing conclusions about the stability of the nonlinear
system by considering the stability of the linear approximation. He proved the results of the first method by use of
his direct or second method, in which the nonlinear equations are considered directly. A discussion of the indirect
method serves to introduce both methods. The problem requires a new definition of stability suitable for the vector-
matrix equations. Intuitively, we say a system is stable if initial conditions of moderate size result in a response that
remains of moderate size. To express this mathematically, first we need a definition of “size.” This is the norm of a
vector for which the symbol is || x ||. Of the many possible definitions, we select here the familiar Euclidean
measure defined by its square as . With this idea, the definition of stability used is that if one
is given a sphere of any radius ζ > 0, one can find a smaller sphere of radius δ such that if the initial state is inside
δ, then the trajectory will, for all time, remain inside ζ. A more formally, the system is stable if, for any given ζ > 0,
one can find a δ 0 such that if ||x(0)|| < δ, then ||x(t)|| < ζ 0, for all t. If the state is not only stable, but in the limit
as t → ∞, ||x(t)|| → 0, the system is said to be asymptotically stable. If, for any e, it is possible to select δ arbitrarily
large, then the system is said to be stable in the large.

Study of these matters begins with the time-invariant ODE equation

for which the linear approximation is

In this equation, it is assumed that all the linear terms are in Fx and higher-order terms are in g(x), in the sense that
when x gets small, g(x) gets small faster, as expressed by

Lyapunov’s second method begins with the intuitive notion that one measure of the size of the state of a physical
system is the total energy stored in the system at any instant and the observation that when the stored energy is no
longer changing, the system must be at rest. For an electric circuit, for example, the electric energy is proportional to
the square of the capacitor voltages and the magnetic energy is proportional to the square of the inductor currents.
Lyapunov extracted the abstract essence of this idea and defined a scalar function of the state V(x), called a Lyapunov



function, having the following properties:

Lyapunov function
1. V (0) = 0;
2. V (x) > 0, ||x|| ≠ 0;
3. V is continuous and has continuous derivatives with respect to all components of x;

4.  along trajectories of the equation.
The first three conditions ensure that in a neighborhood of the origin the function is like a smooth bowl sitting at

the origin of the state space. The fourth condition, which obviously depends on the equations of motion, ensures that
if δ is selected so that the initial conditions are deeper in the bowl than any part of the ball defined by ζ, the
trajectory never climbs higher on the bowl than it was at the start and so remains within ζ, and the system will be
stable. Furthermore, if condition 4 is strengthened to be V(x) < 0, then the value of the function must fall to zero
and, by condition 1, the state also goes to zero. The stability theorem, which is the basis for Lyapunov’s second
method, states that

Lyapunov’s second method

If a Lyapunov function can be found for a system, then the motion is stable and, furthermore, if V(x) < 0, the
motion is asymptotically stable. The second method is to search for a Lyapunov function.

The hard part for the application of this theory is the statement “If a Lyapunov function can be found.” Only in the
linear case is a prescription given for finding a Lyapunov function; otherwise the theory only gives the engineer a
hunting license to look for such a function. We are now in a position to consider the indirect method for stability of
Eq. (9.58).

Perhaps because energy in simple systems is a sum of the squares of the variables, for this problem Lyapunov
considers a quadratic candidate for V by supposing that a symmetric positive definite matrix P can be found and the
function defined as V (x) = xTPx. Clearly the first three conditions are satisfied by this function; the fourth condition
must be tested before it can be concluded that we have a Lyapunov function. The calculation of  is

A basic matrix result, known as a Lyapunov equation, is

and he showed that if F is a stability matrix having all its eigenvalues in the LHP, then for any positive definite
matrix Q, the solution P of this equation will also be positive definite. The argument from here is to select Q and



solve for P. Then, if the eigenvalues of F are in the LHP, P will be positive definite, so V(x) is a possible Lyapunov
function and

The final part of the argument is to note that, by Eq. (9.59), if x is small enough, then the first term of Eq. (9.65)
will dominate, the fourth condition is satisfied, V is a Lyapunov function, and the system has been proven to be
stable. Note that the requirement that x be small enough guarantees only that there is a neighborhood of the origin
which is stable. Further conditions are needed to show that the bowl defined by V extends to oo in all directions as
||x|| tends to ∞ (and not before!), so that stability holds for all states and is “in the large.”

There is also an instability theorem which shows that if any eigenvalue of F is in the RHP, then the origin will be
unstable. If all the poles of F are in the LHP except for some simple poles on the imaginary axis, then stability
depends on further properties of the nonlinear terms, g(x). With this result in hand, the first or indirect method of
Lyapunov’s first method Lyapunov can be stated:

Lyapunov’s first method
1. Find the linear approximation and compute the eigenvalues of F.
2. If all the eigenvalues are in the LHP, then there is a region of stability about the origin.
3. If at least one of the eigenvalues is in the RHP, then the origin is unstable.
4. If there are simple eigenvalues on the imaginary axis and all other values are in the LHP, then no statement about

stability can be made based on this method.

EXAMPLE 9.15 Lyapunov Stability for a Second-Order System
Use Lyapunov’s method to find conditions for the stability of a second-order linear system described by the state
matrix

Solution. For the linear case we can take any positive definite Q we like; the simplest is Q = I. The corresponding
Lyapunov equation is

Multiplying out Eq. (9.66) and equating coefficients, we get

Equations (9.67) to (9.69) are readily solved to get p = r = 1/2α, q = 0, so that



and the determinants are 1/2α>0 and 1/4α2>0. Thus P > 0, so we conclude that the system is stable if α > 0.

For systems with many state variables and nonnumeric parameters, solution of the Lyapunov equation can be
burdensome, but the result is an equivalent alternative to Routh’s method for computing the conditions for stability
in a system with literal parameters.

EXAMPLE 9.16 Lyapunov’s Direct Method for a Position Feedback System
Consider the position feedback system modeled in Fig. 9.38. Illustrate the use of the direct method on this nonlinear
system. Simulate the system using SIMULINK, assuming that T = 1, and evaluate the step response of the system.
Solution. We assume that the actuator, which is perhaps only an amplifier in this case, has a significant nonlinearity,
which is shown in the figure as a saturation but is possibly more complex. We will assume only that u = f (e), where
the function lies in the first and third quadrants so that . We also assume that f(e) = 0 implies that e =
0, and we will assume that T > 0, so the system is open-loop stable. The equations of motion are

For a Lyapunov function, consider something like kinetic plus potential energy:

Clearly, V = 0 if x2 = e = 0 and, because of the assumptions about f, V > 0 if  To see whether the V
in Eq. (9.71) is a Lyapunov function, we compute  as follows:

Hence  ≤ 0 and the origin is Lyapunov stable. Moreover,  is always decreasing if x2 ≠ 0, and Eq. (9.70b)
indicates that the system has no trajectory with x2 ≡ 0, except x2 = 0. Thus we can conclude that the system is
asymptotically stable for every f that satisfies two conditions: (1) ∫ f d σ > 0 and (2) f(e) = 0 implies that e = 0.
The SIMULINK diagram for the system is shown in Fig. 9.46 for T = 1. The step response of the system is shown in
Fig. 9.47.



Figure 9.47 Step response for position control system

As we mentioned earlier, the study of the stability of nonlinear systems is vast, so we have only touched here on
some important points and methods. Further material for study can be found in LaSalle and Lefschetz (1961),
Kalman and Bertram (1960), Vidyasagar (1993), Khalil (2002), and Sastry (1999).

Lyapunov Redesign of Adaptive Control
One of the classical applications of Lyapunov stability theory to control is a technique known as Lyapunov redesign.
The idea is to construct the system with some key control parameters unspecified, propose a candidate Lyapunov
function and then select the available components to force the candidate to succeed and be an actual Lyapunov
function from which stability can be concluded. The method was applied in an early paper by Parks (1966) to a
model reference adaptive control system. A block diagram of the simple system first considered is drawn in Fig. 9.48.

In this system, the model and the plant have the same dynamics but different gains. The objective is to adjust the
control gain, Kc, so that Kc Kp = Km, and the plant output, yp, will equal the model output, ym. A proposed heuristic
rule, known as the “MIT” rule, was based on the idea that if we define the cost as the square of the instantaneous
error and move Kc so as to make this cost smaller, the result should drive Kc to the right value. If the gradient of the
cost is positive (pointing uphill, so to speak), the gain should be reduced, and if the gradient is negative, the gain
should be increased. Thus the time derivative of the gain should be proportional to the negative

Figure 9.48 Block diagram of a simple model reference adaptive system

of the gradient. In equation form,



where B is the “adaptive gain” to be chosen. From the block diagram,

If we substitute the result of Eq. (9.77) into Eq. (9.74), the result is the MIT rule,

where there is a new adaptive gain, B’. Unfortunately, the stability of this rule is not established, and some analysis
showed that it could be unstable under reasonable circumstances, such as if there are unmodeled dynamics or
disturbances. Parks proposed that Lyapunov redesign would be a better idea and also proposed that, rather than
taking c given by Eq. (9.74), this choice be made in a way that guarantees stability. His idea begins with the
differential equations where r = ro a constant:

To simplify things, the definition is made x = (Kc Kp – Km) and  is to be found. Parks selects V = e2 + λx2 as a
candidate Lyapunov function and computes

If  in the last equation is selected to be , then , the conditions for a Lyapunov function are
satisfied, and stability is assured for the given assumptions. Working back, we find that the new algorithm is

Obviously, this result does not answer the questions of unmodeled dynamics or disturbances, but the principle is
clear: Leaving key control equations to be defined so as to obtain a Lyapunov function can put the stability of a
system on a firm foundation.



As a second example of Lyapunov redesign, consider the adaptive control of a motor shown in Fig. 9.49. Defining
the model output as ym and the plant output as yp, the equations are

Figure 9.49 Block diagram of adaptive control of a motor

(In the equation for yp the term  as been added to both sides to make the error equation simpler.) The error is
defined as e = ym – yp and an equation for error can be obtained by subtracting the equation for yp from that for ym.
The result is

The idea now is to find an equation for Kc that will result in a Lyapunov function for the error equation. To simplify
the calculation, we define the parameter as x = 1 – KcKp, for which  = –Kp c and in terms of which the error
equation is

At this point, Parks suggests consideration of  as a possible function. We need to find  so this V
will be a Lyapunov function. The equation for the derivative is

If we take  then the equation for  simplifies to  which is
always negative, and V is a Lyapunov function and the system is stable. Substituting for x, we get the adaptive control
law



where β’ is a new constant equal to .
Clearly, we have only touched on Lyapunov’s theory of stability, and our examples of redesign are ancient history

from 1966, but they illustrate the principle very well and give a good start to further study of this important area.

9.5.3 The Circle Criterion
A nonlinear system with only one single-input-single-output nonlinearity may be represented as shown in Fig. 9.50
by drawing the block diagram from the points of the input and output of the nonlinearity. In the literature this is
referred to as the Lur’e problem after the Soviet scientist who first studied it.

We assume that the system is unforced and thus r ≡ 0. It is possible to derive a graphical sufficient condition for
stability of such systems. Even though this method is practical, it may lead to conservative results in some cases,
although extensions exist that yield less conservative results (see Safonov, et al., 1987). First we define sector
conditions for memoryless nonlinearities.

Figure 9.50 Block diagram of a nonlinear system

Figure 9.51 Output of the nonlinearity confined in a sector

Sector Conditions
A function f(x) with a scalar input and a scalar output belongs to the sector [k1, k2] if, for all inputs x,

This relationship may be rewritten as



Basically, the definition says that the graph of f(x) lies between two straight lines of slopes k1 and k2 going through
the origin, as shown in Fig. 9.51. In this definition, k1 and k2 are allowed to be –∞ or +∞. Note that the sector
conditions place no limits on the incremental gain or slope of the function f(x). The ensuing examples illustrate how
k1 and k2 are determined.

EXAMPLE 9.17 Computation of a Sector for Signum Nonlinearity
Determine a sector that contains the signum function y = f(u) shown in Fig. 9.6(b).
Solution. Since sgn(0) = 0, we know that the only line going through the origin that bounds the signum function
from above is the y-axis, corresponding to a slope of k = ∞. Similarly the line going through the origin that bounds
the signum function from below has a slope of zero and corresponds to the x-axis; therefore, k1 = 0. Hence the
sector for the signum function is [0, ∞].

Figure 9.52 Sector for a Saturation

EXAMPLE 9.18 Sector for a Saturation Nonlinearity
Consider the saturation nonlinearity shown Fig. 9.52. Determine a sector for this function.
Solution. The function is bounded above by a line of slope 1, k2 = 1, and is bounded below by the x-axis, k1 = 0, as
shown in the figure. Therefore, the sector for this function is [0, 1].

Circle Criterion
In 1949 the Russian scientist Aizermann conjectured that if a Lur’e system is stable with f replaced by any linear gain
between the limits k1 < k < k2, then the system will be stable, with the gain replaced by a nonlinearity in the
sector [k1, k2]. That means that if a single-loop (strictly proper) continuous-time feedback system as shown in Fig.



9.50 with a linear forward path (F, G, H) is stable for all linear fixed feedback gains k in the range k1 < k < k2,
such that the resultant closed-loop system matrix F + kGH is stable, then the nonlinear system having a memoryless
nonlinear time-varying feedback term f (t, y) in the sector [k1, k2], shown in Fig. 9.50, is also stable. Unfortunately,
this conjecture is not true as counterexamples exist.7 However, a variation of Aizermann’s conjecture is true and is
known as the circle criterion.

Rather than give a rigorous proof of the criterion, we describe a heuristic argument that gives insight into the
problem and motivates the proof. An electric circuit with a linear impedance, Z(jω) = R(ω) + jX(ω), is described
by Ohm’s law as V = IZ(s). We assume that Z is composed of real components, which means that the real part R is
even and the imaginary part X is odd; that is R(–ω) = R(ω) and X(–ω) = –X(ω). If R(ω)  δ > 0 for all ω, the
impedance is called strictly passive. It will dissipate energy. The instantaneous power into the circuit is p = v(t)i(t),
and the total energy absorbed by the circuit is  Referring to the figure, Ohm’s law is equivalent to
the plant equation Y = UG(s) with Y as voltage, U as current, and G(s) = R + jX as the impedance. Applying the
expression for energy to the plant equation and using the theorem by Parseval8 to convert this to the frequency
domain yields

In the last step, the fact the X is odd was used. At this point, the use of more or less conventional notation will
simplify the equations substantially. We define inner products and norms as

With this notation, and with the assumption that R  δ > 0, Eq. (9.97) is reduced to

Turning now to the nonlinear component, using the same concept of “energy” and assuming that f is in the sector [0,
K], we have



The assumption now is that if the total energy given by the sum of Eq. (9.100) and Eq. (9.102) is positive, then the
system must be stable, as energy is being steadily lost. The actual value of the energy lost would be equal to the
initial energy stored in the

elements of the system. From this one would conclude that if , then the system is stable. Thus
the criterion is

In deriving Eq. (9.106), the assumption was made that the nonlinearity was in a zero sector, [0, K]. If the function is
actually in the sector [k1, k2], it can be reduced to a zero sector by adding and subtracting k1 in the block diagram as

shown in Fig. 9.53. With this change, the dynamic system is replaced by  and the function by f’ = f – k1,
which is in the sector [k2 – k1, 0]. With these changes, the stability criterion is transformed to

It is a fact that a bilinear function such as  in Eq. (9.109) will map a circle in the F plane into another
circle in the G plane (see Appendix WD). In this case, the acceptable region is Re{F} > 0, of which the boundary is
the imaginary axis, so the map is from the imaginary axis, a circle of infinite radius, into a finite circle. Because the
functions are real, the circle must be centered on the real axis and we need only locate the two points on the real

axis. For example, when F = 0, we have 1 + k2G = 0 or  The other point on the real axis is when the

function is infinite, at which point 1 + k1G = 0 or G = . Thus the circle in the G plane is centered on the



real axis and goes through the points  as plotted in

Figure 9.53 Block diagram manipulation for sector

Figure 9.54 Illustration of circle criterion

Fig. 9.54. Since F had to avoid the LHP, if we set F = –1, which is in the forbidden region, and solve, we find that 

, which is inside the circle, from which we conclude that the system will be stable if the plot of G(jm)
avoids this circle.

The actual theorem is as follows:
The nonlinear system described is asymptotically stable given that

1. f(t, y) lies in the sector [k1, k2] with 0 < k1 k2 and
2. the Nyquist plot of the transfer function G(jm) = H(jmI – F)–1G does not intersect or encircle the “critical circle,”

which is centered on the real axis and passes through the two points – 1/k1 and – 1/k2, as shown in Fig. 9.54.

Circle criterion
In effect, the usual Nyquist” –1” point is replaced by the critical disk. This result is known as the circle criterion or

circle theorem and is due to Sandberg (1964) and Zames (1966). Note that these conditions are sufficient but not
necessary, because intersection of the transfer function G(s)with the circle as defined does not prove instability. The
critical circle is centered at



and has a radius of

If k1 = 0, then the critical circle degenerates into a half plane defined by Re{G}  –1/k2.
The circle criterion and the describing function are related. In fact, for the case of time-invariant odd nonlinearities

that are within a sector and whose describing functions are real, the describing function satisfies the relationship

so that

and the plot of the negative reciprocal of the describing function will lie inside the critical circle. This can be seen by
the following lower and upper bounds:

Figure 9.55 Nyquist plot and circle criterion

The equivalent gain analysis and describing functions yield the same results. If we take the gain of the describing
function, then the amplitude of the limit cycle can be predicted as with the describing functions. Both equivalent gain



techniques can be used to determine stability, but as we have seen, the circle criterion allows for time-varying
nonlinearities.

EXAMPLE 9.19 Determination of Stability Using the Circle Criterion
Consider the system in Example 9.7. Determine the stability properties of the system using the circle criterion.
Solution. The related sector is the same one found in Example 9.18. The critical circle degenerates into a half plane
defined by Re(G) ≤ –1, as shown in Fig. 9.55. Since the Nyquist plot lies entirely to the right of the critical circle, the
system is stable.

9.6 Historical Perspective
Almost all physical dynamic systems are nonlinear; hence it is not surprising that the study of nonlinear systems has a
long and rich history. The study of nonlinear systems goes back to astronomy and the study of the stability of the
solar system dating back to Torricelli (1608-1647), Laplace, and Lagrange. The field got a jolt of “energy” with the
doctoral dissertation of A. M. Lyapunov in Russia in 1899. He was trying to solve the stability of rotating bodies of
fluids posed by Poincaré and recognized that if he could show that system stored energy was always decreasing, then
the system would be stable and eventually come to rest. The study of Lyapunov functions was introduced to the
control field in 1960 by Kalman and Bertram and has evolved rapidly since then.

Max well was the first to study stability by linearization about an equilibrium point by the derivation of the linear
model for the Watt’s fly-ball governor and stating that the system will be stable if the characteristic roots have
negative real parts. Kochenberger derived the describing function method in an attempt to handle nonlinearities in
1950 based on frequency-response ideas. Lur’e proposed the absolute stability problem in 1944 and in 1961 Popov
developed the circle criterion for nonlinear stability analysis. Yakubovich (1962) and Kalman (1963) later established
connections between Lur’e and Popov’s results.

The study of adaptive control received a lot of attention during the three decades of the 1960s, 1970s, and 1980s.
Adaptive controllers are both time varying and nonlinear in general. During the 1960s sensitivity methods and the
MIT rule for adaptive adjustments were developed by Draper and others. Methods to study adaptive systems based
on Lyapunov’s methods and passitivity were developed in the 1970s. Robust adaptive control methods were studied
in the 1980s. Also, there has been a lot of research on systems, such as the weather, where a minute change in initial
conditions or parameters can cause drastic changes in the response of the system. Such systems are said to be chaotic.
In all recent studies of nonlinear systems, the availability of powerful computers to solve the equations and to graph
the results has been critical. Development of a general theory of nonlinear control continues to be a dream of control
theorists and is an ongoing quest.

SUMMARY
• The nonlinear equations of motion may be approximated by linear ones by considering a small-signal linear model

that is accurate near an equilibrium.
• In many cases, the inverse of a nonlinearity may be used to linearize a system.
• Nonlinearities with no dynamics, such as saturation, can be analyzed using the root locus by considering the

nonlinearity to be a variable gain.



• The root-locus technique can be used to determine the limit-cycle properties for memoryless nonlinearities, and
yields the same results as the describing function.

• The describing function is essentially a heuristic method with the goal of finding a frequency-response function for
a nonlinear element.

• The stability of systems with a single nonlinearity can be studied using the describing function method.
• The describing function can be used to predict periodic solutions in feedback systems.
• The Nyquist plot together with the describing function can be used to determine limit-cycle properties.
• The stability of a nonlinear system in state-space description can be studied by the methods of Lyapunov.
• The circle criterion provides a sufficient condition for stability.

REVIEW QUESTIONS
1. Why do we approximate a physical model of the plant (which is always nonlinear) with a linear model?
2. How would you linearize the nonlinear system equation for radiation heat transfer  = T4 + T + u?
3. A lamp used as a thermal actuator has a nonlinearity such that the experimentally measured output power is

related to the input voltage by P = V1.6. How would you deal with such a nonlinearity in feedback control
design?

4. What is integrator windup?
5. Why is an antiwindup circuit important?
6. Using the nonlinear saturation function having gain 1 and limits ±1, sketch the block diagram of saturation for an

actuator that has gain 7 and limits of ±90.
7. What is a describing function and how is it related to a transfer function?
8. What are the assumptions behind the use of the describing function?
9. What is a limit cycle in a nonlinear system?
10. How can one determine the describing function for a nonlinear system in the laboratory?
11. What is the minimum time control strategy for a satellite attitude control with bounded controls?
12. How are the two Lyapunov methods used?

PROBLEMS

Problems for Section 9.2: Analysis by Linearization
9.1 Fig. 9.56 shows a simple pendulum system in which a cord is wrapped around a fixed cylinder. The motion of

the system that results is described by the differential equation

where
l = length of the cord in the vertical (down) position,
R= radius of the cylinder.

(a) Write the state-variable equations for this system.



Figure 9.56 Motion of cord wrapped around a fixed cylinder

(b) Linearize the equation around the point = θ, and show that for small values of θ, the system equation reduces
to an equation for a simple pendulum—that is,

 + (g/l)θ = 0.
9.2 The circuit shown in Fig. 9.57 has a nonlinear conductance G such that iG = g(vG) = vG(vG – 1)(vG – 4). The state

differential equations are

where i and v are the state variables and u is the input.
(a) One equilibrium state occurs when u = 1, yielding i1 = v1 = 0. Find the other two pairs of v and i that will

produce equilibrium.
(b) Find the linearized model of the system about the equilibrium point u = 1, i1 = v1 = 0.
(c) Find the linearized models about the other two equilibrium points.

Figure 9.57 Nonlinear circuit for Problem 9.2

9.3 Consider the circuit shown in Fig. 9.58; u1 and u2 are voltage and current sources, respectively, and R1 and R2 are
nonlinear resistors with the following characteristics:



Figure 9.58 A nonlinear circuit

Here the function r is defined in Fig. 9.59.
(a) Show that the circuit equations can be written as

Figure 9.59 Nonlinear resistance

Suppose we have a constant voltage source of 1 volt at u1 and a constant current source of 27 amps 

. Find the equilibrium state  for the circuit. For a particular input uo, an
equilibrium state of the system is defined to be any constant state vector whose elements satisfy the relation

1 = 2 = 3 = 0.

Consequently, any system started in one of its equilibrium states will remain there indefinitely until a different input
is applied.

(b) Due to disturbances, the initial state (capacitance, voltages, and inductor current) is slightly different from the
equilibrium and so are the independent sources; that is,

u(t) = uo + δu(t),
x(t0) = x°(t0) + δx(t0).

Do a small-signal analysis of the network about the equilibrium found in (a), displaying the equations in the form



(c) Draw the circuit diagram that corresponds to the linearized model. Give the values of the elements.
9.4 Consider the nonlinear system

(a) Assume uo = 0 and solve for xo(t).
(b) Find the linearized model about the nominal solution in part (a).

9.5 Linearizing effect of feedback: We have seen that feedback can reduce the sensitivity of the input-output transfer
function with respect to changes in the plant transfer function, and reduce the effects of a disturbance acting on
the plant. In this problem we explore another beneficial property of feedback: It can make the input-output
response more linear than the open-loop response of the plant alone. For simplicity, let us ignore all the
dynamics of the plant and assume that the plant is described by the static nonlinearity

(a) Suppose we use proportional feedback
u(t) = r(t) + α(r(t) – y(t)),

where α ≥ 0 is the feedback gain. Find an expression for y(t) as a function of r(t) for the closed-loop system. (This
function is called the nonlinear characteristic of the system.) Sketch the nonlinear transfer characteristic for α = 0
(which is really open loop), α = 1, and α = .

(b) Suppose we use integral control:

The closed-loop system is therefore nonlinear and dynamic. Show that if r(t) is a constant, say 
Thus, the integral control makes the steady-state transfer characteristic of the closed-loop system exactly linear. Can
the closed-loop system be described by a transfer function from r to y?
9.6 This problem shows that linearization does not always work. Consider the system

 = ax3, x(0) ≠ 0.
(a) Find the equilibrium point and solve for x(t).
(b) Assume that α = 1. Is the linearized model a valid representation of the system?
(c) Assume that α = –1. Is the linearized model a valid representation of the system?

9.7 Consider the object moving in a straight line with constant velocity shown in Fig. 9.60. The only available
measurement is the range to the object. The system equations are



where

Derive a linear model for this system.

Figure 9.60 Diagram of moving object for Problem 9.7

Problems for Section 9.3: Equivalent Gain Analysis Using the Root Locus
9.8 Consider the third-order system shown in Fig. 9.61.

(a) Sketch the root locus for this system with respect to K, showing your calculations for the asymptote angles,
departure angles, and so on.

(b) Using graphical techniques, locate carefully the point at which the locus crosses the imaginary axis. What is
the value of K at that point?

(c) Assume that, due to some unknown mechanism, the amplifier output is given by the following saturation non-
linearity (instead of by a proportional gain K):

Qualitatively describe how you would expect the system to respond to a unit-step input.

Figure 9.61 Control system for Problem 9.8

Problems for Section 9.4: Equivalent Gain Analysis

Using Frequency Response: Describing Functions
9.9 Compute the describing function for the relay with dead-zone nonlinearity shown in Fig. 9.6(c).
9.10 Compute the describing function for gain with dead-zone nonlinearity shown in Fig. 9.6(d).



9.11 Compute the describing function for the preloaded spring or Coulomb plus viscous friction nonlinearity shown
in Fig. 9.6(e).

9.12 Consider the quantizer function shown in Fig. 9.62 that resembles a staircase. Find the describing function for
this nonlinearity and write a MATLAB .m function to generate it.

9.13 Derive the describing function for the ideal contactor controller shown in Fig. 9.63. Is it frequency dependent?
Would it be frequency dependent if it had a time delay or hysteresis? Graphically sketch the time histories of the
output for several amplitudes of the input and determine the describing function values for those inputs.

9.14 A contactor controller of an inertial platform is shown in Fig. 9.64, where

Figure 9.62 Quantizer nonlinearity for Problem 9.12

Figure 9.63 Contactor for Problem 9.13



Figure 9.64 Block diagram of the system for Problem 9.14

The required stabilization resolution is approximately 10–6 rad:

Kφm > d for φm > 10–6 rad.

Discuss the existence, amplitude, and frequency of possible limit cycles as a function of the gain K and the DF of the
controller. Repeat the problem for a deadband with hysteresis.
9.15 Nonlinear Clegg Integrator: Here there have been some attempts over the years to improve upon the linear

integrator. A linear integrator has the disadvantage of having a phase lag of 90° at all frequencies. In 1958, J. C.
Clegg suggested that we modify the linear integrator to reset its state, x, to zero whenever the input to the
integrator, e, crosses zero (i.e., changes sign). The Clegg integrator has the property that it acts like a linear
integrator whenever its input and output have the same sign. Otherwise, it resets its output to zero. The Clegg
integrator can be described by

x(t) = e(t), if e(t) ≠ 0,
x(t+) = 0, if e(t) = 0,

where the latter equation implies that the state of the integrator, x, is reset to zero immediately after e changes sign.
It can be implemented with op-amps and diodes. A potential disadvantage of the Clegg integrator is that it may
induce oscillations.

(a) Sketch the output of the Clegg integrator if the input is e = a sin(ωt).



(b) Prove that the DF for the Clegg integrator is

and this amounts to a phase lag of only 38°.

Δ Problems for Section 9.5: Analysis and Design Based on Stability
9.16 Compute and sketch the optimal reversal curve and optimal control for the minimal time control of the plant

1 = x2,

2 = –x2 + u,
|u| ≤ 1.

Use the reverse-time method and eliminate the time.
9.17 Sketch the optimal reversal curve for the minimal time control with |u| ≤ 1 of the linear plant

1 = x2,

2 = –2x1 – 3x2 + u.

9.18 Sketch the time-optimal control law for
1 = x2,

2 = –x1 + u,
|u| ≤ 1,

and show a trajectory for x1 (0) = 3 and x2(0) = 0.

9.19 Consider the thermal control system shown in Fig. 9.65. The physical plant can be a room, an oven, etc.
(a) What is the limit-cycle period?
(b) If Tr is commanded as a slowly increasing function, sketch the output of the system, T. Show the solution for

Tr “large.”

Figure 9.65 Thermal system for Problem 9.19

9.20 Several systems, such as a spacecraft, a spring-mass system with resonant frequency well below the frequency of
switching, a large motor-driven load with very small friction, etc., can be modeled as just an inertia. For an ideal
switching curve, sketch the phase portraits of the system. The switching function is e = θ + τω. Assume that τ =



10 sec and the control signal = 10–3 rad/sec2. Now sketch the results with
(a) deadband,
(b) deadband plus hysteresis,
(c) deadband plus time delay T,
(d) deadband plus a constant disturbance.

9.21 Compute the amplitude of the limit cycle in the case of satellite attitude control with delay
I  = N u(t – Δ),

using
u = –sgn(τ  + θ).

Sketch the phase-plane trajectory of the limit cycle and time history of θ giving the maximum value of θ.
9.22 Consider the point mass pendulum with zero friction as shown in Fig. 9.66. Using the method of isoclines as a

guide, sketch the phase-plane portrait of the motion. Pay particular attention to the vicinity of θ = π. Indicate a
trajectory corresponding to spinning of the bob around and around rather than oscillating back and forth.

Figure 9.66 Pendulum for Problem 9.22

9.23 Draw the phase trajectory for a system
 = 10–6 m/sec2

between (0) = 0, x(0) = 0, and x(t) = 1 mm. Find the transition time tf by graphical means from the parabolic
curve by comparing your solution with two different interval sizes and the exact solution.
9.24 Consider the system with equations of motion

 +  + sin θ = 0.
(a) What physical system does this correspond to?
(b) Draw the phase portraits for this system.
(c) Show a specific trajectory for θ0 = 0.5 rad and  = 0.

9.25 Consider the nonlinear upright pendulum with a motor at its base as an actuator. Design a feedback controller to
stabilize this system.

9.26 Consider the system
 = – sin x.

Prove that the origin is an asymptotically stable equilibrium point.



9.27 A first-order nonlinear system is described by the equation  = –f(x), where f(x) is a continuous and
differentiable nonlinear function that satisfies the following:

f(0) = 0,
f(x) > 0, for x > 0,
f(x) < 0, for x < 0.

Use the Lyapunov function V(x) = x2/2 to show that the system is stable near the origin (x = 0).
9.28 Use the Lyapunov equation

FT P + PF = – Q = –I
to find the range of K for which the system in Fig. 9.67 will be stable. Compare your answer with the stable values
for K obtained using Routh’s stability criterion.

Figure 9.67 Control system for Problem 9.28

9.29 Consider the system

Find all values of α and β for which the input u(t) = αy(t) + β will achieve the goal of maintaining the output y(t)
near 1.
9.30 Consider the nonlinear autonomous system

(a) Find the equilibrium point(s).
(b) Find the linearized system about each equilibrium point.
(c) For each case in part (b), what does Lyapunov theory tell us about the stability of the nonlinear system near

the equilibrium point?
9.31 Van der Pol’s equation: Consider the system described by the nonlinear equation

 + ε(1 + x2)  + x = 0
with the constant ε > 0.

(a) Show that the equations can be put in the form [Liénard or (x, y) plane]



(b) Use the Lyapunov function , and sketch the region of stability as predicted by this V in the
Liénard plane.

(c) Plot the trajectories of part (b) and show the initial conditions that tend to the origin. Simulate the system in
SIMULINK using various initial conditions on x(0) and (0). Consider two cases, with ε = 0.5 and ε = 1.0.



1 And as we live in California, we know how dangerous it is to be on shaky ground.
2 This equation assumes the system is time invariant. A more general expression would be  = f (x,u, t).
3 In process control, integral control is usually called reset control, and so integrator windup is often called reset windup. Without integral control, a
given setpoint of, say, 10 results in a response of less value, say, 9.9. The operator must then reset to 10.1 to bring the output to the desired value of
10. With integral control the controller automatically brings the output to 10 with a setpoint of 10; hence the integrator does automatic reset.
4 In some cases, especially with mechanical actuators such as an aircraft control surface or a flow control valve, it is not desirable and may cause
damage to have the physical device bang against its stops. In such cases it is common practice to include an electronic saturation with lower limits
than those of the physical device, so that the system hits the electrical stops just before the physical device will saturate.
5 A more sophisticated scheme might use an antiwindup feedback at a lower level of saturation than that imposed by the actuator, so PD control
continues for a time after integration has been stopped. Any such scheme needs to be analyzed carefully to evaluate its performance and to assure
stability.
6 If the slope dx2/dx1 is set to a constant, the relation between x2 and x1 is a straight line. If the known values of slopes are marked along a set of
these lines, the trajectories can be readily sketched. For example, along the x1 axis, where x2 = 0 the slope is ∞ and the trajectories are vertical. This
method is called the method of isoclines.
7 Aizermann’s conjecture spurred a lot of research in this area and led to the development of the Kalman-Yakubovich-Popov lemma, giving state-space
conditions for a passive system. The lemma is used in a proof of the circle criterion.
8 See Appendix A.



10 Control System Design: Principles and Case Studies

A Perspective on Design Principles
In Chapters 5, 6, and 7 we presented techniques for analyzing and designing feedback systems based on the root-
locus, frequency-response, and state-variable methods. Thus far we have had to consider somewhat isolated, idealized
aspects of larger systems and to focus on applying one analysis method at a time. In this chapter we return to the
theme of Chapter 4—the advantages of feedback control—to reconsider the overall problem of control systems
design with the sophisticated tools developed in Chapters 5 to 7 and 9 in hand. We will apply these tools to several
complex, real-world applications in a case study-type format.

Having an overarching, step-by-step design approach serves two purposes: It provides a useful starting point for
any real-world controls problem, and it provides meaningful checkpoints once the design process is underway. This
chapter develops just such a general approach, which will be applied in the case studies.

Chapter Overview
Section 10.1 opens the chapter with a step-by-step design process that is sufficiently general to apply to any control
design process, but which also provides useful definitions and directions. We then apply the design process to four
practical, complex applications: design of an attitude control system for a satellite (Section 10.2), lateral and
longitudinal control of a Boeing 747 (Section 10.3), and control of the fuel-air ratio in an automotive engine (Section
10.4), control of a disk drive (Section 10.5), and control of rapid thermal processing (RTP) system (Section 10.6). The
satellite case study is representative of the control of geosynchronous communications satellite systems. The study
addresses the design of robust control systems in which the physical parameters are known to vary within a given
range. In this system the control system needs to meet specifications from the “beginning-of-life” (BOL) to the “end-
of-life” (EOL) that spans a period of 12–15 years. The satellite’s moment of inertia and mass will vary as fuel is
expended for attitude control, and by deployment and re-orientation of satellite antennas. The satellite case study
illustrates the use of a notch compensation for a system with lightly damped resonance. We will see from this case
study that collocated actuator and sensor systems are much easier to control than the noncollocated systems. The
Boeing 747 case study addresses the familiar flight control system of commercial passenger aircraft. The nonlinear
equations of motion are given and are linearized about a particular flight condition. The rigid body dynamics,
longitudinal and lateral-directional, are each fourth order. Of course, the flexible modes need also be considered for a
more accurate model. The Boeing 747 lateral-stabilization case study will illustrate the use of feedback as an inner-
loop designed to aid the pilot, who will provide the primary outer-loop control. The altitude control will show how



to combine inner-loop feedback with outer-loop compensation to design a complete control system. The air-to-fuel
ratio automotive case study is a real-world example that includes a nonlinear sensor and a pure time delay. We will
use the describing function method of Chapter 9 to analyze the behavior of this system. Another familiar problem to
every PC user is the control of data stored on a disk drive. This case study is about position control and bandwidth
will be a key performance parameter. The RTP case study from semiconductor wafer fabrication is remarkably close
to the industrial application. The problem concerns temperature tracking and disturbance rejection for a highly
nonlinear thermal system. The actuator (lamp) is also nonlinear and we will use the technique from Chapter 9 to try
to cancel the effect of this nonlinearity. Another key aspect of this system is actuator saturation and the fact that the
control signal cannot go negative. In all these case studies the designer needs to be able to use multiple tools from
previous chapters, including the root locus, the frequency response, pole placement by state feedback, and
(nonlinear) simulation of time responses to obtain a satisfactory design. In Section 10.7 we present a case study from
the emerging field of systems biology and describe chemo-taxis or how Escherichia coli (f. coli) swims away from
trouble. Section 10.8 provides a historical perspective on applications of feedback control.

10.1 An Outline of Control Systems Design
Control engineering is an important part of the design process of many dynamic systems. As suggested in Chapter 4,
the deliberate use of feedback can stabilize an otherwise unstable system, reduce the error due to disturbance inputs,
reduce the tracking error while following a command input, and reduce the sensitivity of a closed-loop transfer
function to small variations in internal system parameters. In those situations for which feedback control is required,
it is possible to outline an approach to control systems design that often leads to a satisfactory solution.

Before describing this approach, we wish to emphasize that the purpose of control is to aid the product or process
—the mechanism, the robot, the chemical plant, the aircraft, or whatever—to do its job. Engineers engaged in other
areas of the design process are increasingly taking the contribution of control into account early in their plans. As a
result, more and more systems have been designed so that they will not work at all without feedback. This is
especially significant in the design of high-performance aircraft, where control has taken its place along with
structures and aerodynamics as essential to assuring that the craft will even fly at all. It is impossible to give a
description of such overall design in this book, but recognizing the existence of such cases places in perspective not
only the specific task of control system design but also the central role this task can play in an enterprise.

Control system design begins with a proposed product or process whose satisfactory dynamic performance
depends on feedback for stability, disturbance regulation, tracking accuracy, or reduction of the effects of parameter
variations. We will give an outline of the design process that is general enough to be useful whether the product is an
electronic amplifier or a large structure to be placed in earth orbit. Obviously, to be so widely applicable, our
outline has to be vague with respect to physical details and specific only with respect to the feedback-control
problem. To present our results, we will divide the control design problem into a sequence of characteristic steps.

Specifications

STEP 1. Understand the process and translate dynamic performance requirements into time, frequency, or pole-zero
specifications. The importance of understanding the process, what it is intended to do, how much system error is
permissible, how to describe the class of command and disturbance signals to be expected, and what the physical



capabilities and limitations are can hardly be overemphasized. Regrettably, in a book such as this, it is easy to view
the process as a linear, time-invariant transfer function capable of responding to inputs of arbitrary size, and we tend
to overlook the fact that the linear model is a very limited representation of the real system, valid only for small
signals, short times, and particular environmental conditions. Do not confuse the approximation with the reality. You
must be able to use the simplified model for its intended purpose, and to return to an accurate model or the actual
physical system to really verify the design performance.

Typical results of this step are specifications that the system have a step response inside some constraint
boundaries (as shown in Fig. 10.1a), an open-loop frequency response satisfying certain constraints (Fig. 10.1b), or
closed-loop poles to the left of some constraint boundary (Fig. 10.1c).

Sensors

STEP 2. Select sensors. In sensor selection, consider which variables are important to control and which variables can
physically be measured. For example, in a jet engine there are critical internal temperatures that must be controlled,
but that cannot be measured directly in an operational engine. Select sensors that indirectly allow a good estimate to
be made of these critical variables. It is important to consider sensors for the disturbance. Sometimes, especially in
chemical processes, it is beneficial to sense a load disturbance directly, because improved performance can be
obtained if this information is fed forward to the controller.

Figure 10.1 Examples of (a) time-response; (b) frequency-response; and (c) pole–zero specifications resulting from
Step 10.1

Following are some factors that influence sensor selection:

STEP 3. Select actuators. In order to control a dynamic system, obviously you must be able to influence the response.
The device that does this is the actuator. Before choosing a specific actuator, consider which variables can be
influenced. For example, in a flight vehicle many configurations of movable surfaces are possible, and the influence
these have on the performance and controllability of the craft can be profound. The locations of jets or other torque



devices are also a major part of the control design of spacecraft.

Actuators
Having selected a particular variable to control, you may need to consider other factors:

STEP 4. Make a linear model. Here you take the best choice for process, actuator, and sensor; identify the
equilibrium point of interest; and construct a small-signal dynamic model valid over the range of frequencies
included in the specifications of Step 1. You should also validate the model with experimental data where possible.
To be able to make use of all the available tools, express the model in state-variable and pole-zero form as well as in
frequency-response form. As we have seen, MATLAB® and other computer-aided control systems design software
packages have the means to perform the transformations among these forms. Simplify and reduce the order of the
model if necessary. Quantify model uncertainty.

Linearization
STEP 5. Try a simple proportional-integral-derivative (PID) or lead-lag design. To form an initial estimate of the
complexity of the design problem, sketch a frequency response (Bode plot) and a root locus with respect to plant
gain. If the plant-actuator-sensor model is stable and minimum phase, the Bode plot will probably be the most
useful; otherwise, the root locus shows very important information with respect to behavior in the right half-plane
(RHP). In any case, try to meet the specifications with a simple controller of the lead-lag variety, including integral
control if steady-state error response requires it. Do not overlook feed-forward of the disturbances if the necessary
sensor information is available. Consider the effect of sensor noise, and compare a lead network to a direct sensor of
velocity to see which gives a better design.

Simple compensation PID/lead-lag design
STEP 6. Evaluate/modify plant. Based on the simple control design, evaluate the source of the undesirable
characteristics of the system performance. Reevaluate the specifications, the physical configuration of the process, and
the actuator and sensor selections in light of the preliminary design, and return to Step 1 if improvement seems
necessary or feasible. For example, in many motion-control problems, after testing the first-pass design, you might
find vibrational modes that prevent the design from meeting the initial specifications of the problem. It may be much
easier to meet the specifications by altering the structure of the plant through the addition of stiffening members or
by passive damping than to meet them by control strategies alone. An alternative solution may be to move a sensor
so it is at a node of a vibration mode, thus providing no feedback of the motion. Also, some actuator technologies
(such as hydraulic) have many more low-frequency vibrations than others (such as electric) do and changing the
actuator technology may be indicated. In a digital implementation, it may be possible to revise the sensor-controller-
actuator system structure so as to reduce time delay, which is always a destabilizing element. In thermal systems, it is



often possible to change heat capacity or conductivities by material substitution that will enhance the control design.
It is important to consider all parts of the design, not only the control logic, to meet the specifications in the most
cost-effective way. If the plant is modified, go back to Step 1. If the design now seems satisfactory, go to Step 8;
otherwise try Step 7.

Optimal design
STEP 7. Try an optimal design. If the trial-and-error compensators do not give entirely satisfactory performance,
consider a design based on optimal control. The symmetric root locus (SRL) will show possible root locations from
which to select locations for the control poles that meet the response specifications; you can select locations for the
estimator poles that represent a compromise between sensor and process noise. Plot the corresponding open-loop
frequency response and the root locus to evaluate the stability margins of this design and its robustness to parameter
changes. You can modify the pole locations until a best compromise results. Returning to the SRL with different cost
measures is often a part of this step, or computations via the direct functions lqr and lqe can be used. Another
variation on optimal control is to propose a fixed structure controller with unknown parameters, formulate a
performance cost function, and use parameter optimization to find a good set of parameter values.

Compare the optimal design yielding the most satisfactory frequency response with the transform-method design
you derived in Step 5. Select the better of the two before proceeding to Step 8.

STEP 8. Build a computer model, and compute (simulate) the performance of the design. After reaching the best
compromise among process modification, actuator and sensor selection, and controller design choice, run a computer
model of the system. This model should include important nonlinearities, such as actuator saturation, realistic noise
sources, and parameter variations you expect to find during operation of the system. The simulation will often
identify sensitivities that may lead to going back to Step 5 or even Step 2. Design iterations should continue until the
simulation confirms acceptable stability and robustness. As part of this simulation you can often include parameter
optimization, in which the computer tunes the free parameters for best performance. In the early stages of design the
model you simulate will be relatively simple; as the design progresses, you will study more complete and detailed
models. At this step it is also possible to compute a digital equivalent of the analog controller as described in
Chapters 4 and 8. Some refinement of the controller parameters may be required to account for the effects of
digitization. This allows the final design to be implemented with digital processor logic.

If the results of the simulation prove the design satisfactory, go to Step 9, otherwise return to Step 1.

Prototype Prototype testing

STEP 9. Build a prototype. As the final test before production, it is common to build and test a prototype. At this
point you verify the quality of the model, discover unsuspected vibration and other modes, and consider ways to
improve the design. Implement the controller using embedded software/hardware. Tune the controller if necessary.
After these tests, you may want to reconsider the sensor, actuator, and process and return to Step 1—unless time,
money, or ideas have run out.

This outline is an approximation of good practice; other engineers will have variations on these themes. In some
cases you may wish to carry out the steps in a different order, to omit a step, or to add one. The stages of simulation
and prototype construction vary widely, depending on the nature of the system. For systems for which a prototype is



difficult to test and rework (for example, a satellite) or where a failure is dangerous (for example, active stabilization
of a high-speed centrifuge or landing a human on the moon), most of the design verification is done through
simulation of some sort. It may take the form of a digital numerical simulation, a laboratory scale model, or a full-
size laboratory model with a simulated environment. For systems that are easy to build and modify (for example,
feedback control for an automotive fuel system), the simulation step is often skipped entirely; design verification and
refinement are instead accomplished by working with prototypes.

One of the issues raised in the preceding discussion (Step 6) was the important consideration for changing the
plant itself. In many cases, proper plant modifications can provide additional damping or increase in stiffness,
change in mode shapes, reduction of system response to disturbances, reduction of Coulomb friction, change in
thermal capacity or conductivity, etc. It is worth elaborating on this by way of specific examples from the authors’
experiences. In a semiconductor wafer-processing example, the edge ring holding the wafer was identified as a
limiting factor in closed-loop control. Modifying the thickness of the edge ring and using a different coating material
reduced the heat losses and, together with relocating one of the temperature sensors closer to the edge ring, resulted
in significant improvement in control performance. In another application, thin film processing, simply changing the
order of the two incoming flows resulted in significant improvement in the mixing of the precursor and oxidizer
materials, and led to improvement in uniformity of the film. In an application on physical vapor deposition using
RF-plasma, the shape of the target was modified to be curved to counter the geometry effects of the chamber, and
yielded substantial improvements in deposition uniformity. As the last example, in a hydraulic spindle control
problem, adding oil temperature control with ceramic insulation and a temperature sink for the bell housing resulted
in several orders of magnitude reduction in disturbances not achievable by feedback control alone.1 One can also
mention aerospace applications for which the control was an afterthought, and the feedback control problem became
exceedingly difficult and resulted in poor closed-loop performance. The moral of this discussion is that one must not
forget the option of modifying the plant itself to make the control problem easier and provide maximum closed-loop
performance.

The usual approach of designing the system and “throwing it over the fence” to the control group has proved to be
inefficient and flawed. A better approach that is gaining momentum is to get the control engineer involved from the
onset of a project to provide early feedback on how hard it is to control the system. The control engineer can
provide valuable feedback on choice of actuators and sensors and can even suggest modifications to the plant. It is
often much more efficient to change the plant design while it is on the drawing board before “any metal has been
bent.” Closed-loop performance studies can then be performed on a simple model of the system early on.

Implicit in the process of design is the well-known fact that designs within a given category often draw on
experience gained from earlier models. Thus, good designs evolve rather than appear in their best form after the first
pass. We will illustrate the method with several cases (Sections 10.2 to 10.6). For easy reference, we summarize the
steps here.

Summary of Control Design Steps
1. Understand the process and its performance requirements.
2. Select the types and number of sensors considering location, technology, and noise.
3. Select the types and number of actuators considering location, technology, noise, and power.
4. Make a linear model of the process, actuator, and sensor.



5. Make a simple trial design based on the concepts of lead-lag compensation or PID control. If satisfied, go to Step
8.

6. Consider modifying the plant itself for improved closed-loop control.
7. Make a trial pole-placement design based on optimal control or other criteria.
8. Simulate the design, including the effects of nonlinearities, noise, and parameter variations. If the performance is

not satisfactory, return to Step 1 and repeat. Consider modifying the plant itself for improved closed-loop control.
9. Build a prototype and test it. If not satisfied, return to Step 1 and repeat.

10.2 Design of a Satellite’s Attitude Control
Our first example, taken from the space program, is suggested by the need to control the pointing direction, or
attitude, of a satellite in orbit about the earth. Figure 10.2(a) shows a picture of a geosynchronous communications
satellite. We will go through each step in our design outline and touch on some of the factors that might be
considered for the control of such a system.
STEP 1. Understand the process and its performance specifications. A satellite is sketched in Fig. 10.2(b). We imagine
that the vehicle has an astronomical survey mission requiring accurate pointing of a scientific sensor package. This
package must be maintained in the quietest possible environment, which entails isolating it from the vibrations and
electrical noise of the main service body and from its power supplies, thrusters, and communication gear. We model
the resulting structure as two masses connected by a flexible boom. In Fig. 10.2(b), the satellite attitude θ2 is the
angle between the star sensor and the instrument package, and θ1 is the angle of the main satellite with respect to
the star. Figure 10.2(b) shows the equivalent mechanical system diagram for the satellite, where the sensor is
mounted to the disk associated with θ2. Disturbance torques due to solar pressure, micrometeorites, and orbit
perturbations are computed to be negligible. The pointing requirement arises when it is necessary to point the unit
in another direction. It can be met by dynamics with a transient settling time of 20 sec and an overshoot of no more
than 15%. The dynamics of the satellite include parameters that can vary. The control must be satisfactory for any
parameter values in a prespecified range to be given when the equations are written.



Figure 10.2 (a) Picture of thegeosynchronouscommunications satellite IPSTAR; (b) diagram ofasatellite and itstwo-
body model
Source: Courtesy Thaicom plc and Space Systems/Loral

STEP 2. Select sensors. In order to orient the scientific package, it is necessary to measure the attitude angles of the
package. For this purpose we propose to use a star tracker, a system based on gathering an image of a specific star
and keeping it centered on the focal plane of a telescope. This sensor gives a relatively noisy but very accurate (on
the average) reading proportional to θ2, the angle of deviation of the instrument package from the desired angle. To
stabilize the control, we include a rate gyro to give a clean reading of 2, because a lead network on the star-tracker
signal would amplify the noise too much. Furthermore, the rate gyro can stabilize large motions before the star
tracker has acquired the target star image.

STEP 3. Select actuators. Major considerations in selecting the actuator are precision, reliability, weight, power
requirements, and lifetime. Alternatives for applying torque are cold-gas jets, reaction wheels or gyros, magnetic
torquers, and a gravity gradient. The jets have the most power and are the least accurate. Reaction wheels are precise
but can transfer only momentum, so jets or magnetic torquers are required to “dump” momentum from time to time.
Magnetic torquers provide relatively low levels of torque and are suitable only for some low-altitude satellite
missions. A gravity gradient also provides a very small torque that limits the speed of response and places severe
restrictions on the shape of the satellite. For purposes of this mission, we select cold-gas jets as being fast and
adequately accurate.

STEP 4. Make a linear model. For the satellite, we assume two masses connected by a spring with torque constant k
and viscous-damping constant b as shown in Fig. 10.2. The equations of motion are



where Tc is the control torque on the main body. With inertias J1 = 1 and J2 = 0.1, the transfer function is

If we choose
x = [ θ2 2 θ1 1 ]T

as the state vector, then, using Eq. (10.1a) and assuming Tc = u, we find that the equations of motion in state-
variable form are

Physical analysis of the boom leads us to assume that the parameters k and b vary as a result of temperature
fluctuations but are bounded by

Selecting nominal values for varying parameters
As a result, the vehicle’s natural resonance frequency ωn can vary between 1 and 2 rad/sec, and the damping ratio ζ
varies between 0.02 and 0.1.

One approach to control design when parameters are subject to variation is to select nominal values for the
parameters, construct the design for this model, and then test the controller performance with other parameter
values. In the present case we choose nominal values of ωn = 1 and ζ = 0.02. The choice is somewhat arbitrary,
being based on experience and heuristic analysis. However, note that these are the lowest values in their respective
ranges and thus correspond to the plant that is probably the most difficult to control so as to meet the specifications.
We assume that a design for this model has a good chance to meet the specifications for other parameter values as
well. (Another choice would be to select a model with average values for each parameter.) The selected parameter
values are k = 0.091 and b = 0.0036; with J1 = 1 and J2 = 0.1, the nominal equations become



The corresponding transfer function, using the MATLAB ss2tf function, is then

When a trial design is completed, the computer simulation should be run with a range of possible parameter
values to ensure that the design has adequate robustness to tolerate these changes. Equations (3.66)-(3.68) tell us that
the dynamic performance specifications will be met if the closed-loop poles have a natural frequency of 0.5 rad/sec
and a closed-loop damping ratio of 0.5; these correspond to an open-loop crossover frequency of ωc ≅ 0.5 rad/sec
and a phase margin of about PM = 50°. We will try to meet these design criteria.

Figure 10.3 Root locus of KG(s)



Figure 10.4 Open-loop Bode plot of KG(s) for K = 0.5

STEP 5. Try a lead-lag or PID controller. The proportional-gain root locus for the nominal plant is drawn in Fig.
10.3, and the Bode plot is given in Fig. 10.4. We can see from Fig. 10.4 that this may be a difficult design problem
because the frequency of the lightly damped resonance is greater than the crossover-frequency design point by only a
factor of 2. This situation will require that the compensation can correct for the phase lag of the plant at the
resonance frequency. Such correction is very dependent on knowing the resonance frequency, which is subject to
change in this case. There may be trouble ahead.



Figure 10.5 Root locus of KD1(s)G(s)

In order to illustrate some important aspects of compensation design, we will at first ignore the resonance and
generate a design that would be acceptable for the rigid body alone. We take the process transfer function to be 1/s2,
the feedback to be position plus derivative (star tracker plus rate gyro) or PD control with the transfer function D(s)
= K(sTD + 1), and the response objective to be ωn = 0.5 rad/sec and ζ = 0.5. A suitable controller would be

The root locus for the actual plant with D1 is shown in Fig. 10.5 and the Bode plot in Fig. 10.6. From these plots we
can see that the low-frequency poles are reasonable but that the system will be unstable because of the resonance.2
At this point we take the simple actions of reducing our expectation with respect to bandwidth and of slowing the
system down by lowering the gain until the system is stable. With so little damping, we must really go slowly. A bit
of experimentation leads to

for which the root locus is drawn in Fig. 10.7 and the Bode plot given in Fig. 10.8. The Bode plot shows that we
have a phase margin of 50° but a crossover frequency of only ωc = 0.04 rad/sec. While this is too low to meet the
settling-time specification, a low crossover frequency is unavoidable if we expect to keep the gain at the resonance
frequency below unity so that it is gain stabilized.

An alternative approach to the problem is to place zeros near the lightly damped poles and use them to hold these
poles back from the RHP. Such a compensation has a frequency response with a very low gain near the frequency of
the offending poles and a reasonable gain elsewhere. Because the frequency response seems to have a dent or notch
in it, the device is called a notch filter. (It is also called a band reject filter in electric network theory.) An RC circuit
with a notch characteristic is shown in Fig. 10.9, its pole-zero pattern in Fig. 10.10, and its frequency response in Fig.
10.11. The +180° phase lead of the notch can be used to correct for the 180° phase lag of the resonance; if the notch
frequency is lower than the plant’s resonance frequency, the system phase is kept above 180° near resonance.



Figure 10.6 Bode plot of KD1(s)G(s)

Figure 10.7 Root locus of KD2(s)G(s)



Figure 10.8 Bode plot of D2(s)G(s)

Figure 10.9 Twin-tee realization of a notch filter

Notch filter



Figure 10.10 Notch filter pole-zero pattern

Figure 10.11 Bodeplotofanotch filter

With this idea we return to the compensation given by Eq. (10.7) and add the notch, producing the revised
compensator transfer function



The Bode plot for this case is shown in Fig. 10.12, the root locus in Fig. 10.13, and the unit step response in Fig.
10.14. The settling time of the design is too long for the specification and the overshoot is too large, but this design
approach seems promising; with iteration it could lead to a satisfactory compensator.

Figure 10.12 Bode plot of KD3(s)G(s)

We now recall that the compensator is expected to provide adequate performance as the parameters vary over the
ranges given by Eq. (10.3a). An examination of the robustness of the design can be made by looking at the root locus
shown in Fig. 10.15, which is drawn using the compensator of Eq. (10.9) and the plant with ωn = 2, rather than 1,
such that

This assumes that the boom is as stiff as possible. Notice that now the low-frequency poles have a damping ratio of
only 0.02. Combining the various parameter values, we get the frequency response and transient response shown in
Figs. 10.16 and 10.17. We could make a few more trial-and-error iterations with the notch filter and rate feedback,
but the system is complex enough that a look at state-space designs now seems reasonable. We go to Step 7.
STEP 6. Evaluate/modify plant. Refer to the collocated control discussion after Step 8.



Figure 10.13 Root locus of KD3(s)G(s)

Figure 10.14 Closed-loop step response of D3(s)G(s) where θ2(0) = 0.2 rad

Figure 10.15 Root locus of KD3(s) (s)



Figure 10.16 Bode plot of KD3(s) (s)

Figure 10.17 Closed-loop step response of D3(s) (s)

STEP 7. Try an optimal design using pole placement. Using the state-variable formulation of the equations of motion
in Eq. (10.4a), we devise a controller that will place the closed-loop poles in arbitrary locations. Of course, used



without thought, the method of pole placement can also result in a design that requires unreasonable levels of
control effort or is very sensitive to changes in the plant transfer function. Guidelines for pole placement are given in
Chapter 7; an often successful approach is to derive optimal pole locations using the SRL. Figure 10.18 shows the
SRL for the problem at hand. To obtain a bandwidth of about 0.5 rad/sec, we select closed-loop control poles from
this locus at –0.45 ± 0.34j and –0.15 ± 1.05j.

If we select αc (s), as discussed earlier, from the SRL, the control gain using the MATLAB function place is

Figure 10.19 shows the step responses for the nominal plant parameters and stiff-spring plant models. The Bode plot
of the SRL controller design with the nominal plant parameters can be computed from the loop transfer function (by
breaking the and results in a phase margin of about 60°, as shown in Fig. 10.20. While the speed of response of the
design meets the specifications with the nominal plant, the settling time when the plant has the stiff spring is a bit
longer than the specifications call for. We might be able to get a better compromise between the nominal and the
stiff-spring cases by selecting another point on the SRL; at this point we do not know. The designer must face
alternatives such as these and select the best compromise for the problem at hand.

Figure 10.18 Symmetric root locus of the satellite



Figure 10.19 Closed-loop step response of the SRL design

loop at u)

The design of Fig. 10.19 is based on full-state feedback. To complete the optimal design, we need an estimator.
We select the closed-loop estimator error poles to be about eight times faster than the control poles. The reason for
this is to keep the error poles from reducing the robustness of the design; a fast estimator will have almost the same
effect on the response as no estimator at all. We choose the error poles from the SRL at –7.7 ± 3.12j and –3.32 ±
7.85j. Pole placement with these values leads to an estimator (filter) gain, using the MATLAB function place:

Figure 10.20 Frequency response of the SRL design from u to Kx



After we combine the control gain and estimator, as described in Section 7.8, the compensator transfer function that
results from Eq. (7.177) is

The frequency response of this compensator (Fig. 10.21) shows that pole placement has introduced a notch
directly. The frequency response and the root locus of the combined system D4(s)G(s) are given in Figs. 10.22 and
10.23, while Fig. 10.24 shows the step response for both the nominal and the stiff-spring plants. Notice that the
design almost meets the specifications.
STEP 8. Simulate the design, and compare the alternatives. At this point we have two designs, with differing
complexities and different robustness properties. The notch-filter design might be improved with further iterations or
by starting with a different nominal case. The SRL design meets the specifications for the nominal plant but is too
slow for the stiff-spring case, although alternative selections for the pole locations might lead to a better design. In
either case, much more extensive studies need to be made to explore the robustness and noise-response properties.
Rather than follow any of these paths, we consider some aspects of the physical system.

Figure 10.21 Bode plot of optimal compensator D4(s)



Figure 10.22 Bode plot of the compensated system D4(s)G (s)

Figure 10.23 Root locus of D4(s)G(s)



Figure 10.24 Closed-loop step response of D4(s)G(s)

Collocated actuator and sensor
Both designs are strongly influenced by the presence of the lightly damped resonant mode caused by the coupled

masses. However, the transfer function of this system is strongly dependent on the fact that the actuator is on one
body and the sensor is on the other (that is, not collocated). Suppose that, rather than considering pointing the star
tracker on the small mass, we have the mission of pointing the main mass, perhaps toward an Earth station for
communications purposes. For this purpose we can put the sensor on the same mass that holds the actuator—to give
Collocated actuator and control with a collocated actuator and sensor. Due to the physics of the situation, the system’s
transfer function now has zeros close to the flexible modes, so control can be achieved by using PD feedback alone,
because the plant already has the effect of a notch compensator. Consider the transfer function of the satellite with
collocated actuator and sensor (to measure θ1) for which the state matrices are

Collocated actuator and sensor

The transfer function of the system using the MATLAB ss2tf function is

Notice the presence of the zeros in the vicinity of the complex conjugate poles. If we now use the same PD feedback
as before, namely,



then the system will not only be stabilized, but will also have a satisfactory response (if we consider θ1 as the
output), because the resonant poles tend to be cancelled by the complex conjugate zeros.

Figures 10.25–10.27 show the frequency response, the root locus, and the step response, respectively, for this
system. Note from Fig. 10.27 that the step response has the excess overshoot associated with the zero of the
compensator in the forward path of the transfer function.

Figure 10.25 Bode plot of D5(s)Gco(s)



Figure 10.26 Root locus for D5(S)Gco(S)

Figure 10.27 Closed-loop step response of the system with collocated control, D5(s)Gco(s) and D5(s) co(s)

Figure 10.28 Response at θ2 of the collocated design

The result is a very simple robust design achieved by moving the sensor from a noncollocated position to one



collocated with the actuator. The result illustrates that, to achieve good feedback control, it is very important to
consider sensor location and other features of the physical problem. However, this last control design will not do for
pointing the star tracker. This is evident from plotting the output θ2 corresponding to the nice step response of Fig.
10.27. The result is shown in Fig. 10.28.

An architecture suggested by the results is to place a coarse star tracker on the satellite body to be used for search
and initial settling. Then switch to a star tracker on the instrument package with longer settling time for fine control.

10.3 Lateral and Longitudinal Control of a Boeing 747
The Boeing 747 (Fig. 10.29) is a large wide-body transport jet. A schematic with the relevant coordinates that move
with the airplane is shown in Fig. 10.30. The linearized equations of (rigid-body) motion3 for the Boeing 747 are of
eighth order but are separated into two fourth-order sets representing the perturbations in longitudinal (U, W, θ, and
q in Fig. 10.30) and lateral (ø, β, r, and p) motion. The longitudinal motion consists of axial (X), vertical (Z), and
pitching (θ, q) motion, while the lateral motion consists of rolling (ø,p) and yawing (r, β) movement. The side-slip
angle β is a measure of the direction of forward velocity relative to the direction of the nose of the airplane. The
elevator control surfaces and the throttle affect the longitudinal motion, whereas the aileron and rudder primarily
affect lateral motion. Although there is a small amount of coupling of lateral motion into longitudinal motion, this is
usually ignored, so the equations of motion are treated as two decoupled fourth-order sets for designing the control,
or stability augmentation, for the aircraft.

Figure 10.29 Boeing 747 Source: Courtesy Boeing Commercial Airplane Co.



Figure 10.30 Definition of aircraft coordinates

The nonlinear rigid body equations of motion in body-axis coordinates, under proper assumptions,4 can be derived
as (Bryson, 1994)

where

The linearization of these equations can be carried out as follows: In the steady-state straight, level, and constant
speed flight condition,  Furthermore, there is no turning in any axis so that po =
qo = ro = 0, and the wings will be level so that ø = 0. However, there will be an angle of attack in order to
provide some lift from the wings to counteract the aircraft’s weight, so θo and Wo ≠ 0, where

The steady-state velocity body axis components will be



as depicted in Fig. 10.31. With these conditions, the equilibrium (see Chapter 9) equations are

Figure 10.31 Steady-state flight condition

With the assumptions (Bryson, 1994)



where b denotes the wingspan, many of the nonlinear terms in Eqs. (10.16) and (10.17) can be neglected.
Substitution of Eq. (10.20) in the nonlinear equations of motion leads to a set of linear perturbational equations that
describe small deviations from constant speed, straight and level flight. The equations of motion then divide into two
uncoupled sets of longitudinal and lateral equations of motion.

For linearized longitudinal motion, the results are

where

Woq, Uoq terms in the equations are due to the angular velocity of the body fixed (rotating) reference frame and
arise directly from the left-hand side of Eq. (10.16).

To determine altitude changes, we need to add the following equation to the longitudinal equations of motion:

This equation will result in the linearized altitude equation

which is to be augmented with Eq. (10.22).
For linearized lateral motion, the results are



where

We will next discuss the design of a stability-augmentation system for the lateral dynamics, called a yaw damper,
and the autopilot affecting the longitudinal behavior.

10.3.1 Yaw Damper
STEP 1. Understand the process and its performance specifications. Swept-wing aircraft have a natural tendency to be
lightly damped in the lateral modes of motion. At typical commercial-aircraft cruising speeds and altitudes, this
dynamic mode is sufficiently difficult to control that virtually every swept-wing aircraft has a feedback system to help
the pilot. Therefore, the goal of our control system is to modify the natural dynamics so that the plane is acceptable
for the pilot to fly.6 Studies have shown that pilots like natural frequencies ωn  0.5 and damping ratio of ζ ≥ 0.5.
Aircraft with dynamics that violate these guidelines are generally considered fatiguing to fly and highly undesirable.
Thus our system specifications are to achieve lateral dynamics that meet these constraints.
STEP 2. Select sensors. The easiest measurement of aircraft motion to take is the angular rate. The side-slip angle can
be measured with a wind-vane device, but it is noisier and less reliable for stabilization. Two angular rates—roll and
yaw—partake in the lateral motion. Study of the lightly damped lateral mode indicates that it is primarily a yawing
phenomenon, so measurement of the yaw rate is a logical starting point for the design. Until the early 1980s the
measurement was made with a gyroscope with a small, fast-spinning rotor that can yield an electric output
proportional to the angular yaw rate of the aircraft. Since the early 1980s most new aircraft systems have relied on a
laser device (called a ring-laser gyroscope) for the measurement. Here, two laser beams traverse a closed path (often
a triangle) in opposite directions. As the triangular device rotates, the detected frequencies of the two beams appear
to shift, and this frequency shift is measured, producing a measure of rotational rate. These devices have fewer
moving parts and are more reliable at less cost than the spinning-rotor variety of gyroscope.
STEP 3. Select actuators. Two aerodynamic surfaces typically influence the lateral aircraft motion: the rudder and the
ailerons (see Fig. 10.30). The lightly damped yaw mode that will be stabilized by the yaw damper is most affected
by the rudder. Therefore, use of that single control input is a logical starting point for the design. Hence, it is best to
choose the rudder as our actuator. Hydraulic devices are universally employed in large aircraft to provide the force



that moves the aerodynamic surfaces. No other kind of device has been developed to provide the combination of
high force, high speed, and light weight desirable for the actuation of the controlling aerodynamic surfaces. On the
other hand, the low-speed flaps, which are extended slowly prior to landing, are typically actuated by an electric
motor with a worm gear. For small aircraft with no autopilot, no actuator is required at all; the pilot yoke is directly
connected to the aerodynamic surface by means of wire cables, and all the force required to move the surfaces is
provided by the pilot.
STEP 4. Make a linear model. The lateral-perturbation equations of motion for Boeing 747 in horizontal flight at
40,000 ft and nominal forward speed U0 = 774 ft/sec (Mach 0.8) (Heffley and Jewell, 1972), with the rudder
chosen as the actuator (Step 3), are

where β and ø are in radians and r and p are in radians per second. The transfer function, using the MATLAB ss2tf
function, is

so that the system has two stable real poles and a pair of stable complex poles. Notice first that the low-frequency
gain is negative, corresponding to the simple physical fact that a positive or clockwise rudder motion causes a
negative or counterclockwise yaw rate. In other words, turning the rudder left (clockwise) causes the front of the
aircraft to rotate left (counterclockwise). The natural motion corresponding to the complex poles is referred to as the
Dutch roll; the name comes from the motions of a person skating on the frozen canals of Holland. The motion
corresponding to the stable real poles is referred to as the spiral mode (s1 = –0.0073) and the roll mode (s2 = –
0.563). From looking at the system poles, we see that the offending mode that needs repair for good pilot handling
is the Dutch roll, with the poles at s = –0.033 ± 0.95j. The roots have an acceptable frequency, but their damping
ratio ζ ≅ 0.03 is far short of the desired value ζ ≅ = 0.5.

Dutch roll

Spiral mode Roll mode
STEP 5. Try a lead-lag or PID design. As a first try at the design, we will consider proportional feedback of the yaw



rate to the rudder. The root locus with respect to the gain of this feedback is shown in Fig. 10.32, and its frequency
response is shown in Fig. 10.33. The figures show that ζ ≅ 0.45 is achievable and can be computed to occur at a gain
of about 3.0.

Washout
This feedback, however, creates an objectionable situation during a steady turn when the yaw rate is constant:

Because the feedback produces a steady rudder input opposite the yaw rate, the pilot must introduce a much larger
steady command for the same yaw rate than is necessary in the open-loop case. This dilemma is solved by
attenuating the feedback at DC (i.e., “washing out” the feedback). This is accomplished by inserting

in the feedback, which passes the yaw rate feedback at frequencies above 1/τ and provides no feedback at DC.
Therefore, in a steady turn, the damper will provide no correction. Figure 10.34 shows a block diagram of the yaw
damper with the washout.

Washout
For a more complete model, we include the rudder servo, which represents the actuator dynamics and has the

transfer function

which is fast compared with the dynamics of the rest of the system and is not expected to change the response very
much. The root locus, including actuator dynamics and a washout circuit with τ = 3, is shown in Fig. 10.35. As seen
from the root locus, the addition of the yaw rate feedback, including the washout, allows the damping ratio to be
increased from 0.03 to about 0.35. The associated frequency response of the system

Figure 10.32 Root locus for yaw damper with proportional feedback



Figure 10.33 Bode plot of yaw damper with proportional feedback

Figure 10.34 Yaw damper: (a) functional block diagram; (b) block diagram for analysis



Figure 10.35 Root locus with washout circuit, τ = 3

is shown in Fig. 10.36. The response of the closed-loop system to an initial condition of β0 = 1° is shown in Fig.
10.37 for a root-locus gain of 2.6. For reference, the response of yaw rate with no feedback is also given. Although
feedback of yaw rate through the washout circuit results in a considerable improvement over the original aircraft
control, the response is not as good as originally specified. Further iterations, not included here, could include other
gain values or more complex compensations.
STEP 6. Evaluate/modify plant. The solution would be to unsweep the wings, which would cause a large drag
penalty.
STEP 7. Try an optimal design using pole placement. If we augment the dynamic model of the system by adding the
actuator and washout, we obtain the state-variable model

where eδr is the input to the actuator and e is the output of the washout. The SRL for the augmented system is as
shown in Fig. 10.38. If we select the state-feedback poles from the SRL so that the complex roots have maximum



damping (ζ = 0.4), we find that

Figure 10.36 Bode plot of yaw damper, including washout and actuator

Figure 10.37 Initial condition response with yaw damper and washout, and SRL design, for βo= 1°

pc =[–0.0051; –0.468; 0.279 + 0.628 * j; 0.279 – 0.628 * j; –1.106; –9.89]
Then we can compute the state-feedback gain, using the MATLAB function place, to be



K =[ 1.059 –0.191 –2.32 0.0992 0.0370 0.486 ].

Figure 10.38 SRL of lateral dynamics, including washout filter and actuator

Note that the third entry in K is larger than the others, so the feedback of all six state variables is essentially the same
as proportional feedback of r. This is also evident from the similarity of the root locus in Fig. 10.31 and the SRL of
Fig. 10.38. If we select the estimator poles to be five times faster than the controller poles, then

pe =[–0.0253; –2.34; –1.39 + 3.14 * j; –1.39 – 3.14 * j; –5.53; –49.5]
and the estimator gain, again using the MATLAB function place, is found to be

The compensator transfer function from Eq. (7.177) is

Figure 10.37 also shows the response of the yaw rate to an initial condition of β0 = 1 °. It is clear from the root
locus that the damping can be improved by the SRL approach, and this is borne out by the reduced oscillatory
behavior in the transient response of the system. However, this improvement has come at a considerable price. Note
that the order of the compensator has increased from one in the original design (Fig. 10.33) to six and washout in the
design obtained using the controller-estimator-SRL approach.



Design trade-off: system response vs. system complexity
Aircraft yaw dampers in use today generally employ a proportional feedback of yaw rate to rudder through a

washout or through minor modifications to this design. The improved performance achievable with an optimal
design approach utilizing full-state feedback and estimation is not judged to be worth the increase in complexity.

Perhaps a more fruitful approach to improving the design would be to add the aileron surface as a control variable
along with the rudder.
STEP 8 and 9. Verify the design. Linear models of aircraft motion are reasonably accurate as long as the motion is
small enough that the actuators and surfaces do not saturate. Because actuators are sized for safety in order to handle
large transients, such saturation is very rare. Therefore, the linear-analysis-based design is reasonably accurate, and
we will not pursue a nonlinear simulation or further design verification. However, aircraft manufacturers do carry
out extensive nonlinear simulations and flight testing under all possible flight conditions before obtaining Federal
Aviation Administration (FAA) certification to carry passengers.

10.3.2 Altitude-Hold Autopilot
STEP 1. Understand the process and its performance specifications. One of the pilot’s many tasks is to hold a specific
altitude. As an aid to keeping aircraft from colliding, those craft on an easterly path are required to be on an odd
multiple of 1000 ft and those on a westerly path on an even multiple of 1000 ft. Therefore, the pilot needs to be
able to hold the altitude to less than a hundred feet. A well-trained, attentive pilot can easily accomplish this task
manually to within ±50 ft, and air-traffic controllers expect pilots to maintain this kind of tolerance. However, since
this task requires the pilot to be fairly diligent, sophisticated aircraft often have an altitude-hold autopilot to lessen
the pilot’s work. This system differs fundamentally from the yaw damper because its role is to replace the pilot for
certain periods of time, while the yaw damper’s role is to help the pilot fly. Dynamic specifications, therefore, need
not require that pilots like the craft’s “feel” (how it responds to their handling of the controls); instead, the design
should provide the kind of ride that pilots and passengers like. The damping ratio should still be in the vicinity of ζ
≅ 0.5, but for a smooth ride the natural frequency should be much slower than ωn = 1 rad/sec.
STEP 2. Select sensors. Clearly needed is a device to measure altitude, a task most easily done by measuring the
atmospheric pressure. Almost from the time of the first Wright brothers’ flight, this basic idea has been used in a
device called a barometric altimeter. Before autopilots, the device consisted of a bellows whose free end was
connected to a needle that directly indicated altitude on a dial. The same bellows concept is used today for the
altitude display, but the pressure is sensed electrically for the autopilot.

Because the transfer function from the controlling elevator input to the altitude control consists of five poles [see
Eq. (10.30)], stabilization of the feedback loop cannot be accomplished by simple proportional feedback. Therefore
the pitch rate q is also used as a stabilizing feedback; it is measured by a gyroscope or ring-laser gyro identical to that
used for yaw-rate measurement. Further stabilization using pitch-angle feedback is also helpful. It is obtained either
from an inertial reference system based on a ring-laser gyro or from a rate-integrating gyro. The latter is a device
similar to the rate gyro, but structured differently so that its outputs are proportional to the angles of the aircraft’s
pitch ω and roll ø.
STEP 3. Select actuators. The only aerodynamic surface typically used for pitch control on most aircraft is the elevator
S e. It is located on the horizontal tail, well removed from the aircraft’s center of gravity, so that its force produces an
angular pitch rate and thus a pitch angle, which acts to change the lift from the wing. In some high-performance
aircraft there are direct-lift control devices on the wing or perhaps small canard surfaces, which are like tiny wings



forward of the main wing, which produce vertical forces on the aircraft that are much faster than elevators on the tail
are able to generate. However, for purposes of our altitude hold, we will consider only the typical case of an elevator
surface on the tail.

As for the rudder, hydraulic actuators are the preferred devices to move the elevator surface, mainly because of
their favorable force-to-weight ratio.
STEP 4. Make a linear model. The longitudinal perturbation equations of motion for the Boeing 747 in horizontal
flight at a nominal speed U0 = 830 ft/sec at 20,000 ft (Mach 0.8) with a weight of 637,000 lb are

where the desired output for an altitude-hold autopilot is

and

Phugoid mode Short-period modes
The system has two pairs of stable complex poles and a pole at s = 0. The complex pair at –0.003 ± 0.0098j are
referred to as the phugoid mode,7 and the poles at –0.6463 ± 1.1211 are the short-period modes, as computed using
the MATLAB eig command.

Inner-loop design
STEP 5. Try a lead-lag or PID controller. As a first step in the design, it is typically helpful to use an inner-loop
feedback of pitch rate q to δe so as to improve the damping of the short-period mode of the aircraft (see Fig. 10.39).
The transfer function from δe to q, using the MATLAB ss2tf function, is



The inner loop root locus for q feedback using Eq. (10.31) is as shown in Fig. 10.40. Because kq is the root-locus
parameter, the system matrix [Eq. (10.28)] is now modified to

where F and G are defined in Eq. (10.28) and Hq = [ 0 0 1 0 0 ]. The process of picking a suitable gain kq is an
iterative one. The selection procedure is the same one discussed in Chapter 5. (Recall the tachometer feedback
example in Section 5.6.2.) If we choose kq = 1, then the closed-loop poles will be located at –0.0039 ± 0.0067;’, –
1.683 ± 0.277;j on the root locus, and

Figure 10.39 Altitude-hold feedback system

Figure 10.40 Inner-loop root locus for altitude-hold dynamics with q feedback



Note that only the third column of Fq is different from F. To further improve the damping, it is useful to feed back
the pitch angle of the aircraft. By trial and error, we select

Kθq = [ 0 0 –0.8 –6 0 ]

in order to feed back θ and q, and the system matrix becomes

with poles at s =0, –2.25 ± 2.99j, –0.531, –0.0105.
So far, the inner loop of the aircraft has been stabilized significantly. The uncontrolled aircraft has a natural tendency
to return to equilibrium in level flight, as evidenced by the open-loop roots in the LHP. The inner-loop stabilization
is necessary to enable an outer-loop feedback of h and  to be successful; furthermore, the feedbacks of θ and q can
be used by themselves in an attitude-hold mode of the autopilot, when a pilot wishes to control θ directly through
input command. Figure 10.41 shows the response of the inner loop to a 2° (0.035-rad) step command in θ. With the
inner loop in place the transfer function of the system from elevator angle to altitude is now

The root locus for this system, given in Fig. 10.42, shows that proportional feedback of altitude by itself does not
yield an acceptable design. For stabilization we may also feed back the rate of change in the altitude in a PD
controller. The root locus of the system with feedback of both h and  is shown in Fig. 10.43. After some iteration we
find that the best ratio of  to h is 10:1, that is,

De(s) = Kh(S + 0.1).



Figure 10.41 Response of altitude-hold autopilot to a command in θ

Figure 10.42 0° root locus with feedback of h only

Figure 10.43 0° root locus with feedback of h and 

The final design is the result of iterations between the q, θ, , and h feedback gains, obviously a lengthy process.
Although this trial design was successful, use of the SRL approach promises to expedite the process.
STEP 6. Evaluate/modify plant. Not applicable here.
STEP 7. Do an optimal design. The SRL of the system is shown in Fig. 10.44. If we choose the closed-loop poles at

pc =[–0.0045; –0.145; –0.513; –2.25 – 2.98 * j; –2.25 + 2.98 * j]
then the required feedback gain, using the MATLAB function place, is

K =[–0.0009 0.0016 –1.883 –7.603 –0.001 ].
The step response of the system to a 100-ft step command in h is shown in Fig. 10.45, and the associated control
effort is shown in Fig. 10.46.

This design has been carried out with the assumption that the linear model is valid for the altitude changes under



consideration. We should perform simulations to verify this or to determine the range of validity of the linear model.

Figure 10.44 SRL for altitude-hold design

Figure 10.45 Step response of altitude-hold autopilot to a 100-ft step command

STEP 8. and 9. Verify the design. The comments in Steps 7 and 8 of Section 10.3.1 apply to this design as well.
For small airplane autopilots now in production, such as the one described in Chapter 5, it is interesting to note

that, for the inner loop, some manufacturers employ only θ feedback while others use q feedback. The use of θ
enables faster response, but use of q is less costly. Both, of course, use the altimeter for h feedback.



Figure 10.46 Control effort for 100-ft step command in altitude

10.4 Control of the Fuel-Air Ratio in an Automotive Engine
Until the 1980s most automobile engines had a carburetor to meter the fuel so that the ratio of the gasoline-mass
flow to air-mass flow, or fuel-to-air ratio (F/A), remained in the vicinity of 1:15. This device metered the fuel by
relying on a pressure drop produced by the air flowing through a venturi. The device performed adequately in terms
of keeping the engine running satisfactorily, but it historically allowed excursions of up to 20% in the F/A. After the
implementation of federal exhaust-pollution regulations, this level of inaccuracy in the F/A was unacceptable
because neither excess hydrocarbons (HCs) nor excess oxygen could be accepted. During the 1970s, automobile
companies improved the design and manufacturing process of the carburetors so that they became more accurate and
delivered a F/A accuracy in the vicinity of 3% to 5%.8 Through a combination of factors, this improved F/A accuracy
helped lower the exhaust pollution levels. However, the carburetors were still open-loop devices because the system
did not measure the F/A of the mixture entering the engine for subsequent feedback into the carburetor. During the
1980s almost all manufacturers turned to feedback control systems to provide a much-improved level of F/A
accuracy, an action made necessary by the decreasing levels of allowable exhaust pollutants.

We now turn to the design of a typical feedback system for engine control, again using the step-by-step design
outline given in Section 10.1.
STEP 1. Understand the process and its performance. The method chosen to meet the exhaust-pollution standards has
been to use a catalytic converter that simultaneously oxidizes excess levels of exhaust carbon monoxide (CO) and
unburned HCs and reduces excess levels of the oxides of nitrogen (NO and NO2, or NOx). This device is usually
referred to as a three-way catalyst because of its effect on all three pollutants. This catalyst is ineffective when the
F/A is much different from the stoichiometric level of 1:14.7; therefore, a feedback control system is required to
maintain the F/A within ±1% of that desired level. The system is depicted in Fig. 10.47.

The dynamic phenomena that affect the relationship between the sensed F/A output from the exhaust and the fuel-
metering command in the intake manifold are (1) intake fuel and air mixing, (2) cycle delays due to the piston
strokes in the engine, and (3) the time required for the exhaust to travel from the engine to the sensor. All these
effects are strongly dependent on the speed and load of the engine. For example, engine speeds typically vary from



600 to 6000 rpm. The result of these variations is that the time delays in the system that will affect the feedback
control-system behavior will also vary by at least 10:1, depending on the operating condition. The system undergoes
transients as the driver demands more or less power through changes in the accelerator pedal, with the changes
taking place over fractions of a second. Ideally, the feedback control system should be able to keep up with these
transients.
STEP 2. Select sensors. The discovery and development of the exhaust sensor was the key technological step that
made possible this concept of exhaust-emission reduction by feedback control. The active element in the device,
zirconium oxide, is placed in the exhaust stream, where it yields a voltage that is a monotonic function of the oxygen
content of the exhaust gas. The F/A is uniquely related to the oxygen level. The voltage of the sensor is highly
nonlinear with respect to F/A (Fig. 10.48); almost all the change in voltage occurs precisely at the F/A value at
which the feedback system must operate for effective performance of the catalyst. Therefore, the gain of the sensor
will be very high when the F/A is at the desired point (1:14.7) but will fall off considerably for F/A excursions away
from 1:14.7.

Figure 10.47 F/A feedback control system

Figure 10.48 Exhaust sensor output

Nonlinear sensor
Although other sensors have been under development for possible use in F/A feedback control, no other cost-

effective sensor has so far demonstrated the capability to perform adequately. All manufacturers of production-line
automobiles currently use zirconium oxide sensors in their feedback control systems.

STEP 3. Select actuators. Fuel metering can be accomplished by a carburetor or by fuel injection. Implementing a
feedback F/A system requires the capability of adjusting the fuel metering electrically, because the sensor used



provides an electric output. Initially, carburetors were designed to provide this capability by including adjustable
orifices that modify the primary fuel flow in response to the electric error signal. However, today manufacturers
accomplish the metering by use of fuel injection. Fuel-injection systems are typically electrical by nature, so they can
be used to perform the fuel adjustment for F/A feedback simply by including the capability of using the feedback
signal from the sensor. Today, fuel injectors are placed at the inlet to every cylinder (called multipoint injection); in
the past, there was one large injector upstream from all the cylinders (called single-point or throttle body injection).
Multipoint injection offers improved performance because the fuel is introduced much closer to the engine, with
better distribution to the cylinders. Being closer reduces the time delays and thus yields better engine response and
enables lower exhaust pollution.

STEP 4. Make a linear model. The sensor nonlinearity shown in Fig. 10.48 is severe enough that any design effort
based on a linearized model of it should be used with caution. Figure 10.49 shows a block diagram of the system,
with the sensor shown to have a gain Ks. The time constants τ1 and τ2 indicated for the inlet manifold dynamics
represent, respectively, fast fuel flow in the form of vapor or droplets and slow fuel flow in the form of a liquid film
on the manifold walls. The time delay is the sum of (1) the time it takes the pistons to move through the four strokes
from the intake process until the exhaust process and (2) the time required for the exhaust to travel from the engine
to the sensor located roughly 1 ft away. A sensor lag with time constant τ is also included in the process to account
for the mixing that occurs in the exhaust manifold. Although the time constants and the delay time change
considerably, primarily as a function of engine load and speed, we will examine the design at a specific point where
the values are

Figure 10.49 Block diagram of an F/A control system

In an actual engine, designs would be carried out for all speed loads.
STEP 5. Try a lead-lag or PID controller. Given the tight error specifications and the wide variations in the required
fuel command U f due to varying engine-operating conditions, an integral control term is mandatory. With integral
control, any required steady state uf can be provided when the error signal e = 0. The addition of a proportional
term, although not often used, allows for an increase (doubling) in the bandwidth without degrading steady-state



characteristics. In this example we use a control law that is proportional plus integral (PI). The output from the
control law is a voltage that drives the injector’s pulse former to give a fuel pulse whose duration is proportional to
the voltage. The controller transfer function can be written as

where

and z can be chosen as desired.
First, let us assume that the sensor is linear and can be represented by a gain Ks. Then we can choose z for good

stability and good response of the system. Figure 10.50 shows the frequency response of the system for KsKp = 1.0
and z = 0.3, while Fig. 10.51 shows a root locus of the system with respect to KsKp with z = 0.3. Both analyses
show that the system becomes unstable for KsKp ≅ 2.8. Figure 10.50 shows that to achieve a phase margin of
approximately 60°, the gain KsKp should be ∼2.2. Figure 10.50 also shows that this produces a crossover frequency
of 6.0 rad/sec (∼1 Hz). The root locus in Fig. 10.51 verifies that this candidate design will achieve acceptable
damping (ζ ≅ 0.5).

Although this linear analysis shows that acceptable stability at a reasonable band-width (∼1 Hz) can be achieved
with a PI controller, a look at the nonlinear sensor characteristics (Fig. 10.48) shows that this indeed may not be
achievable. Note that the slope of the sensor output is extremely high near the desired setpoint, thus producing a
very high value of Ks. Therefore, lower values of the controller gain Kp need to be used to maintain the overall KsKp
value of 2.2 when including the effect of the high sensor gain. On the other hand, a value of Kp low enough to yield a
stable system at F/A = 1 : 14.7 (= 0.068) will yield a very sluggish response to transient errors that deviate much
from the setpoint, because the effective sensor gain will be reduced substantially. It is therefore necessary to account
for the sensor nonlinearity in order to obtain satisfactory response characteristics of the system for anything other
than minute disturbances about the setpoint. A first approximation to the sensor is shown in Fig. 10.52. Because the
actual sensor gain at the setpoint is still quite different from its approximation, this approximation will yield
erroneous conclusions regarding stability about the setpoint; however, it will be useful in a simulation to determine
the response to initial conditions.

Complications of nonlinearity



Figure 10.50 Bode plot of a PI F/A controller

Figure 10.51 Root locus of a PI F/A controller

STEP 6. Evaluate/modify plant. The nonlinear sensor is undesirable; however, no suitable linear sensor has been



found.
STEP 7. Try an optimal controller. The response of this system is dominated by the sensor nonlinearity, and any fine
tuning of the control needs to account for that feature. Furthermore, the system dynamics are relatively simple, and it
is unlikely that an optimal design approach will yield any improvement over the PI controller used. We will thus
omit this step.
STEP 8. Simulate design with nonlinearities. The nonlinear closed-loop simulation of the system implemented in
SIMULINK® is shown in Fig. 10.53. The MATLAB function (fas) implements the approximate nonlinear sensor
characteristics of Fig. 10.53,

functiony = fas(u)
if u < 0.0606,
  y = 0.1;
elseif u < 0.0741,
  y = 0.1 + (u – 0.0606)* 20;
else y = 0.9;
end

Figure 10.52 Sensor approximation

Figure 10.53 Closed-loop nonlinear simulation implemented in SIMULINK®

Figure 10.54(a) is a plot of the system error using the approximate sensor of Fig. 10.52 and KpKs = 2.0. The slow
response is apparent with 12.5 sec before the error comes out of saturation and a time constant of almost 5 sec once



the linear region is reached. In real automobiles these systems are operated with much higher gains. To show these
effects, a simulation with KpKs = 6.0 is plotted in Fig. 10.54(b, c). At this gain the linear system is unstable and up
until about 5 sec the signals grow. The growth halts after 5 sec due to the fact that, as the input to the sensor
nonlinearity gets large, the effective gain of the sensor decreases due to the saturation, and eventually, a limit cycle is
reached. The frequency of this limit cycle corresponds to the point at which the root locus crosses the imaginary axis
and has an amplitude such that the total effective gain of KpKs,eq = 2.8. As described in Section 9.3, the effective gain
of a saturation for moderately large inputs can be computed and is given by the describing function to be
approximately 4N/πa, where N is the saturation level and a is the amplitude of the input signal. Here N = 0.4, and
if Kp = 0.1, then Ks,eq = 28. Thus we predict an input signal amplitude of a = 4(0.4)/28π = 0.018. This value is
closely verified by the plot of Fig. 10.54(c), the input to the nonlinearity in this case. The frequency of oscillation is
also nearly 10.1 rad/sec, as predicted by the root locus in Fig. 10.51.

Figure 10.54 System response with nonlinear sensor approximation

SIMULINK nonlinear simulation
In the actual implementation of F/A feedback controllers in automobile engines, sensor degradation over

thousands of miles of use is of primary concern, because the federal government mandates that the engines meet the



exhaust-pollution standards for the first 50,000 mi. In order to reduce the sensitivity of the average setpoint to
changes in the sensor output characteristics, manufacturers typically modify the design discussed here. One approach
is to feed the sensor output into a relay function [see Fig. 9.6(b)], thus completely eliminating any dependency on
the sensor gain at the setpoint. The frequency of the limit cycle is then solely determined by controller constants and
engine characteristics. Average steady-state F/A accuracy is also improved. The oscillations in the F/A are acceptable
because they are not noticeable to the car’s occupants. In fact, the F/A excursions are beneficial to the catalyst
operation in reducing pollutants.

10.5 Control of the Read/Write Head Assembly of a Hard Disk
The first mass storage device based on recording data on hard disks was introduced by IBM in 1956 as the model 350
RAMAC.9 It consisted of a stack of fifty 24-inch diameter aluminum disks that were coated with a magnetic material,
and the data were recorded in concentric tracks at 100 bytes per inch with 20 tracks per inch. The disks were rotated
at 1200 rpm. There was a single read/write head assembly mounted on an arm that could be moved vertically from
disk to disk and horizontally across the chosen disk to reach a desired data track. The heads were held above the disk
surface by an air bearing generated by blowing air through holes in the fixture holding the heads. The assembly was
held on a particular disk by a detent on the elevator mechanism and held on a particular track by an arm detent. The
entire head assembly was driven by a single electric motor. The system held 5 MB of data, and consideration had to
be given to be sure that the final device could be passed through a door 36 in. wide. The technical advances in this
field have been such that in the year 2000 Seagate introduced a hard drive magnetic memory consisting of three
disks, each 2.5 inches in diameter, rotating at 15,000 rpm designed to be included in a portable laptop computer.
This device could hold 18,350 megabytes of data. The read/write assembly consisted of a single arm moving a comb
of heads, one per surface, in a rotary motion to move the heads from track to track. The heads are mountable on a
gimbal at the end of the arm and fly above the surfaces of the disks. To follow a track, the assembly is under active
feedback control using samples of position data recorded between the sectors of user data around each track. An
economic measure of the progress in the field is that while the cost of the RAMAC data was about $10,000 per
megabyte, that of a modern drive is less than 1 cent per megabyte. A brief summary of this remarkable history, with
many references is given in Abramovitch and Franklin (2002), and a table of a few disk parameters over time is
presented in Table 10.1. A large number of people from both industrial and academic institutions have contributed
to the many technologies involved in the advances in hard-disk memory devices made over the past 50 years, and
one of the enabling technologies has been feedback control. A picture of a Seagate 1000-GB disk drive is shown in
Fig. 10.55. In this brief case study we will point out a number of issues involving control, but the design example
will be concerned only with the issue of track following. We will follow the outline given in Section 10.1 in
presenting the case.
STEP 1. Understand the process. An exploded view of the track-following servo problem is given in Fig. 10.56. The
mechanism consists of a rotary voice-coil motor moving an assembly of a light arm supporting gimbal-mounted
sliders that include the magnetoresistive read heads and the light, thin-film inductive write heads. The slider flies
above the disk surface on an air bearing produced by the disk rotation. The power amplifier is usually connected as
a current amplifier so that the basic motion can be modeled as simple inertia, described by



where J is the total inertia and A includes both the motor torque constant and the amplifier gain. The structure is
flexible, however, and the detailed motion is very complex, with many lightly damped modes. It is also subject to
buffeting from the air flow and from vibration caused by housing motion. For purposes of control design, a single
resonant mode will be included according to the model

where the vibration frequency, ω1, and the damping ratio, ζ, are known only within bounds.
The motion control of the head assembly is in two modes: the seek motion to move the head from track to track

and the track-follow motion to maintain the heads over the center of the selected track. In the seek mode the
criterion is minimum time, and theory would call for “on-off” or “bang-bang”10 control. In order to use the same
controller for many units, which differ in the maximum torque available and other critical parameters, the method
used in disk drives is a bang-curve-follow technique in which the assembly is accelerated under full torque until the
velocity reaches a torque reversal curve based on the distance to the desired track and deceleration is under feedback
control to follow this curve to reach the desired track with zero velocity. The curve approximates the optimal
minimum time switching curve with torque discounted to the extent that the weakest motor will have a reserve of
torque adequate to follow the curve. When the selected track is reached, the control transfers to track-following
mode. A scheme to avoid mode switching when the selected track is approached and to cause the servo to move
seamlessly into track-follow mode has been called the Proximate Time Optimal Servo or PTOS (see Chapter 9).11

TABLE 10.1 Disk Drive Parameters Over Time



Figure 10.55 Picture of 1000-GB disk drive
Source: Courtesy Seagate Technology LLC

Figure 10.56 Generalized view of track-following model

As a mature technology, many trends have influenced the nature of the control problem over the years. For
example, as the table shows, disks have become smaller and thus stiffer and smoother. As the arm assembly has
become smaller, it has less inertia to the extent that for very small motions as in a one- or two-track transfer, friction
is more important than inertia. For recent drives, the width of a track is on the order of 0.2 micron (μ), a value
comparable to the feature dimensions on a modern integrated circuit chip! To counter this trend, research is
exploring ways to add a second actuator, either on the arm or on the gimbal, to make small moves much as the wrist
acts on the end of a robot arm. Because of the difficulty of controlling a very lightly damped flexibility, consideration
is also given to adding a coating to the arm to increase the damping of the principal modes of vibration. Other
proposals include adding sensors on the arm to allow extra feedback to control the flexibility. In this case study, we
will assume a single voice-coil actuator and that the flexibility is described as in Eq. (10.37), where ω1 ≥ 2π ×



2.500 and ζ ≥ 0.05. Because the details of the actual resonance are not well known, the resonance will need to be
gain stabilized.
STEP 2. Select sensors. The earliest drives were controlled open loop with one mechanical detent to hold the
assembly on a disk and another detent to hold the heads on a track. Feedback control was introduced in 1971 using
position information recorded on a special disk surface dedicated to the servo data. The entire comb of heads was
positioned by the servo surface information. If the comb were to tilt or otherwise be misaligned, the data would be
that much more difficult to read. Such issues limited the number of disks and the track density possible with this
arrangement. The track position information in modern disks is recorded on each track in a gap between the sectors
of user data. Controls based on this information are called sector servos, and the data are sampled of necessity. There
is a conflict between the desire to record large amounts of data, which calls for fewer and larger sectors, and the
control requirement to have a high sample rate, which calls for smaller sectors. Each case is a compromise between
these conflicting demands. Because the position data are sampled, the controllers are digital devices to make the best
possible use of the position data. Theoretical study has been given to using a multirate control to apply more than
one control correction for each sensor reading, but the method has not been found to be cost effective yet. For the
case study here, we will design an analog controller.

The position information extracted from data recorded on the disk is subject to errors caused by run-out in the
track path, which means that the radius of the track is not constant. In general, there is a repeatable component in
each trip around the track, and this element can be estimated, often harmonic by harmonic, and a signal used as
feed-forward to the motor to cancel it out. The position error signal (PES) also contains random noise from many
sources. These include the buffeting by the airflow over the slider, wobble and vibration of the disks, noise in the
signal-processing electronics used to decode the position information, noise from the power amplifier used to
provide torque to the motor, and errors caused by the analog-to-digital converters needed in the process.
STEP 3. Select actuators. The RAMAC used a DC motor as actuator, and later drives used hydraulic actuators. When
the 5.25-in. drive was introduced by Seagate in 1980, the actuator was a stepping motor. Each of these were used in
open loop. The first feedback control of the head position was on the IBM 3330 in 1971, and the actuator was a
linear-motion voice-coil motor. In 1979 a rotary voice-coil motor was introduced, and today almost all hard disk
drives use a rotary motion actuator. The power amplifier is usually connected as a current amplifier to simplify the
dynamics. The feedback from the current-sensing resistor to the amplifier constitutes a “torque loop” that is designed
separately and carefully, so that the dynamics of the motor can be ignored most of the time in considering the outer
loop position control in track following.
STEP 4. Make a linear model. As mentioned in the discussion of the process, the linear model has one flexible mode,
namely

where we take ζ = 0.05 and ω1 = 2.5, corresponding to measuring time in milliseconds rather than seconds. The
gain A and the inertia J will be absorbed in the gain of the compensator. The power amplifier is thus assumed to be
an ideal current amplifier. Also we are considering only track following, and not seek.
STEP 5. Try a PID or lead-lag design. Because the nominal model is so simple, the first design will be a lead



compensation with the objective of achieving the greatest possible bandwidth subject to having a phase margin of
50° and such that it will gain stabilize the resonance with a gain margin of at least 4. This approach was already
published by R. K. Oswald (1974). We will try two designs and compare them for bandwidth and the quality of their
step responses. In the first case, we will use a simple lead compensation, selected to give 50° phase margin and a
factor of 4 gain margin. To get the phase margin, the lead will be designed with an α of 0.1, and the crossover
frequency will be placed as high as possible while keeping a gain margin of 4 at the resonance, which rises by a
factor of 1/2ζ = 10 above the Bode asymptote. Thus the crossover must be located so that the asymptote is a factor
of 10 × 4 = 40 below 1 at ω1 = 5π. The resulting lead transfer function is

and the Bode plot of the lead design is shown in Fig. 10.57.
The gain crossover frequency for this design is ωc = 1.39 rad/msec and the step response is plotted in Fig. 10.58,

which shows a rise time of about tr = 0.8 msec with an overshoot of about 25%. We have shown before that a phase
margin of 50° should correspond to a damping of 0.5 and thus an overshoot of about 17%. However, because the
zero of the lead is in the forward path, we get the extra overshoot that goes with such a zero.

Figure 10.57 The Bode plot of the design with a single lead



Figure 10.58 Step response of disk drive control with PM = 50°

As a second design, a roll-off filter is to be added to try to suppress the resonance peak in order to gain a bit in
speed of response and bandwidth. The idea is to put the filter cutoff frequency between the crossover frequency and
the resonance frequency and to give it a damping ratio low enough that it does not reduce the phase margin too
much but high enough that it does not interfere with the gain margin. After some experimentation, the trial design

is tested with a filter of

For this case the Bode plot is given in Fig. 10.59 and the step response in Fig. 10.60.
In this case the crossover frequency is 2.13, a 35% increase, and the rise time is 0.3 msec, a 60% reduction from

the case without the roll-off filter. The overshoot is a bit higher in this case. Although not presented here, further
possibilities for the control compensation might include a notch filter rather than the low pass filter designed here. A
notch might be able to further suppress the resonance and permit further increase in the bandwidth. A great deal
depends on the degree of understanding of the resonance and how much uncertainty surrounds its behavior. In some
cases, it is possible to phase-stabilize the resonance and to raise the crossover to be higher than the resonance
frequency.

STEP 6. Evaluate/modify plant. Possible changes to the process that involve major design changes were introduced in
the discussion concerning understanding the process in Step 1 above. Once the major parameters of the design have
been selected, the remaining possibilities for improvement might include a change in the fabrication of the arm to
add stiffness, which will raise the frequency of the vibration, and to add a damping coating to the arm to increase the
damping ratio of the flexibility. Other possibilities for improvement concern changes in the PES decoding
methodology to reduce the noise.



Figure 10.59 Bode plot of system with lead plus roll-off filter

Figure 10.60 Bode plot of system with lead plus roll-off filter

Figure 10.61 Step response for LQR design



STEP 7. Try an optimal controller or adaptive control. A design was done with the linear quadratic performance
measure with the performance index (loss function) selected to obtain a rise time of about 0.3 msec to match the
classical design. The result is shown in Fig. 10.61. Although further effort might produce an acceptable design, the
clearly oscillatory response tolerated by this particular technique does not look promising. In particular, a design that
includes a cost on  as well as y should be considered. Such extensions are considered in more advanced courses.
STEP 8. Simulate the design, and compare the alternatives. Usually done in parallel with the design.
STEP 9. Build a prototype. Done early in the design process as a bench model so trial schemes can be tested on
hardware as designed.

For digital control design and implementation of disk drive servos, the reader is referred to Franklin, Powell, and
Workman (1998).

10.6 Control of RTP Systems in Semiconductor Wafer Manufacturing
Figure 10.62 diagrams the major steps in the manufacture of an ultra-large-scale integrated circuit such as a
microprocessor and some of the associated control aspects. Many of the steps described in this process, such as
chemical vapor deposition or etching, must be done at closely controlled and timed temperature sequences (Sze,
1988). The standard practice for many years has been to perform these steps in batches on many wafers at a time to
produce large numbers of identical chips. In response to the demand for ever smaller critical dimensions of the
devices on the chip, and to give more flexibility in the variety and number of chips to be produced, the makers of
the tools for fabrication of integrated circuits are asked to provide more and more precise control of temperature and
time profiles during thermal processing. In response to these demands, an important trend is to perform the thermal
steps on one wafer at a time in a chamber with cold walls and a flexible heat source called a rapid thermal processor
(RTP) as shown in Fig. 10.63.



Figure 10.62 Steps in making an integrated circuit
Source: Courtesy International Sematech

RTP
The demands on an RTP system are illustrated by the requirement that it cause the wafer temperature to follow a

profile such as that shown in Fig. 10.64, where the ramp-up speeds are at rates of 25° to 150°C/sec, and the soak
temperatures range from 600°C to 1100°C and last from a few to as many as 120 sec. The ramp-up rates are limited
by the danger of causing damage to the crystal structure if the temperature gradients become too large. The ability of
the RTP to change temperature rapidly permits fabrication of devices with very small critical lengths by being able to
stop the processes such as deposition or etching quickly and accurately.



Figure 10.63 Applied Materials’ Radiance RTP system
Source: Courtesy Applied Materials

Figure 10.64 Typical RTP temperature trajectory

Figure 10.65 shows a generic RTP reactor with tungsten halogen lamps, stainless steel walls that are water cooled,
and quartz windows. Temperature measurement can be done by a variety of methods, including thermocouples,
RTDs, and pyrometers. For various reasons (particle generation, minimal disturbance, etc.), it is desirable to use
noncontact temperature sensing; therefore, pyrometric techniques are the most commonly employed. A pyrometer is
a noncontact temperature sensor that measures infrared (IR) radiation, which is directly a function of the
temperature. It is known that objects emit radiant energy proportional to T4, where T is the temperature of the
object. Among the advantages of pyrometers are that they have very fast response time, and can be used to measure
the temperature of moving objects (e.g., a rotating semiconductor wafer), and in vacuum for semiconductor
manufacturing.

Pyrometer
The selection of the actuator depends on the choice of techniques for supplying power (tungsten halogen lamps,

arc lamps, hot susceptor, etc.) to heat the wafer. Tungsten halogen lamps are now commonly used in RTP in
semiconductor manufacturing (Emami-Naeini et al., 2003). Figure 10.66(a) shows a system with two-sided heating by
linear tungsten halogen lamps (typical of systems produced by Mattson). The lamp arrays on the top and bottom are
at right angles to provide more of an axisymmetry. Fig. 10.66(b) shows one-sided heating with lamps in a



honeycomb configuration (typical of the Applied Materials systems). Finally Fig. 10.66(c) shows a configuration of
lamps arranged in concentric rings (typical of the Stanford–TI MMST chamber, Gyugyi et al., 1993). The lamps do
saturate and, for practical reasons, it is desired to operate them within 5%-95% of power settings.

Tungsten halogen lamp
To illustrate the design of an RTP system, we give the results of a specific design carried out at SC Solutions as a

laboratory model constructed to study problems associated with RTP design and operation. The laboratory model is
shown schematically in Fig. 10.67. It is made of aluminum. It consists of three standard 35-W 12-V tungsten halogen
lamps heating a rectangular plate that simulates the wafer. The plate measures 4 in. ×  in. and is blackened to
increase its radiation absorption. The plate is mounted parallel to the lamps. The lamps are mounted in the lamp
housing. The lamp assembly is mounted on a railing so that the distance from the lamps to the plate is adjustable. As
the lamps are moved out the gain of the system decreases, but the radiation cross talk (coupling) increases. On the
other hand, as the lamps are moved closer to the plate, the gain of the system increases and the coupling is reduced.
The nominal distance from the lamps to the plate is 1 in., but it is adjustable to several inches. The lamps are driven
by a pulse-width modulated (PWM) amplifier driver. There is a separate power supply unit. There are three dials
mounted on the side for open-loop and manual system operations. There are 14 resistive temperature detector (RTD)
strips mounted vertically behind the back of the plate: 12 on the plate and 2 on each support on either side. There is
a noise source filter that generates periodic sensor noise at 1.5 Hertz so as to represent noise seen in real RTP
systems. All electronics (i.e., sensor signal processing and PWM amplifier) reside in the enclosure at the bottom of the
unit. Because there is exposure to the outside, the surrounding environment provides sources of disturbance.

Figure 10.65 Generic RTP system



Figure 10.66 Various lamp geometries for RTP
Source: Norman, 1992

Figure 10.67 Block diagram of the RTP laboratory model

RTP laboratory model
STEP 1. Understand the process and its performance specifications. RTP is an inherently dynamic and nonlinear
process. Among interesting properties of the system are multiple time scales (time constants for lamps, wafer,
showerhead, and quartz window are different); nonlinear (radiation dominant) behavior; nonlinear lamps; effects of
power supplies; number and placement of sensors; number, placement, and grouping of lamps; and large
temperature variations. The DC gain in the system (δ temperature/δ power) decreases with increasing temperature
due to the nonlinear increase in radiative losses. Various types of physical models are needed. Detailed physical
models are required for equipment design, but reduced-order models are needed for fast evaluation of geometry



changes, recipe development, and for feedback control design. Smooth transition between manual and automatic
control is also required.
STEP 2. Select sensors. This was discussed earlier. For the laboratory model, the sensors were a set of 14 RTDs, but
three (located at the center and the support edges of the plate) can be used for feedback and the rest can be used for
temperature monitoring purposes. In our case, we will use only the center temperature for feedback control.
(Another alternative would be to sum the three temperatures into one signal and control the average temperature.)
STEP 3. Select actuators. This was also discussed earlier. For the laboratory model, the actuators were composed of
three standard tungsten halogen lamps previously described. In our case, we shall tie up all three lamps into a single
actuator by applying the same input command to each lamp.
STEP 4. Make a linear model. The laboratory model was built (see Step 9). The nonlinear system equations involve
both conduction (Chapter 2) and radiation terms (see Emami-Naeini et al., 2003). Nonlinear system identification
approaches were used to derive a model for the system. Specifically, the three lamps were stepped up, held constant,
and then stepped down sequentially, and the three output temperatures were recorded. System identification
studies12 resulted in the following nonlinear model for the system that contains the radiation and conduction terms
(Ar and Acon respectively):

Nonlinear radiation heat transfer

Here T = [T1 T2 T3]T denote the temperatures, T∞ = constant ambient temperature ( ∞ = 0), u = [vcmd1 vcmd2
vcmd3]T are the voltage commands, and the system matrices are

A linear model for the system was derived as



RTP linear model
where y =[Ty1 Ty2 Ty3]T and

The three open-loop poles are computed from MATLAB and are located at –0.0527,–0.0863, and–0.1482. For our
case, because we tied the three lamps into one actuator and are using only the center temperature for feedback, the
linear model is then

resulting in the transfer function

STEP 5. Try a lead-lag or PID controller. We may try a simple PI controller of the form

so as to cancel the effect of one of the slower poles. The linear closed-loop response is shown in Fig. 10.68(a) and
the associated control effort is shown in Fig. 10.68(b). The system response follows the commanded trajectory with a
time delay of approximately 2 sec and no overshoot. The lamp has its normal response until 75 sec and goes
negative (shown dashed) to try to follow the sharp drop in commanded temperature. This behavior is not possible in
the system, as there is no means of active cooling and the lamps do saturate low. Note that there is no explicit means
of controlling the temperature nonuniformity here.



Figure 10.68 Linear closed-loop RTP response for PI controller

STEP 6. Evaluate/modify plant. This was discussed already in connection with actuator and sensor selection.
STEP 7. Try an optimal design. We use the error-space approach for inclusion of integral control and employ the
linear quadratic Gaussian technique of Chapter 7. The error system is

where

e = y – r, ξ = , and μ = . For state feedback design, the LQR formulation of Chapter 7 is used; that is,

where z = [e ξT]T. Note that J needs to be chosen in such a way as to penalize the tracking error e and the control u,
as well as the differences in the three temperatures. Therefore, the performance index should include a term of the
form

Temperature uniformity

10 {(T1 – T2)2 + (T1 – T3)2 + (T2 – T3)2},

which minimizes the temperature nonuniformity. The factor of 10 was determined by trial and error as the relative
weighting between the error state and the plant state.
The state and control weighting matrices, Q and R, respectively, are then

The following MATLAB command is used to design the feedback gain: [K] = lqr(A,B,Q,R).
The resulting feedback gain matrix computed from MATLAB is

K =[K1 : K0],

where
K1 = 1, K0 = [ 0.1221 2.0788 –0.2140 ],

which results in the internal model controller of the form



with Xc denoting the controller state and

Bc = –K1 = –1, Cc = 1.

The resulting state-feedback closed-loop poles computed from MATLAB are at –0.5574 ± 0.4584;, –0.1442, and –
0.0877. The full-order estimator was designed with the process and sensor noise intensities selected as the estimator
design knobs:

Rw = 1, Rv = 0.001.

The following MATLAB command is used to design the estimator:
[L] = lqe(F,G,H,Rw,Rv).
The resulting estimator gain matrix is

with estimator error poles at –16.5268, –0.1438, and –0.0876. The estimator equation is

With the estimator, the internal model controller equation is modified as

The closed-loop system equations are given by

where r is the reference input temperature trajectory, the closed-loop state vector is  and the
system matrices are

with closed-loop poles (computed with MATLAB) located at –0.5574 ± 0.4584;, –0.1442, –0.0877, –16.5268, –
0.1438 and –0.0876 as expected. The closed-loop control structure is shown in Fig. 10.69.

The closed-loop control system diagram implemented in SIMULINK is shown in Fig. 10.70. The linear closed-loop
response is shown in Fig. 10.71(a), and the associated control effort is shown in Fig. 10.71(b). The commanded



temperature trajectory, r, is a ramp from 0°C to 25°C, with a 1°C/sec slope followed by 50-sec soak time and a drop
back to 0°C. (Note that the ramp rate is very slow here because we have only three lamps for our RTP laboratory
model, whereas a real RTP system would have hundreds of lamps, and the much faster ramp rates mentioned earlier
would be relevant.) The system tracks the commanded temperature trajectory—albeit with a time delay of
approximately 2 sec for the ramp and a maximum of 0.089°C overshoot. As expected, the system tracks a constant
input asymptotically, with zero steady-state error. The lamp command increases as expected to allow for tracking the
ramp input, reaches a maximum value at 25 sec, and then drops to a steady-state value around 35 sec. The normal
response of the lamp is seen from 0 to 75 sec, followed by a negative commanded voltage for a few seconds
corresponding to fast cooling. Again, the negative control effort voltage (shown in dashed lines) is physically
impossible as there is no active cooling in the system. Hence, in the nonlinear simulations, commanded lamp power
must be constrained to be strictly nonnegative (Step 8). Note that the response from 75 to 100 sec is that of the
(negative) step response of the system.

Figure 10.69 Closed-loop control structure diagram

Figure 10.70 SIMULINK® block diagram for RTP closed-loop control



Figure 10.71 Linear closed-loop RTP response

Temperature trajectory following
STEP 8. Simulate the design with nonlinearities. The nonlinear closed-loop system was simulated in SIMULINK as
shown in Fig. 10.72a. The model was implemented in temperature units of degrees Kelvin and the ambient
temperature is 301K.13 The nonlinear plant model is the implementation of Eq. (10.42). There is a prefilter
following the reference temperature trajectory (to smoothen the sharp corners) with the transfer function

SIMULINK nonlinear simulation Prefilter

Note that conversion from voltage to power was determined experimentally to be given by

Lamp nonlinearity

and is implemented as a nonlinear block (named V to Power) in the SIMULINK diagram accordingly. The inverse of
the static nonlinear lamp model is also included as a block (named InvLamp):



Figure 10.72a SIMULINK® diagram for nonlinear closed-loop RTP system: (a) nonlinear closed-loop; (b) nonlinear
plant

Figure 10.72b SIMULINK® diagram for nonlinear closed-loop RTP system: (c) subsystem to convert voltage to
power; (d) subsystem for lamp model inversion



Figure 10.73 Nonlinear closed-loop response

This will cancel the lamp nonlinearity. The voltage range for system operation is between 1 and 4 volts, as seen from
the diagram. A saturation nonlinearity is included for the lamp as well as integrator antiwindup logic to deal with
lamp saturation. The nonlinear dynamic response is shown in Fig. 10.73(a) and the control effort is shown in Fig.
10.73(b). Note that the nonlinear response is in general agreement with the linear response.



Figure 10.74 RTP temperature control laboratory model
Source: Photo courtesy of Abbas Emami-Naeini

A prototype of the RTP laboratory model was designed, built,14 and was demonstrated at the Sematech
AEC/APC’98 Conference, in Vail, Colorado. Figure 10.74 shows a photograph of the operational system. This system
is really multivariable in nature. The three-input-three-output multivariable controller used on the prototype system
was designed using the same approach discussed in Step 7, and was implemented on an embedded controller
platform that uses a real-time operating system.

The continuous controller (i.e., the combined internal model controller and the estimator) is of the form

where 

and

Cc = [Cc –K0].

The controller was discretized (see Chapter 8) with a sampling period of Ts = 0.1 sec and implemented digitally
(with appropriate antiwindup logic) as

The response of the actual system to the reference temperature trajectory, along with the three lamp voltages, is
shown in Fig. 10.75. It is in good agreement with the nonlinear closed-loop simulation of the system (once noise is
accounted for).

For further information on modeling and control of RTP systems, the reader is referred to Emami-Naeini et al.
(2003), Ebert et al. (1995a,b), de Roover et al. (1998), and Gyugyi et al. (1993).



Figure 10.75 Response of the RTP temperature control laboratory model

10.7 Chemotaxis or How E. Coli Swims Away from Trouble
Background
The cell is the basic structural and physiological subsystem of all living organisms and most of the biochemical
activities necessary for life are performed in cells. Some organisms, such as bacteria, consist of only a single cell. A
prokaryotic cell is shown in Fig. 10.76. Escherichia coli (E. coli), photographed in Fig. 10.77, is one of these single-
cell organisms that has been extensively studied and whose interesting motion and control will be described in a
highly simplified way in this case study. The technical results for the study come from the field of systems biology.
Systems biology is an emerging field with the goal of creating dynamic models to describe the incredibly complex
processes in many biological systems. The aim is to determine how shifting variables in one part impacts the whole.
In this case study, a highly simplified model is presented to suggest how ideas from control can contribute to this
effort. In preparing the study, we have tried to minimize the use of technical terms from biology and to define clearly
those found useful and necessary for the presentation. It is hoped that this simple introduction will inspire control
engineers to conduct direct study of this important field. First, a bit of background.

Systems Biology
E. coli was discovered by German pediatrician and bacteriologist Theodor Escherich in 1885. The bacterium is a

cylindrical organism with hemispherical end-caps similar to the sketch shown in Fig. 10.76. A photograph of E. coli
is shown in Fig. 10.77. It is approximately 1 micron (μ) in diameter and 2 microns (μ)in length and weighs about 1
picogram (pg). E. coli has been studied extensively by geneticists because of its rather small genome size and the ease
of growth in the laboratory. The entire genome, or the “library” of inherited genetic information, has been



sequenced: it contains 4,639,221 of the adenosine (A), cytosine (C), guanine (G), and thymine (T) nitrogenous bases
arranged into a total of 4288 genes. These genes serve as instructions for the synthesis of specific proteins, and are
transcribed and eventually translated into the primary structure, or amino acid sequence, of a protein. E. coli grows
longer and divides by binary fission to create two genetically identical “daughter” bacteria. It is a “cell division
machine” and divides continuously such that under optimal conditions, a population of E. coli can double every 20
minutes. In 2003 researchers demonstrated that solitary E. coli cells exhibit positive chemotaxis, which means that
they are attracted to like cells enabling formation of E. coli colonies. E. coli lives in the lower intestine of warm
blooded animals including humans and feed on amino acids. The bacterium helps in maintaining the balance of
normal intestinal flora (bacteria) against harmful bacteria and synthesizing or producing some vitamins. Most E. coli
strains are harmless but a particular strain (E. coli O157:H7) can cause food poisoning in humans.

E.coli

Figure 10.76 A cell structure: (a) a typical bacterium; (b) TEM of bacterium Bacillus coagulans
Source: (a) Campbell and Reece, page 98, 2008. © Pearson Education; (b) © Stanley C. Holt/Biological Photo
Service. All rights reserved

Figure 10.77 Photograph of Escherichia coli (E. coli) bacteria
Source: United States Department of Health and Human Services, National Institutes of Health

Chemotaxis
Escherischia coli has a set of 6 to 10 rotary motors each driving a thin helical filament about 10 μm long through a

short, flexible and proximal hook that acts as a universal joint. This entire assembly is called a flagellum (Berg,
2003). The motor runs either clockwise (CW), as seen by an observer outside the cell looking down at the hook, or



counterclockwise (CCW). When all the motors rotate CCW, the flagella filaments bundle together and the cell swims
steadily forward in a “run” as suggested in Fig. 10.78. When one or more motors switches to CW rotation, the
corresponding flagella unbundle and reorient the cell in a “tumble” resulting in little displacement as shown in Fig.
10.79. The two modes of motion alternate and in a state of equilibrium with its environment the runs last about 1
sec and the tumbles about 0.1 sec resulting in a 3-D random walk. Through control of tumbling frequency, the
bacteria can direct their motion toward a concentration of attractant molecules or away from a concentration of
repellent molecules as suggested in Fig. 10.80.

The Problem
Chemotaxis is the name given to the process by which a motile bacterium tastes the changes in its environment and
moves toward places with a more favorable environment. Chemotaxis is important for proper functioning of the cell.
An E. coli bacterium compares the current attractant concentration with the past attractant concentration. If it detects
a positive change in the attractant concentration, it should move up the gradient. To do so, the probability of a
tumble and hence its tumbling frequency is reduced and the runs are correspondingly longer. In contrast, if it detects
an increase in repellent concentration, the assumption seems to be that it must have been swimming in a bad
direction so it increases its tumbling frequency and tries to change direction so as to swim away from the repellents.
The dynamics of this chemotaxis is the subject of our case study.

Figure 10.78 Flagella motors turning CCW resulting in a run
Source: Courtesy Nima Cyrus Emami



Figure 10.79 Flagella motors turning CW resulting in a tumble
Source: Courtesy Nima Cyrus Emami

Figure 10.80 Escherschia coli movements resembling a biased random walk

Several different models of bacterial chemotaxis have been developed by researchers in systems biology. Our
discussion is based on two of these (Barkai & Libler, 1997; Yi et al, 2000). The different proteins involved in
chemotactic response have been well studied and their interactions have been characterized in some detail as shown
in Fig. 10.81. Biologists have named the proteins involved in Chemotaxis by letters of the alphabet prefixed by
“Che.” Thus we have CheA, CheB, and so on to CheZ. On the surface of the bacterium are receptor complexes, which
include the CheW and CheA, to which the attractant or repellent molecules may bind. These chemicals constitute the
input to the system and are called collectively ligands. The system is set up to control the frequency of tumbling,
which is done by control of the activity of CheY, the protein that acts directly on the motor of the flagella.

Ligand



Figure 10.81 The chemotaxis signal transconduction pathway in E. coli

The receptors are either active and awaiting a ligand or are inactive and not accepting any ligand. A receptor
complex becomes active if a methyl group (–CH3) is added to it by CheR and inactive if the group is removed by
CheB. The CheR level is mainly fixed while the CheB level is controlled by the activity of the receptor via CheA. As
part of the steady-state dynamics of chemotaxis, methyl groups are regularly being added by CheR and equally
removed by CheB. This balance is upset when a ligand binds to an active receptor. If the ligand is an attractant, the
activity of CheA is reduced and consequently the action of CheB in demethylation is reduced, more receptors are
made active and the activity of CheA slowly returns to the steady state. This is the feedback loop in chemotaxis. At
the same time as it reduces the rate of activation of CheB, CheA reduces its rate of activating CheY and this causes the
tumbling frequency to be reduced. As a consequence, the bacteria swim more and presumably swim toward the
attractant concentration. Now, if the ligand is a repellent, the activity of CheA is increased, which causes increased
rate of CheY activity and increased frequency of tumbling. The bacteria swims less while it “looks” for a new
direction in order to escape the concentration of repellents. At the same time, in the feedback loop, CheB is also
more active, receptors are made inactive at a greater rate and again CheA and the tumble frequency return to their
steady-state values. The fact that the activity and the tumble frequency return to exactly the same value after a change
in ligand concentration is a remarkable property called by system biologists exact adaptation. As we will see, to a
control engineer, this is a very common control method. An experimental plot of chemotaxis is reproduced in Fig.
10.82.



Figure 10.82 Experimental data of E. coli chemotaxis (Berg, 1972). The plots are planar projections of 3-D paths

The Model
The problem, then, is to develop a model as a control system block diagram that will describe the average motion of
this chemotaxis situation. We represent the averages as if they were one receptor complex with the related proteins
acting on the flagella. As the research shows, the equations are complex and highly nonlinear. Also, the surface of the
bacterium contains hundreds of receptor complexes and these interact as suggested already in Fig. 10.81. For our
study, the variables for the block diagram are selected as linear, small signal deviations of the averages of the several
quantities away from their equilibrium values. The input is taken to be the concentration of ligand, with attractors
being positive and repellents being negative. The outputs of the system are the activity of CheA–P and resulting
motion in the single x direction. The parameters of our model were selected so the responses matched the curves
given in Fig. 10 of (Mello et al. 2004). The mechanics of one-dimensional motion assume that the viscous friction
dominates the mass so the dynamics are a single integrator. The model is based on the following facts.
• It is observed that when a ligand binds to an active receptor site, the changes in concentrations of CheA–P and

resulting CheB and CheY–P are almost instantaneous.
• However, the changed CheB concentration only changes the rate of de-methylation, not the extent of de-methyl

itself. The changes in methyl level take place much more slowly than the changes in tumble rate.
• Upon insertion of a concentration of attractants, the “activity” as measured by the concentration of CheA drops

quickly, then slowly recovers to exactly the same steady-state level. This property is called adaptation of activity.

Adaptation



Figure 10.83 Simplified block diagram of E. coli chemotaxis. l represents ligand, m the methylation, CheR the steady-
state rate of methylation, and w the steady-state random walk motion

Figure 10.84 A SIMULINK schematic diagram for simulating E. coli chemotaxis

A control block diagram shown in Fig. 10.83 implements these facts, including the adaptation. As seen, the
adaptation result is accomplished by the standard control scheme of integral control. A SIMULINK schematic is
shown in Fig. 10.84 and the responses in Figures 10.85, 10.86 and 10.87 for fixed concentrations of CheR. If the
value of CheR is changed, the steady-state intensity of the activity changes and the time constant of the methylation
also changes.

In the end, we leave this case study with more questions than answers. For example, one should be able to derive
the model by a small signal analysis from the basic chemical and physical equations of the processes. The model as
presented could be modified to account for changes in the concentration of CheR, for example. Finally, how would
the model be extended to describe the motion in three dimensions? We hope someone using this book is inspired to
find the answers to these questions.

Summary and Recap
For years biologists had been focusing on studying various parts of living organisms. Recently, the focus has shifted to
studying the whole organism’s behavior as a system of interconnected parts. Since the 1970s, it had been known
experimentally that many biological systems adjust to their environment in an adaptive way. Recently, analytical
models have been developed to explain this phenomenon as we discussed in this case study. The new analytical
models can explain the inherent properties of the biological system such as robust perfect adaptation as given by the
integral control of the active sites. Control theory methods and interpretations have proved helpful in increasing the
level of our understanding of the behavior and properties of biological systems. We hope that this simple example



helps stimulate interest in this exciting field.

Figure 10.85 Simulated tumble frequency of the chemotaxis model following insertion of attractantat t = 20 sec

Figure 10.86 Methylation of the chemotaxis model following insertion of attractant at t = 20 sec



Figure 10.87 Motion response of the chemotaxis model following insertion of attractant at t = 20 sec

10.8 Historical Perspective
The first autopilot was tested on a Curtis flying boat in 1912, just 9 years after the first Wright brothers’ flight. It
consisted of a gyroscope to measure the attitude and servo motors to activate the control surfaces and was designed
by Elmer Sperry. In part, it was a result of the Wright brothers design to intentionally make the aircraft slightly
unstable in order to make it more controllable by the pilot. This system gained fame in 1914 when it won a prize in
France by demonstrating its capabilities by flying close to the ground with the mechanic walking back and forth
along the wing with the pilot, Lawrence Sperry, standing in the cockpit with his hands in the air.15

Autopilot development went underground in 1915 due to military security for WWI. The next public display was
an adaptation of the Sperry system for Wiley Post in his 1933 flight around the world in “Winnie Mae.” The flight
would have been near impossible without the autopilot because it allowed Post to doze off on occasion. It has been
reported that Post had a system consisting of a wrench and string tied to his finger that would wake him up if he
slept too soundly. The success of this flight led to the development of an autopilot that included some navigational
capabilities as well as attitude control and, in 1947, the Air Force demonstrated an automatic trans-Atlantic flight in
a DC-3 type airplane from take-off to landing.

Subsequently, airplanes developed swept wings and higher speeds which required stability augmentation systems
to help the pilot control the aircraft even when not on the autopilot. These systems are on all high-performance
military and commercial airliners today. In 1974, the F-16 became the first airplane to have aerodynamically
unstable regimes and was, therefore, highly dependent on the stability augmentation for sustained flight. This was
implemented in order to make the airplane more maneuverable, but required a “fly-by-wire” and quad redundancy
for acceptable reliability.

The first spacecraft in the late 1950s had no attitude control since their only mission was to take measurements
and broadcast the information back to earth. However, they were followed in the early 1960s with the Corona
spacecraft whose mission was to take photographs of the earth, which required that the camera be pointed and



stabilized very accurately. At the time, these missions were classified for military purposes and called Discoverer for
public consumption, but since then have been declassified and described in some detail.16

The first digital autopilots were in the Apollo program lunar module and the command module in the late 1960s.
They were developed primarily by MIT’s Instrumentation Lab under the direction of Bill Widnall, Don Fraser, and
Dick Battin. The decision to take the bold step of using digital technology for the first time rather than the traditional
analog implementation was made by NASA in order to handle the complexity required at a reasonable weight.

Prior to 1980, automobile engine control systems consisted of a mechanical arrangement in the distributor to vary
the spark timing and a fluidic system in the carburetor that varied fuel flow in response to the airflow rate or sudden
changes in the accelerator pedal position. These were open-loop systems that essentially programmed the proper
control setting based on the operating condition of the engine. In 1980, cars were required to improve their polluting
characteristics; therefore, it was essential to improve the controls by using feedback as described in Section 10.4.
These systems still exist today along with variable valve timing, variable fuel injection timing, and variable valve
opening levels.

Application of control to semiconductor wafer manufacturing automation is gaining momentum. Many important
process steps such as RTP, chemical-mechanical planarization, and lithography use advanced real-time controllers. It
is anticipated that during the next decade many more of the semiconductor fabrication equipment will employ
sophisticated in-situ feedback control as new sensors become available. This adoption of sophisticated closed-loop
control systems by the semiconductor industry presents new challenges and opportunities for control system
engineers especially for the upcoming 450-mm diameter wafers. Application of control to magnetic resonance force
microscopy (MRFM) for imaging atomic structure of materials (de Roover et al., 2008) can fundamentally change our
understanding of atomic structures of devices and enable imaging of biological subsystems.

The emerging field of systems biology marks the coming of age of the life sciences. The usual approach of studying
individual components is being replaced by a new approach focused on understanding the behavior of the whole
biological system. Among the admirable goals are understanding the behavior of biological systems and discovering
cure for diseases such as cancer, as well as developing novel approaches to discovery of new drugs, production of
antibiotics, and vaccines.

The applications of control theory have never been more exciting than they are today. Applications of feedback
control ideas to biological systems, network congestion control, and new aerospace systems are emerging.
Applications in genomics treating the human body as a dynamic system are underway. The Internet has attracted the
attention of many control systems researchers eager to understand the tremendous success of this technology and how
to improve it. Network design and control including Internet modeling, and development of congestion routing and
control are under study. A number of our colleagues are enthusiastic about application of control theory to the
financial field. If you like that, you will love the real-estate bubble!

SUMMARY
• In this chapter we have laid out a basic outline of control systems design and applied it to six typical case studies.

The design outline calls for a number of explicit steps.
1. Make a system model and determine the required performance specifications. The purpose of this step is to

answer the question, What is the system, and what is it supposed to do?
2. Select sensors. A basic rule of control is that if you can’t observe it, you can’t control it. Following are some factors

to consider in the selection of sensors:



(a) Number and location of sensors;
(b) Technology to be used;
(c) Performance of the sensor, such as its accuracy;
(d) Physical size and weight;
(e) Quality of the sensor, such as lifetime and robustness to environment changes;
(f) Cost.

3. Select actuators. The actuators must be capable of driving the system so as to meet the required performance
specifications. The selection is governed by the same factors that apply to sensor selection.

4. Make a linear model. All our design methods are based on linear models. Both small-signal perturbation models
and feedback-linearization methods can be used.

5. Try a simple PID controller. An effort to meet the specifications with a PID or its cousin, the lead-lag compensator,
may succeed; in any case such an effort will expose the nature of the control problem.

6. Evaluate/modify plant. Evaluate whether plant modifications enhance closed-loop performance; if so, return to
Step 1 or 4.

7. Try an optimal design. The SRL method for control-law selection and estimator design based on state equations is
guaranteed to produce a stable control system and can be structured to show a trade-off between error reduction
and control effort. A related alternative is arbitrary pole placement, which gives the designer direct control over
the dynamic response. Both the SRL and the pole-placement methods may result in designs that are not robust to
parameter changes.

8. Simulate the design, and verify its performance. All the tools of analysis should be used here, including the root
locus, the frequency response, GM and PM measurements, and transient responses. Also, the performance of the
design can be tested in simulation against changes in model parameters and the effects of approximating the
compensator with a discrete model if digital control is to be used.

9. Build a prototype, and measure the performance with typical input signals. The proof of the pudding is in the
eating, and no control design is acceptable until it has been tested. No model can include all the features of a real
physical device; so the final step before fixing the design is to try it out on a physical prototype if time and budget
permit.

• The satellite case study illustrated particularly the use of a notch compensation for a system with lightly damped
resonance. It was also shown that collocated actuator and sensor systems are much easier to control than the
noncollocated systems.

• The Boeing 747 lateral-stabilization case study illustrated the use of feedback as an inner-loop designed to aid the
pilot, who provides the primary outer-loop control.

• The Boeing 747 altitude control showed how to combine inner-loop feedback with outer-loop compensation to
design a complete control system.

• The automobile fuel-air ratio control illustrated the use of the Bode plot to design a system that includes time
delay. Simulation of the design with the nonlinear sensor verified our heuristic analysis of limit cycles using the
concept of equivalent gain with a root locus.

• The disk-drive case study illustrated control in an uncertain environment, where bandwidth is very important.
• The RTP case study illustrated modeling and control of a nonlinear thermal system.



• The E. coli chemotaxis case study illustrated a simple example of the application of ideas from control theory to
the emerging field of systems biology.

• In all cases the designer needs to be able to use multiple tools, including the root locus, the frequency response,
pole placement by state feedback, and simulation of time responses to get a good design. We promised an
understanding of these tools at the beginning of the text, and we trust you are now ready to practice the art of
control engineering.

REVIEW QUESTIONS
1. Why is a collocated actuator and sensor arrangement for a lightly damped structure such as a robot arm easier to

design than a noncollocated setup?
2. Why should the control engineer be involved in the design of the process to be controlled?
3. Give examples of an actuator and a sensor for the following control problems:

(a) Attitude control of a geosynchronous communication satellite.
(b) Pitch control of a Boeing 747 airliner.
(c) Track-following control of a CD player.
(d) Fuel-air ratio control of a spark-ignited automobile engine.
(e) Position control for an arm of a robot used to paint automobiles.
(f) Heading control of a ship.
(g) Attitude control of a helicopter.

PROBLEMS
10.1 Of the three types of PID control (proportional, integral, or derivative), which one is the most effective in

reducing the error resulting from a constant disturbance? Explain.
10.2 Is there a greater chance of instability when the sensor in a feedback control system for a mechanical structure is

not collocated with the actuator? Explain.

10.3 Consider the plant G(s) = 1/s3. Determine whether it is possible to stabilize this plant by adding the lead
compensator

(a) What is the maximum phase margin of the resulting feedback system?
(b) Can a system with this plant, together with any number of lead compensators, be made unconditionally

stable? Explain why or why not.
10.4 Consider the closed-loop system shown in Fig. 10.88.

(a) What is the phase margin if K = 70,000?
(b) What is the gain margin if K = 70,000?
(c) What value of K will yield a phase margin of ∼70°?
(d) What value of K will yield a phase margin of ∼0°?
(e) Sketch the root locus with respect to K for the system, and determine what value of K causes the system to be



on the verge of instability.
(f) If the disturbance w is a constant and K = 10,000, what is the maximum allowable value for w if y(∞) is to

remain less than 0.1? (Assume r = 0.)
(g) Suppose the specifications require you to allow larger values of w than the value you obtained in part (f) but

with the same error constraint [|y(∞)| < 0.1]. Discuss what steps you could take to alleviate the problem.

Figure 10.88 Control system for Problem 10.4

10.5 Consider the system shown in Fig. 10.89, which represents the attitude rate control for a certain aircraft.
(a) Design a compensator so that the dominant poles are at –2 ± 2j.
(b) Sketch the Bode plot for your design, and select the compensation so that the crossover frequency is at least 

 rad/sec and PM > 50°.
(c) Sketch the root locus for your design, and find the velocity constant when wn >  and ζ ≥ 0.5.

Figure 10.89 Block diagram for aircraft-attitude rate control

10.6 Consider the block diagram for the servomechanism drawn in Fig. 10.90. Which of the following claims are
true?
(a) The actuator dynamics (the pole at 1000 rad/sec) must be included in an analysis to evaluate a usable

maximum gain for which the control system is stable.
(b) The gain K must be negative for the system to be stable.
(c) There exists a value of K for which the control system will oscillate at a frequency between 4 and 6 rad/sec.
(d) The system is unstable if |K| >10.
(e) If K must be negative for stability, the control system cannot counteract a positive disturbance.
(f) A positive constant disturbance will speed up the load, thereby making the final value of e negative.
(g) With only a positive constant command input r, the error signal e must have a final value greater than zero.
(h) For K = –1 the closed-loop system is stable, and the disturbance results in a speed error whose steady-state

magnitude is less than 5 rad/sec.



Figure 10.90 Servomechanism for Problem 10.6

10.7 A stick balancer and its corresponding control block diagram are shown in Fig. 10.91. The control is a torque
applied about the pivot.
(a) Using root-locus techniques, design a compensator D(s) that will place the dominant roots at s = –5 ± 5j

(corresponding to ωn = 7 rad/sec, ζ = 0.707).
(b) Use Bode plotting techniques to design a compensator D(s) to meet the following specifications:

• Steady-state θ displacement of less than 0.001 for a constant input torque Td = 1,
• Phase margin ≥ 50°,
• Closed-loop bandwidth ≅ 7 rad/sec.

Figure 10.91 Servomechanism for Problem 10.7

10.8 Consider the standard feedback system drawn in Fig. 10.92.
(a) Suppose

Design a lead compensator so that the phase margin of the system is more than 45°; the steady-state error due to
aramp should be less than or equal to 0.01.

(b) Using the plant transfer function from part (a), design a lead compensator so that the overshoot is less than
25% and the 1% settling time is less than 0.1 sec.

(c) Suppose

and let the performance specifications now be Kv = 100 and PM ≥ 40°. Is the lead compensation effective for
this system? Find a lag compensator, and plot the root locus of the compensated system.



(d) Using G(s) from part (c), design a lag compensator such that the peak overshoot is less than 20% and Kv =
100.

(e) Repeat part (c) using a lead-lag compensator.
(f) Find the root locus of the compensated system in part (e), and compare your findings with those from part (c).

Figure 10.92 Block diagram of a standard feedback control system

10.9 Consider the system in Fig. 10.92, where

The compensator Dc(s) is to be designed so that the closed-loop system satisfies the following specifications:
• Zero steady-state error for step inputs,
• PM = 55°,GM ≥ 6 db,
• Gain crossover frequency is not smaller than that of the uncompensated plant.
(a) What kind of compensation should be used and why?
(b) Design a suitable compensator Dc(s) to meet the specifications.

10.10 We have discussed three design methods: the root-locus method of Evans, the frequency-response method of
Bode, and the state-variable pole-assignment method. Explain which of these methods is best described by the
following statements (if you feel more than one method fits a given statement equally well, say so and explain
why):
(a) This method is the one most commonly used when the plant description must be obtained from experimental

data.
(b) This method provides the most direct control over dynamic response characteristics such as rise time, percent

overshoot, and settling time.
(c) This method lends itself most easily to an automated (computer) implementation.
(d) This method provides the most direct control over the steady-state error constants Kp and Kv.
(e) This method is most likely to lead to the least complex controller capable of meeting the dynamic and static

accuracy specifications.
(f) This method allows the designer to guarantee that the final design will be unconditionally stable.
(g) This method can be used without modification for plants that include transportation lag terms—for example,

10.11 Lead and lag networks are typically employed in designs based on frequency-response (Bode) methods.



Assuming a Type 1 system, indicate the effect of these compensation networks on each of the listed performance
specifications. In each case, indicate the effect as “an increase,” “substantially unchanged,” or “a decrease.” Use the
second-order plant G(s) = K/[s(s + 1)] to illustrate your conclusions.
(a) Kv
(b) Phase margin
(c) Closed-loop bandwidth
(d) Percent overshoot
(e) Settling time

10.12 Altitude Control of a Hot-Air Balloon: American solo balloonist Steve Fossett landed in the Australian outback
aboard Spirit of Freedom on July 3rd, 2002, becoming the first solo balloonist to circumnavigate the globe (see
Fig. 10.93). The equations of vertical motion for a hot-air balloon (Fig. 10.94), linearized about vertical
equilibrium, are

where
δT = deviation of the hot-air temperature from the equilibrium temperature where buoyant force equals
weight,
z = altitude of the balloon,
δq = deviation in the burner heating rate from the equilibrium rate (normalized by the thermal capacity
of the hot air),
w = vertical component of wind velocity,
τ1, τ2 a = parameters of the equations.
An altitude-hold autopilot is to be designed for a balloon whose parameters are

τ1 = 250 sec τ2 = 25 sec a = 0.3 m/(sec-°C).



Figure 10.93 Spirit of Freedom balloon
Source: French Navy/Tahitipresse

Figure 10.94 Hot-air balloon

Only altitude is sensed, so a control law of the form
δq(s) = D(s)[zd(s) – z(s)]



will be used, where zd is the desired (commanded) altitude.
(a) Sketch a root locus of the closed-loop eigenvalues with respect to the gain K for a proportional feedback

controller, δq = –K(z – zd). Use Routh’s criterion (or let s = jω and find the roots of the characteristic
polynomial) to determine the value of the gain and the associated frequency at which the system is marginally
stable.

(b) Our intuition and the results of part (a) indicate that a relatively large amount of lead compensation is
required to produce a satisfactory autopilot. Because Steve Fossett was a millionaire, he could afford a more
complex controller implementation. Sketch a root locus of the closed-loop eigenvalues with respect to the gain
K for a double-lead compensator, δq = D(s)(zd – z), where

(c) Sketch the magnitude portions of the Bode plots (straight-line asymptotes only) for the open-loop transfer
functions of the proportional feedback and lead-compensated systems.

(d) Select a gain K for the lead-compensated system to give a crossover frequency of 0.06 rad/sec.
(e) With the gain selected in part (d), what is the steady-state error in altitude for a steady vertical wind of 1

m/sec? (Be careful: First find the closed-loop transfer function from w to the error.)
(f) If the error in part (e) is too large, how would you modify the compensation to give higher low-frequency

gain? (Give a qualitative answer only.)
10.13 Satellite-attitude control systems often use a reaction wheel to provide angular motion. The equations of

motion for such a system are

where
J = moment of inertia of the wheel,
r = wheel speed,
Tc = control torque,
Tex = disturbance torque,
ø= angle to be controlled,
Z = measurement from the sensor,
Zd = reference angle,
I = satellite inertia (1000 kg/m2),
a = sensor constant (1 rad/sec),
D(s) = compensation.

(a) Suppose D(s) = K0, a constant. Draw the root locus with respect to K0 for the resulting closed-loop system.



(b) For what range of K0 is the closed-loop system stable?
(c) Add a lead network with a pole at s = –1 so that the closed-loop system has a bandwidth ωBW = 0.04

rad/sec, a damping ratio ζ = 0.5, and compensation given by

Where should the zero of the lead network be located? Draw the root locus of the compensated system, and give
the value of K 1 that allows the specifications to be met.

(d) For what range of K1 is the system stable?
(e) What is the steady-state error (the difference between Z and some reference input Zd) to a constant disturbance

torque Tex for the design of part (c)?
(f) What is the type of this system with respect to rejection of Tex?
(g) Draw the Bode plot asymptotes of the open-loop system, with the gain adjusted for the value of K1 computed

in part (c). Add the compensation of part (c), and compute the phase margin of the closed-loop system.
(h) Write state equations for the open-loop system, using the state variables ø, , and Z. Select the gains of a state-

feedback controller Tc = –Køø – Kø  to locate the closed-loop poles at .

10.14 Three alternative designs are sketched in Fig. 10.95 for the closed-loop control of a system with the plant
transfer function G(s) = 1/s(s + 1). The signal w is the plant noise and may be analyzed as if it were a step; the
signal v is the sensor noise and may be analyzed as if it contained power to very high frequencies.

(a) Compute values for the parameters K1, a, K2, KT, K3, d, and KD so that in each case (assuming w = 0 and v = 0),

Note that in system III, a pole is to be placed at s = –4.
(b) Complete the following table, expressing the last entries as A/sk to show how fast noise from v is attenuated at

high frequencies:

(c) Rank the three designs according to the following characteristics (the best as “1,” the poorest as “3”):



Figure 10.95 Alternative feedback structures for Problem 10.14

10.15 The equations of motion for a cart-stick balancer with state variables of stick angle, stick angular velocity, and
cart velocity are

where the output is stick angle, and the control input is voltage on the motor that drives the cart wheels.
(a) Compute the transfer function from u to y, and determine the poles and zeros.
(b) Determine the feedback gain K necessary to move the poles of the system to the locations –2.832 and –0.521

± 1.068j, with ωn = 4 rad/sec.
(c) Determine the estimator gain L needed to place the three estimator poles at –10.



(d) Determine the transfer function of the estimated-state-feedback compensator defined by the gains computed in
parts (b) and (c).

(e) Suppose we use a reduced-order estimator with poles at –10 and –10. What is the required estimator gain?
(f) Repeat part (d) using the reduced-order estimator.
(g) Compute the frequency response of the two compensators.

10.16 A 282-ton Boeing 747 is approaching land at sea level. If we use the state given in the case study (Section 10.3)
and assume a velocity of 221 ft/sec (Mach 0.198), then the lateral-direction perturbation equations are

The corresponding transfer function is

(a) Draw the uncompensated root locus [for 1 + KG(s)] and the frequency response of the system. What type of
classical controller could be used for this system?

(b) Try a state-variable design approach by drawing a SRL for the system. Choose the closed-loop poles of the
system on the SRL to be

αc(s) = (s + 1.12)(s + 0.165)(s + 0.162 ± 0.681j),

and choose the estimator poles to be five times faster at
αe(s) = (s + 5.58)(s + 0.825)(s + 0.812 ± 3.40j).

(c) Compute the transfer function of the SRL compensator.
(d) Discuss the robustness properties of the system with respect to parameter variations and unmodeled dynamics.
(e) Note the similarity of this design to the one developed for different flight conditions earlier in the chapter.

What does this suggest about providing a continuous (nonlinear) control throughout the operating envelope?
10.17 (Contributed by Prof. L. Swindlehurst) The feedback control system shown in Fig. 10.96 is proposed as a

position control system. A key component of this system is an armature-controlled DC motor. The input
potentiometer produces a voltage Ei that is proportional to the desired shaft position: Ei = Kpθi. Similarly, the
output potentiometer produces a voltage E0 that is proportional to the actual shaft position: E0 = Kpθ0. Note that
we have assumed that both potentiometers have the same proportionality constant. The error signal Ei – E0 drives
a compensator, which in turn produces an armature voltage that drives the motor. The motor has an armature
resistance Ra, an armature inductance La, a torque constant Kt, and a back emf constant Ke. The moment of inertia
of the motor shaft is Jm, and the rotational damping due to bearing friction is Bm. Finally, the gear ratio is N: 1,



the moment of inertia of the load is JL, and the load damping is BL.

Figure 10.96 A servomechanism with gears on the motor shaft and potentiometer sensors

(a) Write the differential equations that describe the operation of this feedback system.
(b) Find the transfer function relating θ0(s) and θi(s) for a general compensator Dc(s).
(c) The open-loop frequency-response data shown in Table 10.2 were taken using the armature voltage va of the

motor as an input and the output potentiometer voltage E0 as the output. Assuming that the motor is linear and
minimum-phase, make an estimate of the transfer function of the motor,

where θm is the angular position of the motor shaft.

TABLE 10.2 Frequency-Response Data for Problem 10.8

(d) Determine a set of performance specifications that are appropriate for a position control system and will yield



good performance. Design Dc(s) to meet these specifications.
(e) Verify your design through analysis and simulation using MATLAB.

10.18 Design and construct a device to keep a ball centered on a freely swinging beam. An example of such a device
is shown in Fig. 10.97. It uses coils surrounding permanent magnets as the actuator to move the beam, solar cells
to sense the ball position, and a hall-effect device to sense the beam position. Research other possible actuators
and sensors as part of your design effort. Compare the quality of the control achievable for ball-position feedback
only with that of multiple-loop feedback of both ball and beam position.

Figure 10.97 Ball-balancer design example
Source: Photo courtesy of David Powell

10.19 Design and construct the magnetic levitation device shown in Fig. 9.2. You may wish to use LEGO components
in your design.

10.20 Run-to-Run Control: Consider the RTP system shown in Fig. 10.98. We wish to heat up a semiconductor wafer,
and control the wafer surface temperature accurately using rings of tungsten halogen lamps. The output of the
system is temperature T as a function of time: y = T(t). The system reference input R is a desired step in
temperature (700° C), and the control input is lamp power. A pyrometer is used to measure the wafer center
temperature. The model of the system is first order, and an integral controller is used as shown in Fig. 10.98.
Normally, there is not a sensor bias (b = 0).

Figure 10.98 RTP system

(a) Suppose the system suddenly develops a sensor bias b ≠ 0, where b is known. What can be done to ensure
zero steady-state tracking of temperature command R, despite the presence of the sensor bias?

(b) Now assume b =0. In reality, we are trying to control the thickness of the oxide film grown (Ox) on the wafer



and not the temperature. At present, no sensor can measure Ox in real time. The semiconductor process
engineer must use off-line equipment (called metrology) to measure the thickness of the oxide film grown on
the wafer. The relationship between the system output temperature and Ox is nonlinear and given by

where tf is the process duration, and p and c are known constants. Suggest a scheme in which the center wafer
oxide thickness Ox can be controlled to a desired value (say, Ox = 5000 Å) by employing the temperature
controller and the output of the metrology.

10.21 Develop a nonlinear model for a tungsten halogen lamp and simulate it in SIMULINK.
10.22 Develop a nonlinear model for a pyrometer. Show how temperature can be deduced from the model.
10.23 Repeat the RTP case study design by summing the three sensors to form a single signal to control the average

temperature. Demonstrate the performance of the linear design, and validate the performance on the nonlinear
SIMULINK simulation.

10.24 One of the steps in semiconductor wafer manufacturing during photolithography is performed by placement of
the wafer on a heated plate for a certain period of time. Laboratory experiments have shown that the transfer
function from the heater power, u, to the wafer temperature, y, is given by

(a) Sketch the 180° root locus for the uncompensated system.
(b) Using the root-locus design techniques, design a dynamic compensator, D(s), such that the system meets the

following time-domain specifications
i. Mp ≤ 5%
ii. tr ≤ 20 sec
iii. ts ≤ 60 sec
iv Steady-state error to a 1°C step input command <0.1°C. Draw the 180° root locus for the compensated

system.
10.25 Excitation-Inhibition Model from Systems Biology (Yang and Iglesias, 2005): In Dictyostelium cells, the

activation of key signaling molecules involved in chemoattractant sensing can be modeled by the following third
order linearized model. The external disturbance to the output transfer function is:

where, w is the external disturbance signal proportional to chemoattractant concentration, and y is the output which
is the fraction of active response regulators. Show that there is an alternate representation of the system with the
“plant” transfer function



and the “feedback regulator”

It is known that α ≠ 1 for this version of the model. Draw the feedback block diagram of the system showing the
locations of the disturbance input and the output. What is the significance of this particular representation of the
system? What hidden system property does it reveal? Is the disturbance rejection a robust property for this system?
Plot the disturbance rejection response of the system for a unit step disturbance input. Assume the system parameter
values are α = 0.5 and Y = 0.2.



1 Our colleague Prof. Daniel DeBra strongly believes in considering modifying the plant itself an option for improved control. He cites this particular
application to make the point. Of course, we agree with him!
2 If this system were built, the actuator jets would saturate as the response grew. We could analyze the response using the method described in Section
9.3 for nonlinear systems. From the analysis we would expect the signal to grow and the equivalent gain of the actuator to fall until the roots return to
the imaginary axis near ωn. The resulting limit cycle would rapidly deplete the control gas supply.
3 For derivation of equations of motion for an aircraft, the reader is referred to Bryson (1994), Etkin and Reid (1996), and McRuer et al. (1973).
4 x-z is the body-axis plane of mass symmetry.
5 X, Z, M are stability derivatives and are identified from wind tunnel and flight tests.
6 The mode is sufficiently difficult to control manually that, if the yaw damper fails in cruise, the pilot is instructed to descend and slow down where
the mode is more manageable.
7 The name was adopted by F. W. Lanchester (1908), who was the first to study the dynamic stability of aircraft analytically. It is apparently an
incorrect version of a Greek word.
8A review of automotive engine control is contained in a book by Alexander Stotsky, Automotive Engine: Control Estimation, Statistical Detection.
9Random Access Method of Accounting and Control
10Common names for the case in which the control is saturated with one polarity for half the time, then reversed for the remaining half.
11 Workman (1987), Franklin, Powell, and Workman (1998).
12 Performed by Dr. G. van der Linden.
13 [K] = [°C] + 273.
14 By Dr. J. L. Ebert.
15 No mechanical connection from the stick to the control surfaces.
16 Taubman (2003).



Appendix A Laplace Transforms

A.1 The L_ Laplace Transform
Laplace transforms can be used to study the complete response characteristics of feedback systems, including the
transient response. This is in contrast to Fourier transforms, in which the steady-state response is the main concern. In
many applications it is useful to define the Laplace transform of f(t), denoted by L-{f(t)} = F(s), as a function of the
complex variable s = σ + jω, where

which uses 0– (that is, a value just before t = 0) as the lower limit of integration and is referred to as the unilateral
(or one-sided) Laplace transform.1 A function f (t) will have a Laplace transform if it is of exponential order, which
means that there exists a real number a such that

The decaying exponential term in the integrand in effect provides a built-in convergence factor. This means that even
if f(t) does not vanish as t→ ∞, the integrand will vanish for sufficiently large values of σ if f does not grow at a
faster-than-exponential rate. For example, aebt is of exponential order, whereas et2 is not. If F(s) exists for some s0 =
σ0 + jω0, then it exists for all values of s such that

The smallest value of σ0 for which F(s) exists is called the abscissa of convergence, and the region to the right of
Re(s) ≥ σ0 is called the region of convergence. Typically, two-sided Laplace transforms exist for a specified range

which defines the strip of convergence. Table A.2 gives some Laplace transform pairs. Each entry in the table follows
from direct application of the transform definition.2

A.1.1 Properties of Laplace Transforms
In this section we will address and prove each of the significant properties of the Laplace transform as discussed in
Chapter 3 and listed in Table A.1. In addition we show how these properties can be used through examples.
1 Bilateral (or two-sided) Laplace transforms and the so-called L+ transforms, in which the lower value of integral is 0+, also arise elsewhere.
2 As for the one-sided Laplace transform, an astute reader would wonder what happens to the validity of the Laplace transform for the rest of the s-
plane, namely, the region where Re(s) < σ0. Indeed it would be disappointing if F(s) was only valid for Re(s) ≥ σ0 and not elsewhere in the s-plane.
Fortunately, except for some pathological cases (which do not arise in practice), one can invoke an important result from the theory of complex
variables known as the Analytic Continuation Theorem to extend the region of the validity of F(s) to the whole s-plane excluding the locations of the
poles.

TABLE A.1 Properties of Laplace Transforms



1. Superposition
One of the more important properties of the Laplace transform is that it is linear. We can prove this as follows:

scaling property is a special case of linearity; that is,

EXAMPLE A.1 Sinusoidal Signal

Find the Laplace transform of f(t) = 1 + 2 sin(ωt).
Solution. The Laplace transform of sin (ωt) is

TABLE A.2 Table of Laplace Transforms



Therefore, using Eq. (A.5) we obtain

The following commands in MATLAB® yields the same result,
symsstw
laplace(1+2*sin(w*t)).

2. Time Delay
Suppose a function f(t) is delayed by λ > 0 units of time. Its Laplace transform is

Let us define t’ = t – λ. Then dt, = dt, because λ is a constant and f(t) =0 for t < 0. Thus



Because e-sλ is independent of time, it can be taken out of the integrand, so

From this result we see that a time delay of λ corresponds to multiplication of the transform by e-sλ.

EXAMPLE A.2 Delayed Sinusoidal Signal

Find the Laplace transform of f(t) = A sin (t – td).
Solution. The Laplace transform of sin (t) is

Therefore, using Eq. (A.7) we obtain

3. Time Scaling
If the time t is scaled by a factor a, then the Laplace transform of the time-scaled signal is

Again, we define t’ = at. As before, dt’ = adt and

EXAMPLE A.3 Sinusoid with Frequency ω

Find the Laplace transform of f(t) = A sin (ωt).
Solution. The Laplace transform of sin (t) is

Therefore, using Eq. (A.8) we obtain



as expected. The following commands in MATLAB yields the same result,
syms s t w A
laplace(A*sin(w*t)).

4. Shift in Frequency
Multiplication (modulation) of f (t) by an exponential expression in the time domain corresponds to a shift in
frequency:

EXAMPLE A.4 Exponentially Decaying Sinusoid

Find the Laplace transform of f(t) = A sin (ωt)e-at.
Solution. The Laplace transform of sin (ωt) is

Therefore, using Eq. (A.9) we obtain

5. Differentiation
The transform of the derivative of a signal is related to its Laplace transform and its initial condition as follows:

Because f(t) is assumed to have a Laplace transform, estf(t) → 0 as t → ∞. Thus

Another application of Eq. (A.11) leads to



Repeated application of Eq. (A.11) leads to

where fm(t) denotes the mth derivative of f (t) with respect to time.

EXAMPLE A.5 Derivative of Cosine Signal

Find the Laplace transform of , where f(t) = cos(ωt).
Solution. The Laplace transform of cos(ωt) is

Using Eq. (A.11) with f(0-) = 1, we have

6. Integration
Let us assume that we wish to determine the Laplace transform of the integral of a time function—that is, to find

Employing integration by parts, where

we get

EXAMPLE A.6 Time Integral of Sinusoidal Signal

Find the Laplace transform of 
Solution. The Laplace transform of sin(ωt) is

Therefore, using Eq. (A.14), then



7. Convolution
Convolution in the time domain corresponds to multiplication in the frequency domain. Assume that £{f1(t)} =
F1(s) and £{f2(t)} = F2(s). Then

We see that t varies from zero to infinity and τ varies from zero to t. With the aid of Fig. A.1, we reverse the order of
integration and change the limits of integration accordingly so that τ varies from zero to infinity and  to
yield

Multiplying by esτesτ results in

If we change variables t’  t – τ, then

This implies that

EXAMPLE A.7 Ramp Response of a First-Order System

Find the ramp response of a first-order system with a pole at +a.
Solution. Let f1(t) = t be the ramp input and f2(t) = eat be the impulse response of the first-order system. Then,
using Eq. (A.15) we find that



The following commands in MATLAB yields the same result,
syms s t a
ilaplace(1/(sˆ3–a*sˆ2)).

Figure A.1 Diagram illustrating reversal of the order of integration

8. Time Product
Multiplication in the time domain corresponds to convolution in the frequency domain:

To see this, consider the relation

Substituting the expression for f1(t) given by Eq. (3.25) yields



Changing the order of integration results in

Using Eq. (A.9), we get

9. Parseval’s Theorem
Parseval’s famous theorem is used to compute the “energy” in a signal or “correlation” between two signals. It tells us
that mentioned quantities can be computed either in the time domain or in the frequency domain. If

(i.e., y(t) and u(t) are square integrable), then

Parseval’s result involves only a substitution of the transform for the time functions and an exchange of integration:

10. Multiplication by Time
Multiplication by time corresponds to differentiation in the frequency domain. Let us consider

Then



which is the desired result.

EXAMPLE A.8 Time Product of Sinusoidal Signal

Find the Laplace transform of f(t) = t sin ωt.
Solution. The Laplace transform of sin ωt is

Hence, using Eq. (A.22), we obtain

The following commands in MATLAB yields the same result,
syms s t w
laplace(t*sin(w*t)).

A.1.2 Inverse Laplace Transform by Partial-Fraction Expansion
As we saw in Chapter 3, the easiest way to find f(t) from its Laplace transform F(s), if F(s) is rational, is to expand
F(s) as a sum of simpler terms that can be found in the tables via partial-fraction expansion. We have already
discussed this method in connection with simple roots in Section 3.1.5. In this section, we discuss partial-fraction
expansion for cases of complex and repeated roots.

Complex Poles In the case of quadratic factors in the denominator, the numerator of the quadratic factor is chosen
to be first order as shown in Example A.9. Whenever there exists a complex conjugate pair of poles such as

we can show that

(see Problem 3.1) and that

Assuming that p1 = α + jβ, we may rewrite f(t) in a more compact form as



EXAMPLE A.9 Partial-Fraction Expansion: Distinct Complex Roots

Find the function f(t) for which the Laplace transform is

Solution. We rewrite F(s) as

Using the cover-up method, we find that
C1 = sF(s)|s=0 = 1.

Setting C1 = 1 and then equating the numerators in the partial-fraction expansion relation, we obtain

(s + s + 1) + (C2s + C3)s = 1.

After solving for C2 and C3, we find that C2 = –1 and C3 = –1. To make it more suitable for using the Laplace
transform tables, we rewrite the partial fraction as

From the tables we have,

Alternatively, we may write F(s) as

where , as before, and now

and



The latter partial-fraction expansion can be readily computed using the MATLAB statements

which yield the results

r = [ –0.5000 + 0.2887i – 0.5000 – 0.2887i 1.0000]';
p = [ –0.5000 + 0.8660i – 0.5000 – 0.8660i 0]'; k = []
and agrees with the previous hand calculations. Note that if we are using the tables, the first method is preferable,
while the second method is preferable for checking MATLAB results.

The following commands in MATLAB yield the same result for the inverse Laplace transform,
syms s t
ilaplace(1/(s*(sˆ2+s+1))).

Repeated poles For the case in which F(s) has repeated roots, the procedure to compute the partial-fraction
expansion must be modified. If p1 is repeated three times, we write the partial fraction as

We determine the constants C4 through Cn as discussed previously. If we multiply both sides of the preceding
equation by (s – p1)3, we obtain

If we then set s = p1, all the factors on the right side of Eq. (A.25) will go to zero except C3, which is

C3 = (s – p1)3F(s)|s=p1,

as before. To determine the other factors, we differentiate Eq. (A.25) with respect to the Laplace variable s:

Again, if we set s = p1, we have



Similarly, if we differentiate Eq. (A.26) again and set s = p1 a second time, we get

In general, we may compute Ci for a factor with multiplicity k as

EXAMPLE A.10 Partial-Fraction Expansion: Repeated Real Roots

Find the function f(t) that has the Laplace transform

Solution. We write the partial fraction as

Then

The function f(t) is

The partial fraction computation can also be carried out using MATLAB’s residue function,

which yields the result

r = [ –2 –1 2]', p = [–2 –2 –1]', and k = [];



and agrees with the hand calculations.
The following commands in MATLAB yields the same result for the inverse Laplace transform,
syms s t
ilaplace((s+3)/((s+1)*(s+2)ˆ2)).

A.1.3 The Initial Value Theorem
We discussed the Final Value Theorem in Chapter 3. A second valuable Laplace transform theorem is the Initial
Value Theorem, which states that it is always possible to determine the initial value of the time function f(t) from its
Laplace transform. We may also state the theorem in this way:

The Initial Value Theorem

For any Laplace transform pair,

We may show this as follows.
Using Eq. (A.11), we get

Let us consider the case in which s → ∞ and rewrite the integral as

Taking the limit of Eq. (A.28) as s → ∞, we get

The second term on the right side of the preceding equation approaches zero as s → ∞, because e-st → 0. Hence

or

In contrast with the Final Value Theorem, the Initial Value Theorem can be applied to any function F(s).



EXAMPLE A.11 Initial Value Theorem

Find the initial value of the signal in Example 3.11.
Solution. From the Initial Value Theorem, we get

which checks with the expression for y(t) computed in Example 3.11.

A.1.4 Final Value Theorem

The Final Value Theorem

If all poles of sY(s) are in the left half of the s-plane, then

Proof of the Final Value Theorem
We may prove this result as follows.

The derivative relationship developed in Eq. (3.33) is

We assume we are interested in the case where s → 0. Then

and we have

Another way to see this same result is to note that the partial-fraction expansion of Y(s) [Eq. (3.43)] is

Let us say that p1 = 0 and all other p i are in the LHP so that C1 is the steady-state value of y(t). Using Eq. (3.45), we
see that



which is the same as the previous result.
For a thorough study of Laplace transforms and extensive tables, see Churchill (1972) and Campbell and Foster

(1948); for the two-sided transform, see Van der Pol and Bremmer (1955).



Appendix B Solutions to the Review Questions

Chapter 1
1. What are the main components of a feedback control system?

The process, the actuator, the sensor, and the controller.
2. What is the purpose of the sensor?

To measure the output variable and, usually, to convert it to an electrical voltage.
3. Give three important properties of a good sensor.

A good sensor is linear (the output is proportional to the input signal) over a large range of amplitudes and a
large range of frequencies at its input, has low noise, is unbiased, is easy to calibrate, and has low cost. The
relative values of these properties varies with the particular application.

4. What is the purpose of the actuator?
The actuator takes an input, usually electrical, and converts it to a signal such as a force or torque that causes the
process output to move or change over the required range.

5. Give three important properties of a good actuator.
A good actuator has fast response, and adequate power, energy, speed, torque, and so on, to be able to cause the
process output to meet the design specifications and is efficient, lightweight, small, cheap, and so on. As with
sensors, the relative value of these properties varies with the application.

6. What is the purpose of the controller? Give the input(s) and output(s) of the controller.
The controller is to take the sensor output (the input to the controller) and compute the control signal (the output
of the controller) to be sent to the actuator.

7. What physical variable(s) of a process can be directly measured by a Hall effect sensor?
A Hall-effect device measures the strength of a magnetic field and can be most easily configured to measure
relative positions of two bodies or relative angles.

8. What physical variable is measured by a tachometer?
A tachometer measures speed of rotation or angular velocity.

9. Describe three different techniques for measuring temperature.
In each of the following cases, it is important to realize that the devices mentioned need to be calibrated and often
corrected for nonlinearity in order to give a reliable, accurate measure of temperature.
(a) An early technique still used in many home thermostats is based on the bimetallic strip composed of two

strips of different metals that expand with different coefficients with temperature. As a result, the strip bends
with temperature and the resulting motion can be used as a measure of temperature. This principle was
introduced in the 18th century to maintain a constant length to a clock pendulum for precision time keeping.

(b) A technique related to the bimetallic strip is based on the fact that metals with different work functions placed
in contact will produce a voltage that is proportional to temperature. Such a device is called a thermocouple
and is the basis of a standard laboratory technique for measuring temperature.

(c) A number of materials have electrical resistance that is dependent in a monotonic way on temperature, and a
resistance bridge can be used with one of these to indicate temperature. Such devices are called thermistors.

(d) For high temperatures, it is well known that the color of the radiation due to heat depends on temperature. A
piece of iron placed in a fire will glow orange, then red, and finally become white hot at high temperatures.



An instrument for measuring the frequency of the radiation, and thus the temperature, is a pyrometer.
(e) In ceramic kilns, cones of different materials that melt at different and known temperatures are placed near

the products in the kiln to indicate when the design temperature has been reached. The potter watches until
the cone of importance begins to sag and then knows that the products should be removed. These give a
quantized measure of temperature.

10. Why do most sensors have an electrical output, regardless of the physical nature of the variable being measured?
Electrical signals are the most easily manipulated; therefore, most controllers are electrical devices, either analog
or digital. To provide the signal input to such a device, the sensor needs to produce an electrical output.

Chapter 2
1. What is a “free-body” diagram?

To write the equations of motion of a system of connected bodies, it is useful to draw each body in turn with the
influence of all other bodies represented by forces and torques on the body in question. A drawing of the
collection of such isolated bodies is called a “free-body diagram.”

2. What are the two forms of Newton’s law? Translational motion is described by F = ma. Rotational motion is
described by M = Iα.

3. For a structural process to be controlled, such as a robot arm, what is the meaning of “collocated control”?
“Noncollocated control"?
When the actuator and the sensor are located on the same rigid body, the control is said to be “collocated.” When
they are on different bodies that are connected by springs, the control is “noncollocated.”

4. State Kirchhoff’s current law.
The algebraic sum of all currents entering a junction or circuit is zero.

5. State Kirchhoff’s voltage law.
The algebraic sum of voltages around a closed path in an electric circuit is zero.

6. When, why, and by whom was the device named an “operational amplifier"? In a paper in 1947, Ragazzini,
Randall, and Russell named the high-gain, wide-bandwidth amplifier used in feedback to realize operational
calculus “operations” the operational amplifier.

7. What is the major benefit of having zero input current to an operational amplifier? With zero input current the
amplifier does not load the input circuit; thus, the transfer function of the device is not dependent of the amplifier
characteristics. Also, the analysis of the circuit is simplified in this case.

8. Why is it important to have a small value for the armature resistance Ra of an electric motor?
The armature resistance causes power loss when the armature current flows and thus reduces the efficiency of the
motor.

9. What are the definition and units of the electric constant of a motor?
A rotating motor produces a voltage (called the back emf) in its armature proportional to the rotational speed.
The electric constant Ke is the ratio of this voltage to the speed, so that e = Ke . The units are volt-sec/radians.

10. What are the definition and units of the torque constant of an electric motor? When current ia flows in the
armature of an electrical motor, a torque τ is produced that is proportional to the current. The torque constant Kt
is the constant of proportionality, so that τ = Ktia. The units are Newton-meters/amp.



11. Why do we approximate a physical model of the plant (which is always nonlinear) with a linear model?
Analysis and design of linear models is vastly simpler than with nonlinear models. Furthermore, it has been
shown (by Lyapunov) that, if the linear approximation is stable, then there is at least some region of stability for
the nonlinear model.

Δ12. Give the relationships for (a) heat flow across a substance, and (b) heat storage in a substance.
(a) Heat flow is proportional to the temperature difference divided by the thermal resistance; that is,

(b) The differential equation describing the heat storage is

where C is the thermal capacity of the material.
13. Name and give the equations for the three relationships governing fluid flow.

Chapter 3
1. What is the definition of “transfer function"?

The Laplace transform of the output of a linear, time-invariant system, Y(s), is proportional to the transform of its
input, U(s). The function of proportionality is the transfer function F(s), so that Y(s) = F(s)U(s). It is assumed that
all initial conditions are zero.
2. What are the properties of systems whose responses can be described by transfer

2. functions?
The system must be both linear (superposition applies) and time invariant (the parameters do not vary with time).

3. What is the Laplace transform of f(t – λ)1(t – λ) if the transform of f(t) is F(s)?

4. State the Final Value Theorem.
If all the poles of sF(s) are in the LHP, then the final value of f(t) is given by 

5. What is the most common use of the Final Value Theorem in control?
A standard test of a control system is the step response, and the FVT is used to determine the steady-state error to
such an input.

6. Given a second-order transfer function with damping ratio ζ, and natural frequency ωn, what is the estimate of the
step response rise time? What is the estimate of the percent overshoot in the step response? What is the estimate
of the settling time?



These are given by tr ≅ 1.8/ωn, Mp is set by the damping ratio (see the curve in Fig. 3.23) and ts ≅ 4.6/σ.
7. What is the major effect of an extra zero in the LHP on the second-order step response?

Such a zero causes additional overshoot, and the closer the zero is to the imaginary axis, the higher the overshoot.
If the zero is more than six times the real part of the complex poles, the effect is negligible.

8. What is the most noticeable effect of a zero in the RHP on the step response of the second-order system?
Such a zero often causes an initial undershoot of the response.

9. What is the main effect of an extra real pole on the second-order step response?
A pole slows down the response and makes the rise time longer. The closer the pole is to the imaginary axis, the
more pronounced is the effect. If the pole is more than six times the real part of the complex poles, the effect is
negligible.

10. Why is stability an important consideration in control system design?
Almost any useful dynamic system must be stable to perform its function. Feedback around a system that is
normally stable can actually introduce instability, so control designers must be able to assure the stability of their
designs.

11. What is the main use of Routh’s criterion?
With this method, we can find (symbolically) the range of a parameter such as the loop gain for which the system
will be stable.

12. Under what conditions might it be important to know how to estimate a transfer function from experimental
data?
In many cases, the equations of motion are either extremely complex or not known at all. Chemical processes
such as a paper-making machine are often of this kind. In these cases, if one wishes to build a good control, it is
very useful to be able to take transient data or steady-state frequency-response data and to estimate a transfer
function from these.

Chapter 4
1. Give three advantages of feedback in control.

(a) Feedback can reduce the steady-state error in response to disturbances.
(b) Feedback can reduce the steady-state error in tracking a reference.
(c) Feedback can reduce the sensitivity of a transfer function to parameter changes.
(d) Feedback can stabilize an unstable process.

2. Give two disadvantages of feedback in control.
(a) Feedback requires a sensor, which can be very expensive and may introduce additional noise.
(b) Feedback systems are often more difficult to design and operate than openloop systems.

3. What is the main objective of introducing integral control?
Integral control will make the error to a constant input go to zero. It removes the effects of process noise bias. It
cannot remove the effects of sensor bias.

4. What is the major objective of adding derivative control?
Derivative control typically makes the system better damped and more stable.

5. Why might a designer wish to put the derivative term in the feedback rather than in the error path?



When a reference input might include sudden changes, including it in the derivative action might cause
unnecessary large controls.

6. A temperature control system is found to have zero error to a constant tracking input and an error of 0.5°C to a
tracking input that is linear in time, rising at the rate of 40°C/sec. What is the system type of this control system
and what is the relevant error constant (Kp or Kv or Ka)?
The system is Type 1 and the Kv is the ratio of input rate to error or Kv = 40/0.5 = 80/sec.

7. What are the units of Kp, Kv, and Ka?
Kp is dimensionless, Kv is sec–1, and Ka is sec–2.

8. What is the definition of system type with respect to reference inputs?
With only a polynomial of degree k reference input (no disturbances), the type is the largest value of k for which
the steady-state error is a constant.

9. What is the definition of system type with respect to disturbance inputs?
With only a polynomial of degree k disturbance input (no reference), the type is the largest value of k for which
the steady-state error is a constant.

10. Why does system type depend on where the external signal enters the system? Because the error depends on
where the input enters, so does the type.

11. Give two reasons to use a digital controller rather than an analog controller.
(a) The control law is easier to change if the controller is digital.
(b) A digital controller can perform logic and other nonlinear operations much easier than an analog controller.
(c) The hardware of a digital controller can be fixed in the design before the details of the actual control design

are finished.
12. Give two disadvantages to using a digital controller.

(a) The bandwidth of a digital controller is limited by the possible sample frequency.
(b) The digital controller introduces noise by the quantization process.

13. Give the substitution in the discrete operator z for the Laplace operator s if the approximation to the integral in
Eq. (4.98) is taken to be the rectangle of height e(kTs) and base Ts.

Chapter 5
1. Give two definitions for the root locus.

(a) The root locus is the locus of points in the s-plane where the equation a(s) + Kb(s) = 0 has a solution.
(b) The root locus is the locus of points in the s-plane where the angle of G(s) = b(s)/a(s) is 180°.

2. Define the negative root locus.
The negative root locus is the locus of points where the equation a(s)–Kb(s) = 0 has a solution or where the angle
of G(s) = b(s)/a(s) is 0°.

3. Where are the sections of the (positive) root locus on the real axis?
Segments of the real axis to the left of an odd number of zeros and poles are on the root locus.



4. What are the angles of departure from two coincident poles at s = –a on the real axis? Assume there are no poles
or zeros to the right of –a.
The loci depart at ±90°.

5. What are the angles of departure from three coincident poles at s = – a on the real axis? Assume there are no
poles or zeros to the right of –a.
The loci depart at ±60° and 180°.

6. What is the requirement on the location of a lead compensation zero that will cause the locus to pass through a
desired root location, ro?
The angle from the lead zero to ro must be such that the angle of the compensated transfer function at ro is 180°.

7. What is the value of the compensator gain that will cause a closed-loop pole to be at ro?
If the compensated open-loop transfer function is KDG, then

k = 1/|D(ro)G(ro)|.

8. What is the principal effect of a lead compensation on a root locus?
The lead compensation generally causes the locus to bend toward the LHP, moving the dominant roots to a place
of higher damping.

9. What is the principal effect of a lag compensation on a root locus in the vicinity of the dominant closed-loop
roots?
The lag compensation is normally placed so near the origin that it has negligible effect on the root locus in the
vicinity of the dominant closed-loop roots.

10. What is the principal effect of a lag compensation on the steady-state error to a polynomial reference input?
A lag compensation normally raises the gain at s = 0 and thus increases the velocity constant of a Type 1 system
and lowers the error to polynomial inputs.

11. Why is the angle of departure from a pole near the imaginary axis especially important?
If the locus starts toward the RHP, then feedback will make the system less stable. On the other hand if the locus
departs toward the LHP, then feedback is going to make the system more stable.

12. Define a conditionally stable system.
A system that becomes unstable as gain is reduced is considered to be conditionally stable. That is, its stability is
conditioned on having an operating compensator with at least a minimum value of gain.

13. Show, with a root locus argument, that a system having three poles at the origin must be conditionally stable.
With three poles at the origin, the angles of departure ensure that two poles leave the origin at 180°, ±60°, or, if
there are poles on the real axis in the RHP, they may leave at 0°, ±120° which is to say that at least one pole
begins by moving into the RHP. As gain is reduced from the operating level, at least one root must pass into the
RHP for gain low enough; therefore, the system must be conditionally stable.

Chapter 6
1. Why did Bode suggest plotting the magnitude of a frequency response on log-log coordinates?

In log-log coordinates, the plot for a rational transfer function can be well guided by linear asymptotes and thus
easily plotted and visualized.

2. Define a decibel.



If a power ratio is P1/P2, then the measure in decibels is 10 log(P1/P2). Because power is proportional to voltage
squared, and a transfer function would give a ratio of voltages, then the gain of a transfer function G(jω) in
decibels is Gdb = 20 log |G(jω)|.

3. What is the transfer function magnitude if the gain is listed as 14 db?
14 = 20 log M, therefore M = 5.01.

4. Define gain crossover.
The gain crossover ωc is the value of frequency where the magnitude gain is 1 (or 0 db).

5. Define phase crossover.
The phase crossover ωcp is the value of the frequency where the phase crosses –180°.

6. Define phase margin, PM.
The phase margin PM is a measure of how far in phase the Nyquist plot is from instability. In the typical case, if
the phase of the system at gain crossover is ø, then the phase margin is 180° + ø. For example, if ø = –150°, then
the phase margin is 30°.

7. Define gain margin, GM.
The gain margin is a measure of how far the system is from instability by changes in gain alone. If the gain at
phase crossover, where the system phase is 180°, is |G(jωcp)|, then the gain margin is GM*|G(jωcp)| = 1.0 or GM
= 1/|G(jωcp)|.

8. What Bode plot characteristic is the best indicator of the closed-loop step response overshoot?
The phase margin is related to the equivalent closed-loop damping ratio approximately by ζeq = PM/100. As we
saw in Chapter 3, the step response overshoot is monotonically related to the damping ratio.

9. What Bode plot characteristic is the best indicator of the closed-loop step response rise time?
The rise time is measured by the closed-loop natural frequency, which in turn is adequately approximated by the
gain crossover. Thus the best indicator of rise time is ωcg.

10. What is the principal effect of a lead compensation on Bode plot performance measures?
The lead compensation usually is used to raise the phase margin at a desired gain crossover frequency.

11. What is the principal effect of a lag compensation on Bode plot performance measures?
The lag compensation is usually used to raise the low-frequency gain to reduce the steady-state error to
polynomial or low-frequency sinusoidal inputs. It can also be used to lower the crossover frequency ωc, where a
more favorable phase exists.

12. How do you find the Kv of a type 1 system from its Bode plot?
The Kv is determined by the low-frequency asymptote, which has a slope of - 1 for a type 1 system and is given by
the expression Kv/ω. The value of the constant may be found either from the frequency where the asymptote
reaches 1.0 (or 0 db) or else as the value of the asymptote at the frequency of ω = 1.

13. Why do we need to know beforehand the number of open-loop unstable poles in order to tell stability from the
Nyquist plot?
The Nyquist plot encirclements counts the difference in the number of zeros and the number of poles in the RHP
of 1 + KDG. In order to know the number of zeros of this function (which are closed-loop poles and thus unstable
poles of the closed loop), we must know the number of unstable open-loop poles for the plot.

14. What is the main advantage in control design of counting the encirclements of – 1/K of D(jω)G(jω) rather than



encirclements of –1 of KD(jω)G(jω)?
If we plot DG alone, then the stability depends on the encirclements of –1/K. The designer can thus easily look at
the entire range of real K and determine the best value of gain for the design without having to make any more
plots.

15. Define a conditionally stable feedback system. How can you identify one on a Bode plot?
A conditionally stable system becomes unstable as gain is reduced. If the low-frequency phase drops below –180°
then a reduction in gain until gain crossover occurs where there is no phase margin, then the system is almost
surely unstable. A look at the Nyquist plot is necessary to be certain. This condition can also be seen easily from a
root locus; the locus will have segments in the RHP for low values of gain.

16. A certain control system is required to follow sinusoids, which may be any frequency in the range 0 ≤ ωl ≤ 450
rad/sec and have amplitudes up to 5 units with (sinusoidal) steady-state error to be never more than 0.01. Sketch
(or describe) the corresponding performance function W1(ω).
The magnitude of W1 is given by the ratio |R|/eb = 5/0.01 = 500. The performance function would then have
the value 500 for frequencies up to 450 rad/sec. The Bode magnitude plot would be required to be above this
curve for these frequencies.

Chapter 7
The following questions are based on a system in state-variable form with matrices F, G, H, and J, input u, output y,
and state x:

1. Why is it convenient to write equations of motion in state-variable form?
It provides a standard way to describe the differential equations for any dynamic system so that computer-aided
analysis can be carried out more conveniently. It is also more convenient to analyze linear systems in terms of
the standard description matrices.

2. Give an expression for the transfer function of this system.

G(s) = H(sI – F)–1 G + J.
3. Give two expressions for the poles of the transfer function of the system.

(a) p = eig(F).
(b) p = roots of det[sI – F] = a(s) = 0.

4. Give an expression for the zeros of the system transfer function.

5. Under what condition will the state of the system be controllable?
(a) If the pair (F, G) is controllable—that is, if the matrix

is full rank.
(b) If the system can be put into control canonical form.

6. Under what conditions will the system be observable from the output y?



(a) If the matrices (F, H) are observable—that is, if the matrix

has full rank.
(b) If the system can be put into observable canonical form.

7. Give an expression for the closed-loop poles if state feedback of the form u = –Kx is used.
(a) pc = eig(F – G * K).
(b) pc = roots of det (sI – F + GK) = αc(s) = 0.

8. Under what conditions can the feedback matrix K be selected so that the roots of αc(s) are placed arbitrarily?
If the system is controllable.

9. What is the advantage of using the LQR or symmetrical root locus in designing the feedback matrix K?
With LQR, the closed-loop system will be more robust to parameter changes, and the designer has some control
over the control effort used by the closed-loop system.

10. What is the main reason for using an estimator in feedback control?
When the state is not available (usually because it is too expensive or impractical to put sensors on each state
variable), then an estimator using only the output y can give an estimate that can be used in place of the actual
state.

11. If the estimator gain L is used, give an expression for the closed-loop poles due to the estimator.
(a) pe = eig(F – L * H).
(b) pe = roots of det(sI – F + LH) = αe(s) = 0.

12. Under what conditions can the estimator gain L be selected so that the roots of αe(s) = 0 are placed
arbitrarily?
If the system is observable.

13. If the reference input is arranged so that the input to the estimator is identical to the input to the process, what
will be the overall closed-loop transfer function?

14. If the reference input is introduced in such a way as to permit the zeros to be assigned as the roots of γ(s), what
will the overall closed-loop transfer function be?

usually γ(s) = αe(s).
15. What are the three standard techniques for introducing integral control in the state-feedback design method?



(a) By augmenting the process state to include an integrator state variable.
(b) By the internal model approach.
(c) By using the extended estimator approach.

Chapter 8
1. What is the Nyquist rate? What are its characteristics?

The Nyquist rate is half the sample rate, or = ωs/2. Above this rate, no frequencies can be represented by a
sampled signal.

2. Describe the discrete equivalent design process.
The controller for a system is designed as if the controller will be analog. The resulting controller is then
approximated by a digital equivalent.

3. Describe how to arrive at a D(z) if the sample rate is 30 × ωBW.
Use the discrete equivalent design method. It typically yields satisfactory results for such a high sample rate. But
after using the discrete equivalent, check the result using a simulation that includes the effect of sampling or
else perform an exact discrete linear analysis. It is best to use a simulation that includes all known sampling
effects and system delays.

4. For a system with a 1 rad/sec bandwidth, describe the consequences of various sample rates.
An absolute minimum sample rate is 2 rad/sec (or 0.32 Hz and T = 3 sec). From 2 rad/sec to 10 or 20 rad/sec,
the control will be jerky with noticeable steps in the control and the design needs to be done very carefully.
Between 20 and 30 rad/sec, the magnitude of the control steps become progressively smaller and design using
discrete equivalents works reasonably well. Above 30 rad/sec, the control steps are hardly noticeable and the
discrete equivalent can be used with confidence.

5. Give two advantages for selecting a digital processor rather than analog circuitry to implement a controller.
(a) The physical layout of a digital controller can be done before the final design is complete, often resulting in

completing the hardware implementation in much less time than required to get an analog controller
specified and constructed.

(b) A digital processor is more flexible in making design changes as software is easier to reprogram than
rewiring and/or adding op-amps to a printed circuit board.

(c) A digital processor can much more easily include nonlinear terms and logic decision steps in the overall
controller design to permit adaptive control or gain scheduling, for example.

(d) Many models of the same basic controller can be accommodated by simply using different PROMS with the
same hardware design. For example, an automobile manufacturer might have one engine controller hardware
design for its entire product line; but have a different PROM for each engine/vehicle combination.

(e) Digital controllers are less sensitive to temperature variations than analog controllers.
6. Give two disadvantages of selecting a digital processor rather than analog circuitry to implement a controller.

(a) The finite sampling rate of the A/D and D/A converters and the finite compute speed of the processor limit
the bandwidth of the controller to about 1/10 of the sample frequency.

(b) The finite accuracy or bit length of the converters introduce extra noise or offsets into the control loop if
using low-end controllers.



(c) Cost. For simple controllers, a digital implementation will typically be more expensive than an analog
implementation.

Δ7. Describe how to arrive at a D(z) if the sample rate is 5 × ωBW.
Start by using the discrete equivalent, but include an approximation of the effect of the delay in the plant
model when carrying out the analog design. Then check the result via an exact discrete analysis by converting
the plant to its discrete equivalent and combining that with the discrete controller. If performance is degraded
from that desired, modify the discrete controller using discrete design methods. Finish by using a simulation that
includes all known sampling effects and system delays.

Chapter 9
1. Why do we approximate a physical model of the plant (which is always nonlinear) with a linear model?

Analysis and design of linear models is vastly simpler than with nonlinear models. Furthermore, it has been
shown (by Lyapunov) that if the linear approximation is stable, then there is at least some region of stability for
the nonlinear model.

2. How would you linearize the nonlinear system equation for radiation heat transfer  = T4 + T + u?

δ T = T 4 + T + u,
where To is the nominal operating temperature. (See the RTP case study in Chapter 10.)
3. A lamp used as a thermal actuator has a nonlinearity such that the experimentally measured output power is

related to the input voltage by P = V1.6. How would you deal with such a nonlinearity in feedback control
design?
We precede the lamp with an inverse nonlinearity—that is, V = P0.625—so as to linearize the cascaded system
(see the RTP case study in Chapter 10).

4. What is integrator windup?
If the plant actuator output signal saturates, then it may take a long time for the error to be brought back to
zero from an initial upset and during this time the integrator output may grow or “windup” much more than it
would if the system were linear. Special “antiwindup” circuits are designed to prevent windup.
5. Why is an antiwindup circuit important?
When a control includes integral action and is subject to saturation, large inputs can cause large overshoots and
slow recovering unless an antiwindup circuit is included.

6. Using the nonlinear saturation function having gain 1 and limits ±1, sketch the block diagram of saturation for
an actuator that has gain 7 and limits ±20.
If the output of the actuator is uout and its input is uin, the control is given by

7. What is a describing function and how is it related to a transfer function?
The goal of the describing function approach is to find something like a “transfer function” for a nonlinear
element. One may view the describing function as an extension of the frequency response to nonlinearities.

8. What are the assumptions behind the use of the describing function?



The basic assumption is that the plant behaves approximately as a low-pass filter. The other assumptions are
that the nonlinearity is time invariant, and there is a single nonlinear element in the system.

9. What is a limit cycle in a nonlinear system?
In some nonlinear systems the error builds up and the response approaches a periodic solution of fixed
amplitude, the limit cycle, as time grows large.

10. How can one determine the describing function for a nonlinear system in the laboratory?
We can inject sinusoidal signals into the system and place a low-pass filter with a sharp cutoff at the output of
the system to measure the fundamental component of the output. The describing function is then computed as
the ratio of the amplitude of the fundamental component of the output of the nonlinear system over the
amplitude of the sinusoidal input signal.

11. What is the minimum time-control strategy for a satellite attitude control with bounded controls?
Bang-bang.

12. How are the two Lyapunov methods used?
His indirect or first method is based on linearization of the equations of motion and drawing conclusions about
the stability of the nonlinear system by considering the stability of the linear approximation. In his direct or
second method, the nonlinear equations are considered directly.

Chapter 10
1. Why is a collocated actuator and sensor arrangement for a lightly damped structure such as a robot arm easier to

design than a noncollocated setup?
In the collocated case, the process naturally has zeros near the lightly damped poles, which keep the root locus
in the LHP.

2. Why should the control engineer be involved in the design of the process to be controlled?
In many cases, the characteristics and locations of the actuators and sensors can have a major impact on the
complexity and difficulty in design of the controller. If the needs of control are included in the process design,
the final systems are often more effective (better closed-loop performance) and less expensive.

3. Give examples of an actuator and a sensor for the following control problems:
(a) Attitude control of a geosynchronous communication satellite.

Actuators: Cold gas-jet thrusters, momentum wheels, magnetic torquers (coils, torque rod), plasma thruster.
Sensors: Earth sensor (roll, pitch), digital integrated rate assembly (DIRA) gyro (for rates), star tracker.

(b) Pitch control of a Boeing 747 airliner.
Actuators: Elevator.
Sensors: Pitch rate and/or pitch angle is measured using a gyro or a ringlaser gyro.

(c) Track-following control of a CD player.
Actuators: DC motor to move the (dual stage sledge) arm mechanism, magnetic coils (two) for focusing on
tracks. Sensors: Array of photodiodes.

(d) Fuel–air ratio control of a spark-ignited automobile engine.
Actuators: Fuel injection.
Sensors: Zirconium oxide sensor.

(e) Position control for an arm of a robot used to paint automobiles.



Actuators: Hydraulic actuators or electric motors.
Sensors: Encoders to measure arm rotations, pressure sensors, and force sensors.

(f) Heading control of a ship.
Actuators: Rudder.
Sensors: Gyrocompass.

(g) Attitude control of a helicopter.
Actuators: Moving swash plate (either via direct link or servo) rotates main blade angle of attack.
Sensors: Same as aircraft (pitot tube, accelerometers, rate gyros).



Appendix C MATLAB® Commands
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PID, 192
1/s2, 632

Digital PID, 199



Digital to analog (D/A) converters, 578
Digital versus continuous
design, damping and step response in, 588–589

Digitization, 559–561
Diophantine equation, 524
Dirac, Paul, 78
Direct design with rational transfer functions, 524–527
Direct digital design. (see Discrete design)
Direct transfer function formulation, 525
Direct transmission term, 416
Discrete control laws, 585
Discrete controller, 488
Discrete design, 583–590
analysis tools, 583
example, 584, 586–588
feedback properties, 585–586

Discrete equivalent of motor speed control, 201
Discrete equivalents, 200
design using, 568–577

Discrete root locus, 584–585
Discrete signals, 559
Discrete systems
and continuous

Simulink simulation, 489
step response comparison, 490

dynamic analysis of, 561–568
Discrete time functions to
z-transform and Laplace
transforms, 562

Discrete transfer function, 584
Disk drive servomechanism, 508–514
Disk read/write mechanism
graphical illustration, 30
schematic, 31

Distinct real roots, 92
Distributed parameter systems, 38, 40



Disturbance, 4
Disturbance rejection, 1
digital control, 581–582
properties for robust servomechanism, 513
sample rate selection, 581–582
steady-state tracking by extended estimator, 518–519

Divide and conquer state space design, 415
Dominant second order poles, 456–457
Double integrator plant, 243
transfer function, 236

discrete model, 632
Double pendulum, 65
Double precision, 580
Doyle, J. C., 520, 532
Drebbel’s incubator, 10
Duality of estimation and control, 472
Dutch roll yaw damper, 691
Dynamic analysis of discrete systems, 561
Final Value Theorem, 566–568
s and z relationship, 564–566
z-transform, 561
z-transform inversion, 564

Dynamic compensation, 248
exercise problems related to, 285, 289

Dynamic models, 20–63
electric circuits, 41–45
electromechanical systems, 45–50
equations for, 63
exercise problems related to, 64
fluid flow models, 50
heat and fluid flow models, 50–60
historical perspective, 60–62
linearization, 602–603
mechanical systems, 21–41
room temperature, 51
scaling, 602–603



state-variable form differential equations, 417
Dynamic response, 75–151
amplitude and time scaling, 147–149
effects of zeros and additional poles, 120–129
exercise problems related to, 151
experimental data, obtaining models from, 140–147
historical perspective, 149–150
Laplace transforms, 75–102
perspective, 74
pole locations, effect of, 108–116
state equations, 436–442
time-domain specifications, 116–120
stability, 130–140
system modeling diagrams, 102–108

Dynamic system with saturation, 610

E
E. coli, 731
E. coli genome, 732
E. coli motion, 737
Effect of zero using MATLAB, 123, 124, 125
Eigenvalue, 432
Eigenvector, 432
eig.m, 433, 435
Einstein, Albert, 62
Electric circuits
differential equation determination, 42–43
dynamic models of, 41–45
elements, 42
equations and transfer functions, 44, 45
exercise problems related to, 69, 71

Electric power line conductor, 168
Electromagnet, 45–46
Electromechanical systems, dynamic models of, 45–50
Elementary block diagrams, 104
Emulation, 568



Emulation design, 568–577
applicability limits, 576
damping and step response example, 588–590
digital approximation methods, comparison of, 575–576
MMPZ method, 575
MPZ method, 571
space station attitude digital controller, 573–574
stages, 568
Tustin’s method, 568–569, 570–571

EPROM, 580
Equilibrium, 603, 687
Equivalent gain analysis
frequency response, 619
root locus, 609

Error constants, 181
Error space
approach, robust tracking, 505–515
definition, 505
design, 514–515
robust control equations, 506

Estimate error characteristic equation, 467
Estimator, 443
control law combined, 478–489
and controller mechanism, 479
extended, 515

Estimator design, 466–477
exercise problems related to, 543, 549
full order, 466–472
pole selection, 476–477
reduced order, 472–475

pendulum example, 474–475
for simple pendulum, 468–469
SRL estimator design for pendulum, 477

Estimator equations, 517
Estimator error equation, 493
Estimator modes



uncontrollability, 500
Estimator pole selection, 476–478
Estimator SRL equation, 477
Evans, W. R., 13, 220, 275
Evans form of characteristic equation, 223
Evans method, 222
Exact discrete equivalent, 583
Excitation-Inhibition Model, 754
Expensive control, 464–465
Experimental data
obtaining models, 140, 147
sources, 141

Exponential envelope,
second-quarter system
response, 114

Exponential order, Laplace
transforms, 757

Exponentially decaying
sinusoid, 761

Extended estimator, 515–519
motor speed system, block diagram for, 519
steady-state tracking, 518–519
system for tracking, block diagram for, 517

Extra pole, effect of, 128

F
Factored zero-pole form, 97
Faraday, Michael, 61
Fast poles, 110
Feedback
advantage, 176
amplifier, 41, 386
analysis, 6
design trade-off, 9
Drebbel’s incubator, 275
equations, 172



liquid-level control, 9
perspective, 170

Feedback control, 2
components, 3

Feedback law with integral control, 503
Feedback loop, 735
feedback.m, 107, 263, 588
Feedback of state, 443
Feedback output error to state estimate equation, 467
Feedback properties
discrete design, 586
discrete design example, 585

Feedback scheme for autopilot design, 262
Feedback structure, 243–245
Feedback system, 104
actuator saturation, 616
drawing, 373

Feedforward
of disturbances, 664
integral model example, 515

Fibonacci numbers, 593
Filament, 733
Final Value Theorem, 92–94
DC gain, 94
example, 93
incorrect use of, 93–94
stable system, 93

Finite zeros, 97
First order system, SRL for, 459
First order term, 307
Fixed point arithmetic, 581
Flagellum, 733
Flexible disk read/write mechanism, 30–32
Float valve, 9
Fluid flow models, 50
Fly-ball governor, 10



Fly-by-wire, 740
Folding z and s-plane, 566
Forced differential equations solution, 95
Forced equation solution with zero initial conditions, 95–96
Forcing function, 438
Fourier, 150
Fourth order system in modal canonical form, 428
Foxboro Company, 204
Franklin, G. F., 530
Fraser, Don, 591, 740
Free body diagram
disk read/write mechanism, 31
Newton’s law, 22
suspension system, 26

Free running, 559
Frequency control system design procedure, 662
Frequency response, 13, 82, 297–317
characteristics

of capacitor, 299–300
of lead compensator, 300–304

control system design procedure, 663
example, 82, 84
exercise problems related to, 389–393
lag lead compensation, 498
lead compensation, 349
PD compensation, 348
state space design methods, 481

Frequency response data
experimental data source, 141
phase margin, 336

Frequency-response design method, 296–388
Bode’s gain-phase relationship, 341–346
closed-loop frequency response, 346–347
compensation, 347–380
control system design, 297–317
data, alternative presentation of, 382–385



exercise problems related to, 389–412
historical perspective, 386
lag compensation, 360–365
neutral stability, 317–318
Nyquist stability criterion, 319–333
perspective, 296–297
PI compensation, 360
stability margins, 334–341
time delay, 381–382

Frequency response plots, 299
LTR design, 522

Frequency response resonant peak versus phase margin, 337
Frequency shift, 90, 761
Frieden calculator, 276
Fuel-air ratio control, 742
Fuel injection, 704
Full order compensator design
for DC servo, 483–486
for satellite attitude control, 480–482

Full-order estimator, 466
Fuller, 10

G
Gain calculation for reference input, 452
Gain margin
frequency response design method, 334
LTR, 519
magnitude and phase plot, 335

Gain phase relationship
demonstration, 341

Gain selection, 501–502
Gain stabilization, 256, 371
Galileo, Galilei, 61
“Gap between Theory and Practice,” 204
Gardner and Barnes, 150
General controller in polynomial form, 524



GM, 334
Golden Nugget Airlines Problem, 292, 407
GP-B satellite, 537
Gunkel, T. L., 530
Gyroscope, 689

H
Halley, Edumund, 60
Hanging crane for rotational motion, 36–37
Hard disk control system design procedure, 709, 717
Hardware characteristics, 577–580
Heat exchanger
illustrated, 52
modeling equations for, 52–54
pure time delay, 529–530
root locus, 274

Heat exchanger tuning, 195–196
Heat flow, 50
equations for, 51–52
models

dynamic models, 50
exercise problems related to, 71, 73

Heat transfer RTP system, 722
Heaviside, Oliver, 41, 149
Helicopter near hover, 283, 549
Hessenberg Matrix, 542
High frequency plant
uncertainty, effect of, 372

Historical perspective, 60, 149, 203, 274, 386, 530, 590, 648, 739
Hold operation, delay due to, 560, 561
Homogeneous differential equations solution, 94–95
Hot-air balloon, 746
Hurewicz, W., 590
Huygens, Christian, 11
Hydraulic actuators, modeling, 58–60
Hydraulic piston, modeling, 55–56



I
Illustrative root locus, 236
Impulse function transform, 88
impulse.m, 110, 115, 127
Impulse response, 78, 108, 113
using MATLAB, 110

Impulse signal, 77
Incompressible fluid flow, 54–60
Incubator, Drebbel, 9
Inductor symbol and equation, 42
initial.m, 469, 475
Initial Value Theorem, 769–771
Inner loop design, 697
Input filter, 5, 177
Input generator, internal model
principle of, 508

Input magnitude, nonlinear
example of stability, 611

Input matrix, 416
Integral, discrete control laws of, 586
Integral control, 502–519
augmented state equations, 503
block diagram, 504
description, 502–504
exercise problems related to, 554–556
feedback law, 503
internal model approach, 508
motor speed system, 503–505
polynomial solution, 527
using error space design, 514–515
structure, 503

Integral model with feedforward, 515
Integration, 90, 762
Integrator, 421
op-amp, 44–45

Integrator anti-windup, 615–618



Internal model approach, integral control using, 508
Internal model principle, 508
Internal stability, 132
Internet modeling, 741
Interrupt, 559
Inverse Laplace transforms by partial-fraction expansion, 91–92, 766–769
Inverse nonlinearity, 603
Inverse transform, 86
Inverted pendulum, 37
equations, 38
SRL

estimator design, 477
example, 460–462

step response, 462
inv.m, 434, 436
Isoclines, 630

J
James, H.M., 590
Joseph, P. D., 530

K
Kalman, R. E., 14, 530, 640, 649
Kepler, Johannes, 61
Keynes, John Maynard, 61
Khalil, H., 620, 640
Kharitonov theorem, 140
Kirchhoff’s current law (KCL), 41
Kirchhoff’s voltage law (KVL), 41
Kochenberger, R. J., 649
Kuo, B., 50

L
Lag compensation, 252–253
circuit illustration, 261
compensation characteristic, 370
DC motor, 363–365



definition, 248
design using, 254–255
design procedure, 361
frequency response design method, 360–365
state space method, 496–499

Lagrange, 648
Lamp nonlinearity, 727
Lancaster, F. W., 697
LAPACK, 433
Laplace transforms, 75–102, 436, 757–771
continuous signal, 564–566
definition, 87
differential equations solving, 96
dynamic analysis, 561
exercise problems related to, 156
homogeneous differential equations solution, 94–95
impulse function transform, 88
for problem solving, 94–96
properties, 86, 89–91, 757–766
simple discrete time functions, 562
sinusoid transform, 88
step and ramp transforms, 88
to solve problems, 94
table, 758

LaSalle, L. P., 640
Law of generators, 46
Law of motors, 45
Lead compensation, 249, 348–351
analog and digital implementations, 258
circuit illustration, 259
compensation characteristic, 370
for DC motor, 351–356
definition, 248
design procedure, 356, 664
design using, 249–254
discrete control laws, 586



frequency response, 349
maximum phase increase, 350
primary design parameters, 355
using MATLAB, 264

Lead compensator, 238
design for type 1

servomechanism system, 358–359
example, 238–239
frequency response characteristics, 300–301
state-space example, 483
temperature control system, 356–358

Lead ratio, 350
Least common multiple, extended estimator, 516
Least-squares system
identification, 146 Left
companion matrix, 471

Left half plane (LHP)
effect of zero in, 238
Final Value Theorem, 566
LTR, 519
root locus extension method, 273
SRL, 458
zeros, 315

LHP. (see Left half plane (LHP))
Libler, S., 734
Ligand, 734
Limaçon, 333
Limit cycle, 613
Linear differential equations
solutions, 603
standard form, 416

Linear quadratic based
compensator design, 520

Linear quadratic regulator (LQR)
gain and phase margins, 466
Nyquist plots, 461



regulator poles, limiting
behavior of, 464–465

regulators, robustness
properties, 465–466

tape drive, 463–464
Linear systems
analysis using MATLAB, 97–102
ways of representing, 98

Linear time invariant systems
for stability, 129–132

Linearization, 602
control system design

procedure, 664
definition, 602
dynamic models, 602–603
by feedback, 602–603
by inverse nonlinearity, 608
of motion in ball levitator, 604–607
nonlinear feedback, 608
nonlinear pendulum example, 604
rapid thermal processing

example, 609
by small-signal analysis, 603
water tank height and outflow, 56-57

Liquid level control, 9
Locus, real-axis parts of, 228
Logarithmic decrement, 163
loglog.m, 84, 300, 315, 521
logspace.m, 84
Long division in z-transform

inversion, 562
Loop transfer recovery (LTR), 519–523
design frequency response

plots, 522
design for satellite attitude

control, 521–524



example, 521
Loudspeaker
geometry, 45–46
modeling, 45–46
with circuit, 46–48

Low sensitivity, design criteria for, 372
LQ, 530
lqe.m, 521, 725
LQF, 530
LQG, 532
lqr.m, 463, 725
LQR. (see Linear quadratic regulator (LQR))
lsim.m, 101, 393
LTI systems, stability of, 131–132
LTR, 519–523
Luenberger, D. G., 531
Lumped parameter model, 40
Lyapunov, A. M., 12, 601
Lyapunov direct method for position feedback system, 639–640
Lyapunov equation, 637
Lyapunov first method, 638
Lyapunov function, 602, 637
Lyapunov indirect method, 638
Lyapunov stability, 636–642
definition, 636
exercise problems related to, 656, 659
nonlinear system, 639
second-order system, 638–639

Lyapunov stability analysis, 636
asymptotically stable, 636
first method, 636, 638
redesign of adaptive control, 640
second method, 636, 637
stable in the large, 636

Lyapunov stability theorem, 637



M
M and N circles, 383
MacFarlane, A. G. J., 532
Magnetic levitation, 167, 753
Magnitude
frequency response, 299
transfer function class, 307

Magnitude condition, 234
parameter value, 282

Magnitude plot
gain and phase margin, 335
transfer function class, 308

margin.m, 357, 397, 521
Matched pole-zero (MPZ) method, 575
emulation design, 571
MMPZ comparison, 576

Mathematical model, 6
MathWorks, 15
MATLAB
acker, 449, 472

pole location, 456
axis, 329, 332
bode, 83, 300, 315
c2d, 488
canon, 435
commands, 788–791
computing roots by, 136
conv, 92, 459
eig, 433, 435
ezplot, 137
feedback, 107, 263, 588
impulse initial, 110, 115, 127
impulse response by, 115
initial, 469, 475
inv, 434, 436
linear system analysis, 97–102



linmod, 603
linmod2, 603
loglog, 84, 300, 315
logspace, 83
lqe, 521, 725
lqr, 463
lsim, 101, 393
margin, 357, 397, 521
max, 380
nichols, 383
nyquist, 326, 329, 332
ones, 101
pade, 273
parallel, 107
place, 449, 472
plot, 33, 101
poly, 96
printsys, 98
pzmap, 109
residue, 92, 96
rlocfind, 246, 399
rlocus, 225, 398, 459
rltool, 282
roots, 441
semilogx, 84, 300, 521
semilogy, 380
series, 107, 521, 588
sqrt, 509
ss2tf, 423, 438
ss2zp, 423
step, 33, 99
step response, 24
tf, 33, 84, 107
tf2ss, 426
tf2zp, 100, 423
tzero, 440, 442



max.m, 380
Maxwell, James Clerk, 11, 62, 204, 275, 649
Mayr, O., 9
Mechanical systems
dynamic models, 21–24
exercise problems related to, 66

Méchanique céleste, 149
Mello, B. A., 736
Method of computed torque, 603
Microphone, 70
Microprocessors for control applications, 580
Minimum phase systems and Bode plot, 316
MIT rule, 641, 649
Mixed control system versus pure discrete equivalent, 584
MMPZ method
emulation design, 575
MPZ comparison, 576

Modal canonical form
block diagram, 427
fourth-order system block diagram, 428
state equations, 427–428

Modal form transformation, 432, 433–434
Model, definition, 20
Modern control, 14
Modern control design, 415
Modes of the system, 97
Modified dominant second order pole locations with DC servo redesign, 489
Modified matched pole-zero (MMPZ) method
emulation design, 575
MPZ comparison, 576

Modified PD control, 238–239
Moler, Cleve, 277, 532
Monic, 222
Monic polynomials, 524
Motion equation development for rigid bodies, 40
Motor



AC, 49
DC, 47
position control, root locus for, 223–224

Motor speed, PID control of, 189
Motor speed system
extended estimator, 519
integral control, 503–504

MPZ method
emulation design, 571–575
MMPZ comparison, 576

MRFM, 740
Multiple crossover frequency system, Nyquist plot for, 340–341
Multiplication by time, 91, 765
Multipoint injection, 704
Munro, N., 532

N
Napoleon, 149
Natural frequency, 438
z-plane, 566

Natural mode, 438
Natural responses, 108
stability, 114

N circles, 383
Negative feedback, 104
Negative locus, 226
definition, 268
plotting rules, 266–269
sketching, 269

Negative root locus. (see Negative locus)
Neutral stable system, 132
Neutrally stable, 132
frequency response design method, 317–319

exercise problems related to, 394
Newton, Isaac, 60
Newton’s law, 60



rotational motion, 27
translational motion, 21

Nichols, N.B., 590
Nichols chart, 382
contours of constant closed loop magnitude, 383
for PID example, 383–385

nichols.m, 383
Noncollocated case, root locus for, 245
Noncollocated sensor, 244, 246
Nonlinear differential equations, 603
Nonlinear integrator, 656
Nonlinear radiation RTP system, 722
Nonlinear sensor, 704
Nonlinear systems, 599, 600
analysis and design based on stability, 629–648
equivalent gain analysis using frequency response, 619–629
equivalent gain analysis using root locus, 609–619
historical perspective, 648–649
linearization, 602–609
Lyapunov stability, 639
root locus extension methods, 618–625

Nonlinearity complications, 705
Nonminimum phase systems
Bode plot, 315
frequency response, 315
LTR, 520
response of, 127

Nonminimum phase zero, 127
Normal form, 443
state space design, 414

Normal modes, 427
Notch compensation
definition, 249
design using, 255–257
root locus extension method, 614

Notch filter block diagram, 615



Nyquist, H., 13, 386
Nyquist and Shannon sampling theorem, 578
Nyquist frequency, 566
nyquist.m, 326, 329, 332
Nyquist plot, 323
characteristics, 332–333
defining gain and phase margin, 334
evaluation, 322
LQR design, 461
multiple crossover frequency system, 340
open loop unstable system, 330–332
plotting procedure, 324
pole locations, 460
second order system, 324–326
third order system, 327–329
using MATLAB, 329
vector margin, 338

Nyquist stability criterion, 319–332
exercise problems related to, 394–396

O
Observability, 471
Observability matrix, 471
Observer, 443
Observer canonical form, 431, 469–471
block diagram, 470
DC servo, 485
equation, 470
illustrated, 431
third order system, 470

oil-mass resonance, 60
One-sided Laplace transforms, 87, 757
ones.m, 101
Op-amp
as integrator, 44–45
schematic symbol, 43



simplified circuit, 43
summer, 44

Open loop autopilot design, 262
Open loop control, 7
system, 170, 172

Open loop estimator, 467
Open loop transfer function, 318, 630
Open loop unstable system, Nyquist plot for, 330–332
Optimal control, 457
Optimal design, 664
Optimal estimation, 477
Oscillator, time scaling, 424
Oscillatory systems
block example, 613
with saturation, 613

Oscillatory time response, 115
Output equation, 437
state description, 428

Output matrix, 416
Output response, analog and digital implementations, 259
Overshoot
definition, 116
plot, 122
time domain specification, 116–118
versus damping ratio, 118

P
Padé approximant, 273
pade.m, 273
Paper machine example, 17
parallel.m, 107
Parameter, consideration of two, 270–272
Parameter range versus stability, 135–139
Parameter selection, 669
Parameter value selection, 234, 236
Parseval’s theorem, 645, 765



Partial fraction expansion
distinct complex roots, 766–768
frequency response, 298
inverse Laplace transform, 91–92, 766–769
repeated real roots, 768–769

Partial state control canonical form, 446
Peak amplitude, 309
Peak time, 116
Pendulum
example

control law, 445
estimator design, 468–469
linear and nonlinear response, 604
nonlinear equations, 32
reduced order estimators, 474–475
rotational motion, 32
SRL estimator design, 477

rotational motion step input, 34
Performance bound function
example, 374–377
plot, 375

Perturbations, 506
Phase, 83
frequency response, 299

Phase condition, 226
Phase lag
between output and input, 85
versus time delay, 381

Phase margin
closed loop bandwidth, 347
frequency response data, 336
frequency response design method, 334
LTR, 519
magnitude and phase plot, 335
versus damping ratio, 337
versus frequency response resonant peak, 337



versus transient response overshoot, 337
Phase plane, 630
state space design, 415

Phase plot
gain and phase margin, 335
transfer function class, 308

Phase stabilization, 256, 371
Phase-plane plot with saturation, 632
Photolithography, 754
Phugoid mode, 697
PID control, 13
Piper Dakota autopilot, 262
Pitch angle, 685
place.m, 451, 472, 489
Plant, 5
estimator connected to, 469

Plant changes, 666
Plant evaluation/modification, 664
Plant inversion, 520
Plant open loop pole, root locus with, 224–225
Plant uncertainty
example, 377
plot, 376

plot.m, 33, 101
PM, 334
PM to damping ratio rule, 337
Poincaré, 648
Polar plot, 323
Pole
Bode plot, 310–311
compensator design, 549
correlation, 115
definition, 97
inverse Laplace transforms, 91
partial fraction expansion, 768
rational transfer function, 96



response character indication, 96
of the system, 97
and zeros, finding using MATLAB, 436

Pole assignment
root locus

DC servo, 485
SRL, 488

Pole location/placement, 108, 115
Ackermann’s formula, 448
corresponding impulse responses, 114
exercise problems related to, 158
polynomial transfer functions, 525–526
selection, 455

dominant second order poles, 455–457
example, 456–457, 459–464
exercise problems related to, 542, 543
methods, 455, 466
SRL, 457–465

Pole selection SRL, 490–491
Pole-zero cancellation, 500
Pole-zero patterns, effects of, 128–129
poly.m, 96
Polynomial solution, integral control to, 527
Polynomial transfer functions
pole placement for, 525–526
reduced-order design for, 526–527

Pontryagin, L. S., 14
Popov, 649
Position error constant, 179, 316
Position feedback system, Lyapunov direct method for, 639–640
Positive feedback, 104
Positive locus, 223, 226
plotting rules, 228–233

Positive root locus. (see Positive locus)
Prefilter, 727
printsys.m, 98



Problem solving, using Laplace transforms, 94
Process, 4
Process noise for estimator pole selection, 476
Process reaction curve, 193
Programmable read only memory (EPROM), 580
Prokaryotic cell, 731
Proportional derivative (PD)compensation, 348
compensation characteristic, 370
frequency response, 348

Proportional feedback control (P), 187
discrete control laws, 585

Proportional integral (PI)
anti-windup compensation, 618
compensation, 360
control system, 137

compensation characteristic, 370
Proportional plus integral control (PI), 187–188
Proportional-integral-derivative (PID), 171
controller, 186
frequency response design method, 365–371
Nichols chart as example for, 383–384
spacecraft attitude control, 365–371
state-space design, 664

Proportional-integral-derivative (PID) control, 188–189
digital form, 192

Prototype testing, 665
Proximate time-optimal system (PTOS), 634, 635
Pseudorandom binary signal (PRBS), 142
Pseudorandom-noise data, 141, 142
Pulse, digitization, 559
Pure discrete equivalent versus mixed control system, 584
Pure time delay
design for system, 527–530

exercise problems related to, 556
heat exchanger, 529–530

Pyrometer, 720



pzmap.m, 109

Q
QR algorithm, 433
Quality factor, 112
Quantized signals, 198
Quarter car-model, 25
Quarter decay ratio, 194

R
Radiation Laboratory, 204
Ragazzini, J. R., 41, 590
RAM, 580
Ramp response of first order system, 763
Ramp signal, robust tracking, 506
Random access memory (RAM), 580
Random walk, 735
Rapid thermal processing (RTP) system
control system design procedure, 717
laboratory model, 722
linear model, 723

Rational transfer functions, direct design with, 523–527
Reaction jets, 668
Reaction wheels, 668
Read-only memory (ROM), 580
Receptor, 734, 735
Reduced order compensator design for satellite attitude control, 482–483
Reduced order compensator transfer function, 480
Reduced order design for polynomial transfer function model, 526–527
Reduced order estimator, 472–475
DC servo redesign example, 486–487
for pendulum, 474–475
structure, 474

Reference input
alternative structures, 455
estimator, 491

gain selection, 501



general structure, 492–501
example, 452–453
full state feedback, 451–455
gain equation, 452
selection methods, 493
type 1 system, 454

Reference spectrum plot, 373
Reference tracking, 171
Region of convergence, 757
Regulation, 171, 174–175
Regulation with disturbance inputs for system type, 183
Regulator, 16
compensator design, 549

Relay, 610
Repeated poles, 768
Repeated real roots, partial fraction expansion, 768–769
Repellent, 733–734
Reset control, 616
Reset windup, 616
residue.m, 92, 96
Resistor symbol and equation, 42
Resonant frequency, 383
Resonant peak, 302
Response
by convolution, 75–79
to sinusoid, 82
versus pole locations and real roots, 109–111

Right half-plane (RHP), 112
Bode plot, 332
compensator transfer function, 480
LTR, 520
Lyapunov stability, 638
root locus extension method, 273
SRL, 458
zeros, 123

example, 127



nonminimum-phase systems, 315
Rigid bodies, motion equation development for, 40–41
Ring-lasers gyroscope, 690
Rise time, 116
rlocfind.m, 246, 399
rlocus.m, 225, 398, 459
RLTOOL, 282
RMS value, 523
Robust, 506
Robust control
definition, 506
error space equations in, 506
sinusoid, 508–514

Robustness, 2
Robust properties, 181, 506
LQR regulators, 465
system type, 181

Robust servomechanism closed-loop frequency response, 513
disturbance rejection properties, 513
Simulink block diagram, 511
tracking properties, 512

Robust tracking, 502–519
error space approach, 505–515
exercise problems related to, 554–556

Robustness constraints, 378–379
Rolling mill, 156
Roll mode, 691
ROM, 580
Room temperature, dynamic model for, 51
Root locus, 14, 220
0 degree locus. (see Negative locus)
180 degree locus. (see Positive locus)
autopilot design, 263
closed loop poles, 271
combine control and estimator, 482
compensation, 614



complex multiple roots, 247
conditionally stable system, 339
DC servo

pole assignment, 485
reduced order estimator, 486

definition, 226
design example, 260–266
exercise problems related to, 279, 282, 289–293
feedback system, 221, 226
guidelines for determining, 226
illustrative, 236–248
lead design, 251
lead lag, 257
method of Evans, 222
motor position control, 223
noncollocated case, 245–247
notch compensations, 257
plant open-loop pole, 224
plotting rules, 233
reduced order controller, 483
rules application example, 245
rules for plotting a positive, 228–233
for satellite attitude control, 236–238
satellite control

collocated flexibility, 243
lead compensator, 238–239
small value for pole, 239–240
transition value for pole, 240–243

sketching guidelines, 226
exercise problems related to, 279

SRL pole assignment, 488
stability examples, 318
time delay, 272

heat exchanger, 274
using two parameters in succession, 270–272

Root locus design method, 220, 278



basic feedback system, 221–226
design example using, 260–266
dynamic compensation, design using, 248–260
exercise problems related to, 279–295
extensions of, 266–274
historical perspective, 274–276
guidelines for determining root locus, 226–236
illustrative root loci, 236–248
perspective, 220

Root locus forms, 223
Root locus method
extensions, 270–272

exercise problems related to, 293
of Evans, 222

Root mean square (RMS) value, 523
roots.m, 136, 441
Rosenbrock, H. H., 532
Rotational and translation hanging crane, 36
Rotational motion
Newton’s law, 27
pendulum, 32
satellite attitude control model, 28–30

Rotor, free body diagram for, 48
Routh, E. J., 12, 204, 275
Routh array, 133–134
Routh’s stability criterion, 132–134
Routh’s test, 134–135, 139
RTP laboratory model, 722
RTP linear model, 723
RTP system, 717–730
Rudder, 685
Run, E. coli, 733
Run-to-run control, 753

S
Saberi, A., 520



Safonov, M., 532
Sample period, digitization, 559
Sample rate
digitization, 559
lower limit, 580

Sample rate selection
digital control, 580–583

anti-alias prefilter, 582–583
asynchronous sampling, 583
disturbance rejection, 581–582
tracking effectiveness, 581

digitization, 560
Sampled data system, 559
Sampled signals, 198
Sampling theorem of Nyquist and Shannon, 578
Sandberg, I. W., 647
Sastry, S., 640
Satellite attitude control, 191
application, 667–684
example

full order compensator design for, 480–482
LTR, 521
reduced order compensator design, 482–483
rotational motion, 28–30
SRL, 459–460
state-variable form, 417–418

Satellite control
root locus

collocated flexibility, 243
lead compensator, 238–239
small value for pole, 239–240
transition value for pole, 240

schematic, 29
Satellite transfer function using MATLAB, 101–102
Satellite with flexible appendages, 313–315
Saturation



dynamic system, 610
oscillatory systems, nonlinear example, 613

Scaling
ball levitator, 147–148
dynamic models, 602–603
time, 89

Schmitt trigger circuit, 624
Schmitz, E., 40
Second order equations, external signals, 516
Second order servomechanism, 496–499
Second order step responses of transfer functions, 124
Second order system
block diagram, 105
Lyapunov stability, 638–639
Nyquist plot, 324–326
responses, 113

exponential envelope, 114
step response plots, 122

Second order term, transfer function class, 308
Segway, 38
Semiconductor wafer manufacturing, 717
semilogx.m, 84, 300, 521
semilogy.m, 380
Sensitivity, 171, 175–178
Sensitivity function, 373
for antenna, 380
design limitations, 377–381
plot and computation, 380–381
specifications, 373–381

exercise problems related to, 410
Sensor, 5
control system design procedure, 662

Sensor noise, 371
estimator pole selection, 476

Sensors for Control, 204
series.m, 107, 521, 588



Servo motor, torque-speed curves, 49
Servo motor. (see also DC servo)
Servo speed control, SRL for, 459
Servo with tachometer feedback, system type for, 182
Servomechanisms, 13
increasing velocity constant, 496–499
structure, block diagram of, 271
system, lead compensator design for, 358–359

Set point, 4
Settling time
definition, 116
time domain specification, 118–120

Shift in frequency, 761
Short pulse, 77
Short-period mode, 697
Sifting property, 78
Signal decay, rate of, 110
Simon, H. A., 531
Simple design criterion for spacecraft attitude control, 343–346
Simulation
block diagram transfer function, 422–424
control system design procedure, 665

Simulink, 737
block diagram for LTR, 523
block diagram for robust servomechanism, 511
for nonlinear motion, 35–36

Simulink nonlinear simulation
definition, 709
RTP system, 727

Simulink simulation for continuous and discrete systems, 489
Single point, 704
Sinusoid
robust control, 508–514
with frequency, 760–761

Sinusoid of frequency, compensator structure, 509
Sinusoid transform, 88–89



Sinusoidal signal, 758
time integral, 762
time product, 765–766

Sizing the actuator, 619
Slow poles, 110
Small signal linearization, 603–604
Smith compensator, 528
Smith regulator for time delay, 528
Solutions to end-of-chapter questions, 772
Space station attitude digital controller, 573–575
Space station digital controller, direct discrete design of, 586–587
Spacecraft attitude control
PID compensation design for, 366–371
simple design criterion for, 343–346

Specific heat, 51
Spectral analyzers, 301
Sperry, L., 739
Spiral mode, 691
Spirule, 275
S-plane
complex poles, 112
RHP contour, 322
specification transformation, 120–121
time domain specification, 119
and z-plane relationship, 565–566

sqrt.m, 509
SRL. (see Symmetric root locus (SRL))
ss.m, 101, 435
ss2tf.m, 423, 428
ss2zp.m, 423
Stability, 1, 108, 129–140, 173
exercise problems related to, 166, 169
feedback system, 135
input magnitude, nonlinear response, 611
linear time invariant systems, 129–132
Lyapunov, 636



natural responses, 114
necessary condition for, 133
Routh’s criterion, 232
of system, 272
system definition and root locus, 318
versus parameter range, 135–137
versus two parameter ranges, 137, 139

Stability analysis, 12
Stability augmentation, 685
Stability condition, frequency response, 319
Stability margins
frequency response design method, 333, 341

exercise problems related to, 396–401
Stability properties for conditionally stable system, 339–340
Stability robustness, 374
Stabilization
amplitude, 371
phase, 371

Stable compensator, 485
Stable minimum phase system, 341
Stable system
block diagram, 612
definition, 130

Staircase algorithm, 542
Star tracker, 668
State description
equation, 436
thermal system transfer function, 437–438
zeros for thermal systems from, 439

State equations
block diagrams, 425–436
canonical forms, 425-436
dynamic responses from, 436–437
examples, 427–428, 433–436, 440–442
exercise problems related to, 536–539

State estimate equation, feedback output error, 467



State of the system, 416
State space and frequency response design methods, 481
State space control design, 414
State space design, 413–536
advantages, 414–416
block diagrams and, 421–424
compensator design, 478–489
control-law design for full-state feedback, 442–455
estimator design, 466–477
exercise problems related to, 536–557
gain selection, 501–502
historical perspective, 530–533
integral control and robust tracking, 502–519
loop transfer recovery (LTR), 519–524
Lyapunov stability, 636–642
perspective, 413
pole location selection for good design, 455–466
pure time delay, 527–530
rational transfer functions, 523–527
reference input with estimator, 491–502
state equation analysis, 425–442
system description in, 416–421
time and amplitude scaling in, 424

State space design elements, 443
state-variable form
differential equations

dynamic models, 417
example

satellite attitude control, 417
loudspeaker with circuit in, 420–421
modeling DC motor in, 420–421

State space method, lag compensation by, 496–499
State space pole placement method, 483
State space to transfer function (ss2tf) MATLAB function, 440
State transformation, 429
Steady-state error, 315–317



command inputs and disturbances, 371
determination example, 317

Steady state information, stochastic, 141
Steady state tracking and disturbance rejection, 518–519
Steam engine, 10
Stein, G., 532
Step and ramp transforms, 88
step.m, 33, 99, 418
Step response, 113, 419
digital versus continuous design, 588–589
first-order system, 119
lag compensation, 499
lead, lag, and notch compensations, 258
MATLAB, 24
standard second-order system, 117

Step response comparison of continuous and discrete systems, 259, 490
Step response plots, second-quarter systems, 122
Stick on a cart, 37, 542
Stochastic steady state information, 141
Structurally stable, 506
Successive loop closure, 270–272
Superposition, 89, 758
example, 76
principle of, 75–76

Superposition integral, 79
Suspension model, two-mass system, 25–27
Suspension system, free body diagram for, 26
Sylvester matrix, 525
Symmetric root locus (SRL), 457–466
DC servo compensator redesign example, 487–489
equation, 458

estimator pole selection, 477
estimator design pendulum example, 477
first order system, 459
for inverted pendulum, 460–462
pole assignment, 487



pole selection, 489
for satellite attitude control, 459
for servo speed control, 459

System
cruise control model, 21–24
definition, 304

System complexity versus system response, 695
System identification, 20, 146
System matrix, 416
System modeling diagrams, 102
exercise problems related to, 156, 159

System response versus system complexity, 695
System stability, 130
System type, 178
definition, 178
reference tracking, 183
for regulation and disturbance rejection, 183–186
robust property, 181
for speed control, 181
for tracking, 179–181
using integral control, 181

Systems biology, 731

T
Tape drive, 154
analysis of state equations of, 440–442
example, 434–436
LQR design, 463–464
state equation analysis, 440–442

Tape servomotor design, step responses of, 457
Taylor Instrument Company, 204
Temperature control system
lag compensator design for, 362–363
lead compensator for, 356–358

Temperature trajectory, 727
Temperature uniformity, 724



Tension plots for tape servomotor step responses, 457
Tesla, N., 49
tf.m, 33, 84, 107
tf2ss.m, 426
tf2zp.m, 100, 423
Thermal capacity, 51
Thermal conductivity, 51
Thermal resistance, 51
Thermal system transfer function from state description, 437–438
Thermal system transformation from control to modal form, 433–434
Thermal systems from state description, zeros for, 439–440
Thermostat, 5
Third order system
analog computer, 422
block diagram, 423
control canonical form, 445
lead compensator design, 358–359
Nyquist plot, 327–329
observer canonical form, 470
step responses, 129

Thomson, W. T., 40
Three-term controller, 186
Throttle body injection, 704
Time constant, 108
Time delay, 89, 272–275, 760
frequency response design method, 381

exercise problems related to, 409
heat exchanger, 529–530
magnitude, 381
phase, 381
root locus, 272

heat exchanger, 274
Smith regulator, 528
transfer function, 527

Time delay system, 381
Time domain specifications, 116–121



exercise problems related to, 159, 163
Time integral of sinusoidal signal, 762–763
Time invariance, 76–77
Time multiplication, 765
Time product
Laplace transform, 90

property, 764
sinusoidal signal example, 765

Time response, 663
Time scaling, 89, 148, 760
oscillator, 424

Time sequences with z-plane, 567
Time-to-double, 166
Torque, 48
Torque-speed curves for servo motor, 49
Torricelli, 648
Tou, J. T., 530
Tracking, 171, 172, 174
Tracking control, 16
Tracking effectiveness, 581
Tracking error estimator
description, 493
example, 494

Tracking properties for robust servomechanism, 512
Tracking systems, 1
Trankle, T., 291
Transconduction pathway, 734
Transfer function, 80–82
block diagram, 106
Bode form, 306
cancellations, 97
classes of terms, 306
for closed-loop system, 500
example, 81–82
linear systems, 85, 87
of simple system using MATLAB, 107–108



state equations, 437, 446
time delay, 527
using MATLAB, 107

Transfer function poles from state equation, 438
Transfer function to state space (tf2ss) control canonical forms, 426
Transfer function zeros from state equations, 439
Transformation of state equations, 429
Transformations using MATLAB, 100–101
Transient response
data, 141
DC motor, 100
definition, 86
experimental data source, 141
motor speed system, 505
overshoot versus phase margin, 337

Translational motion, Newton’s law for, 21
Transmission zeros (tzero), 442
Transportation lag. (see Pure time delay)
Transpose, 416
Trapezoidal integration, 569
Trapezoid rule, 200, 353
Trim command loop, 265
Truxal’s formula, 185, 186, 495
Tumble, E. coli, 733
Tumbling frequency, 735
Tungsten halogen lamp, 720
Tustin’s method, 569
digital controller, 570–571
emulation design, 568
MPZ and MMPZ comparison, 576

Two-mass system, suspension model, 25–27
Two-sided Laplace transforms, 87, 757
Type k, definition of, 182
Type one servomechanism system, lead compensator design for, 358–359
Typical plant uncertainty, 377
tzero.m, 440, 442



U
Ultimate gain, 194
Ultimate period, 194
Ultimate sensitivity method, 194
Uncontrollability of estimator modes, 500
Uncontrollable systems, 450
Undamped natural frequency, 112
Undamped oscillator, Ackermann’s formula for, 448–450
Unilateral Laplace transforms, 87, 757
Unit step function, 80
Unit-step response, 419
Unity feedback structure, 243
Unity feedback system, 104
drawing, 373

Unstable, impulse response, 108
Unstable system, 130
Upper companion form, 447
USCG Cutter Tampa, 291

V
Van der Pol, B., 87
Van der Pol’s equation, 659
Vector margin, 379
Velocity constant, 180
Velocity error coefficient, 316–317
Vidyasagar, M., 640
Voice coil, 45–46
Voltage source symbol and equation, 42

W
Washout, 691
Water tank height, equation for describing, 54
Water tank height and outflow, linearization of, 56–57
Watt, James, 204
Watt’s flyball governor, 10, 11, 649
Weak controllability, 450
Weighting function in Bode gain phase theorem, 343



Wiener, N., 13
Widnall, Bill, 591, 740
Winnie Mae, 739
Woodson, H. H., 596
Wright brothers, 739

Y
Yakubovich, 649
Yaw damper, 689–696
Yi, T.-M., 734

Z
Zadeh, L., 531
Zames, G., 532, 647
Zero, 108
Bode plot, 310–311, 313–315
definition, 97
effect of, 120–128

LHP, 238
exercise problems related to, 163, 166
inverse Laplace transforms, 91
LTR, 520
rational transfer function, 96–97
RHP, 124–126, 315
root locus extension method, 274
using MATLAB to find, 434–436

Zero assignment
estimator

description, 493
example, 496

increasing velocity constant, servomechanism, 496–499
Zero degree locus. (see Negative locus)
Zero location and control law, 450
Zero order hold (ZOH), 560
digitization, 561
sample rate selection, 581

Ziegler-Nichols Tuning of PID, 192–195



Zirconia sensor, 703
z-plane natural frequency and damping locus, 566
and s-plane

characteristics, 565
digital control relationship, 564–566
relationship, 565–566

time sequences, 567
z-transform
dynamic analysis, 561–562

inversion, 562, 564
tables, 563

simple discrete time functions, 562

Table of Laplace Transforms
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